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Abstract:
In this paper the efficiency of the method of Least Squares Harmonic Estimation (LS-HE) for detecting the main tidal frequencies is inves-
tigated. Using this method, the tidal spectrum of the sea level data is evaluated at two tidal stations: Bandar Abbas in south of Iran and
Workington on the eastern coast of the UK. The amplitudes of the tidal constituents at these two tidal stations are not the same.Moreover,
in contrary to theWorkington station, the Bandar Abbas tidal record is not an equispaced time series. Therefore, the analysis of the hourly
tidal observations in Bandar Abbas and Workington can provide a reasonable insight into the efficiency of this method for analyzing the
frequency content of tidal time series. Furthermore, applying the method of Fourier transform to the Workington tidal record provides
an independent source of information for evaluating the tidal spectrum proposed by the LS-HE method. According to the obtained re-
sults, the spectrums of these two tidal records contain the components with the maximum amplitudes among the expected ones in this
time span and some new frequencies in the list of known constituents. In addition, in terms of frequencies withmaximum amplitude; the
power spectrums derived from two aforementionedmethods are the same. These results demonstrate the ability of LS-HE for identifying
the frequencies with maximum amplitude in both tidal records.
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1. Introduction

Analyzing the frequency content of the coordinate time series in an
active tectonic region is now an acceptedmethod for understand-
ing the kinematics of deformation (Ghil and Taricco 1997). The ap-
plied methods normally assume the input as a periodic time se-
ries. The efficiency of these methods can be practically evaluated
through their application to a periodic time series like tidal records
whose frequency content has been already established. Least-
Squares Harmonic Estimation (LS-HE) is one of the existing meth-
ods that has been recently developed by Amiri-Simkooei (2007).
This paper intends to investigate the efficiency of LS-HE in detect-
ing the frequency content of a periodic time series. The ocean tide
has been used for this purpose.

∗E-mail: r_mousavian@yahoo.com

The ocean tide is the periodic variation of sea level due to the tidal
acceleration producedby celestial bodies (Epler 2010). For a spher-
ically symmetric Earth the tidal acceleration is the difference be-
tween the Earth orbital acceleration which is caused by the attrac-
tion of the celestial body at the Earth’s center of mass and that at
the point of observation (Agnew 2007). In potential theory the
tidal acceleration is expressed in terms of tidal potential.
If M is the mass of the external body, the gravitational potential,
V, from it at the origin O using the cosine rule from trigonometry,
is computed from the following equation (Agnew 2007, Vanicek
1987):

Vt (O) =GM
R

1
[1 + (a/R )2 − 2(a/R ) cos α ]1/2 −

[
GM
R − GM

R2 a cos α
]

(1)

The variables are as shown in Fig. 1: a is the distance of O from C,
ρ the distance from O to M, and α the angular distance between
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Figure 1. Tidal forcing. On the left is the geometry of the problem for
computing the tidal force at a point O on the Earth, given
an external body M. The right plot shows the field of forces
(accelerations) for the actual Earth–Moon separation (Ag-
new, 2007).

O and the sub-body point of M. The örst and the second terms in
Eq. (1) are theMoon’s gravitational andorbital potentials at pointO
respectively. Using the Legendre generating-function (in the örst
term) and the Legendre functions of degree zero and one (in the
second term) yields

Vt (O) =GM
R

∞∑

n=0

( a
R )npn(cos(α))−GM

R

1∑

n=0

( a
R )npn(cos(α)) =

GM
R

∞∑

n=2

( a
R )npn(cos(α)) (2)

Variations of the parameters R and α in Eq. (2) show that the
tidal potentials generated by the celestial bodies are not the same.
Moreover, the tidal potential is not constant throughout the Earth
and includes a number of periodic frequencies (Epler 2010). Ex-
tensive computations of the tidal potential and its harmonic de-
composition has been done in order to achieve more precision in
analyzing the tidal data [for example Darwin 1907, Doodson 1921,
Cartwright and Tayler 1971, Kudryavtsev 2004]. Among those who
have worked on the tide, results given by Kudryavtsev provide the
spectrumof the tide inmore details (Kudryavtsev 2004). According
to this research, 27000 frequencies are required for accurate mod-
eling of the tidal signal whose amplitudes are mostly small. The
tidal frequencies can be generally classiöed into four groups: (a)
semi diurnal, (b) diurnal, (c) long period and (d) short period ones.
Tables 1 through 4 provide some of these frequencies based on
the naming system proposed by Darwin (Darwin 1907, Wahr 1995;
House, 1995). Figure 2 compares the amplitudes of the diurnal
and semi-diurnal components computed by Hartman and Wenzel
(1995). In this ögure Darwin’s symbols are used for the larger har-
monics. The larger amplitude of the semidiurnal component of the
moon (M2) is remarkable in these results.
In this paper, the efficiency of the Least Squares Harmonic Estima-
tion (LS-HE) for detecting the main frequencies in the tidal spec-
trum is analyzed. The next section of this paper discusses the the-
oretical background of this method. Using this method, the tidal
spectrum of the sea level data is evaluated at two tidal stations:
Bandar Abbas in south of Iran andWorkington on the eastern coast

Table 1. Diurnal components of tide (Wahr 1995,House 1995).

No. Tidal component Period(hour)
1 Lunar diurnal K1 23.9344
2 Lunar diurnal O1 25.8193
3 Lunar diurnal OO1 22.3060
4 Solar diurnal S1 24
5 M1 24.8412
6 J1 23.09848
7 ρ 26.7230
8 Q1 26.8683
9 2Q1 28.0062
10 Solar diurnal P1 24.06588

Table 2. Semidiurnal component of tide (Wahr 1995,House 1995)

No. Tidal component Period (hour)
1 Principal lunar semidiurnal M2 12.4206
2 Principal solar semidiurnal S2 12
3 N2 12.658
4 υ2 12.626
5 MU2 12.871
6 2N2 12.905
7 λ2 12.221
8 T2 12.016
9 R2 11.983
10 2SM2 11.606
11 L2 12.191
12 K2 11.967

of theUK. In contrary toWorkington station, theBandarAbbas tidal
record is not an equidispace time series. Therefore, the analysis
of the hourly tidal observations in Bandar Abbas and Workington
can provide a reasonable insight into the efficiency of this method
for analyzing the frequency content of tidal time series. Moreover,
applying the method of Fourier transform to the Workington tidal
record provides an independent source of information for evaluat-
ing the tidal spectrumproposed by themethod of LS-HE. Section 3
provides the corresponding numerical results. Simulated time se-
ries have been used for validating the computer codes which have

Table 3. Shallow water components or short period components of
tide (Wahr 1995, House 1995).

No. Tidal component Period (hour)
1 M4 6.021030
2 M6 4.1404
3 MK3 8.1771
4 S4 6
5 MN4 6.26917
6 S6 4
7 M3 8.2863
8 2MK3 8.3863
9 M8 3.10515
10 MS4 6.10333
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Table 4. Long period components of tide (Wahr 1995, House 1995).

No. Tidal component Period (hour)
1 Lunar monthly Mm 661.3111
2 Solar semiannual MSa 4383.0763
3 Solar annual Sa 8766.15265
4 MSf 354.36706

Figure 2. Normalized amplitudes of the detected frequencies in tidal
spectrum (Hartman and Wenzel, 1995).

been developed for this purpose. This section of the paper also re-
ports on the corresponding results.

2. Least Squares Harmonic Estimation (LS-HE)

The least squares harmonic estimation (LS-HE) is a method which
was örst introduced and applied to GPS position time series by
Amiri-Simkooei (seeAmiri-Simkooei 2007andAmiri-Simkooei et al.
2007). The method is based on the application of harmonic func-
tions for modeling the periodic constituents of a phenomenon.
As a generalization of the Fourier spectral analysis, the method
is neither limited to evenly spaced data nor to integer frequen-
cies (Amiri-Simkooei and Asgari 2012). The method is actually
based on the Least Squares Spectral Analysis (LSSA) developed by
Vanicek 1996 even when an initial design matrix is present in the
model and the covariancematrix, in general, is not a scaled identity
matrix. Amiri-Simkooei and Tiberius (2007), Amiri-Simkooei and
Asgari (2012) provide some examples for the application for this

method. This paper is the örst attempt for the application of this
method to the analysis of tidal data.
The functional model of a periodic time series yT =
[y1, y2, ..., ym], which is deöned on Rm , is in general given
by:

y = y0 + rt +
q∑

k=1

ak cos(ωk t) + bk sin(ωk t) (3a)

Or in matrix notation:

y = Ax +
q∑

k=1

Akxk (3b)

In these equations,y0 is the zero frequency component of the time
series, r is linear rate, ak and bk are amplitudes of sine and co-
sine components corresponding to the frequency ωk and ti for
i = 1, 2, . . . , m are observation epochs. The two column ma-
trix A contains the coefficients of the linear regression part of the
model, whereas the two column matrices Ak are constructed by
the corresponding coefficients for the trigonometric components
of frequencies ωk :

Ak =





cos ωk t1 sin ωk t1

cos ωk t2 sin ωk t2
...

...
cos ωk tm sin ωk tm




; x=

[
y0

r

]
; xk =

[
ak

bk

]

(4)
When in Eq. (3) ωk is known, linear least-squares is used for solv-
ing theproblem. Least SquaresHarmonic Estimationhas beenpro-
posed for önding the unknown parameters in Eq. (3)when the un-
known parameters are both ωk and the coefficients ak and bk .
To apply the Least Squares Harmonic Estimation, the unknown fre-
quencies ω1, ω2, ...ωq are örstly determined. This is done recur-
sively through q statistical hypotheses below in which i runs from
1 to q (Amiri-Simkooei, 2007):

{
H◦ : y = Ax +

∑i−1
k=1 Akxk

Ha : y = Ax +
∑i

k=1 Akxk
(5)

Evaluation of this hypothesis test consists of the two steps (Amiri-
Simkooei, 2007): (a) solving the followingminimization problem in
order to detect the existing frequency ωi

ωi = arg min
ωj

∥∥∥P[A Aj ]
⊥y

∥∥∥
2

Qy−1
= arg min

ωj

∥∥êa
∥∥2

Qy−1 (6)

where
∥.∥2

Qy−1 = (.)T Qy
−1 (.), A = [A, A1, . . . , Ai−1], Qy is

the variance-covariance matrix of observation and êa is the least
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squares residuals under the alternative hypothesis. Sub-matrices
Ai of matrix A have the same structure as Ak given in Eq. (3) and
are constructed using the frequencies which have been detected
through previous evaluations of the statistical hypothesis 5. The
matrixAj has the same structure asAk and is constructedusing the
frequency of interest. The minimization problem above is equiva-
lent to the followingmaximization problem (Amiri-Simkooei 2007,
Teunissen 2000a):

ωi = arg max
ωj

∥∥∥PAj
y
∥∥∥

2

Qy−1
; Aj = P⊥

A Aj (7a)

P⊥
A = I − A(ATQy

−1
A)−1ATQy

−1
(7b)

PAj
= Aj(A

T
j Q−1

y Aj)−1AT
j Q−1

y (7c)

Eq. (7a) can be re-written in following form in which ê◦ = P⊥
A y is

the least squares residuals under null hypothesis:

ωi = arg max
ωj

êT
0Q−1

y Aj(AT
j Q−1

y P⊥
A Aj)−1AT

j Q−1
y ê0 (8)

The analytical solution of the optimization problem given by
Eq. (8) is complicated. Therefore, numericalmethods are preferred
to solve the problem. For this purpose, the power spectrum of the
time series is produced using the spectral values of different fre-
quencies. The spectral value of a frequency ωj is computed by∥∥∥PAj

y
∥∥∥

2

Qy−1
. The continuous diagram inwhich the spectral values

are plotted against their corresponding frequencies constructs the
power spectrum of the time series. Consecutive frequencies with
maximal spectral values are used for constructing the matrices Ai .
(b) The hypothesis test 5 is then evaluated using Qy = σ 2I in
which the a-priori variance of unit weight σ 2 is unknown. The fol-
lowing statistic is used for this purpose (see Teunissen et al. 2005,
Amiri-Simkooei 2007):

T2 =

∥∥PAi
y
∥∥2

Qy−1

2σ̂ 2
a

=
êT

0Ai(AT
i P⊥

A Ai)−1AT
i ê0

2σ̂ 2
a

(9)

In Eq. (9), Ai = P⊥
A Ai and σ̂ 2

a is the a-posteriori variance under
alternative hypothesis which is computed by the following equa-
tion:

σ̂ 2
a =

êT
a Q−1

y êa

df (10)

In this equation: df is the degree of freedom under the alternative
hypothesis of the statistical test 5. The distribution of the statistic 9

is central Fisher with 2 and m − n − 2i degrees of freedom, that
is:

T2 ≈ F (2, m − n − 2i) (11)

A frequency whose statistic satisöes the inequality T2 >
ξF(2,m−n−2i) , where ξF(2,m−n−2i) is the corresponding critical value
of the central Fisher distribution, is taken as an acceptable fre-
quency.
If σ were known, the applied statisticT2 and the distribution func-
tion would change. In this case, the test statistic has a central chi-
square distribution with two degrees of freedom (Amiri-Simkooei
and Asgari 2012), that is:

T2 ≈ χ2(2, 0) (12)

The computational step is evaluated using the following recursive
relation (Amiri-Simkooei and Tiberius 2007):

Tj+1 = Tj (1 + αTj
/

T ), j = 1, 2, ..... (13)

The iteration starts from the Nyquist frequency ω1 = 2π
T1

and cov-
ers the total observation time span (Tj ). T1 is twice as large as
the sampling time span. Reducing the coefficient α in Eq. (13) in-
creases the number of frequencies to be analyzed.
After detecting the effective constituents in the desired time se-
ries, the remaining unknown parameters of the functional model,
including the zero frequency component y0 , linear rate r and am-
plitudes of the frequencies, are determined using the least squares
estimation technique. According to the least squares method,
the unknown parameters in functional relation y = Ax + v
and variance-covariancematrix of the unknown parameters in this
model are computed from following equations:

x̂ = (ATQ−1
y A)−1ATQ−1

y y (14)

Qx̂ = (ATQ−1
y A)−1 (15)

3. Numerical results

Thehourly time series of two tidal stationsBandarAbbas andWork-
ington from the tidegaugenetworks of Iran andUKare selected for
this research, respectively. The lengths of the two time series have
been limited to one year.
Figure 3 demonstrates the geographical position of the two afore-
mentioned stations. In contrary to the station in Iran, theWorking-
ton tidal record is an equispaced time series. This makes it possi-
ble to compare themain tidal constituents of this station obtained
from LS-HE and the Fourier transform. This can be a cross check for
the efficiency of Least Squares Harmonic Estimation in detecting
the existing constituents of a periodic time series.
To check the computer codes which have been developed in this
research as well as the efficiency of LS-HE in detecting the com-
plete spectrum of a periodic signal, simulated data sets have also
been analyzed.
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(a) (b)

Figure 3. Geogarphical position of the tidal stations: (a) Bandar Ab-
bas, ( b) Workington.

3.1. Analysis of simulated data sets

To simplify the procedure of checking the developed computer
codes, two time series that only contain white noise are simulated.
A set of known frequencies with pre-deöned amplitudes are used
for this purpose.

Table 5. Characteristics of the frequencies in the second simulated
time series.

No. Angular frequency Period Amplitude
(degrees) (sampling rate) of frequency

1 30 12 2
2 40 9 1
3 120 3 1
4 20 18 0.44
5 54 6.6 0.37
6 88 4 1

The örst time series includes the three angular frequencies: 30, 40
and 120 degrees which are equivalent to 12, 9 and 3 sampling rate.
Similar amplitudes areused for these constituents in simulating the
time series. In contrary to the örst series, the amplitudes of the con-
stituents in the second time series are not the same. Moreover, the
second series includes six frequencies. The corresponding details
of this series are given in Table 5. The data length in both of the
two time series is 400 sampling rate.

Figure 4 and Fig. 5 show the power spectrums of the örst and the
second time series above. In these ögures, the horizontal axes are
the angular frequencies (in degrees) and the vertical axes illustrate
the corresponding power spectrum for every frequency. Maxi-
mumpower spectra for theörst series exactlyoccur at theexpected
frequencies 3, 9 and 12. Moreover, using the conödence level of 99
percent, the signiöcance of these frequencies is approved by the
method of LS-HE. In contrary to the örst series, maximum power
spectra in the second one occur in only four frequencies of the six
mentioned above (see Fig. 5). Using a similar conödence level, the
statistical test in LS-HE only conörms the existence of these fre-

Figure 4. The power spectrum of the simulated time series one.

Figure 5. The power spectrum of the simulated time series two.

quencies in the time series. It is interesting to note that the four
detected frequencies are those whose amplitudes aremuch larger
than the others (see Table 5) and therefore have a greater contri-
bution in reconstructing the signal. The simulation results given
above illustrate that the method of LS-HE is sensitive to the ampli-
tudes of the frequencies which construct a periodic signal.

Although the dependency of LS-HE to the length of data is clear via
the degree of freedom used in the statistic of its hypothesis test,
the contribution of the data length in the efficiency of this method
for detecting the frequencies with smaller power spectra as com-
pared to the other frequencies is also analyzed. For this purpose,
the length of data in the simulated second time series has been

Figure 6. The power spectrum of the simulated time series contains
6000 sampling rate.
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(a)

(b)

(c)

Figure 7. Power spectrum of the Bandar Abbas tidal record con-
structed for different time intervals: (a) short period com-
ponents, (b) semidiurnal components, (c) diurnal compo-
nents.

recursively increased from 400 to 6000 sampling rate. As a result,
all of the 6 frequencies are detected. This result demonstrates the
signiöcant role of the length of data in accurate reconstruction of
the functional model for a periodic time series through detecting
its frequencies. Figure 6 illustrates the power spectrumof this time
series. Horizontal and vertical axes in this ögure are the same as
those in Fig. 4 and Fig. 5.

3.2. Analysis of Bandar Abbas tidal records

To investigate the tidal constituents of the Bandar Abbas tidal
records, thepower spectrumof this time series is örstly constructed
using the method discussed above. The corresponding parts for
the short period, diurnal and semidiurnal tidal components of the

Table 6. Detected frequencies of sea level data for Bandar Abbas
station using LS-HE.

No. Equivalent tidal Amplitude Period of detected
constituent of components components (in hours)

1 M2 1.075 12.423
2 S2 0.412 11.998
3 K1 0.314 23.946
4 N2 0.248 12.655
5 H1 0.0134 12.396
6 O1 0.2087 25.808
7 0.0341 12.4492
8 0.082 11.974
9 0.0075 12.379
10 P1 0.130 24.077
11 0.29 12.467
12 0.0189 12.024
13 0.0127 12.484
14 L2 0.061 12.19

constructed spectrumare shown in Fig. 7. The horizontal and verti-
cal axes of this ögure are time spanor period and thepower spectra
for every frequency respectively.

As it is expected, thepower spectra of the semidiurnal components
are much larger than the others (compare Fig. 7b to Fig. 7a and
Fig. 7c). The small spectral values for the short period components
illustrate their small contribution in constructing the signal as com-
pared to the other components. Table 6 provides the constituents
whose frequencies have been approved by the LS-HEmethod. The
adopted conödence level is 99 percent.

The last columnof this table gives the equivalent tidal constituents
based on Darwin’s naming system. According to the Rayleigh cri-
terion (Abolghasem 1994) and research made by others, for exam-
ple see (Epler 2010, Darwin 1907, Doodson 1921, Foreman 1977),
many of the expected frequencies are not seen in this table (see
appendix A for further details). Referring to appendix A, the con-
stituents given in Table 6 are the components with larger ampli-
tudes among the others. Moreover, some constituents are seen in
Table 6whichhavenoequivalent name in theDarwin’s naming sys-
tem. Therefore, they have not been given any name in this table.

3.3. Analysis of Workington tidal records

The power spectrum of the Workington equispaced tidal time se-
ries has been estimated using both the LS-HE and Fourier Trans-
form methods. The probability for the commitment of the type I
error has been taken as 1% again. The accepted frequencies in the
statistical test of LS-HE and their estimated amplitudes are given
in Table 7. Again the last column of the table gives the equivalent
tidal constituents based onDarwin’s naming system. The results of
this table in comparisonwith appendixA, illustrates thatwith a lim-
ited time series of tidal data thedetectionof tidal frequencies using
the method of LS-HE is restricted to the tidal constituents whose
amplitudes are large. In this case, similar to Bandar Abbas station
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Table 7. Detected frequencies in sea level data of Workington station
using LS-HE method.

No. Equivalent tidal Amplitude of Period of the detected
component the component components (in hours)

1 M2 2.483 12.424
2 S2 0.829 11.999
3 N2 0.505 12.655
4 K2 0.233 11.974
5 MKS2 0.0184 12.38
6 0.066 12.468
7 0.042 12.486
8 T2 0.0264 12.016
9 υ2 0.1078 12.626
10 0.031 12.503
11 0.022 12.345
12 L2 0.129 12.19
13 O1 0.132 25.819
14 0.026 12.52
15 K1 0.125 23.94
16 MN4 0.121 6.211
17 0.016 12.68

there are some constituents which have no equivalent name in the
Darwin’s naming system. These constituents are seen in Table 7.

The computed power spectrum has been illustrated in Fig. 8 to
Fig. 11. The LS-HEmethodhas beenused for this purpose. The hor-
izontal andvertical axes in theseögures are similar to those in Fig. 7.
Figure 8 demonstrates short period components corresponding to
shallow water effects: Figure 8a illustrates the components whose
frequencies range from3 to4.5hours, Figure 8b illustrates the com-
ponents whose frequencies range from 6 to 7 hours and önally
Fig. 8c illustrates the components whose frequencies range from 8
to 9 hours. As it is seen in these ögures, the power spectrum of the
constituent whose frequency is 6.21 hours is the largest compared
to the others. This constituent is the only shallow water compo-
nent which is approved by the LS-HEmethod. Figure 9 illustrates
the semidiurnal components in the tidal power spectrumof thede-
sired time series. As is expected, the power spectra of the semidi-
urnal components are much larger than the other constituents.

The power spectrum for the detected diurnal components of the
desired time series is shown in Fig. 10. Again as is expected,
the comparison of this ögure with former ones illustrates that the
power spectrumof thediurnal components are larger than thoseof
the short period constituents and aremuch smaller than thepower
spectrum of the main semidiurnal components such as M2 .

Figure 11 illustrates the power spectrum for frequencies in the
range of long period components. Peaks around the long period
components such as 14 days can be seen in this ögure. Neverthe-
less, the LS-HE method does not approve any constituent with a
frequency in the long period range (see Table 4 and Table 7). As
is expected again, the comparison of this ögure with the former
ones illustrates that thepower spectrumof the longperiod compo-
nents are smaller than those of the other constituents which have

Figure 8. Obtained power spectrum from LS-HE method, indicative
of short period components in Workington station’s tidal
spectrum. a) in range of 4 – 4.5 hours. b) in range of 6 – 7
hours. c) in range of 8 – 9 hours.

Figure 9. Obtained power spectrum from LS-HE method in range of
semidiurnal components of tidal power spectrum

been already conörmed by the method. To check the impact of
data length on the detected frequencies, the length of the Work-
ington tidal time series has been gradually increased to 19 years.
More expected frequencies are detected as the length of the data
set is increased.
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Figure 10. Obtained power spectrum from LS-HE method in range
of diurnal components of tidal power spectrum

Figure 11. Obtained power spectrum from LS-HE method in range
of long period components of tidal power spectrum

Figure 12. The power spectrum obtained from the method of Fourier
Transform-short period components: (a) in range of 4 –
4.5 hours (b) in range of 6 – 7 hours, (c) in range of 8 – 9
hours.

Figure 13. Power spectrum obtained from Fourier Transform -
semidiurnal components.

Figure 14. Power spectrum obtained from Fourier transform - diurnal
components.

The power spectrum of the Workington tidal data has been also
computed using the method of Fourier Transform. Similar time
spans are used in every ögure in order to compare this spectrum
to the power spectrum computed by the LS-HEmethod. Figure 12
to Fig. 15 show the obtained results. The horizontal and vertical
axes in these ögures are as before.

The corresponding short period components are shown in Fig. 12.
Figure 8 should be used in order to compare the power spec-
trum proposed by the LS-HE with this result. It is seen in Fig. 12b
that the maximum power spectrum for the existing short period
constituents in these tidal records is a component with frequency
6.211 hours, see the bullet in Fig. 12b.

The semidiurnal and diurnal parts of the computed power spec-
trum are shown in Fig. 13 and Fig. 14 respectively. Similar to

Figure 15. Power spectrum obtained from Fourier transform - long
period components.
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Fig. 12b, bullets are used in order to distinguish the tidal con-
stituents with maximal power spectra from the others. Again, it
is easily seen that these constituents are those that have been al-
ready approved by the LS-HE method (see Fig. 9 and Fig. 10).

The long period part of the computed power spectrum is shown
in Fig. 15. As it can be seen, the power spectrums of these con-
stituents aremuch smaller than the power spectrumof diurnal and
semidiurnal components.

4. Conclusion

In this paper least squares harmonic estimation is used for ana-
lyzing the frequency content in both real tidal records and sim-
ulated time series. The applications of this method to simulated
time series shows that the periodic constituents proposed by this
methoddependon twoparameters: amplitudesof the frequencies
and the data length. Components with small amplitudes cannot
be detected through the hypothesis test of this method unless the
length of the data record is sufficiently large. This is conörmed by
the real tidal records.

Applications of this method to the tidal data in this research, re-
sults in constituents whose frequencies are close to the main tidal
constituents havebeen already reported in the similarworkswhich
have been done others.

Although the LS-HE and Fourier power spectrums are not exactly
the same, the power spectrum computed by the Fourier Transform
includes the frequencies which have been detected by the least
squares harmonic estimation technique. Moreover, the power
spectra of these frequencies are also maximized in the Fourier
method. This is an independent approach for validating the fre-
quency content which is proposed by the least square harmonic
estimation technique.

The LS-HEmethod can tolerate limited gaps in the data; it can also
detect the main components in a periodic time series automati-
cally. These two items are the main advantages of this method to
the other existing techniques.
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Appendix A:

Computed amplitudes of the tidal constituents proposed in Fore-
man (1977) at Workington and Bandar Abbas stations using least-
squares estimation technique.

No. Constituent’s Frequency Period Amplitude Amplitude
name (hour) in Workington in BandarAbbas

1 Sa 0.00011407 8766.5469 0.21146298 0.1057027
2 Ssa 0.00022816 4382.8892 0.13544653 0.0342881
3 Msm 0.00130978 763.487 0.09548087 0.0103083
4 Mm 0.00151215 661.31006 0.04908334 0.0042576
5 Msf 0.00282193 354.3674 0.02543426 0.0104729
6 Mf 0.00305009 327.85918 0.04803538 0.005116
7 α1 0.03439657 29.072666 0.007182 0.0032008
8 2Q1 0.03570635 28.006223 0.0155372 0.0068264
9 σ1 0.03590872 27.848389 0.00844063 0.0134962
10 Q1 0.0372185 26.868358 0.05379317 0.0455956
11 ρ1 0.03742087 26.723056 0.00811684 0.0032334
12 O1 0.03873065 25.819345 0.13426803 0.2184626
13 τ1 0.03895881 25.668135 0.00910208 0.0045188
14 β1 0.04004043 24.974757 0.00139518 0.0028009
15 NO1 0.04026859 24.833251 0.00702346 0.013728
16 ξ1 0.04047097 24.709069 0.00914395 0.0037149
17 π1 0.04143851 24.132142 0.00062021 0.0076051
18 P1 0.04155259 24.065889 0.04194575 0.1111651
19 S1 0.04166667 23.999998 0.01214004 0.0131236
20 K1 0.04178075 23.934467 0.13616127 0.3434935
21 PSI1 0.04189482 23.869299 0.00756443 0.0082615
22 ϕ1 0.04200891 23.804474 0.00933087 0.0049311
23 T HE1 0.04309053 23.206955 0.00737446 0.0099052
24 J1 0.0432929 23.098476 0.0112118 0.0198399
25 SO1 0.04460268 22.420177 0.00979142 0.0068162
26 OO1 0.04483084 22.306073 0.00165179 0.0092185
27 UPS1 0.04634299 21.578237 0.00504431 0.0025932
28 OQ2 0.07597494 13.162235 0.01660253 0.0187536
29 ε2 0.07617731 13.127268 0.00684685 0.0100495
30 2N2 0.0774871 12.905374 0.0820264 0.0423768
31 µ2 0.07768947 12.871757 0.01519657 0.0131031
32 N2 0.07899925 12.658348 0.51128783 0.2760667
33 ν2 0.07920162 12.626004 0.1142547 0.0397039
34 γ2 0.08030903 12.4519 0.01673032 0.0199884
35 H1 0.08039733 12.438224 0.01253026 0.0327271
36 M2 0.0805114 12.420601 2.65376192 1.0974962
37 H2 0.08062547 12.403028 0.01090011 0.0158088
38 MKS2 0.08073957 12.385501 0.00797598 0.0077313
39 λ2 0.08182118 12.221774 0.05548108 0.0282808
40 L2 0.08202355 12.191621 0.12785633 0.0647393
41 T2 0.08321926 12.016449 0.04758102 0.0283308
42 S2 0.08333334 11.999999 0.8888338 0.4250608
43 R2 0.0834474 11.983597 0.01582706 0.0040119
44 K2 0.08356149 11.967235 0.33310515 0.1114423
45 MSN2 0.08484548 11.786132 0.03140672 0.0040964
46 η2 0.08507364 11.754522 0.00929708 0.0101787
47 MO3 0.11924206 8.3863026 0.00884573 0.0203557
48 M3 0.1207671 8.2804009 0.01671408 0.0227847
49 SO3 0.12206399 8.1924243 0.00679491 0.0152056
50 MK3 0.12229215 8.1771397 0.00944616 0.0265216
51 SK3 0.12511408 7.9927055 0.0081406 0.0182745
52 MN4 0.15951064 6.2691743 0.05136069 0.0139801
53 M4 0.1610228 6.2103007 0.12872517 0.0209033
54 SN4 0.16233259 6.1601925 0.00968357 0.0027687
55 MS4 0.16384473 6.1033394 0.06779774 0.0067447
56 MK4 0.1640729 6.0948517 0.02683817 0.0031409
57 S4 0.16666667 5.9999999 0.00810351 0.0016646
58 SK4 0.16689482 5.9917977 0.00672517 0.0055354
59 2MK5 0.20280355 4.9308802 0.00187223 0.0027925
60 2SK5 0.20844743 4.7973727 0.00028105 0.0011006
61 2MN6 0.24002205 4.1662839 0.00621312 0.0027239
62 M6 0.2415342 4.1402004 0.01336912 0.0029541
63 2MS6 0.24435613 4.0923876 0.01754958 0.0043935
64 2MK6 0.24458429 4.08857 0.0067727 0.0037387
65 2SM6 0.24717808 4.0456662 0.00458662 0.003279
66 MSK6 0.24740623 4.0419354 0.00319784 0.0024747
67 3MK7 0.28331494 3.5296409 0.00050051 0.0007464
68 M8 0.32204559 3.1051504 0.00230324 0.0007153
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