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Abstract:

A two step method has been devised for the statistical inference of deformation changes. In the first step of this method and based on

Procrustes analysis of deformation tensors, the significance of the change in a time or space series of deformation tensors is statistically

analyzed. In the second step significant change(s) in deformations are localized. In other words, they are assigned to certain parameters

of deformation tensor. This is done using the Global Model Test. Because of the key role of Procrustes analysis in the proposed method

for the inference of deformation changes, it has been given the name of Procrustean Statistical Inference of Deformations. The method

has been implemented to synthetic and real deformations. The 3D-deformation tensors of a regional GPS network in the Kenai Peninsula,

for analyzing the spatial variation of deformation tensors or the change of deformation within the study area, and a local GPS network in

France, for analyzing the temporal variation of deformation tensors or the change of deformation in time at every point of the network

in the study area have been used for illustrating the practical application of the proposed method.
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1. Introduction

From mathematical point of view the problem of analyzing the

change in deformations is equivalent to analyzing a time (the

analysis of the change in deformations in time) or a space (the

analysis of the change in deformations in space) series of de-

formation tensors. Today, using continuous GPS measurements,

deformations of a body can be analyzed in fine resolutions of time.

Since even in tectonically active areas the signal to noise ratio for

the change of deformations in fine resolutions of time is expected

to be low, a sophisticated mathematical technique is required

for handling the problem. Mathematical statistics has become a
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common mathematical tool for this purpose. The development

and implementation of statistical methods have been systemati-

cally restricted to the analysis of displacement fields (for example:

Caspary 1987; Caspary et al., 1999).

Cai (2004) did the first comprehensive study on the statistical

inference of the symmetric 2D- and 3D- deformation tensor. His

work was based on the statistical inference of the eigenspace

components of a random deformation tensor. For this purpose,

using the eigenspace synthesis and eigenspace analysis of the

symmetric deformation tensor in two- and three-dimensions, Cai

formulated the deformation tensor elements as a set of nonlinear

functions of the eigenspace components. Assuming that the strain

tensor elements are normally distributed and that a time series of

deformation tensor is available (either through their direct mea-

surement or through their estimation from other observations)

the eigenspace synthesis approach can give a least-squares esti-

mate of the eigenspace elements and their variance-covariance
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information. He has then proposed the test statistics such as the

Hotteling's T2 and the likelihood ratio statistics (e.g. Papoulis and

Pillai, 2002) as statistical apparatuses for the inference of estimated

eigenspace elements (Cai, 2004).

The eigenspace elements of the deformation tensor are the stan-

dard parameters for the interpretation and representation of the

accumulation of strain and stress in an area. Nevertheless, a

method that can help us analyze deformation changes in a further

detail is obviously more desirable. In case of significant change

in deformations, such a method would enable us to assign the

detected variations to the normal and/or shear strains. This goal is

not attainable through the statistical inference of the eigenspace

elements. This is because a significant change in an eigenspace

element of the deformation tensor is the cumulative result of

changes in various parameters of deformation.

A new two-step method has been forwarded that can fulfill the

abovementioned requirements. The method can identify signifi-

cant changes in deformations between the stations of a network

(change of deformations in space) and similar stations in a time

series of deformation tensor (change of deformations in time).

Instead of the standard multivariate test statistics such as the

Hotteling's T2 test, the method is based on (1) the Procrustes

analysis (Mosier, 1939; Green, 1952; Cliff, 1966; Schönemann,

1966; Schönemann and Carroll, 1970; Gower, 1975; Lissitz and

Schönemann, 1976; Ten Berg, 1977; Goodall, 1991; Dryden and

Mardia, 2002) of the deformation tensors and (2) global test of the

mathematicalmodel in Procrustes analysis, hence here is given the

name: Procrustean Statistical Inference of Deformation. The

basic assumptions in procrustean statistical inference are that the

strain components are all normally distributed andnogross error is

present in the deformation tensors to be analyzed. The two-steps

involved in thismethod should therefore not be confusedwith the

two steps involved in any hypothesis test.

Procrustes analysis has been already used in Geodesy and Pho-

togrammetry for the direct solution of different transformation

problems (ex. Crosilla, 1999; Crosilla, 2004; Crosilla and Beinat,

2007). This paper contributes in the application of this method for

size and shape comparison of deformation tensors.

To introduce the method, different solutions to the least-squares

problem of Procrustes analysis are briefly introduced. It shall

be shown that available methods for inculcating the stochastic

properties of observations in the solution of weighted Procrustes

problem are not appropriate for this specific application of Pro-

crustes analysis. For this reason, the problem will be formulated

and solved using the standard least-squares algorithms for solving

nonlinear constrained minimization problems. The method has

been implemented to synthetic deformations as well as the 3D-

deformation tensors of two test areas: the regional GPS network

of the Kenai Peninsula and a local GPS network in France.

2. Procrustes Analysis

Procrustes analysis is amathematical technique for superimposing

one or more configurations (shapes) onto another. This is done by

the transformation of desired configuration(s) onto the target one

under the choice of a rotation, a translation and a central dilation.

In statistical shape analysis, a configuration or shape is known as

a set of landmark coordinates in an arbitrary coordinate system.

A configuration or shape refers to a realization of an object using

a discrete set of points termed as landmarks and are normally

selected using certain criteria (Dryden and Mardia, 2002). In the

geometric approach to the analysis of deformation, a geodetic

network is the shape or configuration of interest and the network

station coordinates are the corresponding landmark coordinates.

Since the characteristic tensor of deformation quadratic in three

and two-dimensions:

f (dX, dY , dZ ) =
[
dX dY dZ

] eXX 12eXY 12eXZ12eYX eYY 12eYZ12eZX 12eZY eZZ


 dXdY
dZ

 (1)

f (dX, dY ) = [ dX dY
] [ eXX 12eXY12eYX eYY

][
dX
dY

]
(2)

governs the geometry of deformation, it is also one possible

representation for the shapes or configurations of these forms.

Depending on the sign of the corresponding eigenvalues of defor-

mation tensor, the strain quadratic (1) can geometrically represent

an ellipsoid, a hyperboloid of one sheet or a hyperboloid of two

sheets. Similarly, the characteristic tensor of the strain quadratic

(2) represents an ellipse or a parabola depending on the sign of

its eigenvalues. Therefore the application of Procrustes analysis to

the analysis of deformation is justified.

Depending on the number of involved configurations, the number

of involved parameters in the transformation and the incorpora-

tion of observational errors in the formulation of the problem,

Procrustes problem is termed, formulated and solved differently.

When one configuration is transformed onto another by an or-

thogonal transformation in such a way that the sum of the squares

of residuals is minimal, the Procrustes problem is termed as Or-

thogonal Procrustes Analysis (OPA) (Mosier, 1939; Green, 1952;

Cliff, 1966; Schönemann, 1966). Schönemann (1966) proposed

the general solution to the least-squares problem of orthogonal

Procrustes analysis. The problem and its solution can be mathe-

matically formulated as in the following theorem:

Theorem 1: If A ∈ Rn×m and B ∈ Rn×m (m ≥ n) are two

arbitrary real matrices of the same dimension, the necessary and

sufficient condition to have a unique orthogonal transformation

matrixTto satisfy the least-squares problem:

B + E = AT (3a)
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TTT = TTT = I (3b)

trace(ETE) = min (3c)

is that the matrix SST
, where S = ATB, has not multiple zero

eigenvalues and all the singular values are nonnegative. The

unique solution T is then given by the equation:

T = WVT (4a)

where W, V and Dsare the eigenvectors and diagonal matrix of

eigenvalues in orthogonal decomposition of matrices SST
and

STSrespectively, that is (Schönemann, 1966):

SST = WDsWT (4b)

STS = VDsVT (4c)

In functional relations (3a) and (3b), E and In×m are the residual

and identity matrices respectively. In the particular application

of Procrustes analysis for the statistical inference of deformation

parameters matrices A and B are the full column rank strain

tensors that are directly observed or obtained from the 2D- or

3D-analysis of deformation. Matrices SST
andSTSare therefore,

necessarily positive definite. In other words, the uniqueness of the

Procrustes solution for the orthogonal transformation T is already

assured and needs not to be verified.

Extended Orthogonal Procrustes analysis (EOP) is an extension of

OPA in which the transformation involves a rotation T, translation

vector γ and a central dilation c for matching two configurations

(Schönemann and Carroll, 1970). The problem and its solution are

mathematically formulated in the following theorem:

Theorem 2: If A ∈ Rn×m and B ∈ Rn×m (m ≥ n) are two

arbitrary real matrices of the same dimension, the necessary and

sufficient condition to have a unique orthogonal transformationT
to satisfy the least-squares problem:

B + E = cAT + JγT (5a)

TTT = TTT = I (5b)

trace(ETE) = min (5c)

is that the matrix SST
, where S = AT (I− 1

m JJT
)
B, has non-

negative eigenvalues. The unique solution for the transformation

parameters is then given by:

T = VWT (6a)

c = trace [TTAT (I− 1
m JJT )B]/trace

[
AT (I− 1

m JJT )A]
(6b)

γ = 1
m

(B− cAT)T J (6c)

E = (I− 1
m JJT

) (B− cAT) (6d)

Scalar c is the scale factor of transformation (dilation parameter),

γn×1 is its translationvector,T is the corresponding rotationmatrix

of the transformation, J = ( 1 1 ... 1 )T1×m andm = JT J. W
and V are the latent vectors in orthogonal decomposition of

matrices SST
and STSrespectively, that is (Schönemann and

Carroll, 1970):

SST = WDsWT (6e)

STS = VDsVT (6f)

Corollary 1: The residual tensor in the least-squares problem of

Procrustes analysis is independent of the translation between the

involved configurations. Since the translation vector γ does not

contribute in the matrix of residuals (6d), the residual tensor in

the problem of EOP is independent of the translation between

the involved configurations. Since OPA is a special case of EOP,

the residual tensor in orthogonal Procrustes analysis also is not

sensitive to the translation between the involved configurations.

This can also be verified by putting c = 1 and γ=0 in theorem 2

and following similar derivation steps.

Corollary 1 ensures that in general, Procrustes analysis can also

be applied for the analysis of the shape change in space. This is

because Procrustean residuals are not sensitive to the location of

configurations.

Further generalization to the Procrustes problem involved the

development of mathematical models that were necessary for

transforming more than one configuration to the target shape by

a set of transformations. This problem is known in the literature

as Generalized Procrustes Analysis (GPA). Kristof and Wingersky

(1971) solved this problem for a set of transformations that include

different orthogonal rotations. They also proved that the solution

of this problem is the geometrical centroid of involved configu-

rations. They couldn't prove the uniqueness of their proposed

solution. Later, generalized Procrustes problem was set up and

solved for transformations that include different scaling, transla-

tions and rotations (Gower, 1975 and Ten Berg, 1977; Goodall,

1991).

The first attempt to include the stochastic model into the so-

lution of Procrustes problem is due to Lissitz and Schönemann

(Lissitz and Schönemann, 1976). They proved that the inclusion

of the stochastic model through the least-squares minimization of

weighted errors of the form: trace (ETD1E) = min and of the

form: trace (ED2ET ) = minare equivalent to weighting rows

and columns of the residual matrix respectively and minimizing

the sum of the weighted residuals. Here, D1and D2 are positive

definite matrices that reflect information about the relative mag-

nitude of variances. In addition to the corresponding solutions

to these weighting approaches, they also proposed the solution
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of the weighted Procrustes problem in which different matrices

are used for weighting rows and columns of the residual matrix

simultaneously.

3. Procrustean Statistical Inference of Deformations

In the problem of the analysis of the change in deformations

of the Earth's crust, change in shape and change in size are

equally of interest. Therefore, among possible formulations of

the Procrustes problem, OPA is the most appropriate one. This

is because the functional model in orthogonal Procrustes analysis

does not involve the size and shape information of deformation

tensors. Therefore, any possible changes between deformation

tensors in terms of size and shape changes will be reflected as

the misfit of the functional model to reality. Similar to any least-

squares problem, the adequacy of the functional model can be

assessed by screening the residuals. For this purpose, the null

hypothesis "The model is correct and complete" is firstly analyzed.

This hypothesis test is usually known in literature as Global Test of

the Model (Caspary, 1987). The inadequacy of functional model in

orthogonal Procrustes analysis of deformations, that is its rejection

by the global model test, indicates significant change(s) in the

form of size and/or shape in deformations. Further inspection of

residuals (see Equation 3a) can help us in localizing the variation(s)

that was statistically asserted in previous step. For this purpose,

deformation changes are treated as outliers. By definition an

outlier is a residual, which according to some testing rule is in

contradiction to the assumption (Caspary 1987). Therefore, using

a test strategy and a clear statistical concept, outliers can be

theoretically localized. According to the classical theory of errors

an outlier can refer to a systematic or a gross error. In the theory of

least-squares it is normally taken as an indication for the presence

of gross errors. This is due to the implicit assumption that the

functionalmodel is normally taken to be completely in accordwith

reality. Since in Procrustean statistical inference of deformations

outliers are expected to represent the misfit of the functional

model to reality, it has been implicitly assumed that no gross errors

are present in the deformation tensors under study.

This method for analyzing the change in deformations is naturally

a relative method in the sense that it depends on the selected

level of risk, the assumed distribution and the testing procedure.

To reduce the sensitivity of the method to possible deviations

from statistical concepts, robust estimation has been preferred

to traditional outlier detection techniques. For this purpose, a

robust method by Wicki (2001) has been used. With regard to

the application of robust estimation for data snooping, it is not

possible to assign any probability to detected outliers. The robust

method by Wicki (2001) has been modified in such a way that the

modified estimator can assign a certain probability to the detected

outliers.

Since themethod of Lissitz and Schönemann doesn'tminimize the

sum of squares of standardized residuals, it is not an appropriate

method for inculcating the stochastic properties of the configu-

rations in Procrustean statistical inference of deformations. The

most straightforward solution to this problem is using the standard

least-squares algorithm for solving the non-linear mathematical

model of the orthogonal Procrustes problem. That is, linearizing

the model and minimizing the sum of the squares of weighted

residuals. Since the problem of Procrustes analysis is a constrained

optimization problem, it can be re-formulated as follows:

f(x, l) = 0 (7a)

fc(x) = 0 (7b)

rTPr→ min (7c)

l = vec (A; B) is the vector of observations in whichAand Bare

assumed to represent the deformation tensors to be transformed

one onto the other. The positive definite matrix P is the weight

matrix which is normally taken as a diagonal matrix. Vector

r= vec (E)is the residual vector and x is the vector of unknown

parameters. In orthogonal Procrustes analysis, this vector includes

the elements of rotation matrixT. Equations (7a) and (7b) are

the implicit representation of Equation (3a) and (3b) above. In

this problem, the non-linearity resides in the constraints. The

constraints ensure the orthogonality of the rotation tensor. The

initial values for the rotation tensor components are computed

from the direct solution to the orthogonal Procrustes problem,

whichwas given in the theorem 1 above. Linearizing the nonlinear

model (7) above leads to the following system of simultaneous

equations:

A1δ + B1r + w = 0Dδ + wc = 0 (8a)

A1 = ∂f
∂x

∣∣∣∣
x=x0,l=l0 (8b)

B1 = ∂f
∂l

∣∣∣∣
l=l0,x=x0 (8c)

D = ∂fc
∂x

∣∣∣∣
x=x0,l=l0 (8d)

w = f(x0, l0) (8e)

wc = fc(x0) (8f)

In these equations wand wcare the misclosure vectors for obser-

vation equations and constraints. The vector of observations l is
given by:

l = vec (A; B) (8g)

where Aand Bare assumed to represent the deformation tensors

to be transformed one onto the other respectively. By definition,

the operator vec(.) in Equation (8g) changes an m-by-n matrix A
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to a column vector of lengthm× nby stacking it columns to each

other.

The solution of the linear constrained implicit model (8a) and (8b)

is given by (Vanicek and Krakiwsky, 1986):

δ̂ = x−x0 = −N−1u−N−1DT (DN−1DT )−1 (wc + Dδ (1))
(9a)

N = AT1 (B1QlBT1 )−1 A1 (9b)

u = AT1 (B1QlBT1 )−1 w (9c)

δ (1) = −N−1u (9d)

Cδ̂ = N−1 −N−1DT (DN−1DT )−1DN−1 (9e)

r̂ = −QlBT1 (B1QlBT1 )−1 (A1δ̂ + w) (9f)

Qr̂ = QlBT1 (B1QlBT1 )−1B1Ql (9g)

In the following parts of this paper the theoretical background of

the two stepsmentioned above are reviewed. For this purpose the

global model test is firstly re-introduced. The stochastic concepts

for the Procrustean statistical inference of deformations are also

established in this section. The robust method by Wicki (2001)

together with implementedmodifications to this estimator is then

introduced. Finally, the method is applied to simulated and real

deformations.

3.1. Global Model Test

Global model test is based on the following theorem frommathe-

matical statistics:

Theorem 3: The sum of the squares of n independent random

variables zithat are normally distributed with distribution param-

eters µ = 0 andσ = 1, i.e.x = z21 + z22 + ... + z2
n , has the

probability density function (Papoulis and Pillai, 2002):

fx (x) = { xn/2−12nΓ(n/2)e−x/2 x ≥ 00 otherwise (10a)

where Γ (x)represents the gamma function defined as:

Γ (α) = ∫ ∞0 xα−1e−xdx (10b)

A random variable with the probability density function (10) is said

to have chi-square distribution with n degrees of freedom and

is normally denoted byχ2 (n). Assuming that observations are

normally distributed, that is l ∼ N
(
l,Σ
)
where l = E (l) and

Σis the variance-covariancematrix of observations, it can be easily

seen that residuals r = l − l are also normally distributed with

distribution parameters: r ∼ N
(
0, σ 20 Qr

)
where σ 20 and Qrare

the a-priori variance of unit weight and the cofactor matrix of

residuals. Therefore, according to theorem 3, when no outliers

are present, the loss function in the least-squares estimation

characterizesa randomvariablewith stochasticproperties:rTPr ∼
σ 20χ2 (df ). The global model test questions these assumptions

by comparing the a-posteriori variance factor s20with σ 20 under
the null hypothesis that "The model is correct; the distributional

assumptions meet the reality". Following theorem 3, the test

statistics to be used is given by (Koch, 1999):

T = rTPr
/
σ 20 = df s

20
σ 20 ∼ χ

2 (df ) (11)

In statistical inference of the change in deformations, the rejection

ofglobalmodel test isan indicationfor the inadequacyof functional

model in the orthogonal Procrustes analysis of deformations. This

maybedue to significant change(s) in the formof size and/or shape

in deformations as well as inadequacy of stochastic components

in the functional model (distributional assumptions), assuming

that the a priori precision of observations is reliably known. In

the later case, some of strain components may not be perfectly

normally distributed. If 0 ≤ ε < 1 is a known parameter and

H is an unknown contaminating distribution, for such a type of

deformation parameters the probability density function can be

written as (Huber, 1964):

F = (1− ε)N + εH (12)

3.2. M-Estimator

Robust statistics is the appropriate mathematical tool when the

stochastic assumptions are only approximations to reality (Huber,

1964; Hampel et al., 1981). Among different kinds of robust

estimators, maximum likelihood estimators (also known as M-

estimators) are more in commensurate with the least-squares

estimatorwhich inprinciple isalsoamaximumlikelihoodestimator.

For example: Huber (1964) proposed the following M-estimator in

which, in contrary to the least-squares estimator, residuals (ri) are
bounded by a constant parameter (c̄):

Ψc̄ (ri) = { ri for |ri| < c̄
sign (ri) c̄ for |ri| ≥ c̄ (13)

When c̄ → ∞, the Huber estimator gives identical results to the

least-squares estimator. Based on this estimator, Wicki (2001) and

Xu (1989, 1993) proposed a maximum likelihood estimator for the

adjustment of geodetic networks. In contrary to Huber's estimator

in which residuals are treated independently of their quality, the

new estimator takes the quality of residuals into account. This was

done by including the standard deviations of residuals (σri ) in the

formulation of this M-estimator:

Ψc (wi) = { wi = ri
σri

for |wi| < c
sign (wi) c for |wi| ≥ c (14a)
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From experience, a value in the range 2.5 ≤ c ≤ 4has been

proposed for the constant parameter cin Equation (14a) (Wicki

2001).

The application of robust estimation techniques for estimating

the unknown parameters of a functional model with stochastic

components can not only provide a solution which is less sensitive

to possible deviations from stochastic assumptions, but also can

inform us on the outliers that may exist in the acquired mea-

surements. This is because outliers are one of the causes for

the deviation of stochastic assumptions from reality. In this re-

spect, one should be cautious that it is not possible to assign any

probability to the outliers to be identified by robust estimation

techniques.

According to Baarda'smethod of data snooping (Baarda, 1968), for

a certain error level of type I (α = α0) and a certain error level of

type II (β = β0) the outlier on an observation li can be identified

if it reaches the value:

∆i =√λ0 σli√zi (15)

In this equation, λ0 = λ (α0, β0, df ) is non-centrality parameter

in non-central chi-square distribution with dfdegree of freedom

and zi = [QrP]iiis the local redundancy number (Baarda, 1968).

For the conventional complementary hypothesis Ha : "One of the

measurements is an outlier": df = 1 and therefore, the non-

centrality parameter is only a function of α0andβ0 . Figure 1

illustrates the ratio
√
λ0/√zi for α0 =0.001, 0.005, 0.01, 0.05, 0.1,

1.0, 2.5 and 5 percent against β0 =10, 20 and 30 percent when

the conventional alternative hypothesis is taken into account. It

is seen in this figure that for a risk level of α0 ≥ 1 percent and

for β0 =10, 20 and 30 percent, when local redundancy numbers

are larger or as large as 0.9 the range of this ratio coincides

with the proposed range for the constant parameter cin Equation

(14a). For a significance level of 95% (α0 = 0.05) the range of

redundancy numbers for which a similar property is seen enlarges

tozi ≥ 0.6. Implementing this ratio instead of the empirical

bounding parameter cin Equation (14a) not only strengthens the

theoretical basis of the BIBER-estimator but also assigns a certain

probability to the outliers that are to be detected by using this

estimator. Therefore, the following modification is proposed here

to the BIBER-estimator:

Ψ√λ0 σli√zi
(wi) = { wi = ri

σri
for |wi| < √λ0 σli√zi

sign (wi)√λ0 σli√zi
for |wi| ≥ √λ0 σli√zi

(16)

TheM-estimator above is called here themodified BIBER-estimator

and is proposed for a detailed analysis of the change in deforma-

tions.

4. Applications

4.1. Synthetic Deformations

To test the forwarded method of this study, three different sets

of synthetic deformations has been produced and analyzed. Pro-

crustes analysis is firstly done on two identical synthetic deforma-

tions (Case I in Table1). This special case is a good measure for

checking the computer codes that has been developed for prac-

tical applications. Deformation tensors that have been taken into

account in the second case (Case II in Table1) are the characteristic

tensors of the deformation quadratics that represent completely

different geometric shapes (ellipsoid and hyperboloid). In the last

case, once significant changes aremade on dilatational strains of a

synthetic deformation tensor (Case III-a in Table1). Then, only the

shear components are subjected to significant changes (Case III-b

in Table1). Finally, deformation changes have been implemented

on both shear and normal strains (Case III-c in Table1). Simulated

deformation changes fulfill the criterion of Equation (15). The

statistical significance of simulated deformation changes has been

analyzed. For this purpose a risk level of α = 1% and a power

of β = 10% has been selected. Table1 provides the obtained

numerical results.

4.2. Spatial Variation of Deformation in the Kenai Peninsula

Southern Alaska, including the Aleutian Island chain (extending

from city of Fairbanks in the north to the Gulf of Alaska in the

south) is one of the world's most active seismic zones. South

central StateAlaska was severely affected by the 1964 PWS (Prince

William Sound) earthquake. Kanamori (1977) estimated amoment

magnitude of Mw = 9.2 for this earthquake. Hossainali et al.

(2010) analyzed the three dimensional pattern of deformation

kinematics for the post-seismic deformation of this area using GPS

measurements of three successive campaigns. Estimated velocity

fields in this area computed using the Bernese GPS processing

software as well as the three-dimensional pattern of crustal de-

formation obtained for this area suggests spatial variations in the

deformations: According to estimated velocity filed the network

stations in the western Kenai are moving SSE in contrary to the

network stations in the eastern Kenai. This spatial variation in

deformation is also confirmed by other studies (Cohen and Frey-

mueller, 1997; Freymueller et al., 2000; Zweck and Freymueller,

2002). Figure 2 illustrates the estimated horizontal velocity vectors

and their scaled confidence regions obtained from the analysis of

the corresponding GPS measurements together with vertical pat-

tern of deformation in this area obtained from the corresponding

deformation tensors in three-dimensions (Hossainali et al., 2010).

Table 2 gives the 3D- principal strains, their 95% confidence inter-

vals and computed surface compressions as illustrated in Figure

2(b). The a-priori variance of unit weight is assumed to be one. In

other words, the a priori precision of measurements is assumed to

be correct. The acceptance of the null hypothesis of the Global
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Figure 1. The ratio
√
λ0/√zi for α0 = 0.001, 0.005, 0.01, 0.05, 0.1, 1.0, 2.5 and 5 percent against β0 =10, 20 and 30 when the conventional null

hypothesis is taken into account.

Model Test in processing the GPS data of this area confirms this

assumption.

The method of this paper has been implemented to the three-

dimensional deformation tensors of this network. The analysis was

done at the risk level of α = 5% and the test power of β = 30%.

According to this analysis, no significant change between the

deformations of two stations GRAV and HOMA can be statistically

asserted in deformation tensors of these two stations in the Kenai

Peninsula. The change in deformations of the other stations is

stochastically significant for the GPS network in this area.

4.3. Temporal variation of Deformation in a Local Network in France

A local GPS network in France has beenused to analyze the tempo-

ral variation of deformation. This GPS network has beenmeasured

in four successive campaigns. The GPS results of this network has

beenprovided to this study for estimating thedeformation tensors

at the position of the GPS stations in this area using a method

similar to one applied to the Kenai Peninsula (Hossainali, 2006).

The configuration of the network stations as well as estimated

velocity vectors are shown in Figure 3 below. The comparison of

inflated confidence regions to computed velocity vectors suggests
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(a) (b)

Figure 2. Estimated horizontal velocity vectors and their scale confidence regions (a) and vertical pattern of crustal deformation obtained from
estimated deformation tensors in three-dimensions (b)

(a) (b)

(c) (d)

Figure 3. Horizontal (a and b) and vertical (c and d) velocity vectors and their scaled confidence regions for the local network in France.
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Table 1. Results of Procrustean statistical inference of simulated deformations.

Case Kind of deformation The Procrustean Statistical Inference Results
I Two Identical Defor-

mation Tensors
The null hypothesis cannot be rejected, no significant change in defor-
mations can be statistically asserted at the probability of 99%

II Variation in the geo-
metric shapes

The null hypothesis is rejected, significant change in deformations can
be statistically asserted at the probability of 99%
Significant change has occurred on the parameters: exx, eyx, ezx, exy,
eyy, ezy, exz, eyz, ezz

III-a Variation in dilata-
tional parameters

The null hypothesis is rejected, Significant change in deformations can
be statistically asserted at the probability of 99%
Significant change has occurred on the parameters: exx, eyy, ezz

III-b Variation in shear pa-
rameters

The null hypothesis is rejected, significant change in deformations can
be statistically asserted at the probability of 99%
Significant change has occurred on the parameters: eyx, ezx, exy, ezy,
exz, eyz, ezz

III-c Variation in all param-
eters of strain

The null hypothesis is rejected, significant change in deformations can
be statistically asserted at the probability of 99%
Significant change has occurred on the parameters: exx, eyx, ezx, exy,
eyy, ezy, exz, eyz, ezz

Table 2. 3D- principal strains, their 95% confidence intervals and surface compressions as illustrated in Figure 2(b).

Station
Code

Station
Name

Horizontal Principal Strains (µ − strain) ∆ (µ − strain)

eI σeI eII σeII Azimuth ∆ σ∆
3 KEN1 0.815 0.107 -1.249 0.182 132.71 -0.551 0.516
4 C85G 0.555 0.163 -1.086 0.094 135.32 -0.957 0.800
5 CPRD 0.603 0.171 -1.223 0.086 133.34 -1.279 2.250
6 CROS 0.621 0.151 -1.196 0.108 134.66 -0.930 0.878
7 DAHL 0.274 0.167 -0.738 0.091 140.23 -0.660 1.000
8 GRAV 0.666 0.154 -1.198 0.105 133.59 -0.968 0.766
9 H81D 0.483 0.145 -1.053 0.116 137.59 -0.792 0.726
10 HOMA 0.364 0.115 -0.626 0.166 136.55 -0.297 0.122
11 K76D 0.682 0.157 -1.311 0.101 134.09 -1.087 1.042
12 KIRT 0.520 0.109 -1.000 0.178 139.05 -0.439 0.697
13 M78D 0.732 0.179 -1.544 0.081 132.77 -1.829 2.144
14 NIK2 0.540 0.120 -1.048 0.157 136.17 -0.622 0.511
16 S79R 0.513 0.147 -1.049 0.113 137.14 -0.765 2.046
17 T19D 0.643 0.108 -1.124 0.181 134.75 -0.513 0.061
18 TRLK 0.249 0.137 -0.693 0.128 142.46 -0.454 0.033
19 Z82A 0.670 0.113 -1.238 0.170 136.27 -0.641 0.174

that except for station P3E, no other station has had significant

movements during the time interval of GPS measurements in this

area. In processing the GPS data of this network the a-priori vari-

ance of unit weight is also assumed to be one. In other words, the

a priori precision of measurements is again assumed to be correct.

The acceptance of the null hypothesis of the Global Model Test in

processing the GPS data of this area confirms this assumption.

The significance of the temporal variation of deformations in this

area has been also analyzed. This analysis approves that at the

risk level of α = 5% and the error level of type IIβ = 30%,

except for station P3E, no other deformation changes can be

statistically asserted at the locale of the other stations within the

involved period of measurements. The detected deformation

changes are assigned to vertical parameters of deformation, that

is exz , eyz and ezz .
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5. Conclusions

The statistical inference of deformation changes, similar to the

other statistical inference techniques, has the following character-

istic features:

A) The method is relative in the sense that it depends on the

selected level of risk, the assumed distribution and the testing

procedure.

B) It is always possible to approve a null hypothesis (assert sig-

nificant changes in a space or time series of deformation tensors)

whereas the null hypothesis is not correct (deformation parame-

ters have not changed). The probability for the commitment of

this type of error is equal to β . Therefore, to increase the power of

the test, β should be decreased.

Therefore, like any other statistical inference technique, the effi-

ciency of the method should be judged within the framework of

the characteristics mentioned above. The proposed method can

be considered as a mathematical technique for analyzing time or

space series of tensors. This generalization makes the application

of the method for the statistical assessment of a time or space

series of deformation tensors possible.
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