
Graduate Level

K. N. Toosi Institute of Technology
Dr. H. Khanmirza

h.khanmirza@kntu.ac.ir

Fault Tolerant Systems - 2

Slide set 7
Distributed Systems

12/28/22 Distributed Systems, KNTU 1

mailto:h.khanmirza@kntu.ac.ir

Byzantine (Arbitrary) Fault Tolerance (BFT)

▸System face with non-crash faults
▸It works but may send faulty replies

Distributed Systems, KNTU 2

P1

P2 P3

a a

b

P1

P2 P3

a b

b

P2 reports wrong value P1 Sends different values to
different processes

12/28/22

Real world examples

▸Buggy servers, that compute incorrectly rather than stopping

▸Servers that don't follow the protocol due to some hardware
failure

▸Servers that have been modified by an attacker

Distributed Systems, KNTU 3

▸BFT

12/28/22

BFT

▸K-faulty nodes can’t be detected by 3k non-faulty processes
▸It needs 2k+1 non-faulty processes; or, totally 3K+1 processes

Distributed Systems, KNTU 4

P1

P2 P3

a b
a

b

P2 and P3 can’t draw a
conclusion which value is
correct

P1

P2 P3

a a
b

a
P1 and P3 can’t draw a
conclusion which value is
correct

12/28/22

Byzantine Generals Problem V1

▸First proposed by Lamport in 1982

▸A group of Byzantine generals encircled a
city
▸They must agree to attack or retreat,

otherwise their army will be slaughtered

▸Some generals are traitorous
▸Traitorous generals say different opinions to

break the union

▸They can send their decision in messages
carried by messengers

Distributed Systems, KNTU 5

▸BFT

attack

retreat

12/28/22

Byzantine Generals Problem V2

▸A commanding general encircled a city

▸He sends his order to his lieutenants

▸Loyal lieutenants obey the order

▸All lieutenants must agree to attack or
retreat, otherwise their division will be
slaughtered

▸The general or several lieutenants can be
traitorous.

▸They communicate with messengers

Distributed Systems, KNTU 6

▸BFT

att
ac
k

retreat

at
ta
ck

12/28/22

Byzantine Generals Problem

▸Two variations correspond to

▸V1: Flat group = Replicated-Write protocol

▸V2: Hierarchical group = Primary-Backup protocol

▸From now we study algorithms for the second version of the
problem
▸Solutions of both versions are convertible for each other

Distributed Systems, KNTU 7

▸BFT

12/28/22

Byzantine Generals Problem

▸Formal Definition

▸A process group has a primary member, P (=commander)

▸The remaining n-1 members are backup {𝐵!, …𝐵"#!} (= lieutenants)

▸A client sends a value v ∈ {𝑇, 𝐹} to primary (={attack , retreat})

▸Messages may be lost, but this can be detected

▸Messages cannot be corrupted without being detected

Distributed Systems, KNTU 8

▸BFT

12/28/22

Byzantine Generals Problem

▸To achieve Byzantine Agreement two conditions must be
satisfied:

▸BA1: Every nonfaulty backup process stores the same value
▸Maybe a value different with what client had sent originally.

▸BA2: If the primary is nonfaulty then every nonfaulty backup
process stores exactly what the primary had sent.
▸If the primary is nonfaulty, satisfying BA2 implies BA1

Distributed Systems, KNTU 9

▸BFT

12/28/22

Byzantine Generals Problem

▸Synchronous Solutions

▸Oral Message Algorithm

▸Signed Message Algorithm

▸What does it mean: Synchronous solution?

Distributed Systems, KNTU 10

▸BFT

12/28/22

OM (Oral Message) Solution

▸Assumptions:
▸Every message that is sent is delivered correctly

▸Messages are not lost
▸The receiver of a message knows who sent it
▸The absence of a message can be detected.
▸Original message may be forged 🤭.

▸We assume all group members can talk with each other
▸They are connected by a complete graph

▸Goal
▸All loyal lieutenants agree on the same order
▸If the commander is loyal, then every loyal lieutenant obeys the order

he sends

12/28/22 Distributed Systems, KNTU 14

▸BFT ▸Byzantine Generals Problem

OM Solution

▸OM(n, m)
▸n: 1 commanding general, n-1 lieutenants

▸i=0: commander node, i=[1,n-1]: lieutenant nodes
▸m traitors

▸Phase 0: The commanding general sends his order to all
lieutenants

▸Phase 1: Each lieutenant sends its value to n-2 lieutenants
▸Correct processes send the same (correct) value to all.
▸Faulty processes may send

▸Different values if desired
▸nothing

12/28/22 Distributed Systems, KNTU 15

▸BFT ▸Byzantine Generals Problem

OM Solution

12/28/22 Distributed Systems, KNTU 16

▸BFT ▸Byzantine Generals Problem

OM Solution

12/28/22 Distributed Systems, KNTU 17

▸BFT ▸Byzantine Generals Problem

OM Solution

▸Phase 2: Each lieutenant builds a vector 𝑉! where

▸∀ 𝑗 ≠ 𝑖, 𝑉$ 𝑗 = 0 𝑉% 𝑗
𝑣&'()*+,

▸If the lieutenanti has received any message from lieutenantj it puts in
the jth room of the vector

▸If not received anything, puts the default action in the jth room

▸If lieutenant received a new value broadcasts it to other (n-2)
lieutenants

12/28/22 Distributed Systems, KNTU 18

▸BFT ▸Byzantine Generals Problem

OM Solution

12/28/22 Distributed Systems, KNTU 19

▸BFT ▸Byzantine Generals Problem

OM Solution

▸Phase 3: choose the final action with 𝑣! = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦(𝑉!)

12/28/22 Distributed Systems, KNTU 21

▸BFT ▸Byzantine Generals Problem

OM Solution

12/28/22 Distributed Systems, KNTU 22

▸BFT ▸Byzantine Generals Problem

A

A

OM Solution

▸Have two variations
▸Consensus problem:

▸Every process have an initial value, all non-faulty processes must agree on a
value (value have arbitrary type)

▸Interactive Consistency problem
▸Each process has an initial value, and all the correct processes must agree upon

a set of values, with one value for each process

12/28/22 Distributed Systems, KNTU 25

▸BFT ▸Byzantine Generals Problem

SM Solution

▸Signed Message Algorithm (SM)
▸Assumptions:

1. Every message that is sent is delivered correctly
2. The receiver of a message knows who sent it
3. The absence of a message can be detected.
4. A loyal general’s signature cannot be forged

▸Any alteration of the contents of his signed message can be detected.
▸Anyone can verify the authenticity of a general’s signature

▸Goal
▸All loyal lieutenants obey the same order
▸If the commander is loyal, then every loyal lieutenant obeys the order he sends

12/28/22 Distributed Systems, KNTU 26

▸BFT ▸Byzantine Generals Problem

SM Solution

▸𝑉! is a set of orders
▸𝑉$ can be {}, {attack}, {retreat}, {attack , retreat}

▸𝑣: 𝑖 means
▸ith Lieutenant has signed the message 𝑣

▸𝑣: 𝑖: 𝑗
▸𝑣 ∈ 𝑉$
▸ith lieutenant has signed the message 𝑣
▸jth lieutenant has signed the message 𝑣: 𝑖

12/28/22 Distributed Systems, KNTU 27

▸BFT ▸Byzantine Generals Problem

SM Solution

▸Lieutenants decide based on choice function
▸Choice function

▸𝑉$ = {𝑣}è 𝑐ℎ𝑜𝑖𝑐𝑒 𝑉$ = 𝑣
▸𝑉$ = {}è 𝑐ℎ𝑜𝑖𝑐𝑒 𝑉$ = 𝑣&'()*+,
▸𝑉$ = {𝑣!, 𝑣-}è 𝑐ℎ𝑜𝑖𝑐𝑒 𝑉$ = 𝑣&'()*+,

12/28/22 Distributed Systems, KNTU 28

▸BFT ▸Byzantine Generals Problem

SM Solution

▸SM (n, m):
▸n: one commanding general + n-1 lieutenants

▸i=0: commander node, i=[1,n-1]: lieutenant nodes
▸m traitors

▸Phase 0: The commanding general signs and sends his order to all
lieutenants (𝑣: 0)

12/28/22 Distributed Systems, KNTU 29

▸BFT ▸Byzantine Generals Problem

SM Solution

▸Phase 1: Lieutenanti receives general order
▸If (𝑣: 0) is the first order
▸Set 𝑉! = {𝑣}
▸Sign & Send (𝑣: 0: 𝑖) to every other lieutenant

▸If a message in the form (𝑣: 0: 𝑗!: … : 𝑗. & 𝑣 ∉ 𝑉$) is received
▸𝑉! = 𝑉! ∪ 𝑣
▸If 𝑘 < 𝑚, send (𝑣: 0: 𝑗": … : 𝑗#: 𝑖) to other lieutenants not in
𝑗", … , 𝑗# .

12/28/22 Distributed Systems, KNTU 30

▸BFT ▸Byzantine Generals Problem

SM Solution

▸Phase 2:
▸Decide based on 𝑐ℎ𝑜𝑖𝑐𝑒(𝑉$)

▸If 𝑐ℎ𝑜𝑖𝑐𝑒 = {𝑎𝑡𝑡𝑎𝑐𝑘, 𝑟𝑒𝑡𝑟𝑒𝑎𝑡}
▸Commander is traitor!
▸Do vdefault

▸The traitor lieutenant can not change the message, he may send empty
message or the original message

12/28/22 Distributed Systems, KNTU 32

▸BFT ▸Byzantine Generals Problem

BFT

▸Byzantine fault tolerance was for long more or less
an exotic topic

▸It turned out that combining safety, liveness, and
practical performance was difficult to achieve

▸Castro M. and Liskov B. Practical Byzantine Fault
Tolerance, SOSP 1999
▸High-performance implementation

▸processing thousands of requests per second with sub-
millisecond increases in latency

▸Partially-synchronous system

12/28/22 Distributed Systems, KNTU 33

PBFT (Practical Byzantine Failure Tolerance)

▸Assumptions
▸A faulty replica server may exhibit arbitrary behavior.

▸Messages may be lost, delayed, and received out of order.

▸However, a message’s sender is assumed to be identifiable or messages
are signed.

▸PBFT adopts a primary-backup model with a total of 3k + 1 replica
servers

▸The primary can still lie.
▸Send different sequence number for the same operation to different replicas
▸Use a duplicate sequence number for operation

12/28/22 Distributed Systems, KNTU 34

▸BFT

PBFT

▸Safety:
▸Client always receives a correct answer

▸Liveness (Termination):
▸Every correct node eventually chooses a value.

▸If message delays and response times are bounded (synchronous
system) PBFT provides liveness

▸PBFT assumes a partially synchronous model, in which unbounded
delays are an exception, for example caused by an attack.

12/28/22 Distributed Systems, KNTU 35

▸BFT

PBFT

12/28/22 Distributed Systems, KNTU 36

Client sends a request to Primary

PBFT

12/28/22 Distributed Systems, KNTU 37

Primary sends (t,v,o) to backups:
t: timestamp
v: view is a number, simply the ID of the primary replica
o: operation

PBFT

▸A non-faulty backup accepts pre-prepare message if

▸It is in v

▸Has never accepted an operation with timestamp t in v before.

▸Sends prepare message (i,t,v,o) to all others (including primary)
▸i: id of the node

12/28/22 Distributed Systems, KNTU 38

PBFT

12/28/22 Distributed Systems, KNTU 39

If a backup receives 2k prepare(i,t,v,o) messages matching its pre-prepare
message, there is consensus among nonfaulty replicas à prepare certificate

PBFT

12/28/22 Distributed Systems, KNTU 40

• Send commit(i,t,v,o) to all others

• Collecting 2k matching commits, leading to commit certificate causes
replica to execute o

PBFT

12/28/22 Distributed Systems, KNTU 41

• After executing o, send response to the client.

• Client mark a message as answer if receive k+1 similar messages.

PBFT

▸What if the primary get failed?

▸We must ensure requests being processed at failure time, to be
executed exactly once by nonfaulty replicas.

▸PBFT deterministically selects another node as primary.
▸Simply primary is the replica with ID (v+1 mod n)

12/28/22 Distributed Systems, KNTU 42

PBFT

▸If a backup detects (by timeout) primary failure

▸Stops accepting messages (except view messages).

▸Broadcasts view-change(v+1, P) message.
▸P contains valid prepare certificates, operations with a consensus

12/28/22 Distributed Systems, KNTU 43

PBFT

▸New Primary (view (v+1))
▸Waits for 2k+1 view-change messages

▸Broadcasts message new-view(v+1,X,O)

▸X contains view-change messages (view change certificate) -
the digest of all messages proves that primary have all

▸O contains pre-prepare messages
▸Primary computes min and max timestamps of prepare messages in

X

▸For each 𝑡 ∈ [𝑡/01 , 𝑡/23]
▸If there is a message in P create message pre-prepare(t, v+1, o)
▸Otherwise create message pre-prepare(t, v+1, null)

12/28/22 Distributed Systems, KNTU 44

PBFT

▸In fact, new primary restarts all non-committed operations

▸Backups switch to view v+1 after receiving this message

12/28/22 Distributed Systems, KNTU 45

PBFT

▸PRE-PREPARE picks order of requests
▸PREPARE ensures order within views
▸COMMIT ensures order across views

12/28/22 Distributed Systems, KNTU 46

Discussion on Consensus
Protocols

Distributed Systems, KNTU 4712/28/22

Consensus

▸Reaching an agreement is inevitable in some scenarios:
▸Electing a coordinator
▸Deciding whether or not to commit a transaction
▸Dividing tasks among workers
▸Synchronization

▸If communication and processes are:
▸Perfect: Reaching an agreement is often straightforward

▸Not perfect: Reaching an agreement is typically not easy, have
noticeable performance penalty

12/28/22 Distributed Systems, KNTU 48

Consensus

▸Goal of distributed consensus algorithms:
▸All non-faulty processes reach consensus on some operation
▸Reaching that consensus within a finite number of steps

▸Different assumptions about underlying system necessitate
different solutions
▸Synchronous vs. asynchronous systems
▸Bounded vs. unbounded communication delays
▸Ordered vs. unordered message delivery (having global time)
▸Unicasting vs. multicasting message transmissions

12/28/22 Distributed Systems, KNTU 49

Consensus

12/28/22 Distributed Systems, KNTU 50

Message Ordering

Unordered Ordered

Process Behavior

Synchronous
ü ü ü ü Bounded

Com
m

unication
D

elay

ü ü Unbounded

Asynchronous
ü Bounded

ü Unbounded

Unicast Multicast Unicast Multicast

Message Transmission

Consensus

▸Byzantine Agreement
▸Algorithm executes in rounds
▸Every message that is sent is

delivered correctly
▸The receiver knows who sent the

message
▸Message delivery time is bounded
▸Messages are unicast

12/28/22 Distributed Systems, KNTU 51

Consensus

▸CAP Theorem: Any networked system providing shared data can
provide only two of the following three properties

▸C: consistency, by which a shared and replicated data item appears as a
single, up-to-date copy

▸A: availability, by which updates will always be eventually executed
▸Eventually get a (correct) response to every request issued by a client

▸P: Tolerant to the partitioning of process group (e.g., because of a
failing network).

▸In a network subject to communication failures, it is impossible to
realize an atomic read/write shared memory that guarantees a
response to every request

12/28/22 Distributed Systems, KNTU 53

Consensus

12/28/22 Distributed Systems, KNTU 54

Partitioning

Paxos
Redis

MongoDB

Gossip
Cassandra
Dynamo
CouchDB

2PC
RDBMS
Neo4j

Prof. Eric Brewer

FLP vs CAP

▸CAP has stronger conditions than FLP
▸In CAP, nodes are partitioned. A CAP solution requires that any live

node be able to correctly serve requests, even if it has not received any
messages.

▸A partitioned node in FLP does not have to achieve consensus, since it
is considered failed, but the same node in CAP must keep up with the
activity of the rest of the system.

12/28/22 Distributed Systems, KNTU 55

Availability Consistency

Network Partition

FLP vs CAP

▸The FLP states that in an asynchronous network where messages
may be delayed but not lost, there is no consensus algorithm that
is guaranteed to terminate in every execution for all starting
conditions, if at least one node may fail-stop.

▸The CAP states that in an asynchronous network where messages
may be lost, it is impossible to implement a sequentially
consistent atomic read / write register that responds eventually to
every request under every pattern of message loss.

12/28/22 Distributed Systems, KNTU 56

Fighting with Impossibility

▸Exactly deciding on how to proceed is application dependent:
▸Having duplicate keys in a database can easily be fixed, implying that we

should tolerate an inconsistency.
▸Duplicate transfers of large sums of money may not be easily fixed, that

means we should decide to tolerate lower availability, but be consistent.

▸One can argue that the CAP theorem essentially moves designers of
distributed systems from theoretical solutions to engineering
solutions.

12/28/22 Distributed Systems, KNTU 57

The End!

Distributed Systems, KNTU 5812/28/22

