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Abstract
Although GNSS tropospheric tomography is a powerful tool in meteorology, available validation data limit its accuracy and 
precision analysis. Moreover, it is customary to accept the validation results as a measure of the model performance. This 
study shows that this is only possible when the sensitivity of the model elements to the input perturbations is the same. We 
propose the principal component analysis for studying the sensitivity of a tomography model for this purpose. Our model 
includes 17 GNSS stations in Northwestern Iran. To analyze the contribution of the applied constraints in the sensitivity 
results, we use the 3D Gaussian, horizontal, numerical weather prediction model and virtual reference stations (VRS) in 
our analysis. The results show that some parts of our model are more sensitive to perturbations of input parameters, and 
therefore, they are more prone to regularization bias. This depends not only on time but also on the applied constraints for 
computing a unique solution. Results show that the response of our model to input perturbations is considerably different 
when we use the VRS concept for constraining the model. Using the proposed method and the traditional ways of validat-
ing a tomography model, one can develop a lower bound limit for the bias in the sensitive parts of the model and an upper 
bound limit for the bias in the other parts.

Keywords GNSS troposphere tomography · Principal component analysis · Sensitivity analysis · Regularization bias

Introduction

Water vapor is one of the most significant and varying com-
ponents of the troposphere. It plays a major role in many 
areas, such as the accurate estimation of tropospheric delays 
of GNSS signals (Shafei and Mashhadi-Hossainali 2020), 
weather forecasting (Zhao et al. 2020; Chen et al. 2017), and 
hazard mitigation (Bender and Raabe 2007). Water vapor 
has a short but complex lifespan (approximately ten days) 
caused by atmospheric dynamics, making its distribution 
heterogeneous in space and time (Guerova 2003). Because 
of this and the sparse set of available measurements, the 

determination of atmospheric water vapor is not an easy 
subject.

GNSS signals can be used to estimate water vapor 
through tomography. GNSS signals are delayed in the trop-
osphere due to the refractivity parameter, which is usually 
divided into hydrostatic and wet components. If surface 
meteorological data is available, it is possible to estimate 
the hydrostatic component at a millimeter or more accuracy 
(Bevis et al. 1992). In contrast, the wet component depends 
on the amount of troposphere water vapor. GNSS tomogra-
phy is a recent method for estimating this component (Braun 
et al. 1999), where the problem is expressed in terms of a 
Fredholm integral equation of the first kind. Therefore, this 
method results in an improperly posed problem in the sense 
that its solution is often extremely unstable and non-unique 
(Aster et al. 2019). The simultaneous system of integral 
equations is solved by dividing the troposphere into a finite 
set of elements known as voxels (Flores 1999). Tropospheric 
delays of GNSS signals are then used to reconstruct the wet 
refractivity in these voxels (Brenot et al. 2020). Wet refrac-
tivity is assumed to be constant within the voxels of such a 
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model (basic assumption in GNSS tomography). However, 
wet refractivity can be distributed vertically using a power 
function if its values exhibit a smooth vertical profile that 
decrease exponentially with height (Douša and Eliaš 2014). 
Computational tomography demand appears to be reason-
able on the occasions that an inversion of vertical profile 
occurs at some heights.

The imaging system of computerized tomography (CT) 
consists of ground-based receivers and GNSS satellites in 
space. Neither the GNSS receivers nor the constellation of 
GNSS satellites is designed for an optimum CT system. 
For example, some voxels remain empty due to the limited 
number of receivers and the elevation angle of satellites. 
Moreover, atmospheric parameters like wind speed chal-
lenge the basic assumption in GNSS tomography. Therefore, 
the dimension of the voxels should be changed such that the 
reconstructed refractivity parameters are truly representative 
of wet refractivity in the relevant parts of the atmosphere in 
the time span covered by the input data or the time response 
of the model. Reconstructed images are usually verified 
using radiosonde data. It is common to assume radiosondes 
provide a vertical profile of atmospheric parameters at the 
zenith of the launch point. Moreover, their spatial and tem-
poral resolutions are poor compared to the spatial and tem-
poral resolution of GNSS data. To conclude, the inadequacy 
of the imaging system, the instability and non-uniqueness of 
the sought solution, the need for the consistency of the voxel 
size with the dynamics of the atmosphere, the selection of an 
optimal time response for the model, the validity of the basic 
assumption in GNSS tomography and the insufficiency of 
the method normally used for validating tomography images 
are challenges in GNSS tomography. This study focuses on 
the validation part of GNSS-tomography.

Constraints on unknown parameters are normally used to 
compute a unique solution for the GNSS tropospheric tomog-
raphy problem. Different methods have been proposed for 
this purpose: Hirahara (2000) added the constraints derived 
from radiosonde observations into the tomographic equations 
system. Liou et al. (2003) introduced surface meteorological 
measurements and assumed zero refractivity at a reasonable 
height to constrain the problem. Adavi and Mashhadi-Hossain-
ali (2014) used the observations of virtual reference stations 
(VRS) to fix the rank deficiency of the problem. Shafei and 
Mashhadi-Hossainali (2020) applied reflected signals in an air-
borne reflectometry mission over Italy as constraints. Bender 
et al. (2011) used several vertical and horizontal constraints in 
a GPS water vapor tomography, including synoptic observa-
tions and a 3D Gaussian Filter. Rohm and Bosy (2011) used 
two types of constraint equations: First, they added horizontal 
inter voxel constraints, where each refractivity is a weighted 
mean of the refractivity of the surrounding voxels of the same 
layer. They also introduced additional parameters from the 

airflow analysis of the radiosonde data and the COAMPS 
weather prediction model.

The accuracy and precision of a tomographic model 
are normally analyzed using statistics such as the bias and 
standard deviation of the developed model. This analysis is 
usually done by comparing the refractivity profiles derived 
from the radiosonde data and the model. Radiosondes are 
typically launched a few times a day, and their vertical pro-
files are available for a limited time and only in the position 
of the radiosonde stations. Therefore, it is unclear whether 
the results of the accuracy and precision analysis in a tomo-
graphic model can be extended to other voxels in the desired 
region. In addition, to get a unique solution, the application 
of certain constraints is necessary. The new question is how 
the applied constraints contribute to the accuracy and preci-
sion of a tomographic model. We try to discuss these prob-
lems. To this end, we apply principal component analysis 
(PCA) as a sensitivity analysis method to a tomographic 
model in Iran.

Methodology

As a useful technique, GNSS tomography reconstructs the 
spatio-temporal variations of the wet refractivity in the 
troposphere. The Slant Wet Delays (SWDs) are the most 
important inputs in GNSS tomography. The fundamental 
equation in GNSS tomography is given by:

where Nw is the wet component of refractivity, and S is the 
signal path between a satellite and a receiver.

The fundamental continuous integral in (1) is changed 
into a discrete form. The troposphere is substituted by voxels 
and refractivity is assumed to be constant in every voxel of 
this model. This changes (1) to:

where index j represents the voxels located in the path of 
the ith signal and ΔSj is the associated signal length in the 
jth voxel.

In GNSS data processing, the values of SWDs are not 
determined directly. Usually, they are calculated as a func-
tion of Zenith Wet Delay (ZWD), mapping functions, and 
tropospheric horizontal gradients as (Hanna et al. 2019):

where � and α are the elevation and azimuth angles, N and E 
are the tropospheric horizontal gradients in the north–south 
and east–west, respectively. Also, mfw is the wet mapping 
function for ZWDs that is calculated by global mapping 

(1)SWD = 10−6 ∫S

Nwds

(2)SWDi = 10−6
∑

NwjΔSj

(3)SWD = ZWD.mfw(�) +mfg(�).[N. cos(�) + E. sin(�)]
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function (GMF) in this research (Böhm et al. 2006), and 
mfg is the Chen–Herring mapping function for horizontal 
gradients (Chen and Herring 1997). ZWD values and tropo-
spheric gradients are calculated by processing the GNSS 
observations.

In matrix notation, Eq. (2) results in the simultaneous 
system of observation equations as given in:

where y is the observations vector (SWDs), x consists of the 
unknown parameters ( Nw ), and B is the design matrix with 
m × n dimensions. m depends on the number of GNSS sta-
tions, GNSS satellites, and the time resolution of the model. 
Also, n is the number of unknown parameters or voxels. The 
elements of matrix B represent the length of signals within 
the corresponding voxels.

GNSS signals do not reach the lower layers of the model 
due to the low elevation of the satellites and the limited 
number of receivers. Therefore, some voxels are signal-
free. This makes the model design matrix rank deficient. 
One of the common ways to solve this problem is to add 
constraints to (4) as follows:

Equation (5) is the final form of the observation equa-
tions for reconstructing a tomographic image at an arbi-
trary epoch.

We solve the problem using the gradient descent with 
constant step size, also known as the Landweber method 
(Nikazad 2007). The Landweber solution is:

where �k (relaxation parameter) ensures the convergence 
of the solution. It is selected such that 0 < 𝜔k < 2∕𝜎2

max
 . 

Here, �max is the largest singular value of the design matrix 
A (Aster et al. 2005). Various methods are available for com-
puting the value of �k . Some of the most common ones are 
Ψ1 and Ψ2-based relaxation strategies, as well as the modi-
fied Ψ1 and Ψ2 methods. In these methods, the relaxation 
parameter is determined in each step to control the propa-
gated noise component of the error (Elfving et al. 2010). 
We prefer the modified Ψ2 method for its high convergence 
speed.

Radiosonde data is usually used to select the optimum 
number of iterations. For this purpose, the Nw profile 
derived from the radiosonde data is compared with the 
corresponding vertical profile reconstructed using the 
tomographic model. The optimum value of k is selected 
when the root-mean-square error (RMSE) is minimal. 

(4)� = ��

(5)
[

�

������������

]
=

[
�

������������

]
� → � = ��

(6)�(K+1) = �k − �k�
T
(
��(k) − �

)

RMSE, bias, and standard deviation (SD) of the results 
are calculated as follows:

where Ni
model

 is the wet refractivity obtained from the tomog-
raphy model in the ith voxel and Ni

calculated
 is the wet refrac-

tivity of the corresponding voxel calculated from the radio-
sonde data.

Constraints in GNSS tomography

Many constraints have been used to resolve the rank defi-
ciency of the design matrix in GNSS tomography. Therefore, 
we only review some of the commonly used constraints: 
3D Gaussian Filter constraints, horizontal smoothing con-
straints, constraints based on the NWP models and the VRS 
concept. The first two cases, also known as inter-voxel con-
straints, smooth the refractivity difference calculated from 
reconstruction methods or interpolated from NWP models 
between neighboring voxels.

3D Gaussian filter

3D Gaussian filter is an inter-voxel constraint that may 
limit the refractivity gradients between adjacent voxels. 
The refractivity N ′ in the voxel (i0, j0, k0) is calculated by 
the weighted sum of the refractivity N within the domain 
i0 ± Δi, j0 ± Δj, ±k0 ± Δk (Bender et al. 2011),

where α is the Gaussian weighting factor, which is defined 
by

The number of neighboring voxels Δi , Δj , and Δk 
as well as the value of � are selected such that the best 
result is acquired. Usually, one or two adjacent voxels and 
� = 0.5, ..., 2 lead to good results, and this is the reason that 
� = 2 and Δi = Δj = Δk = 1 are considered in this research 
(Bender et al. 2011). The number of adjacent voxels used 

(7)RMSE =

√√√√ 1

N

N∑

i=1

(
Ni
model

− Ni
calculated

)2

(8)bias =
1

N

N∑

i=1

(
Ni
model

− Ni
calculated

)

(9)SD =
√
RMSE2 − bias2

(10)N
�

i0j0k0
=

∑i0+Δi

i=i0−Δi

∑j0+Δj

j=j0−Δj

∑k0+Δk

k=k0−Δk
�i,j,kNi,j,k

∑i0+Δi

i=i0−Δi

∑j0+Δj

j=j0−Δj

∑k0+Δk
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for each voxel depends on its location in the model. Accord-
ingly, 26 adjacent voxels are used for a voxel inside the mid-
dle layers in (10).

Horizontal constraints

Rohm and Bosy (2009) used horizontal constraint equations 
in such a way that the refractivity of each voxel, for example, 
kth voxel, is a weighted mean of the refractivities of neigh-
boring voxels in the same layer:

where wkj is the weight of refractivity between the con-
strained voxel (kth voxel) and the voxel number j. These 
weights are the inverse of the distance between the con-
strained voxel and all other voxels in the same layer. The 
sum of all weights should be equal to 1. It should be men-
tioned that 14 neighboring voxels are used for each voxel 
in this research because each layer of the model contains 
15 voxels.

NWP constraints

The refractivity computed from interpolated NWP mod-
els in the center of voxels can be used for constraining the 
problem:

where xi is the unknown value of refractivity, and xNWP
i

 is 
the refractivity computed from the NWP model at the center 
of the jth voxel. Weather Research and Forecasting model 
(WRF) is one of the most common atmospheric simula-
tion models used in this research. The global larger scale 
NWP models such as the global forecast system (GFS), the 
coupled forecast system (CFS), and regional NWP models 
such as the North American Mesoscale model (NAM) are 
used to generate the initial and boundary conditions of the 
WRF model (Skamarock et al. 2008). This study takes the 
initial and boundary conditions from GFS 3 h forecast data. 
Also, the horizontal resolution of the GFS model outputs 
is 0.5◦ × 0.5◦ (Yáñez-Morroni et al. 2018). NWP models 
predict the 3D structure of the troposphere for the next 6, 
12, 18, … to 120 h. This study used 24 h predictions of the 
WRF model with spatial and temporal resolutions of 10 km 
and one hour, respectively. The required parameters (tem-
perature, special humidity, and height) are calculated in 25 
pressure levels using the WRF model. The coordinates of the 
eight vertices of each voxel were firstly calculated. Values of 
the pressure of water vapor and temperature acquired from 

(12)

0 =
1

wk1

Nw1
+

1

wk2

Nw2
+⋯ − 1 × Nwk

+⋯ +
1

wkm

Nwm

(13)xi − xNWP
i

= 0

the WRF model were then interpolated to the calculated 
positions. Finally, Nw values are computed through the fol-
lowing equation (Kleijer 2004):

Here, K2 = 71.2952 K∕hpa , K3 = 375463 K2∕hpa , and the 
parameters e and T are the pressure of water vapor and the air 
temperature, respectively (Kleijer 2004). The average value 
of Nw at voxel vertices is considered the wet refractivity in the 
corresponding voxel.

VRS constraints

Adavi and Mashhadi-Hossainali (2014) used the concept of 
VRS as extra information to compute a unique solution for 
the problem of troposphere tomography. In their study, the 
interpolation of tropospheric error at the position of VRS sta-
tions is below  10–3 m when the distances of VRS and GNSS 
stations are less than 40–50 km. They found that the minimum 
number of virtual stations, which solves the rank deficiency of 
the design matrix, is attained when VRS stations are located at 
the corners of the voxels. We used the same method to deter-
mine the number and location of VRS stations with a maxi-
mum distance of 50 km from GNSS reference stations. Virtual 
signals at virtual reference stations add additional equations to 
the system of observation equations. The interpolation algo-
rithm proposed by Zus et al. (2019) is used in this research to 
generate ZWDs in the position of VRS stations. For any VRS 
station, GNSS stations within the radius of 1° are considered, 
and the ZWD value in the VRS position is calculated using 
the following equation:

Here, w is the weight, and the inverse distance weighting 
scheme is used. Δλ, Δφ, and Δh are the differences in lon-
gitude, latitude, and height between the VRS and the GNSS 
stations, respectively. The index i indicates the i-th GNSS sta-
tion. The factor C is set to 4 km. The scale height of the ZWD, 
denoted H, is chosen to be 3 km. Also, Ei

w
 and Ni

w
 indicate the 

east and north gradients of the wet components, respectively. 
Similar to the ZTD, the tropospheric gradient can be written 
as the sum of the hydrostatic and wet components:

where Nh(Nw) is the north gradient of the hydrostatic (wet) 
component and Eh(Ew) is the east gradient of this parameter.

(14)Nw = K2

e

T
+ K3

e

T2

(15)

ZWDVRS =Σwi.ZWDi. exp

(
−
Δhi

H

)

+ Σwi.

(
E
i

w

C
R cos

(
�i
)
Δ�i +

N
i

w

C
RΔ�i

)
. exp

(
−
Δhi

H

)

(16)
E = Eh + Ew

N = Nh + Nw
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The wet gradients are obtained from the tropospheric 
gradients by subtracting the hydrostatic gradients that are 
derived from the ray-trace algorithm in this research. First, 
120 STDs are computed at elevation angles of 3°, 5°, 7°, 
10°, 15°, 20°, 30°, 50°, 70°, 90°, and azimuths between 0° 
and 360° with a spacing of 30° (Zus et al. 2014). Next, we 
compute azimuth-independent STDs under the assumption 
of a spherically layered troposphere. Then, the differences 
between azimuth-dependent and azimuth-independent STDs 
are computed. Finally, the gradient components are deter-
mined by a least-square fitting (Zus et al. 2015). The Chen 
and Herring gradient mapping function is used. To calcu-
late hydrostatic gradients, we compute the hydrostatic delays 
separately.

These values are then converted to SWDs using the GMF 
in the direction of VRS stations to GNSS satellites. The 
method is useful when the number of GNSS stations is not 
sufficient and they are not evenly distributed in the desired 
area.

Sensitivity analysis in GNSS‑tomography

Consider the linear system of equations:

In practice, two types of errors can contaminate the ele-
ments of the coefficient matrix A and the vector b: observa-
tional and computational (rounding and truncation) errors. 
The main aim of the perturbation theory is to analyze the 
effect of such perturbations on the estimated parameters 
compared to the exact solution (Dief 1986). Assuming 
n = m and A is not singular, the upper bound limit for the 
error in the exact solution x in the perturbed linear system 
(A + ΔA)x̃ = b + Δb is,

where �̃ is the vector of perturbed unknown parameters and 
k2(�) = ‖�‖2 ���−1��2 is the condition number (Jain and 
Iyengar 2003). Ignoring the perturbations ΔA in the per-
turbed linear system above gives the following upper limit 
for the error in the exact solution:

Equation (19) shows in a system of linear equations that 
the upper bound limit for perturbations in the exact solu-
tion depends on the input noise and is proportional to the 
condition number of the system of observation equations. 
Assuming m > n and A is not singular, the upper bound limit 

(17)
�� = �, where ∶ � ∈ Rm×n, � ∈ Rn×1, � ∈ Rm×1 and m ≥ n

(18)
‖�̃� − 𝐱‖
‖𝐱‖

≤ 𝐤2(𝐀)

1 − ��𝐀−1Δ𝐀��

�
‖Δ𝐛‖
‖𝐛‖

+
‖Δ𝐀‖
‖𝐀‖

�

(19)
‖�̃� − 𝐱‖
‖𝐱‖

≤ k2(𝐀)
‖𝚫𝐛‖
‖𝐛‖

for the exact least-squares solution due to perturbations ΔA 
and Δb is given by Higham (2002):

Theorem  1 Let � ∈ �m×n , ( m ≥ n ) and A+ΔA be 
of full rank and let: ‖� − ��‖2 = min , � = � − �� ; 
‖(� + Δ�) − (� + Δ�)x̃‖ = min , � = � + Δ� − (� + Δ�)x̃ ; 
‖Δ�‖ ≤ �‖�‖ , ‖Δ�‖ ≤ �‖�‖ , then provided that k2(�)𝜀 < 1,

It follows from (20) that the sensitivity of the least-
squares solution is measured by k2(�) , when the residuals 
are small or zero, and by k2(�)

2 otherwise.
In GNSS tomography, the noise of the input data differs 

from one element to the next because the measurement 
noise depends on the azimuth and elevation angle of the 
GNSS satellites. As a result, the residual or misfit of the 
model to the input data is different in different parts of a 
tomographic model. Considering this point and the above 
theorem, the model’s sensitivity is different between vari-
ous layers of a model and in the voxels of the same layer. 
As a result, we cannot expect the same accuracy and pre-
cision as for voxels where reference information such as 
radiosonde data is used to validate the model. Here, we 
propose a method for sensitivity analysis of a tomographic 
model based on principal component analysis. Although 
using this method, it is not possible to quantify or predict 
the accuracy and precision of a model at locations without 
validation data, it provides more details on the expected 
quality of the inverse solution in sensitive locations.

Principal component analysis can be implemented for 
any positive-definite matrix. In this research, we apply this 
method to the normal matrix of our tomographic model. For 
the positive-definite matrix 

∑
 and the random vector vari-

able � =
[
x1 x2 ... xp

]T with eigenvalue–eigenvector pairs 
(
�1, ��

)
,
(
�2, ��

)
, ...,

(
�p, ��

)
 , where �1 ≥ �2 ≥ ... ≥ �p ≥ 0 , 

the hth principal component is given by Johnson and Wich-
ern (2002):

The correlation coefficient of the jth variable and the 
hth principal component is calculated through (Johnson 
and Wichern 2002):

where ejh is the jth element of the hth eigenvector and 

�j =
√

var(xj) is the square root of the jth diagonal element 
in the normal matrix.

(20)
‖�̃� − 𝐱‖
‖𝐱‖

≤ k2(𝐀)�

1 − k2(𝐀)�

�
2 +

�
k2(𝐀) + 1

�� ‖𝐫‖
‖𝐀‖ ‖𝐱‖

(21)yh = ��
�
� = e1hx1 + e2hx2 + ... + ephxp , h = 1, 2, ..., p

(22)cor
�
xj, yh

�
=

ejh
√
�h

�j
, j, h = 1, 2, ..., p
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PCA can be used as a tool for indexing the unknowns 
in a system of simultaneous equations with respect to the 
spectral values of the corresponding coefficient matrix. This 
indexing process helps arrange the parameters of a system 
according to their interrelation with various singular values. 
Mashhadi-Hossainali (2006) proposed PCA application for 
the sensitivity analysis of strain parameters to perturbations 
of geodetic observations in deformation analysis. For this 
purpose, the normal matrix of the tomographic model is first 
expressed in its spectral form. Then, the corresponding prin-
cipal components are established using (21). Next, the cor-
relation coefficients between the principal components and 
all unknown parameters are estimated using (22). Finally, in 
every principal component, the computed correlation coef-
ficient is used to sort the unknowns, i.e., the refractivity 
parameters, in ascending order. If a singular value was small 
or close to zero, i.e., in a badly conditioned system of simul-
taneous equations, random variables with larger correlations 
would be more sensitive to perturbation of the input data, 
or the inverse solution for such variables (voxels) would be 
more biased when the regularized solution is computed.

Data

Iran has diverse climate conditions. Altitude, latitude, sea 
effects, seasonal winds, and proximity to mountain slopes 
or deserts all play an important role in daily and seasonal 
atmospheric fluctuations in this country. The Iranian Per-
manent GNSS Network for Geodynamics (IPGN), with 125 
permanent GNSS stations throughout the country, has a 
good density. In this research, only GPS observations are 
used because in 2011, active GLONASS satellites were lim-
ited in number and could not be tracked by IPGN receivers. 
We use 17 permanent GPS and a radiosonde station in the 
northwest of Iran. Figure 1 illustrates the distribution of the 
GNSS, radiosonde, and synoptic stations used in this study, 
with the topography of this area. The GNSS stations with 
and without meteorological sensors are marked separately 
in this figure.

The Bernese GNSS software version 5.2 is used to pro-
cess the GNSS measurements based on a double-difference 
strategy. The desired parameter is the Zenith Total Delay 
(ZTD). We used the surface meteorological parameters and 
the Saastamoinen model to compute the Zenith Hydrostatic 
Delays (ZHDs) (Kleijer 2004). The hydrostatic component 
is then subtracted from the total zenith delay to calculate the 
wet component. Finally, ZWDs are converted to Slant Wet 
Delays (SWDs) using (3).

In the area selected for this research, 10 GPS stations 
are equipped with meteorological sensors. Together with 12 
synoptic stations, these stations were used and interpolated 
spatially to nearby GNSS stations without meteorological 

sensors (see Fig.  1). At the farther GNSS stations, the 
ECMWF Reanalysis v5- Land (ERA5-Land) model was 
used to calculate the surface meteorological parameters. 
ERA5 is the latest climate reanalysis produced by ECMWF, 
providing hourly data on many atmospheric, land-surface 
and sea-state parameters. ERA5-Land is a replay of the land 
component of the ERA5 climate reanalysis with a spatial 
resolution of 9 km and provides hourly high-resolution data 
of surface variables (https:// clima te. coper nicus. eu/ clima te- 
reana lysis).

Results and discussion

A tomography model was developed with a horizontal reso-
lution of 40 km. For the bottom eight and top seven lay-
ers of this model, the vertical resolutions were 500 m and 
1 km, respectively. The developed model consists of 225 
voxels located in 15 horizontal layers and 5 × 3 voxels in 
each layer. The model extends to the height of 11 km from 
the surface of the earth. In this research, DOY 300 and 250 
in 2011 were selected to investigate the effect of time and 
weather conditions on the results. Based on the radiosonde 
data, the selected area and processing time, the temperature 
and relative humidity values on the DOY 250 were 16.34 °C 
and 35.63%, whereas the values of the same quantities on 
the DOY 300 were 4.27 °C and 80.47%. Also, precipitation 
water was calculated by radiosonde data for our processing 

Fig. 1  Location of the study domain together with GPS stations (tri-
angles), radiosonde station (red star), and synoptic stations (green cir-
cles). Black and pink triangles represent GPS stations with and with-
out meteorological sensors, respectively

https://climate.copernicus.eu/climate-reanalysis
https://climate.copernicus.eu/climate-reanalysis
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time as 0.01 and 2.1 mm for DOY 250 and 300, respectively. 
In addition, 15 GPS stations were considered to obtain the 
results of DOY 300. Then, two new stations were added to 
the model of DOY 250 to examine the impact of the num-
ber of stations on the results (see Fig. 4). Moreover, a time 
resolution of 1 h and a minimum elevation cut-off angle of 5 
degrees were applied. Finally, the first epoch, which includes 
GNSS observations from (00 h:00 m:00 s- to 01 h:00 m:00 s 
in UTC), is considered due to the limited radiosonde data 
in Iran. Figure 2 illustrates the 3D structure of the model 
with the signals received from GPS satellites in the first 30 s 
of the DOY 300 in 2011 (00 h:00 m:00 s-00 h:00 m:30 s 
UTC). The scales of this figure are not uniform for better 
visualization.

The design matrix of the model is calculated based on 
signal length in every element of the model. The rank defi-
ciency of the model is 16 at the first epoch of DOY 300. The 
relevant empty voxels are shown in Fig. 3.

As expected, many empty voxels are located in the lower 
layers of the model. To analyze the model’s sensitivity, we 
first fix the rank defect by adding additional constraints to 
the problem. To this end, and to see if the contribution of 
applied constraints on the sensitivity of a tomographic model 
is remarkable, we use the 3D Gaussian, horizontal, NWP, 
and VRS constraints. Before adding the constraints, the con-
dition number of the design matrix is 1.0967 × 1018 . Added 
constraints not only remove the rank deficiency of the design 
matrix but also improve the conditioning of the problem: 
The condition number of the coefficient matrix improves to 
771.3600, 252.5676, 235.3039, and 838.7082 when the 3D 
Gaussian, horizontal, NWP and VRS constraints are used 
at this specific epoch, respectively. We follow Adavi and 
Mashhadi-Hossainali (2014) for selecting the number and 
the spatial distribution of the virtual reference stations. Fig-
ure 4 shows the distribution of GPS and VRS stations in the 
lowest layer of the tomographic model.

For eigenvalues close to zero, the Nw parameters whose 
correlation coefficient is higher with the related principal 
component are prone to larger bias when we derive the 
inverse solution. In perturbation terminology, such voxels are 
more sensitive to input perturbations than the other elements 
of a tomography model. The smallest eigenvalue depends 
on the constraints we apply to find a unique solution. This is 
vividly seen from the condition numbers of the coefficient 
matrix, as already reported for the first epoch. In order to see 
if the applied constraints contribute to the model’s sensitiv-
ity, we use the 

∑j

i=1
�i∕

∑p

i=1
�i ratio as a relative measure to 

select the smallest eigenvalue in the spectral representation 
of the coefficient matrix. We accept 90% as the threshold 
value in our analysis. This threshold value is reached at the 
21st eigenvalue when 3D-Gaussian, horizontal, and NWP 

Fig. 2  GPS Signals pass-
ing through the voxels of our 
tomography model in the first 
30 s of DOY 300, 2011

Fig. 3  Empty voxels shaded in gray in the first epoch of DOY 300, 
2011
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constraints are used, and at the 6th eigenvalue when the VRS 
constraint is used, assuming eigenvalues are listed in ascend-
ing order. Figure 5 illustrates the sensitivity analysis results 
for the first epoch of measurements.

The shaded voxels in Fig. 5 show the sensitive parts of the 
model. Here, only the voxels whose correlation coefficient 
with the desired PC is larger than a maximum threshold have 
been taken into account. This threshold is the maximum 
correlation of the desired PC with the Nw parameters rel-
evant to voxels through which the radiosonde profile passes. 
Therefore, the values 0.0332, 0.0394, 0.0382, and 0.0877 in 
the top left, top right, bottom left, and bottom right panels, 
respectively, are selected. According to the obtained results, 
the sensitive parts of the model are not necessarily com-
posed of signal-free voxels and may also occur in other parts 
of the model. Also, the sensitive parts of the model are often 
similar when the first three methods are used to constrain the 
model. This is clearly seen in Fig. 5. Table 1 reports the IDs 
of sensitive voxels when four types of constraints are used. 
Subscripts in parentheses refer to the number of layers to 
help understand the position of sensitive voxels.

Fig. 4  Spatial distribution of GPS (circles) and VRS stations 
(squares) on the model. The pink circles show the GPS stations added 
to the model in DOY 250

Fig. 5  Sensitivity analysis of 
tomography model constrained 
using 3D Gaussian (top left), 
horizontal (top right), NWP 
(bottom left), and VRS (bottom 
right) constraints at the first 
epoch of DOY 300, 2011
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The obtained pattern for the model’s sensitivity signifi-
cantly changes when we use the VRS constraint. Applica-
tion of 3D Gaussian, horizontal, and NWP constraints to the 
simultaneous system of observation equations results in an 
augmented coefficient matrix by appending a rectangular 
identity or close to identity sub-matrix to the original one. 
Therefore, matrix A and the normal matrices of the systems 
of observation equations are almost the same when these 
types of constraints are used. It is usually necessary to apply 
a minimum number of constraints to an inverse problem in 
order to ensure that the solutions will satisfy the constraints. 
By over-constraining a problem, the solution reflects the 
information inherent in the applied constraints rather than 
the information hidden in the input data. On the other hand, 
VRS constraints are applied by adding virtual observations 
to the simultaneous system of observation equations. The 
spatial distribution and the number of virtual reference sta-
tions are dependent on the available GNSS stations in the 
test area. Moreover, the relevant virtual observations are 
used for the entire period adopted as the time response of 
the model (here, 1 h). Similar to GNSS observations, the 
length of the virtual signals passing through the model ele-
ments (voxels) is used to augment the coefficient matrix of 
the original problem. Consequently, the coefficient matrix 
and the normal matrix are significantly different from when 
the other constraints are used. As a result, a significant dif-
ference between the VRS and other results is expected.

To get an idea of the expected range of bias in recon-
structed tomographic images, we use the Landweber method 
for computing our inverse solutions. This is repeated for the 
four types of constraints we have focused. The initial val-
ues for the refractivities required in the applied recursive 
approach are supplied by NWP models. In this research, the 
WRF model has been used. The reconstructed tomographic 
profiles for the wet refractivities at the radiosonde location 
are shown in Fig. 6 for DOY 300 and 250 in 2011 at the 
first epoch.

Panels 6a to 6d represent the reconstructed tomographic 
results for the model constrained with 3D-Gaussian, hori-
zontal, NWP, and VRS constraints, respectively, for DOY 
300, and panels 6e to 6 h show the same results for DOY 
250. The values of RMSE, SD, and bias of the tomography 

model are calculated using the radiosonde and tomography 
results. These values are given in Table 2. Table 3 compares 
the mean correlation coefficients (see (22)) calculated for 
the voxels that the radiosonde profile passes through and the 
voxels already identified as sensitive.

According to Table 3, since the mean correlation in the 
voxels of the radiosonde profile is much lower than the mean 
correlation in sensitive voxels for both days, the magnitude 
of the bias calculated using the radiosonde profile cannot be 
generalized to the entire model.

Since the design matrix changes over time, the model’s 
sensitivity is also dependent on time. In the following, we 
verify this by repeating our analysis for the first epoch of 
DOY 250 in 2011 to reconstruct the tomographic image.

The comparison of Figs. 5 and 7 confirms the above 
assertion. The threshold values adopted for the correlation 
coefficient at the first epoch of DOY 250 are 0.022, 0.0519, 
0.0514 and 0.0213. The shaded voxels in Fig. 7 indicate 
where the model is expected to have larger biases than the 
maximum amount of bias resulting from the assessment 
of the model using the radiosonde profile. The IDs of the 
shaded voxels are given in Table 4. Subscripts in parentheses 
refer to the number of layers to help understand the position 
of sensitive voxels.

According to Table 4 and similar to Table 1 for DOY 
300, the model’s sensitivity is quite different for VRS con-
straints. Moreover, voxels that are more prone to regu-
larization error are not only scattered through the model, 
but the expected amount of bias is also different for them. 
In other words, for the test area in this study, the type 
of added constraints impacts the bias of the model. Such 
results also imply that the traditional validation method, 
i.e., using a radiosonde profile to evaluate the results and 
generalize them to the entire model, is not sufficient. Due 
to the existing limitations in this study, for example, a 
limited number of GPS stations and lack of GPS data on 
other days of the year, further investigation encompassing 
tomography models with GPS + GLONASS data, differ-
ent number of GNSS stations, and more testing days are 
encouraged. However, it is not possible to expect similar 
results in another test area, because none of the test condi-
tions are repeatable. For example, the sky view of GNSS 

Table 1  IDs of the sensitive voxels derived from PCA technique for the model constrained using four types of constraints for the first epoch of 
DOY 300, 2011. Subscripts in parentheses specify layer numbers for sensitive voxels

Constraints DOY 300

3D Gaussian 159(11),  29(2),  215(15),  9(1),  23(2),  24(2),  38(3),  69(5),  113(8),  84(6),  68(5),  98(7),  83(6)

Horizontal 29(2),  128(9),  9(1),  23(2),  24(2),  38(3),  53(4),  69(5),  84(6),  113(8),  68(5),  98(7),  83(6)

NWP 128(9),  9(1),  23(2),  24(2),  38(3),  53(4),  69(5),  84(6),  113(8),  68(5),  98(7),  83(6)

VRS 37(3),  72(5),  143(10),  62(5),  183(13),  214(15),  27(2),  47(4),  127(9),  158(11),  153(11), 
 199(14),  112(8),  168(12),  52(4),  97(7)
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satellites changes from one experiment to another, espe-
cially when test areas are far apart. This changes the imag-
ing system from one test area to another. Therefore, this 
study is not intended to suggest a general interpretation of 

the performance of the proposed PCA-based technique, 
but it emphasizes the necessity of the sensitivity analy-
sis of a tomography model. The proposed method helps 
understand if similar validation results are expected in 

Fig. 6  Tomography results 
when using four types of 
constraints together with the 
radiosonde and NWP profiles 
for the first epoch of DOY 300 
(top) and DOY 250 (bottom), 
2011

Table 2  Bias, RMSE, and SD of 
tomography model constrained 
using four types of constraints 
for the first epoch of DOY 300 
and 250, 2011

Constraints DOY 300 DOY 250

Bias (ppm) SD (ppm) RMSE (ppm) Bias (ppm) SD (ppm) RMSE (ppm)

3D Gaussian 0.415 3.969 3.990 1.467 2.905 3.254
Horizontal 0.415 3.969 3.990 1.461 2.886 3.235
NWP 0.415 3.969 3.991 1.463 2.883 3.234
VRS 0.334 2.560 2.581 0.535 2.001 2.071
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Table 3  Mean correlation in 
radiosonde voxels and sensitive 
voxels of the model for the first 
epoch of DOY 300 and 250, 
2011

Constraints DOY 300 DOY 250

Mean correlation of 
sensitive voxels

Mean correlation of 
radiosonde voxels

Mean correlation of 
sensitive voxels

Mean correlation of 
radiosonde voxels

3D Gaussian 0.227 0.010 0.228 0.007
Horizontal 0.248 0.011 0.293 0.013
NWP 0.266 0.011 0.350 0.014
VRS 0.207 0.017 0.332 0.006

Fig. 7  Sensitivity analysis of 
tomography model at the first 
epoch of DOY 250, using 3D 
Gaussian (top left), Horizon-
tal (top right), NWP (bottom 
left), and VRS (bottom right) 
constraints

Table 4  IDs of the sensitive voxels derived from PCA technique for the model constrained using four types of constraints for the first epoch of 
DOY 250, 2011. Subscripts in parentheses specify layer numbers for sensitive voxels

Constraints DOY 250

3D Gaussian 12(1),  27(2),  72(5),  57(4),  87(6),  42(3),  117(8),  157(11),  26(2),  11(1),  102(7),  147(10),  132(9)

Horizontal 27(2),  57(4),  72(5),  87(6),  157(11),  51(4),  132(9),  42(3),  127(9),  26(2),  77(6),  117(8),  11(1)

NWP 27(2),  57(4),  72(5),  87(6),  157(11),  51(4),  132(9),  42(3),  127(9),  26(2),  77(6),  117(8),  11(1)

VRS 32(3),  47(4),  17(2),  52(4),  67(5),  97(7),  62(5),  157(11),  51(4),  7(1)
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other parts of a model or not. The reconstructed param-
eters in the voxels whose sensitivity to the perturbations 
of the input parameters (here the SWDs) is higher than the 
voxels used in validation are prone to a larger bias than the 
validation process foresees for the model. Finally, it has to 
be mentioned that the spatial distribution and the required 
number of virtual reference stations depend on the con-
figuration of the GNSS stations available in the test area.

Summary and conclusion

The precision and the bias of a tomographic model are nor-
mally analyzed using radiosonde profile(s). Although the 
results obtained are vividly valid for a linear vertical pro-
file, they are usually considered quality measures for the 
whole model. We propose the principal component analysis 
as a method for sensitivity analysis of a tomographic model 
for the first time. The application of this method to the test 
study of this research suggests that some of the voxels are 
more prone to regularization errors than the other voxels 
in our model. For the test field and the data we used, the 
spatial distribution and the expected amount of bias depend 
on the time and constraints that we normally use to fix the 
rank deficiency of the problem. Therefore, the results of one 
vertical profile could not be generalized to the whole model 
as a quality criterion. The proposed method only suggests 
a lower bound limit for the accuracy of the model where no 
validation data is available. Validation results also provide 
an upper bound limit for the error in the other parts of the 
model. We applied four types of constraints in our research. 
According to our results, the sensitivity of the tomogra-
phy model changes significantly when the VRS constraints 
are used. VRS constraints add virtual observations to the 
simultaneous system of observation equations. Although a 
minimum number of VRS stations are required to resolve the 
rank deficiency of the normal matrix, the relevant observa-
tions are applied for the entire time period, which is adopted 
as the time response of the model. Therefore, the VRS sta-
tions overconstrain the problem compared to other types 
of constraints, such as 3D-Gaussian, horizontal, and NWP 
constraints as reported in this research.
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