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Abstract
Modeling and understanding the statistical relationships between geophysical quantities is a crucial prerequisite for many 
geodetic applications. While these relationships can depend on multiple variables and their interactions, commonly used 
scalar methods like the (cross) correlation are only able to describe linear dependencies. However, particularly in regions 
with complex terrain, the statistical relationships between variables can be highly nonlinear and spatially heterogeneous. 
Therefore, we introduce Copula-based approaches for modeling and analyzing the full dependence structure. We give an 
introduction to Copula theory, including five of the most widely used models, namely the Frank, Clayton, Ali-Mikhail-Haq, 
Gumbel and Gaussian Copula, and use this approach for analyzing zenith tropospheric delays (ZTDs). We apply modeled 
ZTDs from the Weather and Research Forecasting (WRF) model and estimated ZTDs through the processing of Global 
Navigation Satellite System (GNSS) data and evaluate the pixel-wise dependence structures of ZTDs over a study area with 
complex terrain in Central Europe. The results show asymmetry and nonlinearity in the statistical relationships, which justi-
fies the application of Copula-based approaches compared to, e.g., scalar measures. We apply a Copula-based correction for 
generating GNSS-like ZTDs from purely WRF-derived estimates. Particularly the corrected time series in the alpine regions 
show improved Nash–Sutcliffe efficiency values when compared against GNSS-based ZTDs. The proposed approach is 
therefore highly suitable for analyzing statistical relationships and correcting model-based quantities, especially in complex 
terrain, and when the statistical relationships of the analyzed variables are unknown.

Keywords Zenith tropospheric delay · Copulas · GNSS · Dissimilarity measures · Atmospheric modeling · Correlation

Introduction

Knowing and modeling the dependence structure of differ-
ent variables, including the statistical distributions of and 
relationships between geophysical quantities, is mandatory 
for a wide range of applications in geosciences. For example, 

the dependence between different observations (Tiberius and 
Borre 2000) and satellite-based errors (Heng et al. 2011) 
is required for the processing of GPS data. The normal or 
Gaussian distribution is the most known and widely used 
distribution, and many applications in geosciences require 
variables to be normally distributed. Furthermore, a multi-
variate normal distribution is defined only by the mean and 
covariance matrix (including the variance of the variables 
and Pearson’s correlation between them) and, therefore, only 
allows for the description of linear dependencies. However, 
in many cases, the assumptions of normally distributed 
data and variables, as well as linear dependencies, are not 
valid. For instance, the distribution of daily precipitation 
is non-normal (Ye et al. 2018), geodynamic and geologic 
systems for earthquake prediction are extremely nonlinear 
(Koronovskii and Naimark 2012), and the tropospheric and 
ionospheric effects on GNSS signals, which are crucial 
quantities for precise point positioning (Mendez Astudillo 
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et al. 2018) and also the fundamental basis of GNSS tomog-
raphy, are nonlinear and highly spatiotemporally heterogene-
ous (Norberg et al. 2015; Sun et al. 2017; Turel and Arikan 
2010; Wilgan et al. 2017).

While ionospheric effects have strong periodic character-
istics that can be approximated with models, the descrip-
tion of tropospheric effects is far more complicated due to 
their strong relationship with weather and climate processes. 
Zenith tropospheric delays (ZTDs) are used for improving 
weather forecasts by constructing and assimilating water 
vapor map (Chen et al. 2018) in numerical weather predic-
tion (NWP) models (Gendt et al. 2004; Giannaros et al. 2020; 
Rohm et al. 2019; Singh et al. 2019). On the other hand, 
information from NWP models is widely used in geodesy and 
geodetic applications, e.g., GPS processing (Nordman et al. 
2007), GPS kinematic positioning via ray tracing in a three-
dimensional grid (Nievinski et al. 2005), and improving the 
estimated GNSS ZTDs (Dousa et al. 2018; Zus et al. 2019). 
Due to the importance of estimating ZTDs, different meth-
ods and processing strategies have been investigated, e. g., 
using a correction model to enhance evaluating tropospheric 
delays (Jgouta et al. 2016; Dousa et al. 2018), and assessing 
of tropospheric effects by least-squares collocation of mete-
orological and GNSS data (Wilgan et al. 2017). However, 
particularly the model estimates over complex terrain, like 
the Alpine region, might suffer from severe model biases, 
which have to be considered for GNSS applications. Thus, 
such correction requires robust knowledge about the statisti-
cal characteristics and relationships of the estimated tropo-
spheric delays, which can be highly complex and nonlinear.

For describing the dependency structures of such com-
plex quantities, we need a flexible technique that (a) allows 
for any univariate marginal distribution, (b) can be applied 
with a reasonable amount of data and (c) provides infor-
mation about the full dependence structure including both 
linear and nonlinear relationships.

In this study, we propose a Copula-based analysis, which 
is not only limited to single dependence measures like the 
Pearson’s correlation coefficient, but also allows for the 
rank-dependent evaluation of statistical relationships (e.g., 
between high or low values). Due to their flexibility, Copu-
las have been widely used in different disciplines such as 
economics and finance (Ang and Chen 2002; Longin and 
Solnik 2002), hydrology (Bardossy and Li 2008), meteorol-
ogy (Vogl et al. 2012) and remote sensing (Brunel and Piec-
zynski 2005; Lorenz et al. 2018). However, using Copulas 
in geodesy is generally new and currently, according to our 
knowledge, is limited to a single study about polar motion 
prediction (Modiri et al. 2018).

We apply Copulas for modeling and analyzing the 
dependence structure of ZTDs from an atmospheric model. 
As such an analysis is not feasible for large-scale applica-
tions, which involve evaluations across a large variety of 

locations, we further employ different Copula-based sca-
lar dissimilarity measures. These allow for describing the 
spatiotemporal relationship, including linear and nonlinear 
dependencies, particularly over complex terrain and there-
fore provide a powerful and sophisticated alternative to, e.g., 
the widely used correlation coefficients.

As the estimated ZTDs from postprocessing of the GNSS 
data are assumed to be the most precise estimates with a pre-
cision of 2–4 mm (Byram et al. 2011), we further analyze the 
potential of a Copula-based conditional random sampling 
approach to derive GNSS-like ZTDs from modeled ZTDs. 
This method finally allows for the correction of WRF-based 
ZTDs as well as the filling of gaps in GNSS ZTD time series 
or their extension.

The main objectives are hence (a) to provide a simple 
workflow for computing and evaluating Copula-based 
dependence structures, (b) to implement Copula-based dis-
similarity measures and (c) to give a real-life example of the 
previously derived measures and analyses using ZTD and 
modeling Copula-based ZTDs in GPS stations by improving 
the WRF-based ZTDs.

Methodology

Understanding the full dependence structure of variables 
and parameters is mandatory for precise positioning, tropo-
spheric modeling and other application of GNSS data in 
geosciences. However, e.g., Pearson’s correlation as a well-
known measure for modeling dependency does not show all 
statistical relationships (i.e., linear and nonlinear) between 
variables. Therefore, we apply a Copula-based approach to 
fully describe the dependence structure and have a great flex-
ibility to model nonlinear dependencies between variables.

Copula theory

Copulas are mathematical functions that link multivariate 
distributions to their one-dimensional marginal distribu-
tions: (Nelsen 2006; Sklar 1959):

where F, C, x1, x2,… , xn ∈ ℝ and F1,F2,… ,Fn are the mul-
tivariate distribution, Copula, random variables and their 
marginals, respectively. Each n-dimensional Copula is hence 
a function which transforms data from the unit n-cube [0,  1]n 
to the unit interval [0, 1] and satisfies the characteristics of 
cumulative distribution functions (CDFs). The multivariate 
Copula density is then given through:

(1)F(x1, x2,… , xn) = C(F1(x1),F2(x2),… ,Fn(xn))

(2)

c(F1(x1),F2(x2),… ,Fn(xn)) =
�nC(F1(x1),F2(x2),… ,Fn(xn))

�F1(x1)… �Fn(xn)

Author's personal copy
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Different Copulas can be used to model different depend-
ency structures between random variables. In general, we 
can distinguish between implicit and explicit Copulas. The 
latter, which also contains the widely used family of Archi-
medean Copulas, can be formulated in a closed mathemati-
cal form. For simplicity, we focus on bivariate applications 
in this study.

Implicit Copulas

Implicit Copulas are implied by well-known multivariate dis-
tributions and do not have a closed mathematical form. Their 
Copula density c is given by

where f, ui = Fi, i = 1, 2 and fi, i = 1, 2 are the density of 
their joint distribution function, marginal CDFs and PDFs 
of the random variables x1 and x2, respectively. From this 
category, the Gaussian Copula is the most familiar Copula 
as it is derived from the standardized multivariate Gaussian 
distribution ΦR(0,�) with zero mean and correlation matrix 
� (Mikosch 2006):

Here, Φ−1(.) is the inverse of the standard univariate normal 
distribution function. The density of the bivariate Gaussian 
Copula is given by (Arbenz 2013)

where � = (Φ−1(u1),Φ
−1(u2))

T and I is the identity matrix.

Explicit Copulas

Explicit Copulas can be expressed in closed mathematical 
forms. The most important type of these Copulas is the family 
of Archimedean Copulas, which are expressed as (Embrechts 
et al. 2003; Nelsen 2006):

(3)c(F1(x1),F2(x2)) =
f (x1, x2)

f1(x1) ⋅ f2(x2)

(4)CGa
�
(�) = Φ

�
(Φ−1(u1),Φ

−1(u2))

(5)c(�) =
1

√

det(�)
exp(−1∕2(�T(�−1 − �)�))

(6)C�(u1, u2) = �−1
{

�(u1) + �(u2)
}

, � ∈ [0, 1]

Here, ui, i = 1, 2 are the marginals of the random variables 
xi, i = 1, 2 and � ∶ [0, 1] → [0,∞) is the generator function 
of the Copula C� . This generator contains all the information 
on the dependence structure between the random variables, 
and we can, therefore, reduce the evaluation of a multivariate 
Copula to a single function. Moreover, there is a relationship 
between the generator function as a function of the Copula 
parameter and the rank correlation coefficient Kendall’s � as:

where �(t) and ��(t) are the generator function and its first 
derivative, respectively (Table 1). Hence, we can also inter-
pret the Copula parameter as a measure for the strength of 
dependence. Table 1 gives the closed forms for four of the 
most widely used Archimedean Copulas, their generator 
functions, the range of their parameters ( � ) and their Ken-
dall’s �.

Figure 1 shows bivariate Copula densities from the 
Gaussian Copula and the Archimedean families in Table 1 
with three different Copula parameters ( � ). Since the range 
of the Copula parameters is not the same in all families 
(see Table 1), we used different parameters and colorbars 
for each Copula in order to better identify the different 
dependency structures. In these figures, horizontal and 
vertical axes are uniform variables on [0, 1] , which are 
indicated by u1 and u2 , respectively. It should be noted 
that the colored surface in each plot shows the strength of 
the Copula density ( c(u1, u2) ). As the Copula density from 
different families cannot be directly compared due to dif-
ferent ranges of values, we add separate colorbars for each 
of the depicted Copulas. Moreover, it is obvious that u1 , u2 
and c(u1, u2) are unitless. One key characteristic is that the 
Gumbel, Clayton and Ali-Mikhail-Haq (AMH)-Copulas 
are asymmetric. This means that these families are suit-
able for modeling either upper or lower tail dependence. In 
particular, the Gumbel Copula shows significant upper tail 
dependence (i.e., more correlated in large values), while 
both the Clayton and the AMH show lower tail dependence 
(i.e., more correlated in small values). Both the Gaussian 
and Frank Copula are symmetric.

(7)� = 1 + 4
∫

1

0

�(t)

��(t)
dt

Table 1  Overview of four of the 
most common Copula families, 
including their generator 
functions, the range of their 
Copula parameter � and their 
rank correlation Kendall’s �

Family � (t) � C�(u1, u2) �

Clayton t
−�−1

�

(0,∞) (u−�
1

+ u
−�
2

− 1)−
1

�

�

�+2

Gumbel (− log(t))� [1,∞) exp
{

−[(− log(u1))
� + (− log(u2))

�]
1

�

}

1 −
1

�

Frank log
(

e
�t−1

e�−1

)

ℝ�{0} −
1

�
log

{

1 +
(e−�u1−1)(e−�u2−1)

e−�−1

}

1 +
4[D1(�)−1]

�
D1(�) =

1

�
∫ �

0

t

exp(t)−1
dt

AMH ln(1−�(1−t))

t

[−1, 1] u1u2

1−�(1−u1)(1−u2)
1 −

2(�+(1−�)2 log(1−�))

�
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Copula‑based modeling of bivariate dependence 
structures

The workflow for the Copula-based dependence structure 
modeling requires several steps, which are shown in Fig. 2 
and discussed in the next subsections. In this figure, those 
elements which are linked together by solid arrows show 
the required steps for the Copula-based modeling of a data 
set. Moreover, the dashed arrow pointed to the Copula-
based dissimilarity measures, which can be estimated by 
empirical Copulas and empirical Copula densities. Other 

elements indicate the applied statistical methods to per-
form the linked steps by a dashed line to them.

Estimation of univariate marginal distributions

The first step is the estimation of the marginal distribu-
tions and the transformation of the input data to the unit 
interval ( [0, 1] ) or rank space. For this, depending on the 
available a priori information, we can use parametric, 
semi-parametric and nonparametric methods (Charpen-
tier et al. 2007; Choros et al. 2010; Laux et al. 2011; Mao 

Fig. 1  Copula densities for the 
bivariate sample (u1, u2) with 
different parameters for Copulas

Author's personal copy
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et al. 2015). Choosing an appropriate method depends 
on the sample size, the distribution of values within that 
sample and several other factors. If no a priori informa-
tion about a random variable X and its distribution is 
available and we have a sufficient number of samples T, 
the empirical distribution is usually a good approxima-
tion of the true underlying distribution (Charpentier et al. 
2007):

where I(.) denotes the indicator function and is defined as

Here, A is any nonempty subset of set X.
The empirical distribution has some considerable 

limitations. If, e.g., new data become available, which is 
beyond the limits of the old sample, extrapolation tech-
niques have to be applied. Furthermore, depending on 
the discretization and the value range of the data, the 
empirical distribution might contain steep steps, which 
complicate, e.g., the interpolation of new values. There-
fore, using an empirical distribution always requires a 
close and critical look at the results.

(8)ui = F̂i(x) =
1

T + 1

T
∑

t=1

I(Xt ≤ x), i = 1, 2

(9)IA(x) ∶=

{

1 x ∈ A

0 x ∉ A

Estimation of Copula parameters

The next step is the estimation of the Copula parameters. 
An overview of several estimation methods is presented by 
Kim et al. (2007). They concluded that when the marginals 
are unknown, using the semi-parametric pseudo-maximum 
likelihood (PML) (Genest et al. 1995) or canonical maxi-
mum likelihood (CML) (Cherubini et al. 2004) estima-
tion, outperforms fully parametric methods like maximum 
likelihood (ML) and inference function for margins (IFM) 
(Joe 1997). Hence, we also focus on the CML estimation 
in this study.

CML consists of transforming the sample data 
{

x1t, x2t
}T

t=1
 to uniform variables 

{

u1t, u2t
}T

t=1
 using empiri-

cal marginal distributions and then computing the corre-
sponding Copula parameter using a maximum likelihood 
estimate:

where c(u1t, u2t;�) is the theoretical copula density with 
its parameters �(see (2) and (5) and Table 1) and ArgMax� 
refers to the � values at which the summation of the loga-
rithm of the Copula density is maximized.

(10)�̂� = ArgMax𝜃

T
∑

t=1

ln c(F̂1(x1t), F̂2(x2t);𝜃)

Fig. 2  Procedure of Copula-
based dependence structure 
modeling

Marginal distribution 
estimation

Transform input data 
to rank space

Copula parameter 
estimation 

Copula selection 

Input data

- Akaike Information Criterion (AIC)
- Bayesian Information Criterion (BIC)
- Root Mean Square Error (RMSE)
- Quantile Quantile plot (QQ-plot)

Empirical marginal 

Canonical Maximum Likelihood 

Empirical Copula and 
empirical Copula density

Copula-based 
dissimilarity 
measures  

Multivariate 
distribution
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Estimation of the empirical Copula CDF

The empirical Copula was introduced as an empirical 
dependence function (Deheuvels 1979a; Nelsen 2006). It has 
been shown that the empirical Copula converges uniformly 
to the underlying Copula (Deheuvels 1979b, 1981). We can 
compute this empirical Copula CDF through

where F̂i(xi), i = 1, 2 are the univariate marginal distribu-
tions of the random variables x1 and x2 with the sample size 
T and I(.) is again the indicator function.

Estimation of the empirical Copula PDF

Similar to the empirical Copula CDF, we can estimate an 
empirical approximation of the Copula PDF from the data 
through nonparametric methods (Charpentier et al. 2007; 
Mao et al. 2015). Therefore, we discretize the interval from 0 
and 1 to a regular k × k grid based on the sample size. Then, 
the empirical Copula PDF is calculated by (Bardossy 2006; 
Nelsen 2006)

where T  and qrs are sample size and the empirical fre-
quency corresponding to the grid coordinates (r, s) with 
{r, s = 1, 2,… , k} , respectively. For a given pair, qrs is given 
as

where u1 and u2 are the transferred variables to rank space 
and |⋅| denotes the cardinality (the number of elements of a 
set). To ensure that the dependence between random vari-
ables is accurately represented, it is recommended that the 
sample size should be large enough, i.e., T > 5k2 (Sam-
aniego et al. 2010).

Similar to the estimation of univariate empirical distribu-
tions, the empirical Copulas have limitations. In particular, 
the sample size plays a significant role during the estimation. 
For computing the densities at discrete locations, we have 
to define a two-dimensional grid that matches the sample 
size. Thus, for small sample sizes, we have to use a coarse 
grid with only a few values between 0 and 1 for r and s. If 
the discretization is too fine, the estimated values for qrs are 
based on too few values and the resulting empirical Copula 
does not show a continuous surface, but rather some scat-
tered peaks around many zero values. Therefore, similar to 

(11)

Ĉ(u1j, u2j) =
1

T

T
∑

t=1

I(F̂1(x1t) ≤ u1j, F̂2(x2t) ≤ u2j), j = 1, 2,… , T

(12)ĉ
(

2r − 1

2k
,
2s − 1

2k

)

=
k2

T
qrs

(13)qrs =
|

|

|

|

{

r − 1

k
< u1 <

r

k
and

s − 1

k
< u2 <

s

k

}

|

|

|

|

the empirical marginals, the estimation of empirical Copulas 
has to be done with care, as they provide the basis for all 
further steps.

Identification of the best Copula

There is a wide range of methods for identifying the most 
suitable Copula. Except for the Bayesian method (Huard 
et al. 2006), the selection approaches usually require to 
estimate the Copula parameters in advance. These methods 
include likelihood-based criteria like the Akaike information 
criterion (AIC) (Aho et al. 2014; Akaike 1974), Bayesian 
information criterion (BIC) (Schwarz 1978), minimum dis-
tance estimation (Durrleman et al. 2000; Wolfowitz 1957), 
the root-mean-square error (Vandenberghe et al. 2010) and 
the graphical identification using a quantile quantile plot 
(QQ plot). The latter is particularly suitable for bivariate 
applications (Genest and Favre 2007). According to Fang 
et al. (2014) and Topcu (2016), AIC and BIC outperform 
other goodness of fit (GOF) criteria for bivariate Archime-
dean Copulas. However, for the sake of completeness, we 
give a brief overview of all previously mentioned methods.

The AIC and BIC for bivariate Copulas are defined as

where c(u1t, u2t) is the Copula density, T is the sample size, 
and k is the number of parameters in the desired Copula. 
Using the previously derived Copula parameter, we can test 
different theoretical Copulas and compare the resulting AIC 
and BIC values for identifying the most suitable Copula. 
Lower values of AIC and BIC indicate a better fit to the data.

The root-mean-square error (RMSE) as a measure to 
select an appropriate Copula is calculated as (Vandenberghe 
et al. 2010):

where T is sample size, and C(u1t, u2t) and Ĉ(u1t, u2t) are val-
ues from the theoretical and empirical Copula, respectively. 
Similar to the AIC- and BIC-based evaluation, we compute 
the RMSE for different Copulas and select the family with 
the lowest RMSE.

The quantile quantile (QQ) plot is a graphical method 
for comparing two probability distributions by plotting their 
quantiles against each other (Wilk and Gnanadesikan 1968). 
If the two distributions are similar, the points in the QQ plot 

(14)AIC = −2

T
∑

t=1

ln[c(u1t, u2t);�] + 2k

(15)BIC = −2

T
∑

t=1

ln[c(u1t, u2t);�] + ln(Tk)

(16)RMSE =

√

√

√

√
1

T

T
∑

t=1

(C(u1t, u2t) − Ĉ(u1t, u2t))
2
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will approximately lie on the y = x line. To apply this method 
for identifying a suitable Copula, we draw empirical against 
theoretical Copula quantiles (Genest and Favre 2007) and 
compare the distance from the y = x line for each family. 
The family with the closest distance is selected as the most 
suitable Copula. Besides the visual inspection, we can also 
use statistical tests like the Cramer–von Mises or Kolmogo-
rov–Smirnov test (Darling 1957) for calculating the distance 
between the empirical and theoretical quantiles.

Conditional sampling

After identifying the most suitable Copula, we can generate 
conditional random samples using the conditional Copula 
(Trivedi and Zimmer 2005):

The conditional Copula is simply the uniform CDF for the 
variable u2 when u1 = v . The conditional random samples 
can then transform back to the data space using the inverse 
marginal CDF:

where Fi , xi and ui, i = 1, 2 are marginal CDFs, variables in 
data space and variables in rank space, respectively. Moreo-
ver, F−1

i
 is the generalized inverse of Fi which is defined by 

F−1(t) ∶= infimum{y|F(y) ≥ t} for t ∈ RanFi and y ∈ ℝ.

Copula‑based dissimilarity measures

Dissimilarity measures are numerical measures of how dif-
ferent two data sets or variables are, and they are used to 
quantify independency (or, vice versa, dependency) between 
variables. Various measures have been formulated through-
out the years, each with its own strengths and weaknesses 
(Goshtasby 2012). In this study, we apply three Copula-
based dissimilarity measures as �1 , �2 and �3 which are 
based on the empirical Copula (Samaniego et al. 2010) for 
analyzing the spatiotemporal relationship between geophysi-
cal quantities.

(17)C
(

u2|u1 = v
)

=
�C(u1, u2)

�u1

(18)ui = Fi

(

xi
)

⇔ xi = F−1
i

(

ui
)

, i = 1, 2

The first and simplest dissimilarity measure �1
ij
 for each 

two variables ui and uj in a set with n pairs of variables is 
defined as the probability of upper and lower tail 
dependence:

where P is a given probability threshold, which separates the 
tails from the rest of the distribution. Here, we set P to 0.2. 
Uij and Lij are the upper and the lower tail probability of the 
empirical Copula density, respectively:

where ĉ denotes the empirical Copula densities. As these 
densities are given on a regular grid, the integrals can be 
transformed into sums.

This dissimilarity measure consists of two terms: The first 
term estimates how far the empirical Copula density is from a 
perfect lower corner dependence, and the second one describes 
the level of asymmetry of the upper and lower tails about the 
axis uj = 1 − ui . If the empirical Copula density between two 
variables is symmetric, �1 would be obviously equal to zero.

The second measure does not require any pre-defined 
parameters and is given as

where � is a scaling factor which is selected so that 
sup(1 − rij) ≈ sup

|

|

|

Aij
|

|

|

 . rij and Aij are Spearman’s rank cor-
relation, which is computed from the empirical Copula (see 
(23)), and the degree of asymmetry of the empirical Copula 
density, respectively. They are calculated according to

(19)�1
ij
= (P − Lij) +

|Uij − Lij|

Uij + Lij

(20)Lij =

P

∫
0

P

∫
0

ĉ(ui, uj)duiduj

(21)Uij =

1

∫
1−P

1

∫
1−P

ĉ(ui, uj)duiduj

(22)�2
ij
= (1 − rij) + �

|

|

|

Aij
|

|

|

(23)rij = 12

1

∫
0

1

∫
0

(Ĉ(ui, uj) − uiuj)duiduj

(24)Aij =

1

∫
0

1

∫
0

[

(

ui −
1

2

)2(

uj −
1

2

)

+
(

ui −
1

2

)(

uj −
1

2

)2
]

ĉ(ui, uj)duiduj
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Therefore, the first term of this measure indicates the sta-
tistical dependence between variables and the second term 
describes the dissimilarity due to the asymmetry of their 
empirical Copulas.

The third dissimilarity measure consists of the asymmetry 
of the Copula density (i.e., Aij , see (24)) and the Kolmogo-
rov–Smirnov statistic (Mij) and is estimated through

where

Here, t is time in the time series and H is the distribution 
function of the lag 1 differences of each variable’s time 
series which are computed as

In contrast to �1 which is sensitive to the selection of P, �2 
and �3 are free of any pre-defined parameters and more gen-
eral measures. Furthermore, Samaniego et al. 2010 conclude 
that �1 has only moderate sensitivity with respect to extreme 
values and the asymmetry of the Copula density. Hence, �2 
and �3 should be preferred for variables that are strongly cor-
related, particularly in the tails of their distributions.

Data

Transmitted radio signals from satellites at frequencies 
above 30 MHz are affected by fluctuations of pressure, 
temperature and humidity in the troposphere (Hitney et al. 
1985). These fluctuations cause a delay in receiving sig-
nals at ground stations, which need to be considered for all 
GNSS-based applications. If this delay is evaluated in zenith 
direction, it is referred to as ZTD. Tropospheric delay can 
either be calculated during the processing of GNSS data or 
approximated through atmospheric models. In this study, we 
use the estimated ZTDs from both GNSS observations and 
the atmospheric Weather Research and Forecasting (WRF) 
(Skamarock et al. 2008) model in high spatiotemporal reso-
lution (Fersch et al. 2020).

The GNSS-based ZTDs are provided by the German 
Research Center for Geosciences (GFZ). They are estimated 
every 15 min during the processing of the data at each GPS 
receiver of a regional network with approximately 300 sta-
tions across Germany (Gendt et al. 2004). Most stations 
belong to the network Satellite Positioning Service of the 
German Land Surveying Agencies (SAPOS), and some of 
them are from the German Federal Agency for Cartography 
and Geodesy (BKG). In this study, we use observations from 

(25)�3
ij
= Mij + �

|

|

|

Aij
|

|

|

(26)Mij = sup
|

|

|

H
(

Δxi(t)
)

− H(Δxj(t))
|

|

|

(27)Δx(t) = x(t) − x(t − 1)

22 GPS stations that are well distributed across the study 
domain (Fig. 3).

We further use simulated atmospheric pressure, humid-
ity and temperature in high spatiotemporal resolution from 
the WRF model. The formulas for computing ZTDs from 
these meteorological variables are given in “Appendix.” The 
WRF model was run for Central Europe during the period 
of April to October 2016. We focus on a sub-domain that 
is dominated by complex terrain including the Alps in the 
South and the Bavarian Forest in the North-East (see Fig. 3). 
The model was driven with 6-hourly ERA Interim (Dee et al. 
2011) reanalysis data, which has a spatial resolution of 0.75° 
and 37 pressure levels from 1000 to 1 hPa. The spatial reso-
lution of WRF was set to 3 × 3 km, resulting in 315 grid cells 
in West–East and 280 grid cells in South–North direction. 
We further used 50 vertical layers from 1000 to 10 hPa to 
get a high-resolution representation of the vertical structure 
of the atmosphere.

Experimental setup

To demonstrate the general workflow of the Copula-based 
analysis for WRF-derived ZTDs, we select representative pix-
els across our study domain (locations A, B and C in Fig. 3) 
for which we derive the statistical relationships with all other 
pixels. We first estimate the univariate marginal distributions 
from hourly ZTDs for all WRF pixels (N = 109 × 74 = 8066 
pixels) for the transformation from the data to the rank space. 
The transformed data are then used for estimating the empiri-
cal Copula CDF and PDF between the three target pixels and 
all other pixels across the study domain. Finally, we compute 
the corresponding Copula parameter for all five Copulas and 
identify the most suitable model by comparing their AIC and 
BIC measures. For evaluating the spatiotemporal dependency 
of the ZTDs, we compute the three dissimilarity measures 
between the target pixels and all other pixels.

Besides this purely WRF-based dissimilarity and depend-
ency analysis, we also investigate the dependency between 
WRF- and GNSS-derived ZTDs. We use the estimated ZTDs 
of 22 GPS stations (Fig. 3) and WRF-based ZTD time series 
from the closest pixels to each of the stations. To reveal the 
statistical relationship between WRF- and GNSS-based 
ZTDs independent of climatic cycles (which would artifi-
cially increase the dependency between the variables), we first 
remove the monthly and daily cycle from the signals. Using 
these anomaly pairs, we again transform the WRF- and GNSS-
based time series to the rank space and identify the most suit-
able Copula. This calibration procedure is carried out using the 
first half of the study period from mid-April to mid-June 2016. 
Then, we condition the Copula on the WRF-derived ZTDs, 
which finally allows us to generate GNSS-like conditional 
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Fig. 3  Location of the study 
domain together with GPS 
stations of SAPOS (top) and 
studied GPS stations (bottom). 
Topography is shown based on 
GTOPO 30 digital elevation 
model
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random samples from the WRF estimates (see (17) and (18)). 
Using the second half of the study period, we generate 500 
conditional random samples for each time step from the WRF-
based ZTDs and use the inverse marginal distribution from the 
GNSS-based ZTDs for transforming the conditional random 
samples back to the data space. From this set, we then compute 
the median, which is the final Copula-based GNSS-like ZTD. 
To analyze the performance between this Copula and purely 
WRF-based ZTDs, we compare the two time series at all 22 
stations using the Nash–Sutcliffe efficiency (NSE)

(28)NSE = 1 −

∑T

t=1
(Xt − X̂t)

2

∑T

t=1
(Xt − Xt)

2

where X̂t are the estimated ZTDs from WRF before and after 
the Copula-based correction, Xt are the calculated ZTD from 
the GNSS data, T is the length of the time series, and Xt 
denotes the mean value of Xt , which is in our case set to zero 
as we are using ZTD anomalies. The higher NSE demon-
strates better modeling with respect to GNSS-based ZTD.

Results and discussion

As the main goal of this study is the investigation of Copula-
based approaches to improve the WRF-derived ZTDs, we 
firstly use the Copula workflow to evaluate the dependence 
structure between these time series across the region. Then, 

Fig. 4  a Topography and 
location of the target pixels. 
b Copula-based dependence 
structure (left column) and 
Pearson’s correlation (right 
column) between WRF-derived 
ZTDs for pixel pairs with target 
pixels A (top), B (middle) and 
C (bottom), respectively. The 
location of the target pixels is 
highlighted by red circles
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we apply a Copula-based random sampling technique, which 
allows estimating conditional GPS-like ZTDs from the WRF 
model.

Modeling Copula‑based dependence 
between WRF‑derived ZTDs

The most likely Copula for each of the three target pixels, 
and all other pixels in the study domain, is shown in Fig. 4. 
For the target pixel B (which is located in flat terrain), the 
Gaussian Copula is selected as the most suitable Copula 
across 99.7% of the domain. The target pixels A and C, 
which are both located in more complex terrain, show dif-
ferent behavior. While the Gaussian Copula dominates the 
study region, the asymmetric Clayton Copula is identified 
for at least 25.8% (A) and 11.2% (C) of the pixel pairs, espe-
cially in the western part of the domain. One reason why the 
Gaussian Copula is especially suitable for describing the sta-
tistical relationships is due to the strong linear correlations.

The right column of Fig. 4b shows the correlation coef-
ficients between the three target pixels and the other pixels. 
In these plots, even at the boundaries of the domain, which 

can be up to 300 km away from the target pixel, there are 
still correlations of 0.8 and higher. In general, the corre-
lation coefficients indicate circular patterns of decreasing 
values with increasing distance from the target pixels and do 
not show a significant pattern across different parts of study 
domain. However, due to the impact of altitude and com-
plex terrain on humidity, temperature and pressure (which 
are used to estimate the WRF-based ZTDs), it should be 
expected that this topography also has some impact on the 
statistical relationships between the ZTD time series.

Therefore, we now use the Copula-based dissimilarity 
measures to check whether they allow for a more sensible 
evaluation of the statistical relationships by including non-
linear dependencies. Figure 5b shows �1,�2 and �3 for the 
target pixels A, B and C. Similar to Fig. 4b, the values of the 
dissimilarity measures increase with distance from the target 
pixels. But this decrease of dependency is not isotropic as 
there is a strong impact of topography and altitude on the 
dependence between pixels. For example, the spatial patterns 
of stronger dependency around pixel A in the alpine area 
are much narrower compared to those around pixels C and 
B in more flat terrains. Furthermore, the mountain range in 

Fig. 5  a Topography and 
location of the target pixels. b 
Spatial representation of the 
dissimilarity measures �1(upper 
row),�2(middle row) and �3
(bottom row) for pixels A (left 
column), B (center column) and 
C (right column). Due to their 
definition, lower values indicate 
stronger statistical relationships
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the southern part of the domain can be clearly identified in 
the dissimilarity measures from pixels B and C, where the 
highest values, i.e., little dependency, are found.

A different way to look at the spatial dependency is 
shown in Fig. 6, where the percentage of pixels within a 
certain dissimilarity category is plotted against the distance 
from the target pixel. Such analysis is similar to the widely 
used spatial variogram, with which we can investigate the 
spatial variability of geophysical variables. An extension 
to the full domain including all possible combinations of 
pixel pairs (not only those with the three target pixels) would 
finally allow for a Copula-based spatial variogram.

Again, the figure clearly shows the relationship between 
the spatial dependence and the distance from the target 
pixels. Pixel A has a much narrower radius of higher dis-
similarity values compared to pixels B and C. For �1 and �3 
the highest values can only be observed within a radius of 
less than 60 km around pixel A. Pixel C, which is located 
in the foothills of the Alps, shows a slightly larger radius 
with low dissimilarity values. Finally, Pixel B has a radius 
of around 80 km, where values between 0 and 0.1 can be 
observed.

For all target pixels, �2 shows a sharper increase of dis-
similarity with increasing distance. It should be noted that 
�1 does not allow for analyzing the degree of asymmetry 
in the empirical Copula as both lower and upper tails are 
treated in the same way. However, as we have identified 
the asymmetric Clayton Copula as the most suitable model 

in some parts of the study domain, dissimilarity measures 
accounting for this asymmetry like �2 or �3 should be pre-
ferred. Moreover, both measures require a pre-analysis of 
all possible values of rank correlations and the Copula 
asymmetry within the study domain for computing the 
scaling parameter � . Therefore, the estimated measure is 
relative and does not allow for a simple extension to other 
areas.

Hence, the final choice of a suitable dependence meas-
ure depends on the application (e. g. if new data should be 
included in the future) and the level of asymmetry of the 
Copula. For linear relationships and symmetric Copulas, it is 
therefore suggested to use �1 as its computation is simple and 
straightforward. For other cases �2 or �3 is preferred. While 
�2 only accounts for relationships between the same time 
steps, �3 also considers time-lagged dependencies and can be 
assumed as the most comprehensive dissimilarity measure.

Copula‑based bias correction and gap filling

Finally, we want to assess the performance of the proposed 
workflow for improving WRF-based ZTDs by applying a 
Copula-based correction. We use NSE (28) for this assess-
ment. Figure 7 shows the NSE values for each of the 22 
stations. The performance measures for the raw WRF- and 
Copula-based ZTDs are shown in blue and red, respectively. 
Over most stations, the performance of the WRF-based 
ZTDs can be significantly improved using the Copula-based 

Fig. 6  Distance-based evalua-
tion of �1 (upper row), �2(mid-
dle row) and �3(bottom row) for 
target pixels A (left column), B 
(middle column) and C (right 
column)
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correction. In particular, over the stations that are located 
in the Alps (269, 270, 272, 285, 294, 296), the NSE val-
ues of the Copula-based ZTDs are much higher compared 
to the purely WRF-based estimates. This can be explained 
by the fact that we assume higher biases of the modeled 
atmospheric quantities, especially in complex terrain and 
high altitudes. The stations where the Copula-based NSE 
values are similar or slightly worse compared to the purely 
WRF-derived estimates (257, 261, 266, 278, 279, 280, 293) 
are located in low-altitude and flat areas. Hence, in those 
regions, it can be assumed that the pure WRF estimates 
are already acceptable and that the dependency between 
the WRF- and GNSS-based anomalies does not allow for a 
significant improvement of the WRF ZTDs toward the sta-
tion data. Nevertheless, as most stations show higher NSE 
values after applying the Copula-based correction, it can be 
concluded that the proposed approach is generally capable 
of improving WRF-derived ZTDs across the study domain.

Summary and conclusion

In this paper, we provide a workflow for the modeling of 
dependence structures using Copulas. While we apply the 
proposed methods to ZTDs, it can be easily used in other 
GNSS and geodesy applications when, e.g., marginal dis-
tributions are not known or if the analysis of multivariate 
dependency structures is required. Compared to approaches 
that require, e.g., normally distributed data, this framework 
allows for a much more flexible and general description of 
statistical relationships with arbitrary distributions including 
dedicated measures to analyze, e.g., tail dependence.

We use the proposed workflow to investigate the depend-
ence structures of modeled and observed ZTDs across a 
study domain in Central Europe. Due to the complex topog-
raphy in this domain, it is assumed that these dependency 
structures are not only linear but might contain strong non-
linearity as well.

First, modeled humidity, pressure and temperature from 
WRF are used for calculating ZTDs in the study area dur-
ing the period of April to October 2016. Three pixels are 
selected as focus points representing different altitudes from 
flat to mountainous terrain. For each of these pixels, we 
identify the most suitable Copula between the target pixels 
and all other pixels in the study domain. This allows for a 
description of the statistical relationships of ZTDs across the 
whole region. While we use five different Copulas (Gauss-
ian, Gumbel, Clayton, Frank and AMH Copula), the Gauss-
ian Copula is identified as the most suitable model across 
most parts of the domain. However, in several regions, 
the Clayton Copula, which allows for an asymmetric tail 
dependence, is more appropriate. This indicates that for 
large-scale applications, where we cannot manually ana-
lyze every single location, we have to use approaches that 
also take more complex (e.g., nonlinear) relationships into 
account to capture the full dependency between variables.

We also discuss three Copula-based dissimilarity meas-
ures, which are used to analyze the spatial variability of 
ZTDs. We compute the measures between three target pixels 
and all other pixels in the study domain to investigate the 
relationship between statistical dependency and distance. All 
three measures show more spatial details compared to, e.g., 
Pearson’s correlation. For example, the dissimilarity pat-
terns clearly reveal a significant difference between the flat 
areas in the center of the domain and the alpine region in the 

Fig. 7  NSE between purely 
WRF (blue) and Copula (red) 
based against GPS-derived 
ZTDs. Better performance is 
indicated by higher NSE values
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South. Therefore, such Copula-based dissimilarity measures 
are highly suitable to describe more complex (or previously 
unknown) statistical relationships.

We further apply a Copula-based correction approach 
for generating GNSS-like ZTDs from purely WRF-derived 
estimates. While the performance over some stations is 
similar or even slightly worse after correction, most cor-
rected time series show significantly improved NSE val-
ues when compared against the GNSS-based ZTDs. In 
particular, the corrected ZTDs in the alpine regions in the 
South of the study domain show a much better agreement 
with the station data. Hence, this Copula-based approach 
is suitable for, e.g., filling gaps or extending discontin-
ued GNSS measurements using an atmospheric model or 
correcting modeled atmospheric quantities using a set of 
station observations.

As a conclusion, our study provides tools and 
measures for modeling, analyzing and applying com-
plex and nonlinear statistical relationships not only 
between ZTDs, but between geophysical variables 
in general. It hence is an innovative approach when 
working with new or unknown data or if extreme val-
ues are of major importance. All in all, it provides a 
statistical basis for the development of future meth-
ods in fields of data fusion or assimilation, bias cor-
rection, gap filling and many other applications in 
geodesy and geosciences.
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Appendix: The estimation of zenith 
tropospheric delay

Zenith tropospheric delays (ZTDs) can be expressed in two 
components:

where ZHD and ZWD are dry or zenith hydrostatic and wet 
delays considered from the surface to the top level in the 
troposphere, respectively. They are computed by (Ghod-
dousi-Fard 2009)

(29)ZTD = ZHD + ZWD

In these equations, Ti is the temperature in Kelvin, pi is the 
total pressure in hPa, and Rd = 287 J/kg k and Rw = 461 J/kg k 
are gas constants for dry air and water vapor, respectively. 
Moreover, the index i refers to the level and k1 , k′2 and k3 are 
empirically determined constants. Various researchers have 
proposed different values for these parameters. For example, 
according to (Bevis et al. 1994):

Finally, ei is the water vapor pressure in hPa and is com-
puted using the following formula:

where qi is specific humidity in kg/kg and Mw and Md are the 
molar weight of wet and dry air, respectively. These param-
eters, together with the gas constants, fulfill in the following 
relation:

Since there is no bending effect in the zenith direction, 
the distance traveled by the ray in each layer can be consid-
ered the same as user-defined values (integration step size). 
Hence, ZTD can be calculated simply by the following sum-
mation (Ghoddousi-Fard 2009):

where dhi is the integration step size at level i, and other 
parameters have already been introduced in (30) to (34). 
Using (35) one calculates the total amount of ZTD through 
the troposphere in each position.

(30)ZHD = 10−6
last level
∑

i=surface

(

k1Rd

(

pi − ei

RdTi
+

ei

RwTi

))

dhi

(31)ZWD = 10−6
Last level
∑

i=surface

(

k�
2

ei

Ti
+ k3

ei

T2
i

)

dhi

(32)

k1 = 77.60 ± 0.05Kh Pa−1

k�
2
= 22.2 ± 2.2K h Pa−1

k3 = 3.739 ± 0.012 × 105 K2 h Pa−1

(33)
ei =

qipi
Mw

Md

+
(

1 −
Mw

Md

)

qi

(34)
Mw

Md

=
Rw

Rd

= 0.62197 ≃ 0.622

(35)

ZTD = 10
−6

last level
∑

i=surface

((

k1Rd

(

pi − ei

RdTi
+

ei

RwTi

)

+

(

k�
2

ei

Ti
+ k3

ei

T2

i

))

× dhi

)
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