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Database

▸Database: 
▸An organized collection of data

▸Database Management System (DBMS): 
▸A software that interacts with users, other applications, and the 

database itself to capture and analyze data
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Database History

▸1960s
▸Navigational data model (hierarchical model)
▸Proposed by Bachman
▸To speedup operations on disk
▸IDS (Integrated Data Store) and CODASYL (data model & language)
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▸Database

get department with name='Sales’ 
get first employee in set department-employees 
until end-of-set do { 

get next employee in set department-employees process employee 
} 
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Database History

▸1970s
▸Relational Database Management System (RDBMS) by Codd
▸Logical data is disconnected from physical information storage

▸1980s
▸Object Database
▸Information represented by objects

▸2000s
▸NoSQL: BASE principles instead of ACID
▸NewSQL: scalable performance with BASE + ACID
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▸Database
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RDBMS

▸Relational Database Management System
▸The dominant technology for storing structured data in web and 

business applications 

▸SQL
▸A language for data retrieval from RDMBS
▸Rich language
▸Easy to use and integrate 
▸Rich toolset 
▸Many vendors 
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▸Database ▸RDBMS



RDBMS ACID Properties

▸RDMBS promises ACID properties

▸Atomicity
▸All included statements in a transaction are either executed or the 

whole transaction is aborted without affecting the database 

▸Consistency
▸A database is in a consistent state before and after a transaction 
▸Consistent State defined by consistency model
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RDBMS ACID Properties

▸Isolation
▸Transactions can not see uncommitted changes in the database 

▸Durability
▸Changes are written to a disk before a database commits a transaction 

so that committed data cannot be lost through a power failure
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▸Database ▸RDMBS



RDBMS vs. New Requirements

▸Internet has new requirements
▸Internet scale data size
▸High read and write rates
▸Frequent schema changes
▸Joins are expensive

▸RDBMS was not designed to be distributed
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▸Database



RDBMS vs. New Requirements
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▸Database



RDBMS vs. New Requirements
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▸Database

▸Solutions
▸Replication

▸Sharding



Solutions

▸Replication
▸Master-slave architecture
▸Scales read operations

▸Expensive
▸Hardware
▸Product cost
▸Maintenance
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▸Databases ▸RDBMS vs. New Requirements



Solutions

▸Sharding
▸Divide data base across several machines
▸Scales read and write operations
▸RDBMS Cannot execute transactions across shards (why? CAP 

theorem?)
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▸Database ▸RDBMS vs. New Requirements

https://image.slidesharecdn.com/oraclesharding18csangam18-181212124352/95/oracle-sharding-18c-technical-overview-15-638.jpg?cb=1544619088



Solutions

12/28/22 Distributed Systems, KNTU 13

▸Database ▸RDBMS vs. New Requirements

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQLWhitepaper.pdf] 



12/28/22 Distributed Systems, KNTU 14



12/28/22 Distributed Systems, KNTU 15

▸NoSql



NoSQL

▸Avoidance of unneeded complexity

▸High throughput

▸Horizontal scalability and running on commodity hardware

▸Compromising reliability for better performance
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NoSQL

▸Emphasizes on
▸Easy and frequent changes to DB 

▸Fast development

▸Large data volumes (e.g. Google)

▸Most of consideration in application layer
▸Transactions
▸No explicit data types

▸Schema-less
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NoSQL

▸This word was first used in 1998 by Carlo Strozzi to name his 
relational database that did not expose the standard SQL 
interface

▸The term was picked up again in 2009 when a Last.fm developer, 
Johan Oskarsson, wanted to organize an event to discuss open 
source distributed databases
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NoSQL

▸The name attempted to label the emergence of a growing 
number of non-relational, distributed data stores that often did 
not attempt to provide ACID

▸In practice, they actually use SQL-like languages 
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http://www.newsinsurances.co.uk



NoSQL
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[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQLWhitepaper.pdf] 



NoSQL

▸Data Models
▸Key-Value
▸Document
▸Column-Oriented
▸Graph
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Key-Value Data Model

▸Collection of key/value pairs
▸Ordered Key-Value: processing over key ranges

▸Like a big distributed hash table
▸Popular products: Redis, Dynamo, Scalaris, Voldemort, Riak, ... 
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▸NoSql



Column-oriented Data Model

▸Similar to a key/value store, but the value can have multiple at-
tributes (Columns)

▸Column: a set of data values of a particular type

▸Store and process data by column instead of row

▸Popular products: BigTable, Hbase, Cassandra 
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▸NoSql
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▸NoSql

Column-oriented Data Model

Stored as

• Row-based model is optimized for efficiently 
reading of rows from disk
• Read a contact information
• Read a product info

• How about finding products with prices 
between 1000$ and 10000$?



Column-oriented Data Model

▸This type is optimized for operating on a set of data
▸Finding products with prices between 1000$ and 10000$?

▸In row-based data model, all rows must be read
▸We may improve by index-es on columns
▸Indices add complexity
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▸NoSql



NoSQL
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Stored as

• Column-oriented model is 
optimized for efficiently reading 
of columns



Column-oriented Data Model

▸Facebook statistics
▸MySQL > 50 GB Data
▸Writes Average : ~300 ms
▸Reads Average : ~350 ms

▸Rewritten with Cassandra > 50 GB Data 
▸Writes Average : 0.12 ms
▸Reads Average : 15 ms
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▸NoSql



Column-oriented Data Model

▸It is mostly suited for OLAP applications

▸OLAP: Online Analytical Processing
▸Complex queries for business intelligence or reporting

▸OLTP: Online Transaction Processing
▸Emphasize on availability, speed, concurrency and recoverability
▸Short-lived transactions

▸Touching small amounts of data per transaction 
▸Use indexed lookups (No table scans)

12/28/22 Distributed Systems, KNTU 29

▸NoSql



Document-based Data Model

▸Similar to a column-oriented store, but values can have complex 
documents, instead of fixed format
▸Flexible schema using XML, YAML, JSON, and BSON
▸Popular products: CouchDB, MongoDB, ... 
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▸NoSql

{ 
FirstName: "Bob", 
Address: "5 Oak St.", 
Hobby: "sailing" 

} 
{ 

FirstName: "Jonathan", 
Address: "15 Wanamassa Point Road", 
Children: [ 

{Name: "Michael", Age: 10}, 
{Name: "Jennifer", Age: 8}, 

] 
} 



Document-based Data Model

▸A great choice for content management applications such as 
blogs and video platforms

▸An intuitive for a developer to update an application as the 
requirements evolve
▸Only the affected documents need to be updated
▸No schema update is required
▸No database downtime is necessary to make the changes
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▸NoSql



Graph Data Model

▸Uses graph structures with nodes, edges, and properties to 
represent and store data 

▸Popular products: Neo4j, InfoGrid
▸Some support transaction and ACID properties
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▸NoSql

[http://en.wikipedia.org/wiki/Graph database] 



NoSQL

▸The large-scale applications have to be reliable: availability + 
redundancy
▸These properties are difficult (and theoretically impossible) to achieve 

with ACID properties as proved with CAP theorem

▸The BASE approach forfeits the ACID properties of consistency
and isolation in favor of availability and performance

▸Relational vs. NoSQL è Right data vs. Fast Data
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BASE Properties

▸Basic Availability
▸Possibilities of faults but not a fault of the whole system

▸Soft-state
▸Copies of a data item may be inconsistent 

▸Eventually consistent
▸Copies becomes consistent at some later time if there are no more 

updates to that data item 
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▸NoSql



BASE & CAP
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▸NoSql



Amazon Dynamo

Amazon’s Highly Available Key-value Store 
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Dynamo

▸A Distributed, scalable, highly available key/value storage system 

▸There are many services on Amazon’s platform that only need 
primary-key access to a data store. 
▸Best seller lists
▸Shopping carts 
▸Customer preferences
▸Session management 
▸Product catalog

▸Using a relational database is non-efficient and limits scale and 
availability
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Dynamo

▸Dynamo provides a simple primary-key only interface to meet 
the requirements of these applications

▸True scalability Examples
▸The service maintains shopping cart served tens of millions requests 

that resulted in well over 3 million checkouts in a single day 

▸The service managing session state handled hundreds of thousands of 
concurrently active sessions
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Dynamo

▸Suitable for
▸Always writable: sacrificing strong consistency for availability

▸Nodes are trusted

▸No hierarchical namespace

▸Fast response time (99.9 read/writes are done in a few hundred ms)
▸Achieved by zero-hop DHT mechanism!
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Dynamo

▸Design considerations
▸Conflict resolution

▸When & how
▸Mostly given over to application as it has knowledge to resolve

▸Incremental scalability
▸Servers may be joined incrementally

▸Symmetry
▸Every node should have the same set of responsibilities (role) as its peers

▸Decentralization
▸No central administration

▸Heterogeneity
▸Work load are assigned based on capacity of nodes
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Dynamo

▸Architecture
▸Data partitioning 
▸Replication
▸Data versioning
▸Dynamo API 
▸Failure Handling
▸Membership management 
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Data Partitioning

▸If size of data exceeds the capacity of a single machine does 
Sharding (horizontal partitioning) 

▸Consistent hashing is one form of automatic sharding
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▸Dynamo



Data Partitioning

▸Node identifiers may not be balanced 
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▸Dynamo



Data Partitioning

▸Data identifiers may not be balanced 
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▸Dynamo

- node
- data



Data Partitioning

▸Hot spots
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▸Dynamo

popular.mp3

- node
- data

song1.mp3

song2.mp3

song3.mp3

song4.mp3



Data Partitioning

▸Each physical node picks multiple random identifiers
▸Each identifier represents a virtual node

▸For homogeneous, all nodes run log N virtual servers
▸For heterogeneous, nodes run clogN virtual servers
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Replication

▸Data is stored on the coordinator node 
▸Coordinator = main responsible node in the ring

▸Data is replicated on N-1 clockwise successor physical nodes
▸Skipping duplicate physical nodes

▸List of nodes having a piece of data called preference list
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Data Versioning

▸Updates are propagated asynchronously

▸Each update/modification of an item results in a new and 
immutable version of the data
▸Multiple versions of an object may exist 

▸Replicas eventually become consistent 
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Data Versioning

▸Version branching can happen due to node/network failures 

▸Use vector clocks for capturing causality, in the form of (node, 
counter) 

▸If causal: older version can be forgotten 
▸If concurrent: conflict exists, requires reconciliation
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▸Dynamo



Data Versioning

▸Client C1 writes new object in Sx Node
▸C1 updates the object via Sx. 
▸C1 updates the object via Sy. 

▸C2 reads D2 and updates the object via Sz. 
▸D1 and D2 are overwritten by the new data and can 

be garbage collected 

▸C3 reads D3 and D4 via Sx. 
▸D3 and D4 are concurrent and need reconciliation

▸The read context is a summary of the clocks of 
D3 and D4: [(Sx, 2), (Sy, 1), (Sz, 1)]. 

▸Reconciliation by user in Sx
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▸Dynamo

write handled by Sx

D1 ([Sx,1])

write handled by Sx

D2 ([Sx,2])

D3 ([Sx,2], [Sy,1])

write handled by Sy

D4 ([Sx,2], [Sz,1])

write handled by Sz

D5 ([Sx,3], [Sy,1], [Sz,1])

reconsiled and written by Sx



Data Versioning

▸Reason
▸Node failures, data center failures, network partitions
▸Large number of concurrent writes to an item

▸Occurrence
▸99.94 % one version
▸0.00057 % two versions
▸0.00047 % three versions
▸0.00009 % four versions
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Dynamo Operations

▸Easy API
▸get(key)

▸Return single object or list of objects with conflicting version and 
context

▸put(key, context, object)
▸Store object and context under key
▸Context encodes system meta-data, e.g. version number
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▸Dynamo



Dynamo Operations

▸Client can send the request: 
▸To the node responsible for the data (coordinator): save on latency, 

code on client 

▸To a generic load balancer: extra hops in routing
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Dynamo Operations

▸Dynamo uses quorum-like mechanism to execute operations

▸put operation
▸Coordinator generates new vector clock and writes the new version 

locally
▸Sends to N highest-ranked nodes in preference list
▸Wait for response from W nodes 
▸Using W=1

▸High availability for writes 
▸Low durability 
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Dynamo Operations

▸get operation
▸Coordinator requests existing versions from N top-ranked in preference

list
▸Waits for response from R nodes
▸If multiple versions, return all versions that are causally unrelated
▸Divergent versions are then reconciled 
▸Reconciled version written back

▸Using R=1
▸High performance read engine

▸Recall: in quorum systems R + W > N
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▸Dynamo

R=3, W=3, N=5



Handling Failures

▸What if data center failures happen? 
▸Power outages, cooling failures, network failures, and natural disasters

▸Preference list of a key is constructed such that the storage 
nodes are spread across multiple data centers
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Handling Failures

▸Hinted Handoff
▸Sloppy Quorum

▸All read and write operations are performed on the first N healthy nodes from 
the preference list

▸They may not always be the first N nodes encountered while walking the 
consistent hashing ring
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Handling Failures

▸Hinted Handoff
▸What if a node temporarily down or unreachable? 

▸To maintain durability of N, just replicate object in the next node
▸Hinted replicas store objects in separate database
▸Periodically scan to see if the respective node is alive, if so, transfer the object 

and remove it locally
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Handling Permanent Failures

▸What if hinted replica become unavailable?

▸Anti-entropy protocol for replica synchronization

▸Use Merkle trees for fast inconsistency detection and minimum 
transfer of data

12/28/22 Distributed Systems, KNTU 59

▸Dynamo



Handling Permanent Failures

▸A Merkle tree is a hash tree where leaves are hashes of the 
values of individual keys

▸Parent nodes higher in the tree are hashes of their children

▸Advantage: 
▸Each branch of the tree can be checked independently without 

requiring nodes to download the entire tree
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Handling Permanent Failures

▸Nodes maintain Merkle tree of each key range
▸Exchange root of Merkle tree to check if the key ranges are up-

to-date
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▸Dynamo

1 5 Data items: D2, D3, D4, D5

D2 D3 D4 D5

Hash Hash Hash Hash

Hash Hash

Hash



Membership Management

▸Administrator explicitly adds and removes nodes
▸Respective keys are transferred from/to previous coordinators

▸Gossiping to propagate membership changes 
▸push-based model
▸Eventually consistent view
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Dynamo: End Notes

▸Peer-to-peer techniques have been the key enablers for building 
Dynamo

”... decentralized techniques can be combined to provide a single 
highly-available system.”
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The End!
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