
Graduate Level

K. N. Toosi Institute of Technology
Dr. H. Khanmirza

h.khanmirza@kntu.ac.ir

Introduction to NoSql Databases
&

Amazon Dynamo
Slide set 9

Distributed Systems

mailto:h.khanmirza@kntu.ac.ir

Database

▸Database:
▸An organized collection of data

▸Database Management System (DBMS):
▸A software that interacts with users, other applications, and the

database itself to capture and analyze data

Distributed Systems, KNTU 212/28/22

Database History

▸1960s
▸Navigational data model (hierarchical model)
▸Proposed by Bachman
▸To speedup operations on disk
▸IDS (Integrated Data Store) and CODASYL (data model & language)

Distributed Systems, KNTU 3

▸Database

get department with name='Sales’
get first employee in set department-employees
until end-of-set do {

get next employee in set department-employees process employee
}

12/28/22

Database History

▸1970s
▸Relational Database Management System (RDBMS) by Codd
▸Logical data is disconnected from physical information storage

▸1980s
▸Object Database
▸Information represented by objects

▸2000s
▸NoSQL: BASE principles instead of ACID
▸NewSQL: scalable performance with BASE + ACID

Distributed Systems, KNTU 4

▸Database

12/28/22

RDBMS

▸Relational Database Management System
▸The dominant technology for storing structured data in web and

business applications

▸SQL
▸A language for data retrieval from RDMBS
▸Rich language
▸Easy to use and integrate
▸Rich toolset
▸Many vendors

12/28/22 Distributed Systems, KNTU 5

▸Database ▸RDBMS

RDBMS ACID Properties

▸RDMBS promises ACID properties

▸Atomicity
▸All included statements in a transaction are either executed or the

whole transaction is aborted without affecting the database

▸Consistency
▸A database is in a consistent state before and after a transaction
▸Consistent State defined by consistency model

12/28/22 Distributed Systems, KNTU 6

▸Database ▸RDBMS

RDBMS ACID Properties

▸Isolation
▸Transactions can not see uncommitted changes in the database

▸Durability
▸Changes are written to a disk before a database commits a transaction

so that committed data cannot be lost through a power failure

12/28/22 Distributed Systems, KNTU 7

▸Database ▸RDMBS

RDBMS vs. New Requirements

▸Internet has new requirements
▸Internet scale data size
▸High read and write rates
▸Frequent schema changes
▸Joins are expensive

▸RDBMS was not designed to be distributed

12/28/22 Distributed Systems, KNTU 8

▸Database

RDBMS vs. New Requirements

12/28/22 Distributed Systems, KNTU 9

▸Database

RDBMS vs. New Requirements

12/28/22 Distributed Systems, KNTU 10

▸Database

▸Solutions
▸Replication

▸Sharding

Solutions

▸Replication
▸Master-slave architecture
▸Scales read operations

▸Expensive
▸Hardware
▸Product cost
▸Maintenance

12/28/22 Distributed Systems, KNTU 11

▸Databases ▸RDBMS vs. New Requirements

Solutions

▸Sharding
▸Divide data base across several machines
▸Scales read and write operations
▸RDBMS Cannot execute transactions across shards (why? CAP

theorem?)

12/28/22 Distributed Systems, KNTU 12

▸Database ▸RDBMS vs. New Requirements

https://image.slidesharecdn.com/oraclesharding18csangam18-181212124352/95/oracle-sharding-18c-technical-overview-15-638.jpg?cb=1544619088

Solutions

12/28/22 Distributed Systems, KNTU 13

▸Database ▸RDBMS vs. New Requirements

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQLWhitepaper.pdf]

12/28/22 Distributed Systems, KNTU 14

12/28/22 Distributed Systems, KNTU 15

▸NoSql

NoSQL

▸Avoidance of unneeded complexity

▸High throughput

▸Horizontal scalability and running on commodity hardware

▸Compromising reliability for better performance

12/28/22 Distributed Systems, KNTU 16

NoSQL

▸Emphasizes on
▸Easy and frequent changes to DB

▸Fast development

▸Large data volumes (e.g. Google)

▸Most of consideration in application layer
▸Transactions
▸No explicit data types

▸Schema-less

12/28/22 Distributed Systems, KNTU 17

NoSQL

▸This word was first used in 1998 by Carlo Strozzi to name his
relational database that did not expose the standard SQL
interface

▸The term was picked up again in 2009 when a Last.fm developer,
Johan Oskarsson, wanted to organize an event to discuss open
source distributed databases

12/28/22 Distributed Systems, KNTU 18

NoSQL

▸The name attempted to label the emergence of a growing
number of non-relational, distributed data stores that often did
not attempt to provide ACID

▸In practice, they actually use SQL-like languages

12/28/22 Distributed Systems, KNTU 19

http://www.newsinsurances.co.uk

NoSQL

12/28/22 Distributed Systems, KNTU 20

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQLWhitepaper.pdf]

NoSQL

▸Data Models
▸Key-Value
▸Document
▸Column-Oriented
▸Graph

12/28/22 Distributed Systems, KNTU 21

Key-Value Data Model

▸Collection of key/value pairs
▸Ordered Key-Value: processing over key ranges

▸Like a big distributed hash table
▸Popular products: Redis, Dynamo, Scalaris, Voldemort, Riak, ...

12/28/22 Distributed Systems, KNTU 22

▸NoSql

Column-oriented Data Model

▸Similar to a key/value store, but the value can have multiple at-
tributes (Columns)

▸Column: a set of data values of a particular type

▸Store and process data by column instead of row

▸Popular products: BigTable, Hbase, Cassandra

12/28/22 Distributed Systems, KNTU 23

▸NoSql

12/28/22 Distributed Systems, KNTU 24

▸NoSql

Column-oriented Data Model

Stored as

• Row-based model is optimized for efficiently
reading of rows from disk
• Read a contact information
• Read a product info

• How about finding products with prices
between 1000$ and 10000$?

Column-oriented Data Model

▸This type is optimized for operating on a set of data
▸Finding products with prices between 1000$ and 10000$?

▸In row-based data model, all rows must be read
▸We may improve by index-es on columns
▸Indices add complexity

12/28/22 Distributed Systems, KNTU 25

▸NoSql

NoSQL

12/28/22 Distributed Systems, KNTU 27

Stored as

• Column-oriented model is
optimized for efficiently reading
of columns

Column-oriented Data Model

▸Facebook statistics
▸MySQL > 50 GB Data
▸Writes Average : ~300 ms
▸Reads Average : ~350 ms

▸Rewritten with Cassandra > 50 GB Data
▸Writes Average : 0.12 ms
▸Reads Average : 15 ms

12/28/22 Distributed Systems, KNTU 28

▸NoSql

Column-oriented Data Model

▸It is mostly suited for OLAP applications

▸OLAP: Online Analytical Processing
▸Complex queries for business intelligence or reporting

▸OLTP: Online Transaction Processing
▸Emphasize on availability, speed, concurrency and recoverability
▸Short-lived transactions

▸Touching small amounts of data per transaction
▸Use indexed lookups (No table scans)

12/28/22 Distributed Systems, KNTU 29

▸NoSql

Document-based Data Model

▸Similar to a column-oriented store, but values can have complex
documents, instead of fixed format
▸Flexible schema using XML, YAML, JSON, and BSON
▸Popular products: CouchDB, MongoDB, ...

12/28/22 Distributed Systems, KNTU 30

▸NoSql

{
FirstName: "Bob",
Address: "5 Oak St.",
Hobby: "sailing"

}
{

FirstName: "Jonathan",
Address: "15 Wanamassa Point Road",
Children: [

{Name: "Michael", Age: 10},
{Name: "Jennifer", Age: 8},

]
}

Document-based Data Model

▸A great choice for content management applications such as
blogs and video platforms

▸An intuitive for a developer to update an application as the
requirements evolve
▸Only the affected documents need to be updated
▸No schema update is required
▸No database downtime is necessary to make the changes

12/28/22 Distributed Systems, KNTU 31

▸NoSql

Graph Data Model

▸Uses graph structures with nodes, edges, and properties to
represent and store data

▸Popular products: Neo4j, InfoGrid
▸Some support transaction and ACID properties

12/28/22 Distributed Systems, KNTU 32

▸NoSql

[http://en.wikipedia.org/wiki/Graph database]

NoSQL

▸The large-scale applications have to be reliable: availability +
redundancy
▸These properties are difficult (and theoretically impossible) to achieve

with ACID properties as proved with CAP theorem

▸The BASE approach forfeits the ACID properties of consistency
and isolation in favor of availability and performance

▸Relational vs. NoSQL è Right data vs. Fast Data

12/28/22 Distributed Systems, KNTU 33

BASE Properties

▸Basic Availability
▸Possibilities of faults but not a fault of the whole system

▸Soft-state
▸Copies of a data item may be inconsistent

▸Eventually consistent
▸Copies becomes consistent at some later time if there are no more

updates to that data item

12/28/22 Distributed Systems, KNTU 34

▸NoSql

BASE & CAP

12/28/22 Distributed Systems, KNTU 35

▸NoSql

Amazon Dynamo

Amazon’s Highly Available Key-value Store

Distributed Systems, KNTU 3612/28/22

Dynamo

▸A Distributed, scalable, highly available key/value storage system

▸There are many services on Amazon’s platform that only need
primary-key access to a data store.
▸Best seller lists
▸Shopping carts
▸Customer preferences
▸Session management
▸Product catalog

▸Using a relational database is non-efficient and limits scale and
availability

12/28/22 Distributed Systems, KNTU 37

Dynamo

▸Dynamo provides a simple primary-key only interface to meet
the requirements of these applications

▸True scalability Examples
▸The service maintains shopping cart served tens of millions requests

that resulted in well over 3 million checkouts in a single day

▸The service managing session state handled hundreds of thousands of
concurrently active sessions

12/28/22 Distributed Systems, KNTU 38

Dynamo

▸Suitable for
▸Always writable: sacrificing strong consistency for availability

▸Nodes are trusted

▸No hierarchical namespace

▸Fast response time (99.9 read/writes are done in a few hundred ms)
▸Achieved by zero-hop DHT mechanism!

12/28/22 Distributed Systems, KNTU 39

Dynamo

▸Design considerations
▸Conflict resolution

▸When & how
▸Mostly given over to application as it has knowledge to resolve

▸Incremental scalability
▸Servers may be joined incrementally

▸Symmetry
▸Every node should have the same set of responsibilities (role) as its peers

▸Decentralization
▸No central administration

▸Heterogeneity
▸Work load are assigned based on capacity of nodes

12/28/22 Distributed Systems, KNTU 40

Dynamo

▸Architecture
▸Data partitioning
▸Replication
▸Data versioning
▸Dynamo API
▸Failure Handling
▸Membership management

12/28/22 Distributed Systems, KNTU 41

Data Partitioning

▸If size of data exceeds the capacity of a single machine does
Sharding (horizontal partitioning)

▸Consistent hashing is one form of automatic sharding

12/28/22 Distributed Systems, KNTU 42

▸Dynamo

Data Partitioning

▸Node identifiers may not be balanced

12/28/22 Distributed Systems, KNTU 43

▸Dynamo

Data Partitioning

▸Data identifiers may not be balanced

12/28/22 Distributed Systems, KNTU 44

▸Dynamo

- node
- data

Data Partitioning

▸Hot spots

12/28/22 Distributed Systems, KNTU 45

▸Dynamo

popular.mp3

- node
- data

song1.mp3

song2.mp3

song3.mp3

song4.mp3

Data Partitioning

▸Each physical node picks multiple random identifiers
▸Each identifier represents a virtual node

▸For homogeneous, all nodes run log N virtual servers
▸For heterogeneous, nodes run clogN virtual servers

12/28/22 Distributed Systems, KNTU 46

▸Dynamo

Replication

▸Data is stored on the coordinator node
▸Coordinator = main responsible node in the ring

▸Data is replicated on N-1 clockwise successor physical nodes
▸Skipping duplicate physical nodes

▸List of nodes having a piece of data called preference list

12/28/22 Distributed Systems, KNTU 47

▸Dynamo

Data Versioning

▸Updates are propagated asynchronously

▸Each update/modification of an item results in a new and
immutable version of the data
▸Multiple versions of an object may exist

▸Replicas eventually become consistent

12/28/22 Distributed Systems, KNTU 48

▸Dynamo

Data Versioning

▸Version branching can happen due to node/network failures

▸Use vector clocks for capturing causality, in the form of (node,
counter)

▸If causal: older version can be forgotten
▸If concurrent: conflict exists, requires reconciliation

12/28/22 Distributed Systems, KNTU 49

▸Dynamo

Data Versioning

▸Client C1 writes new object in Sx Node
▸C1 updates the object via Sx.
▸C1 updates the object via Sy.

▸C2 reads D2 and updates the object via Sz.
▸D1 and D2 are overwritten by the new data and can

be garbage collected

▸C3 reads D3 and D4 via Sx.
▸D3 and D4 are concurrent and need reconciliation

▸The read context is a summary of the clocks of
D3 and D4: [(Sx, 2), (Sy, 1), (Sz, 1)].

▸Reconciliation by user in Sx

12/28/22 Distributed Systems, KNTU 50

▸Dynamo

write handled by Sx

D1 ([Sx,1])

write handled by Sx

D2 ([Sx,2])

D3 ([Sx,2], [Sy,1])

write handled by Sy

D4 ([Sx,2], [Sz,1])

write handled by Sz

D5 ([Sx,3], [Sy,1], [Sz,1])

reconsiled and written by Sx

Data Versioning

▸Reason
▸Node failures, data center failures, network partitions
▸Large number of concurrent writes to an item

▸Occurrence
▸99.94 % one version
▸0.00057 % two versions
▸0.00047 % three versions
▸0.00009 % four versions

12/28/22 Distributed Systems, KNTU 51

▸Dynamo

Dynamo Operations

▸Easy API
▸get(key)

▸Return single object or list of objects with conflicting version and
context

▸put(key, context, object)
▸Store object and context under key
▸Context encodes system meta-data, e.g. version number

12/28/22 Distributed Systems, KNTU 52

▸Dynamo

Dynamo Operations

▸Client can send the request:
▸To the node responsible for the data (coordinator): save on latency,

code on client

▸To a generic load balancer: extra hops in routing

12/28/22 Distributed Systems, KNTU 53

▸Dynamo

Dynamo Operations

▸Dynamo uses quorum-like mechanism to execute operations

▸put operation
▸Coordinator generates new vector clock and writes the new version

locally
▸Sends to N highest-ranked nodes in preference list
▸Wait for response from W nodes
▸Using W=1

▸High availability for writes
▸Low durability

12/28/22 Distributed Systems, KNTU 54

▸Dynamo

Dynamo Operations

▸get operation
▸Coordinator requests existing versions from N top-ranked in preference

list
▸Waits for response from R nodes
▸If multiple versions, return all versions that are causally unrelated
▸Divergent versions are then reconciled
▸Reconciled version written back

▸Using R=1
▸High performance read engine

▸Recall: in quorum systems R + W > N

12/28/22 Distributed Systems, KNTU 55

▸Dynamo

R=3, W=3, N=5

Handling Failures

▸What if data center failures happen?
▸Power outages, cooling failures, network failures, and natural disasters

▸Preference list of a key is constructed such that the storage
nodes are spread across multiple data centers

12/28/22 Distributed Systems, KNTU 56

▸Dynamo

Handling Failures

▸Hinted Handoff
▸Sloppy Quorum

▸All read and write operations are performed on the first N healthy nodes from
the preference list

▸They may not always be the first N nodes encountered while walking the
consistent hashing ring

12/28/22 Distributed Systems, KNTU 57

▸Dynamo

Handling Failures

▸Hinted Handoff
▸What if a node temporarily down or unreachable?

▸To maintain durability of N, just replicate object in the next node
▸Hinted replicas store objects in separate database
▸Periodically scan to see if the respective node is alive, if so, transfer the object

and remove it locally

12/28/22 Distributed Systems, KNTU 58

▸Dynamo

1

1

1

A
B

C

D
1’

1’

1’
1’

Handling Permanent Failures

▸What if hinted replica become unavailable?

▸Anti-entropy protocol for replica synchronization

▸Use Merkle trees for fast inconsistency detection and minimum
transfer of data

12/28/22 Distributed Systems, KNTU 59

▸Dynamo

Handling Permanent Failures

▸A Merkle tree is a hash tree where leaves are hashes of the
values of individual keys

▸Parent nodes higher in the tree are hashes of their children

▸Advantage:
▸Each branch of the tree can be checked independently without

requiring nodes to download the entire tree

12/28/22 Distributed Systems, KNTU 60

▸Dynamo

Handling Permanent Failures

▸Nodes maintain Merkle tree of each key range
▸Exchange root of Merkle tree to check if the key ranges are up-

to-date

12/28/22 Distributed Systems, KNTU 61

▸Dynamo

1 5 Data items: D2, D3, D4, D5

D2 D3 D4 D5

Hash Hash Hash Hash

Hash Hash

Hash

Membership Management

▸Administrator explicitly adds and removes nodes
▸Respective keys are transferred from/to previous coordinators

▸Gossiping to propagate membership changes
▸push-based model
▸Eventually consistent view

12/28/22 Distributed Systems, KNTU 62

▸Dynamo

Dynamo: End Notes

▸Peer-to-peer techniques have been the key enablers for building
Dynamo

”... decentralized techniques can be combined to provide a single
highly-available system.”

12/28/22 Distributed Systems, KNTU 63

References

▸Wikipedia
▸Slides of Dr. Payberah: https://www.slideshare.net/payberah/
▸Kumar Ashwani, Introdution to NoSQL databases,

http://pages.di.unipi.it/turini/Basi%20di%20Dati/Materiale%202017-18/NoSQL-slides.pptx
▸Slides of Shafaat: https://www.kth.se/social/upload/519229b5f276547d7882c57f/9-dynamo-

id2210-10.ppt

12/28/22 Distributed Systems, KNTU 64

http://pages.di.unipi.it/turini/Basi%20di%20Dati/Materiale%202017-18/NoSQL-slides.pptx
https://www.kth.se/social/upload/519229b5f276547d7882c57f/9-dynamo-id2210-10.ppt

The End!

Distributed Systems, KNTU 6512/28/22

