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Abstract
Global Navigation Satellite System (GNSS) signals scan the earth’s atmosphere with a high spatiotemporal resolution. 
They have promoted the application of the GNSS networks as an imaging system for the tomographic reconstruction of 
wet refractivity 

(

N
w

)

.To come up with a unique solution of this inverse problem and to preserve the atmospheric dynamics 
intact by solution, the resolution of reconstructed images of wet refractivityis usually increased. We propose a Copula-based 
approach as a geometry-free technique to develop a tomography network over southwest Germany and a part of France. 
Here, we apply the estimated N

w
 time series from Weather Research and Forecasting model from April to October 2016 

and evaluate the pixel-wise dependence structure and dissimilarity measures of the N
w
 time series at seven pressure levels 

from 949.2 to 263.8 hPa. At each level, the most appropriate dissimilarity measure to give an optimal resolution is identified 
based on the percentage of pair pixels with asymmetric Copulas. Then, the optimum resolution is identified by evaluating 
the distance-based variations of dissimilarity values. The investigations propose a non-uniform tomography network for 
this region. Furthermore, we assess the geometry of the problem by investigating the resolution matrix of the tomography 
model in all hourly time epochs of Day of Year (DoY) 279. According to the results, using uniform voxel size for tomogra-
phy reconstruction in the area leads to missing information in the lower parts of the troposphere. Moreover, we show that 
combining our method and resolution matrix provides a mathematical tool for deciding on the required compromise between 
the geometry and dynamics in Global Positioning System (GPS) tomography.

Keywords Atmospheric modeling · Copula · Correlation · Dependence · Dissimilarity measures · GNSS tomography

Introduction

Global Navigation Satellite System (GNSS) meteorology is 
a powerful tool for estimating the integrated water vapor 
(IWV) with an accuracy better than 1–3 mm (Bevis et al. 
1992; Lee et al. 2013). The high-resolution estimates of 
IWVs can be assimilated into numerical weather predic-
tion (NWP) models to improve their quality (de Haan et al. 

2009). GNSS tomography is a technique to provide water 
vapor with a high resolution using GNSS signals (Bevis 
et al. 1992; Rohm 2012). Due to the spatiotemporal vari-
ations of water vapor, voxel-based tomography is usually 
the preferred approach (Vaquero-Martinez and Anton 2021) 
where the study region is spatially discretized into several 
3D-elements (voxels) with invariable water vapor during a 
given period of time. The voxel collection is known as the 
tomography network or model. Slant tropospheric delays 
(STD) on GNSS signals crossing these voxels are then 
inverted to water vapor field. Therefore, the quality of the 
tomographic reconstruction is related to the voxel dimension 
(Bi et al. 2006; Notarpietro et al. 2011).

The distribution of the GNSS receivers and satellites 
has an essential impact on voxel sizes or the spatial reso-
lution of a tomography model. Increasing the model reso-
lution, i.e., decreasing the size of voxels, increases the 
number of unknowns. In other words, while smaller voxel 
sizes increase the number of empty elements and affect 
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the uniqueness and precision of the solution, larger voxel 
sizes reduce the accuracy of the solution (Notarpietro et al. 
2011). Most of the previous studies empirically define the 
size of voxels. Optimal horizontal voxel size is sometime 
determined by investigating the resolution matrix (a meas-
ure for analyzing the uniqueness of the solution) of the 
corresponding model for different voxel sizes (Adavi and 
Mashhadi-Hossainali 2014). Chen and Liu (2014) pro-
posed to relocate the tomographic area based on tomogra-
phy condition to improve the utilization of signal rays. Yao 
and Zhao (2017) evaluated the non-uniform symmetrical 
division of voxels horizontally based on the number of 
passing signals from different parts of the tomography 
network (i.e., center or edge). Sadeghi et al. (2022) pro-
posed a method based on the principal component analysis 
to optimize the horizontal resolution of GPS tomography 
model.

In this study, we propose a geometry-free Copula-based 
method to determine the voxel sizes in a tomography 
model. Copula functions fully describe the dependence 
structure of variables (any statistical relationship such as 
linear or nonlinear relations between the variables). The 
method firstly introduced by Sklar (1959) and, because 
of its flexibility, has been widely used in different dis-
ciplines such as economics and finance (Ang and Chen 
2002;), hydrology (Bardossy and Li 2008), meteorology 
(Vogl et al. 2012) and remote sensing (Lorenz et al. 2018). 
However, using Copulas in geodesy is generally new and 
limited to three individual research areas, polar motion 
prediction (Modiri et al. 2018, 2020) and investigating 
the dependence structure of zenith tropospheric delays 
(Mousavian et al. 2021).

We use Copulas for modeling the dependence structure 
of the wet refractivities 

(

Nw

)

 estimated from the Weather 
Research and Forecasting (WRF) model from April to 
October 2016 (Skamarock et al. 2008). We further design a 
tomography network by analyzing Copula-based dissimilar-
ity measures and the dependence structure of wet refractivi-
ties across our study region. Then, we consider the consist-
ency of our proposed method with the constraints that the 
imaging system geometry imposes on this problem using the 
resolution matrix. Since the technique is based on a long-
term analysis of the Nw parameters, the proposed model is 
independent of time for the time length of the applied WRF 
data. This is a significant step toward improving the accu-
racy of GNSS tomography in real-time applications.

The main objectives of this study are: (a) to design a 
tomography network using Copula theory, (b) to compare 
this method with the implied results from the resolution 
matrix of the model and (c) to propose an optimum size for 
the voxels which is consistent with satellite–receiver imag-
ing geometry and atmospheric dynamics. A summary and 
outlook follow the sections.

Methodology

The voxel-based GPS tomography is based on the assump-
tion that the water vapor in each voxel is constant during 
the applied temporal resolution. That is, reconstructed 
tomographic images not only report on Nw values but also 
provide information on the dynamics of this parameter. We 
incorporate the dynamics of the problem by deciding on the 
spatial resolution of our model by analyzing the Copula-
based dependence structure and dissimilarity measures of 
wet refractivities in a test area. Furthermore, the uniqueness 
of the GPS tomography results for a Copula-based designed 
network is investigated using a resolution matrix. Therefore, 
in addition to the Copula-based method, GPS tomography 
and resolution matrix are briefly given.

Introduction to Copula

Copulas are mathematical functions that join multivariate 
distribution functions to their univariate marginals and fully 
describe the dependence structure of variables as follows 
(Sklar 1959; Nelsen 2006):

where F is an n-dimensional cumulative distribution func-
tion (CDF) of random variables xi ∈ ℝ, i = 1, 2, ..., n , 
F1,F2, ...,Fn are univariate marginal distributions of xi and 
C is an n-dimensional Copula.

Therefore, for every n ≥ 2 , an n-dimensional Copula, 
C ∶ [0, 1]n → [0, 1] is an n-dimensional CDF whose univari-
ate marginals are uniformly distributed on [0, 1]. Then, the 
multivariate Copula density function is given by:

For simplicity, this study is restricted to the application of 
bivariate Copulas. Generally, there are two types of para-
metric Copulas: implicit and explicit. The implicit ones are 
derived from the known multivariate distribution functions 
and do not have a closed mathematical form. Gaussian Cop-
ula which is a symmetric Copula derived from the standard-
ized multivariate Gaussian distribution ΦR(�,�) with zero 
mean and correlation matrix � is the most familiar one from 
this category and is defined by (Mikosch 2006),

where ui, i = 1, 2 are univariate marginal distributions of 
variables and Φ−1(⋅) is the inverse of the standard univariate 
normal CDF. The density of this bivariate Copula can be 
estimated by (Arbenz 2013):

(1)F(x1, x2, ..., xn) = C(F1(x1),F2(x2), ...,Fn(xn))

(2)

c(F1(x1),F2(x2), ...,Fn(xn)) =
�nC(F1(x1),F2(x2), ...,Fn(xn))

�F1(x1)...�Fn(xn)

(3)CGa
R
(�) = ΦR(Φ

−1(u1),Φ
−1(u2))
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here � is the identity matrix and X = (Φ−1(u1),Φ
−1(u2))

T

In contrast, explicit Copulas can be expressed in closed 
mathematical form. The most important and widely used 
type of these Copulas is the family of Archimedean Copu-
las and for ui ∈ [0, 1], i = 1, 2 as the marginals of random 
variables xi, i = 1, 2 the family is given by (Embrechts et al. 
2001; Nelsen 2006)

where �[0, 1] → [0,∞) is the generator function of the Cop-
ula C� . Archimedean Copulas are described by the generator 
functions, which contain all the information on the depend-
ence structure of random variables.

Table 1 indicates the closed forms of four widely used 
Archimedean Copulas which are investigated in this study, 
together with their generator functions and the range of 
their parameters. They are the family of Clayton, Gumbel, 
Ali–Mikhail–Haq (AMH) and Frank Copulas. Figure 1 
shows the dependence structure of these Copulas and the 
Gaussian one. Since the range of Copula parameters for all 
families is not the same, different Copula parameters are 
used. In these figures u1 and u2 are uniform variables on [0,1] 
and c (u1, u2) is their Copula densities. According to Fig. 1, 
all these Copulas except the Frank and the Gaussian have 
asymmetric dependence structures. The Clayton and AMH 
Copulas are more correlated in the lower tail much more 
strongly for the Clayton, and the Gumbel Copula shows sig-
nificant upper tail dependence. Therefore, these Archime-
dean Copulas, together with the Gaussian one, are sufficient 
for modeling every kind of dependence in our data.

Copula‑based dissimilarity measures

Dissimilarity measures are numerical values that indicate 
how different two objects or data sets are and quantify the 
independency (or dependency) of variables. Many dissimi-
larity measures with their pros and cons are developed over 
the years (Goshtasby 2012). We apply the Copula-based 

(4)c(�) =
1

√

det(�)
exp(−1∕2(�T (�−1 − �)�))

(5)C�(u1, u2) = �−1
{

�(u1) + �(u2)
}

, � ∈ [0, 1]2

dissimilarity measures, which are based on empirical Cop-
ula distribution and density (Samaniego et al. 2010). There-
fore, the dissimilarity measures are given after expressing 
the required statistical concepts and empirical quantities for 
their estimation.

Estimation of marginal distributions

The first step in all Copula-based investigations is estimating 
the univariate marginal distributions and transforming the 
input data to the unit interval [0, 1] or rank space. If there is 
no a priori information about the random variable X and its 
distribution, but a sufficient number of samples T  is avail-
able, the empirical distribution with the following formulas 
is a good approximation of the true underlying distribution 
(Charpentier et al. 2007):

where I(⋅) denotes the indicator function and is defined as

here A is any non-empty subset of set X.

Empirical Copula distribution

The empirical Copula was introduced as an empirical 
dependence function that converges to the underlying Cop-
ula (Deheuvels 1979; Nelsen 2006). This empirical Copula 
CDF is estimated by

where F̂i(xi), i = 1, 2 , and T  and I(⋅) are the univariate 
marginal distributions of the random variables xi, i = 1, 2 , 
sample size and the indicator function, respectively.

(6)

ui = F̂i(x)

=
1

T + 1

T
∑

t=1

I(Xi
t
≤ x), i = 1, 2

(7)IA(x) ∶=

{

1 x ∈ A

0 x ∉ A

(8)

Ĉ(u1j, u2j) =
1

T

T
∑

t=1

I(F̂1(x1t) ≤ u1j, F̂2(x2t) ≤ u2j), j = 1, 2, ..., T

Table 1  Most common 
Archimedean Copulas, their 
generator functions and the 
range of the Copula parameter θ 

Family �(t) � C�(u1,u2)

Clayton t
−�−1

�

(0,∞) (u−�
1

+ u
−�
2

− 1)−
1

�

Gumbel (− log(t))� [1,∞) exp
{

−[(− log(u1))
� + (− log(u2))

�]
1

�

}

Frank log
(

e
�t−1

e�−1

)

ℝ�{0} −
1

�
log

{

1 +
(e−�u1−1)(e−�u2−1)

e−�−1

}

Ali–Mikhail–Haq 
(AMH)

ln(1−�(1−t))

t

[−1, 1] u1u2

1−�(1−u1)(1−u2)
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Empirical Copula density

Similar to the empirical Copula CDF, the empirical Copula 
PDF can be estimated from the data through nonparametric 
methods (Charpentier et al. 2007). Thus, the empirical Copula 
PDF is calculated by discretizing the interval between 0 and 

1 to a regular k × k grid based on the sample size as follows 
(Bardossy 2006; Nelsen 2006)

(9)ĉ
(

2r − 1

2k
,
2s − 1

2k

)

=
k2

T
qrs

Fig. 1  Copula densities of the applied families for bivariate samples (μ1, μ2) with two different Copula parameters (θ) based on their meaningful 
ranges
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where T  and qrs are sample size and the empirical fre-
quency corresponding to the grid coordinates (r, s) with 
{r, s = 1, 2,… , k} , respectively. For a given pair, qrs is

here ui, i = 1, 2 are the univariate marginal distributions 
in the rank space and |⋅| is the cardinality (the number of 
elements of a set). To ensure that the dependence between 
random variables is accurately represented, the sample size 
should be large enough, i.e., T > 5k2 (Samaniego et  al. 
2010).

Dissimilarity measures

Three different Copula-based dissimilarity measures, i.e., 
�1 , �2 and �3 have been developed (Samaniego et al. 2010). 
�1 for every two variables ui and uj in a set with n pairs of 
variables is defined by tail dependence which describes how 
one marginal distribution exceeds a certain threshold given 
that the other margin has already exceeded that threshold:

where P is a given probability threshold, (e.g., 0.2) which 
separates tails from the rest of the distribution. Uij and Lij are 
the upper and the lower tail probabilities of the empirical 
Copula density ĉ , respectively:

As the empirical Copula densities are given on a regular 
grid, the integrals can be transformed into sums.

This dissimilarity measure consists of two terms: The 
first term estimates how far the empirical Copula density is 
from a perfect lower corner dependence, and the second one 
describes the level of asymmetry of the upper and lower tails 
about the axis uj = 1 − ui.

The second measure �2 does not require any pre-defined 
parameters and is given as

where � is a scaling factor which is selected so that 
sup(1 − rij) ≈ sup

|

|

|

Aij
|

|

|

 . rij and Aij are Spearman’s rank cor-
relation, which is computed from the empirical Copula (see 

(10)qrs =
|

|

|

|

{

r − 1

k
< u1 <

r

k
and

s − 1

k
< u2 <

s

k

}

|

|

|

|

(11)�1
ij
= (P − Lij) +

|Uij − Lij|

Uij + Lij

(12)Lij =

P

∫
0

P

∫
0

ĉ(ui, uj)duiduj

(13)Uij =

1

∫
1−P

1

∫
1−P

ĉ(ui, uj)duiduj

(14)�2
ij
= (1 − rij) + �

|

|

|

Aij
|

|

|

(8)), and the degree of asymmetry of the empirical Copula 
density, respectively. They are calculated by

Therefore, the first and second terms of �2 describe the statis-
tical dependence between variables and the dissimilarity due 
to the asymmetry of their empirical Copulas, respectively.

The third dissimilarity measure consists of the asym-
metry of Copula density (i.e., Aij , see (9)) and the Kolmo-
grov–Smirnov statistic 

(

Mij

)

 as follows:

where

here t  is time in the time series and H is the distribution 
function of the lag one differences of each variable time 
series, that is, Δx(t) = x(t) − x(t − 1).

Therefore, the second and third dissimilarity measures 
are free of any pre-defined parameters and are more gen-
eral. Furthermore, according to Samaniego et al. (2010), 
�1 has only moderate sensitivity to extreme values and the 
asymmetry of the Copula density. Hence, �2 and �3 should 
be preferred for variables that are correlated in the tails of 
their distributions.

Copula‑based dependence structure modeling

The Copula-based dependence structure modeling contains 
several steps, i.e., (1) the transformation of data to the rank 
space, (2) the estimation of theoretical Copulas, (3) estimat-
ing empirical Copula CFD and PDFs, and (4) the identifica-
tion of best-fitted Copula. Except for steps 1 and 3, which 
are explained in the previous subsections, other steps are 
described in the following (refer to Mousavian et al. (2021) 
for details).

Theoretical Copula and parameter estimation

For Copula parameter estimation, in the case of variables 
with unknown marginal distribution, the semi-parametric 
methods like canonical maximum likelihood (CML) (Cheru-
bini et al. 2004) are preferred to fully parametric methods, 
e.g., maximum likelihood (ML) (Joe 1997). Hence, we apply 

(15)rij = 12

1

∫
0

1

∫
0

(Ĉ(ui, uj) − uiuj)duiduj

(16)

Aij =

1

∫
0

1

∫
0

[

(

ui −
1
2

)2(
uj −

1
2

)

+
(

ui −
1
2

)(

uj −
1
2

)2]

ĉ(ui, uj)duiduj

(17)�3
ij
= Mij + �

|

|

|

Aij
|

|

|

(18)Mij = sup
|

|

|

H
(

Δx1(t)
)

− H(Δx2(t))
|

|

|
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the CML estimation in this study. The method consists of 
using empirical marginal distributions for transforming 
sample data 

{

x1t, x2t
}T

t=1
 to the rank space 

{

u1t, u2t
}T

t=1
 and 

computing the corresponding Copula parameter using a 
maximum likelihood estimate:

where c(u1t, u2t;�) is the theoretical copula density with its 
parameters � (see (2) and (4) and Table 1) and ArgMax refers 
to the � values at which the summation of the logarithm of 
the Copula density are maximized.

Copula selection

There is a wide range of methods for identifying the most 
appropriate Copula. Except for the Bayesian method (Huard 
et al. 2006), the selection approaches usually require estimat-
ing the Copula parameters in advance. The goodness-of-fit 
(GOF) criteria are the most common approaches for Copula 
selection. According to Fang et al. (2014) and Guloksuz 
(2016), for bivariate Archimedean Copulas Akaike infor-
mation criterion (AIC) and Bayesian information criterion 
(BIC) outperform other GOF criteria. Therefore, we apply 
these approaches in this study.

The AIC and BIC for bivariate Copulas are defined as:

where c(u1t, u2t) is the Copula density, T is the sample size 
and k is the number of parameters in the desired Copula. 
The most suitable Copula is identified by comparing AIC 
and BIC values for different Copulas. Lower values of AIC 
and BIC indicate a better fit to the data.

GNSS tomography

The GNSS tropospheric tomography is a technique to 
model the spatiotemporal variations of the water vapor 
using the GNSS signals. Through this method, the study 
area is divided into several cubic elements known as vox-
els and the wet refractivity 

(

Nw

)

 is reconstructed in the 
voxels. The input data of the tomography model are signal 
slant wet delays (SWDs) which are estimated by the GNSS 
data processing. The SWD is linked to the Nw by the fol-
lowing equation (Rohm and Bosy 2009):

(19)�̂� = Arg Max𝜃

T
∑

t=1

ln c
(

F̂1(x1t), F̂2(x2t);𝜃
)

(20)AIC = −2

T
∑

t=1

ln[c(u1t, u2t);�] + 2k

(21)BIC = −2

T
∑

t=1

ln[c(u1t, u2t);�] + ln(Tk)

where � = [aij] is an n × m matrix in which aij is the length 
of i th signal traveling through the j th voxel. Here, n and 
m are the number of signals and the number of unknowns, 
respectively. The wet refractivity is assumed to change 
only from one voxel to another, so the number of unknown 
parameters is the number of voxels in the model.

GNSS signals do not pass through some voxels. There-
fore, GNSS tomography is a mixed determined problem 
without a unique solution. Among the developed methods 
for computing a unique solution, the application of cer-
tain constraints to the system of observation equations is 
a common one. This research addresses a new method for 
the determination of the optimum voxel sizes in GNSS 
tomography. Reducing the size of voxels increases the 
number of non-trivial elements of � . A resolution matrix 
is normally used to come up with a compromise between 
voxel sizes and the rank deficiency of the coefficient 
matrix in (22).

Estimation of resolution matrix

The design matrix of a mathematical model includes all 
information on the geometry of an inverse problem. In 
tomography, poor imaging geometry results in the rank defi-
ciency of this matrix and, therefore, destroys the unique-
ness of the solution. Assuming a linear inverse problem, 
the forward and inverse models are given, respectively, by 
(23) and (24):

where �−g is the generalized inverse of rectangular matrix 
� . Replacing the observation vector � in (24) by (23), yield 
(Menke 1989),

where �m×m = �−g� is known as the model resolution 
matrix, as a unique characteristic of the design matrix (Aster 
et al. 2018). Therefore, it can be used in the design phase 
of an inverse problem. This matrix can be estimated using 
singular value decomposition (SVD). The singular value 
decomposition of an n × m matrix � is a factorization of 
the form � = ���

T , where � , � and � are an n × n unitary 
matrix, an n × m rectangular diagonal matrix and an m × m 
unitary matrix, respectively. Then, �−g = ��

−1
�T and the 

resolution matrix is defined by,

(22)��� = ��w

(23)� = ��

(24)� = �
−g
�

(25)� = �
−g
��
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Here � is the matrix of singular values of � and p is the 
number of nonzero singular values. Moreover, the columns 
of matrices � and � are the right and left singular vectors of 
� , respectively. If the null space of the matrix � is empty, � 
will be an identity matrix. However, if rank(�) = p < n , the 
resolution matrix of model space is an asymmetric matrix 
which indicates how far the reconstructed model is from the 
true model. In other words, if the diagonal elements of the 
resolution matrix are zero or close to zero, the corresponding 
parameter will not be well reconstructed (Aster et al. 2018).

Data and study area

Developing a tomography network/model is the first step in 
GNSS tropospheric tomography. The goal is the determina-
tion of the voxel sizes and reconstructing temporal reso-
lution of the model. The basic assumption is that the wet 
refractivity is homogeneous in every model element. Since 
relative configuration of the GNSS satellites and tracking 
points, topography and weather conditions change from one 
area or time to another, the spatial and temporal resolutions 
of a model do not remain the same. Wrong choice of these 
resolutions results in inaccurate reconstruction of the param-
eters. Moreover, an increasing number of elements lead to 
instability and loss of accuracy of the solution. Therefore, 
applying an appropriate method for determining an optimum 
time and spatial resolution for a tomography model is man-
datory. In this study, we concentrate on spatial resolution 
and propose a geometry-free Copula-based method for this 
purpose. Its consistency to the resolution matrix in one spe-
cific day will be checked as well.

The required data are meteorological parameters that are 
estimated by a precise numerical weather prediction (NWP) 
model as well as the coordinate of GPS stations and satel-
lites. Our study area is selected by considering the distri-
bution of permanent GPS stations and radiosondes which 
are applied to investigate the accuracy of the tomography 
results. Therefore, parts of southwest Germany and France, 
including the mountainous and flat areas, have been selected 
as study regions.

Figure 2 illustrates the topography of our study area 
together with the distribution of GPS and radiosonde sta-
tions. The right-hand side plot shows the location and topog-
raphy of the study area (red box) relative to the surrounding 
regions and the left-hand side plot focuses on the study area. 
In this figure, GNSS and radiosonde stations are denoted by 
black and red triangles, respectively.

We use the estimated wet refractivities 
(

Nw

)

 from the 
simulated meteorological parameters in high spatiotemporal 

(26)� = �p�
T
p

resolution from the weather research and forecasting (WRF) 
model (Fersch et al. 2020), using the following formula,

where e and T  are water vapor pressure (in hPa) and 
absolute temperature (in Kelvin), respectively. Also, 
k1 = 77.60K hPa−1 and k3 = 3.739 × 105K2hPa−1 are physi-
cal constants that are empirically determined (Bevis et al. 
1994).

The WRF model was run for Central Europe from April 
to October 2016. The model was driven by 6-h European 
Centre for Medium-Range Weather Forecasts (ECMWF) Re-
analysis (ERA) Interim (Dee et al. 2011) data, with a spatial 
resolution of 37 pressure levels from 1000 to 1 hPa. The spa-
tial resolution of WRF was set to 3 × 3 km, resulting in 315 
grid cells in west–east and 280 grid cells in the south–north 
direction. Fifty vertical layers from 1000 to 10 hPa were fur-
ther used to get a high-resolution representation of the verti-
cal structure of the atmosphere. In this study, we investigate 
the troposphere from the earth surface to the 22nd layer, i.e., 
from the mean pressure of 949.5–263.5 hPa with an approxi-
mate geopotential height of 10 km, which is considered as 
the top of the troposphere in the midlatitude regions.

We use the permanent GNSS stations of the regional 
network of Germany located in the study area in DoY 279 
of the year 2016 for estimating the model space resolution 
matrix. Due to the high level of humidity, this day is cho-
sen. The network includes approximately 300 stations across 
Germany (Gendt et al. 2004). Most stations belong to the 
network Satellite Positioning Service of the German Land 
Surveying Agencies (SAPOS), and some of them are from 
the German Federal Agency for Cartography and Geodesy 
(BKG). We further use the precise satellite ephemerides of 
the International GNSS Service (IGS).

Copula‑based optimum design 
of tomography model

To design our tomography model, we evaluate the depend-
ence structure of Nw time series across the study area. 
Due to the lack of passing signals from most voxels, using 
WRF resolution (3 km) as the horizontal voxel size does 
not make sense. Therefore, we used the estimated Nw time 
series (27) in 12 km resolution in our Copula-based analy-
ses. Dissimilarity measures have been computed between 
the Nw time series of each pixel and other pixels in our 
study region, for seven pressure layers starting from the 
earth surface to the top of the troposphere. The applied 
pressure levels are the earth surface and layers 1, 5, 7, 
10, 15 and 22 with the mean pressures of 949.2, 945.9, 
896.4, 849.8, 754.9, 519.4 and 263.8 hPa, respectively. For 

(27)Nw = k1
e

T
+ k3

e

T2
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each pair of pixels, the most appropriate Copula to model 
dependence structure is then identified among Gaussian, 
Clayton, Gumbel, Frank and AMH Copulas (Table 1).

We firstly estimate univariate marginal distributions 
from the hourly Nw time series for all 12 km pixels and 
in each pressure layer (i.e., N = 19 × 25 = 475 pixels) to 
transform data to the rank space (see 6). Then, the empiri-
cal Copula CDF and PDF between each pixel and all other 
pixels are estimated using the transformed data. Finally, 
three Copula-based dissimilarity measures �1 , �2 and �3 
for each pair of pixels are computed. To select the most 
appropriate dissimilarity measure for optimizing voxel 
sizes at a pressure level, the degree of asymmetry in the 
dependence structure of pair pixels is evaluated at that 
level. To do this, Copula parameters are estimated, and 
the most suitable one is identified by comparing their AIC 
and BIC measures.

Once an appropriate dissimilarity measure for each 
pressure level is identified, the horizontal size of voxels is 
determined for that level. This is done by investigating the 

percentage frequency of similar pair pixels with different 
distances.

Figure 3 indicates the percentage frequencies of �1 , �2 and 
�3 for the pairs of pixels with different distances in some of 
the pressure levels. In these figures, the percentage of pair 
pixels is plotted against the distance of pixels for the three 
dissimilarity measures. In these plots, dissimilarity values 
of equal or less than 0.1 denote pair pixels with maximum 
similarity and the values larger than 0.4 belong to the pix-
els with maximum variations. These thresholds have been 
driven by the analysis of input data.

According to Fig. 3, by moving upward from the earth 
surface to the top of the troposphere, observed variations of 
the estimated dissimilarities decrease. In other words, while 
all range of dissimilarity values from the minimum to maxi-
mum is seen in pixel pairs on the earth surface, at the last 
pressure level, the maximum estimated value for �1 and �3 is 
0.2 and for �2 is 0.3. This shows the insignificant variations 
of Nw on the top part of the troposphere which is expected 
due to little water vapor in the upper troposphere.

Fig. 2  Topography of the study area together with the location of GNSS and radiosonde stations, black and red triangles, respectively. The num-
bers aside the black triangles are the names of GNSS stations
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Since wet refractivity depends on meteorological param-
eters, dissimilarity values between the Nw time series of the 
evaluated pixels are indications of how similar their atmos-
pheric features are. Therefore, as wet refractivity is our tar-
get quantity, its spatial variations can be considered to find 
an optimal resolution for discretizing our inverse problem.

To this end, if more than 50% of the pixel pairs with a 
certain distance at a pressure level have maximum similarity 

reported by the investigated measures (i.e., dissimilarity val-
ues ≤ 0.1), we consider the distance as a suitable horizontal 
model resolution at that level.

Tables 2, 3, 4 list the percentage of the similar pixel 
pairs with different distances at each pressure level based 
on �1 , �2 and �3 measures. These results and Fig. 3 include 
the expected variations of meteorological parameters from 
the ground to the top of the troposphere. According to the 

Fig. 3  Investigating the percent-
age frequency of dissimilarity 
values �1 , �2 and �3 for the pair 
of pixels with different dis-
tances at studied pressure levels. 
The vertical and horizontal 
axes are the percentage of pair 
pixels and the distance of pixels 
for the dissimilarity measures, 
respectively
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results, by approaching to the end of the troposphere, the 
similarity between pixels, which are far from each other, 
increases so that. We can see the maximum similarity even 
between the farthest pixels (i.e., 216 km distance); how-
ever, there are no similar pixels more than 144 km apart 
on the earth surface. Furthermore, at this level, based on 
�1 and �2, the percentage of similar pixels with more than 

36 km distance is negligible, and according to �3 , the per-
centage of similar pixels that are more than 60 km apart 
is insignificant.

Table 5 illustrates horizontal resolutions proposed by 
each of the Copula-based dissimilarity measures con-
cluded from Tables 2, 3, 4. According to Table 5, proposed 

Table 2  Percentage frequency 
of similar pixels with 
different distances at different 
pressure levels based on 
first dissimilarity measure 
(

�1 ≤ 0.1
)

Distance of 
pixels (km)

Earth surface 1 5 7 10 15 22

12 93.7 95.9 99.8 99.1 99.9 100 100
24 48.9 60.3 79.4 77.5 91.5 99.8 100
36 11.6 16.6 27.3 31. − 9 64.3 98.3 99.9
48 2.1 3.4 5.2 8.5 40.5 91.8 99.0
60 1.0 1.3 2.0 2.0 25.7 79.8 96.5
72 0.9 1.0 1.2 1.0 16.4 66.3 92.2
84 0.9 0.9 1.0 0.9 11.7 51.7 87.2
96 0.9 0.9 1.0 1.0 8.5 37.5 80.9
108 0.9 1.0 1.1 1.1 7.1 28.3 74.2
120 1.0 1.1 1.3 1.2 6.4 22.4 65.3
132 0.9 1.1 1.3 1.3 5.2 14.9 55.6
144 0.6 0.6 0.7 0.6 4.1 7.0 44.9
156 0 0 0 0 4.0 0.7 35.0
168 0 0 0 0 0.9 0 37.0
180 0 0 0 0 0.4 0 32.6
192 0 0 0 0 0 0 27.0
204 0 0 0 0 0 0 24. 7
216 0 0 0 0 0 0 18.7

Table 3  Percentage frequency 
of the pairs of similar pixels 
with different distances at 
different pressure levels based 
on second dissimilarity measure 
(

�2 ≤ 0.1
)

Distance of pixels 
(km)

Earth surface 1 5 7 10 15 22

12 96.8 98.2 99.4 98.8 83.5 97.5 100
24 69.3 71.3 67.1 66.7 17.3 73.6 100
36 22.4 20.2 10.5 7.4 2.2 33.8 98.7
48 4.2 2.7 1.2 1.3 1.0 8.9 94.7
60 1.3 1.2 1.1 0.9 0.7 1.3 86.0
72 1.2 1.2 1.0 0.8 0.7 1.1 74.2
84 1.2 1.1 1.0 0.8 0.7 1.1 62.9
96 1.2 1.2 1.0 0.8 0.7 1.1 51.7
108 1.4 1.3 1.1 0.9 0.7 1.2 41.4
120 1.6 1.5 1.3 1.0 0.8 1.4 33.6
132 1.5 1.4 1.2 1.1 0.8 1.4 23.6
144 0.9 0.7 0.7 0.6 0.4 0.7 11.2
156 0 0 0 0 0 0 2.6
168 0 0 0 0 0 0 2.5
180 0 0 0 0 0 0 1.6
192 0 0 0 0 0 0 0.9
204 0 0 0 0 0 0 0.5
216 0 0 0 0 0 0 0.6
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resolutions differ from one dissimilarity measure to 
another and changes from the earth surface and upwards. 
They were expected due to the different characteristics of 
the dissimilarity measures: �1 is an appropriate measure 
for analyzing data with symmetric dependence structure, 
while �2 and �3 can model the asymmetry of the Copulas 
as well. Since �3 is free of individual adapting of obser-
vations for Spearman’s rank correlation and considers 
the time-lagged related dependence, it outperforms �2 . 
Therefore, the suitable dissimilarity measure for selecting 
horizontal resolution at each level should be determined 
by investigating the appropriate Copula for modeling the 
dependence structure of pixel pairs at that level.

Table 6 indicates the percentage of pixel pairs with the 
dependence structure of the intended Copulas at different 
pressure levels. Among all evaluated Copulas in this study, 
Gaussian and Frank Copulas are symmetric. In contrast, the 

Gumbel Copula is asymmetric in the upper tail and implies 
more dependency between large values of time series. More-
over, the asymmetric Clayton and AMH Copulas indicate 
lower tail dependence which is much stronger in the Clayton.

Table 4  Percentage frequency 
of the pairs of similar pixels 
with different distances at 
different pressure levels based 
on third dissimilarity measure 
(

�3 ≤ 0.1
)

Distance of pixels 
(km)

Earth surface 1 5 7 10 15 22

12 98.8 99.4 99.9 100 89.2 98.1 100
24 86.7 91.0 95.5 96.5 53.0 89.3 99.9
36 63.8 69.3 74.0 78.4 21.8 75.0 99.0
48 37.9 41.9 47.2 52.4 12.0 60.4 97.4
60 19.8 20.3 27.2 32.2 8.8 50.9 95.4
72 9.6 9.7 14.9 21.2 7.6 44.6 93.3
84 5.2 6.0 7.4 14.6 7.1 41.1 90.8
96 2.8 3.7 4.0 10.5 6.8 37.0 87.9
108 2.6 2.9 3.3 8.2 6.5 34.3 84.3
120 3.1 3.4 3.5 8.2 5.2 35.3 82.0
132 2.9 3.4 3.7 9.6 4.4 34.8 77.8
144 1.8 1.8 2.5 10.0 4.4 26.3 66.5
156 0 0.2 0.5 9.9 4.0 20.9 46.8
168 0 0 0 6.7 4.3 16.1 42.8
180 0 0 0 3.4 7.0 13.7 42.0
192 0 0 0 3.5 10.7 14.9 41.9
204 0 0 0 5.0 14.6 15.1 39.5
216 0 0 0 6.8 15.2 15.1 38.4

Table 5  Appropriate horizontal 
resolution at each pressure 
level based on Copula-based 
dissimilarity measures λ1, λ2 
and λ3

Pressure level Horizontal resolution based 
on λ1 (km)

Horizontal resolution based 
on λ2 (km)

Horizontal resolu-
tion based on λ3 
(km)

Earth surface 12 24 36
1 24 24 36
5 24 24 36
7 24 24 36
10 36 12 24
15 84 24 60
22 132 96 144

Table 6  Percentage of the pairs of pixels with the dependence struc-
ture of different Copulas at different pressure levels

Pressure level Gaussian Frank Clayton Gumbel AMH

Earth surface 68 7 24 1 0
1 69 11 18 2 0
5 77 8 14 1 0
7 77 14 8 1 0
10 54 45.5 0 0.5 0
15 0 29 0 71 0
22 0 74 0 26 0
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Table 7 illustrates the percentage of pixel pairs with 
symmetric and asymmetric dependence structures at each 
pressure level. According to this table, asymmetry in the 
dependence structure of estimated Nw values at all pressure 
levels is significant except for level 10, where 99.5% of pixel 
pairs are symmetric.

According to the above discussion, to identify the hori-
zontal resolution of the tomography network at each pres-
sure level, we analyze the percentage of pixel pairs with 
maximum similarity at a certain distance together with 
the percentage of symmetric and asymmetric Copulas. If 
more than 95% of the evaluated pixels are symmetric, �1 
is applied; otherwise, �3 is selected as the appropriate dis-
similarity measure. Therefore, based on Tables 6 and 7, the 
appropriate dissimilarity measure for tropospheric modeling 

at all pressure levels is �3 except for level 10, in which �1 is 
the most appropriate one.

Table 8 indicates the average of the estimated dissimilar-
ity values for pixel pairs with different distances at each 
pressure level. According to this table, by increasing the 
distance of pixels, the mean values of the dissimilarity 
measures increase. The minimum mean values (dissimilar-
ity values ≤ 0.1) with maximum distance between pixels, i.e., 
144 km are seen at the last pressure level.

As a result, our Copula-based method suggests non-uni-
form sizes for the voxels in the tomography network of the 
study area. More specifically, the proposed voxel sizes for 
the tomography model are 36 km from the earth surface to 
level 10, 60 km at level 15 and 144 km at level 22.

The GPS networks are developed for positioning and 
navigation. Therefore, the satellite–receiver relative con-
figurations are not optimal for GPS tomography. Moreo-
ver, atmospheric parameters are not constant. This renders 
non-uniqueness of the solution. The contribution of the 
imaging geometry to the inverse solution is usually evalu-
ated using the resolution matrix of the model. Using the 
approximate position of the GPS stations (refer to Fig. 2) 
and the satellite ephemerides for the DoY 279, in 2016 and 
assuming a time resolution of 1 h, we computed resolu-
tion matrices for several models with different voxel sizes. 
Similar to our Copula-based assessments, investigated 
voxel sizes are multiples of 12 km, i.e., 12, 24, 36, 48, 60, 
etc. The Computed resolutions show how the quality of 
inverse solution changes with the size of voxels. According 
to these results, the resolution matrix is the identity matrix 

Table 7  Percentage of the pairs of pixels with symmetric and asym-
metric dependence structure at different pressure levels

Pressure level Symmetric Copulas Asym-
metric 
Copulas

Earth surface 75 25
1 80 20
5 85 15
7 91 9
10 99.5 0.5
15 29 71
22 74 26

Table 8  Mean values of the 
appropriate dissimilarity 
measure for each pressure level 
of pixel pairs with different 
distance

Distance of 
pixels (km)

Earth surface 1 5 7 10 15 22

12 0.05 0.04 0.04 0.03 0.06 0.03 0.02
24 0.07 0.07 0.06 0.06 0.08 0.06 0.03
36 0.09 0.09 0.09 0.08 0.09 0.07 0.04
48 0.11 0.10 0.10 0.10 0.10 0.10 0.05
60 0.12 0.12 0.12 0.11 0.11 0.11 0.05
72 0.13 0.13 0.14 0.13 0.12 0.12 0.05
84 0.15 0.14 0.15 0.15 0.13 0.14 0.06
96 0.16 0.16 0.17 0.16 0.13 0.14 0.06
108 0.17 0.17 0.18 0.18 0.14 0.15 0.06
120 0.18 0.18 0.20 0.19 0.14 0.16 0.06
132 0.19 0.19 0.21 0.20 0.15 0.16 0.07
144 0.20 0.21 0.23 0.22 0.14 0.19 0.08
156 0.22 0.23 0.24 0.22 0.14 0.22 0.10
168 0.23 0.24 0.25 0.23 0.14 0.24 0.11
180 0.24 0.25 0.26 0.24 0.14 0.25 0.11
192 0.24 0.26 0.27 0.24 0.14 0.26 0.11
204 0.25 0.26 0.27 0.24 0.14 0.26 0.11
216 0.24 0.26 0.27 0.24 0.14 0.26 0.11
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when the horizontal resolution of the model decreases to 
108 km. Since water vapor is highly variable (in particular 
near the earth surface), applying a model with this element 
size is not meaningful. On the other hand, the proposed 

method is geometry-free or it proposes voxel sizes with-
out any information on the imaging geometry, especially 
the distribution of GPS stations in the test area. Indeed, it 
suggests the optimum voxel sizes based on the information 

Fig. 4  Tomography models with different resolutions (36, 48, 60, 72, 84 and 96 km) for first epoch of DoY 279. Empty voxels are indicated by 
gray
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available on the atmospheric dynamics. Once the method 
is applied for a certain period of time, we have a strong 
measure for the dynamics besides the geometric informa-
tion derived from the analysis of resolution matrices to 
propose an optimum resolution for a tomography model.

To clarify this, we illustrate the model parameters that 
are smeared out (when only the spatial variations are con-
cerned) in Fig. 4. Such parameters are given in gray. As 
expected, empty voxels mostly belong to the resolution of 
36 km and there are no empty elements in the voxel size 
of 108 km.

The dynamics and geometry in GPS tomography show 
that using such uniform voxel sizes for a model results in 
missing information in the lower parts of the troposphere 
and redundancy on its top. That is, to keep the dynamics of 
the problem intact; the application of voxels with different 
sizes is inevitable.

Applying the Copula-based approach as an absolute 
dynamic technique has the following significant results: To 
preserve the spatial variation of water vapor, using a model 
with hybrid voxel sizes is inevitable. Moreover, a dense GPS 
network like the one in Germany is neither sufficient for 
tomographic reconstruction of humidity nor for reconstruct-
ing its variations in space and time. This is seen through the 
top views of our tomography network given in the right-hand 
side plots in Fig. 5.

According to Fig. 3, the resolution of 48 km preserves the 
horizontal variations of the wet refractivity intact in 37.9%, 
41.9%, 47.2%, 52.4% and 40.5% of the model parameters at 
the earth surface and levels 1, 5, 7 and 10, respectively (see 
Table 4 for levels 1–10 and Table 2 for level 10). Moreover, 
based on Fig. 5, reducing the model resolution from 36 to 
48 km at these pressure layers can significantly reduce the 
number of model parameters that are smeared out in this 
part. This decreases the number of empty voxels from 37.5% 
of elements in 36–25% in 48 km. This comparison provides 
a compromise between the resolution of reconstructed 
images and spatial variations of the sought parameter in this 
experiment. Moreover, according to Fig. 4, by reducing the 
spatial resolution of the tomography model to 96 km, it is 
not still possible to reconstruct the wet refractivity with a 
reasonable resolution in the area of 48.31 ≤ φ ≤ 48.85 and 
5.98 ≤ λ ≤ 6.70. This area is located in France, and the insuf-
ficiency of available GNSS stations in the area is shown in 
Fig. 2.

Summary and conclusion

In this paper, a geometry-free method for optimal tomo-
graphic reconstruction of water vapor has been proposed. 
We apply a Copula-based approach for investigating 
dependence structure and dissimilarity of wet refractivities 

( Nw ). Meteorological parameters required for estimating 
Nw in each voxel are calculated from a high-resolution 
WRF model. The evaluation is performed in southwest 
Germany and part of France from April to October 2016 
at seven pressure levels, so that, for all pixel pairs at a 
level, i.e., each pixel and all other pixels across the study 
area, the appropriate Copula for dependence modeling and 
Copula-based dissimilarity measures are estimated. Fur-
thermore, we evaluate the consistency of results with the 
imaging geometry by investigating the resolution matrix of 
our model in all epochs of DoY 279 as a sample.

Since Nw as an unknown parameter in tomography is a 
function of pressure, temperature and humidity, dissimilar-
ity values between the Nw time series of neighbor pixels 
indicate how the characteristics of the atmosphere change. 
Therefore, the optimum horizontal resolution at each level 
is determined by investigating the distance-based varia-
tion of the estimated dissimilarities. As a preliminary step, 
the most appropriate dissimilarity measure at each level 
is identified by analyzing the dependence structure of all 
evaluated pixel pairs. If the dependence structure of more 
than 95% of investigated pixels is symmetric, �1 is applied; 
otherwise, �3 has been selected as the preferred measure. 
According to the obtained results, at all pressure levels 
except level 10 our decision is based on �3.

In conclusion, we propose a tomography network whose 
horizontal resolution changes from the earth surface to the 
top of the troposphere for the evaluated time period in our 
study area. More precisely, to keep the dynamics of the 
wet refractivities intact, the optimal design will be real-
ized using three different voxel sizes: 36 km from the earth 
surface to level 10 (mean height of 2.2 km), 60 km in level 
15 (mean height of 4.8 km) and 144 km in level 22 (mean 
height of 10 km). By increasing the distance of pixels, 
the mean values of the dissimilarity measures increase. 
Thus, minimum mean values (dissimilarity values ≤ 0.1) 
for pixel pairs in the maximum distance (144 km) are seen 
on top of the troposphere. Furthermore, investigating the 
resolution matrix of the model in DoY 279 reveals that a 
uniform tomography network with a horizontal resolution 
of 108 km guarantees a unique solution. However, water 
vapor is highly variable, in particular near to the earth 
surface, and therefore, using such dimension falsifies the 
assumption of the homogeneity in the model elements. 
That is, using uniform voxel sizes results in false informa-
tion in the lower parts of the troposphere.

According to our results, the current density of GPS 
stations in the study area is not sufficient for tomographic 
reconstructions of the wet refractivity that preserves the 
spatial variations of Nw and guarantees the uniqueness of 
the solution.

Our proposed method is geometry-free because it is 
independent of any information on the distribution of 
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GNSS stations. Moreover, it suggests voxel sizes in terms 
of atmospheric dynamics for a long period of time, the 
period of April to October 2016 in this study. Therefore, 

once the method is applied in a certain period of time, we 
have a dynamic measure besides the geometric one to pro-
pose an optimized tomography model in the validity time 

Fig. 5  Side and top views of 
tomography model recon-
structed by the Copula-based 
proposed resolutions for first 
epoch of DOY 279. Empty 
voxels are indicated by gray
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of the corresponding copula-based results. As we showed, 
combining our Copula-based method and resolution matrix 
provides a mathematical tool for deciding on the required 
compromise between the geometry and dynamics in GPS 
tomography.

It has to be emphasized that since the WRF model is 
limited to 6 months, the proposed tomographic model may 
miss some seasonal features if strong seasonal variations 
exist. Furthermore, the noise of measurements is a challenge 
when the redundancy is low: in real-time or near-real-time 
application where the permitted latency is only a couple of 
minutes or even less, if possible. Here, the redundancy is at 
least 3000 therefore the effect of noise is negligible.

Acknowledgements This study was funded by scholarships from K. N. 
Toosi University of Technology and the Karlsruhe Institute of Technol-
ogy—Institute of Meteorology and Climate Research, Atmospheric 
Environmental Research. It was enabled additionally by funds from 
the German Research Foundation (DFG-ATMOWATER, KU 2090/10) 
and the German Ministry of Science and Education (BMBF)-funded 
GROW-SaWaM project. We would further like to thank the German 
Research Center for Geosciences (GFZ) for providing the GNSS data.

Data availability The GNSS station positions were provided by the 
GFZ upon our request. For meteorological data and the WRF-Hydro 
model refer to http:// doi. org/ 10. 5281/ zenodo. 34057 80 in Fersch et al. 
2020. Moreover, the satellite ephemerides are available from http:// 
navig ation- office. esa. int/ GNSS_ based_ produ cts. html

References

Adavi Z, Mashhadi-Hossainali M (2014) 4D tomographic recon-
struction of the tropospheric wet refractivity using the con-
cept of virtual reference station, case study: northwest of Iran. 
Meteorol Atmos Phys 126:193–205. https:// doi. org/ 10. 1007/ 
s00703- 014- 0342-4

Ang A, Chen J (2002) Asymmetric correlations of equity portfolios. 
J Financ Econ 63:443–494. https:// doi. org/ 10. 1016/ S0304- 
405X(02) 00068-5

Arbenz P (2013) Bayesian copula distributions, with application to 
operational risk management—some comments. Methodol 
Comput Appl Probab 15:105–108. https:// doi. org/ 10. 1007/ 
s11009- 011- 9224-0

Aster RC, Borchers B, Thurber CH (2018) Parameter estimation and 
inverse problems. Elsevier

Bardossy A (2006) Copula based geostatistical models for groundwater 
quality parameters. Water Resour Res. https:// doi. org/ 10. 1029/ 
2005W R0047 54

Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH 
(1992) GPS meteorology: remote sensing of atmospheric water 
vapor using the global positioning system. J Geophys Res: Atmos 
97:15787–15801. https:// doi. org/ 10. 1029/ 92JD0 1517

Bevis M, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, 
Ware RH (1994) GPS meteorology: mapping zenith wet delays 
onto precipitable water. J Appl Meteorol 33:379–386

Bi Y, Mao J, Li C (2006) Preliminary results of 4-d water vapor tomog-
raphy in the troposphere using GPS. Adv Atmos Sci 23:551–560. 
https:// doi. org/ 10. 1007/ s00376- 006- 0551-y

Charpentier A, Fermanian JD, Scaillet O (2007) The estimation of 
copulas: theory and practice. Copulas: from Theory Appl in 
Financ 89:35–64

Chen B, Liu Z (2014) Voxel-optimized regional water vapor tomog-
raphy and comparison with radiosonde and numerical weather 
model. J Geodesy 88:691–703. https:// doi. org/ 10. 1007/ 
s00190- 014- 0715-y

Cherubini U, Luciano E, Vecchiato W (2004) Copula methods in 
Finance. Wiley

de Haan S, Holleman I, Holtslag AA (2009) Real-time water vapor 
maps from a GPS surface network: construction, validation, and 
applications. J Appl Meteorol Climatol 48:1302–1316. https:// 
doi. org/ 10. 1175/ 2008J AMC20 24.1

Dee DP et al (2011) The Era-Interim reanalysis: Configuration and 
performance of the data assimilation system. Q J R Meteorol 
Soc 137:553–597. https:// doi. org/ 10. 1002/ qj. 828

Deheuvels P (1979) La fonction de d´ependance empirique et ses 
propri´et´es. un test non param´etrique d’ind´ependance. Bul-
letins de l’Acad´emie Royale de Belgique 65, 274–292.

Embrechts P, Lindskog F, McNeil A, (2001) Modelling depend-
ence with copulas. Rapport technique, D´epartement de 
math´ematiques, Institut Federal de Technologie de Zurich, 
Zurich 14:1-50

Fang Y, Madsen L, Liu L (2014) Comparison of two methods to 
check copula fitting. Int J Appl Math 44:354

Fersch B, Senatore A, Adler B, Arnault J, Mauder M, Schneider 
K, Volksch I, Kunstmann H (2020) High-resolution fully cou-
pled atmospheric–hydrological modeling: a cross-compartment 
regional water and energy cycle evaluation. Hydrol Earth Syst 
Sci 24:2457–2481. https:// doi. org/ 10. 5194/ hess- 24- 2457- 2020

Gendt G, Dick G, Reigber C, Tomassini M, Liu Y, Ramatschi M 
(2004) Near real time GPS water vapor monitoring for numeri-
cal weather prediction in Germany. J Meteorol Soc Japan. Ser 
II 82:361–370. https:// doi. org/ 10. 2151/ jmsj. 2004. 361

Goshtasby AA (2012) Similarity and dissimilarity measures. Image 
registration. Springer, Cham, pp 7–66

Guloksuz CT (2016) Comparison of some selection criteria for 
selecting bivariate archimedean copulas. A K U Fen Muhendis 
Bilimleridergisi 16:250–255

Huard D, Evin G, Favre AC (2006) Bayesian Copula selection. Com-
put Stat Data Anal 51:809–822. https:// doi. org/ 10. 1016/j. csda. 
2005. 08. 010

Joe H (1997) Multivariate models and multivariate dependence con-
cepts. CRC Press

Lee SW, Kouba J, Schutz B, Kim DH, Lee YJ (2013) Monitoring 
precipitable water vapor in real-time using global navigation 
satellite systems. J Geodesy 87:923–934. https:// doi. org/ 10. 
1007/ s00190- 013- 0655-y

Lorenz C, Montzka C, Jagdhuber T, Laux P, Kunstmann H (2018) 
Long-term and high-resolution global time series of brightness 
temperature from copula-based fusion of SMAP enhanced and 
SMOS data. Remote Sens 10:1842. https:// doi. org/ 10. 3390/ 
rs101 11842

Menke W (1989) Geophysical data analysis: discrete inverse theory. 
International Geophysics Series

Mikosch T (2006) Copulas: tales and facts. Extremes 9:3–20. https:// 
doi. org/ 10. 1007/ s10687- 006- 0015-x

Modiri S, Belda S, Heinkelmann R, Hoseini M, Ferrandiz JM, Schuh 
H (2018) Polar motion prediction using the combination of 
SSA and Copula-based analysis. Earth, Planets Space 70:1–18. 
https:// doi. org/ 10. 1186/ s40623- 018- 0888-3

Modiri S, Belda S, Hoseini M, Heinkelmann R, Ferrandiz JM, Schuh 
H (2020) A new hybrid method to improve the ultra-short-term 
prediction of LOD. J Geodesy 94:23. https:// doi. org/ 10. 1007/ 
s00190- 020- 01354-y

http://doi.org/10.5281/zenodo.3405780
http://navigation-office.esa.int/GNSS_based_products.html
http://navigation-office.esa.int/GNSS_based_products.html
https://doi.org/10.1007/s00703-014-0342-4
https://doi.org/10.1007/s00703-014-0342-4
https://doi.org/10.1016/S0304-405X(02)00068-5
https://doi.org/10.1016/S0304-405X(02)00068-5
https://doi.org/10.1007/s11009-011-9224-0
https://doi.org/10.1007/s11009-011-9224-0
https://doi.org/10.1029/2005WR004754
https://doi.org/10.1029/2005WR004754
https://doi.org/10.1029/92JD01517
https://doi.org/10.1007/s00376-006-0551-y
https://doi.org/10.1007/s00190-014-0715-y
https://doi.org/10.1007/s00190-014-0715-y
https://doi.org/10.1175/2008JAMC2024.1
https://doi.org/10.1175/2008JAMC2024.1
https://doi.org/10.1002/qj.828
https://doi.org/10.5194/hess-24-2457-2020
https://doi.org/10.2151/jmsj.2004.361
https://doi.org/10.1016/j.csda.2005.08.010
https://doi.org/10.1016/j.csda.2005.08.010
https://doi.org/10.1007/s00190-013-0655-y
https://doi.org/10.1007/s00190-013-0655-y
https://doi.org/10.3390/rs10111842
https://doi.org/10.3390/rs10111842
https://doi.org/10.1007/s10687-006-0015-x
https://doi.org/10.1007/s10687-006-0015-x
https://doi.org/10.1186/s40623-018-0888-3
https://doi.org/10.1007/s00190-020-01354-y
https://doi.org/10.1007/s00190-020-01354-y


GPS Solutions          (2022) 26:149  

1 3

Page 17 of 17   149 

Mousavian R, Lorenz C, Hossainali MM, Fersch B, Kunstmann H 
(2021) Copula-based modeling of dependence structure in geod-
esy and GNSS applications: case study for zenith tropospheric 
delay in complex terrain. GPS Solut 25:1–17. https:// doi. org/ 10. 
1007/ s10291- 020- 01044-4

Nelsen RB (2006) An introduction to Copulas. Springer series in sta-
tistics, 2nd edn. Springer, Berlin

Notarpietro R, Cucca M, Gabella M, Venuti G, Perona G (2011) Tomo-
graphic reconstruction of wet and total refractivity fields from 
GNSS receiver networks. Adv Space Res 47:898–912. https:// doi. 
org/ 10. 1016/j. asr. 2010. 12. 025

Rohm W (2012) The precision of humidity in GNSS tomography. 
Atmos Res 107:69–75. https:// doi. org/ 10. 1016/j. atmos res. 2011. 
12. 008

Rohm W, Bosy J (2009) Local tomography troposphere model over 
mountains area. Atmos Res 93:777–783. https:// doi. org/ 10. 1016/j. 
atmos res. 2009. 03. 013

Sadeghi E, Mashhadi Hossainali M, Safari A (2022) Development of a 
hybrid tomography model based on principal component analysis 
of the atmospheric dynamics and GPS tracking data. GPS Solut 
26(3):1–13. https:// doi. org/ 10. 1007/ s10291- 022- 01264-w

Samaniego L, Bardossy A, Kumar R (2010) Streamflow prediction in 
ungauged catchments using Copula-based dissimilarity measures. 
Water Resour Res. https:// doi. org/ 10. 1029/ 2008W R0076 95

Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker D, Duda MG, 
Powers JG (2008) A description of the advanced research WRF 
version 3. NCAR technical note NCAR/TN-475+STR. National 
Center for Atmospheric Research, Boulder. https:// doi. org/ 10. 
5065/ D68S4 MVH

Sklar A (1959) Fonctions de repartition a n dimensions et leurs marges. 
Publ Inst Statist Univ Paris 8:229–231

Vaquero-Martınez J, Anton M (2021) Review on the role of GNSS 
meteorology in monitoring water vapor for atmospheric physics. 
Remote Sens 13:2287. https:// doi. org/ 10. 3390/ rs131 22287

Vogl S, Laux P, Qiu W, Mao G, Kunstmann H (2012) Copula-based 
assimilation of radar and gauge information to derive bias-cor-
rected precipitation fields. Hydrol Earth Syst Sci 16:2311–2328. 
https:// doi. org/ 10. 5194/ hess- 16- 2311- 2012

Yao Y, Zhao Q (2017) A novel, optimized approach of voxel division 
for water vapor tomography. Meteorol Atmos Phys 129:57–70. 
https:// doi. org/ 10. 1007/ s00703- 016- 0450-4

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); 
author self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement and 
applicable law.

Roya Mousavian  received her 
MSc and Ph.D. degrees in Geod-
esy from K. N. Toosi University 
of Technology in 2013 and 2021, 
respectively. She completed a 
research visit at the Institute of 
Meteorology and Climate 
Resea rch  ( IMK-IFU)  o f 
Karlsruhe Institute of Technol-
ogy (KIT) in 2018 and 2019. Her 
research interests are GNSS 
meteorology, satellite geodesy 
and slow earthquakes.

Masoud Mashhadi Hossainali  is 
an associate professor in Geod-
esy at K. N. Toosi University of 
Technology. He received his 
Ph.D. degree at the Darmstadt 
University of Technology. His 
current research interests are 
GNSS meteorology, deformation 
monitoring and constellation 
design for var ious space 
mission.

Christof Lorenz  is a postdoctoral 
researcher at the Campus Alpin 
of the Karlsruhe Institute of 
Technology. He studied Geodesy 
and Geoinformatics at the Uni-
versity of Stuttgart and did his 
Ph.D. in climate and environ-
mental sciences at the University 
of Augsburg. His current 
research focuses on the develop-
ment of empirical–statistical 
data fusion approaches, espe-
cially for seasonal hydrometeor-
ological predictions and remote 
sensing information.

Harald Kunstmann  is a professor 
and chair for regional climate 
and hydrology at the University 
of Augsburg in a joint appoint-
ment with Karlsruhe Institute of 
Technology (Campus Alpin). 
His current research focuses on 
observation and modeling of the 
coupled atmospheric–terrestrial 
water cycle for different regions 
worldwide.

https://doi.org/10.1007/s10291-020-01044-4
https://doi.org/10.1007/s10291-020-01044-4
https://doi.org/10.1016/j.asr.2010.12.025
https://doi.org/10.1016/j.asr.2010.12.025
https://doi.org/10.1016/j.atmosres.2011.12.008
https://doi.org/10.1016/j.atmosres.2011.12.008
https://doi.org/10.1016/j.atmosres.2009.03.013
https://doi.org/10.1016/j.atmosres.2009.03.013
https://doi.org/10.1007/s10291-022-01264-w
https://doi.org/10.1029/2008WR007695
https://doi.org/10.5065/D68S4MVH
https://doi.org/10.5065/D68S4MVH
https://doi.org/10.3390/rs13122287
https://doi.org/10.5194/hess-16-2311-2012
https://doi.org/10.1007/s00703-016-0450-4

	Copula, a new approach for optimum design of Voxel-based GNSS tropospheric tomography based on the atmospheric dynamics
	Abstract
	Introduction
	Methodology
	Introduction to Copula
	Copula-based dissimilarity measures
	Estimation of marginal distributions
	Empirical Copula distribution
	Empirical Copula density
	Dissimilarity measures

	Copula-based dependence structure modeling
	Theoretical Copula and parameter estimation
	Copula selection

	GNSS tomography
	Estimation of resolution matrix

	Data and study area
	Copula-based optimum design of tomography model
	Summary and conclusion
	Acknowledgements 
	References




