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Preface

Brief Description

The purpose of this book is to provide an introduction to system theory with
emphasis on control theory. It is intended to be the textbook of a typical
one-semester course introduction to systems primarily for first-year graduate
students in engineering, but also in mathematics, physics, and the rest of the
sciences. Prerequisites for such a course include undergraduate-level differ-
ential equations and linear algebra, Laplace transforms, and modeling ideas
of, say, electric circuits and simple mechanical systems. These topics are typi-
cally covered in the usual undergraduate curricula in engineering and sciences.
The goal of this text is to provide a clear understanding of the fundamental
concepts of systems and control theory, to highlight appropriately the princi-
pal results, and to present material sufficiently broad so that the reader will
emerge with a clear picture of the dynamical behavior of linear systems and
their advantages and limitations.

Organization and Coverage

This primer covers essential concepts and results in systems and control the-
ory. Since a typical course that uses this book may serve students with different
educational experiences, from different disciplines and from different educa-
tional systems, the first chapters are intended to build up the understanding
of the dynamical behavior of systems as well as provide the necessary mathe-
matical background. Internal and external system descriptions are described
in detail, including state variable, impulse response and transfer function,
polynomial matrix, and fractional representations. Stability, controllability,
observability, and realizations are explained with the emphasis always being
on fundamental results. State feedback, state estimation, and eigenvalue as-
signment are discussed in detail. All stabilizing feedback controllers are also
parameterized using polynomial and fractional system representations. The
emphasis in this primer is on time-invariant systems, both continuous and
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discrete time. Although time-varying systems are studied in the first chapter,
for a full coverage the reader is encouraged to consult the companion book
titled Linear Systems1 that offers detailed descriptions and additional mate-
rial, including all the proofs of the results presented in this book. In fact, this
primer is based on the more complete treatment of Linear Systems, which
can also serve as a reference for researchers in the field. This primer focuses
more on course use of the material, with emphasis on a presentation that is
more transparent, without sacrificing rigor, and emphasizes those results that
are considered to be fundamental in systems and control and are accepted as
important and essential topics of the subject.

Contents

In a typical course on Linear Systems, the depth of coverage will vary de-
pending on the goals set for the course and the background of the students.
We typically cover the material in the first three chapters in about six to
seven weeks or about half of the semester; we spend about four to five weeks
covering Chapters 4–8 on stability, controllability, and realizations; and we
spend the remaining time in the course on state feedback, state estimation,
and feedback control presented in Chapters 9–10. This book contains over 175
examples and almost 160 exercises. A Solutions Manual is available to course
instructors from the publisher. Answers to selected exercises are given at the
end of this book.

By the end of Chapter 3, the students should have gained a good under-
standing of the role of inputs and initial conditions in the response of systems
that are linear and time-invariant and are described by state-variable inter-
nal descriptions for both continuous- and discrete-time systems; should have
brushed up and acquired background in differential and difference equations,
matrix algebra, Laplace and z transforms, vector spaces, and linear transfor-
mations; should have gained understanding of linearization and the generality
and limitations of the linear models used; should have become familiar with
eigenvalues, system modes, and stability of an equilibrium; should have an
understanding of external descriptions, impulse responses, and transfer func-
tions; and should have learned how sampled data system descriptions are
derived.

Depending on the background of the students, in Chapter 1, one may want
to define the initial value problem, discuss examples, briefly discuss existence
and uniqueness of solutions of differential equations, identify methods to solve
linear differential equations, and derive the state transition matrix. Next, in
Chapter 2, one may wish to discuss the system response, introduce the impulse
response, and relate it to the state-space descriptions for both continuous-
and discrete-time cases. In Chapter 3, one may consider to study in detail
the response of the systems to inputs and initial conditions. Note that it is

1 P.J. Antsaklis and A.N. Michel, Linear Systems, Birkhäuser, Boston, MA, 2006.
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possible to start the coverage of the material with Chapter 3 going back to
Chapters 1 and 2 as the need arises.

A convenient way to decide the particular topics from each chapter that
need to be covered is by reviewing the Summary and Highlights sections at
the end of each chapter.

The Lyapunov stability of an equilibrium and the input/output stability
of linear time-invariant systems, along with stability, controllability and ob-
servability, are fundamental system properties and are covered in Chapters 4
and 5. Chapter 6 describes useful forms of the state space representations such
as the Kalman canonical form and the controller form. They are used in the
subsequent chapters to provide insight into the relations between input and
output descriptions in Chapter 7. In that chapter the polynomial matrix rep-
resentation, an alternative internal description, is also introduced. Based on
the results of Chapters 5–7, Chapter 8 discusses realizations of transfer func-
tions. Chapter 9 describes state feedback, pole assignment, optimal control,
as well as state observers and optimal state estimation. Chapter 10 character-
izes all stabilizing controllers and discusses feedback problems using matrix
fractional descriptions of the transfer functions.

Depending on the interest and the time constraints, several topics may be
omitted completely without loss of continuity. These topics may include, for
example, parts of Section 6.4 on controller and observer forms, Section 7.4 on
poles and zeros, Section 7.5 on polynomial matrix descriptions, some of the
realization algorithms in Section 8.4, sections in Chapter 9 on state feedback
and state observers, and all of Chapter 10.

The appendix collects selected results on linear algebra, fields, vector
spaces, eigenvectors, the Jordan canonical form, and normed linear spaces,
and it addresses numerical analysis issues that arise when computing solu-
tions of equations.

Simulating the behavior of dynamical systems, performing analysis us-
ing computational models, and designing systems using digital computers,
although not central themes of this book, are certainly encouraged and often
required in the examples and in the Exercise sections in each chapter. One
could use one of several software packages specifically designed to perform
such tasks that come under the label of control systems and signal processing,
and work in different operating system environments; or one could also use
more general computing languages such as C, which is certainly a more te-
dious undertaking. Such software packages are readily available commercially
and found in many university campuses. In this book we are not endorsing any
particular one, but we are encouraging students to make their own informed
choices.

Acknowledgments
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without the enthusiastic support of Tom Grasso, Birkhäuser’s Computational
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Notre Dame, IN Panos J. Antsaklis
Spring 2007 Anthony N. Michel
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1

System Models, Differential Equations, and
Initial-Value Problems

1.1 Introduction

The dynamical behavior of systems can be understood by studying their math-
ematical descriptions. The flight path of an airplane subject to certain engine
thrust, rudder and elevator angles, and particular wind conditions, or the be-
havior of an automobile on cruise control when climbing a certain hill, can be
predicted using mathematical descriptions of the pertinent behavior. Math-
ematical equations, typically differential or difference equations, are used to
describe the behavior of processes and to predict their responses to certain
inputs. Although computer simulation is an excellent tool for verifying pre-
dicted behavior, and thus for enhancing our understanding of processes, it is
certainly not an adequate substitute for generating the information captured
in a mathematical model, when such a model is available.

This chapter develops mathematical descriptions for linear continuous-
time and linear discrete-time finite-dimensional systems. Since such systems
are frequently the result of a linearization process of nonlinear systems, or
the result of the modeling process of physical systems in which the nonlinear
effects have been suppressed or neglected, the origins of these linear systems
are frequently nonlinear systems. For this reason, here and in Chapter 4,
when we deal with certain qualitative aspects (such as existence, uniqueness,
continuation, and continuity with respect to parameters of solutions of system
equations, stability of an equilibrium, and so forth), we consider linear as
well as nonlinear system models, although the remainder of the book deals
exclusively with linear systems.

In this chapter, mathematical models and classification of models are dis-
cussed in the remainder of this Introduction, Section 1.1. In Section 1.2, we
provide some of the notation used and recall certain facts concerning continu-
ous functions. In Section 1.3 we present the initial-value problem and we give
several specific examples in Section 1.4. In Section 1.5 we present results that
ensure the existence, continuation, and uniqueness of solutions of initial-value
problems and results that ensure that the solutions of inital-value problems
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depend continuously on initial conditions and system parameters. In this sec-
tion we also present the Method of Successive Approximations to determine
solutions of intial-value problems. The results in Section 1.5 pertain to dif-
ferential equations that in general are nonlinear. In Section 1.6 we address
linearization of such equations and we provide several specific examples.

We utilize the results of Section 1.5 to establish in Section 1.7 conditions for
the existence, uniqueness, continuation, and continuity with respect to initial
conditions and parameters of solutions of initial-value problems determined
by linear ordinary differential equations.

In Section 1.8 we determine the solutions of linear ordinary differential
equations and introduce for the first time the notions of state and state tran-
sition matrix. We also present the variations of constants formula for solving
linear nonhomogeneous ordinary differential equations, and we introduce the
notions of homogeneous and particular solutions.

Summarizing, the purpose of Sections 1.3 to 1.8 is to provide material
dealing with ordinary differential equations and initial-value problems that
is essential in the study of continuous-time finite-dimensional systems. This
material will enable us to introduce the state-space equations representation
of continuous-time finite-dimensional systems. This introduction will be ac-
complished in the next chapter.

Physical Processes, Models, and Mathematical Descriptions

A systematic study of (physical) phenomena usually begins with a modeling
process . Examples of models include diagrams of electric circuits consisting of
interconnections of resistors, inductors, capacitors, transistors, diodes, voltage
or current sources, and so on; mechanical circuits consisting of interconnec-
tions of point masses, springs, viscous dampers (dashpots), applied forces,
and so on; verbal characterizations of economic and societal systems; among
others. Next, appropriate laws or principles are invoked to generate equations
that describe the models (e.g., Kirchhoff’s current and voltage laws, Newton’s
laws, conservation laws, and so forth). When using an expression such as “we
consider a system described by ordinary differential equations,” we will have
in mind a phenomenon described by an appropriate set of ordinary differential
equations (not the description of the physical phenomenon itself).

A physical process (physical system) will typically give rise to several dif-
ferent models, depending on what questions are being asked. For instance, in
the study of the voltage-current characteristics of a transistor (the physical
process), one may utilize a circuit (the model) that is valid at low frequencies
or a circuit (a second model) that is valid at high frequencies; alternatively, if
semiconductor impurities are of interest, a third model, quite different from
the preceding two, is appropriate.

Over the centuries, a great deal of progress has been made in develop-
ing mathematical descriptions of physical phenomena (using models of such
phenomena). In doing so, we have invoked laws (or principles) of physics,
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chemistry, biology, economics, and so on, to derive mathematical expressions
(usually equations) that characterize the evolution (in time) of the variables
of interest. The availability of such mathematical descriptions enables us to
make use of the vast resources offered by the many areas of applied and pure
mathematics to conduct qualitative and quantitative studies of the behav-
ior of processes. A given model of a physical process may give rise to several
different mathematical descriptions. For example, when applying Kirchhoff’s
voltage and current laws to the low-frequency transistor model mentioned
earlier, one can derive a set of differential and algebraic equations, a set con-
sisting of only differential equations, or a set of integro-differential equations,
and so forth. This process of mathematical modeling, “from a physical phe-
nomenon to a model to a mathematical description,” is essential in science
and engineering. To capture phenomena of interest accurately and in tractable
mathematical form is a demanding task, as can be imagined, and requires a
thorough understanding of the physical process involved. For this reason, the
mathematical description of complex electrical systems, such as power sys-
tems, is typically accomplished by electrical engineers, the equations of flight
dynamics of an aircraft are derived by aeronautical engineers, the equations
of chemical processes are arrived at by chemists and chemical engineers, and
the equations that characterize the behavior of economic systems are provided
by economists. In most nontrivial cases, this type of modeling process is close
to an art form since a good mathematical description must be detailed enough
to accurately describe the phenomena of interest and at the same time simple
enough to be amenable to analysis. Depending on the applications on hand,
a given mathematical description of a process may be further simplified be-
fore it is used in analysis and especially in design procedures. For example,
using the finite element method, one can derive a set of first-order differential
equations that describe the motion of a space antenna. Typically, such math-
ematical descriptions contain hundreds of differential equations. Whereas all
these equations are quite useful in simulating the motion of the antenna, a
lower order model is more suitable for the control design that, for example,
may aim to counteract the effects of certain disturbances. Simpler mathemati-
cal models are required mainly because of our inability to deal effectively with
hundreds of variables and their interactions. In such simplified mathematical
descriptions, only those variables (and their interactions) that have significant
effects on the phenomena of interest are included.

A point that cannot be overemphasized is that the mathematical descrip-
tions we will encounter characterize processes only approximately. Most often,
this is the case because the complexity of physical systems defies exact mathe-
matical formulation. In many other cases, however, it is our own choice that a
mathematical description of a given process approximate the actual phenom-
ena by only a certain desired degree of accuracy. As discussed earlier, this is
done in the interest of mathematical simplicity. For example, in the descrip-
tion of RLC circuits, one could use nonlinear differential equations that take
into consideration parasitic effects in the capacitors; however, most often it
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suffices to use linear ordinary differential equations with constant coefficients
to describe the voltage-current relations of such circuits, since typically such
a description provides an adequate approximation and since it is much easier
to work with linear rather than nonlinear differential equations.

In this book it will generally be assumed that the mathematical description
of a system in question is given. In other words, we assume that the modeling
of the process in question has taken place and that equations describing the
process are given. Our main objective will be to present a theory of an im-
portant class of systems—finite-dimensional linear systems—by studying the
equations representing such systems.

Classification of Systems

For our purposes, a comprehensive classification of systems is not particularly
illuminating. However, an enumeration of the more common classes of sys-
tems encountered in engineering and science may be quite useful, if for no
other reason than to show that the classes of systems considered in this book,
although very important, are quite specialized.

As pointed out earlier, the particular set of equations describing a given
system will in general depend on the effects one wishes to capture. Thus, one
can speak of lumped parameter or finite-dimensional systems and distributed
parameter or infinite-dimensional systems ; continuous-time and discrete-time
systems ; linear and nonlinear systems ; time-varying and time-invariant sys-
tems ; deterministic and stochastic systems ; appropriate combinations of the
above, called hybrid systems ; and perhaps others.

The appropriate mathematical settings for finite-dimensional systems are
finite-dimensional vector spaces, and for infinite-dimensional systems they
are most often infinite-dimensional linear spaces. Continuous-time finite-
dimensional systems are usually described by ordinary differential equations
or certain kinds of integral equations, whereas discrete-time finite-dimensional
systems are usually characterized by ordinary difference equations or discrete-
time counterparts to those integral equations. Equations used to describe
infinite-dimensional systems include partial differential equations, Volterra
integro-differential equations, functional differential equations, and so forth.
Hybrid system descriptions involve two or more different types of equations.
Nondeterministic systems are described by stochastic counterparts to those
equations (e.g., Ito differential equations).

In a broader context, not addressed in this book, most of the systems
described by the equations enumerated generate dynamical systems. It has
become customary in the engineering literature to use the term “dynamical
system” rather loosely, and it has even been applied to cases where the original
definition does not exactly fit. (For a discussion of general dynamical systems,
refer, e.g., to Michel et al [5].) We will address in this book dynamical systems
determined by ordinary differential equations or ordinary difference equations,
considered next.
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Finite-Dimensional Systems

The dynamical systems we will be concerned with are continuous-time and
discrete-time finite-dimensional systems—primarily linear systems. However,
since such systems are frequently a consequence of a linearization process, it
is important when dealing with fundamental qualitative issues that we have
an understanding of the origins of such linear systems. In particular, when
dealing with questions of existence and uniqueness of solutions of the equations
describing a class of systems, and with stability properties of such systems,
we may consider nonlinear models as well.

Continuous-time finite-dimensional dynamical systems that we will con-
sider are described by equations of the form

ẋi = fi(t, x1, . . . , xn, u1, . . . , um), i = 1, . . . , n, (1.1a)
yi = gi(t, x1, . . . , xn, u1, . . . , um), i = 1, . . . , p, (1.1b)

where ui, i = 1, . . . ,m, denote inputs or stimuli ; yi, i = 1, . . . , p, denote
outputs or responses ; xi, i = 1, . . . , n, denote state variables ; t denotes time;
ẋi denotes the time derivative of xi; fi, i = 1, . . . , n, are real-valued functions
of 1 + n + m real variables; and gi, i = 1, . . . , p, are real-valued functions of
1 + n+m real variables. A complete description of such systems will usually
also require a set of initial conditions xi(t0) = xi0, i = 1, . . . , n, where t0
denotes initial time. We will elaborate later on restrictions that need to be
imposed on the fi, gi, and ui and on the origins of the term “state variables.”

Equations (1.1a) and (1.1b) can be represented in vector form as

ẋ = f(t, x, u), (1.2a)
y = g(t, x, u), (1.2b)

where x is the state vector with components xi, u is the input vector with
components ui, y is the output vector with components yi, and f and g are
vector-valued functions with components fi and gi, respectively. We call (1.2a)
a state equation and (1.2b) an output equation.

Important special cases of (1.2a) and (1.2b) are the linear time-varying
state equation and output equation given by

ẋ = A(t)x +B(t)u, (1.3a)
y = C(t)x +D(t)u, (1.3b)

where A,B,C, and D are real n × n, n × m, p × n, and p × m matrices,
respectively, whose elements are time-varying. Restrictions on these matrices
will be provided later.

Linear time-invariant state and output equations given by

ẋ = Ax +Bu, (1.4a)
y = Cx +Du (1.4b)
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constitute important special cases of (1.3a) and (1.3b), respectively.
Equations (1.3) and (1.4) may arise in the modeling process, or they may

be a consequence of linearization of (1.1).
Discrete-time finite-dimensional dynamical systems are described by equa-

tions of the form

xi(k + 1) = fi(k, x1(k), . . . , xn(k), u1(k), . . . , um(k)) i = 1, . . . , n, (1.5a)
yi(k) = gi(k, x1(k), . . . , xn(k), u1(k), . . . , um(k)) i = 1, . . . , p, (1.5b)

or in vector form,

x(k + 1) = f(k, x(k), u(k)), (1.6a)
y(k) = g(k, x(k), u(k)), (1.6b)

where k is an integer that denotes discrete time and all other symbols are
defined as before. A complete description of such systems involves a set of ini-
tial conditions x(k0) = xk0 , where k0 denotes initial time. The corresponding
linear time-varying and time-invariant state and output equations are given
by

x(k + 1) = A(k)x(k) +B(k)u(k), (1.7a)
y(k) = C(k)x(k) +D(k)u(k) (1.7b)

and

x(k + 1) = Ax(k) +Bu(k), (1.8a)
y(k) = Cx(k) +Du(k), (1.8b)

respectively, where all symbols in (1.7) and (1.8) are defined as in (1.3) and
(1.4), respectively.

This type of system characterization is called state-space description or
state-variable description or internal description of finite-dimensional sys-
tems. Another way of describing continuous-time and discrete-time finite-
dimensional dynamical systems involves operators that establish a relationship
between the system inputs and outputs. Such characterization is called input–
output description or external description of a system. In Chapter 2, we will
address both the state-variable description and the input–output description
of finite-dimensional systems. Before we can do this, however, we will require
some background material concerning ordinary differential equations.

1.2 Preliminaries

We will employ a consistent notation and use certain facts from the calcu-
lus, analysis, and linear algebra. We will summarize this type of material, as
needed, in various sections. This is the first such section.
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1.2.1 Notation

Let V and W be sets. Then V ∪W,V ∩W,V −W , and V ×W denote the union,
intersection, difference, and Cartesian product of V and W , respectively. If V
is a subset of W , we write V ⊂ W ; if x is an element of V , we write x ∈ V ;
and if x is not an element of V , we write x �∈ V . We let V ′, ∂V, V̄ , and int V
denote the complement, boundary, closure, and interior of V , respectively.

Let φ denote the empty set, R the real numbers, R+ = {x ∈ R : x ≥ 0}
(i.e., R+ denotes the set of nonnegative real numbers), Z the integers, and
Z+ = {x ∈ Z : x ≥ 0}.

We will let J ⊂ R denote open, closed, or half-open intervals. Thus, for
a, b ∈ R, a ≤ b, J may be of the form J = (a, b) = {x ∈ R : a < x < b},
J = [a, b] = {x ∈ R : a ≤ x ≤ b}, J = [a, b) = {x ∈ R : a ≤ x < b}, or
J = (a, b] = {x ∈ R : a < x ≤ b}.

Let Rn denote the real n-space. If x ∈ Rn, then

x =

⎡
⎢⎣
x1

...
xn

⎤
⎥⎦

and xT = (x1, . . . , xn) denotes the transpose of the vector x. Also, let Rm×n

denote the set of m× n real matrices. If A ∈ Rm×n, then

A = [aij ] =

⎡
⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n

am1 am2 · · · amn

⎤
⎥⎥⎦

and AT = [aji] ∈ Rn×m denotes the transpose of the matrix A.
Similarly, we let Cn denote the set of n-vectors with complex components

and Cm×n denote the set of m× n matrices with complex elements.
Let f : V → W denote a mapping or function from a set V into a set W ,

and denote by D(f) and R(f) the domain and the range of f , respectively.
Also, let f−1 : R(f) → D(f), if it exists, denote the inverse of f .

1.2.2 Continuous Functions

First, let J ⊂ R denote an open interval and consider a function f : J → R.
Recall that f is said to be continuous at the point t0 ∈ J if limt→t0 f(t) = f(t0)
exists; i.e., if for every ε > 0 there exists a δ > 0 such that |f(t) − f(t0)| < ε
whenever |t − t0| < δ and t ∈ J . The function f is said to be continuous on
J , or simply continuous, if it is continuous at each point in J .

In the above definition, δ depends on the choice of t0 and ε; i.e., δ = δ(ε, t0).
If at each t0 ∈ J it is true that there is a δ > 0, independent of t0 [i.e., δ = δ(ε)],
such that |f(t) − f(t0)| < ε whenever |t− t0| < δ and t ∈ J , then f is said to
be uniformly continuous (on J).
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Let
C(J,R) � {f : J → R | f is continuous on J}.

Now suppose that J contains one or both endpoints. Then continuity is in-
terpreted as being one-sided at these points. For example, if J = [a, b], then
f ∈ C(J,R) will mean that f ∈ C((a, b), R) and that limt→a+ f(t) = f(a) and
limt→b− f(t) = f(b) exist.

With k any positive integer, and with J an open interval, we will use the
notation

Ck(J,R) �{f : J → R | the derivative f (j) exists on J and

f (j) ∈ C(J,R) for j = 0, 1, . . . , k, where f (0) � f}

and we will call f in this case a Ck-function. Also, we will call f a piecewise
Ck-function if f ∈ Ck−1(J,R) and f (k−1) has continuous derivatives for all
t ∈ J , with the possible exception of a finite set of points where f (k) may have
jump discontinuities. As before, when J contains one or both endpoints, then
the existence and continuity of derivatives is one-sided at these points.

For any subset D of the n-space Rn with nonempty interior, we can define
C(D,R) and Ck(D,R) in a similar manner as before. Thus, f ∈ C(D,R)
indicates that at every point x0 = (x10, . . . , xn0)T ∈ D, limx→x0 f(x) = f(x0)
exists, or equivalently, at every x0 ∈ D it is true that for every ε > 0 there
exists a δ = δ(ε, x0) > 0 such that |f(x) − f(x0)| < ε whenever |x1 − x10| +
· · · + |xn − xn0| < δ and x ∈ D. Also, we define Ck(D,R) as

Ck(D,R) �{f : D → R

∣∣∣∣
∂jf

∂xi11 . . . ∂xinn
∈ C(D,R), i1 + · · · + in = j,

j = 1, . . . , k, and f ∈ C(D,R)}
(i.e., i1, . . . , in take on all possible positive integer values such that their sum is
j). When D contains its boundary (or part of its boundary), then the continu-
ity of f and the existence and continuity of partial derivatives of f, ∂jf

∂x
i1
1 ...∂x

in
n

,

i1 + · · · + in = j, j = 1, . . . , k, will have to be interpreted in the appropriate
way at the boundary points.

Recall that if K ⊂ Rn, K �= φ, and K is compact (i.e., K is closed and
bounded), and if f ∈ C(K,R), then f is uniformly continuous (on K) and f
attains its maximum and minimum on K.

Finally, let D be a subset of Rn with nonempty interior and let f : D →
Rm. Then f = (f1, . . . , fm)T where fi : D → R, i = 1, . . . ,m. We say that
f ∈ C(D,Rm) if fi ∈ C(D,R), i = 1, . . . ,m, and that for some positive
integer k, f ∈ Ck(D,Rm) if fi ∈ Ck(D,R), i = 1, . . . ,m.

1.3 Initial-Value Problems

In this section we make precise the meaning of several concepts that arise in
the study of continuous-time finite-dimensional dynamical systems.
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1.3.1 Systems of First-Order Ordinary Differential Equations

Let D ⊂ Rn+1 denote a domain, i.e., an open, nonempty, and connected
subset of Rn+1. We call Rn+1 the (t, x)-space, and we denote elements of
Rn+1 by (t, x) and elements of Rn by x = (x1, . . . , xn)T . Next, we consider
the functions fi ∈ C(D,R), i = 1, . . . , n, and if xi is a function of t, we let
x

(n)
i = dnxi

dtn denote the nth derivative of xi with respect to t (provided that
it exists). In particular, when n = 1, we usually write

x
(1)
i = ẋi =

dxi
dt
.

We call the system of equations given by

ẋi = fi(t, x1, . . . , xn), i = 1, . . . , n, (1.9)

a system of n first-order ordinary differential equations. By a solution of the
system of equations (1.9), we shall mean n continuously differentiable func-
tions φ1, . . . , φn defined on an interval J = (a, b) [i.e., φ ∈ C1(J,Rn)] such
that (t, φ1(t), . . . , φn(t)) ∈ D for all t ∈ J and such that

φ̇i(t) = fi(t, φ1(t), . . . , φn(t)), i = 1, . . . , n,

for all t ∈ J .
Next, we let (t0, x10, . . . , xn0) ∈ D. Then the initial-value problem associ-

ated with (1.9) is given by

ẋi = fi(t, x1, . . . , xn),
xi(t0) = xi0,

i = 1, . . . , n,
i = 1, . . . , n.

(1.10)

A set of functions {φ1, . . . , φn} is a solution of the initial-value problem (1.10)
if {φ1, . . . , φn} is a solution of (1.9) on some interval J containing t0 and if
(φ1(t0), . . . , φn(t0)) = (x10, . . . , xn0).

In Figure 1.1 the solution of a hypothetical initial-value problem is depicted
graphically when n = 1. Note that φ̇(τ) = f(τ, x̃) = tanα, where α is the slope
of the line L that is tangent to the plot of the curve φ(t) vs. t, at the point
(τ, x̃).

In dealing with systems of equations, we will utilize the vector nota-
tion x = (x1, . . . , xn)T , x0 = (x10, . . . , xn0)T , φ = (φ1, . . . , φn)T , f(t, x) =
(f1(t, x1, . . . , xn), . . . , fn(t, x1, . . . , xn))T = (f1(t, x), . . . , fn(t, x))T , ẋ =
(ẋ1, . . . , ẋn)T , and

∫ t
t0
f(s, φ(s))ds = [

∫ t
t0
f1(s, φ(s))ds, . . . ,

∫ t
t0
fn(s, φ(s))ds]T .

With the above notation we can express the system of first-order ordinary
differential equations (1.9) by

ẋ = f(t, x) (1.11)

and the initial-value problem (1.10) by



10 1 System Models, Differential Equations, and Initial-Value Problems

α

τ

φ

x

x

a b

L Solution

Domain D

t

~

Figure 1.1. Solution of an initial-value problem when n = 1

ẋ = f(t, x), x(t0) = x0. (1.12)

We leave it to the reader to prove that the initial-value problem (1.12) can be
equivalently expressed by the integral equation

φ(t) = x0 +
∫ t

t0

f(s, φ(s))ds, (1.13)

where φ denotes a solution of (1.12).

1.3.2 Classification of Systems of First-Order Ordinary
Differential Equations

Systems of first-order ordinary differential equations have been classified in
many ways. We enumerate here some of the more important cases.

If in (1.11), f(t, x) ≡ f(x) for all (t, x) ∈ D, then

ẋ = f(x). (1.14)

We call (1.14) an autonomous system of first-order ordinary differential equa-
tions.

If (t + T, x) ∈ D whenever (t, x) ∈ D and if f(t, x) = f(t + T, x) for all
(t, x) ∈ D, then (1.11) assumes the form

ẋ = f(t, x) = f(t+ T, x). (1.15)

We call such an equation a periodic system of first-order differential equations
with period T . The smallest T > 0 for which (1.15) is true is called the least
period of this system of equations.

When in (1.11), f(t, x) = A(t)x, where A(t) = [aij(t)] is a real n × n
matrix with elements aij that are defined and at least piecewise continuous
on a t-interval J , then we have

ẋ = A(t)x (1.16)
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and refer to (1.16) as a linear homogeneous system of first-order ordinary
differential equations.

If for (1.16), A(t) is defined for all real t, and if there is a T > 0 such that
A(t) = A(t+ T ) for all t, then we have

ẋ = A(t)x = A(t+ T )x. (1.17)

This system is called a linear periodic system of first-order ordinary differential
equations.

Next, if in (1.11), f(t, x) = A(t)x+g(t), where A(t) is as defined in (1.16),
and g(t) = [g1(t), . . . , gn(t)]T is a real n-vector with elements gi that are
defined and at least piecewise continuous on a t-interval J , then we have

ẋ = A(t)x + g(t). (1.18)

In this case we speak of a linear nonhomogeneous system of first-order
ordinary differential equations.

Finally, if in (1.11), f(t, x) = Ax, where A = [aij ] ∈ Rn×n, then we have

ẋ = Ax. (1.19)

This type of system is called a linear, autonomous, homogeneous system of
first-order ordinary differential equations.

1.3.3 nth-Order Ordinary Differential Equations

Thus far we have been concerned with systems of first-order ordinary differ-
ential equations. It is also possible to characterize initial-value problems by
means of nth-order ordinary differential equations. To this end we let h be
a real function that is defined and continuous on a domain D of the real
(t, y, . . . , yn)-space [i.e., D ⊂ Rn+1, D is a domain, and h ∈ C(D,R)]. Then

y(n) = h(t, y, y(1), . . . , y(n−1)) (1.20)

is an nth-order ordinary differential equation.
A solution of (1.20) is a function φ ∈ Cn(J,R) that satisfies (t, φ(t), φ(1)(t),

. . . , φ(n−1)(t)) ∈ D for all t ∈ J and

φ(n)(t) = h(t, φ(t), φ(1)(t), . . . , φ(n−1)(t))

for all t ∈ J , where J = (a, b) is a t-interval.
Now for a given (t0, x10, . . . , xn0) ∈ D, the initial -value problem for (1.20)

is

y(n) = h(t, y, y(1), . . . , y(n−1)),

y(t0) = x10, . . . , y
(n−1)(t0) = xn0.

(1.21)
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A function φ is a solution of (1.21) if φ is a solution of (1.20) on some interval
containing t0 and if φ(t0) = x10, . . . , φ

(n−1)(t0) = xn0.
As in the case of systems of first-order ordinary differential equations, we

can point to several important special cases. Specifically, we consider equations
of the form

y(n) + an−1(t)y(n−1) + · · · + a1(t)y(1) + a0(t)y = g(t), (1.22)

where ai ∈ C(J,R), i = 0, 1, . . . , n− 1, and g ∈ C(J,R). We refer to (1.22) as
a linear nonhomogeneous ordinary differential equation of order n.

If in (1.22) we let g(t) ≡ 0, then

y(n) + an−1(t)y(n−1) + · · · + a1(t)y(1) + a0(t)y = 0. (1.23)

We call (1.23) a linear homogeneous ordinary differential equation of order n.
If in (1.23) we have ai(t) ≡ ai, i = 0, 1, . . . , n− 1, then

y(n) + an−1y
(n−1) + · · · + a1y

(1) + a0y = 0, (1.24)

and we call (1.24) a linear, autonomous, homogeneous ordinary differential
equation of order n.

As in the case of systems of first-order ordinary differential equations, we
can define periodic and linear periodic ordinary differential equations of order
n in the obvious way.

It turns out that the theory of nth-order ordinary differential equations
can be reduced to the theory of a system of n first-order ordinary differential
equations. To demonstrate this, we let y = x1, y

(1) = x2, . . . , y
(n−1) = xn in

(1.21). We now obtain the system of first-order ordinary differential equations

ẋ1 = x2

ẋ2 = x3

...
ẋn = h(t, x1, . . . , xn)

(1.25)

that is defined for all (t, x1, . . . , xn) ∈ D. Assume that φ = (φ1, . . . , φn)T is a
solution of (1.25) on an interval J . Since φ2 = φ̇1, φ3 = φ̇2, . . . , φn = φ

(n−1)
1 ,

and since

h(t, φ1(t), . . . , φn(t)) = h(t, φ1(t), φ
(1)
1 (t), . . . , φ(n−1)

1 (t))

= φ
(n)
1 (t),

it follows that the first component φ1 of the vector φ is a solution of
(1.20) on the interval J . Conversely, if φ1 is a solution of (1.20) on J ,
then the vector (φ, φ(1), . . . , φ(n−1))T is clearly a solution of (1.25). More-
over, if φ1(t0) = x10, . . . , φ

(n−1)
1 (t0) = xn0, then the vector φ satisfies

φ(t0) = x0 = (x10, . . . , xn0)T .
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1.4 Examples of Initial-Value Problems

We now give several specific examples of initial-value problems.

Example 1.1. The mechanical system of Figure 1.2 consists of two point
masses M1 and M2 that are acted upon by viscous damping forces (deter-
mined by viscous damping constants B,B1, and B2), spring forces (specified
by the spring constants K,K1, and K2), and external forces f1 and f2. The
initial displacements of M1 and M2 at t0 = 0 are given by y1(0) and y2(0), re-
spectively, and their initial velocities are given by ẏ1(0) and ẏ2(0). The arrows
in Figure 1.2 indicate positive directions of displacement for M1 and M2.

Figure 1.2. An example of a mechanical circuit

Newton’s second law yields the following coupled second-order ordinary
differential equations that describe the motions of the masses in Figure 1.2
(letting y(2) = d2y/dt2 = ÿ),

M1ÿ1 + (B +B1)ẏ1 + (K +K1)y1 −Bẏ2 −Ky2 = f1(t)
M2ÿ2 + (B +B2)ẏ2 + (K +K2)y2 −B1ẏ1 −Ky1 = −f2(t)

(1.26)

with initial data y1(0), y2(0), ẏ1(0), and ẏ2(0).
Letting x1 = y1, x2 = ẏ1, x3 = y2, and x4 = ẏ2, we can express (1.26)

equivalently by the system of first-order ordinary differential equations
⎡
⎢⎢⎣
ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 0 0
−(K1+K)

M1

−(B1+B)
M1

K
M1

B
M1

0 0 0 1
K
M2

B
M2

−(K+K2)
M2

−(B+B2)
M2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0
1
M1
f1(t)
0

−1
M2
f2(t)

⎤
⎥⎥⎦ (1.27)

with initial data given by x(0) = (x1(0), x2(0), x3(0), x4(0))T .
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Example 1.2. Using the node voltages v1, v2, and v3 and applying Kirch-
hoff’s current law, we can describe the behavior of the electric circuit given
in Figure 1.3 by the system of first-order ordinary differential equations

⎡
⎣
v̇1
v̇2
v̇3

⎤
⎦ =

⎡
⎢⎢⎣
− 1
C1

(
1
R1

+ 1
R2

)
1

R2C1
0

− 1
C1

(
1
R1

+ 1
R2

)
−
(
R2
L − 1

R2C1

)
R2
L

1
R2C2

− 1
R2C2

0

⎤
⎥⎥⎦

⎡
⎣
v1
v2
v3

⎤
⎦+

⎡
⎣

v
R1C1
v

R1C1

0

⎤
⎦ . (1.28)

To complete the description of this circuit, we specify the initial data at
t0 = 0, given by v1(0), v2(0), and v3(0).

L

v2v1R1 R2

v

+

–
v3

C2

C1

Figure 1.3. An example of an electric circuit

Example 1.3. Figure 1.4 represents a simplified model of an armature voltage-
controlled dc servomotor consisting of a stationary field and a rotating arma-
ture and load. We assume that all effects of the field are negligible in the
description of this system. The various parameters and variables in Figure 1.4
are ea = externally applied armature voltage, ia = armature current, Ra =
resistance of the armature winding, La = armature winding inductance, em
= back-emf voltage induced by the rotating armature winding, B = viscous
damping due to bearing friction, J = moment of inertia of the armature
and load, and θ = shaft position. The back-emf voltage (with the polarity as
shown) is given by

em = Kθθ̇, (1.29)

where Kθ > 0 is a constant, and the torque T generated by the motor is given
by

T = KT ia. (1.30)

Application of Newton’s second law and Kirchhoff’s voltage law yields

Jθ̈ +Bθ̇ = T (t) (1.31)

and
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Figure 1.4. An example of an electro-mechanical system circuit

La
dia
dt

+Raia + em = ea. (1.32)

Combining (1.29) to (1.32) and letting x1 = θ, x2 = θ̇, and x3 = ia yields the
system of first-order ordinary differential equations

⎡
⎣
ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣
0 1 0
0 −B/J KT /J
0 −Kθ/La −Ra/La

⎤
⎦
⎡
⎣
x1

x2

x3

⎤
⎦+

⎡
⎣

0
0

ea/La

⎤
⎦ . (1.33)

A suitable set of initial data for (1.33) is given by t0 = 0 and
(x1(0), x2(0), x3(0))T = (θ(0), θ̇(0), ia(0))T .

Example 1.4. A much studied ordinary differential equation is given by

ẍ+ f(x)ẋ + g(x) = 0, (1.34)

where f ∈ C1(R,R) and g ∈ C1(R,R).
When f(x) ≥ 0 for all x ∈ R and xg(x) > 0 for all x �= 0, then (1.34)

is called the Lienard Equation. This equation can be used to represent, e.g.,
RLC circuits with nonlinear circuit elements.

Another important special case of (1.34) is the van der Pol Equation given
by

ẍ− ε(1 − x2)ẋ+ x = 0, (1.35)

where ε > 0 is a parameter. This equation has been used to represent certain
electronic oscillators.

If in (1.34), f(x) ≡ 0, we obtain
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ẍ+ g(x) = 0. (1.36)

When xg(x) > 0 for all x �= 0, then (1.36) represents various models of so-
called “mass on a nonlinear spring.” In particular, if g(x) = k(1 + a2x2)x,
where k > 0 and a2 > 0 are parameters, then g represents the restoring
force of a hard spring. If g(x) = k(1 − a2x2)x, where k > 0 and a2 > 0
are parameters, then g represents the restoring force of a soft spring. Finally,
if g(x) = kx, then g represents the restoring force of a linear spring. (See
Figures 1.5 and 1.6.)

Figure 1.5. Mass on a nonlinear spring

Figure 1.6. Mass on a nonlinear spring

For another special case of (1.34), let f(x) ≡ 0 and g(x) = k sinx, where
k > 0 is a parameter. Then (1.34) assumes the form

ẍ+ k sinx = 0. (1.37)

This equation describes the motion of a point mass moving in a circular path
about the axis of rotation normal to a constant gravitational field, as shown in
Figure 1.7. The parameter k depends on the radius l of the circular path, the
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gravitational acceleration g, and the mass. The symbol x denotes the angle
of deflection measured from the vertical. The present model is called a simple
pendulum.

Figure 1.7. Model of a simple pendulum

Letting x1 = x and x2 = ẋ, the second-order ordinary differential equation
(1.34) can be represented by the system of first-order ordinary differential
equations given by

ẋ1 = x2,

ẋ2 = −f(x1)x2 − g(x1).
(1.38)

The required initial data for (1.38) are given by x1(0) and x2(0).

1.5 Solutions of Initial-Value Problems: Existence,
Continuation, Uniqueness, and Continuous Dependence
on Parameters

The following examples demonstrate that it is necessary to impose restric-
tions on the right-hand side of equation (1.11) to ensure the existence and
uniqueness of solutions of the initial-value problem (1.12).

Example 1.5. For the initial-value problem,

ẋ = g(x), x(0) = 0, (1.39)
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where x ∈ R, and

g(x) =

{
1, x = 0,
0, x �= 0,

there exists no differentiable function φ that satisfies (1.39). Hence, no solution
exists for this initial-value problem (in the sense defined in this chapter).

Example 1.6. The initial-value problem

ẋ = x1/3, x(t0) = 0, (1.40)

where x ∈ R, has at least two solutions given by φ1(t) = [23 (t − t0)]3/2 and
φ2(t) = 0 for t ≥ t0.

Example 1.7. The initial-value problem

ẋ = ax, x(t0) = x0, (1.41)

where x ∈ R, has a unique solution given by φ(t) = ea(t−t0)x(t0) for t ≥ t0.

The following result provides a set of sufficient conditions for the existence
of solutions of initial-value problem (1.12).

Theorem 1.8. Let f ∈ C(D,Rn). Then for any (t0, x0) ∈ D, the initial-value
problem (1.12) has a solution defined on [t0, t0 + c) for some c > 0. �

For a proof of Theorem 1.8, which is called the Cauchy–Peano Existence
Theorem, refer to [1, Section 1.6].

The next result provides a set of sufficient conditions for the uniqueness
of solutions for the initial-value problem (1.12).

Theorem 1.9. Let f ∈ C(D,Rn). Assume that for every compact set K ⊂ D,
f satisfies the Lipschitz condition

‖ f(t, x) − f(t, y) ‖≤ LK ‖ x− y ‖ (1.42)

for all (t, x), (t, y) ∈ K where LK > 0 is a constant depending only on K.
Then (1.12) has at most one solution on any interval [t0, t0 + c), c > 0. �

For a proof of Theorem 1.9, refer to [1, Section 1.8]. In particular, if f ∈
C1(D,Rn), then the local Lipschitz condition (1.42) is automatically satisfied.

Now let φ be a solution of (1.11) on an interval J . By a continuation or
extension of φ, we mean an extension φ0 of φ to a larger interval J0 in such
a way that the extension solves (1.11) on J0. Then φ is said to be continued
or extended to the larger interval J0. When no such continuation is possible,
then φ is called noncontinuable.
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Example 1.10. The scalar differential equation

ẋ = x2 (1.43)

has a solution φ(t) = 1
1−t defined on J = (−1, 1). This solution is continuable

to the left to −∞ and is not continuable to the right.

Example 1.11. The differential equation

ẋ = x1/3, (1.44)

where x ∈ R, has a solution ψ(t) ≡ 0 on J = (−∞, 0). This solution is
continuable to the right in more than one way. For example, both ψ1(t) ≡ 0
and ψ2(t) = (2t

3 )3/2 are solutions of (1.44) for t ≥ 0.

In the next result, ∂D denotes the boundary of a domainD and ∂J denotes
the boundary of an interval J .

Theorem 1.12. If f ∈ C(D,Rn) and if φ is a solution of (1.11) on an open
interval J , then φ can be continued to a maximal open interval J∗ ⊃ J in
such a way that (t, φ(t)) tends to ∂D as t → ∂J∗ when ∂D is not empty
and |t| + |φ(t)| → ∞ if ∂D is empty. The extended solution φ∗ on J∗ is
noncontinuable. �

For a proof of Theorem 1.12, refer to [1, Section 1.7].
When D = J×Rn for some open interval J and f satisfies a Lipschitz con-

dition there (with respect to x), we have the following very useful continuation
result.

Theorem 1.13. Let f ∈ C(J × Rn, Rn) for some open interval J ⊂ R and
let f satisfy a Lipschitz condition on J×Rn (with respect to x). Then for any
(t0, x0) ∈ J ×Rn, the initial-value problem (1.12) has a unique solution that
exists on the entire interval J . �

For a proof of Theorem 1.13, refer to [1, Section 1.8].
In the next result we address initial-value problems that exhibit depen-

dence on some parameter λ ∈ G ⊂ Rm given by

ẋ = f(t, x, λ),
x(τ) = ξλ,

(1.45)

where f ∈ C(J × Rn × G,Rn), J ⊂ R is an open interval, and ξλ depends
continuously on λ.
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Theorem 1.14. Let f ∈ C(J×Rn×G,Rn), where J ⊂ R is an open interval
and G ⊂ Rm. Assume that for each pair of compact subsets J0 ⊂ J and G0 ⊂
G, there exists a constant L = LJ0,G0 > 0 such that for all (t, λ) ∈ J0 × G0,
x, y ∈ Rn, the Lipschitz condition

‖ f(t, x, λ) − f(t, y, λ) ‖≤ L ‖ x− y ‖ (1.46)

is true. Then the initial-value problem (1.45) has a unique solution φ(t, τ, λ),
where φ ∈ C(J × J × G,Rn). Furthermore, if D is a set such that for all
λ0 ∈ D there exists ε > 0 such that [λ0 − ε, λ0 + ε] ∩D ⊂ D, then φ(t, τ, λ) →
φ(t, τ0, λ0) uniformly for t0 ∈ J0 as (τ, λ) → (τ0, λ0), where J0 is any compact
subset of J . (Recall that the upper bar denotes closure of a set.) �

For a proof of Theorem 1.14, refer to [1, Section 1.9].
Note that Theorem 1.14 applies in the case of Example 1.7 and that the

solution φ(t) of (1.41) depends continuously on the parameter a and the initial
conditions x(t0) = x0.

When Theorem 1.9 is satisfied, it is possible to approximate the unique
solutions of the initial-value problem (1.12) arbitrarily closely, using the
method of successive approximations (also known as Picard iterations). Let
f ∈ C(D,Rn), let K ⊂ D be a compact set, and let (t0, x0) ∈ K. Successive
approximations for (1.12), or equivalently for (1.13), are defined as

φ0(t) = x0,

φm+1(t) = x0 +
∫ t

t0

f(s, φm(s))ds, m = 0, 1, 2, . . .
(1.47)

for t0 ≤ t ≤ t0 + c, for some c > 0.

Theorem 1.15. If f ∈ C(D,Rn) and if f is Lipschitz continuous on some
compact set K ⊂ D with constant L (with respect to x), then the successive
approximations φm,m = 0, 1, 2, . . . given in (1.47) exist on [t0, t0 + c], are
continuous there, and converge uniformly, as m→ ∞, to the unique solution
φ of (1.12). (Thus, for every ε > 0 there exists N = N(ε) such that for all
t ∈ [t0, t0 + c], ‖ φ(t) − φm(t) ‖< ε whenever m > N(ε).) �

For the proof of Theorem 1.15, refer to [1, Section 1.8].

1.6 Systems of Linear First-Order Ordinary Differential
Equations

In this section we will address linear ordinary differential equations of the
form

ẋ = A(t)x+ g(t) (1.48)

and
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ẋ = A(t)x (1.49)

and
ẋ = Ax+ g(t) (1.50)

and
ẋ = Ax, (1.51)

where x ∈ Rn, A(t) = [aij(t)] ∈ C(R,Rn×n), g ∈ C(R,Rn), and A ∈ Rn×n.
Linear equations of the type enumerated above may arise in a natural

manner in the modeling process of physical systems (see Section 1.4 for specific
examples) or in the process of linearizing equations of the form (1.11) or (1.14)
or some other kind of form.

1.6.1 Linearization

We consider the system of first-order ordinary differential equations given by

ẋ = f(t, x), (1.52)

where f : R×D → Rn and D ⊂ Rn is some domain.

Linearization About a Solution φ

If f ∈ C1(R × D,Rn) and if φ is a given solution of (1.52) defined for all
t ∈ R, then we can linearize (1.52) about φ in the following manner. Define
δx = x− φ(t) so that

d(δx)
dt

� δẋ = f(t, x) − f(t, φ(t))

= f(t, δx+ φ(t)) − f(t, φ(t))

=
∂f

∂x
(t, φ(t))δx + F (t, δx), (1.53)

where ∂f
∂x (t, x) denotes the Jacobian matrix of f(t, x) = (f1(t, x), . . . , fn(t, x))T

with respect to x = (x1, . . . , xn)T ; i.e.,

∂f

∂x
(t, x) =

⎡
⎢⎣
∂f1
∂x1

(t, x) · · · ∂f1
∂xn

(t, x)
...

...
∂fn

∂x1
(t, x) · · · ∂fn

∂xn
(t, x)

⎤
⎥⎦ (1.54)

and
F (t, δx) � [f(t, δx+ φ(t)) − f(t, φ(t)] − ∂f

∂x
(t, φ(t))δx. (1.55)

It turns out that F (t, δx) is o(‖ δx ‖) as ‖ δx ‖→ 0 uniformly in t on compact
subsets of R; i.e., for any compact subset I ⊂ R, we have
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lim
‖δx‖→0

(
sup
t∈I

‖ F (t, δx) ‖
‖ δx ‖

)
= 0.

For a proof of this assertion, we refer the reader to [1, Section 1.11].
Letting

∂f

∂x
(t, φ(t)) = A(t),

we obtain from (1.53) the equation

d(δx)
dt

� δẋ = A(t)δx+ F (t, δx). (1.56)

Associated with (1.56) we have the linear differential equation

ż = A(t)z, (1.57)

called the linearized equation of (1.52) about the solution φ.
In applications, the linearization (1.57) of (1.52), about a given solution

φ, is frequently used as a means of approximating a nonlinear process by a
linear one (in the vicinity of φ). In Chapter 4, where we will study the sta-
bility properties of equilibria of (1.52) [which are specific kinds of solutions of
(1.52)], we will show under what conditions it makes sense to deduce qualita-
tive properties of a nonlinear process from its linearization.

Of special interest is the case when in (1.52), f is independent of t, i.e.,

ẋ = f(x) (1.58)

and φ is a constant solution of (1.58), say, φ(t) = x0 for all t ∈ R. Under these
conditions we have

d(δx)
dt

� δẋ = Aδx+ F (δx), (1.59)

where

lim
‖δx‖→0

‖ F (δx) ‖
‖ δx ‖ = 0 (1.60)

and A denotes the Jacobian ∂f
∂x (x0). Again, associated with (1.59) we have

the linear differential equation

ż = Az,

called the linearized equation of (1.58) about the solution φ(t) ≡ x0.

Linearization About a Solution φ and an Input ψ

We can generalize the above to equations of the form

ẋ = f(t, x, u), (1.61)
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where f : R × D1 × D2 → Rn and D1 ⊂ Rn, D2 ⊂ Rm are some domains.
If f ∈ C1(R ×D1 ×D2, R

n) and if φ(t) is a given solution of (1.61) that we
assume to exist for all t ∈ R and that is determined by the initial condition
x0 and the given specific function ψ ∈ C(R,Rm), i.e.,

φ̇(t) = f(t, φ(t), ψ(t)), t ∈ R,

then we can linearize (1.61) in the following manner. Define δx = x−φ(t) and
δu = u− ψ(t). Then

d(δx)
dt

= δẋ = ẋ− φ̇(t) = f(t, x, u) − f(t, φ(t), ψ(t))

= f(t, δx+ φ(t), δu + ψ(t)) − f(t, φ(t), ψ(t))

=
∂f

∂x
(t, φ(t), ψ(t))δx +

∂f

∂u
(t, φ(t), ψ(t))δu

+ F1(t, δx, u) + F2(t, δu), (1.62)

where

F1(t, δx, u) = f(t, δx+ φ(t), u) − f(t, φ(t), u) − ∂f

∂x
(t, φ(t), ψ(t))δx

is o(||δx||) as ‖ δx ‖→ 0, uniformly in t on compact subsets ofR for fixed u [i.e.,
for fixed u and for any compact subset I ⊂ R, lim

‖δx‖→0

(
supt∈I

‖F1(t,δx,u)‖
‖δx‖

)
=

0], where

F2(t, δu) = f(t, φ(t), δu+ ψ(t)) − f(t, φ(t), ψ(t)) − ∂f

∂u
(t, φ(t), ψ(t))δu

is o(‖ δu ‖) as ‖ δu ‖→ 0, uniformly in t on compact subsets of R [i.e., for any
compact subset I ⊂ R, lim‖δu‖→0

(
supt∈I

‖F2(t,δu)‖
‖δu‖

)
= 0], and where ∂f

∂x (·)
and ∂f

∂u (·) denote the Jacobian matrix of f with respect to x and the Jacobian
matrix of f with respect to u, respectively.

Letting

∂f

∂x
(t, φ(t), ψ(t)) = A(t) and

∂f

∂u
(t, φ(t), ψ(t)) = B(t),

we obtain from (1.62),

d(δx)
dt

= δẋ = A(t)δx +B(t)δu + F1(t, δx, u) + F2(t, δu). (1.63)

Associated with (1.63), we have

ż = A(t)z +B(t)v. (1.64)

We call (1.64) the linearized equation of (1.61) about the solution φ and the
input function ψ.
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As in the case of the linearization of (1.52) by (1.49), the linearization
(1.64) of system (1.61) about a given solution φ and a given input ψ is often
used in attempting to capture the qualitative properties of a nonlinear process
by a linear process (in the vicinity of φ and ψ). In doing so, great care must
be exercised to avoid erroneous conclusions.

The motivation of linearization is of course very obvious: much more is
known about linear ordinary differential equations than about nonlinear ones.
For example, the explicit forms of the solutions of (1.51) and (1.50) are known;
the structures of the solutions of (1.49), (1.48), and (1.64) are known; the
qualitative properties of the solutions of linear equations are known; and so
forth.

1.6.2 Examples

We now consider some specific cases.

Example 1.16. We consider the simple pendulum discussed in Example 1.4
and described by the equation

ẍ+ k sinx = 0, (1.65)

where k > 0 is a constant. Letting x1 = x and x2 = ẋ, (1.65) can be expressed
as

ẋ1 = x2,

ẋ2 = −k sinx1. (1.66)

It is easily verified that φ1(t) ≡ 0 and φ2(t) ≡ 0 is a solution of (1.66).
Letting f1(x1, x2) = x2 and f2(x1, x2) = −k sinx1, the Jacobian of f(x1, x2) =
(f1(x1, x2), f2(x1, x2))T evaluated at (x1, x2)T = (0, 0)T is given by

J(0) � A =
[

0 1
−k cosx1 0

]
[
x1=0
x2=0

] =
[

0 1
−k 0

]
.

The linearized equation of (1.66) about the solution φ1(t) ≡ 0, φ2(t) ≡ 0 is
given by [

ż1
ż2

]
=
[

0 1
−k 0

] [
z1
z2

]
.

Example 1.17. The system of equations

ẋ1 = ax1 − bx1x2 − cx2
1,

ẋ2 = dx2 − ex1x2 − fx2
2 (1.67)
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describes the growth of two competing species (e.g., two species of small fish)
that prey on each other (e.g., the adult members of one species prey on the
young members of the other species, and vice versa). In (1.67) a, b, c, d, e, and
f are positive parameters and it is assumed that x1 ≥ 0 and x2 ≥ 0. For
(1.67), φ1(t) = φ1(t, 0, 0) ≡ 0 and φ2(t) = φ2(t, 0, 0) ≡ 0, t ≥ 0, is a solution
of (1.67). A simple computation yields

A =
∂f

∂x
(0) =

[
a 0
0 d

]
,

and thus the system of equations
[
ż1
ż2

]
=
[
a 0
0 d

] [
z1
z2

]

constitutes the linearized equation of (1.67) about the solution φ1(t) =
0, φ2(t) = 0, t ≥ 0.

Example 1.18. Consider a unit mass subjected to an inverse square law force
field, as depicted in Figure 1.8. In this figure, r denotes radius and θ denotes
angle, and it is assumed that the unit mass (representing, e.g., a satellite) can
thrust in the radial and in the tangential directions with thrusts u1 and u2,
respectively. The equations that govern this system are given by

r̈ = rθ̇2 − k

r2
+ u1,

θ̈ =
−2θ̇ṙ
r

+
1
r
u2.

(1.68)

m = 1
r

θ

u1

u2

Figure 1.8. A unit mass subjected to an inverse square law force field

When r(0) = r0, ṙ(0) = 0, θ(0) = θ0, θ̇(0) = ω0, and u1(t) ≡ 0, u2(t) ≡ 0
for t ≥ 0, it is easily verified that the system of equations (1.68) has as a
solution the circular orbit given by
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r(t) ≡ r0 = constant,

θ̇(t) = ω0 = constant
(1.69)

for all t ≥ 0, which implies that

θ(t) = ω0t+ θ0, (1.70)

where ω0 = (k/r30)
1/2.

If we let x1 = r, x2 = ṙ, x3 = θ, and x4 = θ̇, the equations of motion
(1.68) assume the form

ẋ1 = x2,

ẋ2 = x1x
2
4 −

k

x2
1

+ u1,

ẋ3 = x4,

ẋ4 = −2x2x4

x1
+
u2

x1
.

(1.71)

The linearized equation of (1.71) about the solution (1.70) [with u1(t) ≡
0, u2(t) ≡ 0] is given by

⎡
⎢⎢⎣
ż1
ż2
ż3
ż4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
3ω2

0 0 0 2r0ω0

0 0 0 1
0 −2ω0

r0
0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
z1
z2
z3
z4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 0
1 0
0 0
0 1
r0

⎤
⎥⎥⎦
[
v1
v2

]
.

Example 1.19. In this example we consider systems described by equations
of the form

ẋ+Af(x) +Bg(x) = u, (1.72)

where x ∈ Rn, A = [aij ] ∈ Rn×n, B = [bij ] ∈ Rn×n with aii > 0, bii > 0,
1 ≤ i ≤ n, f, g ∈ C1(Rn, Rn), u ∈ C(R+, Rn), and f(x) = 0, g(x) = 0 if and
only if x = 0.

Equation (1.72) can be used to model a great variety of physical sys-
tems. In particular, (1.72) has been used to model a large class of inte-
grated circuits consisting of (nonlinear) transistors and diodes, (linear) ca-
pacitors and resistors, and current and voltage sources. (Figure 1.9 gives a
symbolic representation of such circuits.) For such circuits, we assume that
f(x) = [f1(x1), . . . , fn(xn)]T .

If u(t) = 0 for all t ≥ 0, then φi(t) = 0, t ≥ 0, 1 ≤ i ≤ n, is a solution of
(1.72).

The system of equations (1.72) can be expressed equivalently as

ẋi = −
n∑
j=1

[
aij

fj(xj)
xj

+ bij
gj(xj)
xj

]
xj + ui, (1.73)
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Figure 1.9. Integrated circuit

i = 1, . . . , n. The linearized equation of (1.73) about the solution φi(t) = 0,
and the input ui(t) = 0, t ≥ 0, i = 1, . . . , n, is given by

żi = −
n∑
j=1

[
aijf

′
j(0) + bijg

′
j(0)

]
zj + vi, (1.74)

where f ′
j(0) = dfj

dxj
(0) and g′j(0) = dgj

dxj
(0), i = 1, . . . , n.

1.7 Linear Systems: Existence, Uniqueness,
Continuation, and Continuity with Respect to
Parameters of Solutions

In this section we address nonhomogeneous systems of first-order ordinary
differential equations given by

ẋ = A(t)x + g(t), (1.75)

where x ∈ Rn, A(t) = [aij(t)] is a real n × n matrix and g is a real n-vector-
valued function.

Theorem 1.20. Suppose that A ∈ C(J,Rn×n) and g ∈ C(J,Rn), where J is
some open interval. Then for any t0 ∈ J and any x0 ∈ Rn, equation (1.75)
has a unique solution satisfying x(t0) = x0. This solution exists on the entire
interval J and is continuous in (t, t0, x0).

Proof. The function f(t, x) = A(t)x + g(t) is continuous in (t, x), and more-
over, for any compact subinterval J0 ⊂ J , there is an L0 ≥ 0 such that

‖ f(t, x) − f(t, y) ‖1 =‖ A(t)(x − y) ‖1≤‖ A(t) ‖1‖ x− y ‖1

≤
(

n∑
i=1

max
1≤j≤n

|aij(t)|
)

‖ x− y ‖1≤ L0 ‖ x− y ‖1

for all (t, x), (t, y) ∈ J0×Rn, where L0 is defined in the obvious way. Therefore,
f satisfies a Lipschitz condition on J0 ×Rn.
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If (t0, x0) ∈ J0 × Rn, then the continuity of f implies the existence of
solutions (Theorem 1.8), whereas the Lipschitz condition implies the unique-
ness of solutions (Theorem 1.9). These solutions exist for the entire interval
J0 (Theorem 1.13). Since this argument holds for any compact subinterval
J0 ⊂ J , the solutions exist and are unique for all t ∈ J . Furthermore, the
solutions are continuous with respect to t0 and x0 (Theorem 1.14 modified for
the case where A and g do not depend on any parameters λ). �

For the case when in (1.75) the matrix A and the vector g depend con-
tinuously on parameters λ and μ, respectively, it is possible to modify Theo-
rem 1.20, and its proof, in the obvious way to show that the unique solutions
of the system of equations

ẋ = A(t, λ)x + g(t, μ) (1.76)

are continuous in λ and μ as well. [Assume that A ∈ C(J × Rl, Rn×n) and
g ∈ C(J × Rm, Rn) and follow a procedure that is similar to the proof of
Theorem 1.20.]

1.8 Solutions of Linear State Equations

In this section we determine the specific form of the solutions of systems of
linear first-order ordinary differential equations. We will revisit this topic in
much greater detail in Chapter 3.

Homogeneous Equations

We begin by considering linear homogeneous systems

ẋ = A(t)x, (1.77)

where A ∈ C(R,Rn×n). By Theorem 1.20, for every x0 ∈ Rn, (1.77) has
a unique solution that exists for all t ∈ R. We will now use Theorem 1.15
to derive an expression for the solution φ(t, t0, x0) for (1.77) for t ∈ R with
φ(t0, t0, x0) = x0. In this case the successive approximations given in (1.47)
assume the form

φ0(t, t0, x0) = x0,

φ1(t, t0, x0) = x0 +
∫ t

t0

A(s)x0ds,

φ2(t, t0, x0) = x0 +
∫ t

t0

A(s)φ1(s, t0, x0)ds,

· · ·

φm(t, t0, x0) = x0 +
∫ t

t0

A(s)φm−1(s, t0, x0)ds,
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or

φm(t, t0, x0) = x0 +
∫ t

t0

A(s1)x0ds1 +
∫ t

t0

A(s1)
∫ s1

t0

A(s2)x0ds2ds1 + · · ·

+
∫ t

t0

A(s1)
∫ s1

t0

A(s2) · · ·
∫ sm−1

t0

A(sm)x0dsm · · · ds1

=
[
I +

∫ t

t0

A(s1)ds1 +
∫ t

t0

A(s1)
∫ s1

t0

A(s2)ds2ds1 + · · ·

+
∫ t

t0

A(s1)
∫ s1

t0

A(s2) · · ·
∫ sm−1

t0

A(sm)dsm · · · ds1
]
x0,

(1.78)

where I denotes the n × n identity matrix. By Theorem 1.15, the sequence
{φm},m = 0, 1, 2, . . . determined by (1.78) converges uniformly, as m → ∞,
to the unique solution φ(t, t0, x0) of (1.77) on compact subsets of R. We thus
have

φ(t, t0, x0) = Φ(t, t0)x0, (1.79)

where

Φ(t, t0) = I +
∫ t

t0

A(s1)ds1 +
∫ t

t0

A(s1)
∫ s1

t0

A(s2)ds2ds1

+
∫ t

t0

A(s1)
∫ s1

t0

A(s2)
∫ s2

t0

A(s3)ds3ds2ds1 + · · ·

+
∫ t

t0

A(s1)
∫ s1

t0

A(s2) . . .
∫ sm−1

t0

A(sm)dsmdsm−1 · · ·ds1 + · · · .

(1.80)

Expression (1.80) is called the Peano–Baker series.
From expression (1.80) we immediately note that

Φ(t, t) = I. (1.81)

Furthermore, by differentiating expression (1.80) with respect to time and-
substituting into (1.77), we obtain that

Φ̇(t, t0) = A(t)Φ(t, t0). (1.82)

From (1.79) it is clear that once the initial data are specified and once the
n× n matrix Φ(t, t0) is known, the entire behavior of system (1.77) evolving
in time t is known. This has motivated the state terminology: x(t0) = x0

is the state of the system (1.77) at time t0, φ(t, t0, x0) is the state of the
system (1.77) at time t, the solution φ is called the state vector of (1.77),
the components of φ are called the state variables of (1.77), and the matrix
Φ(t, t0) that maps x(t0) into φ(t, t0, x0) is called the state transition matrix
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for (1.77). Also, the vector space containing the state vectors is called the
state space for (1.77).

We can specialize the preceding discussion to linear systems of equations

ẋ = Ax. (1.83)

In this case the mth term in (1.80) assumes the form

∫ t

t0

A(s1)
∫ s1

t0

A(s2)
∫ s2

t0

A(s3) . . .
∫ sm−1

t0

A(sm)dsm · · · ds1

= Am
∫ t

t0

∫ s1

t0

∫ s2

t0

. . .

∫ sm−1

t0

1dsm · · · ds1 =
Am(t− t0)m

m!
,

and expression (1.78) for φm assumes now the form

φm(t, t0, x0) =

[
I +

m∑
k=1

Ak(t− t0)k

k!

]
x0.

We conclude once more from Theorem 1.15 that {φm} converges uniformly as
m→ ∞ to the unique solution φ(t, t0, x0) of (1.83) on compact subsets of R.
We have

φ(t, t0, x0) =

[
I +

∞∑
k=1

Ak(t− t0)k

k!

]
x0

= Φ(t, t0)x0 � Φ(t− t0)x0, (1.84)

where Φ(t − t0) denotes the state transition matrix for (1.83). [Note that by
writing Φ(t, t0) = Φ(t − t0), we have used a slight abuse of notation.] By
making the analogy with the scalar ea = 1 +

∑∞
k=1

ak

k! , usage of the notation

eA = I +
∞∑
k=1

Ak

k!
(1.85)

should be clear. We call eA a matrix exponential. In Chapter 3 we will explore
several ways of determining eA for a given A.

Nonhomogeneous Equations

Next, we consider linear nonhomogeneous systems of ordinary differential
equations

ẋ = A(t)x + g(t), (1.86)

where A ∈ C(R,Rn×n) and g ∈ C(R,Rn). Again, by Theorem 1.20, for
every x0 ∈ Rn, (1.86) has a unique solution that exists for all t ∈ R. In-
stead of deriving the complete solution of (1.86) for a given set of initial data
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x(t0) = x0, we will guess the solution and verify that it indeed satisfies (1.86).
To this end, let us assume that the solution is of the form

φ(t, t0, x0) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, s)g(s)ds, (1.87)

where Φ(t, t0) denotes the state transition matrix for (1.77).
To show that (1.87) is indeed the solution of (1.86), we first let t = t0. In

view of (1.81) and (1.87), we have φ(t0, t0, x0) = x0. Next, by differentiating
both sides of (1.87) and by using (1.81), (1.82), and (1.87), we have

φ̇(t, t0, x0) = Φ̇(t, t0)x0 + Φ(t, t)g(t) +
∫ t

t0

Φ̇(t, s)g(s)ds

= A(t)Φ(t, t0)x0 + g(t) +
∫ t

t0

A(t)Φ(t, s)g(s)ds

= A(t)[Φ(t, t0)x0 +
∫ t

t0

Φ(t, s)g(s)ds] + g(t)

= A(t)φ(t, t0, x0) + g(t);

i.e., φ(t, t0, x0) given in (1.87) satisfies (1.86). Therefore, φ(t, t0, x0) is the
unique solution of (1.86). Equation (1.87) is called the variation of constants
formula, which is discussed further in Chapter 3. In the exercise section of
Chapter 3 (refer to Exercise 3.13), we ask the reader (with hints) to derive
the variation of constants formula (1.87), using a change of variables.

We note that when x0 = 0, (1.87) reduces to

φ(t, t0, 0) � φp(t) =
∫ t

t0

Φ(t, s)g(s)ds (1.88)

and when x0 �= 0 but g(t) = 0 for all t ∈ R, (1.87) reduces to

φ(t, t0, x0) � φh(t) = Φ(t, t0)x0. (1.89)

Therefore, the total solution of (1.86) may be viewed as consisting of a compo-
nent that is due to the initial conditions (t0, x0) and another component that
is due to the forcing term g(t). This type of separation is in general possible
only in linear systems of differential equations. We call φp a particular solution
of the nonhomogeneous system (1.86) and φh the homogeneous solution.

From (1.87) it is clear that for given initial conditions x(t0) = x0 and given
forcing term g(t), the behavior of system (1.86), summarized by φ, is known
for all t. Thus, φ(t, t0, x0) specifies the state vectorof (1.86) at time t. The
components φi of φ, i = 1, . . . , n, represent the state variables for (1.86), and
the vector space that contains the state vectors is the state space for (1.86).

Before closing this section, it should be pointed out that in applications
the matrix A(t) and the vector g(t) in (1.86) may be only piecewise continu-
ous rather than continuous, as assumed above [i.e., A(t) and g(t) may have
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(at most) a finite number of discontinuities over any finite time interval]. In
such cases, the derivative of x with respect to t [i.e., the right-hand side in
(1.86)] will be discontinuous at a finite number of instants over any finite time
interval; however, the state itself, x, will still be continuous at these instants
[i.e., the solutions of (1.86) will still be continuous over R]. In such cases, all
the results presented concerning existence, uniqueness, continuation of solu-
tions, and so forth, as well as the explicit expressions of solutions of (1.86), are
either still valid or can be modified in the obvious way. For example, should
g(t) experience a discontinuity at, say, t1 > t0, then expression (1.87) will be
modified to read as follows:

φ(t, t0, x0) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, s)g(s)ds, t0 ≤ t < t1, (1.90)

φ(t, t1, x1) = Φ(t, t1)x1 +
∫ t

t1

Φ(t, s)g(s)ds, t ≥ t1, (1.91)

where x1 = limt→t−1
φ(t, t0, x0).

1.9 Summary and Highlights

• Initial-value problem

ẋ = f(t, x), x(t0) = x0 (1.12)

or

φ(t) = x0 +
∫ t

t0

f(s, φ(s))ds, (1.13)

where φ(t) is a solution of (1.12).
• Successive approximations

φ0(t) = x0,

φm+1(t) = x0 +
∫ t

t0

f(s, φm(s))ds, m = 0, 1, 2, . . . .
(1.47)

Under certain conditions (see Theorem 1.15) φm, m = 1, 2, converges
uniformly (on compact sets) as m→ ∞ to the unique solution of (1.12).

• Linearization
Given is ẋ = f(t, x) and a solution φ. The Jacobian matrix is

∂f

∂x
(t, x) =

⎡
⎢⎣
∂f1
∂x1

(t, x) · · · ∂f1
∂xn

(t, x)
...

...
∂fn

∂x1
(t, x) · · · ∂fn

∂xn
(t, x)

⎤
⎥⎦ . (1.54)

For A(t) = ∂f
∂x (t, φ(t)),

ż = A(t)z (1.57)

is the linearized equation about the solution φ.
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• Existence and uniqueness of solutions of

ẋ = A(t)x + g(t). (1.75)

See Theorem 1.20.
• The solution of

ẋ = A(t)x + g(t), (1.86)

with x(t0) = x0, is given by the variation of constants formula

φ(t, t0, x0) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, s)g(s)ds, (1.87)

where the state transition matrix Φ(t, t0) is given by

Φ(t, t0) = I +
∫ t

t0

A(s1)ds1 +
∫ t

t0

A(s1)
∫ s1

t0

A(s2)ds2ds1 + · · · (1.80)

the Peano–Baker series.
• In the time-invariant case ẋ = Ax,

φ(t, t0, x0) =

[
I +

∞∑
k=1

Ak(t− t0)k

k!

]
x0

= Φ(t, t0)x0 � Φ(t− t0)x0

= eA(t−t0)x0,

(1.84)

where

eA = I +
∞∑
k=1

Ak

k!
. (1.85)

1.10 Notes

For a classic reference on ordinary differential equations, see Coddington and
Levinson [3]. Other excellent sources include Brauer and Nohel [2], Hartman
[4], and Simmons [7]. Our treatment of ordinary differential equations in this
chapter was greatly influenced by Miller and Michel [6].
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Exercises

1.1. (Hamiltonian dynamical systems) Conservative dynamical systems, also
called Hamiltonian dynamical systems, are those systems that contain no
energy-dissipating elements. Such systems with n degrees of freedom can
be characterized by means of a Hamiltonian function H(p, q), where qT =
(q1, . . . , qn) denotes n generalized position coordinates and pT = (p1, . . . , pn)
denotes n generalized momentum coordinates. We assume that H(p, q) is of
the form

H(p, q) = T (q, q̇) +W (q), (1.92)

where T denotes the kinetic energy and W denotes the potential energy of
the system. These energy terms are obtained from the path-independent line
integrals

T (q, q̇) =
∫ q̇

0

p(q, ξ)Tdξ =
∫ q̇

0

n∑
i=1

pi(q, ξ)dξi, (1.93)

W (q) =
∫ q

0

f(η)Tdη =
∫ q

0

n∑
i=1

fi(η)dηi, (1.94)

where fi, i = 1, . . . , n, denote generalized potential forces.
For the integral (1.93) to be path-independent, it is necessary and sufficient

that
∂pi(q, q̇)
∂q̇j

=
∂pj(q, q̇)
∂q̇i

, i, j = 1, . . . , n. (1.95)

A similar statement can be made about (1.94).
Conservative dynamical systems are described by the system of 2n ordi-

nary differential equations

q̇i =
∂H

∂pi
(p, q), i = 1, . . . , n,

ṗi = −∂H
∂qi

(p, q), i = 1, . . . , n. (1.96)

Note that if we compute the derivative of H(p, q) with respect to t for (1.96)
[along the solutions qi(t), pi(t), i = 1, . . . , n], then we obtain, by the chain
rule,
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dH

dt
(p(t), q(t)) =

n∑
i=1

∂H

∂pi
(p, q)ṗi +

n∑
i=1

∂H

∂qi
(p, q)q̇i

=
n∑
i=1

−∂H
∂pi

(p, q)
∂H

∂qi
(p, q) +

n∑
i=1

∂H

∂qi
(p, q)

∂H

∂pi
(p, q)

= −
n∑
i=1

∂H

∂pi
(p, q)

∂H

∂qi
(p, q) +

n∑
i=1

∂H

∂pi
(p, q)

∂H

∂qi
(p, q) ≡ 0.

In other words, in a conservative system (1.96), the Hamiltonian, i.e., the total
energy, will be constant along the solutions (1.96). This constant is determined
by the initial data (p(0), q(0)).

(a) In Figure 1.10, M1 and M2 denote point masses; K1,K2,K denote spring
constants; and x1, x2 denote the displacements of the masses M1 and M2.
Use the Hamiltonian formulation of dynamical systems described above
to derive a system of first-order ordinary differential equations that char-
acterize this system. Verify your answer by using Newton’s second law of
motion to derive the same system of equations. Assume that x1(0), ẋ1(0),
x2(0), and ẋ2(0) are given.

Figure 1.10. Example of a conservative dynamical system

(b) In Figure 1.11, a point mass M is moving in a circular path about the
axis of rotation normal to a constant gravitational field (this is called the
simple pendulum problem). Here l is the radius of the circular path, g is the
gravitational acceleration, and θ denotes the angle of deflection measured
from the vertical. Use the Hamiltonian formulation of dynamical systems
described above to derive a system of first-order ordinary differential equa-
tions that characterize this system. Verify your answer by using Newton’s
second law of motion to derive the same system of equations. Assume that
θ(0) and θ̇(0) are given.

(c) Determine a system of first-order ordinary differential equations that char-
acterizes the two-link pendulum depicted in Figure 1.12. Assume that
θ1(0), θ2(0), θ̇1(0), and θ̇2(0) are given.

1.2. (Lagrange’s equation) If a dynamical system contains elements that dis-
sipate energy, such as viscous friction elements in mechanical systems and
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Figure 1.11. Simple pendulum

mθ 1

1

1

g

g

θ
m2

2

2

Figure 1.12. Two link pendulum

resistors in electric circuits, then we can use Lagrange’s equation to describe
such systems. (In the following, we use some of the same notation used in
Exercise 1.1.) For a system with n degrees of freedom, this equation is given
by

d

dt

(
∂L

∂q̇i
(q, q̇)

)
− ∂L

∂q
(q, q̇) +

∂D

∂q̇i
(q̇) = fi, i = 1, . . . , n, (1.97)

where qT = (q1, . . . , qn) denotes the generalized position vector. The function
L(q, q̇) is called the Lagrangian and is defined as

L(q, q̇) = T (q, q̇) −W (q),

i.e., the difference between the kinetic energy T and the potential energy W .
The function D(q̇) denotes Rayleigh’s dissipation function, which we shall

assume to be of the form

D(q̇) =
1
2

n∑
i=1

n∑
j=1

βij q̇iq̇j ,
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where [βij ] is a positive semidefinite matrix (i.e., [βij ] is symmetric and all of
its eigenvalues are nonnegative). The dissipation function D represents one-
half the rate at which energy is dissipated as heat. It is produced by friction
in mechanical systems and by resistance in electric circuits.

Finally, fi in (1.97) denotes an applied force and includes all external forces
associated with the qi coordinate. The force fi is defined as being positive
when it acts to increase the value of the coordinate qi.

(a) In Figure 1.13, M1 and M2 denote point masses; K1,K2,K denote spring
constants; y1, y2 denote the displacements of masses M1 and M2, respec-
tively; and B1, B2, B denote viscous damping coefficients. Use the La-
grange formulation of dynamical systems described above to derive two
second-order differential equations that characterize this system. Trans-
form these equations into a system of first-order ordinary differential equa-
tions. Verify your answer by using Newton’s second law of motion to derive
the same system equations. Assume that y1(0), ẏ(0), y2(0), and ẏ(0) are
given.

Figure 1.13. An example of a mechanical system with energy dissipation

(b) Consider the capacitor microphone depicted in Figure 1.14. Here we have
a capacitor constructed from a fixed plate and a moving plate with mass
M . The moving plate is suspended from the fixed frame by a spring with
a spring constant K and has some damping expressed by the damping
constant B. Sound waves exert an external force f(t) on the moving plate.
The output voltage vs, which appears across the resistor R, will reproduce
electrically the sound-wave patterns that strike the moving plate.
When f(t) ≡ 0 there is a charge q0 on the capacitor. This produces a
force of attraction between the plates that stretches the spring. When
sound waves exert a force on the moving plate, there will be a resulting
motion displacement x that is measured from the equilibrium position.
The distance between the plates will then be x0 − x, and the charge on
the plates will be q0 + q.
When displacements are small, the expression for the capacitance is given
approximately by
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C =
εA

x0 − x

with C0 = εA/x0, where ε > 0 is the dielectric constant for air and A is
the area of the plate.
Use the Lagrange formulation of dynamical systems to derive two second-
order ordinary differential equations that characterize this system. Trans-
form these equations into a system of first-order ordinary differential equa-
tions. Verify your answer by using Newton’s laws of motion and Kirchhoff’s
voltage/current laws. Assume that x(0), ẋ(0), q(0), and q̇(0) are given.

Figure 1.14. Capacitor microphone

(c) Use the Lagrange formulation to derive a system of first-order differential
equations for the system given in Example 1.3.

1.3. Find examples of initial-value problems for which (a) no solutions exist;
(b) more than one solution exists; (c) one or more solutions exist, but cannot
be continued for all t ∈ R; and (d) unique solutions exist for all t ∈ R.

1.4. (Numerical solution of ordinary differential equations—Euler’s method)
An approximation to the solution of the scalar initial-value problem

ẏ = f(t, y), y(t0) = y0 (1.98)

is given by Euler’s method ,

yk+1 = yk + hf(tk, yk), k = 0, 1, 2, . . . , (1.99)

where h = tk+1 − tk is the (constant) integration step. The interpretation of
this method is that the area below the solution curve is approximated by a
sequence of sums of rectangular areas. This method is also called the forward
rectangular rule (of integration).
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(a) Use Euler’s method to determine the solution of the initial-value problem

ẏ = 3y, y(t0) = 5, t0 = 0, t0 ≤ t ≤ 10.

(b) Use Euler’s method to determine the solution of the initial-value problem

ÿ = t(ẏ)2 − y2, y(t0) = 1, ẏ(t0) = 0, t0 = 0, t0 ≤ t ≤ 10.

Hint: In both cases, use h = 0.2. For part (b), let y = x1, ẋ1 = x2, ẋ2 =
tx2

2 − x2
1, and apply (1.99), appropriately adjusted to the vector case. In both

cases, plot yk vs. tk, k = 0, 1, 2, . . . .
Remark:. Euler’s method yields arbitrarily close approximations to the solu-
tions of (1.98), by making h sufficiently small, assuming infinite (computer)
word length. In practice, however, where truncation errors (quantization) and
round-off errors (finite precision operations) are a reality, extremely small val-
ues of h may lead to numerical instabilities. Therefore, Euler’s method is of
limited value as a means of solving initial-value problems numerically.

1.5. (Numerical solution of ordinary differential equations—Runge–Kutta
methods) The Runge–Kutta family of integration methods are among the
most widely used techniques to solve initial-value problems (1.98). A simple
version is given by

yi+1 = yi + k,

where
k =

1
6
(k1 + 2k2 + 2k3 + k4)

with

k1 = hf(ti, yi),

k2 = hf(ti +
1
2
h, yi +

1
2
k1),

k3 = hf(ti +
1
2
h, yi +

1
2
k2),

k4 = hf(ti + h, yi + k3),

and ti+1 = ti + h, y(t0) = y0.
The idea of this method is to probe ahead (in time) by one-half or by a

whole step h to determine the values of the derivative at several points, and
then to form a weighted average.

Runge–Kutta methods can also be applied to higher order ordinary dif-
ferential equations. For example, after a change of variables, suppose that a
second-order differential equation has been changed to a system of two first-
order differential equations, say,

ẋ1 = f1(t, x1, x2), x1(t0) = x10,

ẋ2 = f2(t, x1, x2), x2(t0) = x20.
(1.100)
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In solving (1.100), a simple version of the Runge–Kutta method is given by

yi+1 = yi + k,

where
yi = (x1i, x2i)T and k = (k, l)T

with
k =

1
6
(k1 + 2k2 + 2k3 + k4), l =

1
6
(l1 + 2l2 + 2l3 + l4)

and

k1 = hf1(ti, x1i, x2i), l1 = hf2(ti, x1i, x2i),

k2 = hf1(ti + 1
2h, x1i + 1

2k1, x2i + 1
2 l1), l2 = hf2(ti + 1

2h, x1i + 1
2k1, x2i + 1

2 l1),

k3 = hf1(ti + 1
2h, x1i + 1

2k2, x2i + 1
2 l2), l3 = hf2(ti + 1

2h, x1i + 1
2k2, x2i + 1

2 l2),
k4 = hf1(ti + h, x1i + k3, x2i + l3), l4 = hf2(ti + h, x1i + k3, x2i + l3).

Use the Runge–Kutta method described above to obtain numerical solu-
tions to the initial-value problems given in parts (a) and (b) of Exercise 1.4.
Plot your data.
Remark: Since Runge–Kutta methods do not use past information, they con-
stitute attractive starting methods for more efficient numerical integration
schemes (e.g., predictor–corrector methods) . We note that since there are no
built-in accuracy measures in the Runge–Kutta methods, significant compu-
tational efforts are frequently expended to achieve a desired accuracy.

1.6. (Numerical solution of ordinary differential equations—Predictor–
Corrector methods) A common predictor–corrector technique for solving
initial-value problems determined by ordinary differential equations, such as
(1.98), is the Milne method, which we now summarize. In this method, ẏi−1

denotes the value of the first derivative at time ti−1, where ti is the time for
the ith iteration step, ẏi−2 is similarly defined, and yi+1 represents the value
of y to be determined. The details of the Milne method are:

1. yi+1,p = yi−3 + 4h
3 (2ẏi−2 − ẏi−1 + 2ẏi) (predictor)

2. ẏi+1,p = f(ti+1, yi+1,p)
3. yi+1,c = yi−1 + h

3 (ẏi−1 + 4ẏi + ẏi+1,p) (corrector)
4. ẏi+1,c = f(ti+1, yi+1,c)
5. yi+1,c = yi−1 + h

3 (ẏi−1 + 4ẏi + ẏi+1,c) (iterating corrector)

The first step is to obtain a predicted value of yi+1 and then to substitute
yi+1,p into the given differential equation to obtain a predicted value of ẏi+1,p,
as indicated in the second equation above. This predicted value, ẏi+1,p is then
used in the second equation, the corrector equation, to obtain a corrected
value of yi+1. The corrected value, yi+1,c is next substituted into the differen-
tial equation to obtain an improved value of ẏi+1, and so on. If necessary, an
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iteration process involving the fourth and fifth equations continues until suc-
cessive values of yi+1 differ by less than the value of some desirable tolerance.
With yi+1 determined to the desired accuracy, the method steps forward one
h increment.

A more complicated predictor–corrector method that is more reliable than
the Milne method is the Adams–Bashforth–Moulton method, the essential
equations of which are

yi+1,p = yi +
h

24
(55ẏi − 59ẏi−1 + 37ẏi−2 − 9ẏi−3),

yi+1,c = yi +
h

24
(9ẏi+1 + 19ẏi − 5ẏi−1 + ẏi−2),

where in the corrector equation, ẏi+1 denotes the predicted value.
The application of predictor–corrector methods to systems of first-order

ordinary differential equations is straightforward. For example, the application
of the Milne method to the second-order system in (1.100) yields from the
predictor step

xk,i+1,p = xk,i−3 +
4h
3

(2ẋk,i−2 − ẋk,i−1 + 2ẋk,i), k = 1, 2.

Then
ẋk,i+1,p = fk(ti+1, x1,i+1,p, x2,i+1,p), k = 1, 2,

and the corrector step assumes the form

xk,i+1,c = xk,i−1 +
h

3
(ẋk,i−1 + 4ẋk,i + ẋk,i+1), k = 1, 2,

and
ẋk,i+1,c = fk(ti+1, x1,i+1,c, x2,i+1,c), k = 1, 2.

Use the Milne method and the Adams–Bashforth–Moulton method de-
scribed above to obtain numerical solutions to the initial-value problems given
in parts (a) and (b) of Exercise 1.4. To initiate the algorithm, refer to the Re-
mark in Exercise 1.5.

Remark. Derivations and convergence properties of numerical integration
schemes, such as those discussed here and in Exercises 1.4 and 1.5, can be
found in many of the standard texts on numerical analysis.

1.7. Use Theorem 1.15 to solve the initial-value problem ẋ = ax+t, x(0) = x0

for t ≥ 0. Here a ∈ R.

1.8. Consider the initial-value problem

ẋ = Ax, x(0) = x0, (1.101)

where x ∈ R2 and A ∈ R2×2. Let λ1, λ2 denote the eigenvalues of A; i.e.,
λ1 and λ2 are the roots of the equation det(A − λI) = 0, where det denotes
determinant, λ is a scalar, and I denotes the 2 × 2 identity matrix. Make
specific choices of A to obtain the following cases:
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1. λ1 > 0, λ2 > 0, and λ1 �= λ2

2. λ1 < 0, λ2 < 0, and λ1 �= λ2

3. λ1 = λ2 > 0
4. λ1 = λ2 < 0
5. λ1 > 0, λ2 < 0
6. λ1 = α+ iβ, λ2 = α− iβ, i =

√
−1, α > 0

7. λ1 = α+ iβ, λ2 = α− iβ, α < 0
8. λ1 = iβ, λ2 = −iβ

Using t as a parameter, plot φ2(t, 0, x0) vs. φ1(t, 0, x0) for 0 ≤ t ≤ tf for
every case enumerated above. Here [φ1(t, t0, x0), φ2(t, t0, x0)]T = φ(t, t0, x0)
denotes the solution of (1.101). On your plots, indicate increasing time t by
means of arrows. Plots of this type are called trajectories for (1.101), and
sufficiently many plots (using different initial conditions and sufficiently large
tf ) make up a phase portrait for (1.101). Generate a phase portrait for each
case given above.

1.9. Write two first-order ordinary differential equations for the van der Pol
Equation (1.35) by choosing x1 = x and x2 = ẋ1. Determine by simulation
phase portraits (see Exercise 1.8) for this example for the cases ε = 0.05 and
ε = 10 (refer also to Exercises 1.5 and 1.6 for numerical methods for solving
differential equations). The periodic solution to which the trajectories of (1.35)
tend to is an example of a limit cycle.

1.10. Consider a system whose state-space description is given by

ẋ = −k1k2

√
x+ k2u(t),

y = k1

√
x.

Linearize this system about the nominal solution

u0 ≡ 0, 2
√
x0(t) = 2

√
k − k1k2t,

where x0(0) = k.

1.11. For (1.36) consider the hard, linear, and soft spring models given by

g(x) = k(1 + a2x2)x,
g(x) = kx,

g(x) = k(1 − a2x2)x,

respectively, where k > 0 and a2 > 0. Write two first-order ordinary differen-
tial equations for (1.36) by choosing x1 = x and x2 = ẋ. Pick specific values
for k and a2. Determine by simulation phase portraits (see Exercise 1.8) for
this example for the above three cases.
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1.12. (a) Show that xT = (0, 0) is a solution of the system of equations

ẋ1 = x2
1 + x2

2 + x2 cosx1,

ẋ2 = (1 + x1)x1 + (1 + x2)x2 + x1 sinx2.

Linearize this system about the point xT = (0, 0). By means of computer
simulations, compare solutions corresponding to different initial conditions
in the vicinity of the origin of the above system of equations and its lin-
earization.

(b) Linearize the (bilinear control) system

ẍ+ (3 + ẋ2)ẋ+ (1 + x+ x2)u = 0

about the solution x = 0, ẋ = 0, and the input u(t) ≡ 0. As in part
(a), compare (by means of computer simulations) solutions of the above
equation with corresponding solutions of its linearization.

(c) In the circuit given in Figure 1.15, vi(t) is a voltage source and the non-
linear resistor obeys the relation iR = 1.5v3

R [vi(t) is the circuit input and
vR(t) is the circuit output]. Derive the differential equation for this circuit.
Linearize this differential equation for the case when the circuit operates
about the point vi = 14.

+

–
1 F v

+

–

R (t)vi (t)

1 Ω
iR(t)

Figure 1.15. Nonlinear circuit

1.13. (Inverted pendulum) The inverted pendulum on a moving carriage sub-
jected to an external force μ(t) is depicted in Figure 1.16.

The moment of inertia with respect to the center of gravity is J , and the
coefficient of friction of the carriage (see Figure 1.16) is F . From Figure 1.17
we obtain the following equations for the dynamics of this system
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(Center of gravity)

(Pivot)

Carriage

M

S
F

L

m

φ

(t)μ

Figure 1.16. Inverted pendulum

Mg

H

Y

mg

φ

μ

Figure 1.17. Force diagram of the inverted pendulum

m
d2

dt2
(S + L sinφ) � H, (1.102a)

m
d2

dt2
(L cosφ) � Y −mg, (1.102b)

J
d2φ

dt2
= LY sinφ− LH cosφ, (1.102c)

M
d2S

dt2
= μ(t) −H − F

dS

dt
. (1.102d)

Assuming that m << M , (1.102d) reduces to

M
d2S

dt2
= μ(t) − F

dS

dt
. (1.102e)

Eliminating H and Y from (1.102a) to (1.102c), we obtain

(J +mL2)φ̈ = mgL sinφ−mLS̈ cosφ. (1.102f)
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Thus, the system of Figure 1.16 is described by the equations

φ̈− (g/L′) sinφ+ (1/L′)S̈ cosφ = 0,

MS̈ + FṠ = μ(t),
(1.102g)

where

L′ =
J +mL2

mL

denotes the effective pendulum length.
Linearize system (1.102g) about φ = 0.

1.14. (Simple pendulum) A system of first-order ordinary differential equa-
tions that characterize the simple pendulum considered in Exercise 1.1b is
given by [

ẋ1

ẋ2

]
=
[

x2

− g
l sinx1

]
,

where x1 � θ and x2 � θ̇ with x1(0) = θ(0) and x2(0) = θ̇(0) specified. A
linearized model of this system about the solution x = [0, 0]T is given by

[
ẋ1

ẋ2

]
=
[

0 1
− g
l 0

] [
x1

x2

]
.

Let g = 10 (m/sec2) and l = 1 (m).

(a) For the case when x(0) = [θ0, 0]T with θ0 = π/18, π/12, π/6, and π/3,
plot the states for t ≥ 0 for the nonlinear model.

(b) Repeat (a) for the linear model.
(c) Compare the results in (a) and (b).



2

An Introduction to State-Space and
Input–Output Descriptions of Systems

2.1 Introduction

State-space representations provide detailed descriptions of the internal be-
havior of a system, whereas input–output descriptions of systems emphasize
external behavior and a system’s interaction with this behavior.

In this chapter we address the state-space description of systems, which
is an internal description of systems, and the input–output description of
systems, also called the external description of systems. We will address
continuous-time systems described by ordinary differential equations and
discrete-time systems described by ordinary difference equations. We will
emphasize linear systems. For such systems, the input–output descriptions
involve the convolution integral for the continuous-time case and the convo-
lution sum for the discrete-time case.

This chapter is organized into three parts. In the first of these (Section 2.2),
we develop the state-space description of continuous-time systems, whereas in
the second part (Section 2.3), we present the state-space representation of
discrete-time systems. In the third part (Section 2.4), we address the input–
output description of both continuous-time and discrete-time systems. Re-
quired background material for this chapter includes certain essentials in or-
dinary differential equations and linear algebra. This material can be found
in Chapter 1 and the appendix, respectively.

2.2 State-Space Description of Continuous-Time Systems

Let us consider once more systems described by equations of the form

ẋ = f(t, x, u), (2.1a)
y = g(t, x, u), (2.1b)

where x ∈ Rn, y ∈ Rp, u ∈ Rm, f : R×Rn×Rm → Rn, and g : R×Rn×Rm →
Rp. Here t denotes time and u and y denote system input and system output,
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respectively. Equation (2.1a) is called the state equation, (2.1b) is called the
output equation, and (2.1a) and (2.1b) constitute the state-space description
of continuous-time finite-dimensional systems.

The system input may be a function of t only (i.e., u : R → Rm), or
as in the case of feedback control systems, it may be a function of t and x
(i.e., u : R × Rn → Rm). In either case, for a given (i.e., specified) u, we let
f(t, x, u) = F (t, x) and rewrite (2.1a) as

ẋ = F (t, x). (2.2)

Now according to Theorems 1.13 and 1.14, if F ∈ C(R × Rn, Rn) and if
for any compact subinterval J0 ⊂ R there is a constant LJ0 such that
‖ F (t, x) − F (t, x̃) ‖≤ LJ0 ‖ x − x̃ ‖ for all t ∈ J0 and for all x, x̃ ∈ Rn,
then the following statements are true:

1. For any (t0, x0) ∈ R×Rn, (2.2) has a unique solution φ(t, t0, x0) satisfying
φ(t0, t0, x0) = x0 that exists for all t ∈ R.

2. The solution φ is continuous in t, t0, and x0.
3. If F depends continuously on parameters (say, λ ∈ Rl) and if x0 depends

continuously on λ, the solution φ is continuous in λ as well.

Thus, if the above conditions are satisfied, then for a given t0, x0, and
u, (2.1a) will have a unique solution that exists for t ∈ R. Therefore, as
already discussed in Section 1.8, φ(t, t0, x0) characterizes the state of the
system at time t. Moreover, under these conditions, the system will have
a unique response for t ∈ R, determined by (2.1b). We usually assume that
g ∈ C(R ×Rn ×Rm, Rp) or that g ∈ C1(R×Rn ×Rm, Rp).

An important special case of (2.1) is systems described by linear time-
varying equations of the form

ẋ = A(t)x +B(t)u, (2.3a)
y = C(t)x +D(t)u, (2.3b)

where A ∈ C(R,Rn×n), B ∈ C(R,Rn×m), C ∈ C(R,Rp×n), and D ∈
C(R,Rp×m). Such equations may arise in the modeling process of a physical
system, or they may be a consequence of a linearization process, as discussed
in Section 1.6.

By applying the results of Section 1.7, we see that for every initial condi-
tion x(t0) = x0 and for every given input u : R → Rm, system (2.3a) possesses
a unique solution that exists for all t ∈ R and that is continuous in (t, t0, x0).
Moreover, if A and B depend continuously on parameters, say, λ ∈ Rl, then
the solutions will be continuous in the parameters as well. Indeed, in accor-
dance with (1.87), this solution is given by

φ(t, t0, x0) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, s)B(s)u(s)ds, (2.4)
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where Φ(t, t0) denotes the state transition matrix of the system of equations

ẋ = A(t)x. (2.5)

By using (2.3b) and (2.4) we obtain the system response as

y(t) = C(t)Φ(t, t0)x0 + C(t)
∫ t

t0

Φ(t, s)B(s)u(s)ds +D(t)u(t). (2.6)

When in (2.3), A(t) ≡ A,B(t) ≡ B,C(t) ≡ C, and D(t) ≡ D, we have the
important linear time-invariant case given by

ẋ = Ax+Bu, (2.7a)
y = Cx+Du. (2.7b)

In accordance with (1.84), (1.85), (1.87), and (2.4), the solution of (2.7a) is
given by

φ(t, t0, x0) = eA(t−t0)x0 +
∫ t

t0

eA(t−s)Bu(s)ds (2.8)

and the response of the system is given by

y(t) = CeA(t−t0)x0 + C

∫ t

t0

eA(t−s)Bu(s)ds+Du(t). (2.9)

Linearity

We have referred to systems described by the linear equations (2.3) [resp.,
(2.7)] as linear systems. In the following discussion, we establish precisely in
what sense this linearity is to be understood. To this end, for (2.3) we first
let y1 and y2 denote system outputs that correspond to system inputs given
by u1 and u2, respectively, under the condition that x0 = 0. By invoking
(2.6), it is clear that the system output corresponding to the system input
u = α1u1+α2u2, where α1 and α2 are real scalars, is given by y = α1y1+α2y2;
i.e.,

y(t) = C(t)
∫ t

t0

Φ(t, s)B(s)[α1u1(s) + α2u2(s)]ds+D(t)[α1u1(t) + α2u2(t)]

= α1C(t)
∫ t

t0

Φ(t, s)B(s)u1(s)ds+ α2C(t)
∫ t

t0

Φ(t, s)B(s)u2(s)ds

+ α1D(t)u1(t) + α2D(t)u2(t)
= α1y1(t) + α2y2(t). (2.10)

Next, for (2.3) we let y1 and y2 denote system outputs that correspond to
initial conditions x(1)

0 and x(2)
0 , respectively, under the condition that u(t) = 0
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for all t ∈ R. Again, by invoking (2.6), it is clear that the system output
corresponding to the initial condition x0 = α1x

(1)
0 + α2x

(2)
0 , where α1 and α2

are real scalars, is given by y = α1y1 + α2y2; i.e.,

y(t) = C(t)Φ(t, t0)[α1x
(1)
0 + α2x

(2)
0 ]

= α1C(t)Φ(t, t0)x
(1)
0 + α2C(t)Φ(t, t0)x

(2)
0

= α1y1(t) + α2y2(t). (2.11)

Equations (2.10) and (2.11) show that for systems described by the lin-
ear equations (2.3) [and, hence, by (2.7)], a superposition principle holds in
terms of the input u and the corresponding output y of the system under the
assumption of zero initial conditions, and in terms of the initial conditions
x0 and the corresponding output y under the assumption of zero input. It is
important to note, however, that such a superposition principle will in gen-
eral not hold under conditions that combine nontrivial inputs and nontrivial
initial conditions. For example, with x0 �= 0 given, and with inputs u1 and u2

resulting in corresponding outputs y1 and y2 in (2.3), it does not follow that
the input α1u1 + α2u2 will result in an output α1y1 + α2y2.

2.3 State-Space Description of Discrete-Time Systems

State-Space Representation

The state-space description of discrete-time finite-dimensional dynamical sys-
tems is given by equations of the form

xi(k + 1) = fi(k, x1(k), . . . , xn(k), u1(k), . . . , um(k)) i = 1, . . . , n, (2.12a)
yi(k) = gi(k, x1(k), . . . , xn(k), u1(k), . . . , um(k)) i = 1, . . . , p, (2.12b)

for k = k0, k0+1, . . . , where k0 is an integer. (In the following discussion, we let
Z denote the set of integers and we let Z+ denote the set of nonnegative inte-
gers.) Letting x(k)T = (x1(k), . . . , xn(k)), f(·)T = (f1(·), . . . , fn(·)), u(k)T =
(u1(k), . . . , um(k)), y(k)T = (y1(k), . . . , yp(k)), and g(·)T = (g1(·), . . . , gm(·)),
we can rewrite (2.12) more compactly as

x(k + 1) = f(k, x(k), u(k)), (2.13a)
y(k) = g(k, x(k), u(k)). (2.13b)

Throughout this section we will assume that f : Z × Rn × Rm → Rn and
g : Z ×Rn ×Rm → Rp.

Since f is a function, for given k0, x(k0) = x0, and for given u(k), k =
k0, k0 + 1, . . . , (2.13a) possesses a unique solution x(k) that exists for all
k = k0, k0 + 1, . . . . Furthermore, under these conditions, y(k) is uniquely
defined for k = k0, k0 + 1, . . . .
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As in the case of continuous-time finite-dimensional systems [see (2.1)], k0

denotes initial time, k denotes time, u(k) denotes the system input (evaluated
at time k), y(k) denotes the system output or system response (evaluated at
time k), x(k) characterizes the state (evaluated at time k), xi(k), i = 1, . . . , n,
denote the state variables, (2.13a) is called the state equation, and (2.13b) is
called the output equation.

A moment’s reflection should make it clear that in the case of discrete-time
finite-dimensional dynamical systems described by (2.13), questions concern-
ing existence, uniqueness, and continuation of solutions are not an issue, as
was the case in continuous-time systems. Furthermore, continuity with re-
spect to initial data x(k0) = x0, or with respect to system parameters, is
not an issue either, provided that f(·) and g(·) have appropriate continuity
properties.

In the case of continuous-time systems described by ordinary differential
equations [see (2.1)], we allow time t to evolve “forward” and “backward.”
Note, however, that in the case of discrete-time systems described by (2.13), we
restrict the evolution of time k in the forward direction to ensure uniqueness
of solutions. (We will revisit this issue in more detail in Chapter 3.)

Special important cases of (2.13) are linear time-varying systems given by

x(k + 1) = A(k)x(k) +B(k)u(k), (2.14a)
y(k) = C(k)x(k) +D(k)u(k), (2.14b)

where A : Z → Rn×n, B : Z → Rn×m, C : Z → Rp×n, and D : Z → Rp×m.
When A(k) ≡ A,B(k) ≡ B,C(k) ≡ C, and D(k) ≡ D, we have linear time-
invariant systems given by

x(k + 1) = Ax(k) +Bu(k), (2.15a)
y(k) = Cx(k) +Du(k). (2.15b)

As in the case of continuous-time finite-dimensional dynamical systems,
many qualitative properties of discrete-time finite-dimensional systems can
be studied in terms of initial-value problems given by

x(k + 1) = f(k, x(k)), x(k0) = x0, (2.16)

where x ∈ Rn, f : Z ×Rn → Rn, k0 ∈ Z, and k = k0, k0 + 1, · · · . We call the
equation

x(k + 1) = f(k, x(k)), (2.17)

a system of first-order ordinary difference equations. Special important cases
of (2.17) include autonomous systems described by

x(k + 1) = f(x(k)), (2.18)

periodic systems given by
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x(k + 1) = f(k, x(k)) = f(k +K,x(k)) (2.19)

for fixed K ∈ Z+ and for all k ∈ Z, linear homogeneous systems given by

x(k + 1) = A(k)x(k), (2.20)

linear periodic systems characterized by

x(k + 1) = A(k)x(k) = A(k +K)x(k) (2.21)

for fixed K ∈ Z+ and for all k ∈ Z, linear nonhomogeneous systems

x(k + 1) = A(k)x(k) + g(k), (2.22)

and linear, autonomous, homogeneous systems characterized by

x(k + 1) = Ax(k). (2.23)

In these equations all symbols used are defined in the obvious way by making
reference to the corresponding systems of ordinary differential equations (see
Subsection 1.3.2).

Difference Equations of Order n

Thus far we have addressed systems of first-order difference equations. As
in the continuous-time case, it is also possible to characterize initial-value
problems by nth-order ordinary difference equations, say,

y(k + n) = h(k, y(k), y(k + 1), . . . , y(k + n− 1)), (2.24)

where h : Z × Rn → R, n ∈ Z+, k = k0, k0 + 1, . . . . By specifying an initial
time k0 ∈ Z and by specifying y(k0), y(k0 + 1), . . . , y(k0 + n − 1), we again
have an initial-value problem given by

y(k + n) = h(k, y(k), y(k + 1), . . . , y(k + n− 1)),
y(k0) = x10, . . . , y(k0 + n− 1) = xn0.

(2.25)

We call (2.24) an nth-order ordinary difference equation, and we note once
more that in the case of initial-value problems described by such equations,
there are no difficult issues involving the existence, uniqueness, and continu-
ation of solutions.

We can reduce the study of (2.25) to the study of initial-value problems
determined by systems of first-order ordinary difference equations. To accom-
plish this, we let in (2.25) y(k) = x1(k), y(k + 1) = x2(k), . . . , y(k + n− 1) =
xn(k). We now obtain the system of first-order ordinary difference equations

x1(k + 1) = x2(k),
· · ·

xn−1(k + 1) = xn(k),
xn(k + 1) = h(k, x1(k), . . . , xn(k)). (2.26)
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Equations (2.26), together with the initial data xT0 = (x10, . . . , xn0), are equiv-
alent to the initial-value problem (2.25) in the sense that these two problems
will generate identical solutions [and in the sense that the transformation of
(2.25) into (2.26) can be reversed unambiguously and uniquely].

As in the case of systems of first-order ordinary difference equations, we
can point to several important special cases of nth-order ordinary difference
equations, including equations of the form

y(k + n) + an−1(k)y(k + n − 1) + · · · + a1(k)y(k + 1) + a0(k)y(k) = g(k), (2.27)

y(k + n) + an−1(k)y(k + n − 1) + · · · + a1(k)y(k + 1) + a0(k)y(k) = 0, (2.28)

and

y(k + n) + an−1y(k + n − 1) + · · · + a1y(k + 1) + a0y(k) = 0. (2.29)

We call (2.27) a linear nonhomogeneous ordinary difference equation of order
n, we call (2.28) a linear homogeneous ordinary difference equation of order
n, and we call (2.29) a linear, autonomous, homogeneous ordinary difference
equation of order n. As in the case of systems of first-order ordinary differ-
ence equations, we can define periodic and linear periodic ordinary difference
equations of order n in the obvious way.

Solutions of State Equations

Returning now to linear homogeneous systems

x(k + 1) = A(k)x(k), (2.30)

we observe that

x(k + 2) = A(k + 1)x(k + 1) = A(k + 1)A(k)x(k)
· · ·

x(n) = A(n− 1)A(n− 2) · · ·A(k + 1)A(k)x(k)

=
n−1∏
j=k

A(j)x(k);

i.e., the state of the system at time n is related to the state at time k by
means of the n×n matrix

∏n−1
j=k A(j) (as can easily be proved by induction).

This suggests that the state transition matrix for (2.30) is given by

Φ(n, k) =
n−1∏
j=k

A(j), n > k, (2.31)

and that
Φ(k, k) = I. (2.32)
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As in the continuous-time case, the solution to the initial-value problem

x(k + 1) = A(k)x(k)
x(k0) = xk0 , k0 ∈ Z, (2.33)

is now given by

x(n) = Φ(n, k0)xk0 =
n−1∏
j=k0

A(j)xk0 , n > k0. (2.34)

Continuing, let us next consider initial-value problems determined by lin-
ear nonhomogeneous systems (2.22),

x(k + 1) = A(k)x(k) + g(k),
x(k0) = xk0 . (2.35)

Then

x(k0 + 1) = A(k0)x(k0) + g(k0),
x(k0 + 2) = A(k0 + 1)x(k0 + 1) + g(k0 + 1)

= A(k0 + 1)A(k0)x(k0) +A(k0 + 1)g(k0) + g(k0 + 1),
x(k0 + 3) = A(k0 + 2)x(k0 + 2) + g(k0 + 2)

= A(k0 + 2)A(k0 + 1)A(k0)x(k0) +A(k0 + 2)A(k0 + 1)g(k0)
+A(k0 + 2)g(k0 + 1) + g(k0 + 2)

= Φ(k0 + 3, k0)xk0 + Φ(k0 + 3, k0 + 1)g(k0)
+ Φ(k0 + 3, k0 + 2)g(k0 + 1) + Φ(k0 + 3, k0 + 3)g(k0 + 2),

and so forth. For k ≥ k0 + 1, we easily obtain the expression for the solution
of (2.35) as

x(k) = Φ(k, k0)xk0 +
k−1∑
j=k0

Φ(k, j + 1)g(j). (2.36)

In the time-invariant case

x(k + 1) = Ax(k) + g(k),
x(k0) = xk0 , (2.37)

the solution is again given by (2.36) where now the state transition matrix

Φ(k, k0) = Ak−k0 , k ≥ k0, (2.38)

in view of (2.31) and (2.32). The solution of (2.37) is then

x(k) = Ak−k0xk0 +
k−1∑
j=k0

Ak−(j+1)g(j), k > k0. (2.39)



2.3 State-Space Description of Discrete-Time Systems 55

We note that when xk0 = 0, (2.36) reduces to

xp(k) =
k−1∑
j=k0

Φ(k, j + 1)g(j), (2.40)

and when xk0 �= 0 but g(k) ≡ 0, then (2.36) reduces to

xh(k) = Φ(k, k0)xk0 . (2.41)

Therefore, the total solution of (2.35) consists of the sum of its particular
solution, xp(k), and its homogeneous solution, xh(k).

System Response

Finally, we observe that in view of (2.14b) and (2.36), the system response of
the system (2.14), is of the form

y(k) = C(k)Φ(k, k0)xk0 + C(k)
k−1∑
j=k0

Φ(k, j + 1)B(j)u(j)

+D(k)u(k), k > k0, (2.42)

and
y(k0) = C(k0)xk0 +D(k0)u(k0). (2.43)

In the time-invariant case, in view of (2.39), the system response of the
system (2.15) is

y(k) = CAk−k0xk0 + C

k−1∑
j=k0

Ak−(j+1)B(j)u(j) +Du(k), k > k0, (2.44)

and
y(k0) = Cxk0 +Du(k0). (2.45)

Discrete-time systems, as discussed above, arise in several ways, including
the numerical solution of ordinary differential equations (see, e.g., our dis-
cussion in Exercise 1.4 of Euler’s method); the representation of sampled-data
systems at discrete points in time (which will be discussed in further detail
in Chapter 3); in the modeling process of systems that are defined only at
discrete points in time (e.g., digital computer systems); and so forth.

As a specific example of a discrete-time system we consider a second-order
section digital filter in direct form,

x1(k + 1) = x2(k),
x2(k + 1) = ax1(k) + bx2(k) + u(k),

(2.46a)

y(k) = x1(k), (2.46b)

k ∈ Z+, where x1(k) and x2(k) denote the state variables, u(k) denotes the
input, and y(k) denotes the output of the digital filter. We depict system
(2.46) in block diagram form in Figure 2.1.
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Figure 2.1. Second-order section digital filter in direct form

2.4 Input–Output Description of Systems

This section consists of four subsections. First we consider rather general
aspects of the input–output description of systems. Because of their simplicity,
we address the characterization of linear discrete-time systems next. In the
third subsection we provide a foundation for the impulse response of linear
continuous-time systems. Finally, we address the external description of linear
continuous-time systems.

2.4.1 External Description of Systems: General Considerations

The state-space representation of systems presupposes knowledge of the in-
ternal structure of the system. When this structure is unknown, it may still
be possible to arrive at a system description—an external description—that
relates system inputs to system outputs. In linear system theory, a great deal
of attention is given to relating the internal description of systems (the state
representation) to the external description (the input–output description).

In the present context, we view system inputs and system outputs as ele-
ments of two real vector spaces U and Y , respectively, and we view a system
as being represented by an operator T that relates elements of U to elements
of Y . For u ∈ U and y ∈ Y we will assume that u : R → Rm and y : R → Rp

in the case of continuous-time systems, and that u : Z → Rm and y : Z → Rp

in the case of discrete-time systems. If m = p = 1, we speak of a single-
input/single-output (SISO) system. Systems for which m > 1, p > 1, are
called multi-input/multi-output (MIMO) systems. For continuous-time sys-
tems we define vector addition (on U) and multiplication of vectors by scalars
(on U) as

(u1 + u2)(t) = u1(t) + u2(t) (2.47)

and
(αu)(t) = αu(t) (2.48)

for all u1, u2 ∈ U,α ∈ R, and t ∈ R. We similarly define vector addition
and multiplication of vectors by scalars on Y . Furthermore, for discrete-time
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systems we define these operations on U and Y analogously. In this case the
elements of U and Y are real sequences that we denote, e.g., by u = {uk} or
u = {u(k)}. (It is easily verified that under these rather general conditions, U
and Y satisfy all the axioms of a vector space, both for the continuous-time
case and the discrete-time case.) In the continuous-time case as well as in the
discrete-time case the system is represented by T : U → Y , and we write

y = T (u). (2.49)

In the subsequent development, we will impose restrictions on the vector
spaces U, Y , and on the operator T , as needed.

Linearity. If T is a linear operator, the system is called a linear system. In
this case we have

y = T (α1u1 + α2u2)
= α1T (u1) + α2T (u2)
= α1y1 + α2y2 (2.50)

for all α1, α2 ∈ R and u1, u2 ∈ U where yi = T (ui) ∈ Y , i = 1, 2, and y ∈ Y .
Equation (2.50) represents the well-known principle of superposition of linear
systems.

With or Without Memory. We say that a system is memoryless, or without
memory, if its output for each value of the independent variable (t or k) is
dependent only on the input evaluated at the same value of the independent
variable [e.g., y(t1) depends only on u(t1) and y(k1) depends only on u(k1)].
An example of such a system is the resistor circuit shown in Figure 2.2, where
the current i(t) = u(t) denotes the system input at time t and the voltage
across the resistor, v(t) = Ri(t) = y(t), denotes the system output at time t.

Figure 2.2. Resistor circuit

A system that is not memoryless is said to have memory. An example
of a continuous-time system with memory is the capacitor circuit shown in
Figure 2.3, where the current i(t) = u(t) represents the system input at time
t and the voltage across the capacitor,
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y(t) = v(t) =
1
C

∫ t

−∞
i(τ)dτ,

denotes the system output at time t. Another example of a continuous-time
system with memory is described by the scalar equation

y(t) = u(t− 1), t ∈ R,

and an example of a discrete-time system with memory is characterized by
the scalar equation

y(n) =
n∑

k=−∞
x(k), n, k ∈ Z.

Figure 2.3. Capacitor circuit

Causality. A system is said to be causal if its output at any time, say t1 (or
k1), depends only on values of the input evaluated for t ≤ t1 (for k ≤ k1). Thus,
y(t1) depends only on u(t), t ≤ t1 [or y(k1) depends only on u(k), k ≤ k1].
Such a system is referred to as being nonanticipative since the system output
does not anticipate future values of the input.

To make the above concept a bit more precise, we define the function
uτ : R → Rm for u ∈ U by

uτ (t) =

{
u(t), t ≤ τ,

0, t > τ,

and we similarly define the function yτ : R→ Rp for y ∈ Y . A system that is
represented by the mapping y = T (u) is said to be causal if and only if

(T (u))τ = (T (uτ ))τ for all τ ∈ R, for all u ∈ U.

Equivalently, this system is causal if and only if for u, v ∈ U and uτ = vτ it
is true that

(T (u))τ = (T (v))τ for all τ ∈ R.
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For example, the discrete-time system described by the scalar equation

y(n) = u(n) − u(n+ 1), n ∈ Z,

is not causal. Neither is the continuous-time system characterized by the scalar
equation

y(t) = x(t+ 1), t ∈ R.

It should be pointed out that systems that are not causal are by no means
useless. For example, causality is not of fundamental importance in image-
processing applications where the independent variable is not time. Even when
time is the independent variable, noncausal systems may play an important
role. For example, in the processing of data that have been recorded (such
as speech, meteorological data, demographic data, and stock market fluctua-
tions), one is not constrained to processing the data causally. An example of
this would be the smoothing of data over a time interval, say, by means of the
system

y(n) =
1

2M + 1

M∑
k=−M

u(n− k).

Time-Invariance. A system is said to be time-invariant if a time shift in the
input signal causes a corresponding time shift in the output signal. To make
this concept more precise, for fixed α ∈ R, we introduce the shift operator
Qα : U → U as

Qαu(t) = u(t− α), u ∈ U, t ∈ R.

A system that is represented by the mapping y = T (u) is said to be time-
invariant if and only if

TQα(u) = Qα(T (u)) = Qα(y)

for any α ∈ R and any u ∈ U . If a system is not time-invariant, it is said to
be time-varying.

For example, a system described by the relation

y(t) = cosu(t)

is time-invariant. To see this, consider the inputs u1(t) and u2(t) = u1(t− t0).
Then

y1(t) = cosu1(t), y2(t) = cosu2(t) = cosu1(t− t0)

and
y1(t− t0) = cosu1(t− t0) = y2(t).

As a second example, consider a system described by the relation

y(n) = nu(n)

and consider two inputs u1(n) and u2(n) = u1(n− n0). Then
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y1(n) = nu1(n) and y2(n) = nu2(n) = nu1(n− n0).

However, if we shift the output y1(n) by n0, we obtain

y1(n− n0) = (n− n0)u1(n− n0) �= y2(n).

Therefore, this system is not time-invariant.

2.4.2 Linear Discrete-Time Systems

In this subsection we investigate the representation of linear discrete-time
systems. We begin our discussion by considering SISO systems.

In the following, we employ the discrete-time impulse (or unit pulse or
unit sample), which is defined as

δ(n) =

{
0, n �= 0, n ∈ Z,

1, n = 0.
(2.51)

Note that if {p(n)} denotes the unit step sequence, i.e.,

p(n) =

{
1, n ≥ 0, n ∈ Z,

0, n < 0, n ∈ Z,
(2.52)

then
δ(n) = p(n) − p(n− 1)

and

p(n) =

{∑∞
k=0 δ(n− k), n ≥ 0,

0, n < 0.
(2.53)

Furthermore, note that an arbitrary sequence {x(n)} can be expressed as

x(n) =
∞∑

k=−∞
x(k)δ(n− k). (2.54)

We can easily show that a transformation T : U → Y determined by the
equation

y(n) =
∞∑

k=−∞
h(n, k)u(k), (2.55)

where y � {y(k)} ∈ Y , u � {u(k)} ∈ U , and h : Z × Z → R, is a linear
transformation. Also, we note that for (2.55) to make any sense, we need to
impose restrictions on {h(n, k)} and {u(k)}. For example, if for every fixed
n, {h(n, k)} ∈ l2 and {u(k)} ∈ l2 = U , then it follows from the Hölder Inequal-
ity (resp., Schwarz Inequality), see Section A.7, that (2.55) is well defined.
There are of course other conditions that one might want to impose on (2.55).
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For example, if for every fixed n,
∑∞
k=−∞ |h(n, k)| < ∞ (i.e., for every fixed

n, {h(n, k)} ∈ l1) and if supk∈Z |u(k)| < ∞ (i.e., {u(k)} ∈ l∞), then (2.55) is
also well defined.

We shall now elaborate on the suitability of (2.55) to represent linear
discrete-time systems. To this end, we will agree once and for all that, in the
ensuing discussion, all assumptions on {h(n, k)} and {u(k)} are satisfied that
ensure that (2.55) is well defined.

We will view y ∈ Y and u ∈ U as system outputs and system inputs,
respectively, and we will let T : U → Y denote a linear transformation
that relates u to y. We first consider the case when u(k) = 0 for k < k0,
k, k0 ∈ Z. Also, we assume that for k > n ≥ k0, the inputs u(k) do not
contribute to the system output at time n (i.e., the system is causal). Un-
der these assumptions, and in view of the linearity of T , and by invoking
the representation of signals by (2.54), we obtain for y = {y(n)}, n ∈ Z,
the expression y(n) = T (

∑∞
k=−∞ u(k)δ(n − k)) = T (

∑n
k=k0

u(k)δ(n − k)) =∑n
k=k0

u(k)T (δ(n− k)) =
∑n

k=k0
h(n, k)u(k), n ≥ k0, and y(n) = 0, n < k0,

where T (δ(n− k)) � (Tδ)(n− k) � h(n, k) represents the response of T to a
unit pulse (resp., discrete-time impulse or unit sample) occurring at n = k.

When the assumptions in the preceding discussion are no longer valid,
then a different argument than the one given above needs to be used to arrive
at the system representation. Indeed, for infinite sums, the interchanging of
the order of the summation operation

∑
with the linear transformation T

is no longer valid. We refer the reader to a paper by I. W. Sandberg (“A
Representation Theorem for Linear Systems,” IEEE Transactions on Circuits
and Systems—I, Vol. 45, No. 5, pp. 578–580, May 1998) for a derivation of the
representation of general linear discrete-time systems. In that paper it is shown
that an extra term needs to be added to the right-hand side of equation (2.55),
even in the representation of general, linear, time-invariant, causal, discrete-
time systems. [In the proof, the Hahn–Banach Theorem (which is concerned
with the extension of bounded linear functionals) is employed and the extra
required term is given by liml→∞ T (

∑−cl−1
k=−∞ u(k)δ(n−k)+

∑∞
k=cl+1 u(k)δ(n−

k)] with cl → ∞ as l → ∞. For a statement and proof of the Hahn–Banach
Theorem, refer, e.g., to A. N. Michel and C. J. Herget, Applied Algebra and
Functional Analysis, Dover, New York, 1993, pp. 367–370.) In that paper it is
also pointed out, however, that cases with such extra nonzero terms are not
necessarily of importance in applications. In particular, if inputs and outputs
are defined (to be nonzero) on just the non-negative integers, then for causal
systems no additional term is needed (or more specifically, the extra term is
zero), as seen in our earlier argument. In any event, throughout this book we
will concern ourselves with linear discrete-time systems that can be represented
by equation (2.55) for the single-input/single-output case (and appropriate
generalizations for multi-input/multi-output cases).

Next, suppose that T represents a time-invariant system. This means that
if {h(n, 0)} is the response to {δ(n)}, then by time invariance, the response
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to {δ(n − k)} is simply {h(n − k, 0)}. By a slight abuse of notation, we let
h(n− k, 0) � h(n− k). Then (2.55) assumes the form

y(n) =
∞∑

k=−∞
u(k)h(n− k). (2.56)

Expression (2.56) is called a convolution sum and is written more compactly
as

y(n) = u(n) ∗ h(n).

Now by a substitution of variables, we obtain for (2.56) the alternative ex-
pression

y(n) =
∞∑

k=−∞
h(k)u(n− k),

and therefore, we have

y(n) = u(n) ∗ h(n) = h(n) ∗ u(n);

i.e., the convolution operation ∗ commutes.
As a specific example, consider a linear, time-invariant, discrete-time sys-

tem with unit impulse response given by

h(n) =
{
an, n ≥ 0
0, n < 0

}
= anp(n), 0 < a < 1,

where p(n) is the unit step sequence given in (2.52). It is an easy matter to
show that the response of this system to an input given by

u(n) = p(n) − p(n−N)

is

y(n) = 0, n < 0,

y(n) =
n∑
k=0

an−k = an
1 − 1−(n+1)

1 − a−1
=

1 − an+1

1 − a
, 0 ≤ n < N,

and

y(n) =
N−1∑
k=0

an−k = an
1 − a−N

1 − a−1
=
an−N+1 − an+1

1 − a
, N ≤ n.

Proceeding, with reference to (2.55) we note that h(n, k) represents the
system output at time n due to a δ-function input applied at time k. Now if
system (2.55) is causal, then its output will be identically zero before an input
is applied. Hence, a linear system (2.55) is causal if and only if
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h(n, k) = 0 for all n < k.

Therefore, when the system (2.55) is causal, we have in fact

y(n) =
n∑

k=−∞
h(n, k)u(k). (2.57a)

We can rewrite (2.57a) as

y(n) =
k0−1∑
k=−∞

h(n, k)u(k) +
n∑

k=k0

h(n, k)u(k)

� y(k0 − 1) +
n∑

k=k0

h(n, k)u(k). (2.57b)

We say that the discrete-time system described by (2.55) is at rest at
k = k0 ∈ Z if u(k) = 0 for k ≥ k0 implies that y(k) = 0 for k ≥ k0.
Accordingly, if system (2.55) is known to be at rest at k = k0, we have

y(n) =
∞∑

k=k0

h(n, k)u(k).

Furthermore, if system (2.55) is known to be causal and at rest at k = k0, its
input–output description assumes the form [in view of (2.57b)]

y(n) =
n∑

k=k0

h(n, k)u(k). (2.58)

If now, in addition, system (2.55) is also time-invariant, (2.58) becomes

y(n) =
n∑

k=k0

h(n− k)u(k) =
n∑

k=k0

h(k)u(n− k), (2.59)

which is a convolution sum. [Note that in (2.59) we have slightly abused the
notation for h(·), namely that h(n− k) = h(n− k, 0)(= h(n, k).]

Next, turning to linear, discrete-time, MIMO systems, we can generalize
(2.55) to

y(n) =
∞∑

k=−∞
H(n, k)u(k), (2.60)

where y : Z → Rp, u : Z → Rm, and

H(n, k) =

⎡
⎢⎢⎣
h11(n, k) h12(n, k) · · · h1m(n, k)
h21(n, k) h22(n, k) · · · h2m(n, k)

· · · · · · · · · · · ·
hp1(n, k) hp2(n, k) · · · hpm(n, k)

⎤
⎥⎥⎦ , (2.61)



64 2 Introduction to State-Space and Input–Output Descriptions of Systems

where hij(n, k) represents the system response at time n of the ith component
of y due to a discrete-time impulse δ applied at time k at the jth component
of u, whereas the inputs at all other components of u are being held zero.
The matrix H is called the discrete-time unit impulse response matrix of the
system.

Similarly, it follows that the system (2.60) is causal if and only if

H(n, k) = 0 for all n < k,

and that the input–output description of linear, discrete-time, causal systems
is given by

y(n) =
n∑

k=−∞
H(n, k)u(k). (2.62)

A discrete-time system described by (2.60) is said to be at rest at k =
k0 ∈ Z if u(k) = 0 for k ≥ k0 implies that y(k) = 0 for k ≥ k0. Accordingly,
if system (2.60) is known to be at rest at k = k0, we have

y(n) =
∞∑

k=k0

H(n, k)u(k). (2.63)

Moreover, if a linear discrete-time system that is at rest at k0 is known to be
causal, then its input–output description reduces to

y(n) =
n∑

k=k0

H(n, k)u(k). (2.64)

Finally, as in (2.56), it is easily shown that the unit impulse response
H(n, k) of a linear, time-invariant, discrete-time MIMO system depends only
on the difference of n and k; i.e., by a slight abuse of notation we can write

H(n, k) = H(n− k, 0) � H(n− k) (2.65)

for all n and k. Accordingly, linear, time-invariant, causal, discrete-time
MIMO systems that are at rest at k = k0 are described by equations of
the form

y(n) =
n∑

k=k0

H(n− k)u(k). (2.66)

We conclude by supposing that the system on hand is described by (2.14)
under the assumption that x(k0) = 0; i.e., the system is at rest at k = k0.
Then, according to (2.42) and (2.43), we obtain

H(n, k) =

⎧
⎪⎨
⎪⎩

C(n)Φ(n, k + 1)B(k), n > k,

D(n), n = k,

0, n < k.

(2.67)
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Furthermore, for the time-invariant case, we obtain

H(n− k) =

⎧
⎪⎨
⎪⎩

CAn−(k+1)B, n > k,

D, n = k,

0, n < k.

(2.68)

2.4.3 The Dirac Delta Distribution

For any linear time-invariant operator P from C(R,R) to itself, we say that
P admits an integral representation if there exists an integrable function (in
the Riemann or Lebesgue sense), gp : R → R, such that for any f ∈ C(R,R),

(Pf)(x) = (f ∗ gp)(x) �
∫ ∞

−∞
f(τ)gp(x− τ)dτ.

We call gp a kernel of the integral representation of P .
For the identity operator I [defined by If = f for any f ∈ C(R,R)]

an integral representation for which gp is a function in the usual sense does
not exist (see, e.g., Z. Szmydt, Fourier Transformation and Linear Differen-
tial Equations, D. Reidel Publishing Company, Boston, 1977). However, there
exists a sequence of functions {φn} such that for any f ∈ C(R,R),

(If)(x) = f(x) = lim
n→∞(f ∗ φn)(x). (2.69)

To establish (2.69) we make use of functions {φn} given by

φn(x) =

{
n(1 − n|x|), if |x| ≤ 1

n ,

0, if |x| > 1
n ,

n = 1, 2, 3, . . . . A plot of φn is depicted in Figure 2.4. In Antsaklis and Michel
[1], the following useful property of φn is proved.

n

y

x
–1/n 1/n

y = φn (x)

Figure 2.4. Generation of n delta distribution
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Lemma 2.1. Let f be a continuous real-valued function defined on R, and let
φn be defined as above (Figure 2.4). Then for any a ∈ R,

lim
n→∞

∫ ∞

−∞
f(τ)φn(a− τ)dτ = f(a). (2.70)

�

The above result, when applied to (2.69), now allows us to define a gen-
eralized function δ (also called a distribution) as the kernel of a formal or
symbolic integral representation of the identity operator I; i.e.,

f(x) = lim
n→∞

∫ ∞

−∞
f(τ)φn(x− τ)dτ (2.71)

�
∫ ∞

−∞
f(τ)δ(x − τ)dτ (2.72)

= f ∗ δ(x). (2.73)

It is emphasized that the expression (2.72) is not an integral at all (in the Rie-
mann or Lebesgue sense) but only a symbolic representation. The generalized
function δ is called the unit impulse or the Dirac delta distribution.

In applications we frequently encounter functions f ∈ C(R+, R). If we
extend f to be defined on all of R by letting f(x) = 0 for x < 0, then (2.70)
becomes

lim
n→∞

∫ ∞

0

f(τ)φn(a− τ)dτ = f(a) (2.74)

for any a > 0, where we have used the fact that in the proof of Lemma 2.1, we
need f to be continuous only in a neighborhood of a (refer to [1]). Therefore,
for f ∈ C(R+, R), (2.71) to (2.74) yield

lim
n→∞

∫ ∞

0

f(τ)φn(t− τ)dτ �
∫ ∞

0

f(τ)δ(t− τ)dτ = f(t) (2.75)

for any t > 0. Since the φn are even functions, we have φn(t− τ) = φn(τ − t),
which allows for the representation δ(t− τ) = δ(τ − t). We obtain from (2.75)
that

lim
n→∞

∫ ∞

0

f(τ)φn(τ − t)dτ �
∫ ∞

0

f(τ)δ(τ − t)dτ = f(t)

for any t > 0. Changing the variable τ ′ = τ − t, we obtain

lim
n→∞

∫ ∞

−t
f(τ ′ + t)φn(τ ′)dτ ′ �

∫ ∞

−t
f(τ ′ + t)δ(τ ′)dτ ′ = f(t)

for any t > 0. Taking the limit t→ 0+, we obtain

lim
n→∞

∫ ∞

0−
f(τ ′ + t)φn(τ ′)dτ ′ �

∫ ∞

0−
f(τ ′)δ(τ ′)dτ ′ = f(0), (2.76)
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where
∫∞
0− f(τ ′)δ(τ ′)dτ ′ is not an integral but a symbolic representation of

limn→∞
∫∞
0− f(τ ′ + t)φn(τ ′)dτ ′.

Now let s denote a complex variable. If in (2.75) and (2.76) we let f(τ) =
e−sτ , τ > 0, then we obtain the Laplace transform

lim
n→∞

∫ ∞

0−
e−sτφn(τ)dτ �

∫ ∞

0−
e−sτδ(τ)dτ = 1. (2.77)

Symbolically we denote (2.77) by

L(δ) = 1, (2.78)

and we say that the Laplace transform of the unit impulse function or the
Dirac delta distribution is equal to one.

Next, we point out another important property of δ. Consider a (time-
invariant) operator P and assume that P admits an integral representation
with kernel gP . If in (2.75) we let f = gP , we have

lim
n→∞(Pφn)(t) = gP (t), (2.79)

and we write this (symbolically) as

Pδ = gP . (2.80)

This shows that the impulse response of a linear, time-invariant, continuous-
time system with integral representation is equal to the kernel of the integral
representation of the system.

Next, for any linear time-varying operator P from C(R,R) to itself, we say
that P admits an integral representation if there exists an integrable function
(in the Riemann or Lebesgue sense), gP : R × R → R, such that for any
f ∈ C(R,R),

(Pf)(η) =
∫ ∞

−∞
f(τ)gP (η, τ)dτ. (2.81)

Again, we call gP a kernel of the integral representation of P . It turns out that
the impulse response of a linear, time-varying, continuous-time system with
integral representation is again equal to the kernel of the integral representa-
tion of the system. To see this, we first observe that if h ∈ C(R×R,R), and if
in Lemma 2.1 we replace f ∈ C(R,R) by h, then all the ensuing relationships
still hold, with obvious modifications. In particular, as in (2.71), we have for
all t ∈ R,

lim
n→∞

∫ ∞

−∞
h(t, τ)φn(η − τ)dτ �

∫ ∞

−∞
h(t, τ)δ(η − τ)dτ = h(t, η). (2.82)

Also, as in (2.75), we have

lim
n→∞

∫ ∞

0

h(t, τ)φn(η − τ)dτ �
∫ ∞

0

h(t, τ)δ(η − τ)dτ = h(t, η) (2.83)
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for η > 0.
Now let h(t, τ) = gP (t, τ). Then (2.82) yields

lim
n→∞

∫ ∞

−∞
gP (t, τ)φn(η − τ)dτ �

∫ ∞

−∞
gP (t, τ)δ(η − τ)dτ = gP (t, η), (2.84)

which establishes our assertion. The common interpretation of (2.84) is that
gP (t, η) represents the response of the system at time t due to an impulse
applied at time η.

2.4.4 Linear Continuous-Time Systems

We let P denote a linear time-varying operator from C(R,Rm) � U to
C(R,Rp) = Y , and we assume that P admits an integral representation given
by

y(t) = (Pu)(t) =
∫ ∞

−∞
HP (t, τ)u(τ)dτ, (2.85)

where HP : R × R → Rp×m, u ∈ U , and y ∈ Y and where HP is assumed
to be integrable. This means that each element of HP , hPij : R × R → R is
integrable (in the Riemann or Lebesgue sense).

Now let y1 and y2 denote the response of system (2.85) corresponding to
the input u1 and u2, respectively, let α1 and α2 be real scalars, and let y denote
the response of system (2.85) corresponding to the input α1u1 + α2u2 = u.
Then

y = P (u) = P (α1u1 + α2u2) =
∫ ∞

−∞
HP (t, τ)[α1u1(τ) + α2u2(τ)]dτ

= α1

∫ ∞

−∞
HP (t, τ)u1(τ)dτ + α2

∫ ∞

−∞
HP (t, τ)u2(τ)dτ

= α1P (u1) + α2P (u2) = α1y1 + α2y2, (2.86)

which shows that system (2.85) is indeed a linear system in the sense defined
in (2.50).

Next, we let all components of u(τ) in (2.85) be zero, except for the jth
component. Then the ith component of y(t) in (2.85) assumes the form

yi(t) =
∫ ∞

−∞
hPij (t, τ)uj(τ)dτ. (2.87)

According to the results of the previous subsection [see (2.84)], hPij (t, τ) de-
notes the response of the ith component of the output of system (2.85), mea-
sured at time t, due to an impulse applied to the jth component of the input
of system (2.85), applied at time τ , whereas all of the remaining components
of the input are zero. Therefore, we call HP (t, τ) = [hPij (t, τ)] the impulse
response matrix of system (2.85).
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Now suppose that it is known that system (2.85) is causal. Then its output
will be identically zero before an input is applied. It follows that system (2.85)
is causal if and only if

HP (t, τ) = 0 for all t < τ.

Therefore, when system (2.85) is causal, we have in fact that

y(t) =
∫ t

−∞
HP (t, τ)u(τ)dτ. (2.88)

We can rewrite (2.88) as

y(t) =
∫ t0

−∞
HP (t, τ)u(τ)dτ +

∫ t

t0

HP (t, τ)u(τ)dτ

� y(t0) +
∫ t

t0

HP (t, τ)u(τ)dτ. (2.89)

We say that the continuous-time system (2.85) is at rest at t = t0 if
u(t) = 0 for t ≥ t0 implies that y(t) = 0 for t ≥ t0. Note that our problem
formulation mandates that the system be at rest at t0 = −∞. Also, note that
if a system (2.85) is known to be causal and to be at rest at t = t0, then
according to (2.89) we have

y(t) =
∫ t

t0

HP (t, τ)u(τ)dτ. (2.90)

Next, suppose that it is known that the system (2.85) is time-invariant.
This means that if in (2.87) hPij (t, τ) is the response yi at time t due to an
impulse applied at time τ at the jth component of the input [i.e., uj(τ) = δ(t)],
with all other input components set to zero, then a −τ time shift in the input
[i.e., uj(t − τ) = δ(t − τ)] will result in a corresponding −τ time shift in the
response, which results in hPij (t−τ, 0). Since this argument holds for all t, τ ∈
R and for all i = 1, . . . , p, and j = 1, . . . ,m, we have HP (t, τ) = HP (t− τ, 0).
If we define (using a slight abuse of notation) HP (t− τ, 0) = HP (t− τ), then
(2.85) assumes the form

y(t) =
∫ ∞

−∞
HP (t− τ)u(τ)dτ. (2.91)

Note that (2.91) is consistent with the definition of the integral representation
of a linear time-invariant operator introduced in the previous subsection.

The right-hand side of (2.91) is the familiar convolution integral of HP

and u and is written more compactly as

y(t) = (HP ∗ u)(t). (2.92)
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We note that since HP (t−τ) represents responses at time t due to impulse
inputs applied at time τ , then HP (t) represents responses at time t due to
impulse function inputs applied at τ = 0. Therefore, a linear time-invariant
system (2.91) is causal if and only if HP (t) = 0 for all t < 0.

If it is known that the linear time-invariant system (2.91) is causal and is
at rest at t0, then we have

y(t) =
∫ t

t0

HP (t− τ)u(τ)dτ =
∫ t

t0

HP (τ)u(t− τ)dτ. (2.93)

In this case it is customary to choose, without loss of generality, t0 = 0. We
thus have

y(t) =
∫ t

0

HP (t− τ)u(τ)dτ, t ≥ 0. (2.94)

If we take the Laplace transform of both sides of (2.94), provided it exists,
we obtain

ŷ(s) = ĤP (s)û(s), (2.95)

where ŷ(s) = [ŷ1(s), . . . , ŷp(s)]T , ĤP (s) = [ĥPij (s)], û(s) = [û1(s), . . . , ûm(s)]T

where the ŷi(s), ûj(s), and ĥPij (s) denote the Laplace transforms of yi(t),
uj(t), and hPij(t), respectively [see Chapter 3 for more details concerning
Laplace transforms]. Consistent with (2.78), we note that ĤP (s) represents
the Laplace transform of the impulse response matrix HP (t). We call ĤP (s)
a transfer function matrix.

Now suppose that the input–output relation of a system is specified by the
state and output equations (2.3), repeated here as

ẋ = A(t)x +B(t)u, (2.96a)
y = C(t)x +D(t)u. (2.96b)

If we assume that x(t0) = 0 so that the system is at rest at t0 = 0, we obtain
for the response of this system,

y(t) =
∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ)dτ +D(t)u(t) (2.97)

=
∫ t

t0

[C(t)Φ(t, τ)B(τ) +D(t)δ(t− τ)]u(τ)dτ, (2.98)

where in (2.98) we have made use of the interpretation of δ given in Sub-
section 2.4.3. Comparing (2.98) with (2.90), we conclude that the impulse
response matrix for system (2.96) is given by

HP (t, τ) =

{
C(t)Φ(t, τ)B(τ) +D(t)δ(t− τ), t ≥ τ,

0, t < τ.
(2.99)
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Finally, for time-invariant systems described by the state and output equa-
tions (2.7), repeated here as

ẋ = Ax+Bu, (2.100a)
y = Cx+Du, (2.100b)

we obtain for the impulse response matrix the expression

HP (t− τ) =

{
CeA(t−τ)B +Dδ(t− τ), t ≥ τ,

0, t < τ,
(2.101)

or, as is more commonly written,

HP (t) =

{
CeAtB +Dδ(t), t ≥ 0,
0, t < 0.

(2.102)

We will pursue the topics of this section further in Chapter 3.

2.5 Summary and Highlights

Internal Descriptions

• The response of the time-varying continuous-time system

ẋ = A(t)x +B(t)u, y = C(t)x +D(t)u, (2.3)

with x(t0) = x0 is given by

y(t) = C(t)Φ(t, t0)x0 + C(t)
∫ t

t0

Φ(t, s)B(s)u(s)ds +D(t)u(t). (2.6)

• The response of the time-invariant continuous-time system

ẋ = Ax+Bu, y = Cx +Du, (2.7)

is given by

y(t) = CeA(t−t0)x0 + C

∫ t

t0

eA(t−s)Bu(s)ds+Du(t). (2.9)

• The response of the discrete-time system

x(k + 1) = A(k)x(k) +B(k)u(k), y(k) = C(k)x(k) +D(k)u(k), (2.14)

with x(k0) = xk0 is given by
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y(k) = C(k)Φ(k, k0)xk0 + C(k)
k−1∑
j=k0

Φ(k, j + 1)B(j)u(j)

+D(k)u(k), k > k0 (2.42)

and
y(k0) = C(k0)xk0 +D(k0)u(k0), (2.43)

where the state transition matrix

Φ(k, k0) =
k−1∏
j=k0

A(j), k > k0, (2.31)

Φ(k0, k0) = I. (2.32)

In the time-invariant case

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k), (2.15)

with x(k) = xk0 , the system response is given by

y(k) = CAk−k0xk0 + C

k−1∑
j=k0

Ak−(j+1)B(j)u(j) +Du(k), k > k0, (2.44)

and
y(k0) = Cxk0 +Du(k0). (2.45)

External Descriptions

• Properties: Linearity (2.50); with memory; causality; time-invariance
• The input–output description of a linear, discrete-time, causal, time-

invariant system that is at rest at k = k0 is given by

y(n) =
n∑

k=k0

h(n− k)u(k) =
n∑

k=k0

h(k)u(n− k). (2.59)

h(n − k)(= h(n − k, 0)) is the discrete-time unit impulse response of the
system.

• For the discrete-time, time-invariant system

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k),

the discrete-time unit impulse response (for the MIMO case) is

H(n− k) =

⎧⎪⎨
⎪⎩

CAn−(k+1)B, n > k,

D, n = k,

0, n < k.

(2.68)
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• The unit impulse (Dirac delta distribution) δ(t) satisfies

∫ b

a

f(τ)δ(t − τ)dτ = f(t),

where a < t < b [see (2.75)].
• The input–output description of a linear, continuous-time, causal, time-

invariant system that is at rest at t = t0 is given by

y(t) =
∫ t

t0

HP (t− τ)u(τ)dτ =
∫ t

t0

HP (τ)u(t − τ)dτ. (2.93)

HP (t− τ)(= HP (t− τ, 0)) is the continuous-time unit impulse response of
the system.

• For the time-invariant system

ẋ = Ax+Bu y = Cx+Du, (2.100)

the continuous-time unit impulse response is

HP (t− τ) =

{
CeA(t−τ)B +Dδ(t− τ), t ≥ τ,

0, t < τ.
(2.101)

2.6 Notes

An original standard reference on linear systems is by Zadeh and Desoer [7].
Of the many excellent texts on this subject, the reader may want to refer to
Brockett [2], Kailath [5], and Chen [3]. For more recent texts on linear systems,
consult, e.g., Rugh [6] and DeCarlo [4]. The presentation in this book relies
mostly on the recent text by Antsaklis and Michel [1].
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Exercises

2.1. (a) For the mechanical system given in Exercise 1.2a, we view f1 and f2
as making up the system input vector, and y1 and y2 the system output
vector. Determine a state-space description for this system.

(b) For the same mechanical system, we view f1 + 5f2 as the (scalar-valued)
system input and we view 8y1+10y2 as the (scalar-valued) system output.
Determine a state-space description for this system.

(c) For part (a), determine the input–output description of the system.
(d) For part (b), determine the input–output description of the system.

2.2. In Example 1.3, we view ea and θ as the system input and output, re-
spectively.

(a) Detemine a state-space representation for this system.
(b) Determine the input–output description of this system.

2.3. For the second-order section digital filter in direct form, given in Fig-
ure 2.1, determine the input–output description, where x1(k) and u(k) denote
the output and input, respectively.

2.4. In the circuit of Figure 2.5, vi(t) and v0(t) are voltages (at time t) and R1

and R2 are resistors. There is also an ideal diode that acts as a short circuit
when vi is positive and as an open circuit when vi is negative. We view vi and
v0 as the system input and output, respectively.

(a) Determine an input–output description of this system.
(b) Is this system linear? Is it time-varying or time-invariant? Is it causal?

Explain your answers.

R1

R2
v

+

–

v

Diode +

–

+ –

i (t) 0 (t)

i(t)

Figure 2.5. Diode circuit

2.5. We consider the truncation operator given by

y(t) = Tτ (u(t))

as a system, where τ ∈ R is fixed, u and y denote system input and output,
respectively, t denotes time, and Tτ (·) is specified by



Exercises 75

Tτ (u(t)) =

{
u(t) t ≤ τ,

0 t > τ.

Is this system causal? Is it linear? Is it time-invariant? What is its impulse
response?

2.6. We consider the shift operator given by

y(t) = Qτ (u(t)) = u(t− τ)

as a system, where τ ∈ R is fixed, u and y denote system input and system
output, respectively, and t denotes time. Is this system causal? Is it linear? Is
it time-invariant? What is its impulse response?

2.7. Consider the system whose input–output description is given by

y(t) = min{u1(t), u2(t)},

where u(t) = [u1(t), u2(t)]T denotes the system input and y(t) is the system
output. Is this system linear?

2.8. Suppose it is known that a linear system has impulse response given by
h(t, τ) = exp(−|t− τ |). Is this system causal? Is it time-invariant?

2.9. Consider a system with input–output description given by

y(k) = 3u(k + 1) + 1, k ∈ Z,

where y and u denote the output and input, respectively (recall that Z denotes
the integers). Is this system causal? Is it linear?

2.10. Use expression (2.54),

x(n) =
∞∑

k=−∞
x(k)δ(n− k),

and δ(n) = p(n) − p(n − 1) to express the system response y(n) due to any
input u(k), as a function of the unit step response of the system [i.e., due to
u(k) = p(k)].
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Stability

Dynamical systems, either occurring in nature or man made, usually function
in some specified mode. The most common such modes are operating points
that frequently turn out to be equilibria.

In this chapter we will concern ourselves primarily with the qualitative
behavior of equilibria. Most of the time, we will be interested in the asymp-
totic stability of an equilibrium (operating point), which means that when
the state of a given system is displaced (disturbed) from its desired operating
point (equilibrium), the expectation is that the state will eventually return to
the equilibrium. For example, in the case of an automobile under cruise con-
trol, traveling at the desired constant speed of 50 mph (which determines the
operating point, or equilibrium condition), perturbations due to hill climbing
(hill descending), will result in decreasing (increasing) speeds. In a properly
designed cruise control system, it is expected that the car will return to its
desired operating speed of 50 mph.

Another qualitative characterization of dynamical systems is the expecta-
tion that bounded system inputs will result in bounded system outputs, and
that small changes in inputs will result in small changes in outputs. System
properties of this type are referred to as input–output stability. Such prop-
erties are important for example in tracking systems, where the output of
the system is expected to follow a desired input. Frequently, it is possible to
establish a connection between the input–output stability properties and the
Lyapunov stability properties of an equilibrium. In the case of linear systems,
this connection is well understood. This will be addressed in Section 7.3.

4.1 Introduction

In this chapter we present a brief introduction to stability theory. We are
concerned primarily with linear systems and systems that are a consequence
of linearizations of nonlinear systems. As in the other chapters of this book,
we consider finite-dimensional continuous-time systems and finite-dimensional
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discrete-time systems described by systems of first-order ordinary differen-
tial equations and systems of first-order ordinary difference equations, respec-
tively.

In Section 4.2 we introduce the concept of equilibrium of dynamical sys-
tems described by systems of first-order ordinary differential equations, and
in Section 4.3 we give definitions of various types of stability in the sense of
Lyapunov (including stability, uniform stability, asymptotic stability, uniform
asymptotic stability, exponential stability, and instability).

In Section 4.4 we establish conditions for the various Lyapunov stability
and instability types enumerated in Section 4.3 for linear systems ẋ = Ax.
Most of these results are phrased in terms of the properties of the state tran-
sition matrix for such systems.

In Section 4.5 we introduce the Second Method of Lyapunov, also called
the Direct Method of Lyapunov, to establish necessary and sufficient condi-
tions for various Lyapunov stability types of an equilibrium for linear systems
ẋ = Ax. These results, which are phrased in terms of the system parameters
[coefficients of the matrix A], give rise to the Lyapunov matrix equation.

In Section 4.6 we use the Direct Method of Lyapunov in deducing the
asymptotic stability and instability of an equilibrium of nonlinear autonomous
systems ẋ = Ax + F (x) from the stability properties of their linearizations
ẇ = Aw.

In Section 4.7 we establish necessary and sufficient conditions for the
input–output stability (more precisely, for the bounded input/bounded out-
put stability) of continuous-time, linear, time-invariant systems. These results
involve the system impulse response matrix.

The stability results presented in Sections 4.2 through and including Sec-
tion 4.7 pertain to continuous-time systems. In Section 4.8 we present analo-
gous stability results for discrete-time systems.

4.2 The Concept of an Equilibrium

In this section we concern ourselves with systems of first-order autonomous
ordinary differential equations,

ẋ = f(x), (4.1)

where x ∈ Rn. When discussing global results, we shall assume that f : Rn →
Rn, while when considering local results, we may assume that f : B(h) → Rn

for some h > 0, where B(h) = {x ∈ Rn :‖ x ‖< h} and ‖ · ‖ denotes a norm on
Rn. Unless otherwise stated, we shall assume that for every (t0, x0), t0 ∈ R+,
the initial-value problem

ẋ = f(x), x(t0) = x0 (4.2)

possesses a unique solution φ(t, t0, x0) that exists for all t ≥ t0 and that
depends continuously on the initial data (t0, x0). Refer to Section 1.5 for
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conditions that ensure that (4.2) has these properties. Since (4.1) is time-
invariant, we may assume without loss of generality that t0 = 0 and we will
denote the solutions of (4.1) by φ(t, x0) (rather than φ(t, t0, x0)) with x(0) =
x0.

Definition 4.1. A point xe ∈ Rn is called an equilibrium point of (4.1), or
simply an equilibrium of (4.1), if

f(xe) = 0.

�

We note that
φ(t, xe) = xe for all t ≥ 0;

i.e., the equilibrium xe is the unique solution of (4.1) with initial data given
by φ(0, xe) = xe.

We will usually assume that in a given discussion, unless otherwise stated,
the equilibrium of interest is located at the origin of Rn. This assumption can
be made without loss of generality by noting that if xe �= 0 is an equilibrium
point of (4.1), i.e., f(xe) = 0, then by letting w = x − xe, we obtain the
transformed system

ẇ = F (w) (4.3)

with F (0) = 0, where
F (w) = f(w + xe). (4.4)

Since the above transformation establishes a one-to-one correspondence be-
tween the solutions of (4.1) and (4.3), we may assume henceforth that the
equilibrium of interest for (4.1) is located at the origin. This equilibrium,
x = 0, will be referred to as the trivial solution of (4.1).

Before concluding this section, it may be fruitful to consider some specific
cases.

Example 4.2. In Example 1.4 we considered the simple pendulum given in
Figure 1.7. Letting x1 = x and x2 = ẋ in (1.37), we obtain the system of
equations

ẋ1 = x2,

ẋ2 = −k sinx1, (4.5)

where k > 0 is a constant. Physically, the pendulum has two equilibrium
points: one where the mass M is located vertically at the bottom of the figure
(i.e., at 6 o’clock) and the other where the mass is located vertically at the
top of the figure (i.e., at 12 o’clock). The model of this pendulum, however,
described by (4.5), has countably infinitely many equilibrium points that are
located in R2 at the points (πn, 0)T , n = 0,±1,±2, . . . .
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Example 4.3. The linear, autonomous, homogenous system of ordinary dif-
ferential equations

ẋ = Ax (4.6)

has a unique equilibrium that is at the origin if and only if A is nonsingular.
Otherwise, (4.6) has nondenumerably many equilibria. [Refer to Chapter 1 for
the definitions of symbols in (4.6).]

Example 4.4. Assume that for

ẋ = f(x), (4.7)

f is continuously differentiable with respect to all of its arguments, and let

J(xe) =
∂f

∂x
(x)
∣∣∣∣
x=xe

,

where ∂f/∂x denotes the n× n Jacobian matrix defined by

∂f

∂x
=
[
∂fi
∂xj

]
.

If f(xe) = 0 and J(xe) is nonsingular, then xe is an equilibrium of (4.7).

Example 4.5. The system of ordinary differential equations given by

ẋ1 = k + sin(x1 + x2) + x1,

ẋ2 = k + sin(x1 + x2) − x1,

with k > 1, has no equilibrium points at all.

4.3 Qualitative Characterizations of an Equilibrium

In this section we consider several qualitative characterizations that are of
fundamental importance in systems theory. These characterizations are con-
cerned with various types of stability properties of an equilibrium and are
referred to in the literature as Lyapunov stability.

Throughout this section, we consider systems of equations

ẋ = f(x), (4.8)

and we assume that (4.8) possesses an equilibrium at the origin. We thus have
f(0) = 0.
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Definition 4.6. The equilibrium x = 0 of (4.8) is said to be stable if for
every ε > 0, there exists a δ(ε) > 0 such that

‖ φ(t, x0) ‖< ε for all t ≥ 0 (4.9)

whenever
‖ x0 ‖< δ(ε). (4.10)

�

In Definition 4.6, ‖ · ‖ denotes any one of the equivalent norms on Rn,
and (as in Chapters 1 and 2) φ(t, x0) denotes the solution of (4.8) with initial
condition x(0) = x0. The notation δ(ε) indicates that δ depends on the choice
of ε.

In words, Definition 4.6 states that by choosing the initial points in a
sufficiently small spherical neighborhood, when the equilibrium x = 0 of (4.8)
is stable, we can force the graph of the solution for t ≥ 0 to lie entirely inside
a given cylinder. This is depicted in Figure 4.1 for the case x ∈ R2.

Figure 4.1. Stability of an equilibrium

Definition 4.7. The equilibrium x = 0 of (4.8) is said to be asymptotically
stable if

(i) it is stable,
(ii) there exists an η > 0 such that lim

t→∞φ(t, x0) = 0 whenever ‖ x0 ‖< η. �

The set of all x0 ∈ Rn such that φ(t, x0) → 0 as t → ∞ is called the domain
of attraction of the equilibrium x = 0 of (4.8). Also, if for (4.8) condition (ii)
is true, then the equilibrium x = 0 is said to be attractive.

Definition 4.8. The equilibrium x = 0 of (4.8) is exponentially stable if
there exists an α > 0, and for every ε > 0, there exists a δ(ε) > 0, such that

‖ φ(t, x0) ‖≤ εeαt for all t ≥ 0

whenever ||x0|| < δ(ε). �
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Figure 4.2. An exponentially stable equilibrium

Figure 4.2 shows the behavior of a solution in the vicinity of an exponen-
tially stable equilibrium x = 0.

Definition 4.9. The equilibrium x = 0 of (4.8) is unstable if it is not stable.
In this case, there exists an ε > 0, and a sequence xm → 0 of initial points
and a sequence {tm} such that ‖ φ(tm, xm) ‖≥ ε for all m, tm ≥ 0. �

If x = 0 is an unstable equilibrium of (4.8), then it still can happen that
all the solutions tend to zero with increasing t. This indicates that instability
and attractivity of an equilibrium are compatible concepts. We note that the
equilibrium x = 0 of (4.8) is necessarily unstable if every neighborhood of the
origin contains initial conditions corresponding to unbounded solutions (i.e.,
solutions whose norm grows to infinity on a sequence tm → ∞). However, it
can happen that a system (4.8) with unstable equilibrium x = 0 may have
only bounded solutions.

The concepts that we have considered thus far pertain to local properties
of an equilibrium. In the following discussion, we consider global characteri-
zations of an equilibrium.

Definition 4.10. The equilibrium x = 0 of (4.8) is asymptotically stable in
the large if it is stable and if every solution of (4.8) tends to zero as t→ ∞.

�
When the equilibrium x = 0 of (4.8) is asymptotically stable in the large,

its domain of attraction is all of Rn. Note that in this case, x = 0 is the only
equilibrium of (4.8).

Definition 4.11. The equilibrium x = 0 of (4.8) is exponentially stable in
the large if there exists α > 0 and for any β > 0, there exists k(β) > 0 such
that

‖ φ(t, x0) ‖≤ k(β) ‖ x0 ‖ e−αt for all t ≥ 0

whenever ‖ x0 ‖< β. �
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We conclude this section with a few specific cases.
The scalar differential equation

ẋ = 0 (4.11)

has for any initial condition x(0) = x0 the solution φ(t, x0) = x0; i.e., all
solutions are equilibria of (4.11). The trivial solution is stable; however, it is
not asymptotically stable.

The scalar differential equation

ẋ = ax (4.12)

has for every x(0) = x0 the solution φ(t, x0) = x0e
at, and x = 0 is the only

equilibrium of (4.12). If a > 0, this equilibrium is unstable, and when a < 0,
this equilibrium is exponentially stable in the large.

As mentioned earlier, a system

ẋ = f(x) (4.13)

can have all solutions approaching an equilibrium, say, x = 0, without this
equilibrium being asymptotically stable. An example of this type of behavior
is given by the nonlinear system of equations

ẋ1 =
x2

1(x2 − x1) + x5
2

(x2
1 + x2

2)[1 + (x2
1 + x2

2)2]
,

ẋ2 =
x2

2(x2 − 2x1)
(x2

1 + x2
2)[1 + (x2

1 + x2
2)2]

.

For a detailed discussion of this system, refer to [6], pp. 191–194, cited at the
end of this chapter.

Before proceeding any further, a few comments are in order concerning
the reasons for considering equilibria and their stability properties as well as
other types of stability that we will encounter. To this end we consider linear
time-invariant systems given by

ẋ = Ax+Bu, (4.14a)
y = Cx+Du, (4.14b)

where all symbols in (4.14) are defined as in (2.7). The usual qualitative
analysis of such systems involves two concepts, internal stability and input–
output stability.

In the case of internal stability, the output equation (4.14b) plays no role
whatsoever, the system input u is assumed to be identically zero, and the focus
of the analysis is concerned with the qualitative behavior of the solutions of
linear time-invariant systems

ẋ = Ax (4.15)
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near the equilibrium x = 0. This is accomplished by making use of the vari-
ous types of Lyapunov stability concepts introduced in this section. In other
words, internal stability of system (4.14) concerns the Lyapunov stability of
the equilibrium x = 0 of system (4.15).

In the case of input–output stability, we view systems as operators de-
termined by (4.14) that relate outputs y to inputs u and the focus of the
analysis is concerned with qualitative relations between system inputs and
system outputs. We will address this type of stability in Section 4.7.

4.4 Lyapunov Stability of Linear Systems

In this section we first study the stability properties of the equilibrium x = 0
of linear autonomous homogeneous systems

ẋ = Ax, t ≥ 0. (4.16)

Recall that x = 0 is always an equilibrium of (4.16) and that x = 0 is the
only equilibrium of (4.16) if A is nonsingular. Recall also that the solution of
(4.16) for x(0) = x0 is given by

φ(t, x0) = Φ(t, 0)x0 = Φ(t− 0, 0)x0

� Φ(t)x0 = eAtx0,

where in the preceding equation, a slight abuse of notation has been used.
We first consider some of the basic properties of system (4.16).

Theorem 4.12. The equilibrium x = 0 of (4.16) is stable if and only if the
solutions of (4.16) are bounded, i.e., if and only if

sup
t≥t0

‖ Φ(t) ‖� k <∞,

where ‖ Φ(t) ‖ denotes the matrix norm induced by the vector norm used on
Rn and k denotes a constant.

Proof. Assume that the equilibrium x = 0 of (4.16) is stable. Then for ε = 1
there is a δ = δ(1) > 0 such that ‖ φ(t, x0) ‖< 1 for all t ≥ 0 and all x0 with
‖ x0 ‖≤ δ. In this case

‖ φ(t, x0) ‖=‖ Φ(t)x0 ‖=‖ [Φ(t)(x0δ)/ ‖ x0 ‖] ‖ (‖ x0 ‖ /δ) <‖ x0 ‖ /δ

for all x0 �= 0 and all t ≥ 0. Using the definition of matrix norm [refer to
Section A.7], it follows that

‖ Φ(t) ‖≤ δ−1, t ≥ 0.

We have proved that if the equilibrium x = 0 of (4.16) is stable, then the
solutions of (4.16) are bounded.
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Conversely, suppose that all solutions φ(t, x0) = Φ(t)x0 are bounded. Let
{e1, . . . , en} denote the natural basis for n-space, and let ‖ φ(t, ej) ‖< βj for
all t ≥ 0. Then for any vector x0 =

∑n
j=1 αjej we have that

‖ φ(t, x0) ‖ =‖
n∑
j=1

αjφ(t, ej) ‖≤
n∑
j=1

|αj |βj

≤ (max
j
βj)

n∑
j=1

|αj | ≤ k ‖ x0 ‖

for some constant k > 0 for t ≥ 0. For given ε > 0, we choose δ = ε/k. Thus,
if ‖ x0 ‖< δ, then ‖ φ(t, x0) ‖< k ‖ x0 ‖< ε for all t ≥ 0. We have proved that
if the solutions of (4.16) are bounded, then the equilibrium x = 0 of (4.16) is
stable. �

Theorem 4.13. The following statements are equivalent.

(i) The equilibrium x = 0 of (4.16) is asymptotically stable.
(ii) The equilibrium x = 0 of (4.16) is asymptotically stable in the large.
(iii) limt→∞ ‖ Φ(t) ‖= 0.

Proof. Assume that statement (i) is true. Then there is an η > 0 such that
when ‖ x0 ‖≤ η, then φ(t, x0) → 0 as t→ ∞. But then we have for any x0 �= 0
that

φ(t, x0) = φ(t, ηx0/ ‖ x0 ‖)(‖ x0 ‖ /η) → 0

as t→ ∞. It follows that statement (ii) is true.
Next, assume that statement (ii) is true. For any ε > 0, there must exist

a T (ε) > 0 such that for all t ≥ T (ε) we have that ‖ φ(t, x0) ‖=‖ Φ(t)x0 ‖< ε.
To see this, let {e1, . . . , en} be the natural basis for Rn. Thus, for some fixed
constant k > 0, if x0 = (α1, . . . , αn)T and if ‖ x0 ‖≤ 1, then x0 =

∑n
j=1 αjej

and
∑n
j=1 |αj | ≤ k. For each j, there is a Tj(ε) such that ‖ Φ(t)ej ‖< ε/k

and t ≥ Tj(ε). Define T (ε) = max{Tj(ε) : j = 1, . . . , n}. For ‖ x0 ‖≤ 1 and
t ≥ T (ε), we have that

‖ Φ(t)x0 ‖=‖
n∑
j=1

αjΦ(t)ej ‖≤
n∑
j=1

|αj |(ε/k) ≤ ε.

By the definition of the matrix norm [see the appendix], this means that
‖ Φ(t) ‖≤ ε for t ≥ T (ε). Therefore, statement (iii) is true.

Finally, assume that statement (iii) is true. Then ‖ Φ(t) ‖ is bounded
in t for all t ≥ 0. By Theorem 4.12, the equilibrium x = 0 is stable. To
prove asymptotic stability, fix ε > 0. If ‖ x0 ‖< η = 1, then ‖ φ(t, x0) ‖≤
‖ Φ(t) ‖ ‖ x0 ‖→ 0 as t→ ∞. Therefore, statement (i) is true. This completes
the proof. �
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Theorem 4.14. The equilibrium x = 0 of (4.16) is asymptotically stable if
and only if it is exponentially stable.

Proof. The exponential stability of the equilibrium x = 0 implies the asymp-
totic stability of the equilibrium x = 0 of systems (4.13) in general and, hence,
for systems (4.16) in particular.

Conversely, assume that the equilibrium x = 0 of (4.16) is asymptotically
stable. Then there is a δ > 0 and a T > 0 such that if ‖ x0 ‖≤ δ, then

‖ Φ(t + T )x0 ‖< δ/2

for all t ≥ 0. This implies that

‖ Φ(t+ T ) ‖≤ 1
2

if t ≥ 0. (4.17)

From Theorem 3.9 (iii) we have that Φ(t− τ) = Φ(t−σ)Φ(σ− τ) for any t, σ,
and τ . Therefore,

‖ Φ(t+ 2T ) ‖=‖ Φ(t + 2T − t− T )Φ(t+ T ) ‖≤ 1
4
,

in view of (4.17). By induction, we obtain for t ≥ 0 that

‖ Φ(t+ nT ) ‖≤ 2−n. (4.18)

Now let α = (ln2)/T . Then (4.18) implies that for 0 ≤ t < T we have that

‖ φ(t+ nT, x0) ‖ ≤ 2 ‖ x0 ‖ 2−(n+1) = 2 ‖ x0 ‖ e−α(n+1)T

≤ 2 ‖ x0 ‖ e−α(t+nT ),

which proves the result. �

Even though the preceding results require knowledge of the state transition
matrix Φ(t) of (4.16), they are quite useful in the qualitative analysis of linear
systems. In view of the above results, we can state the following equivalent
definitions.

The equilibrium x = 0 of (4.16) is stable if and only if there exists a finite
positive constant γ, such that for any x0, the corresponding solution satisfies
the inequality

‖ φ(t, x0) ‖≤ γ ‖ x0 ‖, t ≥ 0.

Furthermore, in view of the above results, if the equilibrium x = 0 of (4.16) is
asymptotically stable, then in fact it must be globally asymptotically stable,
and exponentially stable in the large. In this case there exist finite constants
γ ≥ 1 and λ > 0 such that

‖ φ(t, x0) ‖≤ γe−λt ‖ x0 ‖

for t ≥ 0 and x0 ∈ Rn.
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We now continue our investigation of system (4.16) by referring to the
discussion in Subsection 3.3.2 [refer to (3.23) to (3.39)] concerning the use
of the Jordan canonical form to compute exp(At). We let J = P−1AP and
define x = Py. Then (4.16) yields

ẏ = P−1APy = Jy. (4.19)

It is easily verified (the reader is asked to do so in the Exercises section)
that the equilibrium x = 0 of (4.16) is stable (resp., asymptotically stable or
unstable) if and only if y = 0 of (4.19) is stable (resp., asymptotically stable
or unstable). In view of this, we can assume without loss of generality that
the matrix A in (4.16) is in Jordan canonical form, given by

A = diag[J0, J1, . . . , Js],

where
J0 = diag[λ1, . . . , λk] and Ji = λk+iIi +Ni

for the Jordan blocks J1, . . . , Js.
As in (3.33), (3.34), (3.38), and (3.39), we have

eAt =

⎡
⎢⎢⎢⎣

eJ0t 0
eJ1t

. . .
0 eJst

⎤
⎥⎥⎥⎦ ,

where
eJ0t = diag[eλ1t, . . . , eλkt] (4.20)

and

eJit = eλk+it

⎡
⎢⎢⎢⎣

1 t t2/2 · · · tni−1/(ni − 1)!
0 1 t · · · tni−2/(ni − 2)!
...

...
...

...
0 0 0 · · · 1

⎤
⎥⎥⎥⎦ (4.21)

for i = 1, . . . , s.
Now suppose that Reλi ≤ β for all i = 1, . . . , k. Then it is clear that

limt→∞(‖ eJ0t ‖ /eβt) < ∞, where ‖ eJ0t ‖ is the matrix norm induced by
one of the equivalent vector norms defined on Rn. We write this as ‖ eJ0t ‖=
O(eβt). Similarly, if β = Reλk+i, then for any ε > 0 we have that ‖ eJit ‖=
O(tni−1eβt) = O(e(β+ε)t).

From the foregoing it is now clear that ‖ eAt ‖≤ K for some K > 0 if and
only if all eigenvalues of A have nonpositive real parts, and the eigenvalues
with zero real part occur in the Jordan form only in J0 and not in any of the
Jordan blocks Ji, 1 ≤ i ≤ s. Hence, by Theorem 4.12, the equilibrium x = 0
of (4.16) is under these conditions stable.
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Now suppose that all eigenvalues of A have negative real parts. From
the preceding discussion it is clear that there is a constant K > 0 and an
α > 0 such that ‖ eAt ‖≤ Ke−αt, and therefore, ‖ φ(t, x0) ‖≤ Ke−αt ‖ x0 ‖
for all t ≥ 0 and for all x0 ∈ Rn. It follows that the equilibrium x = 0 is
asymptotically stable in the large, in fact exponentially stable in the large.
Conversely, assume that there is an eigenvalue λi with a nonnegative real part.
Then either one term in (4.20) does not tend to zero, or else a term in (4.21)
is unbounded as t→ ∞. In either case, eAtx(0) will not tend to zero when the
initial condition x(0) = x0 is properly chosen. Hence, the equilibrium x = 0 of
(4.16) cannot be asymptotically stable (and, hence, it cannot be exponentially
stable).

Summarizing the above, we have proved the following result.

Theorem 4.15. The equilibrium x = 0 of (4.16) is stable, if and only if all
eigenvalues of A have nonpositive real parts, and every eigenvalue with zero
real part has an associated Jordan block of order one. The equilibrium x = 0
of (4.16) is asymptotically stable in the large, in fact exponentially stable in
the large, if and only if all eigenvalues of A have negative real parts. �

A direct consequence of the above result is that the equilibrium x = 0 of
(4.16) is unstable if and only if at least one of the eigenvalues of A has either
positive real part or has zero real part that is associated with a Jordan block
of order greater than one.

At this point, it may be appropriate to take note of certain conventions
concerning matrices that are used in the literature. It should be noted that
some of these are not entirely consistent with the terminology used in The-
orem 4.15. Specifically, a real n × n matrix A is called stable or a Hurwitz
matrix if all its eigenvalues have negative real parts. If at least one of the
eigenvalues has a positive real part, then A is called unstable. A matrix A,
which is neither stable nor unstable, is called critical, and the eigenvalues with
zero real parts are called critical eigenvalues .

We conclude our discussion concerning the stability of (4.16) by noting
that the results given above can also be obtained by directly using the facts
established in Subsection 3.3.3, concerning modes and asymptotic behavior of
time-invariant systems.

Example 4.16. We consider the system (4.16) with

A =
[

0 1
−1 0

]
.

The eigenvalues of A are λ1, λ2 = ±j. According to Theorem 4.15, the equilib-
rium x = 0 of this system is stable. This can also be verified by computing the
solution of this system for a given set of initial data x(0)T = (x1(0), x2(0)),

φ1(t, x0) = x1(0) cos t+ x2(0) sin t,
φ2(t, x0) = −x1(0) sin t+ x2(0) cos t,
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t ≥ 0, and then applying Definition 4.6.

Example 4.17. We consider the system (4.16) with

A =
[

0 1
0 0

]
.

The eigenvalues of A are λ1 = 0, λ2 = 0. According to Theorem 4.15, the
equilibrium x = 0 of this system is unstable. This can also be verified by
computing the solution of this system for a given set of initial data x(0)T =
(x1(0), x2(0)),

φ1(t, x0) = x1(0) + x2(0)t,
φ2(t, x0) = x2(0),

t ≥ 0, and then applying Definition 4.9. (Note that in this example, the entire
x1-axis consists of equilibria.)

Example 4.18. We consider the system (4.16) with

A =
[

2.8 9.6
9.6 −2.8

]
.

The eigenvalues of A are λ1, λ2 = ±10. According to Theorem 4.15, the equi-
librium x = 0 of this system is unstable.

Example 4.19. We consider the system (4.16) with

A =
[
−1 0
−1 −2

]
.

The eigenvalues of A are λ1, λ2 = −1,−2. According to Theorem 4.15, the
equilibrium x = 0 of this system is exponentially stable.

4.5 The Lyapunov Matrix Equation

In Section 4.4 we established a variety of stability results that require explicit
knowledge of the solutions of (4.16). In this section we will develop stability
criteria for (4.16) with arbitrary matrix A. In doing so, we will employ Lya-
punov’s Second Method (also called Lyapunov’s Direct Method) for the case
of linear systems (4.16). This method utilizes auxiliary real-valued functions
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v(x), called Lyapunov functions , that may be viewed as generalized energy
functions or generalized distance functions (from the equilibrium x = 0), and
the stability properties are then deduced directly from the properties of v(x)
and its time derivative v̇(x), evaluated along the solutions of (4.16).

A logical choice of Lyapunov function is v(x) = xTx =‖ x ‖2, which rep-
resents the square of the Euclidean distance of the state from the equilibrium
x = 0 of (4.16). The stability properties of the equilibrium are then deter-
mined by examining the properties of v̇(x), the time derivative of v(x) along
the solutions of (4.16), which we repeat here,

ẋ = Ax. (4.22)

This derivative can be determined without explicitly solving for the solutions
of (4.22) by noting that

v̇(x) = ẋTx+ xT ẋ = (Ax)T x+ xT (Ax)

= xT (AT +A)x.

If the matrix A is such that v̇(x) is negative for all x �= 0, then it is reasonable
to expect that the distance of the state of (4.22) from x = 0 will decrease
with increasing time, and that the state will therefore tend to the equilibrium
x = 0 of (4.22) with increasing time t.

It turns out that the Lyapunov function used in the above discussion
is not sufficiently flexible. In the following discussion, we will employ as a
“generalized distance function” the quadratic form given by

v(x) = xTPx, P = PT , (4.23)

where P is a real n×n matrix. The time derivative of v(x) along the solutions
of (4.22) is determined as

v̇(x) = ẋTPx+ xTP ẋ = xTATPx+ xTPAx

= xT (ATP + PA)x;

i.e.,
v̇ = xTCx, (4.24)

where
C = ATP + PA. (4.25)

Note that C is real and CT = C. The system of equations given in (4.25) is
called the Lyapunov Matrix Equation.

We recall that since P is real and symmetric, all its eigenvalues are real.
Also, we recall that P is said to be positive definite (resp., positive semidef-
inite) if all its eigenvalues are positive (resp., nonnegative), and it is called
indefinite if P has eigenvalues of opposite sign. The concepts of negative def-
inite and negative semidefinite (for P ) are similarly defined. Furthermore,
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we recall that the function v(x) given in (4.23) is said to be positive defi-
nite, positive semidefinite, indefinite, and so forth, if P has the corresponding
definiteness properties.

Instead of solving for the eigenvalues of a real symmetric matrix to deter-
mine its definiteness properties, there are more efficient and direct methods
of accomplishing this. We now digress to discuss some of these.

LetG = [gij ] be a real n×nmatrix (not necessarily symmetric). Recall that
the minors of G are the matrix itself and the matrix obtained by removing
successively a row and a column. The principal minors of G are G itself and
the matrices obtained by successively removing an ith row and an ith column,
and the leading principal minors of G are G itself and the minors obtained
by successively removing the last row and the last column. For example, if
G = [gij ] ∈ R3×3, then the principal minors are

⎡
⎣
g11 g12 g13
g21 g22 g23
g31 g32 g33

⎤
⎦ ,

[
g11 g12
g21 g22

]
, [g11],

[
g11 g13
g31 g33

]
,

[
g22 g23
g32 g33

]
, [g22], [g33].

The first three matrices above are the leading principal minors of G. On the
other hand, the matrix [

g21 g22
g31 g32

]

is a minor but not a principal minor.
The following results, due to Sylvester, allow efficient determination of the

definiteness properties of a real, symmetric matrix.

Proposition 4.20. (i) A real symmetric matrix P = [pij ] ∈ Rn×n is positive
definite if and only if the determinants of its leading principal minors are
positive, i.e., if and only if

p11 > 0, det
[
p11 p12

p12 p22

]
> 0, . . . ,detP > 0.

(ii) A real symmetric matrix P is positive semidefinite if and only if the de-
terminants of all of its principal minors are nonnegative. �

Still digressing, we consider next the quadratic form

v(w) = wTGw, G = GT ,

where G ∈ Rn×n. Now recall that there exists an orthogonal matrix Q such
that the matrix P defined by

P = Q−1GQ = QTGQ
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is diagonal. Therefore, if we let w = Qx, then

v(Qx) � v(x) = xTQTGQx = xTPx,

where P is in the form given by

P = diag[Λi] i = 1, . . . , p,

where Λi = diagλi. From this, we immediately obtain the following useful
result.

Proposition 4.21. Let P = PT ∈ Rn×n, let λM (P ) and λm(P ) denote the
largest and smallest eigenvalues of P , respectively, and let ‖ · ‖ denote the
Euclidean norm. Then

λm(P ) ‖ x ‖2≤ v(x) = xTPx ≤ λM (P ) ‖ x ‖2 (4.26)

for all x ∈ Rn (refer to [1]). �

Let c1 � λm(P ) and c2 = λM (P ). Clearly, v(x) is positive definite if and
only if c2 ≥ c1 > 0, v(x) is positive semidefinite if and only if c2 ≥ c1 ≥ 0, v(x)
is indefinite if and only if c2 > 0, c1 < 0, and so forth.

We are now in a position to prove several results.

Theorem 4.22. The equilibrium x = 0 of (4.22) is stable if there exists a
real, symmetric, and positive definite n× n matrix P such that the matrix C
given in (4.25) is negative semidefinite.

Proof. Along any solution φ(t, x0) � φ(t) of (4.22) with φ(0, x0) = φ(0) = x0,
we have

φ(t)TPφ(t) = xT0 Px0 +
∫ t

0

d

dη
φ(η)TPφ(η)dη = xT0 Px0 +

∫ t

0

φ(η)TCφ(η)dη

for all t ≥ 0. Since P is positive definite and C is negative semidefinite, we
have

φ(t)TPφ(t) − xT0 Px0 ≤ 0

for all t ≥ 0, and there exist c2 ≥ c1 > 0 such that

c1 ‖ φ(t) ‖2≤ φ(t)TPφ(t) ≤ xT0 Px0 ≤ c2 ‖ x0 ‖2

for all t ≥ 0. It follows that

‖ φ(t) ‖≤ (c2/c1)1/2 ‖ x0 ‖

for all t ≥ 0 and for any x0 ∈ Rn. Therefore, the equilibrium x = 0 of (4.22)
is stable (refer to Theorem 4.12). �
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Example 4.23. For the system given in Example 4.16 we choose P = I, and
we compute

C = ATP + PA = AT +A = 0.

According to Theorem 4.22, the equilibrium x = 0 of this system is stable (as
expected from Example 4.16).

Theorem 4.24. The equilibrium x = 0 of (4.22) is exponentially stable in
the large if there exists a real, symmetric, and positive definite n× n matrix
P such that the matrix C given in (4.25) is negative definite.

Proof. We let φ(t, x0) � φ(t) denote an arbitrary solution of (4.22) with
φ(0) = x0. In view of the hypotheses of the theorem, there exist constants
c2 ≥ c1 > 0 and c3 ≥ c4 > 0 such that

c1 ‖ φ(t) ‖2≤ v(φ(t)) = φ(t)TPφ(t) ≤ c2 ‖ φ(t) ‖2

and
−c3 ‖ φ(t) ‖2≤ v̇(φ(t)) = φ(t)TCφ(t) ≤ −c4 ‖ φ(t) ‖2

for all t ≥ 0 and for any x0 ∈ Rn. Then

v̇(φ(t)) =
d

dt
[φ(t)TPφ(t)] ≤ (−c4/c2)φ(t)TPφ(t)

= (−c4/c2)v(φ(t))

for all t ≥ t0. This implies, after multiplication by the appropriate integrating
factor, and integrating from 0 to t, that

v(φ(t)) = φ(t)TPφ(t) ≤ xT0 Px0e
−(c4/c2)t

or
c1 ‖ φ(t) ‖2≤ φ(t)TPφ(t) ≤ c2 ‖ x0 ‖2 e−(c4/c2)t

or
‖ φ(t) ‖≤ (c2/c1)1/2 ‖ x0 ‖ e− 1

2 (c4/c2)t, t ≥ 0.

This inequality holds for all x0 ∈ Rn. Therefore, the equilibrium x = 0 of
(4.22) is exponentially stable in the large (refer to Sections 4.3 and 4.4). �

In Figure 4.3 we provide an interpretation of Theorem 4.24 for the two-
dimensional case (n = 2). The curves Ci, called level curves , depict loci where
v(x) is constant; i.e., Ci = {x ∈ R2 : v(x) = xTPx = ci}, i = 0, 1, 2, 3, . . . .
When the hypotheses of Theorem 4.24 are satisfied, trajectories determined
by (4.22) penetrate level curves corresponding to decreasing values of ci as t
increases, tending to the origin as t becomes arbitrarily large.
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Figure 4.3. Asymptotic stability

Example 4.25. For the system given in Example 4.19, we choose

P =
[

1 0
0 0.5

]
,

and we compute the matrix
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C = ATP + PA =
[
−2 0

0 −2

]
.

According to Theorem 4.24, the equilibrium x = 0 of this system is exponen-
tially stable in the large (as expected from Example 4.19).

Theorem 4.26. The equilibrium x = 0 of (4.22) is unstable if there exists a
real, symmetric n × n matrix P that is either negative definite or indefinite
such that the matrix C given in (4.25) is negative definite.

Proof. We first assume that P is indefinite. Then P possesses eigenvalues of
either sign, and every neighborhood of the origin contains points where the
function

v(x) = xTPx

is positive and negative. Consider the neighborhood

B(ε) = {x ∈ Rn :‖ x ‖< ε},

where ‖ · ‖ denotes the Euclidean norm, and let

G = {x ∈ B(ε) : v(x) < 0}.

On the boundary of G we have either ‖ x ‖= ε or v(x) = 0. In particular,
note that the origin x = 0 is on the boundary of G. Now, since the matrix C
is negative definite, there exist constants c3 > c4 > 0 such that

−c3 ‖ x ‖2≤ xTCx = v̇(x) ≤ −c4 ‖ x ‖2

for all x ∈ Rn. Let φ(t, x0) � φ(t) and let x0 = φ(0) ∈ G. Then v(x0) = −a <
0. The solution φ(t) starting at x0 must leave the set G. To see this, note that
as long as φ(t) ∈ G, v(φ(t)) ≤ −a since v̇(x) < 0 in G. Let −c = sup{v̇(x) :
x ∈ G and v(x) ≤ −a}.

Then c > 0 and

v(φ(t)) = v(x0) +
∫ t

0

v̇(φ(s))ds ≤ −a−
∫ t

0

cds

= −a− tc, t ≥ t0.

This inequality shows that φ(t) must escape the set G (in finite time) because
v(x) is bounded from below on G. But φ(t) cannot leaveG through the surface
determined by v(x) = 0 since v(φ(t)) ≤ −a. Hence, it must leave G through
the sphere determined by ‖ x ‖= ε. Since the above argument holds for
arbitrarily small ε > 0, it follows that the origin x = 0 of (4.22) is unstable.

Next, we assume that P is negative definite. Then G as defined is all of
B(ε). The proof proceeds as above. �
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The proof of Theorem 4.26 shows that for ε > 0 sufficiently small when P is
negative definite, all solutions φ(t) of (4.22) with initial conditions x0 ∈ B(ε)
will tend away from the origin. This constitutes a severe case of instability,
called complete instability.

Example 4.27. For the system given in Example 4.18, we choose

P =
[
−0.28 −0.96
−0.96 0.28

]
,

and we compute the matrix

C = ATP + PA =
[
−20 0

0 −20

]
.

The eigenvalues of P are ±1. According to Theorem 4.26, the equilibrium
x = 0 of this system is unstable (as expected from Example 4.18).

In applying the results derived thus far in this section, we start by choosing
(guessing) a matrix P having certain desired properties. Next, we solve for
the matrix C, using (4.25). If C possesses certain desired properties (i.e., it
is negative definite), we draw appropriate conclusions by applying one of the
preceding theorems of this section; if not, we need to choose another matrix P .
This points to the principal shortcoming of Lyapunov’s Direct Method, when
applied to general systems. However, in the special case of linear systems
described by (4.22), it is possible to construct Lyapunov functions of the
form v(x) = xTPx in a systematic manner. In doing so, one first chooses the
matrix C in (4.25) (having desired properties), and then one solves (4.25) for
P . Conclusions are then drawn by applying the appropriate results of this
section. In applying this construction procedure, we need to know conditions
under which (4.25) possesses a (unique) solution P for a given C. We will
address this topic next.

We consider the quadratic form

v(x) = xTPx, P = PT , (4.27)

and the time derivative of v(x) along the solutions of (4.22), given by

v̇(x) = xTCx, C = CT , (4.28)

where
C = ATP + PA (4.29)

and where all symbols are as defined in (4.23) to (4.25). Our objective is to
determine the as yet unknown matrix P in such a way that v̇(x) becomes a
preassigned negative definite quadratic form, i.e., in such a way that C is a
preassigned negative definite matrix.
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Equation (4.29) constitutes a system of n(n + 1)/2 linear equations. We
need to determine under what conditions we can solve for the n(n+ 1)/2 ele-
ments, pik, given C and A. To this end, we choose a similarity transformation
Q such that

QAQ−1 = Ā, (4.30)

or equivalently,
A = Q−1ĀQ, (4.31)

where Ā is similar to A and Q is a real n×n nonsingular matrix. From (4.31)
and (4.29) we obtain

(Ā)T (Q−1)TPQ−1 + (Q−1)TPQ−1Ā = (Q−1)TCQ−1 (4.32)

or

(Ā)T P̄ + P̄ Ā = C̄, P̄ = (Q−1)TPQ−1, C̄ = (Q−1)TCQ−1. (4.33)

In (4.33), P and C are subjected to a congruence transformation and P̄ and
C̄ have the same definiteness properties as P and C, respectively. Since every
real n×n matrix can be triangularized (refer to [1]), we can choose Q in such
a fashion that Ā = [āij ] is triangular ; i.e., āij = 0 for i > j. Note that in this
case the eigenvalues of A, λ1, . . . , λn, appear in the main diagonal of Ā. To
simplify our notation, we rewrite (4.33) in the form (4.29) by dropping the
bars, i.e.,

ATP + PA = C, C = CT , (4.34)

and we assume that A = [aij ] has been triangularized ; i.e., aij = 0 for i > j.
Since the eigenvalues λ1, . . . , λn appear in the diagonal of A, we can rewrite
(4.34) as

2λ1p11 = c11

a12p11 + (λ1 + λ2)p12 = c12 (4.35)
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

Note that λ1 may be a complex number; in which case, c11 will also be com-
plex. Since this system of equations is triangular, and since its determinant is
equal to

2nλ1 . . . λn
∏
i<j

(λi + λj), (4.36)

the matrix P can be determined (uniquely) if and only if this determinant is
not zero. This is true when all eigenvalues of A are nonzero and no two of
them are such that λi + λj = 0. This condition is not affected by a similarity
transformation and is therefore also valid for the original system of equations
(4.29).
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We summarize the above discussion in the following lemma.

Lemma 4.28. Let A ∈ Rn×n and let λ1, . . . , λn denote the (not necessarily
distinct) eigenvalues of A. Then (4.34) has a unique solution for P corre-
sponding to each C ∈ Rn×n if and only if

λi �= 0, λi + λj �= 0 for all i, j. (4.37)

�

To construct v(x), we must still check the definiteness of P . This can be
done in a purely algebraic way; however, in the present case, it is much easier
to apply the results of this section and argue as follows:

(a) If all the eigenvalues λi of A have negative real parts, then the equilibrium
x = 0 of (4.22) is exponentially stable in the large, and if C in (4.29)
is negative definite, then P must be positive definite. To prove this, we
note that if P is not positive definite, then for δ > 0 and sufficiently
small, (P − δI) has at least one negative eigenvalue, whereas the function
v(x) = xT (P − δI)x has a negative definite derivative; i.e.,

v1
(L)(x) = xT [C − δ(A+AT )]x < 0

for all x �= 0. By Theorem 4.26, the equilibrium x = 0 of (4.22) is unstable.
We have arrived at a contradiction. Therefore, P must be positive definite.

(b) If A has eigenvalues with positive real parts and no eigenvalues with zero
real parts, we can use a similarity transformation x = Qy in such a way
that Q−1AQ is a block diagonal matrix of the form diag[A1, A2], where
all the eigenvalues of A1 have positive real parts, whereas all eigenvalues
of A2 have negative real parts (refer to [1]). (If A does not have any
eigenvalues with negative real parts, then we take A = A1). By the result
established in (a), noting that all eigenvalues of −A1 have negative real
parts, given any negative definite matrices C1 and C2, there exist positive
definite matrices P1 and P2 such that

(−AT1 )P1 + P1(−A1) = C1, AT2 P2 + P2A2 = C2.

Then w(y) = yTPy, with P = diag[−P1, P2] is a Lyapunov function for
the system ẏ = Q−1AQy (and, hence, for the system ẋ = Ax), which sat-
isfies the hypotheses of Theorem 4.26. Therefore, the equilibrium x = 0
of system (4.22) is unstable. If A does not have any eigenvalues with neg-
ative real parts, then the equilibrium x = 0 of system (4.22) is completely
unstable.]

In the above proof, we did not invoke Lemma 4.28. We note, however, that
if additionally, (4.37) is true, then we can construct the Lyapunov function
for (4.22) in a systematic manner.

Summarizing the above discussion, we can now state the main result of
this subsection.
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Theorem 4.29. Assume that the matrix A [for system (4.22)] has no eigen-
values with real part equal to zero. If all the eigenvalues of A have negative
real parts, or if at least one of the eigenvalues of A has a positive real part,
then there exists a quadratic Lyapunov function

v(x) = xTPx, P = PT ,

whose derivative along the solutions of (4.22) is definite (i.e., it is either
negative definite or positive definite). �

This result shows that when A is a stable matrix (i.e., all the eigenval-
ues of A have negative real parts), then for system (4.22) the conditions of
Theorem 4.24 are also necessary conditions for exponential stability in the
large. Moreover, in the case when the matrix A has at least one eigenvalue
with positive real part and no eigenvalues on the imaginary axis, then the
conditions of Theorem 4.26 are also necessary conditions for instability.

Example 4.30. We consider the system (4.22) with

A =
[

0 1
−1 0

]
.

The eigenvalues of A are λ1, λ2 = ±j, and therefore condition (4.37) is vio-
lated. According to Lemma 4.28, the Lyapunov matrix equation

ATP + PA = C

does not possess a unique solution for a given C. We now verify this for two
specific cases.

(i) When C = 0, we obtain
[

0 −1
1 0

] [
p11 p12

p12 p22

]
+
[
p11 p12

p12 p22

] [
0 1

−1 0

]
=
[

−2p12 p11 − p22

p11 − p22 2p12

]

=
[

0 0
0 0

]
,

or p12 = 0 and p11 = p22. Therefore, for any a ∈ R, the matrix P = aI
is a solution of the Lyapunov matrix equation. In other words, for C = 0,
the Lyapunov matrix equation has in this example denumerably many
solutions.

(ii) When C = −2I, we obtain
[

−2p12 p11 − p22

p11 − p22 2p12

]
=
[
−2 0

0 −2

]
,

or p11 = p22 and p12 = 1 and p12 = −1, which is impossible. Therefore, for
C = −2I, the Lyapunov matrix equation has in this example no solutions
at all.
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It turns out that if all the eigenvalues of matrix A have negative real parts,
then we can compute P in (4.29) explicitly.

Theorem 4.31. If all eigenvalues of a real n×n matrix A have negative real
parts, then for each matrix C ∈ Rn×n, the unique solution of (4.29) is given
by

P =
∫ ∞

0

eA
T t(−C)eAtdt. (4.38)

Proof. If all eigenvalues of A have negative real parts, then (4.37) is satisfied
and therefore (4.29) has a unique solution for every C ∈ Rn×n. To verify that
(4.38) is indeed this solution, we first note that the right-hand side of (4.38) is
well defined, since all eigenvalues of A have negative real parts. Substituting
the right-hand side of (4.38) for P into (4.29), we obtain

ATP + PA =
∫ ∞

0

AT eA
T t(−C)eAtdt+

∫ ∞

0

eA
T t(−C)eAtAdt

=
∫ ∞

0

d

dt
[eA

T t(−C)eAt]dt

= eA
T t(−C)eAt

∣∣∣
∞

0
= C,

which proves the theorem. �

4.6 Linearization

In this section we consider nonlinear, finite-dimensional, continuous-time dy-
namical systems described by equations of the form

ẇ = f(w), (4.39)

where f ∈ C1(Rn, Rn). We assume that w = 0 is an equilibrium of (4.39). In
accordance with Subsection 1.6.1, we linearize system (4.39) about the origin
to obtain

ẋ = Ax + F (x), (4.40)

x ∈ Rn, where F ∈ C(Rn, Rn) and where A denotes the Jacobian of f(w)
evaluated at w = 0, given by

A =
∂f

∂w
(0), (4.41)

and where
F (x) = o(‖ x ‖) as ‖ x ‖→ 0. (4.42)

Associated with (4.40) is the linearization of (4.39), given by

ẏ = Ay. (4.43)
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In the following discussion, we use the results of Section 4.5 to establish
criteria that allow us to deduce the stability properties of the equilibrium
w = 0 of the nonlinear system (4.39) from the stability properties of the
equilibrium y = 0 of the linear system (4.43).

Theorem 4.32. Let A ∈ Rn×n be a Hurwitz matrix (i.e., all of its eigevnalues
have negative real parts), let F ∈ C(Rn, Rn), and assume that (4.42) holds.
Then the equilibrium x = 0 of (4.40) [and, hence, of (4.39)] is exponentially
stable.

Proof. Theorem 4.29 applies to (4.43) since all the eigenvalues of A have
negative real parts. In view of that theorem (and the comments following
Lemma 4.28), there exists a symmetric, real, positive definite n× n matrix P
such that

PA+ATP = C, (4.44)

where C is negative definite. Consider the Lyapunov function

v(x) = xTPx. (4.45)

The derivative of v with respect to t along the solutions of (4.40) is given by

v̇(x) = ẋTPx+ xTP ẋ

= (Ax+ F (x))TPx+ xTP (Ax + F (x))

= xTCx+ 2xTPF (x). (4.46)

Now choose γ < 0 such that xTCx ≤ 3γ ‖ x ‖2 for all x ∈ Rn. Since it
is assumed that (4.42) holds, there is a δ > 0 such that if ‖ x ‖≤ δ, then
‖ PF (x) ‖≤ −γ ‖ x ‖ for all x ∈ B(δ) = {x ∈ Rn :‖ x ‖≤ δ}. Therefore, for
all x ∈ B(δ), we obtain, in view of (4.46), the estimate

v̇(x) ≤ 3γ ‖ x ‖2 −2γ ‖ x ‖2= γ ‖ x ‖2 . (4.47)

Now let α = min‖x‖=δ v(x). Then α > 0 (since P is positive definite). Take
λ ∈ (0, α), and let

Cλ = {x ∈ B(δ) = {x ∈ Rn :‖ x ‖< δ} : v(x) ≤ λ}. (4.48)

Then Cλ ⊂ B(δ). [This can be shown by contradiction. Suppose that Cλ is not
entirely inside B(δ). Then there is a point x̄ ∈ Cλ that lies on the boundary of
B(δ). At this point, v(x̄) ≥ α > λ. We have thus arrived at a contradiction.]
The set Cλ has the property that any solution of (4.40) starting in Cλ at t = 0
will stay in Cλ for all t ≥ 0. To see this, we let φ(t, x0) � φ(t) and we recall
that v̇(x) ≤ γ ‖ x ‖2, γ < 0, x ∈ B(δ) ⊃ Cλ. Then v̇(φ(t)) ≤ 0 implies that
v(φ(t)) ≤ v(x0) ≤ λ for all t ≥ t0 ≥ 0. Therefore, φ(t) ∈ Cλ for all t ≥ t0 ≥ 0.

We now proceed in a similar manner as in the proof of Theorem 4.24 to
complete this proof. In doing so, we first obtain the estimate
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v̇(φ(t)) ≤ (γ/c2)v(φ(t)), (4.49)

where γ is given in (4.47) and c2 is determined by the relation

c1 ‖ x ‖2≤ v(x) = xTPx ≤ c2 ‖ x ‖2 . (4.50)

Following now in an identical manner as was done in the proof of Theo-
rem 4.22, we have

‖ φ(t) ‖≤ (c2/c1)
1
2 ‖ x0 ‖ e 1

2 (γ/c2)t, t ≥ 0, (4.51)

whenever x0 ∈ B(r′), where r′ has been chosen sufficiently small so that
B(r′) ⊂ Cλ. This proves that the equilibrium x = 0 of (4.40) is exponentially
stable. �

It is important to recognize that Theorem 4.32 is a local result that yields
sufficient conditions for the exponential stability of the equilibrium x = 0 of
(4.40); it does not yield conditions for exponential stability in the large. The
proof of Theorem 4.32, however, enables us to determine an estimate of the
domain of attraction of the equilibrium x = 0 of (4.39), involving the following
steps:

1. Determine an equilibrium, xe, of (4.39) and transform (4.39) to a new
system that translates xe to the origin x = 0 (refer to Section 4.2).

2. Linearize (4.39) about the origin and determine F (x), A, and the eigen-
values of A.

3. If all eigenvalues of A have negative real parts, choose a negative definite
matrix C and solve the Lyapunov matrix equation

C = ATP + PA.

4. Determine the Lyapunov function

v(x) = xTPx.

5. Compute the derivative of v along the solutions of (4.40), given by

v̇(x) = xTCx+ 2xTPF (x).

6. Determine δ > 0 such that v̇(x) < 0 for all x ∈ B(δ) − {0}.
7. Determine the largest λ = λM such that CλM ⊂ B(δ), where

Cλ = {x ∈ Rn : v(x) < λ}.

8. CλM is a subset of the domain of attraction of the equilibrium x = 0 of
(4.40) and, hence, of (4.39).
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The above procedure may be repeated for different choices of matrix C
given in step (3), resulting in different matrices Pi, which in turn may result
in different estimates for the domain of attraction, CiλM

, i ∈ Λ, where Λ is an
index set. The union of the sets CiλM

� Di, D = ∪iDi, is also a subset of the
domain of attraction of the equilibrium x = 0 of (4.39).

Theorem 4.33. Assume that A is a real n × n matrix that has at least one
eigenvalue with positive real part and no eigenvalue with zero real part. Let
F ∈ C(Rn, Rn), and assume that (4.42) holds. Then the equilibrium x = 0 of
(4.40) [and, hence, of (4.39)] is unstable.

Proof. We use Theorem 4.29 to choose a real, symmetric n × n matrix P
such that the matrix PA+ATP = C is negative definite. The matrix P is not
positive definite, or even positive semidefinite (refer to the comments following
Lemma 4.28). Hence, the function v(x) = xTPx is negative at some points
arbitrarily close to the origin. The derivative of v(x) with respect to t along
the solutions of (4.40) is given by (4.46). As in the proof of Theorem 4.32, we
can choose a γ < 0 such that xTCx ≤ 3γ ‖ x ‖2 for all x ∈ Rn, and in view of
(4.42) we can choose a δ > 0 such that ‖ PF (x) ‖≤ −γ ‖ x ‖ for all x ∈ B(δ).
Therefore, for all x ∈ B(δ), we obtain that

v̇(x) ≤ 3γ ‖ x ‖2 −2γ ‖ x ‖2= γ ‖ x ‖2 .

Now let
G = {x ∈ B(δ) : v(x) < 0}.

The boundary of G is made up of points where v(x) = 0 and where ‖ x ‖= δ.
Note in particular that the equilibrium x = 0 of (4.40) is in the boundary
of G. Now following an identical procedure as in the proof of Theorem 4.26,
we show that any solution φ(t) of (4.40) with φ(0) = x0 ∈ G must escape G
in finite time through the surface determined by ‖ x ‖= δ. Since the above
argument holds for arbitrarily small δ > 0, it follows that the origin x = 0 of
(4.40) is unstable. �

Before concluding this section, we consider a few specific cases.

Example 4.34. The Lienard Equation is given by

ẅ + f(w)ẇ + w = 0, (4.52)

where f ∈ C1(R,R) with f(0) > 0. Letting x1 = w and x2 = ẇ, we obtain

ẋ1 = x2,

ẋ2 = −x1 − f(x1)x2.
(4.53)

Let xT = (x1, x2), f(x)T = (f1(x), f2(x)), and let
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J(0) = A =

⎡
⎣
∂f1
∂x1

(0) ∂f1
∂x2

(0)

∂f2
∂x1

(0) ∂f2
∂x2

(0)

⎤
⎦ =

[
0 1

−1 −f(0)

]
.

Then
ẋ = Ax+ [f(x) −Ax] = Ax+ F (x),

where

F (x) =
[

0
[f(0) − f(x1)]x2

]
.

The origin x = 0 is clearly an equilibrium of (4.52) and hence of (4.53). The
eigenvalues of A are given by

λ1, λ2 =
−f(0)±

√
f(0)2 − 4

2
,

and therefore, A is a Hurwitz matrix. Also, (4.42) holds. Therefore, all the
conditions of Theorem 4.32 are satisfied. We conclude that the equilibrium
x = 0 of (4.53) is exponentially stable.

Example 4.35. We consider the system given by

ẋ1 = −x1 + x1(x2
1 + x2

2),

ẋ2 = −x2 + x2(x2
1 + x2

2).
(4.54)

The origin is clearly an equilibrium of (4.54). Also, the system is already in
the form (4.40) with

A =
[
−1 0

0 −1

]
, F (x) =

[
x1(x2

1 + x2
2)

x2(x2
1 + x2

2)

]
,

and condition (4.42) is clearly satisfied. The eigenvalues of A are λ1 =
−1, λ2 = −1. Therefore, all conditions of Theorem 4.32 are satisfied and
we conclude that the equilibrium xT = (x1, x2) = 0 is exponentially stable;
however, we cannot conclude that this equilibrium is exponentially stable in
the large. Accordingly, we seek to determine an estimate for the domain of
attraction of this equilibrium.

We choose C = −I (where I ∈ R2×2 denotes the identity matrix), and
we solve the matrix equation ATP + PA = C to obtain P = (1/2)I, and
therefore,

v(x1, x2) = xTPx =
1
2
(x2

1 + x2
2).

Along the solutions of (4.54) we obtain

v̇(x1, x2) = xTCx + 2xTPF (x)

= −(x2
1 + x2

2) + (x2
1 + x2

2)
2.
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Clearly, v̇(x1, x2) < 0 when (x1, x2) �= (0, 0) and x2
1 + x2

2 < 1. In the language
of the proof of Theorem 4.32, we can therefore choose δ = 1.

Now let

C1/2 = {x ∈ R2 : v(x1, x2) =
1
2
(x2

1 + x2
2) <

1
2
}.

Then clearly, C1/2 ⊂ B(δ), δ = 1, in fact C1/2 = B(δ). Therefore, the set
{x ∈ R2 : x2

1+x
2
2 < 1} is a subset of the domain of attraction of the equilibrium

(x1, x2)T = 0 of system (4.54).

Example 4.36. The differential equation governing the motion of a pendu-
lum is given by

θ̈ + a sin θ = 0, (4.55)

where a > 0 is a constant (refer to Chapter 1). Letting θ = x1 and θ̇ = x2, we
obtain the system description

ẋ1 = x2,

ẋ2 = −a sinx1.
(4.56)

The points x(1)
e = (0, 0)T and x(2)

e = (π, 0)T are equilibria of (4.56).

(i) Linearizing (4.56) about the equilibrium x
(1)
e , we put (4.56) into the form

(4.40) with

A =
[

0 1
−a 0

]
.

The eigenvalues of A are λ1, λ2 = ±j√a. Therefore, the results of this
section (Theorem 4.32 and 4.33) are not applicable in the present case.

(ii) In (4.56), we let y1 = x1 − π and y2 = x2. Then (4.56) assumes the form

ẏ1 = y2,

ẏ2 = −a sin(y1 + π).
(4.57)

The point (y1, y2)T = (0, 0)T is clearly an equilibrium of system (4.57).
Linearizing about this equilibrium, we put (4.57) into the form (4.40),
where

A =
[

0 1
a 0

]
, F (y1, y2) =

[
0

−a(sin(y1 + π) + y1)

]
.

The eigenvalues of A are λ1, λ2 = a,−a. All conditions of Theorem 4.33
are satisfied, and we conclude that the equilibrium x

(2)
e = (π, 0)T of system

(4.56) is unstable.
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4.7 Input–Output Stability

We now turn our attention to systems described by the state equations

ẋ = Ax+Bu,

y = Cx+Du,
(4.58)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. In the preceding
sections of this chapter we investigated the internal stability properties of
system (4.58) by studying the Lyapunov stability of the trivial solution of the
associated system

ẇ = Aw. (4.59)

In this approach, system inputs and system outputs played no role. To ac-
count for these, we now consider the external stability properties of system
(4.58), called input–output stability: Every bounded input of a system should
produce a bounded output. More specifically, in the present context, we say
that system (4.58) is bounded-input/bounded-output (BIBO) stable, if for zero
initial conditions at t = 0, every bounded input defined on [0,∞) gives rise
to a bounded response on [0,∞).

Matrix D does not affect the BIBO stability of (4.58). Accordingly, we will
consider without any loss of generality the case where D ≡ 0; i.e., throughout
this section we will concern ourselves with systems described by equations of
the form

ẋ = Ax +Bu,

y = Cx.
(4.60)

We will say that the system (4.60) is BIBO stable if there exists a constant
c > 0 such that the conditions

x(0) = 0,
||u(t)|| ≤ 1, t ≥ 0,

imply that ‖ y(t) ‖≤ c for all t ≥ 0. (The symbol ‖ · ‖ denotes the Euclidean
norm.)

Recall that for system (4.60) the impulse response matrix is given by

H(t) = CeAtB, t ≥ 0,
= 0, t < 0, (4.61)

and the transfer function matrix is given by

Ĥ(s) = C(sI −A)−1B. (4.62)

Theorem 4.37. The system (4.60) is BIBO stable if and only if there exists
a finite constant L > 0 such that for all t,

∫ t

0

‖ H(t− τ) ‖ dτ ≤ L. (4.63)
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Proof. The first part of the proof of Theorem 4.37 (sufficiency) is straightfor-
ward. Indeed, if ‖ u(t) ‖≤ 1 for all t ≥ 0 and if (4.63) is true, then we have
for all t ≥ 0 that

‖ y(t) ‖ =‖
∫ t

0

H(t− τ)u(τ)dτ ‖

≤
∫ t

0

‖ H(t− τ)u(τ) ‖ dτ

≤
∫ t

0

‖ H(t− τ) ‖ ‖ u(τ) ‖ dτ

≤
∫ t

0

‖ H(t− τ) ‖ dτ ≤ L.

Therefore, system (4.60) is BIBO stable.
In proving the second part of Theorem 4.37 (necessity), we simplify matters

by first considering in (4.60) the single-variable case (n = 1) with the input–
output description given by

y(t) =
∫ t

0

h(t− τ)u(τ)dτ. (4.64)

For purposes of contradiction, we assume that the system is BIBO stable, but
no finite L exists such that (4.63) is satisfied. Another way of stating this is
that for every finite L, there exists t1 = t1(L), t1 > 0, such that

∫ t1

0

|h(t1, τ)|dτ > L.

We now choose in particular the input given by

u(t) =

⎧⎪⎨
⎪⎩

+1 if h(t− τ) > 0,
0 if h(t− τ) = 0,
−1 if h(t− τ) < 0,

(4.65)

0 ≤ t ≤ t1. Clearly, |u(t)| ≤ 1 for all t ≥ 0. The output of the system at t = t1
due to the above input, however, is

y(t1) =
∫ t1

0

h(t1 − τ)u(τ)dτ =
∫ t1

0

|h(t1 − τ)|dτ > L,

which contradicts the assumption that the system is BIBO stable.
The above can now be generalized to the multivariable case. In doing so,

we apply the single-variable result to every possible pair of input and output
vector components, we make use of the fact that the sum of a finite number
of bounded sums will be bounded, and we recall that a vector is bounded if
and only if each of its components is bounded. We leave the details to the
reader. �
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In the preceding argument we made the tacit assumption that u is con-
tinuous, or piecewise continuous. However, our particular choice of u may
involve nondenumerably many switchings (discontinuities) over a given finite-
time interval. In such cases, u is no longer piecewise continuous; however, it
is measurable (in the Lebesgue sense). This generalization can be handled, al-
though in a broader mathematical setting that we do not wish to pursue here.
The interested reader may want to refer, e.g., to the books by Desoer and
Vidyasagar [5], Michel and Miller [13], and Vidyasagar [20] and the papers by
Sandberg [17] to [19] and Zames [21], [22] for further details.

From Theorem 4.37 and from (4.61) it follows readily that a necessary and
sufficient condition for the BIBO stability of system (4.60) is the condition

∫ ∞

0

‖ H(t) ‖ dt <∞. (4.66)

Corollary 4.38. Assume that the equilibrium w = 0 of (4.59) is exponentially
stable. Then system (4.60) is BIBO stable.

Proof. Under the hypotheses of the corollary, we have

‖
∫ t

0

H(t− τ)dτ ‖ ≤
∫ t

0

‖ H(t− τ) ‖ dτ

=
∫ t

0

‖ CΦ(t − τ)B ‖ dτ ≤‖ C ‖‖ B ‖
∫ t

0

‖ Φ(t− τ) ‖ dτ.

Since the equilibrium w = 0 of (4.59) is exponentially stable, there exist δ > 0,
λ > 0 such that ‖ Φ(t, τ) ‖≤ δe−λ(t−τ), t ≥ τ . Therefore,

∫ t

0

‖ H(t− τ) ‖ dτ ≤
∫ t

0

‖ C ‖‖ B ‖ δe−λ(t−τ)dτ

≤ (‖ C ‖‖ B ‖ δ)/λ � L

for all τ, t with t ≥ τ . It now follows from Theorem 4.37 that system (4.60) is
BIBO stable. �

In Section 7.3 we will establish a connection between the BIBO stability
of (4.60) and the exponential stability of the trivial solution of (4.59).

Next, we recall that a complex number sp is a pole of Ĥ(s) = [ĥij(s)]
if for some pair (i, j), we have |ĥij(sp)| = ∞. If each entry of Ĥ(s) has
only poles with negative real values, then, as shown in Chapter 3, each entry
of H(t) = [hij(t)] has a sum of exponentials with exponents with real part
negative. It follows that the integral

∫ ∞

0

‖ H(t) ‖ dt

is finite, and any realization of Ĥ(s) will result in a system that is BIBO
stable.
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Now conversely, if ∫ ∞

0

‖ H(t) ‖ dt

is finite, then the exponential terms in any entry of H(t) must have nega-
tive real parts. But then every entry of Ĥ(s) has poles whose real parts are
negative.

We have proved the following result.

Theorem 4.39. The system (4.60) is BIBO stable if and only if all poles of
the transfer function Ĥ(s) given in (4.62) have only poles with negative real
parts. �

Example 4.40. A system with H(s) = 1/s is not BIBO stable. To see this
consider a step input. The response is then given by y(t) = t, t ≥ 0, which is
not bounded.

4.8 Discrete-Time Systems

In this section we address the Lyapunov stability of an equilibrium of discrete-
time systems (internal stability) and the input–output stability of discrete-
time systems (external stability). We establish results for discrete-time sys-
tems that are analogous to practically all the stability results that we pre-
sented for continuous-time systems.

This section is organized into five subsections. In the first subsection we
provide essential preliminary material. In the second and third subsections
we establish results for the stability, instability, asymptotic stability, and ex-
ponential stability of an equilibrium and boundedness of solutions of systems
described by linear autonomous ordinary difference equations. These results
are used to develop Lyapunov stability results for linearizations of nonlinear
systems described by ordinary difference equations in the fourth subsection. In
the last subsection we present results for the input–output stability of linear
time-invariant discrete-time systems.

4.8.1 Preliminaries

We concern ourselves here with finite-dimensional discrete-time systems de-
scribed by difference equations of the form

x(k + 1) = Ax(k) +Bu(k),
y(k) = Cx(k),

(4.67)
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where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, k ≥ k0, and k, k0 ∈ Z+. Since (4.67)
is time-invariant, we will assume without loss of generality that k0 = 0, and
thus, x : Z+ → Rn, y : Z+ → Rp, and u : Z+ → Rm.

The internal dynamics of (4.67) under conditions of no input are described
by equations of the form

x(k + 1) = Ax(k). (4.68)

Such equations may arise in the modeling process, or they may be the conse-
quence of the linearization of nonlinear systems described by equations of the
form

x(k + 1) = g(x(k)), (4.69)

where g : Rn → Rn. For example, if g ∈ C1(Rn, Rn), then in linearizing (4.69)
about, e.g., x = 0, we obtain

x(k + 1) = Ax(k) + f(x(k)), (4.70)

where A = ∂f
∂x (x)

∣∣∣
x=0

and where f : Rn → Rn is o(||x||) as a norm of x (e.g.,

the Euclidean norm) approaches zero. Recall that this means that given ε > 0,
there is a δ > 0 such that ‖ f(x) ‖< ε ‖ x ‖ for all ‖ x ‖< δ.

As in Section 4.7, we will study the external qualitative properties of system
(4.67) by means of the BIBO stability of such systems. Consistent with the
definition of input–output stability of continuous-time systems, we will say
that the system (4.67) is BIBO stable if there exists a constant L > 0 such
that the conditions

x(0) = 0,
‖ u(k) ‖ ≤ 1, k ≥ 0,

imply that ‖ y(k) ‖≤ L for all k ≥ 0.
We will study the internal qualitative properties of system (4.67) by study-

ing the Lyapunov stability properties of an equilibrium of (4.68).
Since system (4.69) is time-invariant, we will assume without loss of gen-

erality that k0 = 0. As in Chapters 1 and 2, we will denote for a given set of
initial data x(0) = x0 the solution of (4.69) by φ(k, x0). When x0 is under-
stood or of no importance, we will frequently write φ(k) in place of φ(k, x0).
Recall that for system (4.69) [as well as systems (4.67), (4.68), and (4.70)],
there are no particular difficulties concerning the existence and uniqueness of
solutions, and furthermore, as long as g in (4.69) is continuous, the solutions
will be continuous with respect to initial data. Recall also that in contrast to
systems described by ordinary differential equations, the solutions of systems
described by ordinary difference equations [such as (4.69)] exist only in the
forward direction of time (k ≥ 0).

We say that xe ∈ Rn is an equilibrium of system (4.69) if φ(k, xe) ≡ xe
for all k ≥ 0, or equivalently,

g(xe) = xe. (4.71)
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As in the continuous-time case, we will assume without loss of generality that
the equilibrium of interest will be the origin; i.e., xe = 0. If this is not the
case, then we can always transform (similarly as in the continuous-time case)
system (4.69) into a system of equations that has an equilibrium at the origin.

Example 4.41. The system described by the equation

x(k + 1) = x(k)[x(k) − 1]

has two equilibria, one at xe1 = 0 and another at xe2 = 1.

Example 4.42. The system described by the equations

x1(k + 1) = x2(k),
x2(k + 1) = −x1(k)

has an equilibrium at xTe = (0, 0).

Throughout this section we will assume that the function g in (4.69) is
continuous, or if required, continuously differentiable. The various definitions
of Lyapunov stability of the equilibrium x = 0 of system (4.69) are essentially
identical to the corresponding definitions of Lyapunov stability of an equilib-
rium of continuous-time systems described by ordinary differential equations,
replacing t ∈ R+ by k ∈ Z+. We will concern ourselves with stability, insta-
bility, asymptotic stability, and exponential stability of the equilibrium x = 0
of (4.69).

We say that the equilibrium x = 0 of (4.69) is stable if for every ε > 0
there exists a δ = δ(ε) > 0 such that ‖ φ(k, x0) ‖< ε for all k ≥ 0 whenever
‖ x0 ‖< δ. If the equilibrium x = 0 of (4.69) is not stable, it is said to
be unstable. We say that the equilibrium x = 0 of (4.69) is asymptotically
stable if (i) it is stable and (ii) there exists an η > 0 such that if ‖ x0 ‖< η,
then limk→∞ ‖ φ(k, x0) ‖= 0. If the equilibrium x = 0 satisfies property
(ii), it is said to be attractive, and we call the set of all x0 ∈ Rn for which
x = 0 is attractive the domain of attraction of this equilibrium. If x = 0 is
asymptotically stable and if its domain of attraction is all of Rn, then it is
said to be asymptotically stable in the large or globally asymptotically stable.
We say that the equililbrium x = 0 of (4.69) is exponentially stable if there
exists an α > 0 and for every ε > 0, there exists a δ(ε) > 0, such that
‖ φ(k, x0) ‖≤ εe−αk for all k ≥ 0 whenever ‖ x0 ‖< δ(ε). The equilibrium
x = 0 of (4.69) is exponentially stable in the large if there exists α > 0 and
for any β > 0, there exists k(β) > 0 such that ‖ φ(t, x0) ‖≤ k(β) ‖ x0 ‖ e−αk
for all k > 0 whenever ‖ x0 ‖< β. Finally, we say that a solution of (4.69)
through x0 is bounded if there is a constant M such that ‖ φ(k, x0) ‖≤M for
all k ≥ 0.
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4.8.2 Linear Systems

In proving some of the results of this section, we require a result for system
(4.68) that is analogous to Theorem 3.1. As in the proof of that theorem,
we note that the linear combination of solutions of system (4.68) is also a
solution of system (4.68), and hence, the set of solutions {φ : Z+ × Rn →
Rn} constitutes a vector space (over F = R or F = C). The dimension of
this vector space is n. To show this, we choose a set of linearly independent
vectors x1

0, . . . , x
n
0 in the n-dimensional x-space (Rn or Cn) and we show, in

an identical manner as in the proof of Theorem 3.1, that the set of solutions
φ(k, xi0), i = 1, . . . , n, is linearly independent and spans the set of solutions
of system (4.68). (We ask the reader in the Exercise section to provide the
details of the proof of the above assertions.) This yields the following result.

Theorem 4.43. The set of solutions of system (4.68) over the time interval
Z+ forms an n-dimensional vector space. �

Incidentally, if in particular we choose φ(k, ei), i = 1, . . . , n, where ei, i =
1, . . . , n, denotes the natural basis for Rn, and if we let Φ(k, k0 = 0) � Φ(k) =
[φ(k, e1), . . . , φ(k, en)], then it is easily verified that the n × n matrix Φ(k)
satisfies the matrix equation

Φ(k + 1) = AΦ(k), Φ(0) = I,

and that Φ(k) = Ak, k ≥ 0 [i.e., Φ(k) is the state transition matrix for system
(4.68)].

Theorem 4.44. The equilibrium x = 0 of system (4.68) is stable if and only
if the solutions of (4.68) are bounded.

Proof. Assume that the equilibrium x = 0 of (4.68) is stable. Then for ε = 1
there is a δ > 0 such that ‖ φ(k, x0) ‖< 1 for all k ≥ 0 and all ‖ x0 ‖≤ δ. In
this case

‖ φ(k, x0) ‖=‖ Akx0 ‖=‖ Akx0δ/ ‖ x0 ‖ ‖ (‖ x0 ‖ /δ) <‖ x0 ‖ /δ

for all x0 �= 0 and all k ≥ 0. Using the definition of matrix norm [refer to
Section A.7] it follows that ‖ Ak ‖≤ δ−1, k ≥ 0. We have proved that if the
equilibrium x = 0 of (4.68) is stable, then the solutions of (4.68) are bounded.

Conversely, suppose that all solutions φ(k, x0) = Akx0 are bounded. Let
{e1, . . . , en} denote the natural basis for n-space and let ‖ φ(k, ej) ‖< βj for
all k ≥ 0. Then for any vector x0 =

∑n
j=1 αje

j we have that

‖ φ(k, x0) ‖ =‖
n∑
j=1

αjφ(k, ej) ‖≤
n∑
j=1

|αj |βj ≤ (max
j
βj)

n∑
j=1

|αj |

≤ c ‖ x0 ‖, k ≥ 0,
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for some constant c. For given ε > 0, we choose δ = ε/c. Then, if ‖ x0 ‖< δ,
we have ‖ φ(k, x0) ‖< c ‖ x0 ‖< ε for all k ≥ 0. We have proved that if
the solutions of (4.68) are bounded, then the equilibrium x = 0 of (4.68) is
stable. �

Theorem 4.45. The following statements are equivalent:

(i) The equilibrium x = 0 of (4.68) is asymptotically stable,
(ii) The equilibrium x = 0 of (4.68) is asymptotically stable in the large,
(iii) limk→∞ ‖ Ak ‖= 0.

Proof. Assume that statement (i) is true. Then there is an η > 0 such that
when ‖ x0 ‖≤ η, then φ(k, x0) → 0 as k → ∞. But then we have for any
x0 �= 0 that

φ(k, x0) = Akx0 = [Ak(ηx0/ ‖ x0 ‖)] ‖ x0 ‖ /η → 0 as k → ∞.

It follows that statement (ii) is true.
Next, assume that statement (ii) is true. Then for any ε > 0 there must

exist aK = K(ε) such that for all k ≥ K we have that ‖ φ(k, x0) ‖=‖ Akx0 ‖<
ε. To see this, let {e1, . . . , en} be the natural basis for Rn. Thus, for a fixed
constant c > 0, if x0 = (α1, . . . , αn)T and if ‖ x0 ‖≤ 1, then x0 =

∑n
j=1 αje

j

and
∑n
j=1 |αj | ≤ c. For each j there is a Kj = Kj(ε) such that ‖ Akej ‖< ε/c

for k ≥ Kj . Define K = K(ε) = max{Kj(ε) : j = 1, . . . , n}. For ‖ x0 ‖≤ 1 and
k ≥ K we have that

‖ Akx0 ‖=‖
n∑
j=1

αjA
kej ‖≤

n∑
j=1

|αj |(ε/c) ≤ ε.

By the definition of matrix norm [see Section A.7], this means that ‖ Ak ‖≤ ε
for k > K. Therefore, statement (iii) is true.

Finally, assume that statement (iii) is true. Then ‖ Ak ‖ is bounded for all
k ≥ 0. By Theorem 4.44, the equilibrium x = 0 is stable. To prove asymptotic
stability, fix ε > 0. If ‖ x0 ‖< η = 1, then ‖ φ(k, x0) ‖≤‖ Ak ‖ ‖ x0 ‖→ 0 as
k → ∞. Therefore, statement (i) is true. This completes the proof. �

Theorem 4.46. The equilibrium x = 0 of (4.68) is asymptotically stable if
and only if it is exponentially stable.

Proof. The exponential stability of the equilibrium x = 0 implies the asymp-
totic stability of the equilibrium x = 0 of systems (4.69) in general and, hence,
for systems (4.68) in particular.

Conversely, assume that the equilibrium x = 0 of (4.68) is asymptotically
stable. Then there is a δ > 0 and a K > 0 such that if ‖ x0 ‖≤ δ, then

‖ Φ(k +K)x0 ‖≤ δ

2
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for all k ≥ 0. This implies that

‖ Φ(k +K) ‖≤ 1
2

if k ≥ 0. (4.72)

From Section 3.5.1 we have that Φ(k − l) = Φ(k − s)Φ(s − l) for any k, l, s.
Therefore,

‖ Φ(k + 2K) ‖=‖ Φ[(k + 2K) − (k +K)]Φ(k +K) ‖≤ 1
4

in view of (4.72). By induction we obtain for k ≥ 0 that

‖ Φ(k + nK) ‖≤ 2−n. (4.73)

Let α = (ln 2)
K . Then (4.73) implies that for 0 ≤ k < K we have that

‖ (k + nK, x0) ‖ ≤ 2 ‖ x0 ‖ 2−(n+1)

= 2 ‖ x0 ‖ e−α(n+1)K

≤ 2 ‖ x0 ‖ e−α(k+nK),

which proves the result. �

To arrive at the next result, we make reference to the results of Subsec-
tion 3.5.5. Specifically, by inspecting the expressions for the modes of system
(4.68) given in (3.131) and (3.132), or by utilizing the Jordan canonical form
of A [refer to (3.135) and (3.136)], the following result is evident.

Theorem 4.47. (i) The equilibrium x = 0 of system (4.68) is asymptoti-
cally stable if and only if all eigenvalues of A are within the unit circle
of the complex plane (i.e., if λ1, . . . , λn denote the eigenvalues of A, then
|λj | < 1, j = 1, . . . , n). In this case we say that the matrix A is Schur
stable, or simply, the matrix A is stable.

(ii) The equilibrium x = 0 of system (4.68) is stable if and only if |λj | ≤
1, j = 1, . . . , n, and for each eigenvalue with |λj | = 1 having multiplicity
nj > 1, it is true that

lim
z→λj

{
dnj−1−l

dznj−1−l [(z − λj)nj (zI −A)−1]
}

= 0, l = 1, . . . , nj − 1.

(iii) The equilibrium x = 0 of system (4.68) is unstable if and only if the
conditions in (ii) above are not true. �

Alternatively, it is evident that the equilibrium x = 0 of system (4.68)
is stable if and only if all eigenvalues of A are within or on the unit circle
of the complex plane, and every eigenvalue that is on the unit circle has an
associated Jordan block of order 1.
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Example 4.48. (i) For the system in Example 4.42 we have

A =
[

0 1
−1 0

]
.

The eigenvalues of A are λ1, λ2 = ±
√
−1. According to Theorem 4.47, the

equilibrium x = 0 of the system is stable, and according to Theorem 4.44
the matrix Ak is bounded for all k ≥ 0.

(ii) For system (4.68) let

A =
[

0 −1/2
−1 0

]
.

The eigenvalues of A are λ1, λ2 = ±1/
√

2. According to Theorem 4.47, the
equilibrium x = 0 of the system is asymptotically stable, and according
to Theorem 4.45, limk→∞ Ak = 0.

(iii) For system (4.68) let

A =
[

0 −1/2
−3 0

]
.

The eigenvalues of A are λ1, λ2 = ±
√

3/2. According to Theorem 4.47,
the equilibrium x = 0 of the system is unstable, and according to Theo-
rem 4.44, the matrix Ak is not bounded with increasing k.

(iv) For system (4.68) let

A =
[

1 1
0 1

]
.

The matrix A is a Jordan block of order 2 for the eigenvalue λ = 1.
Accordingly, the equilibrium x = 0 of the system is unstable (refer to the
remark following Theorem 4.47) and the matrix Ak is unbounded with
increasing k.

4.8.3 The Lyapunov Matrix Equation

In this subsection we obtain another characterization of stable matrices by
means of the Lyapunov matrix equation.

Returning to system (4.68) we choose as a Lyapunov function

v(x) = xTBx,B = BT , (4.74)

and we evaluate the first forward difference of v along the solutions of (4.68)
as
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Dv(x(k)) � v(x(k + 1)) − v(x(k)) = x(k + 1)TBx(k + 1) − x(k)TBx(k)

= x(k)TATBAx(k) − x(k)TBx(k)

= x(k)T (ATBA−B)x(k),

and therefore,
Dv(x) = xT (ATBA−B)x � −xTCx,

where
ATBA−B = C, CT = C. (4.75)

Theorem 4.49. (i) The equilibrium x = 0 of system (4.68) is stable if there
exists a real, symmetric, and positive definite matrix B such that the
matrix C given in (4.75) is negative semidefinite.

(ii) The equilibrium x = 0 of system (4.68) is asymptotically stable in the
large if there exists a real, symmetric, and positive definite matrix B such
that the matrix C given in (4.75) is negative definite.

(iii) The equilibrium x = 0 of system (4.68) is unstable if there exists a real,
symmetric matrix B that is either negative definite or indefinite such that
the matrix C given in (4.75) is negative definite. �

In proving Theorem 4.49 one can follow a similar approach as in the proofs
of Theorems 4.22, 4.24 and 4.26. We leave the details to the reader as an
exercise.

In applying Theorem 4.49, we start by choosing (guessing) a matrix B
having certain desired properties and we then solve for the matrix C, using
equation (4.75). If C possesses certain desired properties (i.e., it is negative
definite), we can draw appropriate conclusions by applying one of the results
given in Theorem 4.49; if not, we need to choose another matrix B. This
approach is not very satisfactory, and in the following we will derive results
that will allow us (as in the case of continuous-time systems) to construct
Lyapunov functions of the form v(x) = xTBx in a systematic manner. In
doing so, we first choose a matrix C in (4.75) that is either negative definite
or positive definite, and then we solve (4.75) for B. Conclusions are then made
by applying Theorem 4.49. In applying this construction procedure, we need
to know conditions under which (4.75) possesses a (unique) solution B for
any definite (i.e., positive or negative definite) matrix C. We will address this
issue next.

We first show that if A is stable, i.e., if all eigenvalues of matrix A [in
system (4.68)] are inside the unit circle of the complex plane, then we can
compute B in (4.75) explicitly. To show this, we assume that in (4.75) C is a
given matrix and that A is stable. Then

(AT )k+1BAk+1 − (AT )kBAk = (AT )kCAk,

and summing from k = 0 to l yields
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AT BA−B+(AT )2BA2−AT BA+ · · ·+(AT )l+1BAl+1−(AT )lBAl =
l∑

k=0

(AT )kCAk

or

(AT )l+1BAl+1 −B =
l∑

k=0

(AT )kCAk.

Letting l → ∞, we obtain

B = −
∞∑
k=0

(AT )kCAk. (4.76)

It is easy to verify that (4.76) is a solution of (4.75). We have

−AT
[ ∞∑
k=0

(AT )kCAk
]
A+

∞∑
k=0

(AT )kCAk = C

or

−ATCA+ C − (AT )2CA2 +ATCA− (AT )3CA3 + (AT )2CA2 − · · · = C.

Therefore (4.76) is a solution of (4.75). Furthermore, if C is negative definite,
then B is positive definite.

Combining the above with Theorem 4.49(ii) we have the following result.

Theorem 4.50. If there is a positive definite and symmetric matrix B and a
negative definite and symmetric matrix C satisfying (4.75), then the matrix
A is stable. Conversely, if A is stable, then, given any symmetric matrix C,
(4.75) has a unique solution, and if C is negative definite, then B is positive
definite. �

Next, we determine conditions under which the system of equations (4.75)
has a (unique) solution B = BT ∈ Rn×n for a given matrix C = CT ∈ Rn×n.
To accomplish this, we consider the more general equation

A1XA2 −X = C, (4.77)

where A1 ∈ Rm×m, A2 ∈ Rn×n, and X and C are m× n matrices.

Lemma 4.51. Let A1 ∈ Rm×m and A2 ∈ Rn×n. Then (4.77) has a unique
solution X ∈ Rm×n for a given C ∈ Rm×n if and only if no eigenvalue of A1

is a reciprocal of an eigenvalue of A2.

Proof. We need to show that the condition on A1 and A2 is equivalent to
the condition that A1XA2 = X implies X = 0. Once we have proved that
A1XA2 = X has the unique solution X = 0, then it can be shown that (4.77)
has a unique solution for every C, since (4.77) is a linear equation.
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Assume first that the condition onA1 andA2 is satisfied. NowA1XA2 = X
implies that Ak−j1 XAk−j2 = X and

Aj1X = Ak1XA
k−j
2 for k ≥ j ≥ 0.

Now for a polynomial of degree k,

p(λ) =
k∑
j=0

ajλ
j ,

we define the polynomial of degree k,

p∗(λ) =
k∑
j=0

ajλ
k−j = λkp(1/λ),

from which it follows that

p(A1)X = Ak1Xp
∗(A2).

Now let φi(λ) be the characteristic polynomial of Ai, i = 1, 2. Since φ1(λ) and
φ∗2(λ) are relatively prime, there are polynomials p(λ) and q(λ) such that

p(λ)φ1(λ) + q(λ)φ∗2(λ) = 1.

Now define φ(λ) = q(λ)φ∗2(λ) and note that φ∗(λ) = q∗(λ)φ2(λ). It follows
that φ∗(A2) = 0 and φ(A1) = I. From this it follows that A1XA2 = X implies
X = 0.

To prove the converse, we assume that λ is an eigenvalue of A1 and λ−1 is
an eigenvalue of A2 (and, hence, is also an eigenvalue of AT2 ). Let A1x

1 = λx1

and AT2 x
2 = λ−1x2, x1 �= 0 and x2 �= 0. Define X = (x2

1x
1, x2

2x
1, . . . , x2

nx
1).

Then X �= 0 and A1XA2 = X . �

To construct v(x) by using Lemma 4.51, we must still check the definiteness
of B. To accomplish this, we use Theorem 4.49.

1. If all eigenvalue of A [for system (4.68)] are inside the unit circle of the
complex plane, then no reciprocal of an eigenvalue of A is an eigenvalue,
and Lemma 4.51 gives another way of showing that (4.75) has a unique
solution B for each C if A is stable. If C is negative definite, then B is
positive definite. This can be shown as was done for the case of linear
ordinary differential equations.

2. Suppose that at least one of the eigenvalues of A is outside the unit circle
in the complex plane and thatA has no eigenvalues on the unit circle. As in
the case of linear differential equations (4.22) (Section 4.5), we use a simi-
larity transformation x = Qy in such a way that Q−1AQ = diag[A1, A2],
where all eigenvalues of A1 are outside the unit circle while all eigenvalues
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of A2 are within the unit circle. We then proceed identically as in the case
of linear differential equations to show that under the present assump-
tions there exists for system (4.68) a Lyapunov function that satisfies the
hypotheses of Theorem 4.49(iii). Therefore, the equilibrium x = 0 of sys-
tem (4.68) is unstable. If A does not have any eigenvalues within the unit
circle, then the equilibrium x = 0 of (4.68) is completely unstable. In this
proof, Lemma 4.51 has not been invoked. If additionally, the hypotheses
of Lemma 4.51 are true (i.e., no reciprocal of an eigenvalue of A is an
eigenvalue of A), then we can construct the Lyapunov function for system
(4.68) in a systematic manner.

Summarizing the above discussion, we have proved the following result.

Theorem 4.52. Assume that the matrix A for system (4.68) has no eigenval-
ues on the unit circle in the complex plane. If all the eigenvalues of the matrix
A are within the unit circle of the complex plane, or if at least one eigenvalue
is outside the unit circle of the complex plane, then there exists a Lyapunov
function of the form v(x) = xTBx,B = BT , whose first forward difference
along the solutions of system (4.68) is definite (i.e., it is either negative defi-
nite or positive definite). �

Theorem 4.52 shows that when all the eigenvalues of A are within the
unit circle, then for system (4.68), the conditions of Theorem 4.49(ii) are also
necessary conditions for exponential stability in the large. Furthermore, when
at least one eigenvalue of A is outside the unit circle and no eigenvalues are
on the unit circle, then the conditions of Theorem 4.49(iii) are also necessary
conditions for instability.

We conclude this subsection with some specific examples.

Example 4.53. (i) For system (4.68), let

A =
[

0 1
−1 0

]
.

Let B = I, which is positive definite. From (4.75) we obtain

C = ATA− I =
[

0 −1
1 0

] [
0 1

−1 0

]
−
[

1 0
0 1

]
=
[

0 0
0 0

]
.

It follows from Theorem 4.49(i) that the equilibrium x = 0 of this system
is stable. This is the same conclusion that was made in Example 4.48.

(ii) For system (4.68), let

A =
[

0 − 1
2

−1 0

]
.

Choose



184 4 Stability

B =
[

8
3 0
0 5

3

]
,

which is positive definite. From (4.75) we obtain

C = ATBA−B =
[

0 −1
− 1

2 0

] [
8
3 0
0 5

3

] [
0 − 1

2
−1 0

]
−
[

8
3 0
0 5

3

]
=
[
−1 0

0 −1

]
,

which is negative definite. It follows from Theorem 4.49(ii) that the equi-
librium x = 0 of this system is asymptotically stable in the large. This is
the same conclusion that was made in Example 4.48(ii).

(iii) For system (4.68), let

A =
[

0 − 1
2

−3 0

]
.

Choose

C =
[
−1 0

0 −1

]
,

which is negative definite. From (4.75) we obtain

C = ATBA−B =
[

0 −3
− 1

2 0

] [
b11 b12
b12 b22

] [
0 − 1

2
−3 0

]
−
[
b11 b12
b12 b22

]

or [
(9b22 − b11) 1

2b12
1
2b12 (1

4b11 − b22)

]
=
[
−1 0

0 −1

]
,

which yields

B =
[
−8 0

0 −1

]
,

which is also negative definite. It follows from Theorem 4.49(iii) that the
equilibrium x = 0 of this system is unstable. This conclusion is consistent
with the conclusion made in Example 4.48(iii).

(iv) For system (4.68), let

A =
[

1
3 1
0 3

]
.

The eigenvalues of A are λ1 = 1
3 and λ2 = 3. According to Lemma 4.51,

for a given C, (4.77) does not have a unique solution in this case since
λ1 = 1/λ2. For purposes of illustration, we choose C = −I. Then

−I = ATBA−B =
[

1
3 0
1 3

] [
b11 b12
b12 b22

] [
1
3 1
0 3

]
=
[
b11 b12
b12 b22

]

or ⎡
⎣
− 8

9b11
1
3b11

1
3b11 b11 + 6b12 + 8b22

⎤
⎦ =

[
−1 0

0 −1

]
,

which shows that for C = −I, (4.77) does not have any solution (for B)
at all.
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4.8.4 Linearization

In this subsection we determine conditions under which the stability properties
of the equilibrium w = 0 of the linear system

w(k + 1) = Aw(k) (4.78)

determine the stability properties of the equilibrium x = 0 of the nonlinear
system

x(k + 1) = Ax(k) + f(x(k)), (4.79)

under the assumption that f(x) = o(‖ x ‖) as ‖ x ‖→ 0 (i.e., given ε > 0, there
exists δ > 0 such that ‖ f(x(k)) ‖< ε ‖ x(k) ‖ for all k ≥ 0 and all ‖ x(k) ‖<
δ). [Refer to the discussion concerning (4.68) to (4.70) in Subsection 4.8.1.]

Theorem 4.54. Assume that f ∈ C(Rn, Rn) and that f(x) is o(‖ x ‖) as
‖ x ‖→ 0. (i) If A is stable (i.e., all the eigenvalues of A are within the unit
circle of the complex plane), then the equilibrium x = 0 of system (4.79) is
asymptotically stable. (ii) If at least one eigenvalue of A is outside the unit
circle of the complex plane and no eigenvalue is on the unit circle, then the
equilibrium x = 0 of system (4.79) is unstable. �

In proving Theorem 4.54 one can follow a similar approach as in the proofs
of Theorems 4.32 and 4.33. We leave the details to the reader as an exercise.

Before concluding this subsection, we consider some specific examples.

Example 4.55. (i) Consider the system

x1(k + 1) = −1
2
x2(k) + x1(k)2 + x2(k)2,

x2(k + 1) = −x1(k) + x1(k)2 + x2(k)2.
(4.80)

Using the notation of (4.79), we have

A =
[

0 − 1
2

−1 0

]
, f(x1, x2) =

⎡
⎣
x2

1 + x2
2

x2
1 + x2

2

⎤
⎦ .

The linearization of (4.80) is given by

w(k + 1) = Aw(k). (4.81)

From Example 4.48(ii) [and Example 4.53(ii)], it follows that the equilib-
rium w = 0 of (4.81) is asymptotically stable. Furthermore, in the present
case f(x) = o(‖ x ‖) as ‖ x ‖→ 0. Therefore, in view of Theorem 4.54, the
equilibrium x = 0 of system (4.80) is asymptotically stable.
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(ii) Consider the system

x1(k + 1) = −1
2
x2(k) + x1(k)3 + x2(k)2,

x2(k + 1) = −3x1(k) + x4
1(k) − x2(k)5.

(4.82)

Using the notation of (4.78) and (4.79), we have in the present case

A =
[

0 − 1
2

−3 0

]
, f(x1, x2) =

⎡
⎣
x3

1 + x2
2

x4
1 − x5

2

⎤
⎦ .

Since A is unstable [refer to Example 4.53(iii) and Example 4.48(iii)] and
since f(x) = o(‖ x ‖) as ‖ x ‖→ 0, it follows from Theorem 4.54 that the
equilibrium x = 0 of system (4.82) is unstable.

4.8.5 Input–Output Stability

We conclude this chapter by considering the input–output stability of discrete-
time systems described by equations of the form

x(k + 1) = Ax(k) +Bu(k),
y(k) = Cx(k),

(4.83)

where all matrices and vectors are defined as in (4.67). Throughout this sub-
section we will assume that k0 = 0, x(0) = 0, and k ≥ 0.

As in the continuous-time case, we say that system (4.83) is BIBO stable
if there exists a constant c > 0 such that the conditions

x(0) = 0,
‖ u(k) ‖ ≤ 1, k ≥ 0,

imply that ‖ y(k) ‖≤ c for all k ≥ 0.
The results that we will present involve the impulse response matrix of

(4.83) given by

H(k) =
{
CAk−1B, k > 0,
0, k ≤ 0, (4.84)

and the transfer function matrix given by

Ĥ(z) = C(zI −A)−1B. (4.85)

Recall that

y(n) =
n∑
k=0

H(n− k)u(k). (4.86)

Associated with system (4.83) is the free dynamical system described by the
equation

p(k + 1) = Ap(k). (4.87)
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Theorem 4.56. The system (4.83) is BIBO stable if and only if there exists
a constant L > 0 such that for all n ≥ 0,

n∑
k=0

‖ H(k) ‖≤ L. (4.88)

�

As in the continous-time case, the first part of the proof of Theorem 4.56
(sufficiency) is straightforward. Specifically, if ‖ u(k) ‖≤ 1 for all k ≥ 0 and if
(4.88) is true, then we have for all n ≥ 0,

‖ y(n) ‖ =‖
n∑
k=0

H(n− k)u(k) ‖≤
n∑
k=0

‖ H(n− k)u(k) ‖

≤
n∑
k=0

‖ H(n− k) ‖ ‖ u(k) ‖≤
n∑
k=0

‖ H(n− k) ‖≤ L.

Therefore, system (4.83) is BIBO stable.
In proving the second part of Theorem 4.56 (necessity), we simplify matters

by first considering in (4.83) the single-variable case (n = 1) with the system
description given by

y(t) =
t∑

k=0

h(t− k)u(k), t > 0. (4.89)

For purposes of contradiction, we assume that the system is BIBO stable, but
no finite L exists such that (4.88) is satisfied. Another way of expressing the
last assumption is that for any finite L, there exists t = k1(L) � k1 such that

k1∑
k=0

|h(k1 − k)| > L.

We now choose in particular the input u given by

u(k) =

⎧
⎪⎨
⎪⎩

+1 if h(t− k) > 0,
0 if h(t− k) = 0,
−1 if h(t− k) < 0,

0 ≤ k ≤ k1. Clearly, |u(k)| ≤ 1 for all k ≥ 0. The output of the system at
t = k1 due to the above input, however, is

y(k1) =
k1∑
k=0

h(k1 − k)u(k) =
k1∑
k=0

|h(k1 − k)| > L,

which contradicts the assumption that the system is BIBO stable.
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The above can now be extended to the multivariable case. In doing so
we apply the single-variable result to every possible pair of input and output
vector components, we make use of the fact that the sum of a finite number of
bounded sums will be bounded, and we note that a vector is bounded if and
only if each of its components is bounded. We leave the details to the reader.

Next, as in the case of continuous-time systems, we note that the asymp-
totic stability of the equilibrium p = 0 of system (4.87) implies the BIBO
stability of system (4.83) since the sum

‖
∞∑
k=1

CAk−1B ‖≤
∞∑
k=1

‖ C ‖ ‖ Ak−1 ‖ ‖ B ‖

is finite.
Next, we recall that a complex number zp is a pole of Ĥ(z) = [ĥij(z)] if for

some (i, j) we have |ĥij(zp)| = ∞. If each entry of Ĥ(z) has only poles with
modulus (magnitude) less than 1, then, as shown in Chapter 3, each entry of
H(k) = [hij(k)] consists of a sum of convergent terms. It follows that under
these conditions the sum ∞∑

k=0

‖ H(k) ‖

is finite, and any realization of Ĥ(z) will result in a system that is BIBO
stable.

Conversely, if
∞∑
k=0

‖ H(k) ‖

is finite, then the terms in every entry of H(k) must be convergent. But then
every entry of Ĥ(z) has poles whose modulus is within the unit circle of the
complex plane. We have proved the final result of this section.

Theorem 4.57. The time-invariant system (4.83) is BIBO stable if and only
if the poles of the transfer function

Ĥ(z) = C(zI −A)−1B

are within the unit circle of the complex plane. �

4.9 Summary and Highlights

In this chapter we first addressed the stability of an equilibrium of continuous-
time finite-dimensional systems. In doing so, we first introduced the concept
of equilibrium and defined several types of stability in the sense of Lyapunov
(Sections 4.2 and 4.3). Next, we established several stability conditions of
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an equilibrium for linear systems ẋ = Ax, t ≥ 0 in terms of the state tran-
sition matrix in Theorems 4.12–4.14 and in terms of eigenvalues in Theo-
rem 4.15 (Section 4.4). Next, we established various stability conditions that
are phrased in terms of the Lyapunov matrix equation (4.25) for system
ẋ = Ax (Section 4.5). The existence of Lyapunov functions for ẋ = Ax of
the form xTPx is established in Theorem 4.29. In Section 4.6 we established
conditions under which the asymptotic stability and the instability of an equi-
librium for a nonlinear time-invariant system can be deduced via linearization;
see Theorems 4.32 and 4.33.

Next, we addressed the input–output stability of time-invariant linear,
continuous-time, finite-dimensional systems (Section 4.7). For such systems
we established several conditions for bounded input/bounded output stability
(BIBO stability); see Theorems 4.37 and 4.39.

The chapter is concluded with Section 4.8, where we addressed the
Lyapunov stability and the input–output stability of linear, time-invariant,
discrete-time systems. For such systems, we established results that are anal-
ogous to the stability results of continuous-time systems. The stability of
an equilibrium is expressed in terms of the state transition matrix in Theo-
rem 4.45, in terms of the eigenvalues in Theorem 4.47, and in terms of the
Lyapunov Matrix Equation in Theorems 4.49 and 4.50. The existence of Ly-
punov functions of the form xTPx for x(k + 1) = Ax(k) is established in
Theorem 4.52. Stability results based on linearization are presented in Theo-
rem 4.54 and for BIBO stability in Theorems 4.56 and 4.57.

4.10 Notes

The initial contributions to stability theory that took place toward the end
of the nineteenth century are primarily due to physicists and mathematicians
(Lyapunov [11]), whereas input–output stability is the brainchild of electrical
engineers (Sandberg [17] to [19], Zames [21], [22]). Sources with extensive cov-
erage of Lyapunov stability theory include, e.g., Hahn [6], Khalil [8], LaSalle
[9], LaSalle and Lefschetz [10], Michel and Miller [13], Michel et al. [14], Miller
and Michel [15], and Vidyasagar [20]. Input–output stability is addressed in
great detail in Desoer and Vidyasagar [5], Vidyasagar [20], and Michel and
Miller [13]. For a survey that traces many of the important developments of
stability in feedback control, refer to Michel [12].

In the context of linear systems, sources on both Lyapunov stability and
input–output stability can be found in numerous texts, including Antsaklis
and Michel [1], Brockett [2], Chen [3], DeCarlo [4], Kailath [7], and Rugh [16].
In developing our presentation, we found the texts by Antsaklis and Michel
[1], Brockett [2], Hahn [6], LaSalle [9], and Miller and Michel [15] especially
helpful.

In this chapter, we addressed various types of Lyapunov stability and
bounded input/bounded output stability of time-invariant systems. In the
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various stability concepts for such systems, the initial time t0 (resp., k0) plays
no significant role, and for this reason, we chose without loss of generality
t0 = 0 (resp., k0 = 0). In the case of time-varying systems, this is in general not
true, and in defining the various Lyapunov stability concepts and the concept
of bounded input/bounded output stability, one has to take into account the
effects of initial time. In doing so, we have to distinguish between uniformity
and nonuniformity when defining the various types of Lyapunov stability of
an equilibrium and the BIBO stability of a system. For a treatment of the
Lyapunov stability and the BIBO stablity of the time-varying counterparts of
systems (4.14), (4.15) and (4.67), (4.68), we refer the reader to Chapter 6 in
Antsaklis and Michel [1].

We conclude by noting that there are graphical criteria (i.e., frequency
domain criteria), such as, the Leonhard–Mikhailov criterion, and algebraic
criteria, such as the Routh–Hurwitz criterion and the Schur–Cohn criterion,
which yield necessary and sufficient conditions for the asymptotic stability of
the equilibrium x = 0 for system (4.15) and (4.68). For a presentation of these
results, the reader should consult Chapter 6 in Antsaklis and Michel [1] and
Michel [12].
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Exercises

4.1. Determine the set of equilibrium points of a system described by the
differential equations

ẋ1 = x1 − x2 + x3,

ẋ2 = 2x1 + 3x2 + x3,

ẋ3 = 3x1 + 2x2 + 2x3.

4.2. Determine the set of equilibria of a system described by the differential
equations

ẋ1 = x2,

ẋ2 =

{
x1 sin(1/x1), when x1 �= 0,
0, when x1 = 0.

4.3. Determine the equilibrium points and their stability properties of a sys-
tem described by the ordinary differential equation

ẋ = x(x− 1) (4.90)

by solving (4.90) and then applying the definitions of stability, asymptotic
stability, etc.

4.4. Prove that the equilibrium x = 0 of (4.16) is stable (resp., asymptotically
stable or unstable) if and only if y = 0 of (4.19) is stable (resp., asymptotically
stable or unstable).
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4.5. Apply Proposition 4.20 to determine the definiteness properties of the
matrix A given by

A =

⎡
⎣

1 2 1
2 5 −1
1 −1 10

⎤
⎦ .

4.6. Use Theorem 4.26 to prove that the trivial solution of the system
[
ẋ1

ẋ2

]
=
[

3 4
2 1

] [
x1

x2

]

is unstable.

4.7. Determine the equilibrium points of a system described by the differential
equation

ẋ = −x+ x2,

and determine the stability properties of the equilibrium points, if applicable,
by using Theorem 4.32 or 4.33.

4.8. The system described by the differential equations

ẋ1 = x2 + x1(x2
1 + x2

2),

ẋ2 = −x1 + x2(x2
1 + x2

2)
(4.91)

has an equilibrium at the origin xT = (x1, x2) = (0, 0). Show that the trivial
solution of the linearization of system (4.91) is stable. Prove that the equi-
librium x = 0 of system (4.91) is unstable. (This example shows that the
assumptions on the matrix A in Theorems 4.32 and 4.33 are absolutely essen-
tial.)

4.9. Use Corollary 4.38 to analyze the stability properties of the system given
by

ẋ = Ax+Bu,

y = Cx,

A =
[
−1 0

1 −1

]
, B =

[
1

−1

]
, C = [0, 1].

4.10. Determine all equilibrium points for the discrete-time systems given by

(a)

x1(k + 1) = x2(k) + |x1(k)|,
x2(k + 1) = −x1(k) + |x2(k)|.
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(b)

x1(k + 1) = x1(k)x2(k) − 1,
x2(k + 1) = 2x1(k)x2(k) + 1.

4.11. Prove Theorem 4.43.

4.12. Determine the stability properties of the trivial solution of the discrete-
time system given by the equations

[
x1(k + 1)
x2(k + 1)

]
=
[

cos θ sin θ
− sin θ cos θ

] [
x1(k)
x2(k)

]

with θ fixed.

4.13. Analyze the stability of the equilibrium x = 0 of the system described
by the scalar-valued difference equation

x(k + 1) = sin[x(k)].

4.14. Analyze the stability of the equilibrium x = 0 of the system described
by the difference equations

x1(k + 1) = x1(k) + x2(k)[x1(k)2 + x2(k)2],

x2(k + 1) = x2(k) − x1(k)[x1(k)2 + x2(k)2].

4.15. Determine a basis of the solution space of the system
[
x1(k + 1)
x2(k + 1)

]
=
[

0 1
−6 5

] [
x1(k)
x2(k)

]
.

Use your answer in analyzing the stability of the trivial solution of this system.

4.16. Let A ∈ Rn×n. Prove that part (iii) of Theorem 4.45 is equivalent to
the statement that all eigenvalues of A have modulus less than 1; i.e.,

lim
k→∞

‖ Ak ‖= 0

if and only if for any eigenvalue λ of A, it is true that |λ| < 1.

4.17. Use Theorem 4.44 to show that the equilibrium x = 0 of the system

x(k + 1) =

⎡
⎢⎢⎣

1 1 1 · · · 1
0 1 1 · · · 1
· · · · · · · · · · · · · · ·
0 0 0 · · · 1

⎤
⎥⎥⎦x(k)

is unstable.
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4.18. (a) Use Theorem 4.47 to determine the stability of the equilibrium x = 0
of the system

x(k + 1) =

⎡
⎣

1 1 −2
0 1 3
0 9 −1

⎤
⎦x(k).

(b) Use Theorem 4.47 to determine the stability of the equilibrium x = 0 of
the system

x(k + 1) =

⎡
⎣

1 0 −2
0 1 3
0 9 −1

⎤
⎦x(k).

4.19. Apply Theorems 4.24 and 4.49 to show that if the equilibrium x =
0 (x ∈ Rn) of the system

x(k + 1) = eAx(k)

is asymptotically stable, then the equilibrium x = 0 of the system

ẋ = Ax

is also asymptotically stable.

4.20. Apply Theorem 4.49 to show that the trivial solution of the system
given by [

x1(k + 1)
x2(k + 1)

]
=
[

0 2
2 0

] [
x1(k)
x2(k)

]

is unstable.

4.21. Determine the stability of the equilibrium x = 0 of the scalar-valued
system given by

x(k + 1) =
1
2
x(k) +

2
3

sinx(k).

4.22. Analyze the stability properties of the discrete-time system given by

x(k + 1) = x(k) +
1
2
u(k)

y(k) =
1
2
x(k)

where x, y, and u are scalar-valued variables. Is this system BIBO stable?

4.23. Prove Theorem 4.47.

4.24. Prove Theorem 4.49 by following a similar approach as was used in the
proofs of Theorems 4.22, 4.24, and 4.26.

4.25. Prove Theorem 4.54 by following a similar approach as was used in the
proofs of Theorems 4.32 and 4.33.
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Controllability and Observability:
Fundamental Results

5.1 Introduction

The principal goals of this chapter are to introduce the system properties
of controllability and observability (and of reachability and constructibility),
which play a central role in the study of state feedback controllers and state
observers, and in establishing the relations between internal and external sys-
tem representations, topics that will be studied in Chapters 7, 8, and 9. State
controllability refers to the ability to manipulate the state by applying ap-
propriate inputs (in particular, by steering the state vector from one vector
value to any other vector value in finite time). Such is the case, for example, in
satellite attitude control, where the satellite must change its orientation. State
observability refers to the ability to determine the state vector of the system
from knowledge of the input and the corresponding output over some finite
time interval. Since it is frequently difficult or impossible to measure the state
of a system directly (for example, internal temperatures and pressures in an
internal combustion engine), it is very desirable to determine such states by
observing the inputs and outputs of the system over some finite time interval.

In Section 5.2, the concepts of reachability and controllability and observ-
ability and constructibility are introduced, using discrete-time time-invariant
systems. Discrete-time systems are selected for this exposition because the
mathematical development is much simpler in this case. In subsection 5.2.3
the concept of duality is also introduced. Reachability and controllability are
treated in detail in Section 5.3 and observability and constructibility in Sec-
tion 5.4 for both continuous-time and discrete-time time-invariant systems.

5.2 A Brief Introduction to Reachability and
Observability

Reachability and controllability are introduced first, followed by observabil-
ity and constructibility. These important system concepts are more easily
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explained in the discrete-time case, and this is the approach taken in this
section. Duality is also discussed at the end of the section.

5.2.1 Reachability and Controllability

The concepts of state reachability (or controllability-from-the-origin) and con-
trollability (or controllability-to-the-origin) are introduced here and are dis-
cussed at length in Section 5.3.

In the case of time-invariant systems, a state x1 is called reachable if there
exists an input that transfers the state of the system x(t) from the zero state
to x1 in some finite time T . The definition of reachability for the discrete-time
case is completely analogous. Figure 5.1 shows that different control inputs
u1(t) and u2(t) may force the state of a continuous-time system to reach the
value x1 from the origin at different finite times T1 and T2, following different
paths. Note that reachability refers to the ability of the system to reach x1

from the origin in some finite time; it specifies neither the exact time it takes
to achieve this nor the trajectory to be followed.

x(t)

x1

u1(t)

u2(t)

T1 T2 t0

Figure 5.1. A reachable state x1

A state x0 is called controllable if there exists an input that transfers the
state from x0 to the zero state in some finite time T . See Figure 5.2. The
definition of controllability for the discrete-time case is completely analogous.
Similar to reachability, controllability specifies neither the time it takes to
achieve the transfer nor the trajectory to be followed.

We note that when particular types of trajectories to be followed are of
interest, then one seeks particular control inputs that will achieve such trans-
fers. This leads to various control problem formulations, including the Linear
Quadratic (Optimal) Regulator (LQR). The LQR problem is discussed in
Chapter 9.

Section 5.3 shows that reachability always implies controllability, but con-
trollability implies reachability only when the state transition matrix Φ of the
system is nonsingular. This is always true for continuous-time systems, but is
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x0

x(t)

u2(t)
u1(t)

T1 T2
0 t

Figure 5.2. A controllable state x0

true for discrete-time systems only when the matrix A of the system is non-
singular. If the system is state reachable, then there always exists an input
that transfers any state x0 to any other state x1 in finite time.

In the time-invariant case, a system is reachable (or controllable-from-the-
origin) if and only if its controllability matrix C,

C � [B,AB, . . . , An−1B] ∈ Rn×mn, (5.1)

has full row rank n; that is, rankC = n. The matrices A ∈ Rn×n and B ∈
Rn×m come from either the continuous-time state equations

ẋ = Ax+Bu (5.2)

or the discrete-time state equations

x(k + 1) = Ax(k) +Bu(k), (5.3)

k ≥ k0 = 0. Alternatively, we say that the pair (A,B) is reachable. The ma-
trix C should perhaps more appropriately be called the “reachability matrix”
or the “controllability-from-the-origin matrix.” The term “controllability ma-
trix,” however, has been in use for some time and is expected to stay in use.
Therefore, we shall call C the “controllability matrix,” having in mind the
“controllability-from-the-origin matrix.”

We shall now discuss reachability and controllability for discrete-time time-
invariant systems (5.3).

If the state x(k) in (5.3) is expressed in terms of the initial vector x(0),
then (see Subsection 3.5.1)

x(k) = Akx(0) +
k−1∑
i=0

Ak−(i+1)Bu(i) (5.4)

for k > 0. Rewriting the summation in terms of matrix-vector multiplication,
it follows that it is possible to transfer the state from some value x(0) = x0 to
some x1 in n steps, that is, x(n) = x1, if there exists an n-step input sequence
{u(0), u(1), . . . , u(n− 1)} that satisfies the equation
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x1 −Anx0 = CnUn, (5.5)

where Cn � [B,AB, . . . , An−1B] = C [see (5.1)] and

Un � [uT (n− 1), uT (n− 2), . . . , uT (0)]T . (5.6)

From the theory of linear algebraic equations, (5.5) has a solution Un if
and only if

x1 −Anx0 ∈ R(C), (5.7)

where R(C) = range(C). Note that it is not necessary to take more than n
steps in the control sequence, since if this transfer cannot be accomplished in n
steps, it cannot be accomplished at all. This follows from the Cayley–Hamilton
Theorem, in view of which it can be shown that R(Cn) = R(Ck) for k ≥ n.
Also note that R(Cn) includes R(Ck) for k < n [i.e., R(Cn) ⊃ R(Ck), k < n].
(See Exercise 5.1.)

It is now easy to see that the system (5.3) or the pair (A,B) is reachable
(controllable-from-the-origin), if and only if rankC = n, since in this case
R(C) = Rn, the entire state space. Note that x1 ∈ R(C) is the condition for
a particular state x1 to be reachable from the zero state. Since R(C) contains
all such states, it is called the reachable subspace of the system. It is also clear
from (5.5) that if the system is reachable, any state x0 can be transferred to
any other state x1 in n steps. In addition, the input that accomplishes this
transfer is any solution Un of (5.5). Note that, depending on x1 and x0, this
transfer may be accomplished in fewer than n steps (see Section 5.3).

Example 5.1. Consider x(k+1) = Ax(k)+Bu(k), where A =
[

0 1
1 1

]
, B =

[
0
1

]
. Here the controllability (-from-the-origin) matrix C is C = [B,AB] =

[
0 1
1 1

]
with rank C = 2. Therefore, the system [or the pair (A,B)] is reachable,

meaning that any state x1 can be reached from the zero state in a finite number
of steps by applying at most n inputs {u(0), u(1), . . . , u(n−1)} (presently, n =

2). To see this, let x1 =
[
a
b

]
. Then (5.5) implies that

[
a
b

]
=
[

0 1
1 1

] [
u(1)
u(0)

]
or

[
u(1)
u(0)

]
=
[
−1 1

1 0

] [
a
b

]
=
[
b− a
a

]
. Thus, the control u(0) = a, u(1) = b − a

will transfer the state from the origin at k = 0 to the state
[
a
b

]
at k = 2.

To verify this, we observe that x(1) = Ax(0) + Bu(0) =
[

0
1

]
a =

[
0
a

]
and

x(2) = Ax(1) +Bu(1) =
[
a
a

]
+
[

0
1

]
(b− a) =

[
a
b

]
.

Reachability of the system also implies that a state x1 can be reached
from any other state x0 in at most n = 2 steps. To illustrate this, let
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x(0) =
[

1
1

]
. Then (5.5) implies that x1 − A2x0 =

[
a
b

]
−
[

1 1
1 2

] [
1
1

]
=

[
a− 2
b− 3

]
=
[

0 1
1 1

] [
u(1)
u(0)

]
. Solving,

[
u(1)
u(0)

]
=
[
b− a− 1
a− 2

]
, which will drive

the state from
[

1
1

]
at k = 0 to

[
a
b

]
at k = 2.

Notice that in general the solution Un of (5.5) is not unique; i.e., many
inputs can accomplish the transfer from x(0) = x0 to x(n) = x1, each corre-
sponding to a particular state trajectory. In control problems, particular in-
puts are frequently selected that, in addition to transferring the state, satisfy
additional criteria, such as, e.g., minimization of an appropriate performance
index (optimal control).

A system [or the pair (A,B)] is controllable, or controllable-to-the-origin,
when any state x0 can be driven to the zero state in a finite number of steps.
From (5.5) we see that a system is controllable when Anx0 ∈ R(C) for any
x0. If rankA = n, a system is controllable when rankC = n, i.e., when the
reachability condition is satisfied. In this case the n×mn matrix

A−nC = [A−nB, . . . , A−1B] (5.8)

is of interest and the system is controllable if and only if rank(A−nC) =
rankC = n. If, however, rankA < n, then controllability does not imply
reachability (see Section 5.3).

Example 5.2. The system in Example 5.1 is controllable (-to-the-origin).

To see this, we let, x1 = 0 in (5.5) and write −A2x0 = −
[
1 1
1 2

] [
a
b

]
=

[B,AB]
[
u(1)
u(0)

]
=
[

0 1
1 1

] [
u(1)
u(0)

]
, where x0 =

[
a
b

]
. From this we obtain

[
u(1)
u(0)

]
= −

[
−1 1

1 0

] [
1 1
1 2

] [
a
b

]
=
[

0 −1
−1 −1

] [
a
b

]
=
[

−b
−a− b

]
, which is the

input that will drive the state from
[
a
b

]
at k = 0 to

[
0
0

]
at k = 2.

Example 5.3. The system x(k + 1) = 0 is controllable since any state, say,
x(0) = [ ab ], can be transferred to the zero state in one step. In this system,
however, the input u does not affect the state at all! This example shows
that reachability is a more useful concept than controllability for discrete-
time systems.

It should be pointed out that nothing has been said up to now about
maintaining the desired system state after reaching it [refer to (5.5)]. Zeroing
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the input for k ≥ n, i.e., letting u(k) = 0 for k ≥ n, will not typically work,
unless Ax1 = x1. In general a state starting at x1, will remain at x1 for all
k ≥ n if and only if there exists an input u(k), k ≥ n, such that

x1 = Ax1 +Bu(k), (5.9)

that is, if and only if (I − A)x1 ∈ R(B). Clearly, there are states for which
this condition may not be satisfied.

5.2.2 Observability and Constructibility

In Section 5.4, definitions for state observability and constructibility are given,
and appropriate tests for these concepts are derived. It is shown that observ-
ability always implies constructibility, whereas constructibility implies observ-
ability only when the state transition matrix Φ of the system is nonsingular.
Whereas this is always true for continuous-time systems, it is true for discrete-
time systems only when the matrix A of the system is nonsingular. If a system
is state observable, then its present state can be determined from knowledge
of the present and future outputs and inputs. Constructibility refers to the
ability of determining the present state from present and past outputs and
inputs, and as such, it is of greater interest in applications.

In the time-invariant case a system [or a pair (A,C)] is observable if and
only if its observability matrix O, where

O �

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ ∈ Rpn×n, (5.10)

has full column rank; i.e., rankO = n. The matrices A ∈ Rn×n and C ∈ Rp×n

are given by the system description

ẋ = Ax +Bu, y = Cx+Du (5.11)

in the continuous-time case, and by the system description

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k), (5.12)

with k ≥ k0 = 0, in the discrete-time case.
We shall now briefly discuss observability and constructibility for the

discrete-time time-invariant case. As in the case of reachability and control-
lability, this discussion will provide insight into the underlying concepts and
will clarify what these imply for a system.
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If the output in (5.12) is expressed in terms of the initial vector x(0), then

y(k) = CAkx(0) +
k−1∑
i=0

CAk−(i+1)Bu(i) +Du(k) (5.13)

for k > 0 (see Section 3.5). This implies that

ỹ(k) = CAkx0 (5.14)

for k ≥ 0, where

ỹ(k) � y(k) −
[
k−1∑
i=0

CAk−(i+1)Bu(i) +Du(k)

]

for k > 0, ỹ(0) � y(0)−Du(0), and x0 = x(0). In (5.14) x0 is to be determined
assuming that the system parameters are given and the inputs and outputs
are measured. Note that if u(k) = 0 for k ≥ 0, then the problem is simplified,
since ỹ(k) = y(k) and since the output is generated only by the initial condi-
tion x0. It is clear that the ability of determining x0 from output and input
measurements depends only on the matrices A and C, since the left-hand side
of (5.14) is a known quantity. Now if x(0) = x0 is known, then all x(k), k ≥ 0,
can be determined by means of (5.12). To determine x0, we apply (5.14) for
k = 0, . . . , n− 1. Then

Ỹ0,n−1 = Onx0, (5.15)

where On � [CT , (CA)T , . . . , (CAn−1)T ]T = O [as in (5.10)] and

Ỹ0,n−1 � [ỹT (0), . . . , ỹT (n− 1)]T .

Now (5.15) always has a solution x0, by construction. A system is observ-
able if the solution x0 is unique, i.e., if it is the only initial condition that,
together with the given input sequence, can generate the observed output se-
quence. From the theory of linear systems of equations, (5.15) has a unique
solution x0 if and only if the null space of O consists of only the zero vector,
i.e., Null(O) = N (O) = {0}, or equivalently, if and only if the only x ∈ Rn

that satisfies
Ox = 0 (5.16)

is the zero vector. This is true if and only if rankO = n. Thus, a system
is observable if and only if rankO = n. Any nonzero state vector x ∈ Rn

that satisfies (5.16) is said to be an unobservable state, and N (O) is said to
be the unobservable subspace. Note that any such x satisfies CAkx = 0 for
k = 0, 1, . . . , n − 1. If rankO < n, then all vectors x0 that satisfy (5.15) are
given by x0 = x0p + x0h, where x0p is a particular solution and x0h is any
vector in N (O). Any of these state vectors, together with the given inputs,
could have generated the measured outputs.
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To determine x0 from (5.15) it is not necessary to use more than n values
for ỹ(k), k = 0, . . . , n − 1, or to observe y(k) for more than n steps in the
future. This is true because, in view of the Cayley–Hamilton Theorem, it can
be shown that N (On) = N (Ok) for k ≥ n. Note also that N (On) is included
in N (Ok) (N (On) ⊂ N (Ok)) for k < n. Therefore, in general, one has to
observe the output for n steps (see Exercise 5.1).

Example 5.4. Consider the system x(k + 1) = Ax(k), y(k) = Cx(k), where

A =
[

0 1
1 1

]
and C = [0 1]. Here, O =

[
C
CA

]
=
[

0 1
1 1

]
with rankO = 2.

Therefore, the system [or the pair (A,C)] is observable. This means that x(0)
can uniquely be determined from n = 2 output measurements (in the present

cases, the input is zero). In fact, in view of (5.15),
[
y(0)
y(1)

]
=
[

0 1
1 1

] [
x1(0)
x2(0)

]

or
[
x1(0)
x2(0)

]
=
[
−1 1

1 0

] [
y(0)
y(1)

]
=
[
y(1) − y(0)

y(0)

]
.

Example 5.5. Consider the system x(k + 1) = Ax(k), y(k) = Cx(k), where

A =
[

1 0
1 1

]
and C = [1 0]. Here, O =

[
C
CA

]
=
[

1 0
1 0

]
with rankO = 1. There-

fore, the system is not observable. Note that a basis for N (O) is
{[

0
1

]}
, which

in view of (5.16) implies that all state vectors of the form
[

0
c

]
, c ∈ R, are

unobservable. Relation (5.15) implies that
[
y(0)
y(1)

]
=
[

1 0
1 0

] [
x1(0)
x2(0)

]
. For a so-

lution x(0) to exist, as it must, we have that y(0) = y(1) = a. Thus, this system
will generate an identical output for k ≥ 0. Accordingly, all x(0) that satisfy

(5.15) and can generate this output are given by
[
x1(0)
x2(0)

]
=
[
a
0

]
+
[

0
c

]
=
[
a
c

]
,

where c ∈ R.

In general, a system (5.12) [or a pair (A,C)] is constructible if the only
vector x that satisfies x = Akx̂ with Cx̂ = 0 for every k ≥ 0 is the zero
vector. When A is nonsingular, this condition can be stated more simply,
namely, that the system is constructible if the only vector x that satisfies
CA−kx = 0 for every k ≥ 0 is the zero vector. Compare this with the condi-
tion CAkx = 0, k ≥ 0, for x to be an unobservable state; or with the condition
that a system is observable if the only vector x that satisfies CAkx = 0 for
every k ≥ 0 is the zero vector. In view of (5.14), the above condition for a
system to be constructible is the condition for the existence of a unique solu-
tion x0 when past outputs and inputs are used. This, of course, makes sense
since constructibility refers to determining the present state from knowledge
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of past outputs and inputs. Therefore, when A is nonsingular, the system is
constructible if and only if the pn× n matrix

OA−n =

⎡
⎢⎣
CA−n

...
CA−1

⎤
⎥⎦ (5.17)

has full rank, since in this case the only x that satisfies CA−kx = 0 for
every k ≥ 0 is x = 0. Note that if the system is observable, then it is also
constructible; however, if it is constructible, then it is also observable only
when A is nonsingular (see Section 5.3).

Example 5.6. Consider the (unobservable) system in Example 5.5. Since A

is nonsingular, OA−2 =
[

1 0
1 0

] [
1 0

−2 1

]
=
[

1 0
1 0

]
. Since rankOA−2 = 1 < 2,

the system [or the pair (A,C)] is not constructible. This can also be seen
from the relation CA−kx = 0, k ≥ 0, that has nonzero solutions x, since
C = [1, 0] = CA−1 = CA−2 = · · · = CA−k for k ≥ 0, which implies that any

x =
[

0
c

]
, c ∈ R, is a solution.

5.2.3 Dual Systems

Consider the system described by

ẋ = Ax+Bu, y = Cx+Du, (5.18)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. The dual system of
(5.18) is defined as the system

ẋD = ADxD +BDuD, yD = CDxD +DDuD, (5.19)

where AD = AT , BD = CT , CD = BT , and DD = DT .

Lemma 5.7. System (5.18), denoted by {A,B,C,D}, is reachable (control-
lable) if and only if its dual {AD, BD, CD, DD} in (5.19) is observable (con-
structible), and vice versa.

Proof. System {A,B,C,D} is reachable if and only if C � [B,AB, . . . , An−1B]
has full rank n, and its dual is observable if and only if

OD �

⎡
⎢⎢⎢⎣

BT

BTAT

...
BT (AT )n−1

⎤
⎥⎥⎥⎦
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has full rank n. Since OT
D = C, {A,B,C,D} is reachable if and only if

{AD, BD, CD, DD} is observable. Similarly, {A,B,C,D} is observable if and
only if {AD, BD, CD, DD} is reachable. Now {A,B,C,D} is controllable if
and only if its dual is constructible, and vice versa, since it is shown in Sec-
tions 5.3 and 5.4, that a continuous-time system is controllable if and only if
it is reachable; it is constructible if and only if it is observable. �

For the discrete-time time-invariant case, the dual system is again defined
as AD = AT , BD = CT , CD = BT , and DD = DT . That such a system is
reachable if and only if its dual is observable can be shown in exactly the same
way as in the proof of Lemma 5.7. That such a system is controllable if and
only if its dual is constructible in the case when A is nonsingular is because in
this case the system is reachable if and only if it is controllable; and the same
holds for observability and constructibility. The proof for the case when A is
singular involves the controllable and unconstructible subspaces of a system
and its dual. We omit the details. The reader is encouraged to complete this
proof after studying Sections 5.3 and 5.4.

Figure 5.3 summarizes the relationships between reachability (observabil-
ity) and controllability (constructibility) for continuous- and discrete-time sys-
tems.

Dual Observability

Controllability ConstructibilityDual

Reachability

Figure 5.3. In continuous-time systems, reachability (observability) always implies
and is implied by controllability (constructibility). In discrete-time systems, reach-
ability (observability) always implies but in general is not implied by controllability
(constructibility).

5.3 Reachability and Controllability

The objective here is to study the important properties of state controllability
and reachability when a system is described by a state-space representation.
In the previous section, a brief introduction to these concepts was given for
discrete-time systems, and it was shown that a system is completely reachable
if and only if the controllability (-from-the-origin) matrix C in (5.1) has full
rank n (rankC = n). Furthermore, it was shown that the input sequence nec-
essary to accomplish the transfer can be determined directly from C by solving
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a system of linear algebraic equations (5.5). In a similar manner, we would like
to derive tests for reachability and controllability and determine the necessary
system inputs to accomplish the state transfer for the continuous-time case.
We note, however, that whereas the test for reachability can be derived by a
number of methods, the appropriate sequence of system inputs to use cannot
easily be determined directly from C, as was the case for discrete-time systems.
For this reason, we use an approach that utilizes ranges of maps, in particu-
lar, the range of an important n× n matrix—the reachability Gramian. The
inputs that accomplish the desired state transfer can be determined directly
from this matrix.

5.3.1 Continuous-Time Time-Invariant Systems

We consider the state equation

ẋ = Ax +Bu, (5.20)

where A ∈ Rn×n, B ∈ Rn×m, and u(t) ∈ Rm is (piecewise) continuous. The
state at time t is given by

x(t) = Φ(t, t0)x(t0) +
∫ t

t0

Φ(t, τ)Bu(τ)dτ, (5.21)

where Φ(t, τ) is the state transition matrix of the system, and x(t0) = x0

denotes the state at initial time.
Here

Φ(t, τ) = Φ(t− τ, 0) = exp[(t− τ)A] = eA(t−τ). (5.22)

We are interested in using the input to transfer the state from x0 to some
other value x1 at some finite time t1 > t0, [i.e., x(t1) = x1 in (5.21)]. Because
of time invariance, the difference t1− t0 = T , rather than the individual times
t0 and t1, is important. Accordingly, we can always take t0 = 0 and t1 = T .
Equation (5.21) assumes the form

x1 − eATx0 =
∫ T

0

eA(T−τ)Bu(τ)dτ, (5.23)

and clearly, there exists u(t), t ∈ [0, T ], that satisfies (5.23) if and only if such
transfer of the state is possible. Letting x̂1 � x1 − eATx0, we note that the
u(t) that transfers the state from x0 at time 0 to x1 at time T will also cause
the state to reach x̂1 at T , starting from the origin at 0 (i.e., x(0) = 0).

For the time-invariant system (5.20), we introduce the following concepts.

Definition 5.8. (i) A state x1 is reachable if there exists an input u(t), t ∈
[0, T ], that transfers the state x(t) from the origin at t = 0 to x1 in some
finite time T .
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(ii) The set of all reachable states Rr is the reachable subspace of the system
ẋ = Ax +Bu, or of the pair (A,B).

(iii) The system ẋ = Ax+Bu, or the pair (A,B) is (completely state) reach-
able if every state is reachable, i.e., if Rr = Rn. �

Regarding (ii), note that the set of all reachable states x1 contains the
origin and constitutes a linear subspace of the state space (Rn, R).

A reachable state is sometimes also called controllable-from-the-origin. Ad-
ditionally, there are also states defined to be controllable-to-the-origin or sim-
ply controllable; see the definition later in this section.

Definition 5.9. The n×n reachability Gramian of the time-invariant system
ẋ = Ax+Bu is

Wr(0, T ) �
∫ T

0

e(T−τ)ABBT e(T−τ)AT

dτ. (5.24)

�

Note that Wr is symmetric and positive semidefinite for every T > 0; i.e.,
Wr = WT

r and Wr ≥ 0 (show this).
It can now be shown in [1, p. 230, Lemma 3.2.1] that the reachable subspace

of the system (5.20) is exactly the range of the reachability Gramian Wr in
(5.24). Let the n×mn controllability (-from-the-origin) matrix be

C � [B,AB, . . . , An−1B]. (5.25)

The range of Wr(0, T ), denoted by R(Wr(0, T )), is independent of T ; i.e.,
it is the same for any finite T (> 0), and in particular, it is equal to the range of
the controllability matrix C. Thus, the reachable subspace Rr of system (5.20),
which is the set of all states that can be reached from the origin in finite time,
is given by the range of C,R(C), or the range of Wr(0, T ),R(Wr(0, T )), for
some finite (and therefore for any) T > 0. This is stated as Lemma 5.10 below;
for the proof, see [1, p. 236, Lemma 3.2.10].

Lemma 5.10. R(Wr(0, T )) = R(C) for every T > 0. �

Example 5.11. For the system ẋ = Ax+Bu with A =
[

0 1
0 0

]
and B =

[
0
1

]
,

we have eAt =
[

1 t
0 1

]
and eAtB =

[
t
1

]
. The reachability Gramian is

Wr(0, T ) =
∫ T
0

[
T − τ

1

]
[T−τ, 1]dτ =

∫ T
0

[
(T − τ)2 T − τ
T − τ 1

]
dτ =

[
1
3T

3 1
2T

2

1
2T

2 T

]
.

Since detWr(0, T ) = 1
12T

4 �= 0 for any T > 0, rankWr(0, T ) = n and (A,B)

is reachable. Note that C = [B,AB] =
[

0 1
1 0

]
and that R(Wr(0, T )) = R(C) =

R2, as expected (Lemma 5.10).
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If B =
[

1
0

]
, instead of

[
0
1

]
, then C = [B,AB] =

[
1 0
0 0

]
and (A,B)

is not reachable. In this case eAtB =
[

1
0

]
and the reachability matrix is

Wr(0, T ) =
∫ T
0

[
1 0
0 0

]
dτ =

[
T 0
0 0

]
. Notice again that R(C) = R(Wr(0, T )) for

every T > 0.

The following theorems and corollaries 5.12 to 5.15 contain the main reach-
ability results. Their proofs may be found in [1, p. 237, Chapter 3], starting
with Theorem 2.11.

Theorem 5.12. Consider the system ẋ = Ax + Bu, and let x(0) = 0. There
exists an input u that transfers the state to x1 in finite time if and only if x1 ∈
R(C), or equivalently, if and only if x1 ∈ R(Wr(0, T )) for some finite (and
therefore for any) T . Thus, the reachable subspace Rr = R(C) = R(Wr(0, T )).
Furthermore, an appropriate u that will accomplish this transfer in time T is
given by

u(t) = BT eA
T (T−t)η1 (5.26)

with η1 such that Wr(0, T )η1 = x1 and t ∈ [0, T ]. �

Note that in (5.26) no restrictions are imposed on time T , other than T
be finite. T can be as small as we wish; i.e., the transfer can be accomplished
in a very short time indeed.

Corollary 5.13. The system ẋ = Ax+Bu, or the pair (A,B), is (completely
state) reachable, if and only if

rankC = n, (5.27)

or equivalently, if and only if

rankWr(0, T ) = n (5.28)

for some finite (and therefore for any) T . �

Theorem 5.14. There exists an input u that transfers the state of the system
ẋ = Ax+Bu from x0 to x1 in some finite time T if and only if

x1 − eATx0 ∈ R(C), (5.29)

or equivalently, if and only if

x1 − eATx0 ∈ R(Wr(0, T )). (5.30)

Such an input is given by
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u(t) = BT eA
T (T−t)η1 (5.31)

with t ∈ [0, T ], where η1 is a solution of

Wr(0, T )η1 = x1 − eATx0. (5.32)

�

The above theorem leads to the next result, which establishes the impor-
tance of reachability in determining an input u to transfer the state from any
x0 to any x1 in finite time.

Corollary 5.15. Let the system ẋ = Ax+Bu be (completely state) reachable,
or the pair (A,B) be reachable. Then there exists an input that will transfer
any state x0 to any other state x1 in some finite time T . Such input is given
by

u(t) = BT eA
T (T−t)W−1

r (0, T )[x1 − eATx0] (5.33)

for t ∈ [0, T ]. �

There are many different control inputs u that can accomplish the transfer
from x0 to x1 in time T . It can be shown that the input u given by (5.33)
accomplishes this transfer while expending a minimum amount of energy;
in fact, u minimizes the cost functional

∫ T
0

‖ u(τ) ‖2 dτ , where ‖ u(t) ‖�
[uT (t)u(t)]1/2 denotes the Euclidean norm of u(t).

Example 5.16. The system ẋ = Ax + Bu with A =
[

0 1
0 0

]
and B =

[
0
1

]
is

reachable (see Example 5.11). A control input u(t) that will transfer any state
x0 to any other state x1 in some finite time T is given by (see Corollary 5.15
and Example 5.11)

u(t) = BT eA
T (T−t)W−1

r (0, T )[x1 − eATx0]

= [T − t, 1]
[

12/T 3 −6/T 2

−6/T 2 4/T

] [
x1 −

[
1 T
0 1

]
x0

]
.

Example 5.17. For the (scalar) system ẋ = −ax + bu, determine u(t) that
will transfer the state from x(0) = x0 to the origin in T sec; i.e., x(T ) = 0.

We shall apply Corollary 5.15. The reachability Gramian is Wr(0, T ) =∫ T
0 e−(T−τ)abbe−(T−τ)adτ = e−2aT b2

∫ T
0 e2aτdτ = e−2aT b2 1

2a [e2aT − 1] =
b2

2a [1 − e−2aT ]. (Note [see (5.36) below] that the controllability Gramian is
Wc(0, T ) = b2

2a [e2aT − 1].) Now in view of (5.33), we have

u(t) = be−(T−t)a 2a
b2

1
1 − e−2aT

[−e−aTx0]

= −2a
b

e−2aT

1 − e−2aT
eaTx0 = −2a

b

1
e2aT − 1

eatx0.
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To verify that this u(t) accomplishes the desired transfer, we compute x(t) =
eAtx0+

∫ t
0
eA(t−τ)Bu(τ)dτ = e−atx0+

∫ t
0
e−ateaτbu(τ)dτ = e−at[x0+

∫ t
0
eaτb×(

− 2a
b

1
e2aT −1 × eaτ

)
dτ = e−at

[
1 − e2at−1

e2aT −1

]
x0. Note that x(T ) = 0, as de-

sired, and also that x(0) = x0. The above expression shows also that for
t > T , the state does not remain at the origin. An important point to notice
here is that as T → 0, the control magnitude |u| → ∞. Thus, although it
is (theoretically) possible to accomplish the desired transfer instantaneously,
this will require infinite control magnitude. In general the faster the transfer,
the larger the control magnitude required.

We now introduce the concept of a controllable state.

Definition 5.18. (i) A state x0 is controllable if there exists an input
u(t), t ∈ [0, T ], which transfers the state x(t) from x0 at t = 0 to the
origin in some finite time T .

(ii) The set of all controllable states Rc, is the controllable subspace of the
system ẋ = Ax+Bu, or of the pair (A,B).

(iii) The system ẋ = Ax +Bu, or the pair (A,B), is (completely state) con-
trollable if every state is controllable, i.e., if Rc = Rn. �

We shall now establish the relationship between reachability and control-
lability for the continuous-time time-invariant systems (5.20).

In view of (5.23), x0 is controllable when there exists u(t), t ∈ [0, T ], so
that

−eATx0 =
∫ T

0

eA(T−τ)Bu(τ)dτ

or when eATx0 ∈ R(Wr(0, T )) [1, p. 230, Lemma 3.2.1], or equivalently, in
view of Lemma 5.10, when

eATx0 ∈ R(C) (5.34)

for some finite T . Recall that x1 is reachable when

x1 ∈ R(C). (5.35)

We require the following result.

Lemma 5.19. If x ∈ R(C), then Ax ∈ R(C); i.e., the reachable subspace
Rr = R(C) is an A-invariant subspace.

Proof. If x ∈ R(C), this means that there exists a vector α such that
[B,AB, . . . , An−1B]α = x. Then Ax = [AB,A2B, . . . , AnB]α. In view of the
Cayley–Hamilton Theorem, An can be expressed as a linear combination of
An−1, . . . , A, I, which implies that Ax = Cβ for some appropriate vector β.
Therefore, Ax ∈ R(C). �
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Theorem 5.20. Consider the system ẋ = Ax+Bu.

(i) A state x is reachable if and only if it is controllable.
(ii) Rc = Rr.
(iii) The system (2.3), or the pair (A,B), is (completely state) reachable if

and only if it is (completely state) controllable.

Proof. (i) Let x be reachable, that is, x ∈ R(C). Premultiply x by eAT =∑∞
k=0(T

k/k!)Ak and notice that, in view of Lemma 5.19, Ax,A2x, . . . , Akx ∈
R(C). Therefore, eATx ∈ R(C) for any T that, in view of (5.34), implies
that x is also controllable. If now x is controllable, i.e., eATx ∈ R(C), then
premultiplying by e−AT , the vector e−AT

(
eATx

)
= x will also be in R(C).

Therefore, x is also reachable. Note that the second part of (i), that control-
lability implies reachability, is true because the inverse (eAT )−1 = e−AT does
exist. This is in contrast to the discrete-time case where the state transition
matrix Φ(k, 0) is nonsingular if and only if A is nonsingular [nonreversibility
of time in discrete-time systems].

Parts (ii) and (iii) of the theorem follow directly from (i). �

The reachability Gramian for the time-invariant case, Wr(0, T ), was de-
fined in (5.24). For completeness the controllability Gramian is defined below.

Definition 5.21. The controllability Gramian in the time-invariant case is
the n× n matrix

Wc(0, T ) �
∫ T

0

e−AτBBT e−A
T τdτ. (5.36)

�

We note that
Wr(0, T ) = eATWc(0, T )eA

TT ,

which can be verified directly.

Additional Criteria for Reachability and Controllability

We first recall the definition of a set of linearly independent functions of time
and consider in particular n complex-valued functions fi(t), i = 1, . . . , n,
where fTi (t) ∈ Cm. Recall that the set of functions fi, i = 1, . . . , n, is linearly
dependent on a time interval [t1, t2] over the field of complex numbers C if
there exist complex numbers ai, i = 1, . . . , n, not all zero, such that

a1f1(t) + · · · + anfn(t) = 0 for all t in [t1, t2];

otherwise, the set of functions is said to be linearly independent on [t1, t2] over
the field of complex numbers.

It is possible to test linear independence using the Gram matrix of the
functions fi.
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Lemma 5.22. Let F (t) ∈ Cn×m be a matrix with fi(t) ∈ C1×m in its ith
row. Define the Gram matrix of fi(t), i = 1, . . . , n, by

W (t1, t2) �
∫ t2

t1

F (t)F ∗(t)dt, (5.37)

where (·)∗ denotes the complex conjugate transpose. The set fi(t), i = 1, . . . , n,
is linearly independent on [t1, t2] over the field of complex numbers if and only
if the Gram matrix W (t1, t2) is nonsingular, or equivalently, if and only if the
Gram determinant detW (t1, t2) �= 0.

Proof. (Necessity) Assume the set fi, i = 1, . . . , n, is linearly independent
but W (t1, t2) is singular. Then there exists some nonzero α ∈ C1×n so that
αW (t1, t2) = 0, from which αW (t1, t2)α∗ =

∫ t2
t1

(αF (t))(αF (t))∗dt = 0. Since
(αF (t))(αF (t))∗ ≥ 0 for all t, this implies that αF (t) = 0 for all t in [t1, t2],
which is a contradiction. Therefore, W (t1, t2) is nonsingular.

(Sufficiency) Assume that W (t1, t2) is nonsingular but the set fi, i =
1, . . . , n, is linearly dependent. Then there exists some nonzero α ∈ C1×n

so that αF (t) = 0. Then αW (t1, t2) =
∫ t2
t1
αF (t)F ∗(t)dt = 0, which is a con-

tradiction. Therefore, the set fi, i = 1, . . . , n, is linearly independent. �

We now introduce a number of additional tests for reachability and con-
trollability of time-invariant systems. Some earlier results are also repeated
here for convenience.

Theorem 5.23. The system ẋ = Ax+Bu is reachable (controllable-from-the-
origin)

(i) if and only if

rankWr(0, T ) = n for some finite T > 0,

where

Wr(0, T ) �
∫ T

0

e(T−τ)ABBT e(T−τ)AT

dτ, (5.38)

the reachability Gramian; or
(ii) if and only if the n rows of

eAtB (5.39)

are linearly independent on [0,∞) over the field of complex numbers; or
alternatively, if and only if the n rows of

(sI −A)−1B (5.40)

are linearly independent over the field of complex numbers; or
(iii) if and only if

rankC = n, (5.41)

where C � [B,A,B, . . . , An−1B], the controllability matrix; or
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(iv) if and only if
rank[siI −A,B] = n (5.42)

for all complex numbers si; or alternatively, for si, i = 1, . . . , n, the eigen-
values of A.

Proof. Parts (i) and (ii) were proved in Corollary 5.13.
In part (ii), rankWr(0, T ) = n implies and is implied by the linear indepen-

dence of the n rows of e(T−t)AB on [0, T ] over the field of complex numbers,
in view of Lemma 5.22, or by the linear independence of the n rows of et̂AB,
where t̂ � T − t, on [0, T ]. Therefore, the system is reachable if and only if the
n rows of eAtB are linearly independent on [0,∞) over the field of complex
numbers. Note that the time interval can be taken to be [0,∞) since in [0, T ],
T can be taken to be any finite positive real number. To prove the second part
of (ii), recall that L(eAtB) = (sI −A)−1B and that the Laplace transform is
a one-to-one linear operator.

Part (iv) will be proved later in Section 6.3. �

Since reachability implies and is implied by controllability, the criteria
developed in the theorem for reachability are typically used to test the con-
trollability of a system as well.

Example 5.24. For the system ẋ = Ax+Bu, where A =
[

0 1
0 0

]
and B =

[
0
1

]

(as in Example 5.11), we shall verify Theorem 5.23. The system is reachable
since

(i) the reachability Gramian Wr(0, T ) =
[

1
3T

3 1
2T

2

1
2T

2 T

]
has rankWr(0, T ) =

2 = n for any T > 0, or since

(ii) eAtB =
[
t
1

]
has rows that are linearly independent on [0,∞) over the

field of complex numbers (since a1 × t + a2 × 1 = 0, where a1 and a2

are complex numbers implies that a1 = a2 = 0). Similarly, the rows of

(sI−A)−1B =
[

1/s2

1/s

]
are linearly independent over the field of complex

numbers. Also, since

(iii) rankC = rank[B,AB] = rank
[

0 1
1 0

]
= 2 = n, or

(iv) rank[siI − A,B] = rank
[
si −1 0
0 si 1

]
= 2 = n for si = 0, i = 1, 2, the

eigenvalues of A.

If B =
[

1
0

]
in place of

[
0
1

]
, then
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(i) Wr(0, T ) =
[
T 0
0 0

]
(see Example 5.11) with rankWr(0, T ) = 1 < 2 = n,

and

(ii) eAtB =
[

1
0

]
and (sI − A)−1B =

[
1/s
0

]
, neither of which has rows that

are linearly independent over the complex numbers. Also,

(iii) rankC =
[

1 0
0 0

]
= 1 < 2 = n, and

(iv) rank[siI −A,B] = rank
[
si −1 1
0 si 0

]
= 1 < 2 = n for si = 0.

Based on any of the above tests, it is concluded that the system is not reach-
able.

5.3.2 Discrete-Time Systems

The response of discrete-time systems was studied in Section 3.5. We consider
systems described by equations of the form

x(k + 1) = Ax(k) +Bu(k), k ≥ k0, (5.43)

where A ∈ Rn×n and B ∈ Rn×m. The state x(k) is given by

x(k) = Φ(k, k0)x(k0) +
k−1∑
i=k0

Φ(k, i+ 1)Bu(i), (5.44)

where the state transition matrix is

Φ(k, k0) = Ak−k0 , k ≥ k0. (5.45)

Let the state at time k0 be x0. For the state at some time k1 > k0 to
assume the value x1, an input u must exist that satisfies x(k1) = x1 in (5.44).

For the time-invariant system the elapsed time k1 − k0 is of interest, and
we therefore take k0 = 0 and k1 = K. Recalling that Φ(k, 0) = Ak, for the
state x1 to be reached from x(0) = x0 in K steps, i.e., x(K) = x1, an input u
must exist that satisfies

x1 = AKx0 +
K−1∑
i=0

AK−(i+1)Bu(i), (5.46)

when K > 0, or
x1 = AKx0 + CKUK , (5.47)

where

CK � [B,AB, . . . , AK−1B] (5.48)
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and

UK � [uT (K − 1), uT (K − 2), . . . , uT (0)]T . (5.49)

The definitions of reachable state x1, reachable subspace Rr, and a system
being (completely state) reachable, or the pair (A,B) being reachable, are the
same as in the continuous-time case (see Definition 5.8, and use integer K in
place of real time T ).

To determine the finite input sequence for discrete-time systems that will
accomplish a desired state transfer, if such a sequence exists, one does not have
to define matrices comparable with the reachability Gramian Wr, as in the
case for continuous-time systems, but we can work directly with the control-
lability matrix Cn = C; see also the introductory discussion in Section 5.2.1.
In particular, we have the following result.

Theorem 5.25. Consider the system x(k + 1) = Ax(k) + Bu(k) given in
(5.43), and let x(0) = 0. There exists an input u that transfers the state to x1

in finite time if and only if
x1 ∈ R(C).

In this case, x1 is reachable and Rr = R(C). An appropriate input sequence
{u(k)}, k = 0, . . . , n − 1, that accomplishes this transfer in n steps is deter-
mined by Un � [uT (n− 1), uT (n− 2), . . . , uT (0)]T , which is a solution to the
equation

CUn = x1. (5.50)

Henceforth, with an abuse of language, we will refer to Un as a control se-
quence, when in fact we actually have in mind {u(k)}.

Proof. In view of (5.47), x1 can be reached from the origin in K steps if
and only if x1 = CKUK has a solution UK , or if and only if x1 ∈ R(CK).
Furthermore, all input sequences that accomplish this are solutions to the
equation x1 = CKUK . For x1 to be reachable we must have x1 ∈ R(CK)
for some finite K. This range, however, cannot increase beyond the range of
Cn = C; i.e., R(CK) = R(Cn) forK ≥ n [see Exercise 5.1]. This follows from the
Cayley–Hamilton Theorem, which implies that any vector x in R(CK), K ≥ n,
can be expressed as a linear combination of B,AB, . . . , An−1B. Therefore,
x ∈ R(Cn). It is of course possible to have x1 ∈ R(CK) with K < n, for a
particular x1; however, in this case x1 ∈ R(Cn), since CK is a subset of Cn.
Thus, x1 is reachable if and only if it is in the range of Cn = C. Clearly, any
Un that accomplishes the transfer satisfies (5.50). �

As pointed out in the above proof, for given x1 we may have x1 ∈ R(CK)
for some K < n. In this case the transfer can be accomplished in fewer than
n steps, and appropriate inputs are obtained by solving the equation
CKUK = x1.
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Corollary 5.26. The system x(k + 1) = Ax(k) + Bu(k) in (5.43) is (com-
pletely state) reachable, or the pair (A,B) is reachable, if and only if

rankC = n. (5.51)

Proof. Apply Theorem 5.25, noting that R(C) = Rr = Rn if and only if
rankC = n. �

Theorem 5.27. There exists an input u that transfers the state of the system
x(k + 1) = Ax(k) + Bu(k) in (5.43) from x0 to x1 in some finite number of
steps K, if and only if

x1 −AKx0 ∈ R(CK). (5.52)

Such an input sequence UK � [uT (K − 1), uT (K − 2), . . . , uT (0)]T is deter-
mined by solving the equation

CKUK = x1 −AKx0. (5.53)

Proof. The proof follows directly from (5.47). �

The above theorem leads to the following result that establishes the im-
portance of reachability in determining u to transfer the state from any x0 to
any x1 in a finite number of steps.

Corollary 5.28. Let the system x(k+1) = Ax(k)+Bu(k) given in (5.43) be
(completely state) reachable or the pair (A,B) be reachable. Then there exists
an input sequence that transfers the state from any x0 to any x1 in a finite
number of steps. Such input is determined by solving Eq. (5.54).

Proof. Consider (5.47). Since (A,B) is reachable, rankCn = rankC = n and
R(C) = Rn. Then

CUn = x1 −Anx0 (5.54)

always has a solution Un = [uT (n − 1), . . . , uT (0)]T for any x0 and x1. This
input sequence transfers the state from x0 to x1 in n steps. �

Note that, in view of Theorem 5.27, for particular x0 and x1, the state
transfer may be accomplished in K < n steps, using (5.53).

Example 5.29. Consider the system in Example 5.1, namely, x(k + 1) =
Ax(k) +Bu(k), where A = [ 0 1

1 1 ] and B = [ 0
1 ]. Since rankC = rank[B,AB] =

rank [ 0 1
1 1 ] = 2 = n, the system is reachable and any state x0 can be trans-

ferred to any other state x1 in two steps. Let x1 =
[
a
b

]
, x0 =

[
a0

b0

]
.

Then (5.54) implies that
[

0 1
1 1

] [
u(1)
u(0)

]
=
[
a
b

]
−
[

1 1
1 2

] [
a0

b0

]
or
[
u(1)
u(0)

]
=

[
−1 1

1 0

] [
a
b

]
−
[

0 1
1 1

] [
a0

b0

]
=
[
b − 1 − b0
a − a0 − b0

]
. This agrees with the results
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obtained in Example 5.1. In view of (5.53), if x1 and x0 are chosen so that

x1 − Ax0 =
[
a
b

]
−
[

0 1
1 1

] [
a0

b0

]
=
[

a− b0
b− a0 − b0

]
is in the R(C1) = R(B) =

span
{[

0
1

]}
, then the state transfer can be achieved in one step. For exam-

ple, if x1 =
[

1
3

]
and x0 =

[
0
1

]
, then Bu(0) =

[
0
1

]
u(0) = x1 − Ax0 =

[
0
2

]

implies that the transfer from x0 to x1 can be accomplished in this case in
1 < 2 = n steps with u(0) = 2.

Example 5.30. Consider the system x(k + 1) = Ax(k) + Bu(k) with A =[
0 1
0 0

]
and B =

[
0
1

]
. Since C = [B,AB] =

[
0 1
1 0

]
has full rank, there exists

an input sequence that will transfer the state from any x(0) = x0 to any

x(n) = x1 (in n steps), given by (5.54), U2 =
[
u(1)
u(0)

]
= C−1(x1 − A2x0) =

[
0 1
1 0

]
(x1 −x0). Compare this with Example 5.16, where the continuous-time

system had the same system parameters A and B.

Additional Criteria for Reachability. Note that completely analogous results
to Theorem 5.23(ii)–(iv) exist for the discrete-time case.

We now turn to the concept of controllability. The definitions of control-
lable state x0, controllable subspace Rc, and a system being (completely state)
controllable, or the pair (A,B) being controllable are similar to the correspond-
ing concepts given in Definition 5.18 for the case of continuous-time systems.

We shall now establish the relationship between reachability and control-
lability for the discrete-time time-invariant systems x(k+1) = Ax(k)+Bu(k)
in (5.43).

Consider (5.46). The state x0 is controllable if it can be steered to the
origin x1 = 0 in a finite number of steps K. That is, x0 is controllable if and
only if

−AKx0 = CKUK (5.55)

for some finite positive integer K, or when

AKx0 ∈ R(CK) (5.56)

for some K. Recall that x1 is reachable when

x1 ∈ R(C). (5.57)

Theorem 5.31. Consider the system x(k + 1) = Ax(k) +Bu(k) in (5.43).

(i) If state x is reachable, then it is controllable.



5.3 Reachability and Controllability 217

(ii) Rr ⊂ Rc.
(iii) If the system is (completely state) reachable, or the pair (A,B) is reach-

able, then the system is also (completely state) controllable, or the pair
(A,B) is controllable.

Furthermore, if A is nonsingular, then relations (i) and (iii) become if and
only if statements, since controllability also implies reachability, and relation
(ii) becomes an equality; i.e., Rc = Rr.

Proof. (i) If x is reachable, then x ∈ R(C). In view of Lemma 5.19, R(C) is an
A-invariant subspace and so Anx ∈ R(C), which in view of (5.56), implies that
x is also controllable. Since x is an arbitrary vector in Rr, this implies (ii). If
R(C) = Rn, the whole state space, then Anx for any x is in R(C) and so any
vector x is also controllable. Thus, reachability implies controllability. Now,
if A is nonsingular, then A−n exists. If x is controllable, i.e., Anx ∈ R(C),
then x ∈ R(C), i.e., x is also reachable. This can be seen by noting that A−n

can be written as a power series in terms of A, which in view of Lemma 5.19,
implies that A−n(Anx) = x is also in R(C). �

Matrix A being nonsingular is the necessary and sufficient condition for
the state transition matrix Φ(k, k0) to be nonsingular, which in turn is the
condition for time reversibility in discrete-time systems. Recall that reversibil-
ity in time may not be present in such systems since Φ(k, k0) may be singular.
In contrast to this, in continuous-time systems, Φ(t, t0) is always nonsingular.
This causes differences in behavior between continuous- and discrete-time sys-
tems and implies that in discrete-time systems controllability may not imply
reachability (see Theorem 5.31). Note that, in view of Theorem 5.20, in the
case of continuous-time systems, it is not only reachability that always implies
controllability, but also vice versa, controllability always implies reachability.

When A is nonsingular, the input that will transfer the state from x0 at
k = 0 to x1 = 0 in n steps can be determined using (5.54). In particular, one
needs to solve

[A−nC]Un = [A−nB, . . . , A−1B]Un = −x0 (5.58)

for Un = [uT (n − 1), . . . , uT (0)]T . Note that x0 is controllable if and only if
−Anx0 ∈ R(C), or if and only if x0 ∈ R(A−nC) for A nonsingular.

Clearly, in the case of controllability (and under the assumption that A is
nonsingular), the matrix A−nC is of interest, instead of C [see also (5.8)]. In
particular, a system is controllable if and only if rank(A−nC) = rankC = n.

Example 5.32. Consider the system x(k + 1) = Ax(k) +Bu(k), where A =[
1 1
0 1

]
and B =

[
1
0

]
. Since rankC = rank[B,AB] = rank

[
1 1
0 0

]
= 1 < 2 = n,

this system is not (completely) reachable (controllable-from-the-origin). All
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reachable states are of the form α

[
1
0

]
, where α ∈ R since

{[
1
0

]}
is a basis

for the R(C) = Rr, the reachability subspace.
In view of (5.56) and the Cayley–Hamilton Theorem, all controllable states

x0 satisfy A2x0 ∈ R(C); i.e., all controllable states are of the form α

[
1
0

]
,

where α ∈ R. This verifies Theorem 5.31 for the case when A is nonsingular.
Note that presently Rr = Rc.

Example 5.33. Consider the system x(k + 1) = Ax(k) +Bu(k), where A =[
0 1
0 0

]
and B =

[
1
0

]
. Since rankC = rank[B,AB] = rank

[
1 0
0 0

]
= 1 < 2 = n,

the system is not (completely) reachable. All reachable states are of the form

α

[
1
0

]
, where α ∈ R since

{[
1
0

]}
is a basis for R(C) = Rr, the reachability

subspace.
To determine the controllable subspace Rc, consider (5.56) for K = n, in

view of the Cayley–Hamilton Theorem. Note that A−1C cannot be used in the

present case, since A is singular. Since A2x0 =
[

0 0
0 0

]
x0 =

[
0
0

]
∈ R(C), any

state x0 will be a controllable state; i.e., the system is (completely) controllable
and Rc = Rn. This verifies Theorem 5.31 and illustrates that controllability
does not in general imply reachability.

Note that (5.54) can be used to determine the control sequence that will
drive any state x0 to the origin (x1 = 0). In particular,

CUn =
[

1 0
0 0

] [
u(1)
u(0)

]
=
[

0
0

]
= −A2x0.

Therefore, u(0) = α and u(1) = 0, where α ∈ R will drive any state to the

origin. To verify this, we consider x(1) = Ax(0) + Bu(0) =
[

0 1
0 0

] [
x01

x02

]
+

[
1
0

]
α =

[
x02 + α

0

]
and x(2) = Ax(1)+Bu(1) =

[
0 1
0 0

] [
x02 + α

0

]
+
[

1
0

]
0 =

[
0
0

]
.

5.4 Observability and Constructibility

In applications, the state of a system is frequently required but not accessible.
Under such conditions, the question arises whether it is possible to determine
the state by observing the response of the system to some input over some
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period of time. It turns out that the answer to this question is affirmative
if the system is observable. Observability refers to the ability of determining
the present state x(t0) from knowledge of current and future system outputs,
y(t), and system inputs, u(t), t ≥ t0. Constructibility refers to the ability
of determining the present state x(t0) from knowledge of current and past
system outputs, y(t), and system inputs, u(t), t ≤ t0. Observability was briefly
addressed in Section 5.2. In this section this concept is formally defined and the
(present) state is explicitly determined from input and output measurements.

5.4.1 Continuous-Time Time-Invariant Systems

We shall now study observability and constructibility for time-invariant sys-
tems described by equations of the form

ẋ = Ax+Bu, y = Cx+Du, (5.59)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and u(t) ∈ Rm is
(piecewise) continuous. As was shown in Section 3.3, the output of this system
is given by

y(t) = CeAtx(0) +
∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t). (5.60)

We recall that the initial time can always be taken to be t0 = 0. We will
find it convenient to rewrite (5.60) as

ỹ(t) = CeAtx0, (5.61)

where ỹ(t) � y(t) −
[∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t)

]
and x0 = x(0).

Definition 5.34. A state x is unobservable if the zero-input response of the
system (5.59) is zero for every t ≥ 0, i.e., if

CeAtx = 0 for every t ≥ 0. (5.62)

The set of all unobservable states x,Rō, is called the unobservable subspace
of (5.59). System (5.59) is (completely state) observable, or the pair (A,C)
is observable, if the only state x ∈ Rn that is unobservable is x = 0, i.e., if
Rō = {0}. �

Definition 5.34 states that a state is unobservable precisely when it cannot
be distinguished as an initial condition at time 0 from the initial condition
x(0) = 0. This is because in this case the output is the same as if the initial
condition were the zero vector. Note that the set of all unobservable states
contains the zero vector and it can be shown to be a linear subspace. We now
define the observability Gramian.
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Definition 5.35. The observability Gramian of system (5.59) is the n × n
matrix

Wo(0, T ) �
∫ T

0

eA
T τCTCeAτdτ. (5.63)

�

We note that Wo is symmetric and positive semidefinite for every T > 0;
i.e., Wo = WT

o and Wo ≥ 0 (show this). Recall that the pn× n observability
matrix

O �

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ (5.64)

was defined in Section 5.2.
We now show that the null space of Wo(0, T ), denoted by N (Wo(0, T )), is

independent of T ; i.e., it is the same for any T > 0, and in particular, it is
equal to the null space of the observability matrix O. Thus, the unobservable
subspace Rō of the system is given by the null space of O,N (O), or the null
space of Wo(0, T ),N (Wo(0, T )) for some finite (and therefore for all) T > 0.

Lemma 5.36. N (O) = N (Wo(0, T )) for every T > 0.

Proof. If x ∈ N (O), then Ox = 0. Thus, CAkx = 0 for all 0 ≤ k ≤ n−1, which
is also true for every k > n − 1, in view of the Cayley–Hamilton Theorem.
Then CeAtx = C[Σ∞

k=0(t
k/k!)Ai]x = 0 for every finite t. Therefore, in view

of (5.63), Wo(0, T )x = 0 for every T > 0; i.e., x ∈ N (Wo(0, T )) for every
T > 0. Now let x ∈ N (Wo(0, T )) for some T > 0, so that xTW (0, T )x =∫ T
0

‖ CeAτx ‖2 dτ = 0, or CeAtx = 0 for every t ∈ [0, T ]. Taking derivatives
of the last equation with respect to t and evaluating at t = 0, we obtain
Cx = CAx = · · · = CAkx = 0 for every k > 0. Therefore, CAkx = 0 for every
k ≥ 0, i.e., Ox = 0 or x ∈ N (O). �

Theorem 5.37. A state x is unobservable if and only if

x ∈ N (O), (5.65)

or equivalently, if and only if

x ∈ N (Wo(0, T )) (5.66)

for some finite (and therefore for all) T > 0. Thus, the unobservable subspace
R0̄ = N (O) = N (Wo(0, T )) for some T > 0.

Proof. If x is unobservable, (5.62) is satisfied. Taking derivatives with respect
to t and evaluating at t = 0, we obtain Cx = CAx = · · · = CAkx = 0 for
k > 0 or CAkx = 0 for every k ≥ 0. Therefore, Ox = 0 and (5.65) is satisfied.
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Assume now that Ox = 0; i.e., CAkx = 0 for 0 ≤ k ≤ n − 1, which is also
true for every k > n − 1, in view of the Cayley–Hamilton Theorem. Then
CeAtx = C[Σ∞

k=0(t
k/k!)Ai]x = 0 for every finite t; i.e., (5.62) is satisfied and

x is unobservable. Therefore, x is unobservable if and only if (5.65) is satisfied.
In view of Lemma 5.36, (5.66) follows. �

Clearly, x is observable if and only if Ox �= 0 or Wo(0, T )x �= 0 for some
T > 0.

Corollary 5.38. The system (5.59) is (completely state) observable, or the
pair (A,C) is observable, if and only if

rankO = n, (5.67)

or equivalently, if and only if

rankWo(0, T ) = n (5.68)

for some finite (and therefore for all) T > 0. If the system is observable, the
state x0 at t = 0 is given by

x0 = W−1
o (0, T )

[∫ T

0

eA
T τCT ỹ(τ)dτ

]
. (5.69)

Proof. The system is observable if and only if the only vector that satisfies
(5.62) or (5.65) is the zero vector. This is true if and only if the null space
is empty, i.e., if and only if (5.67) or (5.68) are true. To determine the state
x0 at t = 0, given the output and input values over some interval [0, T ], we
premultiply (5.61) by eA

T τCT and integrate over [0, T ] to obtain

Wo(0, T )x0 =
∫ T

0

eA
T τCT ỹ(τ)dτ, (5.70)

in view of (5.63). When the system is observable, (5.70) has the unique solution
(5.69). �

Note that T > 0, the time span over which the input and output are ob-
served, is arbitrary. Intuitively, one would expect in practice to have difficulties
in evaluating x0 accurately when T is small, using any numerical method. Note
that for very small T, ||Wo(0, T )|| can be very small, which can lead to numer-
ical difficulties in solving (5.70). Compare this with the analogous case for
reachability, where small T leads in general to large values in control action.

It is clear that if the state at some time t0 is determined, then the state
x(t) at any subsequent time is easily determined, given u(t), t ≥ t0.

Alternative methods to (5.69) to determine the state of the system when
the system is observable are provided in Section 9.3 on state observers.
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Example 5.39. (i) Consider the system ẋ = Ax, y = Cx, where A =
[

0 1
0 0

]

and C = [1, 0]. Here eAt =
[

1 t
0 1

]
and CeAt = [1, t]. The observ-

ability Gramian is then Wo(0, T ) =
∫ T
0

[
1
τ

]
[1 τ ]dτ =

∫ T
0

[
1 τ
τ τ2

]
dτ =

[
T 1

2T
2

1
2T

2 1
3T

3

]
. Notice that detWo(0, T ) = 1

12T
4 �= 0 for any T > 0, i.e.,

rankWo(0, T ) = 2 = n for any T > 0, and therefore (Corollary 5.38),
the system is observable. Alternatively, note that the observability ma-

trix O =
[
C
CA

]
=
[

1 0
0 1

]
and rankO = 2 = n. Clearly, in this case

N (O) = N (Wo(0, T )) =
{[

0
0

]}
, which verifies Lemma 5.36.

(ii) If A =
[

0 1
0 0

]
, as before, but C = [0, 1], in place of [1, 0], then CeAt =

[0, 1] and the observability Gramian is Wo(0, T ) =
∫ T
0

[
0
1

]
[0, 1]dτ =

[
0 0
0 T

]
. We have rankWo(0, T ) = 1 < 2 = n, and the system is not

completely observable. In view of Theorem 5.37, all unobservable states

x ∈ N (Wo(0, T )) and are therefore of the form
[
α
0

]
, α ∈ R. Alter-

natively, the observability matrix O =
[
C
CA

]
=
[

0 1
0 0

]
. Note that

N (O) = N (W0(0, T )) = span
{[

1
0

]}
.

Observability utilizes future output measurements to determine the present
state. In (re)constructibility, past output measurements are used. Constructi-
bility is defined in the following, and its relation to observability is determined.

Definition 5.40. A state x is unconstructible if the zero-input response of
the system (5.59) is zero for all t ≤ 0; i.e.,

CeAtx = 0 for every t ≤ 0. (5.71)

The set of all unconstructible states x,Rcn, is called the unconstructible sub-
space of (5.59). The system (5.59) is (completely state) (re)constructible, or
the pair (A,C) is (re)constructible, if the only state x ∈ Rn that is uncon-
structible is x = 0; i.e., Rcn = {0}.

We shall now establish a relationship between observability and con-
structibility for the continuous-time time-invariant systems (5.59). Recall that
x is unobservable if and only if
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CeAtx = 0 for every t ≥ 0. (5.72)

Theorem 5.41. Consider the system ẋ = Ax + Bu, y = Cx + Du given in
(5.59).

(i) A state x is unobservable if and only if it is unconstructible.
(ii) Rō = Rcn.
(iii) The system, or the pair (A,C), is (completely state) observable if and

only if it is (completely state) (re)constructible.

Proof. (i) If x is unobservable, then CeAtx = 0 for every t ≥ 0. Taking
derivatives with respect to t and evaluating at t = 0, we obtain Cx = CAx =
· · · = CAkx = 0 for k > 0 or CAkx = 0 for every k ≥ 0. This, in view of
CeAtx =

∑∞
k=0(t

k/k!)CAkx, implies that CeAtx = 0 for every t ≤ 0; i.e., x
is unconstructible. The converse is proved in a similar manner. Parts (ii) and
(iii) of the theorem follow directly from (i). �

The observability Gramian for the time-invariant case, Wo(0, T ), was de-
fined in (5.63). The constructibility Gramian is now defined.

Definition 5.42. The constructibility Gramian of system (5.59) is the n×n
matrix

Wcn(0, T ) �
∫ T

0

eA
T (τ−T )CTCeA(τ−T )dτ. (5.73)

�

Note that
Wo(0, T ) = eA

TTWcn(0, T )eAT , (5.74)

as can be verified directly.

Additional Criteria for Observability and Constructibility

We shall now use Lemma 5.22 to develop additional tests for observability and
constructibility. These are analogous to the corresponding results established
for reachability and controllability in Theorem 5.23.

Theorem 5.43. The system ẋ = Ax+Bu, y = Cx+Du is observable

(i) if and only if
rankWo(0, T ) = n (5.75)

for some finite T > 0, where W0(0, T ) �
∫ T
0
eA

T τCTCeAτdτ , the observ-
ability Gramian, or
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(ii) if and only if the n columns of

CeAt (5.76)

are linearly independent on [0,∞) over the field of complex numbers, or
alternatively, if and only if the n columns of

C(sI −A)−1 (5.77)

are linearly independent over the field of complex numbers, or
(iii) if and only if

rankO = n, (5.78)

where O �

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦, the observability matrix, or

(iv) if and only if

rank
[
siI −A
C

]
= n (5.79)

for all complex numbers si, or alternatively, for all eigenvalues of A.

Proof. The proof of this theorem is completely analogous to the (dual) results
on reachability (Theorem 5.23) and is omitted. �

Since it was shown (in Theorem 5.41) that observability implies and is im-
plied by constructibility, the tests developed in the theorem for observability
are typically also used to test for constructibility.

Example 5.44. Consider the system ẋ = Ax, y = Cx, where A =
[

0 1
0 0

]
and

C = [1, 0], as in Example 5.39(i). We shall verify (i) to (iv) of Theorem 5.43
for this case.

(i) For the observability Gramian, Wo(0, T ) =
[
T 1

2T
2

1
2T

2 1
3T

3

]
, we have

rankWo(0, T ) = 2 = n for any T > 0.
(ii) The columns of CeAt = [1, t] are linearly independent on [0,∞) over

the field of complex numbers, since a1 × 1 + a2 × t = 0 implies that the
complex numbers a1 and a2 must both be zero. Similarly, the columns of
C(sI −A)−1 =

[
1
s ,

1
s2

]
are linearly independent over the field of complex

numbers.

(iii) rankO = rank
[
C
CA

]
= rank

[
1 0
0 1

]
= 2 = n.

(iv) rank
[
siI −A
C

]
= rank

⎡
⎣
si −1
0 si
1 0

⎤
⎦ = 2 = n for si = 0, i = 1, 2, the

eigenvalues of A.
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Consider again A =
[

0 1
0 0

]
but C = [0, 1] [in place of [1, 0], as in Exam-

ple 5.39(ii)].
The system is not observable for the reasons given below.

(i) Wo(0, T ) =
[

0 0
0 T

]
with rankWo(0, T ) = 1 < 2 = n.

(ii) CeAt = [0, 1] and its columns are not linearly independent. Similarly, the
columns of C(sI −A)−1 = [0, 1

s ] are not linearly independent.

(iii) rankO = rank
[
C
CA

]
= rank

[
0 1
0 0

]
= 1 < 2 = n.

(iv) rank
[
siI −A
C

]
= rank

⎡
⎣
si −1
0 si
0 1

⎤
⎦ = 1 < 2 = n for si = 0 an eigenvalue of

A.

5.4.2 Discrete-Time Time-Invariant Systems

We consider systems described by equations of the form

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k), k ≥ k0, (5.80)

where A ∈ Rn×n, C ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m. The output y(k) for
k > k0 is given by

y(k) = C(k)Φ(k, k0)x(k0) +
k−1∑
i=k0

C(k)Φ(k, i+ 1)B(i)u(i) +D(k)u(k), (5.81)

where the state transition matrix Φ(k, k0) is given by

Φ(k, k0) = Ak−k0 , k ≥ k0. (5.82)

Observability and (re)constructibility for discrete-time systems are defined
as in the continuous-time case. Observability refers to the ability to uniquely
determine the state from knowledge of current and future outputs and in-
puts, whereas constructibility refers to the ability to determine the state from
knowledge of current and past outputs and inputs. Without loss of generality,
we take k0 = 0. Then

y(k) = CAkx(0) +
k−1∑
i=0

CAk−(i+1)Bu(i) +Du(k) (5.83)

for k > 0 and y(0) = Cx(0) +Du(0). Rewrite as

ỹ(k) = CAkx0 (5.84)

for k ≥ 0, where ỹ(k) � y(k) −
[∑k−1

i=0 CA
k−(i+1)Bu(i) +Du(k)

]
for k > 0

and ỹ(0) � y(0), and x0 = x(0).
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Definition 5.45. A state x is unobservable if the zero-input response of sys-
tem (5.80) is zero for all k ≥ 0, i.e., if

CAkx = 0 for every k ≥ 0. (5.85)

The set of all unobservable states x,Rō, is called the unobservable subspace of
(5.80). The system (5.80) is (completely state) observable, or the pair (A,C)
is observable, if the only state x ∈ Rn that is unobservable is x = 0, i.e., if
Rō = {0}. �

The pn×n observability matrix O was defined in (5.64). Let N (O) denote
the null space of O.

Theorem 5.46. A state x is unobservable if and only if

x ∈ N (O); (5.86)

i.e., the unobservable subspace Rō = N (O).

Proof. If x ∈ N (O), then Ox = 0 or CAkx = 0 for 0 ≤ k ≤ n − 1. This
statement is also true for k > n − 1, in view of the Cayley–Hamilton Theo-
rem. Therefore, (5.85) is satisfied and x is unobservable. Conversely, if x is
unobservable, then (5.85) is satisfied and Ox = 0. �

Clearly, x is observable if and only if Ox �= 0.

Corollary 5.47. The system (5.80) is (completely state) observable, or the
pair (A,C) is observable, if and only if

rankO = n. (5.87)

If the system is observable, the state x0 at k = 0 can be determined as the
unique solution of

[Y0,n−1 −MnU0,n−1] = Ox0, (5.88)

where

Y0,n−1 � [yT (0), yT (1), . . . , yT (n− 1)]T is a pn× 1 matrix,

U0,n−1 � [uT (0), uT (1), . . . , uT (n− 1)]T is an mn× 1 matrix,

and Mn is the pn×mn matrix given by

Mn �

⎡
⎢⎢⎢⎢⎢⎣

D 0 · · · 0 0
CB D · · · 0 0
...

...
. . .

...
...

CAn−2B CAn−3B · · · D
CAn−1B CAn−2B · · · CB D

⎤
⎥⎥⎥⎥⎥⎦
.
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Proof. The system is observable if and only if the only vector that satisfies
(5.85) is the zero vector. This is true if and only if N (O) = {0}, or if (5.87)
is true. To determine the state x0, apply (5.83) for k = 0, 1, . . . , n − 1, and
rearrange in a form of a system of linear equations to obtain (5.88). �

The matrix Mn defined above has the special structure of a Toeplitz ma-
trix. Note that a matrix T is Toeplitz if its (i, j)th entry depends on the value
i− j; that is, T is “constant along the diagonals.”

Additional Criteria for Observability. Note that completely analogous results
to Theorem 5.43(ii)–(iv) exist for the discrete-time case.

Constructibility refers to the ability to determine uniquely the state x(0)
from knowledge of current and past outputs and inputs. This is in contrast
to observability, which utilizes future outputs and inputs. The easiest way to
define constructibility is by the use of (5.84), where x(0) = x0 is to be deter-
mined from past data ỹ(k), k ≤ 0. Note, however, that for k ≤ 0, Ak may not
exist; in fact, it exists only when A is nonsingular. To avoid making restric-
tive assumptions, we shall define unconstructible states in a slightly different
way than anticipated. Unfortunately, this definition is not very transparent.
It turns out that by using this definition, an unconstructible state can be re-
lated to an unobservable state in a manner analogous to the way a controllable
state was related to a reachable state in Section 5.3 (see also the discussion
of duality in Section 5.2).

Definition 5.48. A state x is unconstructible if for every k ≥ 0, there exists
x̂ ∈ Rn such that

x = Akx̂, Cx̂ = 0. (5.89)

The set of all unconstructible states, Rcn, is called the unconstructible sub-
space. The system (5.80) is (completely state) constructible, or the pair
(A,C) is constructible, if the only state x ∈ Rn that is unconstructible is
x = 0, i.e., if Rcn = {0}. �

Note that if A is nonsingular, then (5.89) simply states that x is uncon-
structible if CA−kx = 0 for every k ≥ 0 (compare this with Definition 5.45 of
an unobservable state).

The results that can be derived for constructibility are simply dual to
the results on controllability. They are presented briefly below, but first, a
technical result must be established.

Lemma 5.49. If x ∈ N (O), then Ax ∈ N (O); i.e., the unobservable subspace
Rō = N (O) is an A-invariant subspace.

Proof. Let x ∈ N (O), so that Ox = 0. Then CAkx = 0 for 0 ≤ k ≤ n − 1.
This statement is also true for k > n − 1, in view of the Cayley–Hamilton
Theorem. Therefore, OAx = 0; i.e., Ax ∈ N (O). �

Theorem 5.50. Consider the system x(k + 1) = Ax(k) + Bu(k), y(k) =
Cx(k) +Du(k) given in (5.80).
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(i) If a state x is unconstructible, then it is unobservable.
(ii) Rcn ⊂ Rō.
(iii) If the system is (completely state) observable, or the pair (A,C) is ob-

servable, then the system is also (completely state) constructible, or the
pair (A,C) is constructible.

If A is nonsingular, then relations (i) and (iii) are if and only if statements.
In this case, constructibility also implies observability. Furthermore, in this
case, (ii) becomes an equality; i.e., Rcn = Rō.

Proof. This theorem is dual to Theorem 5.31, which relates reachability and
controllability in the discrete-time case. To verify (i), assume that x satisfies
(5.89) and premultiply by C to obtain Cx = CAkx̂ for every k ≥ 0. Note
that Cx = 0 since for k = 0, x = x̂, and Cx̂ = 0. Therefore, CAkx̂ = 0 for
every k ≥ 0; i.e., x̂ ∈ N (O). In view of Lemma 5.49, x = Akx̂ ∈ N (O), and
thus, x is unobservable. Since x is arbitrary, we have also verified (ii). When
the system is observable, Rō is empty, which in view of (ii), implies that
Rc̄n = {0} or that the system is constructible. This proves (iii). Alternatively,
one could also prove this directly: Assume that the system is observable but
not constructible. Then there exist x, x̂ �= 0, which satisfy (5.89). As above,
this implies that x̂ ∈ N (O), which is a contradiction since the system is
observable.

Consider now the case when A is nonsingular and let x be unobservable.
Then, in view of Lemma 5.49, x̂ � A−kx is also in N (O); i.e., Cx̂ = 0.
Therefore, x = Akx̂ is unconstructible, in view of Definition 5.48. This implies
also that Rō ⊂ Rcn, and therefore, Rō = Rcn, which proves that in the present
case constructibility also implies observability. �

Example 5.51. Consider the system in Example 5.5, x(k+1) = Ax(k), y(k) =

Cx(k), where A =
[

1 0
1 1

]
and C = [1, 0]. As shown, rankO = rank

[
1 0
1 0

]
=

1 < 2 = n; i.e., the system is not observable. All unobservable states are of

the form α

[
0
1

]
, where α ∈ R since

{[
0
1

]}
is a basis for N (O) = Rō, the

unobservable subspace.
In Example 5.6 it was shown that all the states x that satisfy CA−kx = 0

for every k ≥ 0, i.e., all the unconstructible states, are given by α
[

0
1

]
, α ∈ R.

This verifies Theorem 5.50(i) and (ii) for the case when A is nonsingular.

Example 5.52. Consider the system x(k+1) = Ax(k), y(k) = Cx(k), where

A =
[

0 0
1 0

]
and C = [1, 0]. The observability matrix O =

[
1 0
0 0

]
is of rank 1,
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and therefore, the system is not observable. In fact, all states of the form

α

[
0
1

]
are unobservable states since

{[
0
1

]}
is a basis for N (O).

To check constructibility, the defining relations (5.89) must be used since

A is singular. Cx̂ = [1, 0]x̂ = 0 implies x̂ =
[

0
β

]
. Substituting into x = Akx̂,

we obtain for k = 0, x = x̂, and x = 0 for k ≥ 1. Therefore, the only un-
constructible state is x = 0, which implies that the system is constructible
(although it is unobservable). This means that the initial state x(0) can be
uniquely determined from past measurements. In fact, from x(k+1) = Ax(k)

and y(k) = Cx(k), we obtain x(0) =
[
x1(0)
x2(0)

]
=
[

0 0
1 0

] [
x1(−1)
x2(−1)

]
=

[
0

x1(−1)

]
and y(−1) = Cx(−1) = [1, 0]

[
x1(−1)
x2(−1)

]
= x1(−1). Therefore,

x(0) =
[

0
y(−1)

]
.

When A is nonsingular, the state x0 at k = 0 can be determined from past
outputs and inputs in the following manner. We consider (5.84) and note that
in this case

ỹ(k) = CAkx0

is valid for k ≤ 0 as well. This implies that

Ỹ−1,−n = OA−nx0 =

⎡
⎢⎣
CA−n

...
CA−1

⎤
⎥⎦x0 (5.90)

with Ỹ−1,−n � [ỹT (−n), . . . , ỹT (−1)]T . Equation (5.90) must be solved for x0.
Clearly, in the case of constructibility (and under the assumption that A is
nonsingular), the matrix OA−n is of interest instead of O [compare this with
the dual results in (5.58)]. In particular, the system is constructible if and
only if rank(OA−n) = rankO = n.

Example 5.53. Consider the system in Example 5.4, namely, x(k + 1) =
Ax(k), y(k) = Cx(k), where A = [ 0 1

1 1 ] and C = [0, 1]. Since A is nonsingu-

lar, to check constructibility we consider OA−2 =
[
CA−2

CA−1

]
=
[−1 1

1 0

]
, which

has full rank. Therefore, the system is constructible (as expected), since it is

observable. To determine x(0), in view of (5.90), we note that
[
y(−1)
y(−2)

]
=

OA−2x(0) =
[
−1 1

1 0

] [
x1(0)
x2(0)

]
, from which

[
x1(0)
x2(0)

]
=
[

0 1
1 1

] [
y(−1)
y(−2)

]
=

[
y(−2)

y(−1) + y(−2)

]
.
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5.5 Summary and Highlights

Reachability and Controllability

• In continuous-time systems, reachability always implies and is implied by
controllability. In discrete-time systems, reachability always implies con-
trollability, but controllability implies reachability only when A is nonsin-
gular. See Definitions 5.8 and 5.18 and Theorems 5.20 and 5.31.

• When a discrete-time system x(k+1) = Ax(k)+Bu(k) [denoted by (A,B)]
is completely reachable (controllable-from-the-origin), the input sequence
{u(i)}, i = 0, . . . ,K − 1 that transfers the state from any x0(= x(0)) to
any x1 in some finite time K (x1 = x(K), K > 0) is determined by solving

x1 = AKx0 +
K−1∑
i=0

AK−(i+1)Bu(i) or

x1 −AKx0 = [B,AB, . . . , AK−1] [uT (K − 1), . . . , uT (0)]T .

A solution for this always exists when K = n. See Theorem 5.27.

• C = [B,AB, . . . , An−1B] (n×mn) (5.25)

is the controllability matrix for both discrete- and continuous-time time-
invariant systems, and it has full (row) rank when the system, denoted by
(A,B), is (completely) reachable (controllable-from-the-origin).

• When a continuous-time system ẋ = Ax + Bu [denoted by (A,B)] is
controllable, an input that transfers any state x0(= x(0)) to any other
state x1 in some finite time T (x1 = x(T ) is

u(t) = BT eA
T (T−t)W−1

r (0, T )[x1 − eATx0] t ∈ [0, T ], (5.33)

where

Wr(0, T ) =
∫ T

0

e(T−τ)ABBT e(T−τ)AT

dτ (5.24)

is the reachability Gramian of the system.
• (A,B) is reachable if and only if

rank[siI −A,B] = n (5.42)

for si, i = 1, . . . , n, all the eigenvalues of A.

Observability and Constructibility

• In continuous-time systems, observability always implies and is implied
by constructibility. In discrete-time systems, observability always implies
constructibility, but constructibility implies observability only when A is
nonsingular. See Definitions 5.34 and 5.40 and Theorems 5.41 and 5.50.
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• When a discrete-time system x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +
Du(k) [denoted by (A,C)] is completely observable, any initial state
x(0) = x0 can be uniquely determined by observing the input and output
over some finite period of time, and using the relation

ỹ(k) = CAkx0 k = 0, 1, . . . , n− 1, (5.84)

where ỹ(k) = y(k) −
[∑k−1

i=0 CA
k−(i+1)Bu(i) +D(k)u(k)

]
. To determine

x0, solve ⎡
⎢⎢⎢⎣

ỹ(0)
ỹ(1)

...
ỹ(n− 1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ x0.

See (5.88).

• O =

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ (pn× n) (5.64)

is the observability matrix for both discrete- and continuous-time, time-
invariant systems and it has full (column) rank when the system is com-
pletely observable.

• Consider the continuous-time system ẋ = Ax +Bu, y = Cx +Du. When
this system [denoted by (A,C)] is completely observable, any initial state
x0 = x(0) can be uniquely determined by observing the input and output
over some finite period of time T and using the relation

ỹ(t) = CeAtx0,

where ỹ(t) = y(t) −
[∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t)

]
. The initial state x0

may be determined from

x0 = W−1
o (0, T )

[∫ T

0

eA
T τCT ỹ(τ)dτ

]
, (5.69)

where

Wo(0, T ) =
∫ T

0

eA
T τCTCeAτdτ (5.63)

is the observability Gramian of the system.
• (A,C) is observable if and only if

rank
[
siI −A
C

]
= n (5.79)

for si, i = 1, . . . , n, all the eigenvalues of A.
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Dual Systems

• (AD = AT , BD = CT , CD = BT , DD = DT ) is the dual of (A,B,C,D).
Reachability is dual to observability. If a system is reachable (observable),
its dual is observable (reachable).

5.6 Notes

The concept of controllability was first encountered as a technical condition in
certain optimal control problems and also in the so-called finite-settling-time
design problem for discrete-time systems (see Kalman [4]). In the latter, an
input must be determined that returns the state x0 to the origin as quickly
as possible. Manipulating the input to assign particular values to the initial
state in (analog-computer) simulations was not an issue since the individual
capacitors could initially be charged independently. Also, observability was
not an issue in simulations due to the particular system structures that were
used (corresponding, e.g., to observer forms). The current definitions for con-
trollability and observability and the recognition of the duality between them
were worked out by Kalman in 1959–1960 (see Kalman [7] for historical com-
ments) and were presented by Kalman in [5]. The significance of realizations
that were both controllable and observable (see Chapter 5) was established
later in Gilbert [2], Kalman [6], and Popov [8]. For further information regard-
ing these historical issues, consult Kailath [3] and the original sources. Note
that [3] has extensive references up to the late seventies with emphasis on the
time-invariant case and a rather complete set of original references together
with historical remarks for the period when the foundations of the state-space
system theory were set, in the late fifties and sixties.
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Exercises

5.1. (a) Let Ck � [B,AB, . . . , Ak−1B], where A ∈ Rn×n, B ∈ Rn×m. Show
that

R (Ck) = R (Cn) for k ≥ n, and R(Ck) ⊂ R(Cn) for k < n.

(b) Let Ok � [CT , (CA)T , . . . , (CAk−1)T ]T , where A ∈ Rn×n, C ∈ Rp×n.
Show that

N (Ok) = N (On) for k ≥ n, and N (Ok) ⊃ N (On) for k < n.

5.2. Consider the state equation ẋ = Ax+Bu, where

A =

⎡
⎢⎢⎣

0 1 0 0
3w2 0 0 2w
0 0 0 1
0 −2w 0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎥⎦ ,

which was obtained by linearizing the nonlinear equations of motion of an or-
biting satellite about a steady-state solution. In the state x = [x1, x2, x3, x4]T ,
x1 is the differential radius, whereas x3 is the differential angle. In the input
vector u = [u1, u2]T , u1 is the radial thrust and u2 is the tangential thrust.

(a) Is this system controllable from u? If y =
[
y1
y2

]
=
[
x1

x3

]
, is the system

observable from y?
(b) Can the system be controlled if the radial thruster fails? What if the

tangential thruster fails?
(c) Is the system observable from y1 only? From y2 only?

5.3. Consider the state equation
[
ẋ1

ẋ2

]
=
[
−1/2 0

0 −1

] [
x1

x2

]
+
[

1/2
1

]
u.

(a) If x(0) =
[
a
b

]
, derive an input that will drive the state to

[
0
0

]
in T sec.

(b) For x(0) =
[

5
−5

]
, plot u(t), x1(t), x2(t) for T = 1, 2, and 5 sec. Comment

on the magnitude of the input in your results.

5.4. Consider the state equation x(k+1) =

⎡
⎣

1 1 0
0 1 0
0 0 1

⎤
⎦x(k)+

⎡
⎣

0
1
1

⎤
⎦u(k), y(k) =

[
1 1 0
0 1 0

]
x(k).
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(a) Is x1 =

⎡
⎣

3
2
2

⎤
⎦ reachable? If yes, what is the minimum number of steps

required to transfer the state from the zero state to x1? What inputs do
you need?

(b) Determine all states that are reachable.
(c) Determine all states that are unobservable.
(d) If ẋ = Ax + Bu is given with A,B as in (a), what is the minimum time

required to transfer the state from the zero state to x1? What is an ap-
propriate u(t)?

5.5. Output reachability (controllability) can be defined in a manner analogous
to state reachability (controllability). In particular, a system will be called
output reachable if there exists an input that transfers the output from some
y0 to any y1 in finite time.

Consider now a discrete-time time-invariant system x(k + 1) = Ax(k) +
Bu(k), y(k) = Cx(k) + Du(k) with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and
D ∈ Rp×m. Recall that

y(k) = CAkx(0) +
k−1∑
i=0

CAk−(i+1)Bu(i) +Du(k).

(a) Show that the system {A,B,C,D} is output reachable if and only if

rank[D,CB,CAB, . . . , CAn−1B] = p.

Note that this rank condition is also the condition for output reachability
for continuous-time time-invariant systems ẋ = Ax+Bu, y = Cx+Du.
It should be noted that, in general, state reachability is neither necessary
nor sufficient for output reachability. Notice for example that if rankD =
p, then the system is output reachable.

(b) Let D = 0. Show that if (A,B) is (state) reachable, then {A,B,C,D} is
output reachable if and only if rankC = p.

(c) Let A =

⎡
⎣

1 0 0
0 −2 0
0 0 −1

⎤
⎦, B =

⎡
⎣

1
0
1

⎤
⎦, C = [1, 1, 0], and D = 0.

(i) Is the system output reachable? Is it state reachable?
(ii) Let x(0) = 0. Determine an appropriate input sequence to transfer

the output to y1 = 3 in minimum time. Repeat for x(0) = [1,−1, 2]T .

5.6. (a) Given ẋ = Ax + Bu, y = Cx +Du, show that this system is output
reachable if and only if the rows of the p ×m transfer matrix H(s) are
linearly independent over the field of complex numbers. In view of this

result, is the system H(s) =
[ 1
s+2
s
s+1

]
output reachable?
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(b) Similarly, for discrete-time systems, the system is output reachable if and
only if the rows of the transfer function matrix H(z) are linearly inde-
pendent over the field of complex numbers. Consider now the system of
Exercise 5.5 and determine whether it is output reachable.

5.7. Show that the circuit depicted in Figure 5.4 with input u and output y
is neither state reachable nor observable but is output reachable.

u

+
y

1

1

1

1

1

–

Figure 5.4. Circuit for Exercise 5.7

5.8. A system ẋ = Ax+Bu, y = Cx+Du is called output function controllable
if there exists an input u(t), t ∈ [0,∞), that will cause the output y(t) to follow
a prescribed trajectory for 0 ≤ t <∞, assuming that the system is at rest at
t = 0. It is easiest to derive a test for output function controllability in terms
of the p×m transfer function matrix H(s), and this is the approach taken in
the following. We say that the m× p rational matrix HR(s) is a right inverse
of H(s) if

H(s)HR(s) = Ip.

(a) Show that the right inverseHR(s) exists if and only if rankH(s) = p. Hint:
In the sufficiency proof, select HR = HT (HHT )−1, the (right) pseudoin-
verse of H .

(b) Show that the system is output function controllable if and only if H(s)
has a right inverse HR(s). Hint: Consider ŷ = Hû. In the necessity proof,
show that if rankH < p, then the system may not be output function
controllable.
Input function observability is the dual to output function controllablity.
Here, the left inverse of H(s), HL(s), is of interest and is defined by

HL(s)H(s) = Im.

(c) Show that the left inverse HL(s) of H(s) exists if and only if rankH(s) =
m. Hint: This is the dual result to part (a).

(d) Let H(s) =
[
s+1
s , 1

s

]
and characterize all inputs u(t) that will cause the

system (at rest at t = 0) to exactly follow a step, ŷ(s) = 1/s.

Part (d) points to a variety of questions that may arise when inverses are
considered, including: Is HR(s) proper? Is it unique? Is it stable? What is the
minimum degree possible?
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5.9. Consider the system ẋ = Ax + Bu, y = Cx. Show that output function
controllability implies output controllability (-from-the-origin, or reachabil-
ity).

5.10. Given x(k+1) =
[

1 1
0 1

]
x(k)+

[
1
1

]
u(k), y(k) =

[
1 0
1 1

]
x(k), and assume

zero initial conditions.

(a) Is there a sequence of inputs {u(0), u(1), . . .} that transfers the output

from y(0) =
[

0
0

]
to
[

0
1

]
in finite time? If the answer is yes, determine

such a sequence.
(b) Characterize all outputs that can be reached from the zero output (y(0) =[

0
0

]
), in one step.

5.11. Suppose that for system x(k+1) =

⎡
⎣

1 1 0
0 1 0
0 0 1

⎤
⎦x(k), y(k) =

[
1 1 0
0 1 0

]
x(k),

it is known that y(0) = y(1) = y(2) =
[

1
0

]
. Based on this information, what

can be said about the initial condition x(0)?

5.12. (a) Consider the system ẋ = Ax + Bu, y = Cx + Du, where (A,C)
is assumed to be observable. Express x(t) as a function of y(t), u(t) and
their derivatives. Hint: Write y(t), y(1)(t), . . . , y(n−1)(t) in terms of x(t)
and u(t), u(1)(t), . . . , u(n−1)(t) ( x(t) ∈ Rn ).

(b) Given the system ẋ = Ax + Bu, y = Cx + Du with (A,C) observable.
Determine x(0) in terms of y(t), u(t) and their derivatives up to order
n − 1. Note that in general this is not a practical way of determining
x(0), since this method requires differentiation of signals, which is very
susceptible to measurement noise.

(c) Consider the system x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k),
where (A,C) is observable. Express x(k) as a function of y(k), y(k +
1), . . . , y(k + n − 1) and u(k), u(k + 1), . . . , y(k + n − 1). Hint: Express
y(k), . . . , y(k + n− 1) in terms of x(k) and u(k), u(k + 1), . . . , u(k + n −
1) [ x(k) ∈ Rn ]. Note the relation to expression (5.88) in Section 5.4.
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Controllability and Observability:
Special Forms

6.1 Introduction

In this chapter, important special forms for the state-space description of
time-invariant systems are presented. These forms are obtained by means of
similarity transformations and are designed to reveal those features of a system
that are related to the properties of controllability and observability. In Sec-
tion 6.2, special state-space forms that separate the controllable (observable)
from the uncontrollable (unobservable) part of a system are presented. These
forms, referred to as the standard forms for uncontrollable and unobservable
systems, are very useful in establishing a number of results. In particular,
these forms are used in Section 6.3 to derive alternative tests for controllabil-
ity and observability and in Section 7.2 to relate state-space and input–output
descriptions. In Section 6.4 the controller and observer state-space forms are
introduced. These are useful in the study of state-space realizations in Chap-
ter 8 and state feedback and state estimators in Chapter 9.

6.2 Standard Forms for Uncontrollable and
Unobservable Systems

We consider time-invariant systems described by equations of the form

ẋ = Ax+Bu, y = Cx+Du, (6.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. It was shown in the
previous chapter that this system is state reachable if and only if the n×mn
controllability matrix

C � [B,AB, . . . , An−1B] (6.2)

has full row rank n; i.e., rank C = n. If the system is reachable (or controllable-
from-the-origin), then it is also controllable (or controllable-to-the-origin), and
vice versa (see Section 5.3.1).
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It was also shown earlier that system (6.1) is state observable if and only
if the pn× n observability matrix

O �

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ (6.3)

has full column rank; i.e., rankO = n. If the system is observable, then it is
also constructible, and vice versa (see Section 5.4.1).

Similar results were also derived for discrete-time time-invariant systems
described by equations of the form

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k). (6.4)

Again, rankC = n and rankO = n are the necessary and sufficient conditions
for state reachability and observability, respectively. Reachability always im-
plies controllability and observability always implies constructibility, as in the
continuous-time case. However, in the discrete-time case, controllability does
not necessarily imply reachability and constructibility does not imply observ-
ability, unless A is nonsingular (see Sections 5.3.2 and 5.4.2).

Next, we will introduce standard forms for unreachable and unobservable
systems both for the continuous-time and the discrete-time time-invariant
cases. These forms will be referred to as standard forms for uncontrollable
systems, rather than unreachable systems, and standard forms for unobserv-
able systems, respectively.

6.2.1 Standard Form for Uncontrollable Systems

If the system (6.1) [or (6.4)] is not completely reachable or controllable-from-
the-origin, then it is possible to “separate” the controllable part of the system
by means of an appropriate similarity transformation. This amounts to chang-
ing the basis of the state space so that all the vectors in the reachable subspace
Rr have a certain structure. In particular, let rankC = nr < n; i.e., the pair
(A,B) is not controllable. This implies that the subspace Rr = R(C) has
dimension nr. Let {v1, v2, . . . , vnr} be a basis for Rr. These nr vectors can
be, for example, any nr linearly independent columns of C. Define the n × n
similarity transformation matrix

Q � [v1, v2, . . . , vnr , Qn−nr ], (6.5)

where the n × (n − nr) matrix Qn−nr contains n − nr linearly independent
vectors chosen so that Q is nonsingular. There are many such choices. We are
now in a position to prove the following result.
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Lemma 6.1. For (A,B) uncontrollable, there exists a nonsingular matrix Q
such that

Â = Q−1AQ =
[
A1 A12

0 A2

]
and B̂ = Q−1B =

[
B1

0

]
, (6.6)

where A1 ∈ Rnr×nr , B1 ∈ Rnr×m, and the pair (A1, B1) is controllable. The
pair (Â, B̂) is in the standard form for uncontrollable systems.

Proof. We need to show that

AQ = A[v1, . . . , vnr , Qn−nr ] = [v1, . . . , vnr , Qn−nr ]
[
A1 A12

0 A2

]
= QÂ.

Since the subspace Rr is A-invariant (see Lemma 5.19), Avi ∈ Rr, which
can be written as a linear combination of only the nr vectors in a basis of Rr.
Thus, A1 in Â is an nr × nr matrix, and the (n− nr)× nr matrix below it in
Â is a zero matrix. Similarly, we also need to show that

B = [v1, . . . , vnr , Qn−nr ]
[
B1

0

]
= QB̂.

But this is true for similar reasons: The columns of B are in the range of
C or in Rr. �

The n× nm controllability matrix Ĉ of (Â, B̂) is

Ĉ = [B̂, ÂB̂, . . . , Ân−1B̂] =
[
B1 A1B1 · · · An−1

1 B1

0 0 · · · 0

]
, (6.7)

which clearly has rank Ĉ = rank[B1, A1B1, . . . , A
nr−1
1 B1, . . . , A

n−1
1 B1] = nr.

Note that
Ĉ = Q−1C. (6.8)

The range of Ĉ is the controllable subspace of (Â, B̂). It contains vectors only
of the form [αT , 0]T , where α ∈ Rnr . Since dimR(Ĉ) = rank Ĉ = nr, every
vector of the form [αT , 0]T is a controllable (state) vector. In other words, the
similarity transformation has changed the basis of Rn in such a manner so
that all controllable vectors, expressed in terms of this new basis, have this
very particular structure with zeros in the last n− nr entries.

Given system (6.1) [or (6.4)], if a new state x̂(t) is taken to be x̂(t) =
Q−1x(t), then

˙̂x = Âx̂+ B̂u, y = Ĉx̂+ D̂u, (6.9)

where Â = Q−1AQ, B̂ = Q−1B, Ĉ = CQ, and D̂ = D constitutes an equiva-
lent representation (see Section 3.4.3). For Q as in Lemma 6.1, we obtain

[ ˙̂x1

˙̂x2

]
=
[
A1 A12

0 A2

] [
x̂1

x̂2

]
+
[
B1

0

]
u, y = [C1, C2]

[
x̂1

x̂2

]
+Du, (6.10)
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where x̂ = [x̂T1 , x̂
T
2 ]T with x̂1 ∈ Rnr and where (A1, B1) is controllable. The

matrix Ĉ = [C1, C2] does not have any particular structure. This representa-
tion is called a standard form for the uncontrollable system. The state equation
can now be written as

˙̂x1 = A1x̂1 +B1u+A12x̂2, ˙̂x2 = A2x̂2, (6.11)

which shows that the input u does not affect the trajectory component x̂2(t)
at all, and therefore, x̂2(t) is determined only by the value of its initial vector.
The input u certainly affects x̂1(t). Note also that the trajectory component
x̂1(t) is also influenced by x̂2(t). In fact,

x̂1(t) = eA1tx̂1(0) +
∫ t

0

eA1(t−τ)B1u(τ)dτ +
[∫ t

0

eA1(t−τ)A12e
A2τdτ

]
x̂2(0).

(6.12)
The nr eigenvalues of A1 and the corresponding modes are the controllable

eigenvalues and controllable modes of the pair (A,B) or of system (6.1) [or
of (6.4)]. The n− nr eigenvalues of A2 and the corresponding modes are the
uncontrollable eigenvalues and uncontrollable modes, respectively.

It is interesting to observe that in the zero-state response of the system
(zero initial conditions), the uncontrollable modes are completely absent. In
particular, in the solution x(t) = eAtx(0)+

∫ t
0
eA(t−τ)Bu(τ)dτ of ẋ = Ax+Bu,

given x(0), notice that

eA(t−τ)B = [QeÂ(t−τ)Q−1][QB̂] = Q

[
eA1(t−τ)B1

0

]
,

where A1 [from (6.6)] contains only the controllable eigenvalues. Therefore, the
input u(t) cannot directly influence the uncontrollable modes. Note, however,
that the uncontrollable modes do appear in the zero-input response eAtx(0).
The same observations can be made for discrete-time systems (6.4) where the
quantity AkB is of interest.

Example 6.2. Given A =

⎡
⎣

0 −1 1
1 −2 1
0 1 −1

⎤
⎦ and B =

⎡
⎣

1 0
1 1
1 2

⎤
⎦, we wish to reduce

system (6.1) to the standard form (6.6). Here

C = [B,AB,A2B] =

⎡
⎣

1 0 0 1 0 −1
1 1 0 0 0 0
1 2 0 −1 0 1

⎤
⎦

and rankC = nr = 2 < 3 = n. Thus, the subspace Rr = R(C) has dimension
nr = 2, and a basis {v1, v2} can be found by taking two linearly independent
columns of C, say, the first two, to obtain
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Q = [v1, v2, Q1] =

⎡
⎣

1 0 0
1 1 0
1 2 1

⎤
⎦ .

The third column of Q was selected so that Q is nonsingular. Note that the
first two columns of Q could have been the first and fourth columns of C
instead, or any other two linearly independent vectors obtained as a linear
combination of the columns in C. For the above choice for Q, we have

Â = Q−1AQ =

⎡
⎣

1 0 0
−1 1 0

1 −2 1

⎤
⎦
⎡
⎣

0 −1 1
1 −2 1
0 1 −1

⎤
⎦
⎡
⎣

1 0 0
1 1 0
1 2 1

⎤
⎦

=

⎡
⎣

0 −1 1
1 −1 0

−2 4 −2

⎤
⎦
⎡
⎣

1 0 0
1 1 0
1 2 1

⎤
⎦

=

⎡
⎣

0 1 1
0 −1 0
0 0 −2

⎤
⎦ =

[
A1 A12

0 A2

]
,

B̂ = Q−1B =

⎡
⎣

1 0 0
−1 1 0

1 −2 1

⎤
⎦
⎡
⎣

1 0
1 1
1 2

⎤
⎦ =

⎡
⎣

1 0
0 1
0 0

⎤
⎦ =

[
B1

0

]
,

where (A1, B1) is controllable. The matrix A has three eigenvalues at 0, −1,
and −2. It is clear from (Â, B̂) that the eigenvalues 0,−1 are controllable (in
A1), whereas −2 is an uncontrollable eigenvalue (in A2).

6.2.2 Standard Form for Unobservable Systems

The standard form for an unobservable system can be derived in a similar
way as the standard form of uncontrollable systems. If the system (6.1) [or
(6.4)] is not completely state observable, then it is possible to “separate” the
unobservable part of the system by means of a similarity transformation. This
amounts to changing the basis of the state space so that all the vectors in the
unobservable subspace Rō have a certain structure.

As in the preceding discussion concerning systems or pairs (A,B) that are
not completely controllable, we shall select a similarity transformation Q to
reduce a pair (A,C), which is not completely observable, to a particular form.
This can be accomplished in two ways. The simplest way is to invoke duality
and to work with the pair (AD = AT , BD = CT ), which is not controllable
(refer to the discussion of dual systems in Section 5.2.3). If Lemma 6.1 is
applied, then

ÂD = Q−1
D ADQD =

[
AD1 AD12

0 AD2

]
, B̂D = Q−1

D BD =
[
BD1

0

]
,

where (AD1, BD1) is controllable.
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Taking the dual again, we obtain the pair (Â, Ĉ), which has the desired
properties. In particular,

Â = ÂTD = QTDA
T
D(QTD)−1 = QTDA(QTD)−1 =

[
ATD1 0
ATD12 A

T
D2

]
,

Ĉ = B̂TD = BTD(QTD)−1 = C(QTD)−1 = [BTD1, 0],
(6.13)

where (ATD1, B
T
D1) is completely observable by duality (see Lemma 5.7).

Example 6.3. Given A =

⎡
⎣

0 1 0
−1 −2 1

1 1 −1

⎤
⎦ and C =

[
1 1 1
0 1 2

]
, we wish to reduce

system (6.1) to the standard form (6.13). To accomplish this, let AD = AT

and BD = CT . Notice that the pair (AD, BD) is precisely the pair (A,B) of
Example 6.2.

A pair (A,C) can of course also be reduced directly to the standard form
for unobservable systems. This is accomplished in the following.

Consider the system (6.1) [or (6.4)] and the observability matrix O in (6.3).
Let rankO = no < n; i.e., the pair (A,C) is not completely observable. This
implies that the unobservable subspace Rō = N (O) has dimension n−no. Let
{v1, . . . , vn−no} be a basis for Rō, and define an n×n similarity transformation
matrix Q as

Q � [Qno , v1, . . . , vn−no ], (6.14)

where the n×no matrix Qno contains no linearly independent vectors chosen
so that Q is nonsingular. Clearly, there are many such choices.

Lemma 6.4. For (A,C) unobservable, there is a nonsingular matrix Q such
that

Â = Q−1AQ =
[
A1 0
A21 A2

]
and Ĉ = CQ = [C1, 0], (6.15)

where A1 ∈ Rno×no , C1 ∈ Rp×no , and the pair (A1, C1) is observable. The
pair (Â, Ĉ) is in the standard form for unobservable systems.

Proof. We need to show that

AQ = A[Qn0 , v1, . . . , vn−no ] = [Qno , v1, . . . , vn−no ]
[
A1 0
A21 A2

]
= QÂ.

Since the unobservable subspace Rō is A-invariant (see Lemma 5.49), Avi ∈
Rō, which can be written as a linear combination of only the n− no vectors
in a basis of Rō. Thus, A2 in Â is an (n − no) × (n − no) matrix, and the
no × (n − no) matrix above it in Â is a zero matrix. Similarly, we also need
to show that

CQ = C[Qno , v1, . . . , vn−no ] = [C1, 0] = Ĉ.

This is true since Cvi = 0. �
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The pn× n observability matrix Ô of (Â, Ĉ) is

Ô =

⎡
⎢⎢⎢⎣

Ĉ

ĈÂ
...

ĈÂn−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

C1 0
C1A1 0

...
...

C1A
n−1
1 0

⎤
⎥⎥⎥⎦ , (6.16)

which clearly has

rank Ô = rank

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1

C1A1

...
C1A

no−1
1
...

C1A
n−1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= no.

Note that
Ô = OQ. (6.17)

The null space of Ô is the unobservable subspace of (Â, Ĉ). It contains vectors
only of the form [0, αT ]T , where α ∈ Rn−n0 . Since dimN (Ô) = n− rank Ô =
n − n0, every vector of the form [0, αT ]T is an unobservable (state) vector.
In other words, the similarity transformation has changed the basis of Rn in
such a manner so that all unobservable vectors expressed in terms of this new
basis have this very particular structure—zeros in the first no entries.

For Q chosen as in Lemma 6.4,
[ ˙̂x1

˙̂x2

]
=
[
A1 0
A21 A2

] [
x̂1

x̂2

]
+
[
B1

B2

]
u, y = [C1, 0]

[
x̂1

x̂2

]
+Du, (6.18)

where x̂ = [x̂T1 , x̂T2 ]T with x̂1 ∈ Rno and (A1, C1) is observable. The matrix
B̂ = [BT1 , BT2 ]T does not have any particular form. This representation is
called a standard form for the unobservable system.

The no eigenvalues of A1 and the corresponding modes are called observ-
able eigenvalues and observable modes of the pair (A,C) or of the system (6.1)
[or of (6.4)]. The n − no eigenvalues of A2 and the corresponding modes are
called unobservable eigenvalues and unobservable modes, respectively.

Notice that the trajectory component x̂(t), which is observed via the out-
put y, is not influenced at all by x̂2, the trajectory of which is determined
primarily by the eigenvalues of A2.

The unobservable modes of the system are completely absent from the
output. In particular, given ẋ = Ax + Bu, y = Cx with initial state x(0), we
have

y(t) = CeAtx(0) +
∫ t

0

CeA(t−τ)Bu(τ)dτ
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and CeAt = [ĈQ−1][QeÂtQ−1] = [C1e
A1t, 0]Q−1, where A1 [from (6.15)] con-

tains only the observable eigenvalues. Therefore, the unobservable modes can-
not be seen by observing the output. The same observations can be made for
discrete-time systems where the quantity CAk is of interest.

Example 6.5. Given A =
[

0 1
−2 −3

]
and C = [1, 1], we wish to reduce

system (6.1) to the standard form (6.15). To accomplish this, we compute

O =
[
C
CA

]
=
[

1 1
−2 −2

]
, which has rankO = no = 1 < 2 = n. Therefore,

the unobservable subspace Rō = N (O) has dimension n− no = 1. In view of
(6.14),

Q = [Q1, v1] =
[

0 1
1 −1

]
,

where v1 = [1,−1]T is a basis for Rō, and Q1 was chosen so that Q is nonsin-
gular. Then

Â = Q−1AQ =
[

1 1
1 0

] [
0 1

−2 −3

] [
0 1
1 −1

]

=
[
−2 0

1 −1

]
=
[
A1 0
A21 A2

]
,

Ĉ = CQ = [1, 1]
[

0 1
1 −1

]
= [1, 0] = [C1, 0],

where (A1, C1) is observable. The matrix A has two eigenvalues at −1,−2. It
is clear from (Â, Ĉ) that the eigenvalue −2 is observable (in A1), whereas −1
is an unobservable eigenvalue (in A2).

6.2.3 Kalman’s Decomposition Theorem

Lemmas 6.1 and 6.4 can be combined to obtain an equivalent representation
of (6.1) where the reachable and observable parts of this system can readily be
identified. We consider system (6.9) and proceed, in the following, to construct
the n× n required similarity transformation matrix Q.

As before, we let nr denote the dimension of the controllable subspace Rr;
i.e., nr = dimRr = dimR(C) = rankC. The dimension of the unobservable
subspace Rō = N (O) is given by nō = n − rankO = n − no. Let nrō be the
dimension of the subspace Rrō � Rr ∩Rō, which contains all the state vectors
x ∈ Rn that are controllable but unobservable. We choose

Q � [v1, . . . , vnr−nrō+1, . . . , vnr , QN , v̂1, . . . , v̂nō−nrō ], (6.19)

where the nr vectors in {v1, . . . , vnr} form a basis for Rr. The last nrō vectors
{vnr−nrō+1, . . . , vnr} in the basis for Rr are chosen so that they form a basis
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for Rrō = Rr∩Rō. The nō−nrō = (n−no−nrō) vectors {v̂1, . . . , v̂nō−nrō} are
selected so that when taken together with the nrō vectors {vnr−nrō+1, . . . , vnr}
they form a basis for Rō, the unobservable subspace. The remaining N =
n−(nr+nō−nrō) columns in QN are simply selected so that Q is nonsingular.

The following theorem is called the Canonical Structure Theorem or
Kalman’s Decomposition Theorem.

Theorem 6.6. For (A,B) uncontrollable and (A,C) unobservable, there is a
nonsingular matrix Q such that

Â = Q−1AQ =

⎡
⎢⎢⎣
A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44

⎤
⎥⎥⎦ , B̂ = Q−1B =

⎡
⎢⎢⎣
B1

B2

0
0

⎤
⎥⎥⎦ ,

Ĉ = CQ = [C1, 0, C3, 0],

(6.20)

where

(i) (Ac, Bc) with

Ac �
[
A11 0
A21 A22

]
and Bc �

[
B1

B2

]

is controllable, where Ac ∈ Rnr×nr , Bc ∈ Rnr×m;
(ii) (Ao, Co) with

Ao �
[
A11 A13

0 A33

]
and Co � [C1, C3]

is observable, where Ao ∈ Rno×no and Co ∈ Rp×no and where the dimen-
sions of the matrices Aij , Bi, and Cj are as follows:

A11 : (nr − nrō) × (nr − nrō), A22 : nrō × nrō ,

A33 : (n− (nr + nō − nrō)) × A44 : (nō − nrō) × (nō − nrō),
(n− (nr + nō − nrō)),

B1 : (nr − nrō) ×m, B2 : nrō ×m,

C1 : p× (nr − nrō), C3 : p× (n− (nr + nō − nrō));

(iii) the triple (A11, B1, C1) is such that (A11, B1) is controllable and (A11, C1)
is observable.

Proof. For details of the proof, refer to [6] and to [7], where further clarifica-
tions to [6] and an updated method of selecting Q are given. �

The similarity transformation (6.19) has altered the basis of the state space
in such a manner that the vectors in the controllable subspace Rr, the vectors
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in the unobservable subspace Rō, and the vectors in the subspace Rrō ∩ Rō
all have specific forms. To see this, we construct the controllability matrix
Ĉ = [B̂, . . . , Ân−1B̂] whose range is the controllable subspace and the observ-
ability matrix Ô = [ĈT , . . . , (ĈÂn−1)T ]T , whose null space is the unobservable
subspace. Then, all controllable states are of the form [xT1 , x

T
2 , 0, 0]T , all the

unobservable ones have the structure [0, xT2 , 0, xT4 ]T , and states of the form
[0, xT2 , 0, 0]T characterize Rrō; i.e., they are controllable but unobservable.

Similarly to the previous two lemmas, the eigenvalues of Â, or of A, are
the eigenvalues of A11, A22, A33, and A44; i.e.,

|λI −A| = |λI − Â| = |λI −A11||λI −A22||λI −A33||λI −A44|. (6.21)

If we consider the representation {Â, B̂, Ĉ, D̂} given in (6.20), then

⎡
⎢⎢⎣

˙̂x1

˙̂x2

˙̂x3

˙̂x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x̂1

x̂2

x̂3

x̂4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
B1

B2

0
0

⎤
⎥⎥⎦u,

y = [C1, 0, C3, 0]

⎡
⎢⎢⎣
x̂1

x̂2

x̂3

x̂4

⎤
⎥⎥⎦+Du.

(6.22)

This shows that the trajectory components corresponding to x̂3 and x̂4 are
not affected by the input u. The modes associated with the eigenvalues of
A33 and A44 determine the trajectory components for x̂3 and x̂4 (compare
this with the results in Lemma 6.1). Similarly to Lemma 6.4, the trajectory
components for x̂2 and x̂4 are not influenced by x̂1 and x̂3 (observed via y),
and they are determined by the eigenvalues of A22 and A44. The following is
now apparent (see also Figure 6.1):

The eigenvalues of

A11 are controllable and observable,
A22 are controllable and unobservable,
A33 are uncontrollable and observable,
A44 are uncontrollable and unobservable.

Example 6.7. Given A =

⎡
⎣

0 −1 1
1 −2 1
0 1 −1

⎤
⎦, B =

⎡
⎣

1 0
1 1
1 2

⎤
⎦, and C = [0, 1, 0], we

wish to reduce system (6.1) to the canonical structure (or Kalman decom-
position) form (6.20). The appropriate transformation matrix Q is given by
(6.19). The matrix C was found in Example 6.2 and
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u

c

o

c o

c o

c o

c o

c

y

–

– –

–

–

Figure 6.1. Canonical decomposition (c and c̄ denote controllable and uncontrol-
lable, respectively). The connections of the c/c̄ and o/ō parts of the system to the
input and output are emphasized. Note that the impulse response (transfer func-
tion) of the system, which is an input–output description only, represents the part
of the system that is both controllable and observable (see Chapter 7).

O =

⎡
⎣

C
CA
CA2

⎤
⎦ =

⎡
⎣

0 1 0
1 −2 1

−2 4 −2

⎤
⎦ .

A basis for Rō = N (O) is {(1, 0, −1)T }. Note that nr = 2, nō = 1, and
nrō = 1. Therefore,

Q = [v1, v2, QN ] =

⎡
⎣

1 1 0
1 0 0
1 −1 1

⎤
⎦

is an appropriate similarity matrix (check that detQ �= 0). We compute

Â = Q−1AQ =

⎡
⎣

0 1 0
1 −1 0
1 −2 1

⎤
⎦
⎡
⎣

0 −1 1
1 −2 1
0 1 −1

⎤
⎦
⎡
⎣

1 1 0
1 0 0
1 −1 1

⎤
⎦

=

⎡
⎣

0 0 1
0 −1 0
0 0 −2

⎤
⎦ =

⎡
⎣
A11 0 A13

A21 A22 A23

0 0 A33

⎤
⎦ ,

B̂ = Q−1B =

⎡
⎣

0 1 0
1 −1 0
1 −2 1

⎤
⎦
⎡
⎣

1 0
1 1
1 2

⎤
⎦ =

⎡
⎣

1 1
0 −1
0 0

⎤
⎦ =

⎡
⎣
B1

B2

0

⎤
⎦ ,
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and

Ĉ = CQ = [0, 1, 0]

⎡
⎣

1 1 0
1 0 0
1 −1 1

⎤
⎦ = [1, 0, 0] = [C1, 0, C3].

The eigenvalue 0 (in A11) is controllable and observable, the eigenvalue
−1 (in A22) is controllable and unobservable and the eigenvalue −2 (in A33)
is uncontrollable and observable. There are no eigenvalues that are both un-
controllable and unobservable.

6.3 Eigenvalue/Eigenvector Tests for Controllability and
Observability

There are tests for controllability and observability for both continuous- and
discrete-time time-invariant systems that involve the eigenvalues and eigen-
vectors of A. Some of these criteria are called PBH tests, after the initials
of the codiscoverers (Popov–Belevitch–Hautus) of these tests. These tests are
useful in theoretical analysis, and in addition, they are also attractive as com-
putational tools.

Theorem 6.8. (i) The pair (A,B) is uncontrollable if and only if there exists
a 1 × n (in general) complex vector v̂i �= 0 such that

v̂i[λiI −A,B] = 0, (6.23)

where λi is some complex scalar.
(ii) The pair (A,C) is unobservable if and only if there exists an n × 1 (in

general) complex vector vi �= 0 such that
[
λiI −A

C

]
vi = 0, (6.24)

where λi is some complex scalar.

Proof. Only part (i) will be considered since (ii) can be proved using a similar
argument or, directly, by duality arguments.

(Sufficiency) Assume that (6.23) is satisfied. In view of v̂iA = λiv̂i and
v̂iB = 0, v̂iAB = λiv̂iB = 0 and v̂iA

kB = 0 k = 0, 1, 2, . . . . Therefore,
v̂iC = v̂i[B,AB, . . . , An−1B] = 0, which shows that (A,B) is not completely
controllable.

(Necessity) Let (A,B) be uncontrollable and assume without loss of gen-
erality the standard form for A and B given in Lemma 6.1. We will show
that there exist λi and v̂i so that (6.23) holds. Let λi be an uncontrollable
eigenvalue, and let v̂i = [0, α], αT ∈ Cn−nr , where α(λiI − A2) = 0; i.e.,
α is a left eigenvector of A2 corresponding to λi. Then v̂i[λiI − A,B] =
[0, α(λiI −A2), 0] = 0; i.e., (6.23) is satisfied. �
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Corollary 6.9. (i) λi is an uncontrollable eigenvalue of (A,B) if and only if
there exists a 1×n (in general) complex vector v̂i �= 0 that satisfies (6.23).

(ii) λi is an unobservable eigenvalue of (A,C) if and only if there exists an
n× 1 (in general) complex vector vi �= 0 that satisfies (6.24).

Proof. See [1, p. 273, Corollary 4.6]. �

Example 6.10. Given are A =

⎡
⎣

0 −1 1
1 −2 1
0 1 −1

⎤
⎦ , B =

⎡
⎣

1 0
1 1
1 2

⎤
⎦, and C = [0, 1, 0],

as in Example 6.7. The matrix A has three eigenvalues, λ1 = 0, λ2 = −1,
and λ3 = −2, with corresponding right eigenvectors v1 = [1, 1, 1]T , v2 =
[1, 0, −1]T , v3 = [1, 1, −1]T and with left eigenvectors v̂1 = [1/2, 0, 1/2],
v̂2 = [1, −1, 0], and v̂3 = [−1/2, 1, −1/2], respectively.

In view of Corollary 6.9, v̂1B = [1, 1] �= 0 implies that λ1 = 0 is control-
lable. This is because v̂1 is the only nonzero vector (within a multiplication
by a nonzero scalar) that satisfies v̂1(λ1I − A) = 0, and so v̂1B �= 0 implies
that the only 1×3 vector α that satisfies α[λ1I−A,B] = 0 is the zero vector,
which in turn implies that λ1 is controllable in view of (i) of Corollary 6.9.
For similar reasons Cv1 = 1 �= 0 implies that λ1 = 0 is observable; see (ii) of
Corollary 6.9. Similarly, v̂2B = [0,−1] �= 0 implies that λ2 = −1 is control-
lable, and Cv2 = 0 implies that λ2 = −1 is unobservable. Also, v̂3B = [0, 0]
implies that λ3 = −2 is uncontrollable, and Cv3 = 1 �= 0 implies that λ3 = −2
is observable. These results agree with the results derived in Example 6.7.

Corollary 6.11. (Rank Tests)

(ia) The pair (A,B) is controllable if and only if

rank[λI −A,B] = n (6.25)

for all complex numbers λ, or for all n eigenvalues λi of A.
(ib) λi is an uncontrollable eigenvalue of A if and only if

rank[λiI −A,B] < n. (6.26)

(iia) The pair (A,C) is observable if and only if

rank
[
λI −A
C

]
= n (6.27)

for all complex numbers λ, or for all n eigenvalues λi.
(iib) λi is an unobservable eigenvalue of A if and only if

rank
[
λiI −A
C

]
< n. (6.28)
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Proof. The proofs follow in a straightforward manner from Theorem 6.8. No-
tice that the only values of λ that can possibly reduce the rank of [λI −A,B]
are the eigenvalues of A. �

Example 6.12. If in Example 6.10 the eigenvalues λ1, λ2, λ3 of A are known,
but the corresponding eigenvectors are not, consider the system matrix

P (s) =
[
sI − A B
−C 0

]
=

⎡
⎢⎢⎣

s 1 −1 1 0
−1 s+ 2 −1 1 1

0 −1 s+ 1 1 2
0 −1 0 0 0

⎤
⎥⎥⎦

and determine rank[λiI −A,B] and rank
[
λiI −A

C

]
. Notice that

rank
[
sI −A
C

]

s=λ2

= rank

⎡
⎢⎢⎣
−1 1 −1
−1 1 −1

0 −1 0
0 1 0

⎤
⎥⎥⎦ = 2 < 3 = n

and

rank[sI −A,B]s=λ3 = rank

⎡
⎣
−2 2 −1 1 0
−1 0 −1 1 1

0 −1 −1 1 2

⎤
⎦ = 2 < 3 = n.

In view of Corollary 6.11, λ2 = −1 is unobservable and λ3 = −2 is uncon-
trollable.

6.4 Controller and Observer Forms

It has been seen several times in this book that equivalent representations of
systems

ẋ = Ax+Bu, y = Cx+Du, (6.29)

given by the equations

˙̂x = Âx̂+ B̂u, y = Ĉx̂+ D̂u, (6.30)

where x̂ = Px, Â = PAP−1, B̂ = PB, Ĉ = CP−1, and D̂ = D may offer
advantages over the original representation when P (or Q = P−1) is chosen in
an appropriate manner. This is the case when P (or Q) is such that the new
basis of the state space provides a natural setting for the properties of interest.
This section shows how to select Q when (A,B) is controllable [or (A,C) is
observable] to obtain the controller and observer forms. These special forms
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are very useful, in realizations discussed in Chapter 8 and especially when
studying state-feedback control (and state observers) discussed in Chapter 9.
They are also very useful in establishing a convenient way to transition be-
tween state-space representations and another very useful class of equivalent
internal representations, the polynomial matrix representations.

Controller forms are considered first. Observer forms can of course be
obtained directly in a similar manner to the controller forms, or they may be
obtained by duality. This is addressed in the latter part of this section.

6.4.1 Controller Forms

The controller form is a particular system representation where both matrices
(A,B) have a certain special structure. Since in this caseA is in the companion
form, the controller form is sometimes also referred to as the controllable
companion form. Consider the system

ẋ = Ax+Bu, y = Cx+Du, (6.31)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m and let (A,B) be
controllable. Then rank C = n, where

C = [B,AB, . . . , An−1B]. (6.32)

Assume that
rankB = m ≤ n. (6.33)

Under these assumptions, rankC = n and rankB = m. We will show how
to obtain an equivalent pair (Â, B̂) in controller form, first for the single-
input case (m = 1) and then for the multi-input case (m > 1). Before this is
accomplished, we discuss how to deal with two special cases that do not satisfy
the above assumptions that rankB = m and that (A,B) is controllable.

1. If them columns ofB are not linearly independent (rankB = r < m), then
there exists an m×m nonsingular matrix K so that BK = [Br, 0], where
the r columns of Br are linearly independent (rankBr = r). Note that

ẋ = Ax+Bu = Ax+(BK)(K−1u) = Ax+ [Br , 0]
[

ur
um−r

]
= Ax+Brur,

which shows that when rankB = r < m the same input action to the
system can be accomplished by only r inputs, instead of m inputs. The
pair (A,Br), which is controllable when (A,B) is controllable, can now
be reduced to controller form, using the method described below.

2. When (A,B) is not completely controllable, then a two-step approach can
be taken. First, the controllable part is isolated (see Subsection 6.2.1) and
then is reduced to the controller form, using the methods of this section.
In particular, consider the system ẋ = Ax + Bu with A ∈ Rn×n, B ∈
Rn×m, and rankB = m. Let rank[B,AB, . . . , An−1B] = nr < n. Then
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there exists a transformation P1 such that P1AP
−1
1 =

[
A1 A12

0 A2

]
and

P1B =
[
B1

0

]
, where A1 ∈ Rnr×nr , B1 ∈ Rnr×m, and (A1, B1) is con-

trollable (Subsection 6.2.1). Since (A1, B1) is controllable, there exists a
transformation P2 such that P2A1P

−1
2 = A1c, and P2B1 = B1c, where

A1c, B1c is in controller form, defined below. Combining, we obtain

PAP−1 =
[
A1c P2A12

0 A2

]
, and PB =

[
B1c

0

]
(6.34)

[where A1c ∈ Rnr×nr , B1c ∈ Rnr×m, and (A1c, B1c) is controllable], which
is in controller form. Note that

P =
[
P2 0
0 I

]
P1. (6.35)

Single-Input Case (m = 1)

The representation {Ac, Bc, Cc, Dc} in controller form is given by Ac � Â =
PAP−1 and Bc � B̂ = PB with

Ac =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−α0 −α1 · · · −αn−1

⎤
⎥⎥⎥⎦ , Bc =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ , (6.36)

where the coefficients αi are the coefficients of the characteristic polynomial
α(s) of A; that is,

α(s) � det(sI − A) = sn + αn−1s
n−1 + · · · + α1s+ α0. (6.37)

Note that Cc � Ĉ = CP−1 and Dc = D do not have any particular struc-
ture. The structure of (Ac, Bc) is very useful (in control problems), and the
representation {Ac, Bc, Cc, Dc} shall be referred to as the controller form of
the system. The similarity transformation matrix P is obtained as follows.
The controllability matrix C = [B,AB, . . . , An−1B] is in this case an n × n

nonsingular matrix. Let C−1 =
[
×
q

]
, where q is the nth row of C−1 and ×

indicates the remaining entries of C−1. Then

P �

⎡
⎢⎢⎣

q
qA
· · ·

qAn−1

⎤
⎥⎥⎦ . (6.38)
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To show that PAP−1 = Ac and PB = Bc given in (6.36), note first that
qAi−1B = 0 i = 1, . . . , n− 1 and qAn−1 B = 1. This can be verified from the
definition of q, which implies that q C = [0, 0, . . . , 1]. Now

PC = P [B,AB, . . . , An−1B] =

⎡
⎢⎢⎢⎣

0 0 · · · · · · 1
0 0 · · · 1 ×
... 1

...
...

1 × · · · × ×

⎤
⎥⎥⎥⎦ = Cc, (6.39)

which implies that |PC| = |P | |C| �= 0 or that |P | �= 0. Therefore, P qualifies
as a similarity transformation matrix. In view of (6.39), PB = [0, 0, . . . , 1]T =
Bc. Furthermore,

AcP =

⎡
⎢⎢⎢⎣

qA
...

qAn−1

qAn

⎤
⎥⎥⎥⎦ = PA, (6.40)

where in the last row of AcP , the relation −
∑n−1
i=0 αiA

i = An was used [which
is the Cayley–Hamilton Theorem, namely, α(A) = 0].

Example 6.13. Let A =

⎡
⎣
−1 0 0

0 1 0
0 0 −2

⎤
⎦ and B =

⎡
⎣

1
−1

1

⎤
⎦. Since n = 3 and

|sI −A| = (s+1)(s− 1)(s+2) = s3 +2s2 − s− 2, {Ac, Bc} in controller form
is given by

Ac =

⎡
⎣

0 1 0
0 0 1
2 1 −2

⎤
⎦ and Bc =

⎡
⎣

0
0
1

⎤
⎦ .

The transformation matrix P that reduces (A,B) to (Ac = PAP−1, Bc =
PB) is now derived. We have

C = [B,AB,A2B] =

⎡
⎣

1 −1 1
−1 −1 −1

1 −2 4

⎤
⎦ and C−1 =

⎡
⎣

1 −1/3 −1/3
−1/2 −1/2 0
−1/2 −1/6 1/3

⎤
⎦ .

The third (the nth) row of C−1 is q = [−1/2,−1/6, 1/3], and therefore,

P �

⎡
⎣

q
qA
qA2

⎤
⎦ =

⎡
⎣
−1/2 −1/6 1/3

1/2 −1/6 −2/3
−1/2 −1/6 4/3

⎤
⎦ .

It can now easily be verified that Ac = PAP−1, or

AcP =

⎡
⎣

1/2 −1/6 −2/3
−1/2 −1/6 −2/3

1/2 −1/6 −8/3

⎤
⎦ = PA,

and that Bc = PB.
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An alternative form to (6.36) is

Ac1 =

⎡
⎢⎢⎢⎣

−αn−1 · · · −α1 −α0

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

⎤
⎥⎥⎥⎦ , Bc1 =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ , (6.41)

which is obtained if the similarity transformation matrix is taken to be

P1 �

⎡
⎢⎢⎢⎣

qAn−1

...
qA
q

⎤
⎥⎥⎥⎦ , (6.42)

i.e., by reversing the order of the rows of P in (6.38). (See Exercise 6.5 and
Example 6.14.)

In the above, Ac is a companion matrix of the form
[

0 I
× ×

]
or
[
× ×
I 0

]
. It

could also be of the form
[

0 ×
I ×

]
or
[
× 0
× I

]
with coefficients −[α0, . . . , αn−1]T

in the last or the first column. It is shown here, for completeness, how to de-
termine controller forms where Ac are such companion matrices. In particular,
if

Q2 = P−1
2 = [B,AB, . . . , An−1B] = C, (6.43)

then

Ac2 = Q−1
2 AQ2 =

⎡
⎢⎢⎢⎣

0 · · · 0 −α0

1 · · · 0 −α1

...
. . .

...
...

0 · · · 1 −αn−1

⎤
⎥⎥⎥⎦ , Bc2 = Q−1

2 B =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ . (6.44)

Also, if
Q3 = P−1

3 = [An−1B, . . . , B], (6.45)

then

Ac3 = Q−1
3 AQ3 =

⎡
⎢⎢⎢⎣

−αn−1 1 · · · 0
...

...
. . .

...
−α1 0 · · · 1
−α0 0 · · · 0

⎤
⎥⎥⎥⎦ , Bc3 = Q−1

3 B =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ . (6.46)

(Ac, Bc) in (6.44) and (6.46) are also in controller canonical or controllable
companion form. (See also Exercise 6.5 and Example 6.14.)
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Example 6.14. Let A =

⎡
⎣
−1 0 0

0 1 0
0 0 −2

⎤
⎦ and B =

⎡
⎣

1
−1

1

⎤
⎦, as in Example 6.13.

Alternative controller forms can be derived for different P . In particular, if

(i) P = P1 =

⎡
⎣
qA2

qA
q

⎤
⎦ =

⎡
⎣
−1/2 −1/6 4/3

1/2 −1/6 −2/3
−1/2 −1/6 1/3

⎤
⎦, as in (6.42) (C, C−1, and q

were found in Example 6.13), then

Ac1 =

⎡
⎣
−2 1 2

1 0 0
0 1 0

⎤
⎦ , Bc1 =

⎡
⎣

1
0
0

⎤
⎦ ,

as in (6.41). Note that in the present caseAc1P1 =

⎡
⎣

1/2 −1/6 −8/3
−1/2 −1/6 4/3

1/2 −1/6 −2/3

⎤
⎦ =

P1A, Bc1 = P1B.

(ii) Q2 = C =

⎡
⎣

1 −1 1
−1 −1 −1

1 −2 4

⎤
⎦ , as in (6.43). Then

Ac2 =

⎡
⎣

0 0 2
1 0 1
0 1 −2

⎤
⎦ , Bc2 = Q−1

2 B =

⎡
⎣

1
0
0

⎤
⎦ ,

as in (6.44).

(iii) Q3 = [A2B,AB,B] =

⎡
⎣

1 −1 1
−1 −1 −1

4 −2 1

⎤
⎦, as in (6.45). Then

Ac3 =

⎡
⎣
−2 1 0

1 0 1
2 0 0

⎤
⎦ , Bc3 =

⎡
⎣

0
0
1

⎤
⎦ ,

as in (6.46). Note that Q3Ac3 =

⎡
⎣
−1 1 −1
−1 −1 −1
−8 4 −2

⎤
⎦ = AQ3, Q3Bc3 =

⎡
⎣

1
−1

1

⎤
⎦ = B.
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Multi-Input Case (m > 1)

In this case, the n × mn matrix C given in (6.32) is not square, and there
are typically many sets of n columns of C that are linearly independent
(rankC = n). Depending on which columns are chosen and in what order,
different controller forms (controllable companion forms) are derived. Note
that in the case when m = 1, four different controller forms were derived,
even though there was only one set of n linearly independent columns. In the
present case there are many more such choices. The form that will be used
most often in the following is a generalization of (Ac, Bc) given in (6.36). Fur-
ther discussion including derivation and alternative forms may be found in [1,
Subsection 3.4D].

Let Â = PAP−1 and B̂ = PB, where P is constructed as follows. Consider

C = [B,AB, . . . , An−1B]

= [b1, . . . , bm, Ab1, . . . , Abm, . . . , An−1b1, . . . , A
n−1bm], (6.47)

where the b1, . . . , bm are the m columns of B. Select, starting from the left and
moving to the right, the first n independent columns (rank C = n). Reorder
these columns by taking first b1, Ab1, A2b1, etc., until all columns involving
b1 have been taken; then take b2, Ab2, etc.; and lastly, take bm, Abm, etc., to
obtain

C̄ � [b1, Ab1, . . . , Aμ1−1b1, . . . , bm, . . . , A
μm−1bm], (6.48)

an n× n matrix. The integer μi denotes the number of columns involving bi
in the set of the first n linearly independent columns found in C when moving
from left to right.

Definition 6.15. The m integers μi, i = 1, . . . ,m, are the controllability
indices of the system, and μ � maxμi is called the controllability index of
the system. Note that

m∑
i=1

μi = n and mμ ≥ n. (6.49)

�

An alternative but equivalent definition for μ is that μ is the minimum
integer k such that

rank[B,AB, . . . , Ak−1B] = n. (6.50)

Notice that in (6.48) all columns of B are always present since rank B = m.
This implies that μi ≥ 1 for all i. Notice further that if Akbi is present, then
Ak−1bi must also be present.

Now define

σk �
k∑
i=1

μi, k = 1, . . . ,m; (6.51)
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i.e., σ1 = μ1, σ2 = μ1 + μ2, . . . , σm = μ1 + · · · + μm = n. Also, consider C̄−1

and let qk, where qTk ∈ Rn, k = 1, . . . ,m, denote its σkth row; i.e.,

C̄−1 = [×, . . . ,×, qT1
... · · ·

...×, . . . ,×, qTm]T . (6.52)

Next, define

P �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
q1A

...
q1A

μ1−1

· · ·
...
· · ·
qm
qmA

...
qmA

μm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.53)

It can now be shown that PAP−1 = Ac and PB = Bc with

Ac = [Aij ], i, j = 1, . . . ,m,

Aii =

⎡
⎢⎢⎢⎣

0
... Iμi−1

0
× × · · ·×

⎤
⎥⎥⎥⎦ ∈ Rμi×μi , i = j, Aij =

⎡
⎢⎢⎢⎣

0 · · · 0
...

...
...

0 · · · 0
× × · · · ×

⎤
⎥⎥⎥⎦ ∈ Rμi×μj , i �= j,

and

Bc =

⎡
⎢⎢⎢⎣

B1

B2

...
Bm

⎤
⎥⎥⎥⎦ , Bi =

⎡
⎢⎣

0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 1 × · · · ×

⎤
⎥⎦ ∈ Rμi×m, (6.54)

where the 1 in the last row of Bi occurs at the ith column location, i =
1, . . . ,m, and × denotes nonfixed entries. Note that Cc = CP−1 does not
have any particular structure. The expression (6.54) is a very useful form (in
control problems) and shall be referred to as the controller form of the system.
The derivation of this result is discussed in [1, Subsection 3.4D] .

Example 6.16. Given are A ∈ Rn×n and B ∈ Rn×m with (A,B) controllable
and with rankB = m. Let n = 4 and m = 2. Then there must be two
controllability indices μ1 and μ2 such that n = 4 =

∑2
i=1 μi = μ1 +μ2. Under

these conditions, there are three possibilities:
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(i) μ1 = 2, μ2 = 2,

Ac =
[
A11 A12

A21 A22

]
=

⎡
⎢⎢⎣

0 1 0 0
× × × ×
0 0 0 1
× × × ×

⎤
⎥⎥⎦ , Bc =

[
B1

B2

]
=

⎡
⎢⎢⎣

0 0
1 ×
0 0
0 1

⎤
⎥⎥⎦ .

(ii) μ1 = 1, μ2 = 3,

Ac =

⎡
⎢⎢⎣
× × × ×
0 0 1 0
0 0 0 1
× × × ×

⎤
⎥⎥⎦ , Bc =

⎡
⎢⎢⎣

1 ×
0 0
0 0
0 1

⎤
⎥⎥⎦ .

(iii) μ1 = 3, μ2 = 1,

Ac =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
× × × ×
× × × ×

⎤
⎥⎥⎦ , Bc =

⎡
⎢⎢⎣

0 0
0 0
1 ×
0 1

⎤
⎥⎥⎦ .

It is possible to write Ac, Bc in a systematic and perhaps more transparent
way. In particular, notice that Ac, Bc in (6.54) can be expressed as

Ac = Āc + B̄cAm, Bc = B̄cBm, (6.55)

where Āc = block diag[Ā11, Ā22, . . . , Āmm] with

Āii =

⎡
⎣

0
... Iμi−1

0
0 0···0

⎤
⎦ ∈ Rμi×μi , B̄c = block diag

([ 0
...
0
1

]
∈ Rμi×1, i = 1, . . . ,m

)
,

and Am ∈ Rm×n and Bm ∈ Rm×m are some appropriate matrices with∑m
i=1 μi = n. Note that the matrices Āc, B̄c are completely determined by

the m controllability indices μi, i = 1, . . . ,m. The matrices Am and Bm con-
sist of the σ1th, σ2th, . . . , σmth rows of Ac (entries denoted by ×) and the
same rows of Bc, respectively [see (6.57) and (6.58) below].

Example 6.17. Let A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ and B =

⎡
⎣

0 1
1 1
0 0

⎤
⎦. To determine the

controller form (6.54), consider

C = [B,AB,A2B] = [b1, b2, Ab1, Ab2, A2b1, A
2b2] =

⎡
⎣

0 1 1 1 0 0
1 1 0 0 2 2
0 0 2 2 −2 −2

⎤
⎦ ,
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where rankC = 3 = n; i.e., (A,B) is controllable. Searching from left to right,
the first three columns of C are selected since they are linearly independent.
Then

C̄ = [b1, Ab1, b2] =

⎡
⎣

0 1 1
1 0 1
0 2 0

⎤
⎦

and the controllability indices are μ1 = 2 and μ2 = 1. Also, σ1 = μ1 = 2 and
σ2 = μ1 + μ2 = 3 = n, and

C̄−1 =

⎡
⎣
−1 1 1/2

0 0 1/2
1 0 −1/2

⎤
⎦ .

Notice that q1 = [0, 0, 1/2] and q2 = [1, 0,−1/2], the second and third rows

of C̄−1, respectively. In view of (6.53), P =

⎡
⎣
q1
q1A
q2

⎤
⎦ =

⎡
⎣

0 0 1/2
0 1 −1/2
1 0 −1/2

⎤
⎦, P−1 =

⎡
⎣

1 0 1
1 1 0
2 0 0

⎤
⎦, and Ac = PAP−1 =

[
A11 A12

A21 A22

]
=

⎡
⎣

0 1 0
2 −1 0
1 0 0

⎤
⎦, Bc = PB =

[
B1

B2

]
=

⎡
⎣

0 0
1 1
0 1

⎤
⎦.

One can also verify (6.55) quite easily. We have

Ac =

⎡
⎣

0 1 0
2 −1 0
1 0 0

⎤
⎦ = Āc + B̄cAm =

⎡
⎣

0 1 0
0 0 0
0 0 0

⎤
⎦+

⎡
⎣

0 0
1 0
0 1

⎤
⎦
[

2 −1 0
1 0 0

]

and

Bc =

⎡
⎣

0 0
1 1
0 1

⎤
⎦ = B̄cBm =

⎡
⎣

0 0
1 0
0 1

⎤
⎦
[

1 1
0 1

]
.

It is interesting to note that in this example, the given pair (A,B) could
have already been in controller form if B were different but A were the same.
For example, consider the following three cases:

1. A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , B =

⎡
⎣

1 ×
0 0
0 1

⎤
⎦ , μ1 = 1, μ2 = 2,

2. A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , B =

⎡
⎣

0 0
1 ×
0 1

⎤
⎦ , μ1 = 2, μ1 = 1,
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3. A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , B =

⎡
⎣

0
0
1

⎤
⎦ , μ1 = 3 = n.

Note that case 3 is the single-input case (6.36).

Remarks

(i) An important result involving the controllability indices of (A,B) is the
following: Given (A,B) controllable, then (P (A+BGF )P−1, PBG) will
have the same controllability indices, within reordering, for any P, F , and
G (|P | �= 0, |G| �= 0) of appropriate dimensions. In other words, the con-
trollability indices are invariant under similarity and input transforma-
tions P and G, and state feedback F [or similarity transformation P and
state feedback (F,G)]. (For further discussion, see [1, Subsection 3.4D].)

(ii) It is not difficult to derive explicit expressions for Am and Bm in (6.55).
Using

qiA
k−1bj = 0 k = 1, . . . , μj , i �= j,

qiA
k−1bi = 0 k = 1, . . . , μi − 1, and qiAμi−1bi = 1, i = j, (6.56)

where i = 1, . . . ,m, and j = 1, . . . ,m, it can be shown that the m σ1th,
σ2th, . . . , σmth rows of Ac that are denoted by Am in (6.55) are given by

Am =

⎡
⎢⎣
q1A

μ1

...
qmA

μm

⎤
⎥⎦P−1. (6.57)

Similarly

Bm =

⎡
⎢⎣
q1A

μ1−1

...
qmA

μm−1

⎤
⎥⎦B. (6.58)

The matrix Bm is an upper triangular matrix with ones on the diagonal.
(For details, see [1, Subsection 3.4D].)

Example 6.18. We wish to reduce A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , B =

⎡
⎣

1 1
0 1
0 0

⎤
⎦ to controller

form. Note that A and B are almost the same as in Example 6.17; how-
ever, here μ1 = 1 < 2 = μ2, as will be seen. We have C = [B,AB,A2B] =

[b1, b2, Ab1, Ab2, . . . ] =

⎡
⎣

1 1 0 1
0 1 0 0 · · ·
0 0 0 2

⎤
⎦. Searching from left to right, the first
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three linearly independent columns are b1, b2, Ab2, and C̄ = [b1, b2, Ab2] =⎡
⎣

1 1 1
0 1 0
0 0 2

⎤
⎦, from which we conclude that μ1 = 1, μ2 = 2, σ1 = 1, and

σ2 = 3. We compute C̄−1 =

⎡
⎣

1 −1 −1/2
0 1 0
0 0 1/2

⎤
⎦. Note that q1 = [1,−1,−1/2]

and q2 = [0, 0, 1/2], the first and third rows of C̄−1, respectively. Then

P =

⎡
⎣
q1
q2
q2A

⎤
⎦ =

⎡
⎣

1 −1 −1/2
0 0 1/2
0 1 −1/2

⎤
⎦, P−1 =

⎡
⎣

1 2 1
0 1 1
0 2 0

⎤
⎦, and

Ac = PAP−1 =
[
A11 A12

A21 A22

]
=

⎡
⎣

0 −1 0
0 0 1
0 2 −1

⎤
⎦ ,

Bc = PB =
[
B1

B2

]
=

⎡
⎣

1 0
0 0
0 1

⎤
⎦ .

It is easy to verify relations (6.57) and (6.58).

Structure Theorem—Controllable Version

The transfer function matrix H(s) of the system ẋ = Ax + Bu, y = Cx +
Du is given by H(s) = C(sI − A)−1B + D. If (A,B) is in controller form
(6.54), thenH(s) can alternatively be characterized by the Structure Theorem
stated in Theorem 6.19 below. This result is very useful in the realization of
systems, which is addressed in Chapter 8 and in the study of state feedback
in Chapter 9.

Let A = Ac = Āc + B̄cAm and B = Bc = B̄cBm, as in (6.55), with
|Bm| �= 0, and let C = Cc and D = Dc. Define

Λ(s) � diag[sμ1 , sμ2 , . . . , sμm ], (6.59)

S(s) � block diag([1, s, . . . , sμi−1]T , i = 1, . . . ,m). (6.60)

Note that S(s) is an n ×m polynomial matrix (n =
∑m

i=1 μi), i.e., a matrix
with polynomials as entries. Now define the m ×m polynomial matrix D(s)
and the p×m polynomial matrix N(s) by

D(s) � B−1
m [Λ(s) −AmS(s)], N(s) � CcS(s) +DcD(s). (6.61)

The following is the controllable version of the Structure Theorem.

Theorem 6.19. H(s) = N(s)D−1(s), where N(s) and D(s) are defined in
(6.61).
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Proof. First, note that

(sI −Ac)S(s) = BcD(s). (6.62)

To see this, we write BcD(s) = B̄cBmB
−1
m [Λ(s) − AmS(s)] = B̄cΛ(s) −

B̄cAmS(s) and (sI −Ac)S(s) = sS(s)− (Āc + B̄cAm)S(s) = (sI − Āc)S(s)−
B̄cAmS(s) = B̄cΛ(s)− B̄cAmS(s), which proves (6.62). Now H(s) = Cc(sI −
Ac)−1Bc +Dc = CcS(s)D−1(s) +Dc = [CcS(s) +DcD(s)]D−1(s) = ND−1.

�

Example 6.20. Let Ac =

⎡
⎣

0 1 0
2 −1 0
1 0 0

⎤
⎦, Bc =

⎡
⎣

0 0
1 1
0 1

⎤
⎦, as in Example 6.17. Here

μ1 = 2, μ2 = 1 and Am =
[

2 −1 0
1 0 0

]
, Bm =

[
1 1
0 1

]
. Then Λ(s) =

[
s2 0
0 s

]
,

S(s) =

⎡
⎣

1 0
s 0
0 1

⎤
⎦ and

D(s) = B−1
m [Λ(s) −AmS(s)] =

[
1 −1
0 1

] [[
s2 0
0 s

]
−
[
−s+ 2 0

1 0

]]

=
[

1 −1
0 1

] [
s2 + s− 2 0

−1 s

]
=
[
s2 + s− 1 −s

−1 s

]
.

Now Cc = [0, 1, 1], and Dc = [0, 0],

N(s) = CcS(s) +DcD(s) = [s, 1],

and

H(s) = [s, 1]
[
s2 + s− 1 −s

−1 s

]−1

= [s, 1]
[
s s
1 s2 + s− 1

]
1

s(s2 + s− 2)

=
1

s(s2 + s− 2)
[s2 + 1, 2s2 + s− 1]

= Cc(sI −Ac)−1Bc +Dc.

Example 6.21. Let Ac =

⎡
⎣

0 1 0
0 0 1
2 1 −2

⎤
⎦, Bc =

⎡
⎣

0
0
1

⎤
⎦, Cc = [0, 1, 0], and Dc = 0

(see Example 6.13). In the present case, we have Am = [2, 1,−2], Bm = 1,
Λ(s) = s3, S(s) = [1, s, s2]T , and

D(s) = 1 · [s3 − [2, 1, −2][1, s, s2]T ] = s3 + 2s2 − s− 2, N(s) = s.

Then

H(s) = N(s)D−1(s) = s/(s3 + 2s2 − s− 2) = Cc(sI −Ac)−1Bc +Dc.
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6.4.2 Observer Forms

Consider the system ẋ = Ax + Bu, y = Cx +Du given in (6.1) and assume
that (A,C) is observable; i.e., rankO = n, where

O =

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ . (6.63)

Also, assume that the p× n matrix C has a full row rank p; i.e.,

rankC = p ≤ n. (6.64)

It is of interest to determine a transformation matrix P so that the equiv-
alent system representation {Ao, Bo, Co, Do} with

Ao = PAP−1, Bo = PB, Co = CP−1, Do = D (6.65)

will have (Ao, Co) in an observer form (defined below). As will become clear in
the following discussion, these forms are dual to the controller forms previously
discussed and can be derived by taking advantage of this fact. In particular,
let Ã � AT , B̃ � CT [(Ã, B̃) is controllable], and determine a nonsingular
transformation P̃ so that Ãc = P̃ ÃP̃−1, B̃c = P̃ B̃ are in controller form given
in (6.54). Then Ao = ÃTc and Co = B̃Tc is in observer form.

It will be demonstrated in the following discussion how to obtain observer
forms directly, in a way that parallels the approach described for controller
forms. This is done for the sake of completeness and to define the observability
indices. The approach of using duality just given can be used in each case to
verify the results.

We first note that if rankC = r < p, an approach analogous to the case
when rankB < m can be followed, as in Subsection 6.4.1. The fact that the
rows of C are not linearly independent means that the same information can
be extracted from only r outputs, and therefore, the choice for the outputs
should perhaps be reconsidered. Now if (A,C) is unobservable, one may use
two steps to first isolate the observable part and then reduce it to the observer
form, in an analogous way to the uncontrollable case previously given.

Single-Output Case (p = 1)

Let
P−1 = Q � [q̃, Aq̃, . . . , An−1q̃], (6.66)

where q̃ is the nth column in O−1. Then
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A0 =

⎡
⎢⎢⎢⎣

0 · · · 0 −α0

1 · · · 0 −α1

...
. . .

...
...

0 · · · 1 −αn−1

⎤
⎥⎥⎥⎦ , Co = [0, . . . , 0, 1], (6.67)

where the αi denote the coefficients of the characteristic polynomial α(s) �
det(sI − A) = sn + αn−1s

n−1 + · · · + α1s + α0. Here Ao = PAP−1 =
Q−1AQ,Co = CP−1 = CQ, and the desired result can be established by
using a proof that is completely analogous to the proof in determining the
(dual) controller form presented in Subsection 6.4.1. Note that Bo = PB does
not have any particular structure. The representation {Ao, Bo, Co, Do} will be
referred to as the observer form of the system.

Reversing the order of columns in P−1 given in (6.66) or selecting P to
be exactly O, or to be equal to the matrix obtained after the order of the
columns in O has been reversed, leads to alternative observer forms in a
manner analogous to the controller form case.

Example 6.22. Let A =

⎡
⎣
−1 0 0

0 1 0
0 0 −2

⎤
⎦ and C = [1,−1, 1]. To derive the ob-

server form (6.67), we could use duality, by defining Ã = AT , B̃ = CT , and
deriving the controller form of Ã, B̃, i.e., by following the procedure outlined
above. We note that the Ã, B̃ are exactly the matrices given in Examples 6.13
and 6.14. As an alternative approach, the observer form is now derived di-
rectly. In particular, we have

O =

⎡
⎣

C
CA
CA2

⎤
⎦ =

⎡
⎣

1 −1 1
−1 −1 −2

1 −1 4

⎤
⎦ ,O−1 =

⎡
⎣

1 −1/2 −1/2
−1/3 −1/2 −1/6
−1/3 0 1/3

⎤
⎦ ,

and in view of (6.66),

Q = P−1 = [q̃, Aq̃, A2q̃] =

⎡
⎣
−1/2 1/2 −1/2
−1/6 −1/6 −1/6

1/3 −2/3 4/3

⎤
⎦ .

Note that q̃ = [−1/2,−1/6, 1/3]T , the last column of O−1. Then

Ao = Q−1AQ =

⎡
⎣

0 0 2
1 0 1
0 1 −2

⎤
⎦ , and Co = CQ = [0, 0, 1],

where |sI − A| = s3 + 2s − s − 2 = s3 + α2s
2 + α1s + α0. Hence, QAo =⎡

⎣
1/2 −1/2 1/2

−1/6 −1/6 −1/6
−2/3 4/3 −8/3

⎤
⎦ = AQ.
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Multi-Output Case (p > 1)

Consider

O =

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
...
cp
c1A

...
cpA

...
c1A

n−1

...
cpA

n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.68)

where c1, . . . , cp denote the p rows of C, and select the first n linearly indepen-
dent rows in O, moving from the top to bottom (rank O = n). Next, reorder
the selected rows by first taking all rows involving c1, then c2, etc., to obtain

Ō �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
c1A

...
c1A

ν1−1

...
cp
...

cpA
νp−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.69)

an n × n matrix. The integer νi denotes the number of rows involving ci in
the set of the first n linearly independent rows found in O when moving from
top to bottom.

Definition 6.23. The p integers νi, i = 1, . . . , p, are the observability indices
of the system, and ν � max νi is called the observability index of the system.
Note that

p∑
i=1

νi = n and pν ≥ n. (6.70)

�

When rankC = p, then νi ≥ 1. Now define

σ̃k �
k∑
i=1

νi k = 1, . . . , p; (6.71)
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i.e., σ̃1 = ν1, σ̃2 = ν1 + ν2, . . . , σ̃p = ν1 + · · · + νp = n. Consider Ō−1 and let
q̃k ∈ Rn, k = 1, . . . , p, represent its σ̃kth column; i.e.,

Ō−1 = [× · · · × q̃1| × · · · × q̃2| · · · | × · · · × q̃p]. (6.72)

Define
P−1 = Q = [q̃1, . . . , Aν1−1q̃1, . . . , q̃p, . . . , A

νp−1q̃p]. (6.73)

Then Ao = PAP−1 = Q−1AQ and Co = CP−1 = CQ are given by

Ao = [Aij ], i, j = 1, . . . , p,

Aii =

⎡
⎢⎣

0 · · · 0 ×

Iνi−1

...
×

⎤
⎥⎦ ∈ Rνi×νi , i = j, Aij =

⎡
⎢⎣

0 · · · 0 ×
...

...
...

0 · · · 0 ×

⎤
⎥⎦ ∈ Rνi×νj , i �= j,

and

Co = [C1, C2, . . . , Cp], Ci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0
...

...
...

0 · · · 0 0
0 · · · 0 1
0 · · · 0 ×
...

...
...

0 · · · 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rp×νi , (6.74)

where the 1 in the last column of Ci occurs at the ith row location (i =
1, . . . , p) and × denotes nonfixed entries. Note that the matrix Bo = PB =
Q−1B does not have any particular structure. Equation (6.74) is a very useful
form (in the observer problem) and shall be referred to as the observer form
of the system.

Analogous to (6.55), we express Ao and Co as

Ao = Āo +ApC̄o, Co = CpC̄o, (6.75)

where Āo = block diag[A1, A2, . . . , Ap] with Ai =

⎡
⎢⎣

0 · · · 0

Iνi−1

...
0

⎤
⎥⎦ ∈ Rνi×νi , C̄o =

block diag([0, . . . , 0, 1]T ∈ Rνi , i = 1, . . . , p), and Ap ∈ Rn×p, and Cp ∈ Rp×p

are appropriate matrices (
∑p

i=1 νi = n). Note that Āo, C̄o are completely
determined by the p observability indices νi, i = 1, . . . , p, and Ap and Cp
contain this information in the σ̃1th, . . . , σ̃pth columns of Ao and in the same
columns of Co, respectively.

Example 6.24. Given A =

⎡
⎣

0 0 0
1 0 2
0 1 −1

⎤
⎦ and C =

[
0 1 0
1 1 0

]
, we wish to reduce

these to observer form. This can be accomplished using duality, i.e., by first
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reducing Ã � AT , B̃ � CT to controller form. Note that Ã, B̃ are the matrices
used in Example 6.17, and therefore, the desired answer is easily obtained.
Presently, we shall follow the direct algorithm described above. We have

O =

⎡
⎣

C
CA
CA2

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0
1 1 0
1 0 2
1 0 2
0 2 −2
0 2 −2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Searching from top to bottom, the first three linearly independent rows are
c1, c2, c1A, and

Ō =

⎡
⎣
c1
c1A
c2

⎤
⎦ =

⎡
⎣

0 1 0
1 0 2
1 1 0

⎤
⎦ .

Note that the observability indices are ν1 = 2, ν2 = 1 and σ̃1 = 2, σ̃2 = 3. We
compute

Ō−1 =

⎡
⎣
−1 0 1
1 0 0

1/2 1/2 −1/2

⎤
⎦ =

⎡
⎣
× 0 1
× 0 0
× 1/2 −1/2

⎤
⎦ .

Then, Q = [q̃1, Aq̃1, q̃2] =

⎡
⎣

0 0 1
0 1 0

1/2 −1/2 −1/2

⎤
⎦ and Q−1 =

⎡
⎣

1 1 2
0 1 0
1 0 0

⎤
⎦. Therefore,

Ao = Q−1AQ =
[
A11 A12

A21 A22

]
=

⎡
⎣

0 2 1
1 −1 0
0 0 0

⎤
⎦ , Co = CQ = [C1

...C2] =
[

0 1 0
0 1 1

]
.

We can also verify (6.47), namely

Ao =

⎡
⎣

0 2 1
1 −1 0
0 0 0

⎤
⎦ = Āo +ApC̄o =

⎡
⎣

0 0 0
1 0 0
0 0 0

⎤
⎦+

⎡
⎣

2 1
−1 0

0 0

⎤
⎦
[

0 1 0
0 0 1

]

and

Co =
[

0 1 0
0 1 1

]
= CpC̄o =

[
1 0
1 1

] [
0 1 0
0 0 1

]
.

Structure Theorem—Observable Version

The transfer function matrix H(s) of system ẋ = Ax + Bu, y = Cx + Du
is given by H(s) = C(sI − A)−1B + D. If (A,C) is in the observer form,
given in (6.74), then H(s) can alternatively be characterized by the Structure
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Theorem stated in Theorem 6.25 below. This result will be very useful in
the realization of systems, addressed in Chapter 8 and also in the study of
observers in Chapter 9.

Let A = Ao = Āo +ApC̄o and C = Co = CpC̄o as in (6.75) with |Cp| �= 0;
let B = Bo and D = Do, and define

Λ̃(s) � diag[sν1 , sν2 , . . . , sνp ], S̃(s) � block diag([1, s, . . . , sνi−1], i = 1, . . . , p).
(6.76)

Note that S̃(s) is a p× n polynomial matrix, where n =
∑p
i=1 νi. Now define

the p× p polynomial matrix D̃(s) and the p×m polynomial matrix Ñ(s) as

D̃(s) � [Λ̃(s) − S̃(s)Ap]C−1
p , Ñ(s) � S̃(s)Bo + D̃(s)Do. (6.77)

The following result is the observable version of the Structure Theorem. It is
the dual of Theorem 6.19 and can therefore be proved using duality arguments.
The proof given is direct.

Theorem 6.25. H(s) = D̃−1(s)Ñ(s), where Ñ(s), D̃(s) are defined in (6.77).

Proof. First we note that

D̃(s)Co = S̃(s)(sI −Ao). (6.78)

To see this, write D̃(s)Co = [Λ̃(s)− S̃(s)Ap]C−1
p CpC̄o = Λ̃(s)C̄o − S̃(s)ApC̄o,

and also, S̃(s)(sI − Ao) = S̃(s)s − S̃(s)(Āo + ApC̄o) = S̃(s)(sI − Āo) −
S̃(s)ApC̄o = Λ̃(s)C̄o− S̃(s)ApC̄o, which proves (6.78). We now obtain H(s) =
Co(sI −Ao)−1Bo+Do = D̃−1(s)S̃(s)Bo +Do = D̃−1(s)[S̃(s)Bo + D̃(s)Do] =
D̃−1(s)Ñ (s). �

Example 6.26. Consider Ao =

⎡
⎣

0 2 1
1 −1 0
0 0 0

⎤
⎦ and Co =

[
0 1 0
0 1 1

]
of Exam-

ple 6.24. Here ν1 = 2, ν2 = 1, Λ̃(s) =
[
s2 0
0 s

]
, and S̃(s) =

[
1 s 0
0 0 1

]
. Then

D̃(s) = [Λ̃(s) − S̃(s)Ap]C−1
p =

⎡
⎣
[
s2 0
0 s

]
−
[

1 s 0
0 0 1

]⎡
⎣

2 1
−1 0

0 0

⎤
⎦
⎤
⎦ .
[

1 0
1 1

]−1

=

⎡
⎣
⎡
⎣ s

2 0
0 s

⎤
⎦−

⎡
⎣−s+ 2 1

0 0

⎤
⎦
⎤
⎦ ·
⎡
⎣ 1 0
−1 1

⎤
⎦=

⎡
⎣ s

2 + s− 2, −1
0 s

⎤
⎦·
⎡
⎣ 1 0
−1 1

⎤
⎦=

⎡
⎣ s

2 + s− 1 −1
−s s

⎤
⎦.

Now if Bo = [0, 1, 1]T , Do = 0, and Ñ(s) = S̃(s)Bo + D̃(s)Do = [s, 1]T , then
H(s) = D̃−1(s)Ñ(s) = 1

s(s2+s−2) [s
2+1, 2s2+s−1]T = Co(sI−Ao)−1Bo+Do.
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6.5 Summary and Highlights

• The standard form for uncontrollable systems is

Â = Q−1AQ =
[
A1 A12

0 A2

]
, B̂ = Q−1B =

[
B1

0

]
, (6.6)

where A1 ∈ Rnr×nr , B1 ∈ Rnr×m, and (A1, B1) is controllable. nr < n is
the rank of the controllability matrix C = [B,AB, . . . , An−1B]; i.e.,

rankC = nr.

• The standard form for unobservable systems is

Â = Q−1AQ =
[
A1 0
A21 A2

]
, Ĉ = CQ =

[
C1

0

]
, (6.15)

where A1 ∈ Rno×no , C1 ∈ Rp×no , and (A1, C1) is observable. no < n is
the rank of the observability matrix

O =

⎡
⎢⎢⎢⎣

Ĉ

ĈÂ
...

ĈÂn−1

⎤
⎥⎥⎥⎦ ;

i.e.,
rankO = no.

• Kalman’s Decomposition Theorem.

Â = Q−1AQ =

⎡
⎢⎢⎣
A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44

⎤
⎥⎥⎦ , B̂ = Q−1B =

⎡
⎢⎢⎣
B1

B2

0
0

⎤
⎥⎥⎦ ,

Ĉ = CQ = [C1, 0, C3, 0],

(6.20)

where (A11, B1, C1) is controllable and observable.
• λi is an uncontrollable eigenvalue if and only if

v̂i[λiI −A,B] = 0, (6.23)

where v̂i is the corresponding (left) eigenvector.
• λi is an unobservable eigenvalue if and only if

[
λiI −A

C

]
vi = 0, (6.24)

where vi is the corresponding (right) eigenvector.
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Controller Forms (for Controllable Systems)

• m = 1 case.

Ac =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−α0 −α1 · · · −αn−1

⎤
⎥⎥⎥⎦ , Bc =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ , (6.36)

where

α(s) � det(sI −A) = sn + αn−1s
n−1 + · · · + α1s+ α0. (6.37)

• m > 1 case.

Ac = [Aij ], i, j = 1, . . . ,m,

Aii =

⎡
⎢⎢⎢⎣

0
... Iμi−1

0
× × · · ·×

⎤
⎥⎥⎥⎦ ∈ Rμi×μi , i = j, Aij =

⎡
⎢⎢⎢⎣

0 · · · 0
...

...
...

0 · · · 0
× × · · · ×

⎤
⎥⎥⎥⎦ ∈ Rμi×μj , i �= j,

and

Bc =

⎡
⎢⎢⎢⎣

B1

B2

...
Bm

⎤
⎥⎥⎥⎦ , Bi =

⎡
⎢⎣

0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 1 × · · · ×

⎤
⎥⎦ ∈ Rμi×m. (6.54)

An example for n = 4, m = 2 and μ1 = 2, μ2 = 2 is

Ac =
[
A11 A12

A21 A22

]
=

⎡
⎢⎢⎣

0 1 0 0
× × × ×
0 0 0 1
× × × ×

⎤
⎥⎥⎦ , Bc =

[
B1

B2

]
=

⎡
⎢⎢⎣

0 0
1 ×
0 0
0 1

⎤
⎥⎥⎦ .

• Ac = Āc + B̄cAm, Bc = B̄cBm. (6.55)

• Structure theorem—controllable version
H(s) = N(s)D−1(s), where

D(s) = B−1
m [Λ(s) −AmS(s)], N(s) = CcS(s) +DcD(s). (6.61)

Note that
(sI −Ac)S(s) = BcD(s). (6.62)



6.6 Notes 271

Observer Forms (for Observable Systems)

• p = 1 case.

A0 =

⎡
⎢⎢⎢⎣

0 · · · 0 −α0

1 · · · 0 −α1

...
. . .

...
...

0 · · · 1 −αn−1

⎤
⎥⎥⎥⎦ , Co = [0, . . . , 0, 1]. (6.67)

• p > 1.
Ao = [Aij ], i, j = 1, . . . , p,

Aii =

⎡
⎢⎣

0 · · · 0 ×

Iνi−1

...
×

⎤
⎥⎦ ∈ Rνi×νi , i = j, Aij =

⎡
⎢⎣

0 · · · 0 ×
...

...
...

0 · · · 0 ×

⎤
⎥⎦ ∈ Rνi×νj , i �= j,

and

Co = [C1, C2, . . . , Cp], Ci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0
...

...
...

0 · · · 0 0
0 · · · 0 1
0 · · · 0 ×
...

...
...

0 · · · 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rp×νi , (6.74)

If (Ac, Bc) is in controller form, (Ao = ATc , Co = BTc ) will be in observer
form.

• Ao = Āo +ApC̄o, Co = CpC̄o. (6.75)

• Structure theorem—observable version
H(s) = D̃−1(s)Ñ(s), where

D̃(s) = [Λ̃(s) − S̃(s)Ap]C−1
p , Ñ(s) = S̃(s)Bo + D̃(s)Do. (6.77)

Note that
D̃(s)Co = S̃(s)(sI −Ao). (6.78)

6.6 Notes

Special state-space forms for controllable and observable systems obtained by
similarity transformations are discussed at length in Kailath [5]. Wolovich [13]
discusses the algorithms for controller and observer forms and introduces the
Structure Theorems. The controller form is based on results by Luenberger [9]
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(see also Popov [10]). A detailed derivation of the controller form can also be
found in Rugh [12].

Original sources for the Canonical Structure Theorem include Kalman [6]
and Gilbert [3].

The eigenvector and rank tests for controllability and observability are
called PBH tests in Kailath [5]. Original sources for these include Popov [10],
Belevich [2], and Hautus [4]. Consult also Rosenbrock [11], and for the case
when A can be diagonalized via a similarity transformation, see Gilbert [3].
Note that in the eigenvalue/eigenvector tests presented herein the uncontrol-
lable (unobservable) eigenvalues are also explicitly identified, which represents
a modification of the above original results.

The fact that the controllability indices appear in the work of Kronecker
was recognized by Rosenbrock [11] and Kalman [8].

For an extensive introductory discussion and a formal definition of canon-
ical forms, see Kailath [5].
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Exercises

6.1. Write software programs to implement the algorithms of Section 6.2. In
particular:
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(a) Given the pair (A,B), where A ∈ Rn×n, B ∈ Rn×m with

rank[B,AB, . . . , An−1B] = nr < n,

reduce this pair to the standard uncontrollable form

Â = PAP−1 =
[
A1 A12

0 A2

]
, B̂ = PB =

[
B1

0

]
,

where (A1, B1) is controllable and A1 ∈ Rnr×nr , B1 ∈ Rnr×m.
(b) Given the controllable pair (A,B), where A ∈ Rn×n, B ∈ Rn×m with

rankB = m, reduce this pair to the controller form Ac = PAP−1, Bc =
PB.

6.2. Determine the uncontrollable modes of each pair (A,B) given below by

(a) Reducing (A,B), using a similarity transformation.
(b) Using eigenvalue/eigenvector criteria:

A =

⎡
⎣

1 0 0
0 −1 0
0 0 2

⎤
⎦ , B =

⎡
⎣

1 0
0 1
0 0

⎤
⎦ and A =

⎡
⎢⎢⎣

0 0 1 0
0 0 1 0
0 0 0 0
0 0 0 −1

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 1
0 0
1 0
0 0

⎤
⎥⎥⎦ .

6.3. Reduce the pair

A =

⎡
⎢⎢⎣

0 0 1 0
3 0 −3 1

−1 1 4 −1
1 0 −1 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 0
1 0
0 1
0 0

⎤
⎥⎥⎦

into controller form Ac = PAP−1, Bc = PB. What is the similarity transfor-
mation matrix in this case? What are the controllability indices?

6.4. Consider

Ac =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−α0 −α1 · · · −αn−1

⎤
⎥⎥⎥⎦ , Bc =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ .

Show that

C = [Bc, AcBc, . . . , An−1
c Bc] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 1
0 0 0 · · · c1
...

...
...

...
0 0 1 · · · cn−3

0 1 c1 · · · cn−2

1 c1 c2 · · · cn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,
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where ck = −
∑k−1
i=0 αn−i−1ck−i−1, k = 1, . . . , n− 1, with c0 = 1. Also, show

that

C−1 =

⎡
⎢⎢⎢⎢⎢⎣

α1 α2 · · · αn−1 1
α2 α3 · · · 1 0
...

...
...

...
αn−1 1 · · · 0 0

1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦
.

6.5. Show that the matrices Ac = PAP−1, Bc = PB are as follows:

(a) Given by (6.41) if P is given by (6.42).
(b) Given by (6.44) if Q(= P−1) is given by (6.43).
(c) Given by (6.46) if Q(= P−1) is given by (6.45).

6.6. Consider the pair (A, b), where A ∈ Rn×n, b ∈ Rn. Show that if more
than one linearly independent eigenvector can be associated with a single
eigenvalue, then (A, b) is uncontrollable. Hint: Use the eigenvector test. Let
v̂1, v̂2 be linearly independent left eigenvectors associated with eigenvalue λ1 =
λ2 = λ. Notice that if v̂1b = α1 and v̂2b = α2, then (α1v̂1 − α1v̂2)b = 0.

6.7. Show that if (A,B) is controllable, where A ∈ Rn×n, and B ∈ Rn×m,
and rankB = m, then rankA ≥ n−m.

6.8. Given A ∈ Rn×n, and B ∈ Rn×m, let rankC = n, where C =
[B,AB, . . . , An−1B]. Consider Â ∈ Rn×n, B̂ ∈ Rn×m with rank Ĉ = n, where
Ĉ = [B̂, ÂB̂, . . . , Ân−1B̂], and assume that P ∈ Rn×n with detP �= 0 exists
such that

P [C, AnB] = [Ĉ, ÂnB̂].

Show that B̂ = PB and Â = PAP−1. Hint: Show that (PA− ÂP )C = 0.

6.9. Let A = Āc + B̄cAm and B = B̄cBm, where the Āc, B̄c are as in (6.55)
with Am ∈ Rm×n, Bm ∈ Rm×m, and |Bm| �= 0. Show that (A,B) is con-
trollable with controllability indices μi. Hint: Use the eigenvalue test to show
that (A,B) is controllable. Use state feedback to simplify (A,B) (see Exer-
cise 6.11), and show that the μi are the controllability indices.

6.10. Show that the controllability indices of the state equation ẋ = Ax +
BGv, where |G| �= 0 and (A,B) is controllable, with A ∈ Rn×n, B ∈ Rn×m,
are the same as the controllability indices of ẋ = Ax + Bu, within re-
ordering. Hint: Write C̄k = [BG,ABG, . . . , Ak−1BG] = [B,AB, . . . , Ak−1B] ·
[block diagG] = Ck · [block diagG] and show that the number of linearly de-
pendent columns in AkBG that occur while searching from left to right in C̄n
is the same as the corresponding number in Cn.

6.11. Consider the state equation ẋ = Ax+Bu, where A ∈ Rn×n, B ∈ Rn×m

with (A,B) controllable. Let the linear state-feedback control law be u =
Fx+Gv, F ∈ Rm×n, G ∈ Rm×m with |G| �= 0. Show that
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(a) (A+BF,BG) is controllable.
(b) The controllability indices of (A+BF,B) are identical to those of (A,B).
(c) The controllability indices of (A+BF,BG) are equal to the controllability

indices of (A,B) within reordering. Hint: Use the eigenvalue test to show
(a). To show (b), use the controller forms in Section 6.4.

6.12. For the system ẋ = Ax + Bu, y = Cx, consider the corresponding
sampled-data system x̄(k + 1) = Āx̄(k) + B̄ū(k), ȳ(k) = C̄x̄(k), where

Ā = eAT , B̄ = [
∫ T

0

eAτdτ ]B, and C̄ = C.

(a) Let the continuous-time system {A,B,C} be controllable (observable),
and assume it is a SISO system. Show that {Ā, B̄, C̄} is controllable (ob-
servable) if and only if the sampling period T is such that

Im (λi − λj) �=
2πk
T

, where k = ±1,±2, . . . whenever Re (λi − λj) = 0,

where {λi} are the eigenvalues of A. Hint: Use the PBH test.
(b) Apply the results of (a) to the double integrator (Example 3.33 in Chap-

ter 3), where A =
[

0 1
0 0

]
, B =

[
0
1

]
, and C = [1, 0], and also to

A =
[

0 1
−1 0

]
, B =

[
0
1

]
, C = [1, 0]. Determine the values of T that

preserve controllability (observability).

6.13. (Spring mass system) Consider the spring mass given in Exer-
cise 3.37.

(a) Is the system controllable from [f1, f2]T ? If yes, reduce (A,B) to controller
form.

(b) Is the system controllable from input f1 only? Is it controllable from f2
only? Discuss your answers.

(c) Let y = Cx with C =
[

1 0 0 0
0 1 0 0

]
. Is the system observable from y? If yes,

reduce (A,C) to observer form.



6

Controllability and Observability:
Special Forms

6.1 Introduction

In this chapter, important special forms for the state-space description of
time-invariant systems are presented. These forms are obtained by means of
similarity transformations and are designed to reveal those features of a system
that are related to the properties of controllability and observability. In Sec-
tion 6.2, special state-space forms that separate the controllable (observable)
from the uncontrollable (unobservable) part of a system are presented. These
forms, referred to as the standard forms for uncontrollable and unobservable
systems, are very useful in establishing a number of results. In particular,
these forms are used in Section 6.3 to derive alternative tests for controllabil-
ity and observability and in Section 7.2 to relate state-space and input–output
descriptions. In Section 6.4 the controller and observer state-space forms are
introduced. These are useful in the study of state-space realizations in Chap-
ter 8 and state feedback and state estimators in Chapter 9.

6.2 Standard Forms for Uncontrollable and
Unobservable Systems

We consider time-invariant systems described by equations of the form

ẋ = Ax+Bu, y = Cx+Du, (6.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. It was shown in the
previous chapter that this system is state reachable if and only if the n×mn
controllability matrix

C � [B,AB, . . . , An−1B] (6.2)

has full row rank n; i.e., rank C = n. If the system is reachable (or controllable-
from-the-origin), then it is also controllable (or controllable-to-the-origin), and
vice versa (see Section 5.3.1).
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It was also shown earlier that system (6.1) is state observable if and only
if the pn× n observability matrix

O �

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ (6.3)

has full column rank; i.e., rankO = n. If the system is observable, then it is
also constructible, and vice versa (see Section 5.4.1).

Similar results were also derived for discrete-time time-invariant systems
described by equations of the form

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k). (6.4)

Again, rankC = n and rankO = n are the necessary and sufficient conditions
for state reachability and observability, respectively. Reachability always im-
plies controllability and observability always implies constructibility, as in the
continuous-time case. However, in the discrete-time case, controllability does
not necessarily imply reachability and constructibility does not imply observ-
ability, unless A is nonsingular (see Sections 5.3.2 and 5.4.2).

Next, we will introduce standard forms for unreachable and unobservable
systems both for the continuous-time and the discrete-time time-invariant
cases. These forms will be referred to as standard forms for uncontrollable
systems, rather than unreachable systems, and standard forms for unobserv-
able systems, respectively.

6.2.1 Standard Form for Uncontrollable Systems

If the system (6.1) [or (6.4)] is not completely reachable or controllable-from-
the-origin, then it is possible to “separate” the controllable part of the system
by means of an appropriate similarity transformation. This amounts to chang-
ing the basis of the state space so that all the vectors in the reachable subspace
Rr have a certain structure. In particular, let rankC = nr < n; i.e., the pair
(A,B) is not controllable. This implies that the subspace Rr = R(C) has
dimension nr. Let {v1, v2, . . . , vnr} be a basis for Rr. These nr vectors can
be, for example, any nr linearly independent columns of C. Define the n × n
similarity transformation matrix

Q � [v1, v2, . . . , vnr , Qn−nr ], (6.5)

where the n × (n − nr) matrix Qn−nr contains n − nr linearly independent
vectors chosen so that Q is nonsingular. There are many such choices. We are
now in a position to prove the following result.
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Lemma 6.1. For (A,B) uncontrollable, there exists a nonsingular matrix Q
such that

Â = Q−1AQ =
[
A1 A12

0 A2

]
and B̂ = Q−1B =

[
B1

0

]
, (6.6)

where A1 ∈ Rnr×nr , B1 ∈ Rnr×m, and the pair (A1, B1) is controllable. The
pair (Â, B̂) is in the standard form for uncontrollable systems.

Proof. We need to show that

AQ = A[v1, . . . , vnr , Qn−nr ] = [v1, . . . , vnr , Qn−nr ]
[
A1 A12

0 A2

]
= QÂ.

Since the subspace Rr is A-invariant (see Lemma 5.19), Avi ∈ Rr, which
can be written as a linear combination of only the nr vectors in a basis of Rr.
Thus, A1 in Â is an nr × nr matrix, and the (n− nr)× nr matrix below it in
Â is a zero matrix. Similarly, we also need to show that

B = [v1, . . . , vnr , Qn−nr ]
[
B1

0

]
= QB̂.

But this is true for similar reasons: The columns of B are in the range of
C or in Rr. �

The n× nm controllability matrix Ĉ of (Â, B̂) is

Ĉ = [B̂, ÂB̂, . . . , Ân−1B̂] =
[
B1 A1B1 · · · An−1

1 B1

0 0 · · · 0

]
, (6.7)

which clearly has rank Ĉ = rank[B1, A1B1, . . . , A
nr−1
1 B1, . . . , A

n−1
1 B1] = nr.

Note that
Ĉ = Q−1C. (6.8)

The range of Ĉ is the controllable subspace of (Â, B̂). It contains vectors only
of the form [αT , 0]T , where α ∈ Rnr . Since dimR(Ĉ) = rank Ĉ = nr, every
vector of the form [αT , 0]T is a controllable (state) vector. In other words, the
similarity transformation has changed the basis of Rn in such a manner so
that all controllable vectors, expressed in terms of this new basis, have this
very particular structure with zeros in the last n− nr entries.

Given system (6.1) [or (6.4)], if a new state x̂(t) is taken to be x̂(t) =
Q−1x(t), then

˙̂x = Âx̂+ B̂u, y = Ĉx̂+ D̂u, (6.9)

where Â = Q−1AQ, B̂ = Q−1B, Ĉ = CQ, and D̂ = D constitutes an equiva-
lent representation (see Section 3.4.3). For Q as in Lemma 6.1, we obtain

[ ˙̂x1

˙̂x2

]
=
[
A1 A12

0 A2

] [
x̂1

x̂2

]
+
[
B1

0

]
u, y = [C1, C2]

[
x̂1

x̂2

]
+Du, (6.10)
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where x̂ = [x̂T1 , x̂
T
2 ]T with x̂1 ∈ Rnr and where (A1, B1) is controllable. The

matrix Ĉ = [C1, C2] does not have any particular structure. This representa-
tion is called a standard form for the uncontrollable system. The state equation
can now be written as

˙̂x1 = A1x̂1 +B1u+A12x̂2, ˙̂x2 = A2x̂2, (6.11)

which shows that the input u does not affect the trajectory component x̂2(t)
at all, and therefore, x̂2(t) is determined only by the value of its initial vector.
The input u certainly affects x̂1(t). Note also that the trajectory component
x̂1(t) is also influenced by x̂2(t). In fact,

x̂1(t) = eA1tx̂1(0) +
∫ t

0

eA1(t−τ)B1u(τ)dτ +
[∫ t

0

eA1(t−τ)A12e
A2τdτ

]
x̂2(0).

(6.12)
The nr eigenvalues of A1 and the corresponding modes are the controllable

eigenvalues and controllable modes of the pair (A,B) or of system (6.1) [or
of (6.4)]. The n− nr eigenvalues of A2 and the corresponding modes are the
uncontrollable eigenvalues and uncontrollable modes, respectively.

It is interesting to observe that in the zero-state response of the system
(zero initial conditions), the uncontrollable modes are completely absent. In
particular, in the solution x(t) = eAtx(0)+

∫ t
0
eA(t−τ)Bu(τ)dτ of ẋ = Ax+Bu,

given x(0), notice that

eA(t−τ)B = [QeÂ(t−τ)Q−1][QB̂] = Q

[
eA1(t−τ)B1

0

]
,

where A1 [from (6.6)] contains only the controllable eigenvalues. Therefore, the
input u(t) cannot directly influence the uncontrollable modes. Note, however,
that the uncontrollable modes do appear in the zero-input response eAtx(0).
The same observations can be made for discrete-time systems (6.4) where the
quantity AkB is of interest.

Example 6.2. Given A =

⎡
⎣

0 −1 1
1 −2 1
0 1 −1

⎤
⎦ and B =

⎡
⎣

1 0
1 1
1 2

⎤
⎦, we wish to reduce

system (6.1) to the standard form (6.6). Here

C = [B,AB,A2B] =

⎡
⎣

1 0 0 1 0 −1
1 1 0 0 0 0
1 2 0 −1 0 1

⎤
⎦

and rankC = nr = 2 < 3 = n. Thus, the subspace Rr = R(C) has dimension
nr = 2, and a basis {v1, v2} can be found by taking two linearly independent
columns of C, say, the first two, to obtain
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Q = [v1, v2, Q1] =

⎡
⎣

1 0 0
1 1 0
1 2 1

⎤
⎦ .

The third column of Q was selected so that Q is nonsingular. Note that the
first two columns of Q could have been the first and fourth columns of C
instead, or any other two linearly independent vectors obtained as a linear
combination of the columns in C. For the above choice for Q, we have

Â = Q−1AQ =

⎡
⎣

1 0 0
−1 1 0

1 −2 1

⎤
⎦
⎡
⎣

0 −1 1
1 −2 1
0 1 −1

⎤
⎦
⎡
⎣

1 0 0
1 1 0
1 2 1

⎤
⎦

=

⎡
⎣

0 −1 1
1 −1 0

−2 4 −2

⎤
⎦
⎡
⎣

1 0 0
1 1 0
1 2 1

⎤
⎦

=

⎡
⎣

0 1 1
0 −1 0
0 0 −2

⎤
⎦ =

[
A1 A12

0 A2

]
,

B̂ = Q−1B =

⎡
⎣

1 0 0
−1 1 0

1 −2 1

⎤
⎦
⎡
⎣

1 0
1 1
1 2

⎤
⎦ =

⎡
⎣

1 0
0 1
0 0

⎤
⎦ =

[
B1

0

]
,

where (A1, B1) is controllable. The matrix A has three eigenvalues at 0, −1,
and −2. It is clear from (Â, B̂) that the eigenvalues 0,−1 are controllable (in
A1), whereas −2 is an uncontrollable eigenvalue (in A2).

6.2.2 Standard Form for Unobservable Systems

The standard form for an unobservable system can be derived in a similar
way as the standard form of uncontrollable systems. If the system (6.1) [or
(6.4)] is not completely state observable, then it is possible to “separate” the
unobservable part of the system by means of a similarity transformation. This
amounts to changing the basis of the state space so that all the vectors in the
unobservable subspace Rō have a certain structure.

As in the preceding discussion concerning systems or pairs (A,B) that are
not completely controllable, we shall select a similarity transformation Q to
reduce a pair (A,C), which is not completely observable, to a particular form.
This can be accomplished in two ways. The simplest way is to invoke duality
and to work with the pair (AD = AT , BD = CT ), which is not controllable
(refer to the discussion of dual systems in Section 5.2.3). If Lemma 6.1 is
applied, then

ÂD = Q−1
D ADQD =

[
AD1 AD12

0 AD2

]
, B̂D = Q−1

D BD =
[
BD1

0

]
,

where (AD1, BD1) is controllable.
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Taking the dual again, we obtain the pair (Â, Ĉ), which has the desired
properties. In particular,

Â = ÂTD = QTDA
T
D(QTD)−1 = QTDA(QTD)−1 =

[
ATD1 0
ATD12 A

T
D2

]
,

Ĉ = B̂TD = BTD(QTD)−1 = C(QTD)−1 = [BTD1, 0],
(6.13)

where (ATD1, B
T
D1) is completely observable by duality (see Lemma 5.7).

Example 6.3. Given A =

⎡
⎣

0 1 0
−1 −2 1

1 1 −1

⎤
⎦ and C =

[
1 1 1
0 1 2

]
, we wish to reduce

system (6.1) to the standard form (6.13). To accomplish this, let AD = AT

and BD = CT . Notice that the pair (AD, BD) is precisely the pair (A,B) of
Example 6.2.

A pair (A,C) can of course also be reduced directly to the standard form
for unobservable systems. This is accomplished in the following.

Consider the system (6.1) [or (6.4)] and the observability matrix O in (6.3).
Let rankO = no < n; i.e., the pair (A,C) is not completely observable. This
implies that the unobservable subspace Rō = N (O) has dimension n−no. Let
{v1, . . . , vn−no} be a basis for Rō, and define an n×n similarity transformation
matrix Q as

Q � [Qno , v1, . . . , vn−no ], (6.14)

where the n×no matrix Qno contains no linearly independent vectors chosen
so that Q is nonsingular. Clearly, there are many such choices.

Lemma 6.4. For (A,C) unobservable, there is a nonsingular matrix Q such
that

Â = Q−1AQ =
[
A1 0
A21 A2

]
and Ĉ = CQ = [C1, 0], (6.15)

where A1 ∈ Rno×no , C1 ∈ Rp×no , and the pair (A1, C1) is observable. The
pair (Â, Ĉ) is in the standard form for unobservable systems.

Proof. We need to show that

AQ = A[Qn0 , v1, . . . , vn−no ] = [Qno , v1, . . . , vn−no ]
[
A1 0
A21 A2

]
= QÂ.

Since the unobservable subspace Rō is A-invariant (see Lemma 5.49), Avi ∈
Rō, which can be written as a linear combination of only the n− no vectors
in a basis of Rō. Thus, A2 in Â is an (n − no) × (n − no) matrix, and the
no × (n − no) matrix above it in Â is a zero matrix. Similarly, we also need
to show that

CQ = C[Qno , v1, . . . , vn−no ] = [C1, 0] = Ĉ.

This is true since Cvi = 0. �



6.2 Standard Forms for Uncontrollable and Unobservable Systems 243

The pn× n observability matrix Ô of (Â, Ĉ) is

Ô =

⎡
⎢⎢⎢⎣

Ĉ

ĈÂ
...

ĈÂn−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

C1 0
C1A1 0

...
...

C1A
n−1
1 0

⎤
⎥⎥⎥⎦ , (6.16)

which clearly has

rank Ô = rank

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1

C1A1

...
C1A

no−1
1
...

C1A
n−1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= no.

Note that
Ô = OQ. (6.17)

The null space of Ô is the unobservable subspace of (Â, Ĉ). It contains vectors
only of the form [0, αT ]T , where α ∈ Rn−n0 . Since dimN (Ô) = n− rank Ô =
n − n0, every vector of the form [0, αT ]T is an unobservable (state) vector.
In other words, the similarity transformation has changed the basis of Rn in
such a manner so that all unobservable vectors expressed in terms of this new
basis have this very particular structure—zeros in the first no entries.

For Q chosen as in Lemma 6.4,
[ ˙̂x1

˙̂x2

]
=
[
A1 0
A21 A2

] [
x̂1

x̂2

]
+
[
B1

B2

]
u, y = [C1, 0]

[
x̂1

x̂2

]
+Du, (6.18)

where x̂ = [x̂T1 , x̂T2 ]T with x̂1 ∈ Rno and (A1, C1) is observable. The matrix
B̂ = [BT1 , BT2 ]T does not have any particular form. This representation is
called a standard form for the unobservable system.

The no eigenvalues of A1 and the corresponding modes are called observ-
able eigenvalues and observable modes of the pair (A,C) or of the system (6.1)
[or of (6.4)]. The n − no eigenvalues of A2 and the corresponding modes are
called unobservable eigenvalues and unobservable modes, respectively.

Notice that the trajectory component x̂(t), which is observed via the out-
put y, is not influenced at all by x̂2, the trajectory of which is determined
primarily by the eigenvalues of A2.

The unobservable modes of the system are completely absent from the
output. In particular, given ẋ = Ax + Bu, y = Cx with initial state x(0), we
have

y(t) = CeAtx(0) +
∫ t

0

CeA(t−τ)Bu(τ)dτ
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and CeAt = [ĈQ−1][QeÂtQ−1] = [C1e
A1t, 0]Q−1, where A1 [from (6.15)] con-

tains only the observable eigenvalues. Therefore, the unobservable modes can-
not be seen by observing the output. The same observations can be made for
discrete-time systems where the quantity CAk is of interest.

Example 6.5. Given A =
[

0 1
−2 −3

]
and C = [1, 1], we wish to reduce

system (6.1) to the standard form (6.15). To accomplish this, we compute

O =
[
C
CA

]
=
[

1 1
−2 −2

]
, which has rankO = no = 1 < 2 = n. Therefore,

the unobservable subspace Rō = N (O) has dimension n− no = 1. In view of
(6.14),

Q = [Q1, v1] =
[

0 1
1 −1

]
,

where v1 = [1,−1]T is a basis for Rō, and Q1 was chosen so that Q is nonsin-
gular. Then

Â = Q−1AQ =
[

1 1
1 0

] [
0 1

−2 −3

] [
0 1
1 −1

]

=
[
−2 0

1 −1

]
=
[
A1 0
A21 A2

]
,

Ĉ = CQ = [1, 1]
[

0 1
1 −1

]
= [1, 0] = [C1, 0],

where (A1, C1) is observable. The matrix A has two eigenvalues at −1,−2. It
is clear from (Â, Ĉ) that the eigenvalue −2 is observable (in A1), whereas −1
is an unobservable eigenvalue (in A2).

6.2.3 Kalman’s Decomposition Theorem

Lemmas 6.1 and 6.4 can be combined to obtain an equivalent representation
of (6.1) where the reachable and observable parts of this system can readily be
identified. We consider system (6.9) and proceed, in the following, to construct
the n× n required similarity transformation matrix Q.

As before, we let nr denote the dimension of the controllable subspace Rr;
i.e., nr = dimRr = dimR(C) = rankC. The dimension of the unobservable
subspace Rō = N (O) is given by nō = n − rankO = n − no. Let nrō be the
dimension of the subspace Rrō � Rr ∩Rō, which contains all the state vectors
x ∈ Rn that are controllable but unobservable. We choose

Q � [v1, . . . , vnr−nrō+1, . . . , vnr , QN , v̂1, . . . , v̂nō−nrō ], (6.19)

where the nr vectors in {v1, . . . , vnr} form a basis for Rr. The last nrō vectors
{vnr−nrō+1, . . . , vnr} in the basis for Rr are chosen so that they form a basis
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for Rrō = Rr∩Rō. The nō−nrō = (n−no−nrō) vectors {v̂1, . . . , v̂nō−nrō} are
selected so that when taken together with the nrō vectors {vnr−nrō+1, . . . , vnr}
they form a basis for Rō, the unobservable subspace. The remaining N =
n−(nr+nō−nrō) columns in QN are simply selected so that Q is nonsingular.

The following theorem is called the Canonical Structure Theorem or
Kalman’s Decomposition Theorem.

Theorem 6.6. For (A,B) uncontrollable and (A,C) unobservable, there is a
nonsingular matrix Q such that

Â = Q−1AQ =

⎡
⎢⎢⎣
A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44

⎤
⎥⎥⎦ , B̂ = Q−1B =

⎡
⎢⎢⎣
B1

B2

0
0

⎤
⎥⎥⎦ ,

Ĉ = CQ = [C1, 0, C3, 0],

(6.20)

where

(i) (Ac, Bc) with

Ac �
[
A11 0
A21 A22

]
and Bc �

[
B1

B2

]

is controllable, where Ac ∈ Rnr×nr , Bc ∈ Rnr×m;
(ii) (Ao, Co) with

Ao �
[
A11 A13

0 A33

]
and Co � [C1, C3]

is observable, where Ao ∈ Rno×no and Co ∈ Rp×no and where the dimen-
sions of the matrices Aij , Bi, and Cj are as follows:

A11 : (nr − nrō) × (nr − nrō), A22 : nrō × nrō ,

A33 : (n− (nr + nō − nrō)) × A44 : (nō − nrō) × (nō − nrō),
(n− (nr + nō − nrō)),

B1 : (nr − nrō) ×m, B2 : nrō ×m,

C1 : p× (nr − nrō), C3 : p× (n− (nr + nō − nrō));

(iii) the triple (A11, B1, C1) is such that (A11, B1) is controllable and (A11, C1)
is observable.

Proof. For details of the proof, refer to [6] and to [7], where further clarifica-
tions to [6] and an updated method of selecting Q are given. �

The similarity transformation (6.19) has altered the basis of the state space
in such a manner that the vectors in the controllable subspace Rr, the vectors
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in the unobservable subspace Rō, and the vectors in the subspace Rrō ∩ Rō
all have specific forms. To see this, we construct the controllability matrix
Ĉ = [B̂, . . . , Ân−1B̂] whose range is the controllable subspace and the observ-
ability matrix Ô = [ĈT , . . . , (ĈÂn−1)T ]T , whose null space is the unobservable
subspace. Then, all controllable states are of the form [xT1 , x

T
2 , 0, 0]T , all the

unobservable ones have the structure [0, xT2 , 0, xT4 ]T , and states of the form
[0, xT2 , 0, 0]T characterize Rrō; i.e., they are controllable but unobservable.

Similarly to the previous two lemmas, the eigenvalues of Â, or of A, are
the eigenvalues of A11, A22, A33, and A44; i.e.,

|λI −A| = |λI − Â| = |λI −A11||λI −A22||λI −A33||λI −A44|. (6.21)

If we consider the representation {Â, B̂, Ĉ, D̂} given in (6.20), then

⎡
⎢⎢⎣

˙̂x1

˙̂x2

˙̂x3

˙̂x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x̂1

x̂2

x̂3

x̂4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
B1

B2

0
0

⎤
⎥⎥⎦u,

y = [C1, 0, C3, 0]

⎡
⎢⎢⎣
x̂1

x̂2

x̂3

x̂4

⎤
⎥⎥⎦+Du.

(6.22)

This shows that the trajectory components corresponding to x̂3 and x̂4 are
not affected by the input u. The modes associated with the eigenvalues of
A33 and A44 determine the trajectory components for x̂3 and x̂4 (compare
this with the results in Lemma 6.1). Similarly to Lemma 6.4, the trajectory
components for x̂2 and x̂4 are not influenced by x̂1 and x̂3 (observed via y),
and they are determined by the eigenvalues of A22 and A44. The following is
now apparent (see also Figure 6.1):

The eigenvalues of

A11 are controllable and observable,
A22 are controllable and unobservable,
A33 are uncontrollable and observable,
A44 are uncontrollable and unobservable.

Example 6.7. Given A =

⎡
⎣

0 −1 1
1 −2 1
0 1 −1

⎤
⎦, B =

⎡
⎣

1 0
1 1
1 2

⎤
⎦, and C = [0, 1, 0], we

wish to reduce system (6.1) to the canonical structure (or Kalman decom-
position) form (6.20). The appropriate transformation matrix Q is given by
(6.19). The matrix C was found in Example 6.2 and
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u

c

o

c o

c o

c o

c o

c

y

–

– –

–

–

Figure 6.1. Canonical decomposition (c and c̄ denote controllable and uncontrol-
lable, respectively). The connections of the c/c̄ and o/ō parts of the system to the
input and output are emphasized. Note that the impulse response (transfer func-
tion) of the system, which is an input–output description only, represents the part
of the system that is both controllable and observable (see Chapter 7).

O =

⎡
⎣

C
CA
CA2

⎤
⎦ =

⎡
⎣

0 1 0
1 −2 1

−2 4 −2

⎤
⎦ .

A basis for Rō = N (O) is {(1, 0, −1)T }. Note that nr = 2, nō = 1, and
nrō = 1. Therefore,

Q = [v1, v2, QN ] =

⎡
⎣

1 1 0
1 0 0
1 −1 1

⎤
⎦

is an appropriate similarity matrix (check that detQ �= 0). We compute

Â = Q−1AQ =

⎡
⎣

0 1 0
1 −1 0
1 −2 1

⎤
⎦
⎡
⎣

0 −1 1
1 −2 1
0 1 −1

⎤
⎦
⎡
⎣

1 1 0
1 0 0
1 −1 1

⎤
⎦

=

⎡
⎣

0 0 1
0 −1 0
0 0 −2

⎤
⎦ =

⎡
⎣
A11 0 A13

A21 A22 A23

0 0 A33

⎤
⎦ ,

B̂ = Q−1B =

⎡
⎣

0 1 0
1 −1 0
1 −2 1

⎤
⎦
⎡
⎣

1 0
1 1
1 2

⎤
⎦ =

⎡
⎣

1 1
0 −1
0 0

⎤
⎦ =

⎡
⎣
B1

B2

0

⎤
⎦ ,
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and

Ĉ = CQ = [0, 1, 0]

⎡
⎣

1 1 0
1 0 0
1 −1 1

⎤
⎦ = [1, 0, 0] = [C1, 0, C3].

The eigenvalue 0 (in A11) is controllable and observable, the eigenvalue
−1 (in A22) is controllable and unobservable and the eigenvalue −2 (in A33)
is uncontrollable and observable. There are no eigenvalues that are both un-
controllable and unobservable.

6.3 Eigenvalue/Eigenvector Tests for Controllability and
Observability

There are tests for controllability and observability for both continuous- and
discrete-time time-invariant systems that involve the eigenvalues and eigen-
vectors of A. Some of these criteria are called PBH tests, after the initials
of the codiscoverers (Popov–Belevitch–Hautus) of these tests. These tests are
useful in theoretical analysis, and in addition, they are also attractive as com-
putational tools.

Theorem 6.8. (i) The pair (A,B) is uncontrollable if and only if there exists
a 1 × n (in general) complex vector v̂i �= 0 such that

v̂i[λiI −A,B] = 0, (6.23)

where λi is some complex scalar.
(ii) The pair (A,C) is unobservable if and only if there exists an n × 1 (in

general) complex vector vi �= 0 such that
[
λiI −A

C

]
vi = 0, (6.24)

where λi is some complex scalar.

Proof. Only part (i) will be considered since (ii) can be proved using a similar
argument or, directly, by duality arguments.

(Sufficiency) Assume that (6.23) is satisfied. In view of v̂iA = λiv̂i and
v̂iB = 0, v̂iAB = λiv̂iB = 0 and v̂iA

kB = 0 k = 0, 1, 2, . . . . Therefore,
v̂iC = v̂i[B,AB, . . . , An−1B] = 0, which shows that (A,B) is not completely
controllable.

(Necessity) Let (A,B) be uncontrollable and assume without loss of gen-
erality the standard form for A and B given in Lemma 6.1. We will show
that there exist λi and v̂i so that (6.23) holds. Let λi be an uncontrollable
eigenvalue, and let v̂i = [0, α], αT ∈ Cn−nr , where α(λiI − A2) = 0; i.e.,
α is a left eigenvector of A2 corresponding to λi. Then v̂i[λiI − A,B] =
[0, α(λiI −A2), 0] = 0; i.e., (6.23) is satisfied. �
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Corollary 6.9. (i) λi is an uncontrollable eigenvalue of (A,B) if and only if
there exists a 1×n (in general) complex vector v̂i �= 0 that satisfies (6.23).

(ii) λi is an unobservable eigenvalue of (A,C) if and only if there exists an
n× 1 (in general) complex vector vi �= 0 that satisfies (6.24).

Proof. See [1, p. 273, Corollary 4.6]. �

Example 6.10. Given are A =

⎡
⎣

0 −1 1
1 −2 1
0 1 −1

⎤
⎦ , B =

⎡
⎣

1 0
1 1
1 2

⎤
⎦, and C = [0, 1, 0],

as in Example 6.7. The matrix A has three eigenvalues, λ1 = 0, λ2 = −1,
and λ3 = −2, with corresponding right eigenvectors v1 = [1, 1, 1]T , v2 =
[1, 0, −1]T , v3 = [1, 1, −1]T and with left eigenvectors v̂1 = [1/2, 0, 1/2],
v̂2 = [1, −1, 0], and v̂3 = [−1/2, 1, −1/2], respectively.

In view of Corollary 6.9, v̂1B = [1, 1] �= 0 implies that λ1 = 0 is control-
lable. This is because v̂1 is the only nonzero vector (within a multiplication
by a nonzero scalar) that satisfies v̂1(λ1I − A) = 0, and so v̂1B �= 0 implies
that the only 1×3 vector α that satisfies α[λ1I−A,B] = 0 is the zero vector,
which in turn implies that λ1 is controllable in view of (i) of Corollary 6.9.
For similar reasons Cv1 = 1 �= 0 implies that λ1 = 0 is observable; see (ii) of
Corollary 6.9. Similarly, v̂2B = [0,−1] �= 0 implies that λ2 = −1 is control-
lable, and Cv2 = 0 implies that λ2 = −1 is unobservable. Also, v̂3B = [0, 0]
implies that λ3 = −2 is uncontrollable, and Cv3 = 1 �= 0 implies that λ3 = −2
is observable. These results agree with the results derived in Example 6.7.

Corollary 6.11. (Rank Tests)

(ia) The pair (A,B) is controllable if and only if

rank[λI −A,B] = n (6.25)

for all complex numbers λ, or for all n eigenvalues λi of A.
(ib) λi is an uncontrollable eigenvalue of A if and only if

rank[λiI −A,B] < n. (6.26)

(iia) The pair (A,C) is observable if and only if

rank
[
λI −A
C

]
= n (6.27)

for all complex numbers λ, or for all n eigenvalues λi.
(iib) λi is an unobservable eigenvalue of A if and only if

rank
[
λiI −A
C

]
< n. (6.28)
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Proof. The proofs follow in a straightforward manner from Theorem 6.8. No-
tice that the only values of λ that can possibly reduce the rank of [λI −A,B]
are the eigenvalues of A. �

Example 6.12. If in Example 6.10 the eigenvalues λ1, λ2, λ3 of A are known,
but the corresponding eigenvectors are not, consider the system matrix

P (s) =
[
sI − A B
−C 0

]
=

⎡
⎢⎢⎣

s 1 −1 1 0
−1 s+ 2 −1 1 1

0 −1 s+ 1 1 2
0 −1 0 0 0

⎤
⎥⎥⎦

and determine rank[λiI −A,B] and rank
[
λiI −A

C

]
. Notice that

rank
[
sI −A
C

]

s=λ2

= rank

⎡
⎢⎢⎣
−1 1 −1
−1 1 −1

0 −1 0
0 1 0

⎤
⎥⎥⎦ = 2 < 3 = n

and

rank[sI −A,B]s=λ3 = rank

⎡
⎣
−2 2 −1 1 0
−1 0 −1 1 1

0 −1 −1 1 2

⎤
⎦ = 2 < 3 = n.

In view of Corollary 6.11, λ2 = −1 is unobservable and λ3 = −2 is uncon-
trollable.

6.4 Controller and Observer Forms

It has been seen several times in this book that equivalent representations of
systems

ẋ = Ax+Bu, y = Cx+Du, (6.29)

given by the equations

˙̂x = Âx̂+ B̂u, y = Ĉx̂+ D̂u, (6.30)

where x̂ = Px, Â = PAP−1, B̂ = PB, Ĉ = CP−1, and D̂ = D may offer
advantages over the original representation when P (or Q = P−1) is chosen in
an appropriate manner. This is the case when P (or Q) is such that the new
basis of the state space provides a natural setting for the properties of interest.
This section shows how to select Q when (A,B) is controllable [or (A,C) is
observable] to obtain the controller and observer forms. These special forms
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are very useful, in realizations discussed in Chapter 8 and especially when
studying state-feedback control (and state observers) discussed in Chapter 9.
They are also very useful in establishing a convenient way to transition be-
tween state-space representations and another very useful class of equivalent
internal representations, the polynomial matrix representations.

Controller forms are considered first. Observer forms can of course be
obtained directly in a similar manner to the controller forms, or they may be
obtained by duality. This is addressed in the latter part of this section.

6.4.1 Controller Forms

The controller form is a particular system representation where both matrices
(A,B) have a certain special structure. Since in this caseA is in the companion
form, the controller form is sometimes also referred to as the controllable
companion form. Consider the system

ẋ = Ax+Bu, y = Cx+Du, (6.31)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m and let (A,B) be
controllable. Then rank C = n, where

C = [B,AB, . . . , An−1B]. (6.32)

Assume that
rankB = m ≤ n. (6.33)

Under these assumptions, rankC = n and rankB = m. We will show how
to obtain an equivalent pair (Â, B̂) in controller form, first for the single-
input case (m = 1) and then for the multi-input case (m > 1). Before this is
accomplished, we discuss how to deal with two special cases that do not satisfy
the above assumptions that rankB = m and that (A,B) is controllable.

1. If them columns ofB are not linearly independent (rankB = r < m), then
there exists an m×m nonsingular matrix K so that BK = [Br, 0], where
the r columns of Br are linearly independent (rankBr = r). Note that

ẋ = Ax+Bu = Ax+(BK)(K−1u) = Ax+ [Br , 0]
[

ur
um−r

]
= Ax+Brur,

which shows that when rankB = r < m the same input action to the
system can be accomplished by only r inputs, instead of m inputs. The
pair (A,Br), which is controllable when (A,B) is controllable, can now
be reduced to controller form, using the method described below.

2. When (A,B) is not completely controllable, then a two-step approach can
be taken. First, the controllable part is isolated (see Subsection 6.2.1) and
then is reduced to the controller form, using the methods of this section.
In particular, consider the system ẋ = Ax + Bu with A ∈ Rn×n, B ∈
Rn×m, and rankB = m. Let rank[B,AB, . . . , An−1B] = nr < n. Then
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there exists a transformation P1 such that P1AP
−1
1 =

[
A1 A12

0 A2

]
and

P1B =
[
B1

0

]
, where A1 ∈ Rnr×nr , B1 ∈ Rnr×m, and (A1, B1) is con-

trollable (Subsection 6.2.1). Since (A1, B1) is controllable, there exists a
transformation P2 such that P2A1P

−1
2 = A1c, and P2B1 = B1c, where

A1c, B1c is in controller form, defined below. Combining, we obtain

PAP−1 =
[
A1c P2A12

0 A2

]
, and PB =

[
B1c

0

]
(6.34)

[where A1c ∈ Rnr×nr , B1c ∈ Rnr×m, and (A1c, B1c) is controllable], which
is in controller form. Note that

P =
[
P2 0
0 I

]
P1. (6.35)

Single-Input Case (m = 1)

The representation {Ac, Bc, Cc, Dc} in controller form is given by Ac � Â =
PAP−1 and Bc � B̂ = PB with

Ac =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−α0 −α1 · · · −αn−1

⎤
⎥⎥⎥⎦ , Bc =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ , (6.36)

where the coefficients αi are the coefficients of the characteristic polynomial
α(s) of A; that is,

α(s) � det(sI − A) = sn + αn−1s
n−1 + · · · + α1s+ α0. (6.37)

Note that Cc � Ĉ = CP−1 and Dc = D do not have any particular struc-
ture. The structure of (Ac, Bc) is very useful (in control problems), and the
representation {Ac, Bc, Cc, Dc} shall be referred to as the controller form of
the system. The similarity transformation matrix P is obtained as follows.
The controllability matrix C = [B,AB, . . . , An−1B] is in this case an n × n

nonsingular matrix. Let C−1 =
[
×
q

]
, where q is the nth row of C−1 and ×

indicates the remaining entries of C−1. Then

P �

⎡
⎢⎢⎣

q
qA
· · ·

qAn−1

⎤
⎥⎥⎦ . (6.38)
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To show that PAP−1 = Ac and PB = Bc given in (6.36), note first that
qAi−1B = 0 i = 1, . . . , n− 1 and qAn−1 B = 1. This can be verified from the
definition of q, which implies that q C = [0, 0, . . . , 1]. Now

PC = P [B,AB, . . . , An−1B] =

⎡
⎢⎢⎢⎣

0 0 · · · · · · 1
0 0 · · · 1 ×
... 1

...
...

1 × · · · × ×

⎤
⎥⎥⎥⎦ = Cc, (6.39)

which implies that |PC| = |P | |C| �= 0 or that |P | �= 0. Therefore, P qualifies
as a similarity transformation matrix. In view of (6.39), PB = [0, 0, . . . , 1]T =
Bc. Furthermore,

AcP =

⎡
⎢⎢⎢⎣

qA
...

qAn−1

qAn

⎤
⎥⎥⎥⎦ = PA, (6.40)

where in the last row of AcP , the relation −
∑n−1
i=0 αiA

i = An was used [which
is the Cayley–Hamilton Theorem, namely, α(A) = 0].

Example 6.13. Let A =

⎡
⎣
−1 0 0

0 1 0
0 0 −2

⎤
⎦ and B =

⎡
⎣

1
−1

1

⎤
⎦. Since n = 3 and

|sI −A| = (s+1)(s− 1)(s+2) = s3 +2s2 − s− 2, {Ac, Bc} in controller form
is given by

Ac =

⎡
⎣

0 1 0
0 0 1
2 1 −2

⎤
⎦ and Bc =

⎡
⎣

0
0
1

⎤
⎦ .

The transformation matrix P that reduces (A,B) to (Ac = PAP−1, Bc =
PB) is now derived. We have

C = [B,AB,A2B] =

⎡
⎣

1 −1 1
−1 −1 −1

1 −2 4

⎤
⎦ and C−1 =

⎡
⎣

1 −1/3 −1/3
−1/2 −1/2 0
−1/2 −1/6 1/3

⎤
⎦ .

The third (the nth) row of C−1 is q = [−1/2,−1/6, 1/3], and therefore,

P �

⎡
⎣

q
qA
qA2

⎤
⎦ =

⎡
⎣
−1/2 −1/6 1/3

1/2 −1/6 −2/3
−1/2 −1/6 4/3

⎤
⎦ .

It can now easily be verified that Ac = PAP−1, or

AcP =

⎡
⎣

1/2 −1/6 −2/3
−1/2 −1/6 −2/3

1/2 −1/6 −8/3

⎤
⎦ = PA,

and that Bc = PB.
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An alternative form to (6.36) is

Ac1 =

⎡
⎢⎢⎢⎣

−αn−1 · · · −α1 −α0

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

⎤
⎥⎥⎥⎦ , Bc1 =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ , (6.41)

which is obtained if the similarity transformation matrix is taken to be

P1 �

⎡
⎢⎢⎢⎣

qAn−1

...
qA
q

⎤
⎥⎥⎥⎦ , (6.42)

i.e., by reversing the order of the rows of P in (6.38). (See Exercise 6.5 and
Example 6.14.)

In the above, Ac is a companion matrix of the form
[

0 I
× ×

]
or
[
× ×
I 0

]
. It

could also be of the form
[

0 ×
I ×

]
or
[
× 0
× I

]
with coefficients −[α0, . . . , αn−1]T

in the last or the first column. It is shown here, for completeness, how to de-
termine controller forms where Ac are such companion matrices. In particular,
if

Q2 = P−1
2 = [B,AB, . . . , An−1B] = C, (6.43)

then

Ac2 = Q−1
2 AQ2 =

⎡
⎢⎢⎢⎣

0 · · · 0 −α0

1 · · · 0 −α1

...
. . .

...
...

0 · · · 1 −αn−1

⎤
⎥⎥⎥⎦ , Bc2 = Q−1

2 B =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ . (6.44)

Also, if
Q3 = P−1

3 = [An−1B, . . . , B], (6.45)

then

Ac3 = Q−1
3 AQ3 =

⎡
⎢⎢⎢⎣

−αn−1 1 · · · 0
...

...
. . .

...
−α1 0 · · · 1
−α0 0 · · · 0

⎤
⎥⎥⎥⎦ , Bc3 = Q−1

3 B =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ . (6.46)

(Ac, Bc) in (6.44) and (6.46) are also in controller canonical or controllable
companion form. (See also Exercise 6.5 and Example 6.14.)
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Example 6.14. Let A =

⎡
⎣
−1 0 0

0 1 0
0 0 −2

⎤
⎦ and B =

⎡
⎣

1
−1

1

⎤
⎦, as in Example 6.13.

Alternative controller forms can be derived for different P . In particular, if

(i) P = P1 =

⎡
⎣
qA2

qA
q

⎤
⎦ =

⎡
⎣
−1/2 −1/6 4/3

1/2 −1/6 −2/3
−1/2 −1/6 1/3

⎤
⎦, as in (6.42) (C, C−1, and q

were found in Example 6.13), then

Ac1 =

⎡
⎣
−2 1 2

1 0 0
0 1 0

⎤
⎦ , Bc1 =

⎡
⎣

1
0
0

⎤
⎦ ,

as in (6.41). Note that in the present caseAc1P1 =

⎡
⎣

1/2 −1/6 −8/3
−1/2 −1/6 4/3

1/2 −1/6 −2/3

⎤
⎦ =

P1A, Bc1 = P1B.

(ii) Q2 = C =

⎡
⎣

1 −1 1
−1 −1 −1

1 −2 4

⎤
⎦ , as in (6.43). Then

Ac2 =

⎡
⎣

0 0 2
1 0 1
0 1 −2

⎤
⎦ , Bc2 = Q−1

2 B =

⎡
⎣

1
0
0

⎤
⎦ ,

as in (6.44).

(iii) Q3 = [A2B,AB,B] =

⎡
⎣

1 −1 1
−1 −1 −1

4 −2 1

⎤
⎦, as in (6.45). Then

Ac3 =

⎡
⎣
−2 1 0

1 0 1
2 0 0

⎤
⎦ , Bc3 =

⎡
⎣

0
0
1

⎤
⎦ ,

as in (6.46). Note that Q3Ac3 =

⎡
⎣
−1 1 −1
−1 −1 −1
−8 4 −2

⎤
⎦ = AQ3, Q3Bc3 =

⎡
⎣

1
−1

1

⎤
⎦ = B.
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Multi-Input Case (m > 1)

In this case, the n × mn matrix C given in (6.32) is not square, and there
are typically many sets of n columns of C that are linearly independent
(rankC = n). Depending on which columns are chosen and in what order,
different controller forms (controllable companion forms) are derived. Note
that in the case when m = 1, four different controller forms were derived,
even though there was only one set of n linearly independent columns. In the
present case there are many more such choices. The form that will be used
most often in the following is a generalization of (Ac, Bc) given in (6.36). Fur-
ther discussion including derivation and alternative forms may be found in [1,
Subsection 3.4D].

Let Â = PAP−1 and B̂ = PB, where P is constructed as follows. Consider

C = [B,AB, . . . , An−1B]

= [b1, . . . , bm, Ab1, . . . , Abm, . . . , An−1b1, . . . , A
n−1bm], (6.47)

where the b1, . . . , bm are the m columns of B. Select, starting from the left and
moving to the right, the first n independent columns (rank C = n). Reorder
these columns by taking first b1, Ab1, A2b1, etc., until all columns involving
b1 have been taken; then take b2, Ab2, etc.; and lastly, take bm, Abm, etc., to
obtain

C̄ � [b1, Ab1, . . . , Aμ1−1b1, . . . , bm, . . . , A
μm−1bm], (6.48)

an n× n matrix. The integer μi denotes the number of columns involving bi
in the set of the first n linearly independent columns found in C when moving
from left to right.

Definition 6.15. The m integers μi, i = 1, . . . ,m, are the controllability
indices of the system, and μ � maxμi is called the controllability index of
the system. Note that

m∑
i=1

μi = n and mμ ≥ n. (6.49)

�

An alternative but equivalent definition for μ is that μ is the minimum
integer k such that

rank[B,AB, . . . , Ak−1B] = n. (6.50)

Notice that in (6.48) all columns of B are always present since rank B = m.
This implies that μi ≥ 1 for all i. Notice further that if Akbi is present, then
Ak−1bi must also be present.

Now define

σk �
k∑
i=1

μi, k = 1, . . . ,m; (6.51)
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i.e., σ1 = μ1, σ2 = μ1 + μ2, . . . , σm = μ1 + · · · + μm = n. Also, consider C̄−1

and let qk, where qTk ∈ Rn, k = 1, . . . ,m, denote its σkth row; i.e.,

C̄−1 = [×, . . . ,×, qT1
... · · ·

...×, . . . ,×, qTm]T . (6.52)

Next, define

P �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
q1A

...
q1A

μ1−1

· · ·
...
· · ·
qm
qmA

...
qmA

μm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.53)

It can now be shown that PAP−1 = Ac and PB = Bc with

Ac = [Aij ], i, j = 1, . . . ,m,

Aii =

⎡
⎢⎢⎢⎣

0
... Iμi−1

0
× × · · ·×

⎤
⎥⎥⎥⎦ ∈ Rμi×μi , i = j, Aij =

⎡
⎢⎢⎢⎣

0 · · · 0
...

...
...

0 · · · 0
× × · · · ×

⎤
⎥⎥⎥⎦ ∈ Rμi×μj , i �= j,

and

Bc =

⎡
⎢⎢⎢⎣

B1

B2

...
Bm

⎤
⎥⎥⎥⎦ , Bi =

⎡
⎢⎣

0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 1 × · · · ×

⎤
⎥⎦ ∈ Rμi×m, (6.54)

where the 1 in the last row of Bi occurs at the ith column location, i =
1, . . . ,m, and × denotes nonfixed entries. Note that Cc = CP−1 does not
have any particular structure. The expression (6.54) is a very useful form (in
control problems) and shall be referred to as the controller form of the system.
The derivation of this result is discussed in [1, Subsection 3.4D] .

Example 6.16. Given are A ∈ Rn×n and B ∈ Rn×m with (A,B) controllable
and with rankB = m. Let n = 4 and m = 2. Then there must be two
controllability indices μ1 and μ2 such that n = 4 =

∑2
i=1 μi = μ1 +μ2. Under

these conditions, there are three possibilities:
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(i) μ1 = 2, μ2 = 2,

Ac =
[
A11 A12

A21 A22

]
=

⎡
⎢⎢⎣

0 1 0 0
× × × ×
0 0 0 1
× × × ×

⎤
⎥⎥⎦ , Bc =

[
B1

B2

]
=

⎡
⎢⎢⎣

0 0
1 ×
0 0
0 1

⎤
⎥⎥⎦ .

(ii) μ1 = 1, μ2 = 3,

Ac =

⎡
⎢⎢⎣
× × × ×
0 0 1 0
0 0 0 1
× × × ×

⎤
⎥⎥⎦ , Bc =

⎡
⎢⎢⎣

1 ×
0 0
0 0
0 1

⎤
⎥⎥⎦ .

(iii) μ1 = 3, μ2 = 1,

Ac =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
× × × ×
× × × ×

⎤
⎥⎥⎦ , Bc =

⎡
⎢⎢⎣

0 0
0 0
1 ×
0 1

⎤
⎥⎥⎦ .

It is possible to write Ac, Bc in a systematic and perhaps more transparent
way. In particular, notice that Ac, Bc in (6.54) can be expressed as

Ac = Āc + B̄cAm, Bc = B̄cBm, (6.55)

where Āc = block diag[Ā11, Ā22, . . . , Āmm] with

Āii =

⎡
⎣

0
... Iμi−1

0
0 0···0

⎤
⎦ ∈ Rμi×μi , B̄c = block diag

([ 0
...
0
1

]
∈ Rμi×1, i = 1, . . . ,m

)
,

and Am ∈ Rm×n and Bm ∈ Rm×m are some appropriate matrices with∑m
i=1 μi = n. Note that the matrices Āc, B̄c are completely determined by

the m controllability indices μi, i = 1, . . . ,m. The matrices Am and Bm con-
sist of the σ1th, σ2th, . . . , σmth rows of Ac (entries denoted by ×) and the
same rows of Bc, respectively [see (6.57) and (6.58) below].

Example 6.17. Let A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ and B =

⎡
⎣

0 1
1 1
0 0

⎤
⎦. To determine the

controller form (6.54), consider

C = [B,AB,A2B] = [b1, b2, Ab1, Ab2, A2b1, A
2b2] =

⎡
⎣

0 1 1 1 0 0
1 1 0 0 2 2
0 0 2 2 −2 −2

⎤
⎦ ,
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where rankC = 3 = n; i.e., (A,B) is controllable. Searching from left to right,
the first three columns of C are selected since they are linearly independent.
Then

C̄ = [b1, Ab1, b2] =

⎡
⎣

0 1 1
1 0 1
0 2 0

⎤
⎦

and the controllability indices are μ1 = 2 and μ2 = 1. Also, σ1 = μ1 = 2 and
σ2 = μ1 + μ2 = 3 = n, and

C̄−1 =

⎡
⎣
−1 1 1/2

0 0 1/2
1 0 −1/2

⎤
⎦ .

Notice that q1 = [0, 0, 1/2] and q2 = [1, 0,−1/2], the second and third rows

of C̄−1, respectively. In view of (6.53), P =

⎡
⎣
q1
q1A
q2

⎤
⎦ =

⎡
⎣

0 0 1/2
0 1 −1/2
1 0 −1/2

⎤
⎦, P−1 =

⎡
⎣

1 0 1
1 1 0
2 0 0

⎤
⎦, and Ac = PAP−1 =

[
A11 A12

A21 A22

]
=

⎡
⎣

0 1 0
2 −1 0
1 0 0

⎤
⎦, Bc = PB =

[
B1

B2

]
=

⎡
⎣

0 0
1 1
0 1

⎤
⎦.

One can also verify (6.55) quite easily. We have

Ac =

⎡
⎣

0 1 0
2 −1 0
1 0 0

⎤
⎦ = Āc + B̄cAm =

⎡
⎣

0 1 0
0 0 0
0 0 0

⎤
⎦+

⎡
⎣

0 0
1 0
0 1

⎤
⎦
[

2 −1 0
1 0 0

]

and

Bc =

⎡
⎣

0 0
1 1
0 1

⎤
⎦ = B̄cBm =

⎡
⎣

0 0
1 0
0 1

⎤
⎦
[

1 1
0 1

]
.

It is interesting to note that in this example, the given pair (A,B) could
have already been in controller form if B were different but A were the same.
For example, consider the following three cases:

1. A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , B =

⎡
⎣

1 ×
0 0
0 1

⎤
⎦ , μ1 = 1, μ2 = 2,

2. A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , B =

⎡
⎣

0 0
1 ×
0 1

⎤
⎦ , μ1 = 2, μ1 = 1,
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3. A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , B =

⎡
⎣

0
0
1

⎤
⎦ , μ1 = 3 = n.

Note that case 3 is the single-input case (6.36).

Remarks

(i) An important result involving the controllability indices of (A,B) is the
following: Given (A,B) controllable, then (P (A+BGF )P−1, PBG) will
have the same controllability indices, within reordering, for any P, F , and
G (|P | �= 0, |G| �= 0) of appropriate dimensions. In other words, the con-
trollability indices are invariant under similarity and input transforma-
tions P and G, and state feedback F [or similarity transformation P and
state feedback (F,G)]. (For further discussion, see [1, Subsection 3.4D].)

(ii) It is not difficult to derive explicit expressions for Am and Bm in (6.55).
Using

qiA
k−1bj = 0 k = 1, . . . , μj , i �= j,

qiA
k−1bi = 0 k = 1, . . . , μi − 1, and qiAμi−1bi = 1, i = j, (6.56)

where i = 1, . . . ,m, and j = 1, . . . ,m, it can be shown that the m σ1th,
σ2th, . . . , σmth rows of Ac that are denoted by Am in (6.55) are given by

Am =

⎡
⎢⎣
q1A

μ1

...
qmA

μm

⎤
⎥⎦P−1. (6.57)

Similarly

Bm =

⎡
⎢⎣
q1A

μ1−1

...
qmA

μm−1

⎤
⎥⎦B. (6.58)

The matrix Bm is an upper triangular matrix with ones on the diagonal.
(For details, see [1, Subsection 3.4D].)

Example 6.18. We wish to reduce A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , B =

⎡
⎣

1 1
0 1
0 0

⎤
⎦ to controller

form. Note that A and B are almost the same as in Example 6.17; how-
ever, here μ1 = 1 < 2 = μ2, as will be seen. We have C = [B,AB,A2B] =

[b1, b2, Ab1, Ab2, . . . ] =

⎡
⎣

1 1 0 1
0 1 0 0 · · ·
0 0 0 2

⎤
⎦. Searching from left to right, the first
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three linearly independent columns are b1, b2, Ab2, and C̄ = [b1, b2, Ab2] =⎡
⎣

1 1 1
0 1 0
0 0 2

⎤
⎦, from which we conclude that μ1 = 1, μ2 = 2, σ1 = 1, and

σ2 = 3. We compute C̄−1 =

⎡
⎣

1 −1 −1/2
0 1 0
0 0 1/2

⎤
⎦. Note that q1 = [1,−1,−1/2]

and q2 = [0, 0, 1/2], the first and third rows of C̄−1, respectively. Then

P =

⎡
⎣
q1
q2
q2A

⎤
⎦ =

⎡
⎣

1 −1 −1/2
0 0 1/2
0 1 −1/2

⎤
⎦, P−1 =

⎡
⎣

1 2 1
0 1 1
0 2 0

⎤
⎦, and

Ac = PAP−1 =
[
A11 A12

A21 A22

]
=

⎡
⎣

0 −1 0
0 0 1
0 2 −1

⎤
⎦ ,

Bc = PB =
[
B1

B2

]
=

⎡
⎣

1 0
0 0
0 1

⎤
⎦ .

It is easy to verify relations (6.57) and (6.58).

Structure Theorem—Controllable Version

The transfer function matrix H(s) of the system ẋ = Ax + Bu, y = Cx +
Du is given by H(s) = C(sI − A)−1B + D. If (A,B) is in controller form
(6.54), thenH(s) can alternatively be characterized by the Structure Theorem
stated in Theorem 6.19 below. This result is very useful in the realization of
systems, which is addressed in Chapter 8 and in the study of state feedback
in Chapter 9.

Let A = Ac = Āc + B̄cAm and B = Bc = B̄cBm, as in (6.55), with
|Bm| �= 0, and let C = Cc and D = Dc. Define

Λ(s) � diag[sμ1 , sμ2 , . . . , sμm ], (6.59)

S(s) � block diag([1, s, . . . , sμi−1]T , i = 1, . . . ,m). (6.60)

Note that S(s) is an n ×m polynomial matrix (n =
∑m

i=1 μi), i.e., a matrix
with polynomials as entries. Now define the m ×m polynomial matrix D(s)
and the p×m polynomial matrix N(s) by

D(s) � B−1
m [Λ(s) −AmS(s)], N(s) � CcS(s) +DcD(s). (6.61)

The following is the controllable version of the Structure Theorem.

Theorem 6.19. H(s) = N(s)D−1(s), where N(s) and D(s) are defined in
(6.61).
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Proof. First, note that

(sI −Ac)S(s) = BcD(s). (6.62)

To see this, we write BcD(s) = B̄cBmB
−1
m [Λ(s) − AmS(s)] = B̄cΛ(s) −

B̄cAmS(s) and (sI −Ac)S(s) = sS(s)− (Āc + B̄cAm)S(s) = (sI − Āc)S(s)−
B̄cAmS(s) = B̄cΛ(s)− B̄cAmS(s), which proves (6.62). Now H(s) = Cc(sI −
Ac)−1Bc +Dc = CcS(s)D−1(s) +Dc = [CcS(s) +DcD(s)]D−1(s) = ND−1.

�

Example 6.20. Let Ac =

⎡
⎣

0 1 0
2 −1 0
1 0 0

⎤
⎦, Bc =

⎡
⎣

0 0
1 1
0 1

⎤
⎦, as in Example 6.17. Here

μ1 = 2, μ2 = 1 and Am =
[

2 −1 0
1 0 0

]
, Bm =

[
1 1
0 1

]
. Then Λ(s) =

[
s2 0
0 s

]
,

S(s) =

⎡
⎣

1 0
s 0
0 1

⎤
⎦ and

D(s) = B−1
m [Λ(s) −AmS(s)] =

[
1 −1
0 1

] [[
s2 0
0 s

]
−
[
−s+ 2 0

1 0

]]

=
[

1 −1
0 1

] [
s2 + s− 2 0

−1 s

]
=
[
s2 + s− 1 −s

−1 s

]
.

Now Cc = [0, 1, 1], and Dc = [0, 0],

N(s) = CcS(s) +DcD(s) = [s, 1],

and

H(s) = [s, 1]
[
s2 + s− 1 −s

−1 s

]−1

= [s, 1]
[
s s
1 s2 + s− 1

]
1

s(s2 + s− 2)

=
1

s(s2 + s− 2)
[s2 + 1, 2s2 + s− 1]

= Cc(sI −Ac)−1Bc +Dc.

Example 6.21. Let Ac =

⎡
⎣

0 1 0
0 0 1
2 1 −2

⎤
⎦, Bc =

⎡
⎣

0
0
1

⎤
⎦, Cc = [0, 1, 0], and Dc = 0

(see Example 6.13). In the present case, we have Am = [2, 1,−2], Bm = 1,
Λ(s) = s3, S(s) = [1, s, s2]T , and

D(s) = 1 · [s3 − [2, 1, −2][1, s, s2]T ] = s3 + 2s2 − s− 2, N(s) = s.

Then

H(s) = N(s)D−1(s) = s/(s3 + 2s2 − s− 2) = Cc(sI −Ac)−1Bc +Dc.
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6.4.2 Observer Forms

Consider the system ẋ = Ax + Bu, y = Cx +Du given in (6.1) and assume
that (A,C) is observable; i.e., rankO = n, where

O =

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ . (6.63)

Also, assume that the p× n matrix C has a full row rank p; i.e.,

rankC = p ≤ n. (6.64)

It is of interest to determine a transformation matrix P so that the equiv-
alent system representation {Ao, Bo, Co, Do} with

Ao = PAP−1, Bo = PB, Co = CP−1, Do = D (6.65)

will have (Ao, Co) in an observer form (defined below). As will become clear in
the following discussion, these forms are dual to the controller forms previously
discussed and can be derived by taking advantage of this fact. In particular,
let Ã � AT , B̃ � CT [(Ã, B̃) is controllable], and determine a nonsingular
transformation P̃ so that Ãc = P̃ ÃP̃−1, B̃c = P̃ B̃ are in controller form given
in (6.54). Then Ao = ÃTc and Co = B̃Tc is in observer form.

It will be demonstrated in the following discussion how to obtain observer
forms directly, in a way that parallels the approach described for controller
forms. This is done for the sake of completeness and to define the observability
indices. The approach of using duality just given can be used in each case to
verify the results.

We first note that if rankC = r < p, an approach analogous to the case
when rankB < m can be followed, as in Subsection 6.4.1. The fact that the
rows of C are not linearly independent means that the same information can
be extracted from only r outputs, and therefore, the choice for the outputs
should perhaps be reconsidered. Now if (A,C) is unobservable, one may use
two steps to first isolate the observable part and then reduce it to the observer
form, in an analogous way to the uncontrollable case previously given.

Single-Output Case (p = 1)

Let
P−1 = Q � [q̃, Aq̃, . . . , An−1q̃], (6.66)

where q̃ is the nth column in O−1. Then
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A0 =

⎡
⎢⎢⎢⎣

0 · · · 0 −α0

1 · · · 0 −α1

...
. . .

...
...

0 · · · 1 −αn−1

⎤
⎥⎥⎥⎦ , Co = [0, . . . , 0, 1], (6.67)

where the αi denote the coefficients of the characteristic polynomial α(s) �
det(sI − A) = sn + αn−1s

n−1 + · · · + α1s + α0. Here Ao = PAP−1 =
Q−1AQ,Co = CP−1 = CQ, and the desired result can be established by
using a proof that is completely analogous to the proof in determining the
(dual) controller form presented in Subsection 6.4.1. Note that Bo = PB does
not have any particular structure. The representation {Ao, Bo, Co, Do} will be
referred to as the observer form of the system.

Reversing the order of columns in P−1 given in (6.66) or selecting P to
be exactly O, or to be equal to the matrix obtained after the order of the
columns in O has been reversed, leads to alternative observer forms in a
manner analogous to the controller form case.

Example 6.22. Let A =

⎡
⎣
−1 0 0

0 1 0
0 0 −2

⎤
⎦ and C = [1,−1, 1]. To derive the ob-

server form (6.67), we could use duality, by defining Ã = AT , B̃ = CT , and
deriving the controller form of Ã, B̃, i.e., by following the procedure outlined
above. We note that the Ã, B̃ are exactly the matrices given in Examples 6.13
and 6.14. As an alternative approach, the observer form is now derived di-
rectly. In particular, we have

O =

⎡
⎣

C
CA
CA2

⎤
⎦ =

⎡
⎣

1 −1 1
−1 −1 −2

1 −1 4

⎤
⎦ ,O−1 =

⎡
⎣

1 −1/2 −1/2
−1/3 −1/2 −1/6
−1/3 0 1/3

⎤
⎦ ,

and in view of (6.66),

Q = P−1 = [q̃, Aq̃, A2q̃] =

⎡
⎣
−1/2 1/2 −1/2
−1/6 −1/6 −1/6

1/3 −2/3 4/3

⎤
⎦ .

Note that q̃ = [−1/2,−1/6, 1/3]T , the last column of O−1. Then

Ao = Q−1AQ =

⎡
⎣

0 0 2
1 0 1
0 1 −2

⎤
⎦ , and Co = CQ = [0, 0, 1],

where |sI − A| = s3 + 2s − s − 2 = s3 + α2s
2 + α1s + α0. Hence, QAo =⎡

⎣
1/2 −1/2 1/2

−1/6 −1/6 −1/6
−2/3 4/3 −8/3

⎤
⎦ = AQ.
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Multi-Output Case (p > 1)

Consider

O =

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
...
cp
c1A

...
cpA

...
c1A

n−1

...
cpA

n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.68)

where c1, . . . , cp denote the p rows of C, and select the first n linearly indepen-
dent rows in O, moving from the top to bottom (rank O = n). Next, reorder
the selected rows by first taking all rows involving c1, then c2, etc., to obtain

Ō �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
c1A

...
c1A

ν1−1

...
cp
...

cpA
νp−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.69)

an n × n matrix. The integer νi denotes the number of rows involving ci in
the set of the first n linearly independent rows found in O when moving from
top to bottom.

Definition 6.23. The p integers νi, i = 1, . . . , p, are the observability indices
of the system, and ν � max νi is called the observability index of the system.
Note that

p∑
i=1

νi = n and pν ≥ n. (6.70)

�

When rankC = p, then νi ≥ 1. Now define

σ̃k �
k∑
i=1

νi k = 1, . . . , p; (6.71)
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i.e., σ̃1 = ν1, σ̃2 = ν1 + ν2, . . . , σ̃p = ν1 + · · · + νp = n. Consider Ō−1 and let
q̃k ∈ Rn, k = 1, . . . , p, represent its σ̃kth column; i.e.,

Ō−1 = [× · · · × q̃1| × · · · × q̃2| · · · | × · · · × q̃p]. (6.72)

Define
P−1 = Q = [q̃1, . . . , Aν1−1q̃1, . . . , q̃p, . . . , A

νp−1q̃p]. (6.73)

Then Ao = PAP−1 = Q−1AQ and Co = CP−1 = CQ are given by

Ao = [Aij ], i, j = 1, . . . , p,

Aii =

⎡
⎢⎣

0 · · · 0 ×

Iνi−1

...
×

⎤
⎥⎦ ∈ Rνi×νi , i = j, Aij =

⎡
⎢⎣

0 · · · 0 ×
...

...
...

0 · · · 0 ×

⎤
⎥⎦ ∈ Rνi×νj , i �= j,

and

Co = [C1, C2, . . . , Cp], Ci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0
...

...
...

0 · · · 0 0
0 · · · 0 1
0 · · · 0 ×
...

...
...

0 · · · 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rp×νi , (6.74)

where the 1 in the last column of Ci occurs at the ith row location (i =
1, . . . , p) and × denotes nonfixed entries. Note that the matrix Bo = PB =
Q−1B does not have any particular structure. Equation (6.74) is a very useful
form (in the observer problem) and shall be referred to as the observer form
of the system.

Analogous to (6.55), we express Ao and Co as

Ao = Āo +ApC̄o, Co = CpC̄o, (6.75)

where Āo = block diag[A1, A2, . . . , Ap] with Ai =

⎡
⎢⎣

0 · · · 0

Iνi−1

...
0

⎤
⎥⎦ ∈ Rνi×νi , C̄o =

block diag([0, . . . , 0, 1]T ∈ Rνi , i = 1, . . . , p), and Ap ∈ Rn×p, and Cp ∈ Rp×p

are appropriate matrices (
∑p

i=1 νi = n). Note that Āo, C̄o are completely
determined by the p observability indices νi, i = 1, . . . , p, and Ap and Cp
contain this information in the σ̃1th, . . . , σ̃pth columns of Ao and in the same
columns of Co, respectively.

Example 6.24. Given A =

⎡
⎣

0 0 0
1 0 2
0 1 −1

⎤
⎦ and C =

[
0 1 0
1 1 0

]
, we wish to reduce

these to observer form. This can be accomplished using duality, i.e., by first
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reducing Ã � AT , B̃ � CT to controller form. Note that Ã, B̃ are the matrices
used in Example 6.17, and therefore, the desired answer is easily obtained.
Presently, we shall follow the direct algorithm described above. We have

O =

⎡
⎣

C
CA
CA2

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0
1 1 0
1 0 2
1 0 2
0 2 −2
0 2 −2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Searching from top to bottom, the first three linearly independent rows are
c1, c2, c1A, and

Ō =

⎡
⎣
c1
c1A
c2

⎤
⎦ =

⎡
⎣

0 1 0
1 0 2
1 1 0

⎤
⎦ .

Note that the observability indices are ν1 = 2, ν2 = 1 and σ̃1 = 2, σ̃2 = 3. We
compute

Ō−1 =

⎡
⎣
−1 0 1
1 0 0

1/2 1/2 −1/2

⎤
⎦ =

⎡
⎣
× 0 1
× 0 0
× 1/2 −1/2

⎤
⎦ .

Then, Q = [q̃1, Aq̃1, q̃2] =

⎡
⎣

0 0 1
0 1 0

1/2 −1/2 −1/2

⎤
⎦ and Q−1 =

⎡
⎣

1 1 2
0 1 0
1 0 0

⎤
⎦. Therefore,

Ao = Q−1AQ =
[
A11 A12

A21 A22

]
=

⎡
⎣

0 2 1
1 −1 0
0 0 0

⎤
⎦ , Co = CQ = [C1

...C2] =
[

0 1 0
0 1 1

]
.

We can also verify (6.47), namely

Ao =

⎡
⎣

0 2 1
1 −1 0
0 0 0

⎤
⎦ = Āo +ApC̄o =

⎡
⎣

0 0 0
1 0 0
0 0 0

⎤
⎦+

⎡
⎣

2 1
−1 0

0 0

⎤
⎦
[

0 1 0
0 0 1

]

and

Co =
[

0 1 0
0 1 1

]
= CpC̄o =

[
1 0
1 1

] [
0 1 0
0 0 1

]
.

Structure Theorem—Observable Version

The transfer function matrix H(s) of system ẋ = Ax + Bu, y = Cx + Du
is given by H(s) = C(sI − A)−1B + D. If (A,C) is in the observer form,
given in (6.74), then H(s) can alternatively be characterized by the Structure
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Theorem stated in Theorem 6.25 below. This result will be very useful in
the realization of systems, addressed in Chapter 8 and also in the study of
observers in Chapter 9.

Let A = Ao = Āo +ApC̄o and C = Co = CpC̄o as in (6.75) with |Cp| �= 0;
let B = Bo and D = Do, and define

Λ̃(s) � diag[sν1 , sν2 , . . . , sνp ], S̃(s) � block diag([1, s, . . . , sνi−1], i = 1, . . . , p).
(6.76)

Note that S̃(s) is a p× n polynomial matrix, where n =
∑p
i=1 νi. Now define

the p× p polynomial matrix D̃(s) and the p×m polynomial matrix Ñ(s) as

D̃(s) � [Λ̃(s) − S̃(s)Ap]C−1
p , Ñ(s) � S̃(s)Bo + D̃(s)Do. (6.77)

The following result is the observable version of the Structure Theorem. It is
the dual of Theorem 6.19 and can therefore be proved using duality arguments.
The proof given is direct.

Theorem 6.25. H(s) = D̃−1(s)Ñ(s), where Ñ(s), D̃(s) are defined in (6.77).

Proof. First we note that

D̃(s)Co = S̃(s)(sI −Ao). (6.78)

To see this, write D̃(s)Co = [Λ̃(s)− S̃(s)Ap]C−1
p CpC̄o = Λ̃(s)C̄o − S̃(s)ApC̄o,

and also, S̃(s)(sI − Ao) = S̃(s)s − S̃(s)(Āo + ApC̄o) = S̃(s)(sI − Āo) −
S̃(s)ApC̄o = Λ̃(s)C̄o− S̃(s)ApC̄o, which proves (6.78). We now obtain H(s) =
Co(sI −Ao)−1Bo+Do = D̃−1(s)S̃(s)Bo +Do = D̃−1(s)[S̃(s)Bo + D̃(s)Do] =
D̃−1(s)Ñ (s). �

Example 6.26. Consider Ao =

⎡
⎣

0 2 1
1 −1 0
0 0 0

⎤
⎦ and Co =

[
0 1 0
0 1 1

]
of Exam-

ple 6.24. Here ν1 = 2, ν2 = 1, Λ̃(s) =
[
s2 0
0 s

]
, and S̃(s) =

[
1 s 0
0 0 1

]
. Then

D̃(s) = [Λ̃(s) − S̃(s)Ap]C−1
p =

⎡
⎣
[
s2 0
0 s

]
−
[

1 s 0
0 0 1

]⎡
⎣

2 1
−1 0

0 0

⎤
⎦
⎤
⎦ .
[

1 0
1 1

]−1

=

⎡
⎣
⎡
⎣ s

2 0
0 s

⎤
⎦−

⎡
⎣−s+ 2 1

0 0

⎤
⎦
⎤
⎦ ·
⎡
⎣ 1 0
−1 1

⎤
⎦=

⎡
⎣ s

2 + s− 2, −1
0 s

⎤
⎦·
⎡
⎣ 1 0
−1 1

⎤
⎦=

⎡
⎣ s

2 + s− 1 −1
−s s

⎤
⎦.

Now if Bo = [0, 1, 1]T , Do = 0, and Ñ(s) = S̃(s)Bo + D̃(s)Do = [s, 1]T , then
H(s) = D̃−1(s)Ñ(s) = 1

s(s2+s−2) [s
2+1, 2s2+s−1]T = Co(sI−Ao)−1Bo+Do.
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6.5 Summary and Highlights

• The standard form for uncontrollable systems is

Â = Q−1AQ =
[
A1 A12

0 A2

]
, B̂ = Q−1B =

[
B1

0

]
, (6.6)

where A1 ∈ Rnr×nr , B1 ∈ Rnr×m, and (A1, B1) is controllable. nr < n is
the rank of the controllability matrix C = [B,AB, . . . , An−1B]; i.e.,

rankC = nr.

• The standard form for unobservable systems is

Â = Q−1AQ =
[
A1 0
A21 A2

]
, Ĉ = CQ =

[
C1

0

]
, (6.15)

where A1 ∈ Rno×no , C1 ∈ Rp×no , and (A1, C1) is observable. no < n is
the rank of the observability matrix

O =

⎡
⎢⎢⎢⎣

Ĉ

ĈÂ
...

ĈÂn−1

⎤
⎥⎥⎥⎦ ;

i.e.,
rankO = no.

• Kalman’s Decomposition Theorem.

Â = Q−1AQ =

⎡
⎢⎢⎣
A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44

⎤
⎥⎥⎦ , B̂ = Q−1B =

⎡
⎢⎢⎣
B1

B2

0
0

⎤
⎥⎥⎦ ,

Ĉ = CQ = [C1, 0, C3, 0],

(6.20)

where (A11, B1, C1) is controllable and observable.
• λi is an uncontrollable eigenvalue if and only if

v̂i[λiI −A,B] = 0, (6.23)

where v̂i is the corresponding (left) eigenvector.
• λi is an unobservable eigenvalue if and only if

[
λiI −A

C

]
vi = 0, (6.24)

where vi is the corresponding (right) eigenvector.



270 6 Controllability and Observability: Special Forms

Controller Forms (for Controllable Systems)

• m = 1 case.

Ac =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−α0 −α1 · · · −αn−1

⎤
⎥⎥⎥⎦ , Bc =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ , (6.36)

where

α(s) � det(sI −A) = sn + αn−1s
n−1 + · · · + α1s+ α0. (6.37)

• m > 1 case.

Ac = [Aij ], i, j = 1, . . . ,m,

Aii =

⎡
⎢⎢⎢⎣

0
... Iμi−1

0
× × · · ·×

⎤
⎥⎥⎥⎦ ∈ Rμi×μi , i = j, Aij =

⎡
⎢⎢⎢⎣

0 · · · 0
...

...
...

0 · · · 0
× × · · · ×

⎤
⎥⎥⎥⎦ ∈ Rμi×μj , i �= j,

and

Bc =

⎡
⎢⎢⎢⎣

B1

B2

...
Bm

⎤
⎥⎥⎥⎦ , Bi =

⎡
⎢⎣

0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 1 × · · · ×

⎤
⎥⎦ ∈ Rμi×m. (6.54)

An example for n = 4, m = 2 and μ1 = 2, μ2 = 2 is

Ac =
[
A11 A12

A21 A22

]
=

⎡
⎢⎢⎣

0 1 0 0
× × × ×
0 0 0 1
× × × ×

⎤
⎥⎥⎦ , Bc =

[
B1

B2

]
=

⎡
⎢⎢⎣

0 0
1 ×
0 0
0 1

⎤
⎥⎥⎦ .

• Ac = Āc + B̄cAm, Bc = B̄cBm. (6.55)

• Structure theorem—controllable version
H(s) = N(s)D−1(s), where

D(s) = B−1
m [Λ(s) −AmS(s)], N(s) = CcS(s) +DcD(s). (6.61)

Note that
(sI −Ac)S(s) = BcD(s). (6.62)
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Observer Forms (for Observable Systems)

• p = 1 case.

A0 =

⎡
⎢⎢⎢⎣

0 · · · 0 −α0

1 · · · 0 −α1

...
. . .

...
...

0 · · · 1 −αn−1

⎤
⎥⎥⎥⎦ , Co = [0, . . . , 0, 1]. (6.67)

• p > 1.
Ao = [Aij ], i, j = 1, . . . , p,

Aii =

⎡
⎢⎣

0 · · · 0 ×

Iνi−1

...
×

⎤
⎥⎦ ∈ Rνi×νi , i = j, Aij =

⎡
⎢⎣

0 · · · 0 ×
...

...
...

0 · · · 0 ×

⎤
⎥⎦ ∈ Rνi×νj , i �= j,

and

Co = [C1, C2, . . . , Cp], Ci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0
...

...
...

0 · · · 0 0
0 · · · 0 1
0 · · · 0 ×
...

...
...

0 · · · 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rp×νi , (6.74)

If (Ac, Bc) is in controller form, (Ao = ATc , Co = BTc ) will be in observer
form.

• Ao = Āo +ApC̄o, Co = CpC̄o. (6.75)

• Structure theorem—observable version
H(s) = D̃−1(s)Ñ(s), where

D̃(s) = [Λ̃(s) − S̃(s)Ap]C−1
p , Ñ(s) = S̃(s)Bo + D̃(s)Do. (6.77)

Note that
D̃(s)Co = S̃(s)(sI −Ao). (6.78)

6.6 Notes

Special state-space forms for controllable and observable systems obtained by
similarity transformations are discussed at length in Kailath [5]. Wolovich [13]
discusses the algorithms for controller and observer forms and introduces the
Structure Theorems. The controller form is based on results by Luenberger [9]
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(see also Popov [10]). A detailed derivation of the controller form can also be
found in Rugh [12].

Original sources for the Canonical Structure Theorem include Kalman [6]
and Gilbert [3].

The eigenvector and rank tests for controllability and observability are
called PBH tests in Kailath [5]. Original sources for these include Popov [10],
Belevich [2], and Hautus [4]. Consult also Rosenbrock [11], and for the case
when A can be diagonalized via a similarity transformation, see Gilbert [3].
Note that in the eigenvalue/eigenvector tests presented herein the uncontrol-
lable (unobservable) eigenvalues are also explicitly identified, which represents
a modification of the above original results.

The fact that the controllability indices appear in the work of Kronecker
was recognized by Rosenbrock [11] and Kalman [8].

For an extensive introductory discussion and a formal definition of canon-
ical forms, see Kailath [5].
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Exercises

6.1. Write software programs to implement the algorithms of Section 6.2. In
particular:
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(a) Given the pair (A,B), where A ∈ Rn×n, B ∈ Rn×m with

rank[B,AB, . . . , An−1B] = nr < n,

reduce this pair to the standard uncontrollable form

Â = PAP−1 =
[
A1 A12

0 A2

]
, B̂ = PB =

[
B1

0

]
,

where (A1, B1) is controllable and A1 ∈ Rnr×nr , B1 ∈ Rnr×m.
(b) Given the controllable pair (A,B), where A ∈ Rn×n, B ∈ Rn×m with

rankB = m, reduce this pair to the controller form Ac = PAP−1, Bc =
PB.

6.2. Determine the uncontrollable modes of each pair (A,B) given below by

(a) Reducing (A,B), using a similarity transformation.
(b) Using eigenvalue/eigenvector criteria:

A =

⎡
⎣

1 0 0
0 −1 0
0 0 2

⎤
⎦ , B =

⎡
⎣

1 0
0 1
0 0

⎤
⎦ and A =

⎡
⎢⎢⎣

0 0 1 0
0 0 1 0
0 0 0 0
0 0 0 −1

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 1
0 0
1 0
0 0

⎤
⎥⎥⎦ .

6.3. Reduce the pair

A =

⎡
⎢⎢⎣

0 0 1 0
3 0 −3 1

−1 1 4 −1
1 0 −1 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 0
1 0
0 1
0 0

⎤
⎥⎥⎦

into controller form Ac = PAP−1, Bc = PB. What is the similarity transfor-
mation matrix in this case? What are the controllability indices?

6.4. Consider

Ac =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−α0 −α1 · · · −αn−1

⎤
⎥⎥⎥⎦ , Bc =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ .

Show that

C = [Bc, AcBc, . . . , An−1
c Bc] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 1
0 0 0 · · · c1
...

...
...

...
0 0 1 · · · cn−3

0 1 c1 · · · cn−2

1 c1 c2 · · · cn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,
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where ck = −
∑k−1
i=0 αn−i−1ck−i−1, k = 1, . . . , n− 1, with c0 = 1. Also, show

that

C−1 =

⎡
⎢⎢⎢⎢⎢⎣

α1 α2 · · · αn−1 1
α2 α3 · · · 1 0
...

...
...

...
αn−1 1 · · · 0 0

1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦
.

6.5. Show that the matrices Ac = PAP−1, Bc = PB are as follows:

(a) Given by (6.41) if P is given by (6.42).
(b) Given by (6.44) if Q(= P−1) is given by (6.43).
(c) Given by (6.46) if Q(= P−1) is given by (6.45).

6.6. Consider the pair (A, b), where A ∈ Rn×n, b ∈ Rn. Show that if more
than one linearly independent eigenvector can be associated with a single
eigenvalue, then (A, b) is uncontrollable. Hint: Use the eigenvector test. Let
v̂1, v̂2 be linearly independent left eigenvectors associated with eigenvalue λ1 =
λ2 = λ. Notice that if v̂1b = α1 and v̂2b = α2, then (α1v̂1 − α1v̂2)b = 0.

6.7. Show that if (A,B) is controllable, where A ∈ Rn×n, and B ∈ Rn×m,
and rankB = m, then rankA ≥ n−m.

6.8. Given A ∈ Rn×n, and B ∈ Rn×m, let rankC = n, where C =
[B,AB, . . . , An−1B]. Consider Â ∈ Rn×n, B̂ ∈ Rn×m with rank Ĉ = n, where
Ĉ = [B̂, ÂB̂, . . . , Ân−1B̂], and assume that P ∈ Rn×n with detP �= 0 exists
such that

P [C, AnB] = [Ĉ, ÂnB̂].

Show that B̂ = PB and Â = PAP−1. Hint: Show that (PA− ÂP )C = 0.

6.9. Let A = Āc + B̄cAm and B = B̄cBm, where the Āc, B̄c are as in (6.55)
with Am ∈ Rm×n, Bm ∈ Rm×m, and |Bm| �= 0. Show that (A,B) is con-
trollable with controllability indices μi. Hint: Use the eigenvalue test to show
that (A,B) is controllable. Use state feedback to simplify (A,B) (see Exer-
cise 6.11), and show that the μi are the controllability indices.

6.10. Show that the controllability indices of the state equation ẋ = Ax +
BGv, where |G| �= 0 and (A,B) is controllable, with A ∈ Rn×n, B ∈ Rn×m,
are the same as the controllability indices of ẋ = Ax + Bu, within re-
ordering. Hint: Write C̄k = [BG,ABG, . . . , Ak−1BG] = [B,AB, . . . , Ak−1B] ·
[block diagG] = Ck · [block diagG] and show that the number of linearly de-
pendent columns in AkBG that occur while searching from left to right in C̄n
is the same as the corresponding number in Cn.

6.11. Consider the state equation ẋ = Ax+Bu, where A ∈ Rn×n, B ∈ Rn×m

with (A,B) controllable. Let the linear state-feedback control law be u =
Fx+Gv, F ∈ Rm×n, G ∈ Rm×m with |G| �= 0. Show that
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(a) (A+BF,BG) is controllable.
(b) The controllability indices of (A+BF,B) are identical to those of (A,B).
(c) The controllability indices of (A+BF,BG) are equal to the controllability

indices of (A,B) within reordering. Hint: Use the eigenvalue test to show
(a). To show (b), use the controller forms in Section 6.4.

6.12. For the system ẋ = Ax + Bu, y = Cx, consider the corresponding
sampled-data system x̄(k + 1) = Āx̄(k) + B̄ū(k), ȳ(k) = C̄x̄(k), where

Ā = eAT , B̄ = [
∫ T

0

eAτdτ ]B, and C̄ = C.

(a) Let the continuous-time system {A,B,C} be controllable (observable),
and assume it is a SISO system. Show that {Ā, B̄, C̄} is controllable (ob-
servable) if and only if the sampling period T is such that

Im (λi − λj) �=
2πk
T

, where k = ±1,±2, . . . whenever Re (λi − λj) = 0,

where {λi} are the eigenvalues of A. Hint: Use the PBH test.
(b) Apply the results of (a) to the double integrator (Example 3.33 in Chap-

ter 3), where A =
[

0 1
0 0

]
, B =

[
0
1

]
, and C = [1, 0], and also to

A =
[

0 1
−1 0

]
, B =

[
0
1

]
, C = [1, 0]. Determine the values of T that

preserve controllability (observability).

6.13. (Spring mass system) Consider the spring mass given in Exer-
cise 3.37.

(a) Is the system controllable from [f1, f2]T ? If yes, reduce (A,B) to controller
form.

(b) Is the system controllable from input f1 only? Is it controllable from f2
only? Discuss your answers.

(c) Let y = Cx with C =
[

1 0 0 0
0 1 0 0

]
. Is the system observable from y? If yes,

reduce (A,C) to observer form.



7

Internal and External Descriptions:
Relations and Properties

7.1 Introduction

In this chapter it is shown how external descriptions of a system, such as the
transfer function and the impulse response, depend only on the controllable
and observable parts of internal state-space descriptions (Section 7.2). Based
on these results, the exact relation between internal (Lyapunov) stability and
input–output stability is established in Section 7.3. In Section 7.4 the poles of
the transfer function matrix, the poles of the system (eigenvalues), the zeros
of the transfer function, the invariant zeros, the decoupling zeros, and their
relation to uncontrollable or unobservable eigenvalues are addressed. In the
final Section 7.5, polynomial matrix and matrix fractional descriptions are
introduced. Polynomial matrix descriptions are generalizations of state-space
internal descriptions. The matrix fractional descriptions of transfer function
matrices offer a convenient way to work with transfer functions in control
design and to establish the relations between internal and external descriptions
of systems.

7.2 Relations Between State-Space and Input–Output
Descriptions

In this section it is shown that the input–output description, namely the
transfer function or the impulse response of a system, depends only on the
part of the state-space representation that is both controllable and observable.
The uncontrollable and/or unobservable parts of the system “cancel out” and
play no role in the input–output system descriptions.

Consider the system

ẋ = Ax+Bu, y = Cx+Du, (7.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m has p×m. The transfer
function matrix
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H(s) = C(sI −A)−1B +D = Ĉ(sI − Â)−1B̂ + D̂, (7.2)

where {Â, B̂, Ĉ, D̂} is an equivalent representation given in (6.9) with Â =
Q−1AQ, B̂ = Q−1B, Ĉ = CQ, and D̂ = D. Consider now the Kalman De-
composition Theorem in Section 6.2.3 and the representation (6.22). We wish
to investigate which of the submatrices Aij , Bi, Cj determine H(s) and which
do not. The inverse of sI − Â can be determined by repeated application of
the formulas
[
α β
0 δ

]−1

=
[
α−1 −α−1βδ−1

0 δ−1

]
and

[
α 0
γ δ

]−1

=
[

α−1 0
−δ−1γα−1 δ−1

]
,

(7.3)
where α, β, γ, δ are matrices with α and δ square and nonsingular. It turns
out that

H(s) = C1(sI −A11)−1B1 +D, (7.4)

that is, the only part of the system that determines the external description
is {A11, B1, C1, D}, the subsystem that is both controllable and observable
[see Theorem 6.6(iii)]. Analogous results exist in the time domain. Specifi-
cally, taking the inverse Laplace transform of both sides in (7.4), the impulse
response of the system for t ≥ 0 is derived as

H(t, 0) = C1e
A11tB1 +Dδ(t), (7.5)

which depends only on the controllable and observable parts of the system,
as expected.

Similar results exist for discrete-time systems described by (6.4). For such
systems, the transfer function matrix H(z) and the pulse response H(k, 0) are
given by

H(z) = C1(zI −A11)−1B1 +D (7.6)

and

H(k, 0) =

{
C1A

k−1
11 B1, k > 0,

D, k = 0.
(7.7)

Again, these depend only on the part of the system that is both controllable
and observable, as in the continuous-time case.

Example 7.1. For the system ẋ = Ax+Bu, y = Cx, where A,B,C are as in
Examples 6.7 and 6.10, we have H(s) = C(sI−A)−1B = C1(sI−A11)−1B1 =
(1)(1/s)[1, 1] = [1/s, 1/s]. Notice that only the controllable and observable
eigenvalue of A, λ1 = 0 (in A11), appears in the transfer function as a pole.
All other eigenvalues (λ2 = −1, λ3 = −2) cancel out.
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L

+ i(t) x2(t)

C
x1(t)

+

R1 R2

v(t)

–

–

Figure 7.1. An RL/RC circuit

Example 7.2. The circuit depicted in Figure 7.1 is described by the state-
space equations

[
ẋ1(t)
ẋ2(t)

]
=
[
−1/(R1C) 0

0 −R2/L

] [
x1(t)
x2(t)

]
+
[

1/(R1C)
1/L

]
v(t)

i(t) = [−1/R1, 1]
[
x1(t)
x2(t)

]
+ (1/R1)v(t),

where the voltage v(t) and current i(t) are the input and output variables of
the system, x1(t) is the voltage across the capacitor, and x2(t) is the current
through the inductor. We have î(s) = H(s)v̂(s) with the transfer function
given by

H(s) = C(sI −A)−1B +D =
(R2

1C − L)s+ (R1 −R2)
(Ls+R2)(R2

1Cs+R1)
+

1
R1

.

The eigenvalues of A are λ1 = −1/(R1C) and λ2 = −R2/L. Note that in

general rank[λiI − A,B] = rank
[
λiI −A

C

]
= 2 = n; i.e., the system is con-

trollable and observable, unless the relation R1R2C = L is satisfied. In this
case, λ1 = λ2 = −R2/L and the system matrix P (s) assumes the form

P (s) =
[
sI −A, B
−C, D

]
=

⎡
⎣
s+R2/L 0 R2/L

0 s+R2/L 1/L
1/R1 −1 1/R1

⎤
⎦ .

In the following discussion, assume that R1R2C = L is satisfied.

(i) Let R1 �= R2 and take

[v1, v2] =
[
R2 R1

1 1

]
,

[
v̂1
v̂2

]
= [v1, v2]−1 =

1
R2 −R1

[
1 −R1

−1 R2

]

to be the linearly independent right and left eigenvectors corresponding
to the eigenvalues λ1 = λ2 = −R2/L. The eigenvectors could have been
any two linearly independent vectors since λiI−A = 0. They were chosen



280 7 Internal and External Descriptions: Relations and Properties

as above because they also have the property that v̂2B = 0 and Cv2 = 0,
which in view of Corollary 6.9, implies that λ2 = −R2/L is both uncon-
trollable and unobservable. The eigenvalue λ1 = −R2/L is both control-

lable and observable, as it can be seen using Q =
[
R2 R1

1 1

]
to reduce the

representation to the canonical structure form (Kalman Decomposition
Theorem). The transfer function is in this case given by

H(s) =
(s+R1/L)(s+R2/L)
R1(s+R2/L)(s+R2/L)

=
s+R1/L

R1(s+R2/L)
;

that is, only the controllable and observable eigenvalue appears as a pole
in H(s), as expected.

(ii) Let R1 = R2 = R and take

[v1, v2] =
[

1 R
0 1

]
,

[
v̂1
v̂2

]
= [v1, v2]−1 =

[
1 −R
0 1

]
.

In this case v̂1B = 0 and Cv2 = 0. Thus, one of the eigenvalues, λ1 =
−R/L, is uncontrollable (but can be shown to be observable) and the
other eigenvalue, λ2 = −R/L, is unobservable (but can be shown to be
controllable). In this case, none of the eigenvalues appear in the transfer
function. In fact,

H(s) = 1/R,

as can readily be verified. Thus, in this case, the network behaves as a
constant resistance network.

At this point it should be made clear that the modes that are uncontrol-
lable and/or unobservable from certain inputs and outputs do not actually
disappear; they are simply invisible from certain vantage points under certain
conditions. (The voltages and currents of this network in the case of constant
resistance [H(s) = 1/R] are studied in Exercise 7.2.)

Example 7.3. Consider the system ẋ = Ax + Bu, y = Cx, where A =⎡
⎣

1 0 0
0 −2 0
0 0 −1

⎤
⎦, B =

⎡
⎣

1
0
1

⎤
⎦, and C = [1, 1, 0]. Using the eigenvalue/eigenvector

test, it can be shown that the three eigenvalues of A (resp., the three modes of
A) are λ1 = 1 (resp., et), which is controllable and observable; λ2 = −2 (resp.,
e−2t), which is uncontrollable and observable; and λ3 = −1 (resp., e−t), which
is controllable and unobservable.
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The response due to the initial condition x(0) and the input u(t) is

x(t) = eAtx(0) +
∫ t

0

eA(t−τ)Bu(τ)dτ

=

⎡
⎣
et 0 0
0 e−2t 0
0 0 e−t

⎤
⎦x(0) +

∫ t

0

⎡
⎣
e(t−τ)

0
e−(t−τ)

⎤
⎦u(τ)dτ

and

y(t) = CeAtx(0) +
∫ t

0

CeA(t−τ)Bu(τ)dτ

= [et, e−2t, 0]x(0) +
∫ t

0

e(t−τ)u(τ)dτ.

Notice that only controllable modes appear in eAtB [resp., only control-
lable eigenvalues appear in (sI − A)−1B], only observable modes appear
in CeAt [resp., only observable eigenvalues appear in C(sI − A)−1], and
only modes that are both controllable and observable appear in CeAtB
[resp., only eigenvalues that are both controllable and observable appear in
C(sI −A)−1 B = H(s)]. For the discrete-time case, refer to Exercise 7.1d.

7.3 Relations Between Lyapunov and Input–Output
Stability

In view of the relation between eigenvalues of A and poles of H(s) developed
above [see also (7.20) and (7.22)] we are now in a position to provide complete
insight into the relation between exponential stability or Lyapunov stability
and BIBO (Bounded Input Bounded Output) stability of a system.

Consider the system ẋ = Ax+Bu, y = Cx+Du, and recall the following
results:

(i) The system is asymptotically stable (internally stable, stable in the sense
of Lyapunov) if and only if the real parts of all the eigenvalues of A,
Reλi(A) i = 1, . . . , n, are negative. Recall also that asymptotic stability
is equivalent to exponential stability in the case of linear time-invariant
systems.

(ii) Let the transfer function be H(s) = C(sI − A)−1B + D. The sys-
tem is BIBO stable if and only if the real parts of all the poles of
H(s),Repi(H(s)) i = 1, . . . , r, are negative [see Section 4.7].

The relation between the eigenvalues of A and the poles of H(s) is

{eigenvalues of A} ⊃ {poles of H(s)} (7.8)
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with equality holding when all eigenvalues are controllable and observable [see
(7.20), (7.22) and Chapter 8, Theorems 8.9 and 8.12]. Specifically, the eigen-
values of A may be controllable and observable, uncontrollable and/or unob-
servable, and the poles of H(s) are exactly the eigenvalues of A that are both
controllable and observable. The remaining eigenvalues of A, the uncontrol-
lable and/or unobservable ones, cancel out when H(s) = C(sI−A)−1B+D is
determined. Note also that the uncontrollable/unobservable eigenvalues that
cancel correspond to input and output decoupling zeros (see Section 7.4). So
the cancellations that take place in forming H(s) are really pole/zero can-
cellations, i.e., cancellations between poles of the system (uncontrollable and
unobservable eigenvalues of A) and zeros of the system (input and output
decoupling zeros).

It is now straightforward to see that

{Internal stability} ⇒
� {BIBO stability};

that is, internal stability implies, but is not necessarily implied by, BIBO
stability. BIBO stability implies internal stability only when the system is
completely controllable and observable ([1, p. 487, Theorem 9.4]).

Example 7.4. Consider the system ẋ = Ax+Bu, y = Cx, where A =
[

0 1
2 1

]
,

B =
[

0
1

]
, and C = [−2, 1]. The eigenvalues of A are the roots of |sI − A| =

s2−s−2 = (s+1)(s−2) at {−1, 2}, and so the system is not internally stable
(it is not stable in the sense of Lyapunov). The transfer function is

H(s) = C(sI −A)−1B =
s− 2

(s+ 1)(s− 2)
=

1
s+ 1

.

Since there is one pole of H(s) at {−1}, the system is BIBO stable, which
verifies that BIBO stability does not necessarily imply internal stability. As
it can be easily verified, the −1 eigenvalue of A is controllable and observable
and it is the eigenvalue that appears as a pole of H(s) at −1. The other
eigenvalue at +2 that is unobservable, which is also the output decoupling
zero of the system, cancels in a pole/zero cancellation in H(s) as expected.

7.4 Poles and Zeros

In this section the poles and zeros of a time-invariant system are defined and
discussed. The poles and zeros are related to the (controllable and observable,
resp., uncontrollable and unobservable) eigenvalues of A. These relationships
shed light on the eigenvalue cancellation mechanisms encountered when input–
output relations, such as transfer functions, are formed.
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In the following development, the finite poles of a transfer function matrix
H(s) [or H(z)] are defined first (for the definition of poles at infinity, refer
to the Exercise 7.9). It should be noted here that the eigenvalues of A are
sometimes called poles of the system {A,B,C,D}. To avoid confusion, we
shall use the complete term poles of H(s), when necessary. The zeros of a
system are defined using internal descriptions (state-space representations).

7.4.1 Smith and Smith–McMillan Forms

To define the poles of H(s), we shall first introduce the Smith form of a
polynomial matrix P (s) and the Smith–McMillan form of a rational matrix
H(s).

The Smith form SP (s) of a p ×m polynomial matrix P (s) (in which the
entries are polynomials in s) is defined as

SP (s) =
[
Λ(s) 0

0 0

]
(7.9)

with Λ(s) � diag[ε1(s), . . . , εr(s)], where r = rankP (s). The unique monic
polynomials εi(s) (polynomials with leading coefficient equal to one) are the
invariant factors of P (s). It can be shown that εi(s) divides εi+1(s), i =
1, . . . , r − 1. Note that εi(s) can be determined by

εi(s) = Di(s)/Di−1(s), i = 1, . . . , r,

where Di(s) is the monic greatest common divisor of all the nonzero ith-order
minors of P (s) with D0(s) = 1. The Di(s) are the determinantal divisors
of P (s). A matrix P (s) can be reduced to Smith form by elementary row
and column operations or by a pre- and post-multiplication by unimodular
matrices, namely

UL(s)P (s)UR(s) = Sp(s). (7.10)

Unimodular Matrices. Let R[s]p×m denote the set of p × m matrices with
entries that are polynomials in s with real coefficients. A polynomial matrix
U(s) ∈ R[s]p×p is called unimodular (or R[s]-unimodular) if there exists a
Û(s) ∈ R[s]p×p such that U(s)Û(s) = Ip. This is the same as saying that
U−1(s) = Û(s) exists and is a polynomial matrix. Equivalently, U(s) is uni-
modular if detU(s) = α ∈ R,α �= 0. It can be shown that every unimodular
matrix is a matrix representation of a finite number of successive elementary
row and column operations. See [1, p. 526].

Consider now a p ×m rational matrix H(s). Let d(s) be the monic least
common denominator of all nonzero entries, and write

H(s) =
1
d(s)

N(s), (7.11)

with N(s) a polynomial matrix. Let SN (s) = diag[n1(s), . . . , nr(s), 0p−r,m−r]
be the Smith form of N(s), where r = rankN(s) = rankH(s). Divide each
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ni(s) of SN (s) by d(s), canceling all common factors to obtain the Smith–
McMillan form of H(s),

SMH(s) =
[
Λ̃(s) 0

0 0

]
, (7.12)

with Λ̃(s) � diag
[
ε1(s)
ψ1(s)

, . . . , εr(s)
ψr(s)

]
, where r = rankH(s). Note that εi(s)

divides εi+1(s), i = 1, 2, . . . , r−1, and ψi+1(s) divides ψi(s), i = 1, 2, . . . , r−1.

7.4.2 Poles

Pole Polynomial of H(s). Given a p×m rational matrix H(s), its character-
istic polynomial or pole polynomial, pH(s), is defined as

pH(s) = ψ1(s) · · ·ψr(s), (7.13)

where the ψi, i = 1, · · · , r, are the denominators of the Smith–McMillan form,
SMH(s), of H(s). It can be shown that pH(s) is the monic least common
denominator of all nonzero minors of H(s).

Definition 7.5. The poles of H(s) are the roots of the pole polynomial pH(s).
�

Note that the monic least common denominator of all nonzero first-order
minors (entries) of H(s) is called the minimal polynomial of H(s) and is
denoted by mH(s). The mH(s) divides pH(s) and when the roots of pH(s)
[poles of H(s)] are distinct, mH(s) = pH(s), since the additional roots in
pH(s) are repeated roots of mH(s).

It is important to note that when the minors of H(s) [of order 1, 2, . . . ,
min(p,m)] are formed by taking the determinants of all square submatrices
of dimension 1 × 1, 2 × 2, etc., all cancellations of common factors between
numerator and denominator polynomials should be carried out.

In the scalar case, p = m = 1, Definition 7.5 reduces to the well-known
definition of poles of a transfer function H(s), since in this case there is only
one minor (of order 1), H(s), and the poles are the roots of the denomina-
tor polynomial of H(s). Notice that in this case, it is assumed that all the
possible cancellations have taken place in the transfer function of a system.
Here pH(s) = mH(s), that is, the pole or characteristic polynomial equals the
minimal polynomial of H(s). Thus, pH(s) = mH(s) are equal to the (monic)
denominator of H(s).

Example 7.6. Let H(s) =
[

1/[s(s+ 1)] 1/s 1
0 0 1/s2

]
. The nonzero minors of

order 1 are the nonzero entries. The least common denominator is s2(s+1) =
mH(s), the minimal polynomial of H(s). The nonzero minors of order 2 are
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1/[s3(s+1)] and 1/s3 (taking columns 1 and 3, and 2 and 3, respectively). The
least common denominator of all minors (of order 1 and 2) is s3(s+1) = pH(s),
the characteristic polynomial of H(s). The poles are {0, 0, 0,−1}. Note that
mH(s) is a factor of pH(s), and the additional root at s = 0 in pH(s) is a
repeated pole. To obtain the Smith–McMillan form of H(s), write H(s) =

1
s2(s+1)

[
s s(s+ 1) s2(s+ 1)
0 0 (s+ 1)

]
= 1

d(s)N(s), where d(s) = s2(s + 1) = mH(s)

[see (7.11)]. The Smith form of N(s) is

SN (s) =
[

1 0 0
0 s(s+ 1) 0

]

since D0 = 1, D1 = 1, D2 = s(s + 1) [the determinantal divisors of N(s)],
and n1 = D1/D0 = 1, n2 = D2/D1 = s(s + 1), the invariant factors of N(s).
Dividing by d(s), we obtain the Smith–McMillan form of H(s),

SMH(s) =
[
ε1/ψ1 0 0

0 ε2/ψ2 0

]
=
[

1/[s2(s+ 1)] 0 0
0 1/s 0

]
.

Note that ψ2 divides ψ1 and ε1 divides ε2. Now the characteristic or pole
polynomial of H(s) is pH(s) = ψ1ψ2 = s3(s+1) and the poles are {0, 0, 0,−1},
as expected.

Example 7.7. Let H(s) = 1
s+2

[
1 α
1 1

]
. If α �= 1, then the second-order minor

is |H(s)| = 1−α
(s+2)2 . The least common denominator of this nonzero second-

order minor |H(s)| and of all the entries of H(s) (the first-order minors) is
(s+ 2)2 = pH(s); i.e., the poles are at {−2,−2}. Also, mH(s) = s+ 2.

Now if α = 1, then there are only first-order nonzero minors (|H(s)| = 0).
In this case pH(s) = mH(s) = s + 2, which is quite different from the case
when α �= 1. Presently, there is only one pole at −2.

As will be shown in Chapter 8 via Theorems 8.9 and 8.12, the poles of
H(s) are exactly the controllable and observable eigenvalues of the system (in
A11) and no factors of |sI −A11| in H(s) cancel [see (7.52)].

In general, for the set of poles of H(s) and the eigenvalues of A, we have

{Poles of H(s)} ⊂ {eigenvalues of A}, (7.14)

with equality holding when all the eigenvalues of A are controllable and ob-
servable eigenvalues of the system. Similar results hold for discrete-time sys-
tems and H(z).



286 7 Internal and External Descriptions: Relations and Properties

Example 7.8. Consider A =

⎡
⎣

0 −1 1
1 −2 1
0 1 −1

⎤
⎦, B =

⎡
⎣

1 0
1 1
1 2

⎤
⎦, and C = [0, 1, 0].

Then the transfer function H(s) = [1/s, 1/s]. H(s) has only one pole, s1 = 0
(pH(s) = s), and λ1 = 0, is the only controllable and observable eigenvalue.
The other two eigenvalues of A, λ2 = −1, λ3 = −2, which are not both
controllable and observable, do not appear as poles of H(s).

Example 7.9. Recall the circuit in Example 7.2 in Section 7.2. IfR1R2C �= L,
then {poles of H(s)} = {eigenvalues of A at λ1 = −1/(R1C) and λ2 =
−R2/L}. In this case, both eigenvalues are controllable and observable. Now
if R1R2C = L with R1 �= R2, then H(s) has only one pole, s1 = −R2/L,
since in this case only one eigenvalue λ1 = −R2/L is controllable and observ-
able. The other eigenvalue λ2 at the same location −R2/L is uncontrollable
and unobservable. Now if R1R2C = L with R1 = R2 = R, then one of the
eigenvalues becomes uncontrollable and the other (also at −R/L) becomes
unobservable. In this case H(s) has no finite poles (H(s) = 1/R).

7.4.3 Zeros

In a scalar transfer function H(s), the roots of the denominator polynomial
are the poles, and the roots of its numerator polynomial are the zeros of H(s).
As was discussed, the poles of H(s) are some or all of the eigenvalues of A (the
eigenvalues ofA are sometimes also called poles of the system {A,B,C,D}). In
particular, the uncontrollable and/or unobservable eigenvalues of A can never
be poles of H(s). In Chapter 8 (Theorems 8.9 and 8.12), it is shown that only
those eigenvalues of A that are both controllable and observable appear as
poles of the transfer function H(s). Along similar lines, the zeros of H(s) (to
be defined later) are some or all of the characteristic values of another matrix,
the system matrix P (s). These characteristic values are called the zeros of the
system {A,B,C,D}.

The zeros of a system for both the continuous- and the discrete-time cases
are defined and discussed next. We consider now only finite zeros. For the case
of zeros at infinity, refer to the exercises.

Let the system matrix (also called Rosenbrock’s system matrix ) of
{A,B,C,D} be

P (s) �
[
sI −A B
−C D

]
. (7.15)

Note that in view of the system equations ẋ = Ax + Bu, y = Cx + Du, we
have

P (s)
[
−x̂(s)
û(s)

]
=
[

0
ŷ(s)

]
,

where x̂(s) denotes the Laplace transform of x(t).
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Zero Polynomial of (A,B,C,D). Let r = rankP (s) [note that n ≤ r ≤
min(p + n,m + n)], and consider all those rth order nonzero minors of P (s)
that are formed by taking the first n rows and n columns of P (s), i.e., all rows
and columns of sI −A, and then adding appropriate r− n rows (of [−C,D] )
and columns (of [BT , DT ]T ). The zero polynomial of the system {A,B,C,D},
zp(s), is defined as the monic greatest common divisor of all these minors.

Definition 7.10. The zeros of the system {A,B,C,D} or the system zeros
are the roots of the zero polynomial of the system, zP (s). �

In addition, we define the invariant zeros of the system as the roots of the
invariant polynomials of P (s).

In particular, consider the (p+ n) × (m+ n) system matrix P (s) and let

SP (s) =
[
Λ(s) 0

0 0

]
, Λ(s) = diag[ε1(s), . . . , εr(s), 0] (7.16)

be its Smith form. The invariant zero polynomial of the system {A,B,C,D}
is defined as

zIP (s) = ε1(s)ε2(s) · · · εr(s), (7.17)

and its roots are the invariant zeros of the system. It can be shown that the
monic greatest common divisor of all the highest order nonzero minors of P (s)
equals zIP (s).

In general,

{zeros of the system} ⊃ {invariant zeros of the system}.

When p = m with detP (s) �= 0, then the zeros of the system coincide with
the invariant zeros.

Now consider the n× (m+ n) matrix [sI −A,B] and determine its n in-
variant factors εi(s) and its Smith form. The product of its invariant factors is
a polynomial, the roots of which are the input-decoupling zeros of the system
{A,B,C,D}. Note that this polynomial equals the monic greatest common
divisor of all the highest order nonzero minors (of order n) of [sI − A,B].

Similarly, consider the (p + n) × n matrix
[
sI −A
−C

]
and its invariant poly-

nomials, the roots of which define the output-decoupling zeros of the system
{A,B,C,D}.

Using the above definitions, it is not difficult to show that the input-
decoupling zeros of the system are eigenvalues of A and also zeros of the
system {A,B,C,D}. In addition note that if λi is such an input-decoupling
zero, then rank[λiI − A,B] < n, and therefore, there exists a 1 × n vector
v̂i �= 0 such that v̂i[λiI − A,B] = 0. This, however, implies that λi is an
uncontrollable eigenvalue of A (and v̂i is the corresponding left eigenvector),
in view of Section 6.3. Conversely, it can be shown that an uncontrollable
eigenvalue is an input-decoupling zero. Therefore, the input-decoupling zeros
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of the system {A,B,C,D} are the uncontrollable eigenvalues of A. Similarly,
it can be shown that the output-decoupling zeros of the system {A,B,C,D}
are the unobservable eigenvalues of A. They are also zeros of the system, as
can easily be seen from the definitions.

There are eigenvalues of A that are both uncontrollable and unobservable.
These can be determined using the left and right corresponding eigenvector
test or by the Canonical Structure Theorem (Kalman Decomposition Theo-
rem) (see Sections 6.2 and 6.3). These uncontrollable and unobservable eigen-
values of A are zeros of the system that are both input- and output-decoupling
zeros and are called input–output decoupling zeros . These input–output decou-
pling zeros can also be defined directly from P (s) given in (7.15); however,
care should be taken in the case of repeated zeros.

If the zeros of a system are determined and the zeros that are input- and/or
output-decoupling zeros are removed, then the zeros that remain are the zeros
of H(s) and can be found directly from the transfer function H(s).

Zero Polynomial of H(s). In particular, if the Smith–McMillan form of H(s)
is given by (7.12), then

zH(s) = ε1(s)ε2(s) · · · εr(s) (7.18)

is the zero polynomial of H(s) and its roots are the zeros of H(s). These are
also called the transmission zeros of the system.

Definition 7.11. The zeros of H(s) or the transmission zeros of the system
are the roots of the zero polynomial of H(s), zH(s). �

When P (s) is square and nonsingular, the relationship between the zeros
of the system and the zeros of H(s) can easily be determined. Consider the
identity

P (s) =
[
sI −A B
−C D

]
=
[
sI −A 0
−C I

] [
I (sI −A)−1B
0 H(s)

]

and note that |P (s)| = |sI − A| |H(s)|. In this case, the invariant zeros of
the system [the roots of |P (s)|], which are equal here to the zeros of the
system, are the zeros of H(s) [the roots of |H(s)|] and those eigenvalues of A
that are not both controllable and observable [the ones that do not cancel in
|sI −A||H(s)|].

Note that the zero polynomial of H(s), zH(s), equals the monic greatest
common divisor of the numerators of all the highest order nonzero minors in
H(s) after all their denominators have been set equal to pH(s), the charac-
teristic polynomial of H(s). In the scalar case (p = m = 1), our definition of
the zeros of H(s) reduces to the well-known definition of zeros, namely, the
roots of the numerator polynomial of H(s).
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Example 7.12. Consider H(s) of Example 7.6. From the Smith–McMillan
form of H(s), we obtain the zero polynomial zH(s) = 1, and H(s) has no
(finite) zeros. Alternatively, the highest order nonzero minors are 1/[s3(s +
1)] and 1/s3 = (s + 1)/[s3(s + 1)] and the greatest common divisor of the
numerators is zH(s) = 1.

Example 7.13. We wish to determine the zeros of H(s) =
[ s
s+1 0
1
s+1

s+1
s2

]
. The

first-order minors are the entries of H(s), namely s
s+1 ,

1
s+1 ,

s+1
s2 , and there

is only one second-order minor s
s+1 · s+1

s2 = 1
s . Then pH(s) = s2(s + 1), the

least common denominator, is the characteristic polynomial. Next, write the
highest (second-) order minor as 1

s = s(s+1)
s2(s+1) = s(s+1)

pH(s) and note that s(s+ 1)
is the zero polynomial of H(s), zH(s), and the zeros of H(s) are {0,−1}. It is
worth noting that the poles and zeros of H(s) are at the same locations. This
may happen only when H(s) is a matrix.

If the Smith–McMillan form of H(s) is to be used, write H(s) = 1
s2(s+1)[

s3 0
s2 (s+ 1)2

]
= 1

d(s)N(s). The Smith form of N(s) is now
[

1 0
0 s3(s+ 1)2

]

since D0 = 1, D1 = 1, D2 = s3(s + 1)2 with invariant factors of N(s) given
by n1 = D1/D0 = 1 and n2 = D2/D1 = s3(s + 1)2. Therefore, the Smith–
McMillan form (7.12) of H(s) is

SMH(s) =

[
1

s2(s+1) 0

0 s(s+1)
1

]
=
[
ε1/ψ1 0

0 ε2/ψ2

]
.

The zero polynomial is then zH(s) = ε1ε2 = s(s+1), and the zeros of H(s) are
{0,−1}, as expected. Also, the pole polynomial is pH(s) = ψ1ψ2 = s2(s+ 1),
and the poles are {0, 0,−1}.

Example 7.14. We wish to determine the zeros of H(s) =

⎡
⎣

s
s+1 0
1
s+1

s+1
s2

0 1
s

⎤
⎦.

The second-order minors are 1
s ,

1
s+1 ,

1
s(s+1) , and the characteristic polyno-

mial is pH(s) = s2(s + 1). Rewriting the highest (second-) order minors as
s(s+1)/pH(s), s2/pH(s), and s/pH(s), the greatest common divisor of the nu-
merators is s; i.e., the zero polynomial ofH(s) is zH(s) = s. Thus, there is only
one zero of H(s) located at 0. Alternatively, note that the Smith–McMillan
form is

SMH(s) =

⎡
⎣

1/[s2(s+ 1)] 0
0 s/1
0 0

⎤
⎦ .
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7.4.4 Relations Between Poles, Zeros, and Eigenvalues of A

Consider the system ẋ = Ax + Bu, y = Cx + Du and its transfer function
matrix H(s) = C(sI − A)−1B + D. Summarizing the above discussion, the
following relations can be shown to be true.

1. We have the set relationship

{zeros of the system} = {zeros of H(s)}
∪ {input-decoupling zeros} ∪ {output-decoupling zeros}
− {input–output decoupling zeros}. (7.19)

Note that the invariant zeros of the system contain all the zeros of H(s)
(transmission zeros), but not all the decoupling zeros (see Example 7.15).
When P (s) is square and nonsingular, the zeros of the system are exactly
the invariant zeros of the system. Also, in the case when {A,B,C,D} is
controllable and observable, the zeros of the system, the invariant zeros,
and the transmission zeros [zeros of H(s)] all coincide.

2. We have the set relationship

{eigenvalues of A (or poles of the system)} = {poles of H(s)}
∪ {uncontrollable eigenvalues of A} ∪ {unobservable eigenvalues of A}
− {both uncontrollable and unobservable eigenvalues of A}. (7.20)

3. We have the set relationships

{input-decoupling zeros} = {uncontrollable eigenvalues of A },
{output-decoupling zeros} = {unobservable eigenvalue of A},

and

{input–output decoupling zeros} =
{eigenvalues of A that are both uncontrollable and unobservable}.

(7.21)

4. When the system {A,B,C,D} is controllable and observable, then

{zeros of the system} = {zeros ofH(s)}
and {eigenvalues of A (or poles of the system)} = {poles of H(s)}.

(7.22)

Note that the eigenvalues of A (the poles of the system) can be defined as
the roots of the invariant factors of sI −A in P (s) given in (7.15).
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Example 7.15. Consider the system {A,B,C} of Example 7.8. Let

P (s) =
[
sI −A B
−C D

]
=

⎡
⎢⎢⎣

s 1 −1 1 0
−1 s+ 2 −1 1 1

0 −1 s+ 1 1 2
0 −1 0 0 0

⎤
⎥⎥⎦ .

There are two fourth-order minors that include all columns of sI − A
obtained by taking columns 1, 2, 3, 4 and columns 1, 2, 3, 5 of P (s); they
are (s + 1)(s + 2) and (s + 1)(s + 2). The zero polynomial of the system is
zP = (s+1)(s+2), and the zeros of the system are {−1,−2}. To determine the
input-decoupling zeros, consider all the third-order minors of [sI−A,B]. The
greatest common divisor is s + 2, which implies that the input-decoupling

zeros are {−2}. Similarly, consider
[
sI −A
−C

]
and show that s + 1 is the

greatest common divisor of all the third-order minors and that the output-
decoupling zeros are {−1}. The transfer function for this example was found in
Example 7.8 to be H(s) = [1/s, 1/s]. The zero polynomial of H(s) is zH(s) =
1, and there are no zeros of H(s). Notice that there are no input–output
decoupling zeros. It is now clear that relation (7.19) holds.

The controllable (resp., uncontrollable) and the observable (resp., unob-
servable) eigenvalues of A (poles of the system) have been found in Exam-
ple 6.10. Compare these results to show that (7.21) holds. The poles of H(s)
are {0}. Verify that (7.20) holds.

One could work with the Smith form of the matrices of interest and
the Smith–McMillan form of H(s). In particular, it can be shown that the

Smith form of P (s) is

⎡
⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 (s+ 2) 0

⎤
⎥⎥⎦ , of [sI − A,B] is

⎡
⎣

1 0 0 0 0
0 1 0 0 0
0 0 s+ 2 0 0

⎤
⎦ ,

of
[
sI −A
−C

]
is

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 s+ 1
0 0 0

⎤
⎥⎥⎦ , and of [sI −A] is

⎡
⎣

1 0 0
0 1 0
0 0 s(s+ 1)(s+ 2)

⎤
⎦ . Also,

it can be shown that the Smith–McMillan form of H(s) is

SMH(s) = [1/s, 0].

It is straightforward to verify the above results. Note that in the present case
the invariant zero polynomial is zIP (s) = s+ 2 and there is only one invariant
zero at −2.

Example 7.16. Consider the circuit of Example 7.9 and of Example 7.2 and
the system matrix P (s) for the case when R1R2C = L given by
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P (s) =
[
sI −A B
−C D

]
=

⎡
⎣
s+R2/L 0 R2/L

0 s+R2/L 1/L
1/R1 −1 1/R1

⎤
⎦ .

(i) First, let R1 �= R2. To determine the zeros of the system, consider |P (s)| =
(1/R1)(s+R1/L)(s+R2/L), which implies that the zeros of the system are
{−R1/L,−R2/L}. Consider now all second-order (nonzero) minors of [sI−
A,B], namely, (s+R2/L)2, (1/L)(s+R2/L) and −(R2/L)(s+R2/L), from
which we see that {−R2/L} is the input-decoupling zero. Similarly, we also
see that {−R2/L} is the output-decoupling zero. Therefore, {−R2/L}
is the input–output decoupling zero. Compare this with the results in
Example 7.9 to verify (7.22).

(ii) When R1 = R2 = R, then |P (s)| = (1/R)(s+ R/L)2, which implies that
the zeros of the system are at {−R/L,−R/L}. Proceeding as in (i), it can
readily be shown that {−R/L} is the input-decoupling zero and {−R/L}
is the output-decoupling zero. To determine which are the input–output
decoupling zeros, one needs additional information to the zero location.
This information can be provided by the left and right eigenvectors of the
two zeros at −R/L to determine that there is no input–output decoupling
zero in this case (see Example 7.2).

In both cases (i) and (ii), H(s) has been derived in Example 7.2. Verify
relation (7.19).

Finally, note that there are characteristic vectors or zero directions, as-
sociated with each invariant and decoupling zero of the system {A,B,C,D},
just as there are characteristic vectors or eigenvectors, associated with each
eigenvalue of A (pole of the system) (see [1, p. 306, Section 3.5]). For pole-zero
cancellations to take place in the case of multi-input or output systems when
the transfer function matrix is formed, not only the pole, zero locations must
be the same but also their characteristic directions must be aligned.

7.5 Polynomial Matrix and Matrix Fractional
Descriptions of Systems

In this section, representations of linear time-invariant systems based on poly-
nomial matrices, called Polynomial Matrix Description (PMD) [or Differential
(Difference) Operator Representation (DOR)] are introduced. Such represen-
tations arise naturally when differential (or difference) equations are used to
describe the behavior of systems, and the differential (or difference) operator
is introduced to represent the operation of differentiation (or of time-shift).
Polynomial matrices in place of polynomials are involved since this approach is
typically used to describe multi-input, multi-output systems. Note that state-
space system descriptions only involve first-order differential (or difference)
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equations, and as such, PMDs include the state-space descriptions as special
cases.

A rational function matrix can be written as a ratio or fraction of two poly-
nomial matrices or of two rational matrices. If the transfer function matrix of
a system is expressed as a fraction of two polynomial or rational matrices, this
leads to a Matrix Fraction(al) Description (MFD) of the system. The MFDs
that involve polynomial matrices, called polynomial MFDs, can be viewed as
representations of internal realizations of the transfer function matrix; that
is, they can be viewed as system PMDs of special form. These polynomial
fractional descriptions (PMFDs) help establish the relationship between inter-
nal and external system representations in a clear and transparent manner.
This can be used to advantage, for example, in the study of feedback con-
trol problems, leading to clearer understanding of the phenomena that occur
when systems are interconnected in feedback configurations. The MFDs that
involve ratios of rational matrices, in particular ratios of proper and stable
rational matrices, offer convenient characterizations of transfer functions in
feedback control problems.

MFDs that involve ratios of polynomial matrices and ratios of proper and
stable rational matrices are essential in parameterizing all stabilizing feedback
controllers. Appropriate selection of the parameters guarantees that a closed-
loop system is not only stable, but it will also satisfy additional control criteria.
This is precisely the approach taken in optimal control methods, such as H∞-
optimal control. Parameterizations of all stabilizing feedback controllers are
studied in Chapter 10. We note that extensions of MFDs are also useful in
linear, time-varying systems and in nonlinear systems. These extensions are
not addressed here.

In addition to the importance of MFDs in characterizing all stabilizing
controllers, and in H∞-optimal control, PMFDs and PMDs have been used
in other control design methodologies as well (e.g., self-tuning control). The
use of PMFDs in feedback control leads in a natural way to the polynomial
Diophantine matrix equation, which is central in control design when PMDs
are used and which directly leads to the characterization of all stabilizing
controllers. Finally, PMDs are generalizations of state-space descriptions, and
the use of PMDs to characterize the behavior of systems offers additional
insight and flexibility. Detailed treatment of all these issues may be found in [1,
Chapter 7]. The development of the material in this section is concerned only
with continuous-time systems; however, completely analogous results are valid
for discrete-time systems and can easily be obtained by obvious modifications.
In this section we emphasize PMFD and discuss controllability, observability,
and stability.
An Important Comment on Notation. We will be dealing with matrices with
entries polynomials in s or q, denoted by, e.g., D(s) or D(q), where s is the
Laplace variable and q � d/dt, the differential operator. For simplicity of
notation we frequently omit the argument s or q and we write D to denote
the polynomial matrix on hand. When ambiguity may arise, or when it is
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important to stress the fact that the matrix in question is a polynomial matrix,
the argument will be included.

7.5.1 A Brief Introduction to Polynomial and Fractional
Descriptions

Below, the Polynomial Matrix Description (PMD) and the Matrix Fractional
Description (MFD) of a linear, time-invariant system are introduced via a
simple illustrating example.

Example 7.17. In the ordinary differential equation representation of a sys-
tem given by

ÿ1(t) + y1(t) + y2(t) = u̇2(t) + u1(t),
ẏ1(t) + ẏ2(t) + 2y2(t) = u̇2(t), (7.23)

y1(t), y2(t) and u1(t), u2(t) denote, respectively, outputs and inputs of interest.
We assume that appropriate initial conditions for the ui(t), yi(t) and their
derivatives at t = 0 are given.

By changing variables, one can express (7.23) by an equivalent set of first-
order ordinary differential equations, in the sense that this set of equations
will generate all solutions of (7.23), using appropriate initial conditions and
the same inputs. To this end, let

x1 = ẏ1 − u2, x2 = y1, x3 = y1 + y2 − u2. (7.24)

Then (7.23) can be written as

ẋ = Ax+Bu, y = Cx+Du, (7.25)

where x(t) =

⎡
⎣
x1(t)
x2(t)
x3(t)

⎤
⎦, u(t) =

[
u1(t)
u2(t)

]
, y(t) =

[
y1(t)
y2(t)

]
, and

A =

⎡
⎣

0 0 −1
1 0 0
0 2 −2

⎤
⎦ , B =

⎡
⎣

1 −1
0 1
0 −2

⎤
⎦ , C =

[
0 1 0
0 −1 1

]
, D =

[
0 0
0 1

]

with initial conditions x(0) calculated by using (7.24).
More directly, however, system (7.23) can be represented by

P (q)z(t) = Q(q)u(t), y(t) = R(q)z(t) +W (q)u(t), (7.26)

where z(t) =
[
z1(t)
z2(t)

]
, u(t) =

[
u1(t)
u2(t)

]
, y(t) =

[
y1(t)
y2(t)

]
, and
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P (q) =
[
q2 + 1 1
q q + 2

]
, Q(q) =

[
1 q
0 q

]
, R(q) =

[
1 0
0 1

]
, W (q) =

[
0 0
0 0

]

with q � d
dt , the differential operator. The variables z1(t), z2(t) are called

partial state variables, z(t) denotes the partial state of the system description
(7.26), and u(t) and y(t) denote the input and output vectors, respectively.

Polynomial Matrix Descriptions (PMDs)

Representation (7.26), also denoted as {P (q), Q(q), R(q),W (q)}, is an example
of a Polynomial Matrix Description (PMD) of a system. Note that the state-
space description (7.25) is a special case of (7.26). To see this, write (7.25)
as

(qI −A)x(t) = Bu(t), y(t) = Cx(t) +Du(t). (7.27)

Clearly, description {qI −A,B,C,D} is a special case of the general Polyno-
mial Matrix Description {P (q), Q(q), R(q),W (q)} with

P (q) = qI −A,Q(q) = B,R(q) = C,W (q) = D. (7.28)

The above example points to the fact that a PMD of a system can be de-
rived in a natural way from differential (or difference) equations that involve
variables that are directly connected to physical quantities. By this approach,
it is frequently possible to study the behavior of physical variables directly
without having to transform the system to a state-space description. The
latter may involve (state) variables that are quite removed from the physi-
cal phenomena they represent, thus losing physical insight when studying a
given problem. The price to pay for this additional insight is that one has to
deal with differential (or difference) equations of order greater than one. This
typically adds computational burdens. We note that certain special forms of
PMDs, namely the polynomial Matrix Fractional Descriptions, are easier to
deal with than general forms. However, a change of variables may again be
necessary to obtain such forms.

Consider a general PMD of a system given by

P (q)z(t) = Q(q)u(t), y(t) = R(q)z(t) +W (q)u(t), (7.29)

with P (q) ∈ R[q]l×l, Q(q) ∈ R[q]l×m, and R(q) ∈ R[q]p×l,W (q) ∈ R[q]p×m,
where R[q]l×l denotes the set of l× l matrices with entries that are real poly-
nomials in q. The transfer function matrix H(s) of (7.29) can be determined
by taking the Laplace transform of both sides of the equation assuming zero
initial conditions (z(0) = ż(0) = · · · = 0, u(0) = u̇(0) = · · · = 0). Then

H(s) = R(s)P−1(s)Q(s) +W (s). (7.30)

For the special case of state-space representations, H(s) in (7.30) assumes the
well-known expression H(s) = C(sI −A)−1B +D. For the study of the rela-
tionship between external and internal descriptions, (7.30) is not particularly
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convenient. There are, however, special cases of (7.30) that are very conve-
nient to use in this regard. In particular, it can be shown [1, Section 7.3] that
if the system is controllable, then there exists a representation equivalent to
(7.29), which is of the form

Dc(q)zc(t) = u(t), y(t) = Nc(q)zc(t), (7.31)

where Dc(q) ∈ R[q]m×m and Nc(q) ∈ R[q]p×m. Representation (7.31) is ob-
tained by letting Q(q) = Im and W (q) = 0 in (7.29) and using D and N
instead of P and R. Equation (7.30) now becomes

H(s) = Nc(s)Dc(s)−1, (7.32)

whereNc(s) andDc(s) represent the matrix numerator and matrix demonima-
tor of the transfer function, respectively. Similarly, if the system is observable,
there exists a representation equivalent to (7.29), which is of the form

Do(q)zo(t) = No(q)u(t), y(t) = zo(t), (7.33)

where Do(q) ∈ R[q]p×p and No(q) ∈ R[q]p×m. Representation (7.33) is ob-
tained by letting in (7.29) R(q) = Ip and W (q) = 0 with P (q) = Do(q) and
Q(q) = No(q). Here,

H(s) = D−1
o (s)No(s). (7.34)

Note that (7.32) and (7.34) are generalizations to the MIMO case of the SISO
system expression H(s) = n(s)/d(s). As H(s) = n(s)/d(s) can be derived di-
rectly from the differential equation d(q)y(t) = n(q)u(t), by taking the Laplace
transform and assuming that the initial conditions are zero, (7.34) can be de-
rived directly from (7.33).

Returning now to (7.25) in Example 7.17, notice that the system is observ-
able (state observable from the output y). Therefore, the system in this case
can be represented by a description of the form {Do, No, I2, 0}. In fact, (7.26)
is such a description, where Do and No are equal to P and Q, respectively, i.e.,

Do(q) =
[
q2 + 1 1
q q + 2

]
, and No(q) =

[
1 q
0 q

]
. The transfer function matrix is

given by

H(s) = C(sI −A)−1B +D =
[

0 1 0
0 −1 1

]⎡
⎣

s 0 1
−1 s 0

0 −2 s+ 2

⎤
⎦
−1 ⎡
⎣

1 −1
0 1
0 −2

⎤
⎦+

[
0 0
0 1

]

= D−1
o (s)No(s) =

[
s2 + 1, 1
s, s+ 2

]−1 [ 1 s
0 s

]

= 1
s3+2s2+2

[
s+ 2 −1
−s s2 + 1

] [
1 s
0 s

]
= 1

s3+2s2+2

[
s+ 2 s(s+ 1)
−s s(s2 − s+ 1)

]
.
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Matrix Fractional Descriptions (MFDs) of System Transfer Matrices

A given p×m proper, rational transfer function matrix H(s) of a system can
be represented as

H(s) = NR(s)D−1
R (s) = D−1

L (s)NL(s), (7.35)

where NR(s) ∈ R[s]p×m, DR(s) ∈ R[s]m×m and NL(s) ∈ R[s]p×m, DL(s) ∈
R[s]p×p. The pairs {NR(s), DR(s)} and {DL(s), NL(s)} are called Polynomial
Matrix Fractional Descriptions (PMFDs) of the system transfer matrix with
{NR(s), DR(s)} termed a right Fractional Description and {DL(s), NL(s)} a
left Fractional Description. Notice that in view of (7.32), the right Polynomial
Matrix Fractional Description (rPMFD) corresponds to the controllable Poly-
nomial Matrix Description (PMD) given in (7.31). That is, {DR, Im, NR, 0},
or

DR(q)zR(t) = u(t), y(t) = NR(q)zR(t), (7.36)

is a controllable PMD of the system with transfer functionH(s). The subscript
c was used in (7.31) and (7.32) to emphasize the fact that Nc, Dc originated
from an internal description that was controllable. In (7.35) and (7.36), the
subscript R is used to emphasize that {NR, DR} is a right fraction represen-
tation of the external description H(s).

Similarly, in view of (7.34), the left Polynomial Matrix Fractional Descrip-
tion (lPMFD) corresponds to the observable Polynomial Matrix Description
(PMD) given in (7.33). That is, {DL, NL, Ip, 0}, or

DL(q)zL(t) = NL(q)u(t), y(t) = zL(t), (7.37)

is an observable PMD of the system with transfer function H(s). Comments
analogous to the ones made above concerning controllable and right fractional
descriptions (subscripts c and R) can also be made here concerning the sub-
scripts o and L.

An MFD of a transfer function may not consist necessarily of ratios of
polynomial matrices. In particular, given a p × m proper transfer function
matrix H(s), one can write

H(s) = N̂R(s)D̂−1
R (s) = D̂−1

L (s)N̂L(s), (7.38)

where N̂R, D̂R, D̂L, N̂L are proper and stable rational matrices. To illustrate,
in the example considered above, H(s) can be written as

H(s) =
1

s3 + 2s2 + 2

[
s+ 2 s(s+ 1)
−s s(s2 − s+ 1

]

=

[[
(s+ 1)2 0

0 s+ 2

]−1 [
s2 + 1 1
s s+ 2

]]−1 [[
(s+ 1)2 0

0 s+ 2

]−1 [1 s
0 s

]]

=

[
s2+1

(s+1)2
1

(s+1)2
s
s+2 1

]−1 [ 1
(s+1)2

s
(s+1)2

0 s
s+2

]
= D̂−1

L (s)N̂L(s).

Note that D̂L(s) and N̂L(s) are proper and stable rational matrices.
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Such representations of proper transfer functions offer certain advantages
when designing feedback control systems. They are discussed further in [1,
Section 7.4D].

7.5.2 Coprimeness and Common Divisors

Coprimeness of polynomial matrices is one of the most important concepts in
the polynomial matrix representation of systems since it is directly related to
controllability and observability.

A polynomial g(s) is a common divisor (cd) of polynomials p1(s), p2(s) if
and only if there exist polynomials p̃1(s), p̃2(s) such that

p1(s) = p̃1(s)g(s), p2(s) = p̃2(s)g(s). (7.39)

The highest degree cd of p1(s), p2(s), g∗(s), is a greatest common divisor
(gcd) of p1(s), p2(s). It is unique within multiplication by a nonzero real num-
ber. Alternatively, g∗(s) is a gcd of p1(s), p2(s) if and only if any cd g(s) of
p1(s), p2(s) is a divisor of g∗(s) as well; that is,

g∗(s) = m(s)g(s) (7.40)

with m(s) a polynomial. The polynomials p1(s), p2(s) are coprime (cp) if and
only if a gcd g∗(s) is a nonzero real.

The above can be extended to matrices. In this case, both right divisors
and left divisors must be defined, since in general, two polynomial matrices do
not commute. Note that one may talk about right or left divisors of polynomial
matrices only when the matrices have the same number of columns or rows,
respectively.

An m × m matrix GR(s) is a common right divisor (crd) of the p1 × m
polynomial matrix P1(s) and the p2×mmatrix P2(s), if there exist polynomial
matrices P1R(s), P2R(s) so that

P1(s) = P1R(s)GR(s), P2(s) = P2R(s)GR(s). (7.41)

Similarly, a p× p polynomial matrix GL(s) is a common left divisor (cld) of
the p × m1 polynomial matrix P̂1(s) and the p × m2 matrix P̂2(s), if there
exist polynomial matrices P̂1L(s), P̂2L(s) so that

P̂1(s) = GL(s)P̂1L(s), P̂2(s) = GL(s)P̂2L(s). (7.42)

Also G∗
R(s) is a greatest common right divisor (gcrd) of P1(s) and P2(s) if

and only if any crd GR(s) is an rd of G∗
R(s). Similarly, G∗

L(s) is a greatest
common left divisor (gcld) of P̂1(s) and P̂2(s) if and only if any cld GL(s) is
a ld of G∗

L(s). That is,

G∗
R(s) = M(s)GR(s), G∗

L(s) = GL(s)N(s), (7.43)
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with M(s) and N(s) polynomial matrices and GR(s) and GL(s) any crd and
cld of P1(s), P2(s), respectively.

Alternatively, it can be shown that any crd G∗
R(s) of P1(s) and P2(s) [or a

cld G∗
L(s) of P̂1(s) and P̂2(s)] with determinant of the highest degree possible

is a gcrd (gcld) of the matrices. It is unique within a pre-multiplication (post-
multiplication) by a unimodular matrix. Here it is assumed that GR(s) is

nonsingular. Note that if rank
[
P1(s)
P2(s)

]
= m (a (p1+p2)×mmatrix), which is a

typical case in polynomial matrix system descriptions, then rankGR(s) = m;
that is, GR(s) is nonsingular.

The polynomial matrices P1(s) and P2(s) are right coprime (rc) if and
only if a gcrd G∗

R(s) is a unimodular matrix. Similarly, P̂1(s) and P̂2(s) are
left coprime (lc) if and only if a gcld G∗

2(s) is a unimodular matrix.

Example 7.18. Let P1 =
[
s(s+2) 0

0 (s+1)2

]
, P2 =

[
(s+1)(s+2) s+1

0 s(s+1)

]
. Two dis-

tinct common right divisors are GR1 =
[

1 0
0 s+ 1

]
and GR2 =

[
s+ 2 0

0 1

]

since
[
P1

P2

]
=

⎡
⎢⎢⎣

s(s+ 2) 0
0 s+ 1

(s+ 1)(s+ 2) 1
0 s

⎤
⎥⎥⎦GR1 =

⎡
⎢⎢⎣

s 0
0 (s+ 1)2

s+ 2 s+ 1
0 s(s+ 1)

⎤
⎥⎥⎦GR2 . A great-

est common right divisor (gcrd) is G∗
R =

[
s+ 2 0

0 s+ 1

]
=
[
s+ 2 0

0 1

]
GR1 =

[
1 0
0 s+ 1

]
GR2 . Now,

[
P1

P2

]
G∗−1
R =

[
P ∗

1R

P ∗
2R

]
=

⎡
⎢⎢⎣

s 0
0 s+ 1

s+ 1 1
0 s

⎤
⎥⎥⎦ where P ∗

1R and

P ∗
2R are right coprime (rc). Note that a greatest common left divisor (gcld) of

P1 and P2 is G∗
L =

[
1 0
0 s+ 1

]
. Both G∗

R and G∗
L can be determined using an

algorithm to derive the Hermite form of
[
P1

P2

]
; see [1, p. 532].

Remarks

It can be shown that two square p× p nonsingular polynomial matrices with
determinants that are prime polynomials are both right and left coprime. The
converse of this is not true; that is, two right coprime polynomial matrices
do not necessarily have prime determinant polynomials. A case in point is
Example 7.18, where P ∗

1R and P ∗
2R are right coprime; however, detP ∗

1R =
detP ∗

2R = s(s+ 1).
Left and right coprimeness of two polynomial matrices (provided that the

matrices are compatible) are quite distinct properties. For example, two ma-
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trices can be left coprime but not right coprime, and vice versa (refer to
Example 7.19).

Example 7.19. P1 =
[
s(s+ 2) 0

0 s+ 1

]
and P2 =

[
(s+ 1)(s+ 2) 1

0 s

]
are left

coprime but not right coprime since a gcrd is G∗
R =

[
s+ 2 0

0 1

]
with detG∗

R =

(s+ 2).

Finally, we note that all of the above definitions apply also to more than
two polynomial matrices. To see this, replace in all definitions P1, P2 by
P1, P2, . . . , Pk. This is not surprising in view of the fact that the p1×m matrix
P1(s) and the p2 × m matrix P2(s) consist of p1 and p2 rows, respectively,
each of which can be viewed as a 1 ×m polynomial matrix; that is, instead
of, e.g., the coprimeness of P1 and P2, one could speak of the coprimeness of
the (p1 + p2) rows of P1 and P2.

How to Determine a Greatest Common Right Divisor

Lemma 7.20. Let P1(s) ∈ R[s]p1×m and P2(s) ∈ R[s]p2×m with p1 +p2 ≥ m.
Let the unimodular matrix U(s) be such that

U(s)
[
P1(s)
P2(s)

]
=
[
G∗
R(s)
0

]
. (7.44)

Then G∗
R(s) is a greatest common right divisor (gcrd) of P1(s), P2(s).

Proof. Let

U =
[
X̄ Ȳ

−P̃2 P̃1

]
, (7.45)

with X̄ ∈ R[s]m×p1 , Ȳ ∈ R[s]m×p2 , P̃2 ∈ R[s]q×p1 , and P̃1 ∈ R[s]q×p2 , where
q � (p1 + p2) −m. Note that X̄, Ȳ and P̃2, P̃1 are left coprime (lc) pairs. If
they were not, then detU �= α, a nonzero real number. Similarly, X̄, P̃2 and
Ȳ , P̃1 are right coprime (rc) pairs. Let

U−1 =

[
P̄1 −Ỹ
P̄2 X̃

]
, (7.46)

where P̄1 ∈ R[s]p1×m, P̄2 ∈ R[s]p2×m are rc and X̃ ∈ R[s]p2×q, Ỹ ∈ R[s]p1×q

are rc. Equation (7.44) implies that
[
P1

P2

]
= U−1

[
G∗
R

0

]
=
[
P̄1

P̄2

]
G∗
R; (7.47)

i.e., G∗
R is a common right divisor of P1, P2. Equation (7.44) implies also that
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X̄P1 + Ȳ P2 = G∗
R. (7.48)

This relationship shows that any crd GR of P1, P2 will also be a right divisor
of G∗

R. This can be seen directly by expressing (7.48) as MGR = G∗
R, where

M is a polynomial matrix. Thus, G∗
R is a crd of P1, P2 with the property

that any crd GR of P1, P2 is a rd of G∗
R. This implies that G∗

R is a gcrd of
P1, P2. �

Example 7.21. Let P1 =
[
s(s+ 2) 0

0 (s+ 1)2

]
, P2 =

[
(s+ 1)(s+ 2) s+ 1

0 s(s+ 1)

]
.

Then

U

[
P1

P2

]
=
[
X̄ Ȳ

−P̃2 P̃1

] [
P1

P2

]
=

⎡
⎢⎢⎣

−(s+ 2) −1 s+ 1 0
s+ 1 1 −s 0

−(s+ 1)2 −s s(s+ 1) 0
−(s+ 1) 0 s −1

⎤
⎥⎥⎦
[
P1

P2

]

=

⎡
⎢⎢⎣
s+ 2 0

0 s+ 1
0 0
0 0

⎤
⎥⎥⎦ =

[
G∗
R

0

]
.

In view of Lemma 7.20, GR∗ =
[
s+ 2 0

0 s+ 1

]
is a gcrd (see also Exam-

ple 7.18).

Note that in order to derive (7.44) and thus determine a gcrd G∗
R of P1

and P2, one could use the algorithm to obtain the Hermite form [1, p. 532].

Finally, note also that if the Smith form of
[
P1

P2

]
is known, i.e., UL

[
P1

P2

]
UR =

SP =
[

diag[εi] 0
0 0

]
, then ( diag[εi], 0)U−1

R is a gcrd of P1 and P2 in view of

Lemma 7.20. When rank
[
P1

P2

]
= m, which is the case of interest in systems,

then a gcrd of P1 and P2 is diag[εi]U−1
R .

Criteria for Coprimeness

There are several ways of testing the coprimeness of two polynomial matrices
as shown in the following Theorem.

Theorem 7.22. Let P1 ∈ R[s]p1×m and P2 ∈ R[s]p2×m with p1 + p2 ≥ m.
The following statements are equivalent:

(a) P1 and P2 are right coprime.
(b) A gcrd of P1 and P2 is unimodular.
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(c) There exist polynomial matrices X ∈ R[s]m×p1 and Y ∈ R[s]m×p2 such
that

XP1 + Y P2 = Im. (7.49)

(d) The Smith form of
[
P1

P2

]
is
[
I
0

]
.

(e) rank
[
P1(si)
P2(si)

]
= m for any complex number si.

(f)
[
P1

P2

]
constitutes m columns of a unimodular matrix.

Proof. See [1, p. 538, Section 7.2D, Theorem 2.4]. �

Example 7.23. (a) The polynomial matrices P1 =
[
s 0
0 s+ 1

]
, P2 =

[
s+ 1 1

0 s

]

are right coprime in view of the following relations. To use condition (b)

of the above theorem, let U
[
P1

P2

]
=

⎡
⎢⎢⎣

−(s+ 2) −1 s+ 1 0
s+ 1 1 −s 0

−(s+ 1)2 −s s(s+ 1) 0
−(s+ 1) 0 s −1

⎤
⎥⎥⎦
[
P1

P2

]
=

⎡
⎢⎢⎣

1 0
0 1
0 0
0 0

⎤
⎥⎥⎦ =

[
G∗
R

0

]
. Then G∗

R = I2, which is unimodular. Applying condition (c)

XP1 + Y P2 =
[
−(s+ 2) −1
s+ 1 1

]
P1 +

[
s+ 1 0
−s 0

]
P2 = I2.

To use (d), note that the invariant polynomials of
[
P1

P2

]
are ε1 = ε2 = 1;

and the Smith form is then
[
I2
0

]
. To use condition (e), note that the only

complex values si that may reduce the rank of
[
P1(si)
P2(si)

]
are those for which

detP1(si) or detP2(si) = 0; i.e., s1 = 0 and s2 = −1. For these values we have

rank
[
P1(s1)
P2(s1)

]
= rank

⎡
⎢⎢⎣

0 0
0 1
1 1
0 0

⎤
⎥⎥⎦ = 2 and rank

[
P1(s2)
P2(s2)

]
= rank

⎡
⎢⎢⎣
−1 0
0 0
0 1
0 −1

⎤
⎥⎥⎦ = 2;

i.e., both are of full rank.

The following Theorem 7.24 is the corresponding to Theorem 7.22 result
for (left coprime) proper and stable matrices. Note that Û proper and stable
is a unimodular matrix if Û−1 is also a proper and stable matrix.

Theorem 7.24. Let P̂1 ∈ R[s]p×m1 and P̂2 ∈ R[s]p×m2 with m1 + m2 ≥ p.
The following statements are equivalent:
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(a) P̂1 and P̂2 are left coprime.
(b) A gcld of P̂1 and P̂2 is unimodular.
(c) There exist polynomial matrices X̂ ∈ R[s]m1×p and Ŷ ∈ R[s]m2×p such

that
P̂1X̂ + P̂2Ŷ = Ip. (7.50)

(d) The Smith form of [P̂1, P̂2] is [I, 0].
(e) rank[P̂1(si), P̂2(si)] = p for any complex number si.
(f) [P̂1, P̂2] are p rows of a unimodular matrix.

Proof. The proof is completely analogous to the proof of Theorem 7.22 and
is omitted. �

7.5.3 Controllability, Observability, and Stability

Consider now the Polynomial Matrix Description

P (q)z(t) = Q(q)u(t), y(t) = R(q)z(t) +W (q)u(t), (7.51)

where P (q) ∈ R[q]l×l, Q(q) ∈ R[q]l×m, R(q) ∈ R[q]p×l, and W (q) ∈ R[q]p×m.
Assume that the PMD given in (7.51) is equivalent to some state-space

representation

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (7.52)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m [1, p. 553, Sec-
tion 7.3A].

Controllability

Definition 7.25. The representation {P,Q,R,W} given in (7.51) is said to
be controllable if its equivalent state-space representation {A,B,C,D} given
in (7.52) is state controllable.

Theorem 7.26. The following statements are equivalent:

(a) {P,Q,R,W} is controllable.
(b) The Smith form of [P,Q] is [I, 0].
(c) rank[P (si), Q(si)] = l for any complex number si.
(d) P,Q are left coprime.

Proof. See [1, p. 561, Theorem 3.4]. �

The right Polynomial Matrix Fractional Description, {DR, Im, NR}, is con-
trollable since DR and I are left coprime.
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Observability

Observability can be introduced in a completely analogous manner to control-
lability. This leads to the following concept and result.

Definition 7.27. The representation {P,Q,R,W} given in (7.51) is said to
be observable if its equivalent state-space representation {A,B,C,D} given in
(7.52) is state observable. �

Theorem 7.28. The following statements are equivalent:

(a) {P,Q,R,W} is observable.

(b) The Smith form of
[
P
R

]
is
[
I
0

]
.

(c) rank
[
P (si)
R(si)

]
= l for any complex number si.

(d) P,R are right coprime.

Proof. It is analogous to the proof of Theorem 7.26. �

The left Polynomial Matrix Fractional Description (PMFD), {DL, NL, Ip},
is observable since DL and Ip are right coprime.

Stability

Definition 7.29. The representation {P,Q,R,W} given in (7.51) is said
to be asymptotically stable if for its equivalent state-space representation
{A,B,C,D} given in (7.52) the equilibrium x = 0 of the free system ẋ = Ax
is asymptotically stable.

Theorem 7.30. The representation {P,Q,R,W} is asymptotically stable if
and only if Reλi < 0, i = 1, . . . , n, where λi, i = 1, . . . , n are the roots of
detP (s); the λi are the eigenvalues or poles of the system.

Proof. See [1, p. 563, Theorem 3.6]. �

7.5.4 Poles and Zeros

Poles and zeros can be defined in a completely analogous way for system
(7.51) as was done in Section 7.4 for state-space representations.

It is straightforward to show that

{poles of H(s) } ⊂ {roots of detP (s) }. (7.53)

The roots of detP are the eigenvalues or the poles of the system {P,Q,R,W}
and are equal to the eigenvalues of A in any equivalent state-space represen-
tation {A,B,C,D}. Relation (7.53) becomes an equality when the system is
controllable and observable, since in this case the poles of the transfer function
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matrix H are exactly those eigenvalues of the system that are both control-
lable and observable.

Consider the system matrix or Rosenbrock Matrix of the representation
{P,Q,R,W},

S(s) =
[

P (s) Q(s)
−R(s) W (s)

]
. (7.54)

The invariant zeros of the system are the roots of the invariant zero
polynomial, which is the product of all the invariant factors of S(s). The
input-decoupling, output-decoupling, and the input–output decoupling zeros of
{P,Q,R,W} can be defined in a manner completely analogous to the state-
space case. For example, the roots of the product of all invariant factors
of [P (s), Q(s)] are the input-decoupling zeros of the system; they are also
the uncontrollable eigenvalues of the system. Note that the input-decoupling
zeros are the roots of detGL(s), where GL(s) is a gcld of all the columns
of [P (s), Q(s)] = GL(s)[P̄ (s), Q̄(s)]. Similar results hold for the output-
decoupling zeros.

The zeros of H(s), also called the transmission zeros of the system, are
defined as the roots of the zero polynomial of H(s),

zH(s) = ε1(s) . . . εr(s), (7.55)

where the εi are the numerator polynomials in the Smith–McMillan form
of H(s). When {P,Q,R,W} is controllable and observable, the zeros of the
system, the invariant zeros, and the transmission zeros coincide.

Consider the representation DRzR = u, y = NRzR with DR ∈ R[s]m×m

and NR ∈ R[s]p×m and notice that in this case the Rosenbrock matrix (7.54)
can be reduced via elementary column operations to the form

[
DR I

−NR 0

] [
I 0

−DR I

] [
0 I
I 0

]
=
[

0 I
−NR 0

] [
0 I
I 0

]
=
[
I 0
0 −NR

]
.

In view of the fact that the invariant factors of S do not change under elemen-
tary matrix operations, the nonunity invariant factors of S are the nonunity
invariant factors of NR. Therefore, the invariant zero polynomial of the system
equals the product of all invariant factors of NR and its roots are the invariant
zeros of the system. Note that when rankNR = p ≤ m, the invariant zeros of
the system are the roots of detGL, where GL is the gcld of all the columns
of NR; i.e., NR = GLN̄R. When NR, DR are right coprime, the system is
controllable and observable. In this case it can be shown that the zeros of
H (= NRD

−1
R ), also called the transmission zeros of the system, are equal

to the invariant zeros (and to the system zeros of {DR, I,NR}) and can be
determined from NR. In fact, the zero polynomial of the system, zs(s), equals
zH(s), the zero polynomial of H , which equals ε1(s) . . . εr(s), the product of
the invariant factor of NR; i.e.,

zs(s) = zH(s) = ε1(s) . . . εr(s). (7.56)
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The pole polynomial of H(s) is

pH(s) = k detDR(s), (7.57)

where k ∈ R.
When H(s) is square and nonsingular and H(s) = NR(s)D−1

R (s) =
D−1
L (s)NL(s) rc and lc, respectively, the poles of H(s) are the roots of

detDR(s) or of detDL(s) and the zeros of H(s) are the roots of NR(s)
or of NL(s). An important well-known special case is the case of a scalar
H(s) = n(s)/d(s), where the poles of H(s) are the roots of d(s) and the zeros
of H(s) are the roots of n(s).

7.6 Summary and Highlights

• The transfer function

H(s) = C1(sI −A11)−1B1 +D (7.4)

and the impulse response

H(t, 0) = C1e
A11tB1 +Dδ(t) (7.5)

depend only on the controllable and observable parts of the system,
(A11, B1, C1). Similar results hold for the discrete-time case in (7.6) and
(7.7).

• Since
{eigenvalues of A} ⊃ {poles of H(s)}, (7.9)

internal stability always implies BIBO stability but not necessarily vice
versa. Recall that the system is stable in the sense of Lyapunov (or inter-
nally stable) if and only if all eigenvalues of A have negative real parts; the
system is BIBO stable if and only if all poles of H(s) have negative real
parts. BIBO stability implies internal stability only when the eigenvalues
of A are exactly the poles of H(s), which is the case when the system is
both controllable and observable.

• When H(s) = C(sI −A)−1B+D and (A,B) is controllable and (A,C) is
observable, then

{eigenvalues of A (poles of the system)} = {poles of H(s)}, (7.58)
{zeros of the system} = {zeros of H(s)}. (7.22)

When the system is not controllable and observable

{eigenvalues of A (poles of the system)} =
{poles of H(s)} ∪ {uncontrollable and/or unobservable eigenvalues}.

(7.20)

• If the system {A,B,C,D} is not both controllable and observable, then
the uncontrollable and/or unobservable eigenvalues cancel out when the
transfer functions H(s) = C(sI −A)−1B +D is determined.
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Poles and Zeros

• The Smith–McMillan form of a transfer function matrix H(s) is

SMH(s) =
[
Λ̃(s) 0

0 0

]
, (7.12)

with Λ̃(s) � diag
[
ε1(s)
ψ1(s)

, . . . , εr(s)
ψr(s)

]
are the invariant factors of N(s) in

H(s) = 1
d(s)N(s) and r = rankH(s).

• The characteristic or pole polynomial of H(s) is

pH(s) = ψ1(s) · · ·ψr(s). (7.13)

pH is also the monic least common denominator of all nonzero minors of
H(s). The roots of pH(s) are the poles of H(s).

• The zero polynomial of H(s) is

zH(s) = ε1(s)ε2(s) · · · εr(s). (7.18)

The roots of zH(s) are the zeros of H(s) (or the transmission zeros of the
system). When H(s) = N(s)D(s)−1 a right coprime polynomial factor-
ization, the zeros of H(s) are the invariant zeros of N(s). When N(s) is
square, the zeros are the roots of |N(s)|.

Polynomial Matrix Descriptions

• PMDs are given by

P (q)z(t) = Q(q)u(t), y(t) = R(q)z(t) +W (q)u(t), (7.29)

where q � d/dt the differential operator (qz = ż). PMDs are, in general,
equivalent to state-space representations of the form

ẋ = Ax+Bu, y = Cx+D(q)u,

and so they are more general than the {A,B,C,D} descriptions.
• The transfer function matrix is

H(s) = R(s)P−1(s)Q(s) +W (s). (7.30)

• The system is controllable if and only if (P,Q) are left coprime (lc). It is
observable if and only if (P,R) are right coprime (rc). (See Theorems 7.26
and 7.28.) The system is asymptotically stable if all the eigenvalues of the
system, the roots of |P (q)|, have negative real parts. (See Theorem 7.30.)
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• Polynomial Matrix Fractional Descriptions (PMFDs) are given by

H(s) = NR(s)D−1
R (s) = D−1

L (s)NL(s), (7.35)

where (NR, DR) are rc and (DL, NL) are lc. They correspond to the PMD

DR(q)zR(t) = u(t), y(t) = NR(q)zR(t) (7.36)

and
DL(q)zL(t) = NL(q)u(t), y(t) = zL(t), (7.37)

which are both controllable and observable representations.
• Proper and stable Matrix Fractional Descriptions (MFDs) are given by

H(s) = N̂R(s)D̂R(s)−1 = D̂−1
L (s)N̂L(s), (7.38)

where N̂R, D̂R, D̂L, N̂L are proper and stable matrices with (N̂R, D̂R) rc
and (D̂L, N̂L) lc.

7.7 Notes

The role of controllability and observability in the relation between propertiers
of internal and external descriptions are found in Gilbert [2], Kalman [4], and
Popov [5]. For further information regarding these historical issues, consult
Kailath [3] and the original sources.

Multivariable zeros have an interesting history. For a review, see Schrader
and Sain [7] and the references therein. Refer also to Vardulakis [8]. Polynomial
matrix descriptions were used by Rosenbrock [6] and Wolovich [9]. See [1,
Sections 7.6 and 7.7] for extensive notes and references.
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Exercises

7.1. Consider the system ẋ = Ax+Bu, y = Cx+Du.

(a) Show that only controllable modes appear in eAtB and therefore in the
zero-state response of the state.

(b) Show that only observable modes appear in CeAt and therefore in the
zero-input response of the system.

(c) Show that only modes that are both controllable and observable appear
in CeAtB and therefore in the impulse response and the transfer function
matrix of the system. Consider next the system x(k+1) = Ax(k)+Bu(k),
y(k) = Cx(k) +Du(k).

(d) Show that only controllable modes appear in AkB, only observable modes
in CAk, and only modes that are both controllable and observable appear
in CAkB [that is, in H(z)].

(e) Let A =

⎡
⎣

1 0 0
0 −2 0
0 0 −1

⎤
⎦, B =

⎡
⎣

1
0
1

⎤
⎦, C = [1, 1, 0], and D = 0. Verify the

results obtained in (d).

7.2. In the circuit of Example 7.2, let R1R2C = L and R1 = R2 = R. De-
termine x(t) = [x1(t), x2(t)]T and i(t) for unit step input voltage, v(t), and
initial conditions x(0) = [a, b]T . Comment on your results.

7.3. (a) Consider the state equation ẋ = Ax + Bu, x(0) = x0, where A =⎡
⎣

0 −1 1
1 −2 1
0 1 −1

⎤
⎦ and B =

⎡
⎣

1 0
1 1
1 2

⎤
⎦. Determine x(t) as a function of u(t) and

x0, and verify that the uncontrollable modes do not appear in the zero-
state response but do appear in the zero-input response.

(b) Consider the state equation x(k + 1) = Ax(k) + Bu(k) and x(0) = x0,
where A and B are as in (a). Demonstrate for this case results correspond-
ing to (a).
In (a) and (b), determine x(t) and x(k) for unit step inputs and x(0) =
[1, 1, 1]T .

7.4. (a) Consider the system ẋ = Ax + Bu, y = Cx with x(0) = x0, where

A =
[

0 1
−2 −3

]
, B =

[
0
1

]
, and C = [1, 1]. Determine y(t) as a function of

u(t) and x0, and verify that the unobservable modes do not appear in the
output.

(b) Consider the system x(k+1) = Ax(k)+Bu(k), y(k) = Cx(k) with x(0) =
x0, where A,B, and C are as in (a). Demonstrate for this case results that
correspond to (a).
In (a) and (b), determine and plot y(t) and y(k) for unit step inputs and
x(0) = 0.
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7.5. Consider the system x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k), where

A =

⎡
⎣

1 0 0
0 −1/2 0
0 0 −1/2

⎤
⎦ , B =

⎡
⎣

1
0
1

⎤
⎦ , C = [1, 1, 0].

Determine the eigenvalues that are uncontrollable and/or unobservable. De-
termine x(k), y(k) for k ≥ 0, given x(0) and u(k), k ≥ 0, and show that only
controllable eigenvalues (resp., modes) appear in AkB, only observable ones
appear in CAk, and only eigenvalues (resp., modes) that are both controllable
and observable appear in CAkB [in H(z) ].

7.6. Given is the system ẋ =

⎡
⎣
−1 0 0

0 −1 0
0 0 2

⎤
⎦x+

⎡
⎣

1 0
0 1
0 0

⎤
⎦u, y =

[
1 1 0
1 0 0

]
x.

(a) Determine the uncontrollable and the unobservable eigenvalues (if any).
(b) What is the impulse response of this system? What is its transfer function

matrix?
(c) Is the system asymptotically stable?

7.7. Given is the transfer function matrix H(s) =
[
s−1
s 0 s−2

s+2

0 s+1
s 0

]
.

(a) Determine the Smith–McMillan form of H(s) and its characteristic (pole)
polynomial and minimal polynomial. What are the poles of H(s)?

(b) Determine the zero polynomial of H(s). What are the zeros of H(s)?

7.8. Let H(s) =
[
s2+1
s2
s+1
s3

]
.

(a) Determine the Smith–McMillan form of H(s) and its characteristic (pole)
polynomial and minimal polynomial. What are the poles of H(s)?

(b) Determine the zero polynomial of H(s). What are the zeros of H(s)?

7.9. A rational function matrix R(s) may have, in addition to finite poles and
zeros, poles and zeros at infinity (s = ∞). To study the poles and zeros at
infinity, the bilinear transformation

s =
b1w + b0
a1w + a0

with a1 �= 0, b1a0 − b0a1 �= 0 may be used, where b1/a1 is not a finite pole or
zero of R(s). This transformation maps the point s = b1/a1 to w = ∞ and
the point of interest, s = ∞, to w = −a0/a1. The rational matrix R̂(w) is
now obtained as

R̂(w) = R

(
b1w + b0
a1w + a0

)
,
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and the finite poles and zeros of R̂(w) are determined. The poles and zeros at
w = −a0/a1 are the poles and zeros of R(s) at s = ∞. Note that frequently a
good choice for the bilinear transformation is s = 1/w; that is, b1 = 0, b0 = 1
and a1 = 1, a0 = 0.

(a) Determine the poles and zeros at infinity of

R1(s) =
1

s+ 1
, R2(s) = s, R3(s) =

[
1 0

s+ 1 1

]
.

Note that a rational matrix may have both poles and zeros at infinity.
(b) Show that if R(s) has a pole at s = ∞, then it is not a proper rational

function ( lim
s→∞R(s) → ∞).

7.10. Consider the polynomial matrices P (s) =
[
s2 + s −s
−s2 − 1 s2

]
, R(s) =

[
s 0

−s− 1 1

]
.

(a) Are they right coprime (rc)? If they are not, find a greatest common right
divisor (gcrd).

(b) Are they left coprime (lc)? If they are not, find a greatest common left
divisor (gcld).

7.11. (a) Show that two square and nonsingular polynomial matrices, the
determinants of which are coprime polynomials, are both right and left
coprime. Hint: Assume they are not, say, right coprime and then use the
determinants of their gcrd to arrive at a contradiction.

(b) Show that the opposite is not true; i.e., two right (left) coprime poly-
nomial matrices do not necessarily have determinants which are coprime
polynomials.

7.12. Let P (s) be a polynomial matrix of full column rank, and let y(s) be a
given polynomial vector. Show that the equation P (s)x(s) = y(s) will have a
polynomial solution x(s) for any y(s) if and only if the columns of P (s) are
lc, or equivalently, if and only if P (λ) has full column rank for any complex
number λ.

7.13. Consider P (q)z(t) = Q(q)u(t) and y(t) = R(q)z(t) +W (q)u(t), where

P (q) =
[
q3 − q q2 − 1
−q − 2 0

]
, Q(q) =

[
q − 1 −2q + 2

1 3q

]
,

R(q) =
[

2q2 + q + 2 2q
−q − 2 0

]
, W (q) =

[
−1 3q + 4
−1 −3q

]
,

with q � d
dt .

(a) Is this system representation controllable? Is it observable?
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(b) Find the transfer function matrix H(s)(ŷ(s) = H(s)û(s)).
(c) Determine an equivalent state-space representation ẋ = Ax + Bu, y =

Cx+Du, and repeat (a) and (b) for this representation.

7.14. Use system theoretic arguments to show that two polynomials d(s) =
sn+dn−1s

n−1+· · ·+d1s+d0 and n(s) = nn−1s
n−1+nn−2s

n−2+· · ·+n1s+n0

are coprime if and only if

rank

⎡
⎢⎢⎢⎣

Cc
CcAc

...
CcA

n−1
c

⎤
⎥⎥⎥⎦ = n,

where Ac =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

−d0 −d1 −d2 −dn−1

⎤
⎥⎥⎥⎥⎥⎦

and Cc = [n0, n1, . . . , nn−1].

7.15. Consider the system Dz = u, y = Nz, where D =
[
s2 0
0 s3

]
and N =

[s2 − 1, s+ 1].

(a) Is the system controllable? Is it observable? Determine all uncontrollable
and/or unobservable eigenvalues, if any.

(b) Determine the invariant and the transmission zeros of the system.
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Realization Theory and Algorithms

8.1 Introduction

In this chapter the following problem is being addressed: Given an external
description of a linear system, specifically, its transfer function or its impulse
response, determine an internal, state-space description for the system that
generates the given transfer function. This is the problem of system realization.
The name reflects the fact that if a (continuous-time) state-space description
is known, an operational amplifier circuit can be built in a straightforward
manner to realize (actually simulate) the system response.

There are many ways, an infinite number in fact, of realizing a given trans-
fer function. Presently, we are interested in realizations that contain the least
possible number of energy or memory storage elements, i.e., in realizations
of least order (in terms of differential or difference equations). To accomplish
this, the concepts of controllability and observability play a central role. In-
deed, it turns out that realizations of transfer functions of least order are
both controllable and observable. In Section 8.2, the problem of state-space
realizations of input–output descriptions is defined and the existence of such
realizations is addressed. The minimality of realizations of H(s) is studied in
Section 8.3, culminating in two results, Theorem 8.9 and Theorem 8.10, where
it is first shown that a realization is minimal if and only if it is controllable
and observable, and next, that if a realization is minimal, all other minimal
realizations of a given H(s) can be found via similarity transformations. It is
also shown how to determine the order of minimal realizations directly from
H(s). Several realization algorithms are presented in Section 8.4, and the role
of duality is emphasized in Subsection 8.4.1.

8.2 State-Space Realizations of External Descriptions

In this section, state-space realizations of impulse responses and of transfer
functions for time-invariant systems are introduced. Continuous-time systems
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are discussed first in Subsection 8.2.1, followed by discrete-time systems in
Subsection 8.2.2.

8.2.1 Continuous-Time Systems

Before formally defining the problem of system realization, we first review
some of the relations that were derived in Chapter 3.

We consider a time-invariant system described by equations of the form

ẋ = Ax+Bu, y = Cx+Du, (8.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. The response of this
system is given by

y(t) = CeAtx0 +
∫ t

0

H(t, τ)u(τ)dτ, (8.2)

where, without loss of generality, the initial time t0 was taken to be zero. The
impulse response is now given by the expression

H(t, τ) =

{
CeA(t−τ)B +Dδ(t− τ), fort ≥ τ,

0, fort < τ.
(8.3)

Recall that the time invariance of system (8.1) implies that H(t, τ) = H(t−
τ, 0), and therefore, τ , which is the time at which a unit impulse input is
applied to the system, can be taken to equal zero (τ = 0), without loss of
generality, to yield H(t, 0). The transfer function matrix of the system is the
(one-sided) Laplace transform of H(t, 0), namely,

H(s) = L[H(t, 0)] = C(sI −A)−1B +D. (8.4)

In the time-invariant case, a realization is commonly defined in terms of the
transfer function matrix. We let {A,B,C,D} denote the system description
given in (8.1), and we letH(s) be a p×mmatrix with entries that are functions
of s.

Definition 8.1. A realization of H(s) is any set {A,B,C,D}, the transfer
function matrix of which is H(s); i.e., {A,B,C,D} is a realization of H(s) if
(8.4) is satisfied. (See Figure 8.1.) �

As will be shown in the next section, given H(s), a condition for a real-
ization {A,B,C,D} of H(s) to exist is that all entries in H(s) are proper,
rational functions. Alternative conditions under which a given set {A,B,C,D}
is a realization of some H(s) can easily be derived. To this end, we expand
H(s) in a Laurent series to obtain

H(s) = H0 +H1s
−1 +H2s

−2 + · · · . (8.5)
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x( t0)

+

+

u(t)
B C

A

D

x(t) x(t)
+

+

n

y(t)∫ ΣΣ

Figure 8.1. Block diagram realization of {A, B, C, D}

Definition 8.2. The terms Hi, i = 0, 1, 2, . . . , in (8.5) are the Markov pa-
rameters of the system. �

The Markov parameters can be determined by the formulas

H0 = lim
s→∞H(s), H1 = lim

s→∞ s(H(s)−H0), H2 = lim
s→∞ s2(H(s)−H0−H1s

−1),

and so forth. Recall that relations involving the Markov parameters were used
in Exercise 3.34 of Chapter 3.

Theorem 8.3. The set {A,B,C,D} is a realization of H(s) if and only if

H0 = D and Hi = CAi−1B, i = 1, 2, . . . . (8.6)

Proof. H(s) = D + C(sI − A)−1B = D + Cs−1(I − s−1A)−1B = D +
Cs−1[

∑∞
i=0(s

−1A)i]B = D +
∑∞

i=1[CA
i−1B]s−i, from which (8.6) is derived

in view of (8.5). �

8.2.2 Discrete-Time Systems

The realization theory in the discrete-time case essentially parallels the
continuous-time case. There are of course certain notable differences because
in the present case the realizations are difference equations instead of differ-
ential equations. We point to these differences in the subsequent sections.

Some of the relations derived in Section 3.4 will be recalled next. We
consider systems described by equations of the form

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k), (8.7)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. The response of
this system is given by

y(k) = CAkx0 +
k−1∑
i=0

H(k, i)u(i), k > 0, (8.8)

where, without loss of generality, k0 was taken to be zero. The unit pulse
(discrete impulse) response is now given by
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H(k, i) =

⎧
⎪⎨
⎪⎩

CAk−(i+1)B, k > i,

D, k = i,

0, k < i.

(8.9)

Recall that since the system (8.7) is time-invariant, H(k, i) = H(k− i, 0) and
i, the time the pulse input is applied, can be taken to be zero, to yield H(k, 0)
as the external system description. The transfer function matrix for (8.7) is
now the (one-sided) z-transform of H(k, 0). We have

H(z) = Z{H(k, 0)} = C(zI −A)−1B +D. (8.10)

Now let {A,B,C,D} denote the system description (8.7) and let H(z) be
a p×m matrix with functions of z as entries.

Definition 8.4. A realization of H(z) is any set {A,B,C,D}, the transfer
function matrix of which is H(z); i.e., it satisfies (8.10). �

A result that is analogous to Theorem 8.3 is also valid in the discrete-time
case [with H(s) replaced by H(z)].

8.3 Existence and Minimality of Realizations

The existence of realizations is examined first. Given a p ×m matrix H(s),
conditions forH(s) to be the transfer function matrix of a system described by
equations of the form ẋ = Ax+Bu, y = Cx+Du are given in Theorem 8.5. It
is shown that such realizations exist if and only if H(s) is a matrix of rational
functions with the property that lims→∞H(s) is finite. The corresponding
results for discrete-time systems are also presented.

Realizations of least order, also called minimal or irreducible realizations,
are of interest to us since they realize a system, using the least number of dy-
namical elements (minimum number of elements with memory). The principal
results are given in Theorems 8.9 and 8.10, where it is shown that minimal
realizations are controllable (-from-the-origin) and observable and that all
minimal realizations of H(s) are equivalent representations. The order of any
minimal realization can be determined directly without first determining a
minimal realization, and this can be accomplished by using the characteris-
tic polynomial and the degree of H(s) (Theorem 8.12) or from the rank of a
Hankel matrix (Theorem 8.16). All the results on minimality of realizations
apply to the discrete-time case as well with no substantial changes. This is
discussed at the end of the section.

8.3.1 Existence of Realizations

Continuous-Time Systems. Given a p×mmatrixH(s), the following result es-
tablishes necessary and sufficient conditions for the existence of time-invariant
realizations.
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Theorem 8.5. H(s) is realizable as the transfer function matrix of a time-
invariant system described by (8.1) if and only if H(s) is a matrix of rational
functions and satisfies

lim
s→∞H(s) <∞, (8.11)

i.e., if and only if H(s) is a proper rational matrix.

Proof. (Necessity) If the system ẋ = Ax + Bu, y = Cx +Du is a realization
of H(s), then C(sI − A)−1B +D = H(s), which shows that H(s) must be a
rational matrix. Furthermore,

lim
s→∞H(s) = D, (8.12)

which is a real finite matrix.
(Sufficiency) IfH(s) is a proper rational matrix, then any of the algorithms

discussed in the next section can be applied to derive a realization. �

Discrete-Time Systems. Given a p×m matrix H(z), the next theorem estab-
lishes necessary and sufficient conditions for time-invariant realizations. This
result corresponds to Theorem 8.5 for the continuous-time case. Notice that
the conditions in these results are identical.

Theorem 8.6. H(z) is realizable as the transfer function matrix of a time-
invariant system described by (8.7) if and only if H(z) is a matrix of rational
functions and satisfies the condition that

lim
z→∞H(z) <∞. (8.13)

Proof. Similar to the proof of Theorem 8.5. �

8.3.2 Minimality of Realizations

Realizations of a transfer function matrix H(s) can be expected to generate
only the zero-state response of a system, since the external description H(s)
has, by definition, no information about the initial conditions and the zero-
input response of the system.

A second important point is the fact that if a realization of a given H(s)
exists, then there exists an infinite number of realizations. If (8.1) is a real-
ization of the p×m matrix H(s), then realizations of the same order n, i.e.,
of the same dimension n of the state vector, can readily be generated by an
equivalence transformation. There are, of course, other ways of generating al-
ternative realizations. In particular, if (8.1) is a realization of H(s), then, for
example, the system

ẋ = Ax+Bu, y = Cx+Du,

ż = Fz +Gu
(8.14)
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is also a realization. This was accomplished by adding to (8.1) a state equa-
tion ż = Fz + Gu that does not affect the system output. The dimension of
F, dimF , and consequently the order of the realization, n + dimF , can be
larger than any given finite number. In other words, there may be no upper
bound to the order of the realizations of a given H(s). There exists, however,
a lower bound, and a realization of such lowest order is called a least-order
minimal or irreducible realization.

Definition 8.7. A realization

ẋ = Ax+Bu, y = Cx+Du (8.15)

of the transfer function matrix H(s) of least order n (A ∈ Rn×n) is called a
least-order, or a minimal, or an irreducible realization of H(s). �

Theorems 8.9 and 8.10 below completely solve the minimal realization
problem. The first of these results shows that a realization is minimal if
and only if it is controllable (-from-the-origin or reachable) and observable,
whereas the second result shows that if a minimal realization has been found,
then all other minimal realizations can be obtained from the determined re-
alization, using equivalence of representations.

Controllability (-from-the-origin, or reachability) and observability play
an important role in the minimality of realizations. Indeed, it was shown in
Section 7.2 that only that part of a system that is both controllable and
observable appears in H(s). In other words, H(s) contains no information
about the uncontrollable and/or unobservable parts of the system. To illustrate
this, consider the following specific case.

Example 8.8. Let H(s) = 1/(s + 1). Four different realizations of H(s) are
given by

(i) {A =
[

0 1
1 0

]
, B =

[
0
1

]
, C = [−1, 1], D = 0},

(ii) {A =
[

0 1
1 0

]
, B =

[
−1

1

]
, C = [0, 1], D = 0},

(iii){A =
[

1 0
0 −1

]
, B =

[
0
1

]
, C = [0, 1], D = 0},

(iv){A = −1, B = 1, C = 1, D = 0}.

The eigenvalue +1 in (i) is unobservable, in (ii) is uncontrollable, and in (iii)
is both uncontrollable and unobservable and does not appear in H(s) at all.
Realization (iv), which is of order 1, is a minimal realization. It is controllable
and observable.

Theorem 8.9. An n-dimensional realization {A,B,C,D} of H(s) is minimal
(irreducible, of least order) if and only if it is both controllable and observable.
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Proof. (Necessity) Assume that {A,B,C,D} is a minimal realization but is
not both controllable and observable. Using Kalman’s Canonical Decomposi-
tion (see Subsection 6.2.3), one may find another realization of lower dimen-
sion that is both controllable and observable. This contradicts the assumption
that {A,B,C,D} is a minimal realization. Therefore, it must be both con-
trollable and observable.

(Sufficiency) Assume that the realization {A,B,C,D} is controllable and
observable, but there exists another realization, say, {Ā, B̄, C̄, D̄} of order
n̄ < n. Since they are both realizations of H(s), or of the impulse response
H(t, 0), then

CeAtB +Dδ(t) = C̄eĀtB̄ + D̄δ(t) (8.16)

for all t ≥ 0. Clearly,D = D̄ = lims→∞H(s). Using the power series expansion
of the exponential and equating coefficients of the same power of t, we obtain

CAkB = C̄ĀkB̄, k = 0, 1, 2, . . . ; (8.17)

i.e., the Markov parameters of the two representations are the same (see The-
orem 8.3). Let

Cn � [B,AB, . . . , An−1B] ∈ Rn×mn

and

On �

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ ∈ Rpn×n. (8.18)

Then the pn×mn matrix product OnCn assumes the form

OnCn =

⎡
⎢⎢⎢⎣

CB CAB · · · CAn−1B
CAB CA2B · · · CAnB

...
...

...
CAn−1B CAnB · · · CA2n−2B

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

C̄B̄ C̄ĀB̄ · · · C̄Ān−1B̄
C̄ĀB̄ C̄Ā2B̄ · · · C̄ĀnB̄

...
...

...
C̄Ān−1B̄ C̄ĀnB̄ · · · C̄Ā2n−2B̄

⎤
⎥⎥⎥⎦ = ŌnC̄n. (8.19)

In view of Sylvester’s Rank Inequality, which relates the rank of the prod-
uct of two matrices to the rank of its factors, we have

rankOn + rankCn − n ≤ rank(ŌnC̄n) ≤ min(rankOn, rankCn) (8.20)

and we obtain that rankOn = rankCn = n, rank(ŌnC̄n) = n. This
result, however, contradicts our assumptions, since n = rank(ŌnC̄n) ≤
min(rank Ōn, rank C̄n) ≤ n̄ because n̄ is the order of {Ā, B̄, C̄, D̄}. There-
fore n ≤ n̄. Hence, n̄ cannot be less than n and they can only be equal. Thus,
n = n̄ and {A,B,C,D} is indeed a minimal realization. �
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Theorem 8.9 suggests the following procedure to realize H(s). First, we
obtain a controllable (observable) realization of H(s). Next, using a similar-
ity transformation, we obtain an observable standard form to separate the
observable from the unobservable parts (controllable from the uncontrollable
parts), using the approach of Subsection 6.2.1. Finally, we take the observable
(controllable) part that will also be controllable (observable) as the minimal
realization. We shall use this procedure in the next section.

Is the minimal realization unique? The answer to this question is of course
“no” since we know that equivalent representations, which are of the same
order, give the same transfer function matrix. The following theorem shows
how to obtain all minimal realizations of H(s).

Theorem 8.10. Let {A,B,C,D} and {Ā, B̄, C̄, D̄} be realizations of H(s).
If {A,B,C,D} is a minimal realization, then {Ā, B̄, C̄, D̄} is also a minimal
realization if and only if the two realizations are equivalent, i.e., if and only
if D̄ = D and there exists a nonsingular matrix P such that

Ā = PAP−1, B̄ = PB, and C̄ = CP−1. (8.21)

Furthermore, if P exists, it is given by

P = CC̄T (C̄C̄T )−1 or P = (ŌT Ō)−1ŌTO. (8.22)

Proof. (Sufficiency) Let the realizations be equivalent. Since {A,B,C,D} is
minimal, it is controllable and observable and its equivalent representation
{Ā, B̄, C̄, D̄} is also controllable and observable and, therefore, minimal. Al-
ternatively, since equivalence preserves the dimension of A, the equivalent
realization {Ā, B̄, C̄, D̄} is also minimal.

(Necessity) Suppose {Ā, B̄, C̄, D̄} is also minimal. We shall show that it
is equivalent to {A,B,C,D}. Since they are both realizations of H(s), they
satisfy D = D̄ and

CAkB = C̄ĀkB̄, k = 0, 1, 2 . . . , (8.23)

as was shown in the proof of Theorem 8.9. Here, both realizations are minimal,
and therefore, they are both of the same order n and are both controllable
and observable.

Define C = Cn and O = On, as in (8.18). Then, in view of (8.19), OC = ŌC̄
and premultiplying by ŌT , we obtain ŌTOC = ŌT ŌC̄. Using Sylvester’s
Inequality, we obtain rank ŌT Ō = n, and therefore,

C̄ = [(ŌT Ō)−1ŌTO]C = PC, (8.24)

where P � (ŌT Ō)−1ŌTO ∈ Rn×n. Note that rankP = n since rank ŌTO
is also equal to n as can be seen from rank ŌTOC = n and from Sylvester’s
Inequality. Therefore, P qualifies as a similarity transformation. Similarly,
OC = ŌC̄ implies that OCCT = ŌC̄CT , and
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O = Ō[C̄CT (CCT )−1] = ŌP̄ , (8.25)

where P̄ � C̄CT (CCT )−1 ∈ Rn×n with rank P̄ = n. Note that P =
(ŌT Ō)−1ŌT (ŌP̄ ) = P̄ . To show that P is the equivalence transformation
given in (8.21), we note that OAC = ŌĀC̄ from (8.19). Premultiplying by ŌT

and postmultiplying by CT , we obtain PA = ĀP , in view of (8.24) and (8.25).
To show that PB = B̄ and C = C̄P , we simply use the relations PC = C̄ and
O = ŌP , respectively. �

8.3.3 The Order of Minimal Realizations

One could ask the question whether the order of a minimal realization of
H(s) can be determined directly, without having to actually derive a minimal
realization. The answer to this question is yes, and in the following we will
show how this can be accomplished.

Determination via the Characteristic or Pole Polynomial of H(s).

The characteristic polynomial (or pole polynomial), pH(s), of a transfer func-
tion matrixH(s) was defined in Section 7.4 using the Smith–McMillan form of
H(s). The polynomial pH(s) is equal to the monic least common denominator
of all nonzero minors of H(s). The minimal polynomial of a transfer function
matrix H(s), mH(s), was defined as the monic least common denominator of
all nonzero first-order minors (entries) of H(s).

Definition 8.11. The McMillan degree of H(s) is the degree of pH(s). �

The number of poles in H(s), which are defined as the zeros of pH(s), is
equal to the McMillan degree of H(s). The degree of H(s) is in fact the order
of any minimal realization of H(s), as the following result shows.

Theorem 8.12. Let {A,B,C,D} be a minimal realization of H(s). Then the
characteristic polynomial of H(s), pH(s), is equal to the characteristic polyno-
mial of A,α(s) � |sI−A|; i.e., pH(s) = α(s). Therefore, the McMillan degree
of H(s) equals the order of any minimal realization.

Proof. See [1, p. 397, Chapter 5, Theorem 3.11]. �

It can also be shown that the minimal polynomial of H(s),mH(s), is equal
to the minimal polynomial of A,αm(s), where {A,B,C,D} is any controllable
and observable realization ofH(s). This is illustrated in the following example.

Example 8.13. Let H(s) =
[

1/s 2/s
0 −1/s

]
. The first-order minors, the entries

of H(s), have denominators s, s, and s, and therefore, mH(s) = s. The only
second-order minor is −1/s2 and pH(s) = s2 with deg pH(s) = 2. Therefore,
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the order of a minimal realization is 2. Such a realization is given by ẋ = Ax+

Bu and y = Cx with A =
[

0 0
0 0

]
, B =

[
1 2
0 −1

]
, C =

[
1 0
0 1

]
. We verify first

that this system is a realization of H(s) and then that it is controllable and
observable and, therefore, minimal. Notice that the characteristic polynomial
of A is α(s) = s2 = pH(s) and that its minimal polynomial is αm(s) = s =
mH(s).

In the case whenH(s) is a scalar, the roots ofmH = pH are the eigenvalues
of any minimal realization of H(s).

Corollary 8.14. Let H(s) = n(s)/d(s) be a scalar proper rational function.
If {A,B,C,D} is a minimal realization of H(s), then

kd(s) = α(s) = αm(s), (8.26)

where α(s) = det(sI −A) and αm(s) are the characteristic and minimal poly-
nomials of A, respectively, and k is a real scalar so that kd(s) is a monic
polynomial.

Proof. The characteristic and minimal polynomials ofH(s), pH(s), andmH(s)
are by definition equal to d(s) in the scalar case. Applying Theorem 8.12 proves
the result. �

Determination via the Hankel Matrix

There is an alternative way of determining the order of a minimal realization
of H(s). This is accomplished via the Hankel matrix, associated with H(s).

Given H(s), we express H(s) as a Laurent series expansion to obtain

H(s) = H0 + Ĥ(s) = H0 +H1s
−1 +H2s

−2 +H3s
−3 + . . . , (8.27)

where Ĥ(s) is strictly proper and the real p×m matrices H0, H1, . . . are the
Markov parameters of the system. They can be determined by the formulas

H0 = lim
s→∞H(s), H1 = lim

s→∞ s(H(s)−H0), H2 = lim
s→∞ s2(H(s)−H0−H1s

−1),

and so forth.

Definition 8.15. The Hankel matrix MH(i, j) of order (i, j) corresponding to
the (Markov parameter) sequence H1, H2, . . . is defined as the ip× jm matrix
given by

MH(i, j) �

⎡
⎢⎢⎢⎣

H1 H2 · · · Hj

H2 H3 · · · Hj+1

...
...

...
Hi Hi+1 · · · Hi+j−1

⎤
⎥⎥⎥⎦ . (8.28)

�
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Theorem 8.16. The order of a minimal realization of H(s) is the rank of
MH(r, r) where r is the degree of the least common denominator of the entries
of H(s); i.e., r = degmH(s).

Proof. See [1, p. 399, Chapter 5, Theorem 3.13]. �

Example 8.17. Let H(s) =
[ 1

s+1
2
s+1−1

(s+1)(s+2)
1
s+2

]
. Here the minimal polynomial

is mH(s) = (s + 1)(s + 2), and therefore, r = degmH(s) = 2. The Hankel
matrix MH(r, r) is then

MH(r, r) = MH(2, 2) =
[
H1 H2

H2 H3

]
,

an rp× rm = 4 × 4 matrix, and H1 = lim
s→∞sH(s) = lim

s→∞

[ s
s+1

2s
s+1−s

(s+1)(s+2)
s
s+2

]
=

[
1 2
0 1

]
and H2 = lim

s→∞s
2(H(s) − H1s

−1) = lim
s→∞

[
s2

s+1 − s 2s2

s+1 − 2s
−s2

(s+1)(s+2)
s2

s+2 − s

]
=

lim
s→∞

[ −s
s+1

−2s
s+1

−s2
(s+1)(s+2)

−2s
s+2

]
=
[
−1 −2
−1 −2

]
. Similarly, H3 =

[
1 2
3 4

]
. Now

rankMH(2, 2) = rank

⎡
⎢⎢⎣

1 2 −1 −2
0 1 −1 −2

−1 −2 1 2
−1 −2 3 4

⎤
⎥⎥⎦ = 3,

which is the order of any minimal realization, in view of Theorem 8.16. The
reader should verify this result, using Theorem 8.12.

Example 8.18. Consider the transfer function matrix H(s) =
[

1/s 2/s
0 −1/s

]
,

as in Example 8.13. Here r = degmH(s) = deg s = 1. Now, the Hankel matrix

MH(r, r) = MH(1, 1) = H1 = lims→∞ sH(s) =
[

1 2
0 −1

]
. Its rank is 2, which

is the order of a minimal realization of H(s). This agrees with the results in
Example 8.13.

8.3.4 Minimality of Realizations: Discrete-Time Systems

The fact that the results on minimality of realizations in the discrete-time case
are essentially identical to the corresponding results for the continuous-time
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case is not surprising since we are concentrating here on the time-invariant
cases for which the transfer function matrices have the same forms: H(s) =
C(sI−A)−1B+D and H(z) = C(zI−A)−1B+D. Accordingly, the results on
how to generate 4-tuples {A,B,C,D} to satisfy these relations are, of course,
also the same.

8.4 Realization Algorithms

In this section, algorithms for generating time-invariant state-space realiza-
tions of external system descriptions are introduced. A brief outline of the
contents of this section follows.

Realizations of H(s) can often be derived in an easier manner if duality
is used, and this is demonstrated first in this section. Realizations of mini-
mal order are both controllable and observable, as was shown in the previous
section. To derive a minimal realization of H(s), one typically derives a re-
alization that is controllable (observable) and then extracts the part that is
also observable (controllable). This involves in general a two-step procedure.
However, in certain cases, a minimal realization can be derived in one step,
as for example, when H(s) is a scalar transfer function. Algorithms for re-
alizations in a controller/observer form are discussed first. In the interest of
clarity, the SISO case is presented separately, thus providing an introduction
to the general MIMO case. Realization algorithms, where A is diagonal, are
introduced next. Finally, balanced realizations are addressed.

It is not difficult to see that the above algorithms can also be used to
derive realizations described by equations of the form x(k + 1) = Ax(k) +
Bu(k), y(k) = Cx(k) +Du(k) of transfer function matrices H(z) for discrete-
time time-invariant systems. Accordingly, the discrete-time case will not be
treated separately in this section. Additional details, algorithms, and proofs
may be found in [1, Section 5.4].

8.4.1 Realizations Using Duality

If the system described by the equations ẋ = Ax + Bu, y = Cx + Du is a
realization of H(s), then

H(s) = C(sI −A)−1B +D. (8.29)

If H̃(s) � HT (s), then ˙̃x = Ãx̃+ B̃ũ and ỹ = C̃x̃+ D̃ũ, where Ã = AT , B̃ =
CT , C̃ = BT , and D̃ = DT , is a realization of H̃(s) since in view of (8.29),

H̃(s) = HT (s)

= BT (sI −AT )−1CT +DT

= C̃(sI − Ã)−1B̃ + D̃. (8.30)
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The representation {Ã, B̃, C̃, D̃} is the dual representation to {A,B,C,D},
and if {A,B,C,D} is controllable (observable), then {Ã, B̃, C̃, D̃} is observ-
able (controllable) (see Section 5.2.3). In other words, if a controllable (ob-
servable) realization {A,B,C,D} of the p×m transfer function matrix H(s)
is known, then an observable (controllable) realization of the m × p transfer
function matrix H̃(s) = HT (s) can be derived immediately: It is the dual
representation, namely, {Ã, B̃, C̃, D̃} = {AT , CT , BT , DT }. This fact is used
to advantage in deriving realizations in the MIMO case, since obtaining first
a realization of HT (s) instead of H(s) and then using duality leads sometimes
to simpler, lower order, realizations.

Duality is very useful in realizations of symmetric transfer functions, which
have the property that H(s) = HT (s), as, e.g., in the case of SISO systems
where H(s) is a scalar. Under these conditions, if {A,B,C,D} is a control-
lable (observable) realization ofH(s), then {AT , CT , BT , DT } is an observable
(controllable) realization of the same H(s). Note that in this case,

H(s) = C(sI −A)−1B +D = HT (s) = BT (sI −AT )−1CT +DT .

In realization algorithms of MIMO systems, a realization that is either
controllable or observable is typically obtained first. Next, this realization is
reduced to a minimal one by extracting the part of the system that is both
controllable and observable, using the methods of Subsection 6.2.1. Dual repre-
sentations may simplify this process considerably. In the following discussion,
we summarize the process of deriving minimal realizations for the reader’s
convenience.

Given a proper rational p × m transfer function matrix H(s), with
lims→∞H(s) < ∞, we consider the strictly proper part Ĥ(s) = H(s) −
lims→∞H(s) = H(s) −D [noting that working with Ĥ(s) instead of H(s) is
optional].

1. If a realization algorithm leading to a controllable realization is used, then
the following steps are taken:

Ĥ(s) → (H̃(s) = ĤT (s)) → {Ã, B̃, C̃} → {A = ÃT , B = C̃T , C = B̃T },
(8.31a)

where {Ã, B̃, C̃} is a controllable realization of H̃(s) and {A,B,C} is an
observable realization of Ĥ(s).

2. To obtain a minimal realization,

{A,B,C} →
{[

A1 A12

0 A2

]
,

[
B1

0

]
, [C1, C2]

}
, (8.31b)

where {A,B,C} is an observable realization of Ĥ(s) obtained from step
(1), and (A1, B1) is controllable (derived by using the method of Subsec-
tion 6.2.1), then {A1, B1, C1} is a controllable and observable, and there-
fore, a minimal realization of Ĥ(s), and furthermore, {A1, B1, C1, D}, is
a minimal realization of H(s).
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8.4.2 Realizations in Controller/Observer Form

We shall first consider realizations of scalar transfer functions H(s).

Single-Input/Single-Output (SISO) Systems (p = m = 1)

Let

H(s) =
n(s)
d(s)

=
bns

n + · · · + b1s+ b0
sn + an−1sn−1 + · · · + a1s+ a0

, (8.32)

where n(s) and d(s) are prime polynomials. This is the general form of a proper
transfer function of (McMillan) degree n. Note that if the leading coefficient
in the numerator n(s) is zero, i.e., bn = 0, then H(s) is strictly proper. Also,
recall that

y(n) + an−1y
(n−1) + · · · + a1y

(1) + a0y = bnu
(n) + · · · + b1u

(1) + b0u (8.33a)

or

d(q)y(t) = (qn + an−1q
n−1 + · · · + a1q + a0)y(t)

= (bnqn + . . . b1q + b0)u(t) = n(q)u(t),
(8.33b)

where q � d/dt, the differential operator. This is the corresponding nth-order
differential equation that directly gives rise to the map ŷ(s) = H(s)û(s) if the
Laplace transform of both sides is taken, assuming that all variables and their
derivatives are zero at t = 0.

Controller Form Realizations

Given n(s) and d(s), we proceed as follows to derive a realization in controller
form.

1. Determine CTc ∈ Rn and Dc ∈ R so that

n(s) = CcS(s) +Dcd(s), (8.34)

where S(s) � [1, s, . . . , sn−1]T is an n×1 vector of polynomials. Equation
(8.34) implies that

Dc = lim
s→∞H(s) = bn. (8.35)

Then n(s)−bnd(s) is in general a polynomial of degree n−1, which shows
that a real vector Cc that satisfies (8.34) always exists.
If bn = 0, i.e., if H(s) is strictly proper, then from (8.34) we obtain
Cc = [b0, . . . , bn−1]; i.e., Cc consists of the coefficients of the n− 1 degree
numerator.
If bn �= 0, then (8.34) implies that the entries of Cc are a combination of
the coefficients bi and ai. In particular,

Cc = [b0 − bna0, b1 − bna1, . . . , bn−1 − bnan−1]. (8.36)
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2. A realization of H(s) in controller form is given by the equations

ẋc = Acxc +Bcu =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−a0 −a1 · · · −an−1

⎤
⎥⎥⎥⎦ xc +

⎡
⎢⎢⎢⎣

0
0
...
1

⎤
⎥⎥⎥⎦u,

y = Ccxc +Dcu. (8.37)

The n states of the realization in (8.37) are related by xi+1 = ẋi,
i = 1, . . . , n − 1, or xi+1 = x

(i)
1 , i = 1, . . . , n − 1, and ẋn = −a0x1 −∑n−1

i=1 aixi+1 + u = −a0x1 −
∑n−1
i=1 aix

(i)
1 + u. It can now be shown that

x1 satisfies the relationship

d(q)x1(t) = u(t), y(t) = n(q)x1(t), (8.38)

where q � d/dt, the differential operator. Note that d(q)x1(t) = u(t)
because ẋn = −

∑n−1
i=0 aix

(i)
1 + x

(n)
1 + u = −d(q)x1 + u + x

(n)
1 , which in

view of ẋn = x
(n)
1 , derived from xn = x

(n−1)
1 , implies that −d(q)xi+u = 0.

The relation y(t) = n(q)x1(t) can easily be verified by multiplying both
sides of n(q) = CcS(q) +Dcd(q) given in (8.34) by x1.

Lemma 8.19. The representation (8.37) is a minimal realization of H(s)
given in (8.32).

Proof. We must first show that (8.37) is indeed a realization, i.e., that it
satisfies (8.29). This is of course true in view of the Structure Theorem in
Subsection 6.4.1. Presently, this will be shown directly, using (8.38).

Relation d(q)x1(t) = u(t) implies that x̂1(s) = (d(s))−1û(s). This yields
for the state that x̂(s) = [x̂1(s), . . . , x̂n(s)]T = [1, s, . . . , sn−1]T x̂1(s) =
S(s)(d(s))−1û(s). However, we also have x̂(s) = (sI−Ac)−1Bcû(s). Therefore,

(sI −Ac)S(s) = Bcd(s). (8.39)

Now Cc(sI−Ac)−1Bc+Dc = CcS(s)(d(s))−1+Dc = (CcS(s)+Dcd(s))(d(s))−1

= n(s)
d(s) = H(s); i.e., (8.37) is indeed a realization.
System (8.37) is of order n and is therefore, a minimal, controllable, and

observable realization. This is because the degree of H(s) is n, which in view
of Theorem 8.12, is the order of any minimal realization. Controllability and
observability can also be established directly by forming the controllability
and observability matrices. The reader is encouraged to pursue this approach.

�

According to Definition 8.11, the McMillan degree of a rational scalar
transfer function H(s) = n(s)/d(s) is the degree of d(s) only when n(s) and
d(s) are prime polynomials; if they are not, all cancellations must first take
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place before the degree can be determined. If n(s) and d(s) are not prime,
then the above algorithm will yield a realization that is not observable. Notice
that realization (8.37) is always controllable, since it is in controller form. This
can also be seen directly from the expression

[Bc, AcBc, . . . , An−1
c Bc] =

⎡
⎢⎢⎢⎣

0 0 · · · 1
...

...
...

0 1 · · · ×
1 × · · · ×

⎤
⎥⎥⎥⎦ , (8.40)

which is of full rank. The realization (8.37) is observable if and only if the
polynomials d(s) and n(s) are prime.

In Figure 8.2 a block realization diagram of the form (8.37) for a second-
order transfer function is shown. Note that the states x1(t) and x2(t) are taken
to be the voltages at the outputs of the integrators.

–

–

+u

b2

x2 x1

b1 b2a1

b0 b2a0

a0

a1

+ +
+

+
y∫∫Σ Σ–

–

Figure 8.2. Block realization of H(s) in controller form of the system
[

ẋ1
ẋ2

]
=[

0 1
−a0 −a1

]
[ x1

x2 ] + [ 0
1 ] u, y = [b0 − b2a0, b1 − b2a1] [

x1
x2 ] + b2u; H(s) = b2s2+b1s+b0

s2+a1s+a0

Observer Form Realizations

Given the transfer function (8.32), the nth-order realization in observer form
is given by

ẋo = Aoxo +Bou

=

⎡
⎢⎢⎢⎣

0 · · · 0 −a0

1 0 −a1

...
. . .

...
...

0 · · · 1 −an−1

⎤
⎥⎥⎥⎦ xo +

⎡
⎢⎢⎢⎣

b0 − bna0

b1 − bna1

...
bn−1 − bnan−1

⎤
⎥⎥⎥⎦u,

y = Coxo +Dou = [0, 0, . . . , 0, 1]xo + bnu. (8.41)

This realization was derived by taking the dual of realization (8.37). Notice
that Ao = ATc , Bo = CTc , Co = BTc , and Do = DT

c .
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Lemma 8.20. The representation (8.41) is a minimal realization of H(s)
given in (8.32).

Proof. Note that the observer form realization {Ao, Bo, Co, Do} described by
(8.41) is the dual of the controller form realization {Ac, Bc, Cc, Dc} described
by (8.37), used in Lemma 8.19. �

The realization (8.41) can also be derived directly from H(s), using defin-
ing relations similar to (8.34). In particular, Bo and Do can be determined
from the expression [see Subsection 6.4.2]

n(s) = S̃(s)Bo + d(s)Do, (8.42)

where S̃(s) = [1, s, . . . , sn−1].
It can be shown (by taking transposes) that the corresponding relation to

(8.39) is now given by

S̃(s)(sI −Ao) = d(s)Co (8.43)

and that
d(q)z(t) = n(q)u(t), y(t) = z(t) (8.44)

corresponds to (8.38).
Figure 8.3 depicts a block realization diagram of the form (8.41) for a

second-order transfer function.

–

––

–

+

u

b2

x2x1

b1 b2a1b0 b2a0

a0 a1

++

+

+ y
+

+∫∫ ΣΣΣ

Figure 8.3. Block realization of H(s) in observer form of the system
[

ẋ1
ẋ2

]
=[

0 −a0
1 −a1

]
[ x1

x2 ] +
[

b0−b2a0
b1−b2a1

]
u, y = [0, 1] [ x1

x2 ] + b2u; H(s) = b2s2+b1s+b0
s2+a1s+a0

Example 8.21. We wish to derive a minimal realization for the trans-
fer function H(s) = s3+s−1

s3+2s2−s−2 . Consider a realization {Ac, Bc, Cc, Dc},
where (Ac, Bc) is in controller form. In view of (8.34) to (8.37), Dc =
lims→∞H(s) = 1 and n(s) = s3+s−1 = CcS(s)+Dcd(s), from which we have
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CcS(s) = (s3 +s−1)− (s3 +2s2−s−2) = −2s2 +2s+1 = [1, 2,−2][1, s, s2]T .
Therefore, a realization of H(s) is ẋc = Acxc +Bcu, y = Ccxc +Dcu, where

Ac =

⎡
⎣

0 1 0
0 0 1
2 1 −2

⎤
⎦ , Bc =

⎡
⎣

0
0
1

⎤
⎦ , Cc = [1, 2,−2], Dc = 1.

This is a minimal realization. Instead of solving n(s) = CcS(s) +Dcd(s) for
Cc as was done above, it is possible to derive Cc by inspection after H(s) is
written as

H(s) = Ĥ(s) + lim
s→∞H(s) = Ĥ(s) +Dc, (8.45)

where Ĥ(s) is now strictly proper. Notice that if H(s) is given by (8.32), then
Dc = bn and

Ĥ(s) =
cn−1s

n−1 + · · · + c1s+ c0
sn + an−1sn−1 + · · · + a1s+ a0

, (8.46)

where in fact, ci = bi − bnai, i = 0, . . . , n − 1. The realization {Ac, Bc, Cc}
of Ĥ(s) has (Ac, Bc) precisely the same as before; however, Cc can now be
written directly as

Cc = [c0, c1, . . . , cn−1]; (8.47)

i.e., given H(s) there are three ways of determining Cc: (i) using formula
(8.36), (ii) solving CcS(s) = n(s) −Dcd(s) as in (8.34), and (iii) calculating
Ĥ(s) = H(s)− lims→∞H(s). The reader should verify that for this example,
(i) and (iii) yield the same Cc = [1, 2,−2] as in method (ii).

Suppose now that it is of interest to determine a minimal realization
{Ao, Bo, Co, Do}, where (Ao, Co) is in observer form. This can be accomplished
in ways completely analogous to the methods used to derive realizations in
controller form. Alternatively, one could use duality directly and show that

Ao = ATc =

⎡
⎣

0 0 2
1 0 1
0 1 −2

⎤
⎦ , Bo = CTc =

⎡
⎣

1
2

−2

⎤
⎦ , Co = BTc = [0, 0, 1], Do = DT

c = 1

is a minimal realization, where the pair (Ao, Co) is in observer form.

Example 8.22. Consider now the transfer function H(s) = s3−1
s3+2s2−s−2 ,

where the numerator is n(s) = s3−1 instead of s3 +s−1, as in Example 8.21.
We wish to derive a minimal realization of H(s). Using the same procedure
as in the previous example, it is not difficult to derive the realization

Ac =

⎡
⎣

0 1 0
0 0 1
2 1 −2

⎤
⎦ , Bc =

⎡
⎣

0
0
1

⎤
⎦ , Cc = [1, 1,−2], Dc = 1.
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This realization is controllable, since (Ac, Bc) is in controller form (see Exer-
cise 8.4); however, it is not observable, since rankO = 2 < 3 = n, where O
denotes the observability matrix given by

O =

⎡
⎣

Cc
CcAc
CcA

2
c

⎤
⎦ =

⎡
⎣

1 1 −2
−4 −1 5
10 1 −11

⎤
⎦ .

Therefore, the above matrix is not a minimal realization. This has occurred be-
cause the numerator and denominator of H(s) are not prime polynomials; i.e.,
s−1 is a common factor. Thus, strictly speaking, the H(s) given above is not
a transfer function, since it is assumed that in a transfer function all cancel-
lations of common factors have taken place. (See also the discussion following
Lemma 8.19.) Correspondingly, if the algorithm for deriving an observer form
would be applied to the present case, the realization {Ao, Bo, Co, Do} would
be an observable realization, but not a controllable one, and would therefore
not be a minimal realization.

To obtain a minimal realization of the above transfer function H(s), one
could either extract the part of the controllable realization {Ac, Bc, Cc, Dc}
that is also observable or simply cancel the factor s−1 in H(s) and apply the
algorithm again. The former approach of reducing a controllable realization
will be illustrated when discussing the MIMO case. The latter approach is
perhaps the easiest one to apply in this case. We have

H(s) =
s3 − 1

s3 + 2s2 − s− 2
=

s2 + s+ 1
s2 + 3s+ 2

=
−2s− 1

s2 + 3s+ 2
+ 1,

and a minimal realization of this is then determined as

Ac =
[

0 1
−2 −3

]
, Bc =

[
0
1

]
, Cc = [−1, −2], Dc = 1.

Multi-Input/Multi-Output (MIMO) Systems (pm > 1)

Let a (p×m) proper rational matrix H(s) be given with lims→∞H(s) <∞.
We now present alogrithms to obtain realizations {Ac, Bc, Cc, Dc} of H(s) in
controller form and realizations {Ao, Bo, Co, Do} of H(s) in observer form.
Minimal realizations can then be obtained by separating the observable (con-
trollable) part of the controllable (observable) realization.

Controller Form Realizations

Consider a transfer function matrix H(s) = [nij(s)/dij(s)], i = 1, . . . , p, j =
1, . . . ,m, and let �j(s) denote the (monic) least common denominator of all
entries in the jth column of H(s). The �j(s) is the least degree polynomial
divisible by all dij(s), i = 1, . . . , p. Then H(s) can be written as
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H(s) = N(s)D−1(s), (8.48)

a ratio of two polynomial matrices, where N(s) � [n̄ij(s)] and D(s) �
diag[�1(s), . . . , �m(s)]. Note that n̄ij(s)/�j(s) = nij(s)/dij(s) for i = 1, . . . , p,
and all j = 1, . . . ,m. Let dj � deg �j(s), and assume that dj ≥ 1. Define

Λ(s) � diag(sd1 , . . . , sdm)

and

S(s) � block diag

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

1
s
...

sdj−1

⎤
⎥⎥⎥⎦ j = 1, . . . ,m

⎞
⎟⎟⎟⎠ , (8.49)

and note that S(s) is an n
(
�
∑m

j=1 dj

)
×m polynomial matrix. Write

D(s) = DhΛ(s) +D�S(s), (8.50)

and note that Dh is the highest column degree coefficient matrix of D(s). Here
D(s) is diagonal with monic polynomial entries, and therefore, Dh = Im. If,

for example, D(s) =
[

3s2 + 1 2s
2s s

]
, then the highest column degree coefficient

matrix Dh =
[

3 2
0 1

]
, and D�S(s) given in (8.50) accounts for the remaining

lower column degree terms in D(s), with D� being a matrix of coefficients.
Observe that |Dh| �= 0, and define the m×m and m× n matrices

Bm = D−1
h , Am = −D−1

h D�, (8.51)

respectively. Also, determine Cc and Dc such that

N(s) = CcS(s) +DcD(s), (8.52)

and note that
Dc = lim

s→∞H(s). (8.53)

We haveH(s) = N(s)D−1(s) = CcS(s)D−1(s)+Dc with CcS(s)D−1(s) being
strictly proper (show this). Therefore, only Cc needs to be determined from
(8.52).

A controllable realization of H(s) in controller form is now given by the
equations

ẋc = Acxc +Bcu, y = Ccxc +Dcu.

Here Cc and Dc were defined in (8.52) and (8.53), respectively,

Ac = Āc + B̄cAm, Bc = B̄cBm, (8.54)
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where Āc = block diag[A1, A2 . . . , Am] with

Aj =

⎡
⎢⎢⎢⎣

0
... Idj−1

0 0 · · · 0

⎤
⎥⎥⎥⎦ ∈ Rdj×dj ,

B̄c = block diag

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ ∈ Rdj , j = 1, . . . ,m

⎞
⎟⎟⎟⎠ ,

and Am, Bm were defined in (8.51). Note that if dj = μj , j = 1, . . . ,m, the
controllability indices, then (8.54) is precisely the relation (6.56) of Section 6.4.

Lemma 8.23. The system {Ac, Bc, Cc, Dc} is an n(=
∑m

j=1 dj)-th-order con-
trollable realization of H(s) with (Ac, Bc) in controller form.

Proof. First, to show that {Ac, Bc, Cc, Dc} is a realization of H(s), we note
that in view of the Structure Theorem given in Subsection 6.4.1, we have
Cc(sI −Ac)−1Bc +Dc = N̄(s)D̄(s)−1, where

D̄(s) � B−1
m [Λ(s) −AmS(s)], N̄(s) � CcS(s) +DcD(s).

However, D̄(s) = D(s) and N̄(s) = N(s), in view of (8.50) to (8.52). There-
fore, Cc(sI −Ac)−1Bc +Dc = N(s)D−1(s) = H(s), in view of (8.48).

It is now shown that (Ac, Bc) is controllable. We write

[sI −Ac, Bc] = [sI − Āc − B̄cAm, B̄cBm]

= [sI − Āc, B̄c]
[

I 0
−Am Bm

]
(8.55)

and notice that rank[sjI − Āc, B̄c] = n for any complex sj . This is so because
of the special form of Āc, B̄c. (This is, in fact, the Brunovski canonical form.)
Now since |Bm| �= 0, Sylvester’s Rank Inequality implies that rank[sjI −
Ac, Bc] = n for any complex sj , which in view of Section 6.3 implies that
(Ac, Bc) is controllable. In addition, since Bm = Im, it follows that (Ac, Bc)
is of the form (6.55) of Section 6.4. With dj = μi, the pair (Ac, Bc) is in
controller form. �

An alternative way of determining Cc is to first write H(s) in the form

H(s) = Ĥ(s) + lim
s→∞H(s) = Ĥ(s) +Dc, (8.56)

where Ĥ(s) � H(s)−Dc is strictly proper. Now applying the above algorithm
to Ĥ(s), one obtains Ĥ(s) = N̂(s)D−1(s), where D(s) is precisely equal to
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the expression given in (8.50). We note, however, that N̂(s) is different. In
fact, N̂(s) = N(s)−DcD(s). In view of (8.52) the matrix Cc is now found to
be of the form

N̂(s) = CcS(s). (8.57)

Note that this is a generalization of the scalar case discussed in Example 8.21
[see (8.45) to (8.47)].

In the above algorithm the assumption that dj ≥ 1 for all j = 1, . . . ,m,
was made. If for some j, dj = 0, this would mean that the jth column of
H(s) will be a real m × 1 vector that will be equal to the jth column of Dc

[recall that Dc = lims→∞H(s)]. The strictly proper Ĥ(s) in (8.56) will then
have its jth column equal to zero, and this zero column can be generated by
a realization where the jth column of Bc is set to zero. Therefore, the zero
column (the jth column) of Ĥ(s) is ignored in this case and the algorithm is
applied to obtain a controllable realization. A zero column is then added to
Bc. (See Example 8.26 below.)

Observer Form Realizations

These realizations are dual to the controller form realizations and can be
obtained by duality arguments. In the following discussion, observer form
realizations are obtained directly for completeness of exposition.

We consider the transfer function matrix H(s) = [nij(s)/dij(s)], i =
1, . . . , p, j = 1, . . . ,m, and let �̃i(s) be the (monic) least common denomi-
nator of all entries in the ith row of H(s). Then H(s) can be written as

H(s) = D̃−1(s)Ñ(s), (8.58)

where Ñ(s) � [n̄ij(s)] and D̃(s) � diag[�̃1(s), . . . , �̃p(s)]. Note that
n̄ij(s)/�̃i(s) = nij(s)/dij(s) for j = 1, . . . ,m, and all i = 1, . . . , p.

Let d̃i � deg �i(s), assume that d̃i ≥ 1, define

Λ̃(s) � diag(sd̃1 , . . . , sd̃p), S̃(s) � block diag([1, s, . . . , sd̃i−1], i = 1, . . . , p),
(8.59)

and note that S̃(s) is a p× n(�
∑p

i=1 d̃i) polynomial matrix. Now, write

D̃(s) = Λ̃(s)D̃h + S̃(s)D̃� (8.60)

and note that D̃h is the highest row degree coefficient matrix of D̃(s). Note
that D̃(s) is diagonal, with entries monic polynomials, so that D̃h = Ip, the

p× p identity matrix. If for example, D̃(s) =
[

3s2 + 1 2s
2s s

]
, then the highest

row degree coefficient matrix is D̃h =
[

3 0
2 1

]
and S̃(s)D̃� in (8.60) accounts for

the remaining lower row degree terms of D̃(s), with D̃� a matrix of coefficients.
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Observe that |D̃h| �= 0, in fact D̃h = Ip. Define the p×p and n×p matrices

Cp = D̃−1
h and Ap = −D̃�D̃

−1
h , (8.61)

respectively. Also, determine Bo and Do such that

Ñ(s) = S̃(s)Bo + D̃(s)Do. (8.62)

Note that
Do = lim

s→∞H(s), (8.63)

and therefore, only Bo needs to be determined from (8.62).
An observable realization of H(s) in observer form is now given by

ẋo = Aoxo +Bou, y = Coxo +Dou,

where Bo and Do were defined in (8.62) and (8.63), respectively, and

Ao = Āo +ApC̄o, Co = CpC̄o, (8.64)

where Āo = block diag[A1, A2, . . . , Ap] with

Ai =

⎡
⎢⎢⎢⎣

0 · · · 0 0
0

Id̃i−1

...
0

⎤
⎥⎥⎥⎦ ∈ Rd̃i×d̃i ,

C̄o = block diag([0, . . . , 0, 1] ∈ R1×d̃i i = 1, . . . , p), and Ap, Cp is defined in
(8.61). Note that (8.64) is exactly relation (6.76) of Section 6.4 if d̃i = νi,
i = 1, . . . , p, the observability indices.

Lemma 8.24. The system {Ao, Bo, Co, Do} is an n(�
∑p
i=1 d̃i)-th-order ob-

servable realization of H(s) with (Ao, Co) in observer form.

Proof. This is the dual result to Lemma 8.23. The proof is completely analo-
gous and is omitted. �

We conclude by noting that results dual to the results discussed after
Lemma 8.23 are also valid here, i.e., results involving (i) a strictly proper
Ĥ(s), (ii) an H(s) with d̃i = 0 for some row i, and (iii) H(s) = D̃−1(s)Ñ(s),
where D̃(s), Ñ(s) are not necessarily determined using (8.58) (refer to the
following examples).

Example 8.25. Let H(s) =
[
s2+1
s2 , s+1

s3

]
. We wish to derive a minimal real-

ization for H(s). To this end we consider realizations {Ac, Bc, Cc, Dc}, where
(Ac, Bc) is in controller form. Here �1(s) = s2, �2(s) = s3 and H(s) can there-
fore be written in the form (8.48) as
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H(s) = N(s)D−1(s) = [s2 + 1, s+ 1]
[
s2 0
0 s3

]−1

.

Here d1 = 2, d2 = 3 and Λ(s) =
[
s2 0
0 s3

]
4, S(s) =

[
1 s 0 0 0
0 0 1 s s2

]T
. Note that

n = d1+d2 = 5, and therefore, the realization will be of order 5. Write D(s) =

DhΛ(s) + D�S(s), and note that Dh = I2, D� =
[

0 0 0 0 0
0 0 0 0 0

]
. Therefore, in

view of (8.51),

Bm =
[

1 0
0 1

]
and Am = −D� =

[
0 0 0 0 0
0 0 0 0 0

]
.

Here Dc = lims→∞H(s) = [1, 0] and (8.52) implies that CcS(s) = N(s) −
DcD(s) = [s2 + 1, s + 1] − [s2, 0] = [1, s + 1], from which we have Cc =
[1, 0, 1, 1, 0]. A controllable realization in controller form is therefore given
by ẋ = Acxc +Bcu and y = Ccxc +Dcu, where

Ac =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, Bc =

⎡
⎢⎢⎢⎢⎣

0 0
1 0
0 0
0 0
0 1

⎤
⎥⎥⎥⎥⎦
,

Cc = [1, 0, 1, 1, 0], and Dc = [1, 0].

Note that the characteristic (pole) polynomial of H(s) is s3 and that the
McMillan degree of H(s) is 3. The order of any minimal realization of H(s) is
therefore 3. This implies that the controllable fifth-order realization derived
above cannot be observable [verify that (Ac, Cc) is not observable]. To derive a
minimal realization, the observable part of the system {Ac, Bc, Cc, Dc} needs
to be extracted, using the method described in Section 6.2. In particular, a
transformation matrix P needs to be determined so that

Â = PAcP
−1 =

[
A1 0
A21 A2

]
and Ĉ = CcP

−1 = [C1, 0],

where (A1, C1) is observable. If B̂ = PBc =
[
B1

B2

]
, then {A1, B1, C1, D1} is

a minimal realization of H(s). To reduce (Ac, Cc) to such a standard form
for unobservable systems, we let AD = AT , BD = CTc , and CD = BTc and
we reduce (AD, BD) to a standard form for uncontrollable systems. Here the
controllability matrix is

CD =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
1 0 0 0 0
1 1 0 0 0
0 1 1 0 0

⎤
⎥⎥⎥⎥⎦
.
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Note that rankCD = 3. Now if the first three columns of QD = P−1
D are taken

to be the first three linearly independent columns of CD, whereas the rest are
chosen so that |QD| �= 0, then

QD =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 1
0 1 0 0 0
1 0 0 1 0
1 1 0 0 0
0 1 1 0 0

⎤
⎥⎥⎥⎥⎦

and Q−1
D =

⎡
⎢⎢⎢⎢⎣

0 −1 0 1 0
0 1 0 0 0
0 −1 0 0 1
0 1 1 −1 0
1 1 0 −1 0

⎤
⎥⎥⎥⎥⎦
.

This implies that

ÂD = Q−1
D ADQD =

[
AD1 AD12

0 AD2

]
=

⎡
⎢⎢⎢⎢⎣

0 0 0 1 −1
1 0 0 0 1
0 1 0 0 −1
0 0 0 −1 1
0 0 0 −1 1

⎤
⎥⎥⎥⎥⎦
,

B̂D = Q−1
D BD =

[
BD1

BD2

]
=

⎡
⎢⎢⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎥⎥⎦
, and ĈD = CDQD =

[
0 1 0 0 0
0 1 1 0 0

]
.

Then

Â =
[
A1 0
A21 A2

]
= ÂTD =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
1 0 0 −1 −1

−1 1 −1 1 1

⎤
⎥⎥⎥⎥⎦
,

B̂ = ĈTD =

⎡
⎢⎢⎢⎢⎣

0 0
1 1
0 1
0 0
0 0

⎤
⎥⎥⎥⎥⎦
, and Ĉ = B̂TD = [C1, 0] = [1, 0, 0,

... 0, 0].

Clearly, Â = ÂTD, Ĉ = B̂TD is in standard form. Therefore, a controllable
and observable realization, which is a minimal realization, is given by ẋco =
Acoxco +Bcou and y = Ccoxco +Dcou, where

Aco =

⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦ , Bco =

⎡
⎣

0 0
1 1
0 1

⎤
⎦ , Cco = [1, 0, 0], Dco = [1, 0].

A minimal realization could also have been derived directly in the present
case if a realization {Ao, Bo, Co, Do} of H(s), where (Ao, Bo) is in observer



338 8 Realization Theory and Algorithms

form, had been considered first, as is shown next. Notice that the McMillan
degree of H(s) is 3, and therefore, any realization of order higher than 3 will
not be minimal. Here, however, the degree of the least common denominator
of the (only) row is 3, and therefore, it is known in advance that the realization
in observer form, which is of order 3, will be minimal.

A realization {Ao, Bo, Co, Do} of H(s) in observer form can also be de-
rived by considering HT (s) and deriving a realization in controller form.
Presently, {Ao, Bo, Co, Do} is derived directly. In particular, we write H(s) =
D̃−1(s)Ñ (s) = (s3)−1[s(s2 +1), s+1]. Then d̃1 = 3 [= deg �̃1(s) = deg s3] and
Λ̃(s) = s3, S̃(s) = [1, s, s2]. Then D̃(s) = s3 = Λ̃(s)D̃h + S̃(s)D̃� implies that
D̃h = 1 and D̃� = [0, 0, 0]T . In view of (8.61), we have

Cp = 1, Ap = [0, 0, 0]T ,

Do = lims→∞H(s) = [1, 0], and (8.62) implies that S̃(s)Bo = Ñ(s)− D̃(s)Do

= [s(s2 +1), s+1]− [s3, 0] = [s, s+1], from which we have Bo =
[

0 1 0
1 1 0

]T
. An

observable realization of H(s) is the system ẋ = Aoxo+Bou, y = Coxo+Dou,
where

Ao =

⎡
⎣

0 0 0
1 0 0
0 1 0

⎤
⎦ , Bo =

⎡
⎣

0 1
1 1
0 0

⎤
⎦ , Co = [0, 0, 1], Do = [1, 0],

with (Ao, Co) in observer form (see Lemma 8.24). This realization is minimal
since it is of order 3, which is the McMillan degree ofH(s). (The reader should
verify this.) Note how much easier it was to derive a minimal realization, using
the second approach.

Example 8.26. Let H(s) =
[

2
s+1 1
1
s 0

]
. We wish to derive a minimal realiza-

tion. Here �1(s) = s(s+ 1) with d1 = 2 and �2(s) = 1 with d2 = 0. In view of

the discussion following Lemma 8.23, we let Dc = lims→∞H(s) =
[

0 1
0 0

]
and

Ĥ(s) =
[

2
s+1 0
1
s 0

]
. We now consider the transfer function ̂̂

H(s) =
[

2
s+1
1
s

]
and

determine a minimal realization.
Note that the McMillan degree of ̂̂H(s) is 2, and therefore, any realization

of order 2 will be minimal. Minimal realizations are now derived using two
alternative approaches:

1. Via a controller form realization. Here �1(s) = s(s + 1), d1 = 2, and
̂̂
H(s) =

[
2s
s+ 1

]
[s(s + 1)]−1 = N(s)D−1(s). Then Λ(s) = s2 and S(s) =

[1, s]T , D(s) = s(s + 1) = 1s2 + [0, 1][1, s]T = DhΛ(s) + D�S(s).
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Therefore, Bm = 1 and Am = −[0, 1]. Also, Cc =
[

0 2
1 1

]
, which follows

from N(s) =
[

2s
s+ 1

]
=
[

0 2
1 1

] [
1
s

]
= CcS(s). Then a minimal realization

for H(s) is Ac =
[

0 1
0 −1

]
, Bc =

[
0
1

]
, Cc =

[
0 2
1 1

]
. Adding a zero column

to Bc, a minimal realization of H(s) is now derived as

A =
[

0 1
0 −1

]
, B =

[
0 0
1 0

]
, C =

[
0 2
1 1

]
, D =

[
0 1
0 0

]
.

We ask the reader to verify that by adding a zero column to Bc, control-
lability is preserved.

2. Via an observer form realization. We consider ̂̂H
T

(s) = [2/(s + 1), 1/s]
and derive a realization in controller form. In particular, �1 = s +

1, �2 = s,
̂̂
H
T

(s) = [2, 1]
[
s+ 1 0

0 s

]−1

, d1 = d2 = 1, Λ(s) =
[
s 0
0 s

]
, and

S(s) =
[

1 0
0 1

]
. Then D(s) =

[
s+ 1 0

0 s

]
=
[

1 0
0 1

] [
s 0
0 s

]
+
[

1 0
0 0

] [
1 0
0 1

]
=

DhΛ(s)+D�S(s) andBm =
[

1 0
0 1

]
, Am =

[
−1 0

0 0

]
. Also, Cc = [2, 1], from

which we obtain N(s) = [2, 1] = [2, 1]
[

1 0
0 1

]
= CcS(s). Therefore, a min-

imal realization {A,B,C} of ̂̂H
T

(s) is
{[

−1 0
0 0

]
,

[
1 0
0 1

]
, [2, 1]

}
. The dual

of this is a minimal realization of ̂̂H(s), namely, Ao =
[
−1 0

0 0

]
, Bo =

[
2
1

]
,

and Co =
[

1 0
0 1

]
. Therefore, a minimal realization of H(s) is

A =
[
−1 0

0 0

]
, B =

[
2 0
1 0

]
, C =

[
1 0
0 1

]
, D =

[
0 1
0 0

]
.

8.4.3 Realizations with Matrix A Diagonal

When the roots of the minimal polynomial mH(s) of H(s) are distinct, there
is a realization algorithm that provides a minimal realization of H(s) with A
diagonal. Let

mH(s) = sr + dr−1s
r−1 + · · · + d1s+ d0 (8.65)

be the (monic) least common denominator of all nonzero entries of the p×m
matrix H(s), which in view of Section 7.4, is the minimal polynomial of H(s).
We assume that its r roots λi are distinct, and we write
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mH(s) =
r∏
i=1

(s− λi). (8.66)

Note that the pole polynomial of H(s), pH(s), will have repeated roots (poles)
if pH(s) �= mH(s). We now consider the strictly proper matrix Ĥ(s) � H(s)−
lims→∞H(s) = H(s) −D, and we expand it into partial fractions to obtain

Ĥ(s) = N̂(s)/mH(s) =
r∑
i=1

1
s− λi

Ri. (8.67)

The p×m residue matrices Ri can be found from the relation

Ri = lim
s→λi

(s− λi)Ĥ(s). (8.68)

We write
Ri = CiBi, i = 1, . . . , r, (8.69)

where Ci is a p×ρi and Bi is a ρi×m matrix with ρi � rankRi ≤ min(p,m).
Note that the above expression is always possible. Indeed, there is a systematic
procedure of generating it, namely, by obtaining an LU decomposition of Ri.
Then

A =

⎡
⎢⎢⎢⎣

λ1Iρ1
λ2Iρ2

. . .
λrIρr

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

B1

B2

...
Br

⎤
⎥⎥⎥⎦ , (8.70)

C = [C1, C2, . . . , Cr], D = lim
s→∞H(s)

is a minimal realization of order n �
∑r

i=1 ρi.

Lemma 8.27. Representation (8.70) is a minimal realization of H(s).

Proof. It can be verified directly that C(sI − A)−1B + D = H(s), i.e., that
(8.70) is a realization of H(s). To verify controllability, we write

C = [B,AB, . . . , An−1B] =

⎡
⎢⎢⎢⎣

B1

B2

. . .
Br

⎤
⎥⎥⎥⎦

⎡
⎢⎣
Im, λ1Im, . . . , λ

n−1
1 Im

...
...

...
Im, λrIm, . . . , λ

n−1
r Im

⎤
⎥⎦ .

The second matrix in the product is a block Vandermonde matrix of dimen-
sions mr ×mn. It can be shown that this matrix has full rank mr since all
λi are assumed to be distinct. Also note that the (n = Σρi) × mr matrix
block diag[Bi] has rank equal to

∑r
i=1 rankBi =

∑r
i=1 ρi = n ≤ mr. Now,

in view of Sylvester’s Rank Inequality, as applied to the above matrix prod-
uct, we have n + mr −mr ≤ rankC ≤ min(n,mr), from which rankC = n.
Therefore, {A,B,C,D} is controllable. Observability is shown in a similar
way. Therefore, representation (8.70) is minimal. �
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Example 8.28. Let H(s) =
[ 1

s 0
2
s+1

1
s(s+1)

]
. Here mH(s) = s(s+1) with roots

λ1 = 0, λ2 = −1 distinct. We write H(s) = 1
sR1 + 1

s+1R2, where R1 =

lims→0 sH(s) = lims→0

[
1 0
2s
s+1

1
s+1

]
=
[

1 0
0 1

]
, R2 = lims→−1(s + 1)H(s) =

lims→−1

[
s+1
s 0
2 1

s

]
=
[

0 0
2 −1

]
, ρ1 = rankR1 = 2, and ρ2 = rankR2 = 1; i.e.,

the order of a minimal realization is n = ρ1 + ρ2 = 3. We now write

R1 =
[

1 0
0 1

]
=
[

1 0
0 1

] [
1 0
0 1

]
= C1B1,

R2 =
[

0 0
2 −1

]
=
[

0
1

]
[2 − 1] = C2 B2.

Then

A =
[
λ1I2 0

0 λ2

]
=

⎡
⎣

0 0 0
0 0 0
0 0 −1

⎤
⎦ , B =

[
B1

B2

]
=

⎡
⎣

1 0
0 1
2 −1

⎤
⎦ ,

C = [C1, C2] =
[

1 0 0
0 1 1

]

is a minimal realization with A diagonal (show this). Note that the charac-
teristic polynomial of H(s) is pH(s) = s2(s+ 1), and therefore, the McMillan
degree, which is equal to the order of any minimal realization, is 3, as ex-
pected.

8.4.4 Realizations Using Singular-Value Decomposition

Internally Balanced Realizations. Given a proper p×m matrix H(s), we let
r denote the degree of its minimal polynomial mH(s), we write

H(s) = H0 +H1s
−1 +H2s

−2 + . . .

to obtain the Markov parameters Hi, and we define

T � MH(r, r) =

⎡
⎢⎣
H1 · · ·Hr

...
Hr · · ·H2r−1

⎤
⎥⎦ , T̂ �

⎡
⎢⎣
H2 · · ·Hr+1

...
Hr+1 · · ·H2r

⎤
⎥⎦ , (8.71)

where MH(r, r) is the Hankel matrix (see Definition 8.15) and T, T̂ are real
matrices of dimension rp× rm.

Using singular-value decomposition (see Section A.9), we write
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T = K

[
Σ 0
0 0

]
L, (8.72)

where
∑

= diag[λ1, . . . , λn] ∈ Rn×n with n = rankT = rankMH(r, r), which
in view of Theorem 8.16 is the order of a minimal realization of H(s). The λi
with λ1 ≥ λ2 ≥ · · · ≥ λn > 0 are the singular values of T , i.e., the nonzero
eigenvalues of T TT . Furthermore, KKT = KTK = Ipr and LLT = LTL =
Imr. We write

T = K1ΣL1 = (K1Σ
1/2)(Σ1/2L1) = V U, (8.73)

where K1 denotes the first n columns of K, L1 denotes the first n rows of
L,KT

1 K1 = In, and L1L
T
1 = In. Also, V ∈ Rrp×n and U ∈ Rn×rm.

We let V + and U+ denote pseudoinverses of V and U , respectively (see
the appendix); i.e.,

V + = Σ−1/2KT
1 and U+ = LT1Σ

−1/2, (8.74)

where V +V = In and UU+ = In. Now define

A = V +T̂U+, B = UITm,mr, C = Ip,prV, D = H0, (8.75)

where Ik,� � [Ik, 0�−k], k > �; i.e., Ik,� is a k×� matrix with its first k columns
determining an identity matrix and the remaining �− k columns being equal
to zero. Thus, B is defined as the first m columns of U , and C is defined
as the first p rows of V . Note that A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and
D ∈ Rp×m.

Lemma 8.29. The representation (8.75) is a minimal realization of H(s).

Proof. It can be shown that CAi−1B = Hi, i = 1, 2, . . . . Thus, {A,B,C,D} is
a realization. We note that V and U are the observability and controllability
matrices, respectively, and that both are of full rank n. Therefore, the realiza-
tion is minimal. Furthermore, we notice that V TV = UUT = Σ. Realizations
of this type are called internally balanced realizations. �

The term internally balanced emphasizes the fact that realizations of this
type are “as much controllable as they are observable,” since their control-
lability and observability Gramians are equal and diagonal. Using such rep-
resentations, it is possible to construct reasonable reduced-order models of
systems by deleting that part of the state space that is “least controllable”
and therefore “least observable” in accordance with some criterion. In fact, the
realization procedure described can be used to obtain a reduced-order model
for a given system. Specifically, if the system is to be approximated by a q-
dimensional model with q < n, then the reduced-order model can be obtained
from

T = Kq diag[λ1, . . . , λq]Lq, (8.76)

where Kq denotes the first q columns of K in (8.72) and Lq denotes the first
q rows of L.
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8.5 Polynomial Matrix Realizations

It is rather straightforward to derive a realization of H in PMD form [see
Section 7.5]. In fact, realizations in right (left) Polynomial Matrix Fractional
Description (PMFD) form were derived as a step toward determining a state-
space realization in controller (observer) form (see Subsection 8.4.2). However,
these realizations, of the form {DR, Im, NR} and {DL, NL, Ip}, are typically
not of minimal order; i.e., they are not controllable and observable. This im-
plies that the controllable realization {DR, Im, NR}, for example, is not ob-
servable; i.e., DR, NR are not right coprime. Similarly, the observable real-
ization {DL, NL, Ip} is not controllable; i.e., DL, NL are not left coprime. To
obtain a minimal realization, a greatest common right divisor (gcrd) must be
extracted from DR, NR, and similarly, a gcld must be extracted from DL, NL.
This leads to the following realization algorithm, which results in a minimal
realization {D, Im, N} of H . A minimal realization of the form {D,N, Ip} is
obtained in an analogous (dual) manner.

Consider H(s) = [nij(s)/dij(s)], i = 1, . . . , p, j = 1, . . . ,m, and let lj(s)
be the (monic) least common denominator of all entries in the jth column of
H(s). Note that lj(s) is the (monic) least degree polynomial divisible by all
dij(s), i = 1, . . . , p. Then H(s) can be written as

H(s) = NR(s)D−1
R (s), (8.77)

where NR(s) � =[n̄ij(s)] and DR(s) � = diag(l1(s), . . . , lm(s)). Note that
n̄ij/lj(s) = nij(s)/dij(s) for i = 1, . . . , p and all j = 1, . . . ,m. Now

DR(q)zR(t) = u(t), y(t) = NR(q)zR(t) (8.78)

is a controllable realization of H(s). If DR, NR are right coprime, it is ob-
servable as well and therefore minimal. If DR and NR are not right coprime,
let GR be a greatest common right divisor (gcrd) and let D = DRG

−1
R and

N = NRG
−1
R . Then

D(q)z(t) = u(t), y(t) = N(q)z(t) (8.79)

is a controllable and observable, and therefore, minimal realization of H(s)
since D, I and D,N are left and right coprime polynomial matrix pairs, re-
spectively. Note that ND−1 = (NRG−1

R )(DRG
−1
R )−1 = (NRG−1

R )(GRD−1
R ) =

NRD
−1
R = H .

There is a dual algorithm that extracts a left PMFD resulting in

H(s) = D−1
L (s)NL(s), (8.80)

which corresponds to an observable realization of H(s), given by

DL(q)zL(t) = NL(q)u(t), y(t) = zL(t). (8.81)
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The details of this procedure are completely analogous to the above procedure
that led to (8.77). If DL, NL are not left coprime, let GL be a greatest common
left divisor and let D̃ = G−1

L DL and Ñ = G−1
L NL. Then a controllable and

observable and, therefore, minimal realization of H(s) is given by

D̃(q)z̃(t) = Ñ(q)u(t), y(t) = z̃(t). (8.82)

The following example illustrates the above realization algorithms.

Example 8.30. Let us derive a minimal realization for H(s) =
[
s2+1
s2 , s+1

s3

]
.

Note that this is the same H(s) as in Example 8.25 of Section 8.4.2, where
minimal state-space realizations were derived. The reader is encouraged to
compare those results with the realizations derived below. We shall begin
with a controllable realization. In view of (8.77) l1 = s2, l2 = s3, and H =

NRD
−1
R = [s2 + 1, s + 1]

[
s2 0
0 s3

]−1

. Therefore, DRzR = u and y = NRzR

constitute a controllable realization. This realization is not observable since

rank
[
DR(s)
NR(s)

]

s=0

= rank

⎡
⎣

0 0
0 0
1 1

⎤
⎦ = 1 < m = 2; i.e., DR and NR are not right

coprime.
Another way of determining that DR and NR are not right coprime

would have been to observe that deg detD(s) = 5 = order of the realiza-
tion {DR, I,NR}. Now the McMillan degree of H , which is easily derived in
the present case, is three. Therefore, the order of any minimal realization for
this example is three. Since {DR, I,NR} is of order five and is controllable, it
cannot be observable; i.e., DR and NR cannot be right coprime.

We shall now extract a gcrd from DR and NR (using the procedure de-
scribed in [1, Section 7.2D]). We have

[
DR

NR

]
=

⎡
⎣

s2 0
0 s3

s2 + 1 s+ 1

⎤
⎦ −→

⎡
⎣
s2 0
0 s3

1 s+ 1

⎤
⎦ −→

⎡
⎣

1 s+ 1
s2 0
0 s3

⎤
⎦ −→

⎡
⎣

1 s+ 1
0 −s3 − s2

0 s3

⎤
⎦ −→

⎡
⎣

1 s+ 1
0 s2

0 s3

⎤
⎦ −→

⎡
⎣

1 s+ 1
0 s2

0 0

⎤
⎦ .

Therefore, GR =
[

1 s+ 1
0 s2

]
is a gcrd. We now determine D = DRG

−1
R and

N = NRG
−1
R , using DR =

[
s2 0
0 s3

]
=
[
s2 −(s+ 1)
0 s

] [
1 s+ 1
0 s2

]
= DGR and

NR = [s2 + 1, s+ 1] = [s2 + 1,−(s+ 1)]
[
1 s+ 1
0 s2

]
= NGR, and we verify that

they are right coprime. Then
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{DR, I,NR} =
{[

q2 −(q + 1)
0 q

]
,

[
1 0
0 1

]
, [q2 + 1,−(q + 1)]

}

is a minimal realization of H(s).
Alternatively, given H , we shall first derive an observable realization. In

view of (8.80),
H = D−1

L NL = (s3)−1[s(s2 + 1), s+ 1].

Here DL(q) and NL(q) are left coprime, and therefore, D̃(q)z̃(t) = Ñ(q)u(t)
and y(t) = z̃(t) with D̃(q) = DL(q) and Ñ(q) = NL(q) is controllable and
observable and is a minimal realization. Note that the order of this realization
is deg detDL(s) = 3, which equals the McMillan degree of H(s).

8.6 Summary and Highlights

Realizations

• ẋ = Ax + Bu, y = Cx + Du is a realization of H(s) (ŷ = H(s)û) if
ŷ = [C(sI −As−1B +D]û.

• Realizations of H(s) exist if and only if H(s) is a proper rational matrix.
lims→∞H(s) = D <∞. (See Theorem 8.5.)

• The Markov parameters Hi of the system in

H(s) = H0 +H1s
−1 +H2s

−2 + . . .

satisfy
H0 = D and Hi = CAi−1B, i = 1, 2, . . . .

(See Theorem 8.3.)
• A realization {A,B,C,D} of H(s) is minimal if and only if it is both

controllable and observable. (See Theorem 8.9.)
• Two realizations of H(s) that are minimal must be equivalent representa-

tions. (See Theorem 8.10.)
• The order of a minimal realization of H(s) equals its McMillan degree, the

order of its characteritic or pole polynomial pH(s). (See Theorem 8.12.)
The order of a minimal realization of H(s) is also given by the rank of the
Hankel matrix MH(r, r). (See Theorem 8.16.)

• Duality can be very useful in obtaining realizations. (See Subsection 8.4.1.)
• Realization algorithms are presented to obtain realizations in controller/

observer form [Subsection 8.4.2], realizations with A diagonal [Subsec-
tion 8.4.3], and balanced realizations via singular-value decomposition
[Subsection 8.4.4].
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8.7 Notes

A clear understanding of the relationship between external and internal de-
scriptions of systems is one of the principal contributions of systems theory.
This topic was developed in the early sixties with original contributions by
Gilbert [3] and Kalman [5]. The role of controllability and observability in min-
imal realizations is due to Kalman [5]. See also Kalman, Falb, and Arbib [6].
The first realization method for MIMO systems is attributed to Gilbert [3]. It
was developed for systems where the matrix A can be taken to be diagonal.
This method is presented in this chapter. For extensive historical comments
concerning this topic, see Kailath [4]. Additional information concerning real-
izations for the time-varying case can be found, for example, in Brockett [2],
Silverman [10], Kamen [7], Rugh [9], and the literature cited in these refer-
ences. Balanced realizations were introduced in Moore [8].
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Exercises

8.1. Consider a scalar proper rational transfer function H(s) = n(s)/d(s),
and let ẋ = Acxc+Bcu, y = Ccxc+Dcu be a realization of H(s) in controller
form.

(a) Show that the realization {Ac, Bc, Cc, Dc} is always controllable.
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(b) Show that {Ac, Bc, Cc, Dc} is observable if and only if n(s) and d(s) do
not have any factors in common; i.e., they are prime polynomials.

(c) State the dual results to (a) and (b) involving a realization in observer
form.

8.2. LetH(s) = n(s)
d(s) = s2−s+1

s5−s4+s3−s2+s−1 . Determine a realization in controller
form. Is your realization minimal? Explain your answer. Hint : Use the results
of Exercise 8.1.

8.3. For the transfer function H(s) = s+1
s2+2 , find

(a) an uncontrollable realization,
(b) an unobservable realization,
(c) an uncontrollable and unobservable realization,
(d) a minimal realization.

8.4. Consider the transfer function matrix H(s) =
[
s−1
s+1

1
s2−1

1 0

]
.

(a) Determine the pole polynomial and the McMillan degree of H(s), using
both the Smith–McMillan form and the Hankel matrix.

(b) Determine an observable realization of H(s).
(c) Determine a minimal realization of H(s). Hint : Obtain realizations for[

s−1
s+1 ,

1
s2−1

]
.

8.5. Consider the transfer function matrix H(s) =
[

(s+1)(−s+5)
(s−1)(s2−9) ,

s
s−1

]T
, and

determine for H(s) a minimal realization in controller form.

8.6. Consider the transfer function H(s) =
[ 1

s
s+3
s+1

1
s+3

s
s+1

]
.

(a) Determine the pole polynomial of H(s) and the McMillan degree of H(s).
(b) Determine a minimal realization {A,B,C,D} of H(s), where A is a diag-

onal matrix.

8.7. Given is the system depicted in the block diagram of Figure 8.4, where
H(s) = s2+1

(s+1)(s+2)(s+3) . Determine a minimal state-space representation for
the closed-loop system, using two approaches. In particular:

(a) First, determine a state-space realization for H(s), and then, determine a
minimal state-space representation for the closed-loop system;

(b) first, find the closed-loop transfer function, and then, determine a minimal
state-space representation for the closed-loop system.

Compare the two approaches.
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+
H(s)

r u y

–
Σ

Figure 8.4. Block diagram of the system in Exercise 8.7

8.8. Consider the system depicted in the block diagram of Figure 8.5, where
H(s) = s+1

s(s+3) and G(s) = k
s+a with k, a ∈ R. Presently, H(s) could be viewed

as the system to be controlled and G(s) could be regarded as a feedback
controller.

(a) Obtain a state-space representation of the closed-loop system by
(i) first, determining realizations for H(s) and G(s) and then combining

them;
(ii) first, determining Hc(s), the closed-loop transfer function.

(b) Are there any choices for the parameters k and a for which your closed-
loop state-space representation is uncontrollable and unobservable? If your
answer is affirmative, state why.

+
H(s)

r u y

G(s)
–

Figure 8.5. Block diagram of the system in Exercise 8.8

8.9. Consider the controllable and observable system given by ẋ = Ax+Bu,
y = Cx+Du, and its equivalent representation ˙̂x = Âx̂+ B̂u, y = Ĉx̂+ D̂u,
where Â = PAP−1, B̂ = PB, Ĉ = CP−1, and D̂ = D. Let Wr and Wo denote
the reachability and observability Gramians, respectively.

(a) Show that Ŵr = PWrP
∗ and Ŵo = (P−1)∗WoP

−1, where P ∗ denotes the
complex conjugate transpose of P . Note that P ∗ = PT when only real
coefficients in the system equations are involved.
Using singular-value decomposition (refer to Section A.9), write

Wr = UrΣrV
∗
r and Wo = UoΣoV

∗
o ,

where U∗U = I, V V ∗ = I, and Σ = diag(σ1, σ2, . . . , σn) with σi the
singular values of W . Define

H = (Σ1/2
o )∗U∗

oUr(Σ
1/2
r ),

and using singular-value decomposition, write

H = UHΣHVH ,

where U∗
HUH = I, VHV ∗

H = I. Prove the following:
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(b) If P = Pin � VH(
∑1/2

r )−1V ∗
r , then Ŵr = I, Ŵo = Σ2

H .
(c) If P = Pout � U∗

H(
∑1/2

o )∗V ∗
o , then Ŵr = Σ2

H , Ŵo = I.
(d) If P = Pib = Pin

∑1/2
H =

∑1/2
H Pout, then Ŵr = Ŵo = ΣH . Note that

the equivalent representations {Â, B̂, Ĉ, D̂} in (b), (c), and (d) are called,
respectively, input-normal, output-normal, and internally balanced repre-
sentations.

8.10. Consider a system described by
[
ŷ1(s)
ŷ2(s)

]
=
[ 1

(s+1)2
2
s2

0 s+1
s

] [
û1(s)
û2(s)

]
.

(a) What is the order of a controllable and observable realization of this sys-
tem?

(b) If we consider such a realization, is the resulting system controllable from
the input u2? Is it observable from the output y1? Explain your answers.

8.11. Consider the system described by H(s) = 1
s−(1+ε) (ŷ(s) = H(s)û(s))

and C(s) = s−1
s+2 (û(s) = C(s)r̂(s)) connected in series (ε ∈ R).

(a) Derive minimal state-space realizations forH(s) andC(s), and determine a
(second order) state-space description for the system ŷ(s) = H(s)C(s)r̂(s).

(b) Let ε = 0, and discuss the implications regarding the overall transfer func-
tion and your state-space representations in (a). Is the overall system now
controllable, observable, asymptotically stable? Are the poles of the over-
all transfer function stable? [That is, is the overall system BIBO stable?
(See Chapter 4.)] Plot the states and the output for some nonzero initial
condition and a unit step input, and comment on your results.

(c) In practice, if H(s) is a given system to be controlled and C(s) is a con-
troller, it is unlikely that ε will be exactly equal to zero and therefore the
situation in (a), rather than (b), will arise. In view of this, comment on
whether open-loop stabilization can be used in practice. Carefully explain
your reasoning.

8.12. Consider the transfer function H(s) =
[

1 1
s

s−1
s

0 s+1
s2 0

]
. Determine a min-

imal realization in

(a) Polynomial Matrix Fractional Description (PMFD) form,
(b) State-Space Description (SSD) form.
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State Feedback and State Observers

9.1 Introduction

Feedback is a fundamental mechanism arising in nature and is present in
many natural processes. Feedback is also common in manufactured systems
and is essential in automatic control of dynamic processes with uncertainties
in their model descriptions and their interactions with the environment. When
feedback is used, the actual values of system variables are sensed, fed back,
and used to control the system. Hence, a control law decision process is based
not only on predictions about the system behavior derived from a process
model, but also on information about the actual behavior. A common example
of an automatic feedback control system is the cruise control system in an
automobile, which maintains the speed of the automobile at a certain desired
value within acceptable tolerances. In this chapter, feedback is introduced and
the problem of pole or eigenvalue assignment by means of state feedback is
discussed at length in Section 9.2. It is possible to arbitrarily assign all closed-
loop eigenvalues by linear static state feedback if and only if the system is
completely controllable.

In the study of state feedback, it is assumed that it is possible to measure
the values of the states using appropriate sensors. Frequently, however, it may
be either impossible or impractical to obtain measurements for all states. It
is therefore desirable to be able to estimate the states from measurements of
input and output variables that are typically available. In addition to feed-
back control problems, there are many other problems where knowledge of
the state vector is desirable, since such knowledge contains useful information
about the system. This is the case, for example, in navigation systems. State
estimation is related to observability in an analogous way that state feedback
control is related to controllability. The duality between controllability and
observability makes it possible to easily solve the estimation problem once
the control problem has been solved, and vice versa. In this chapter, asymp-
totic state estimators, also called state observers, are discussed at length in
Section 9.3.
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Finally, state feedback static controllers and state dynamic observers are
combined to form dynamic output feedback controllers. Such controllers are
studied in Section 9.4, using both state-space and transfer function matrix
descriptions. In the following discussion, state feedback and state estimation
are introduced for continuous- and discrete-time time-invariant systems.

9.2 Linear State Feedback

9.2.1 Continuous-Time Systems

We consider linear, time-invariant, continuous-time systems described by
equations of the form

ẋ = Ax+Bu, y = Cx+Du, (9.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m.

Definition 9.1. The linear, time-invariant, state feedback control law is de-
fined by

u = Fx+ r, (9.2)

where F ∈ Rm×n is a gain matrix and r(t) ∈ Rm is an external input vector.
�

r +
+

u y
System

F

x

S

Figure 9.1. Linear state feedback configuration

Note that r(t) is an external input , also called a command or reference
input (see Figure 9.1). It is used to provide an input to the compensated
closed-loop system and is omitted when such input is not necessary in a given
discussion [r(t) = 0]. This is the case, e.g., when the Lyapunov stability of a
system is studied. Note that the vector r(t) in (9.2) has the same dimension as
u(t). If a different number of inputs is desired, then an input transformation
map may be used to accomplish this.

The compensated closed-loop system of Figure 9.1 is described by the equa-
tions

ẋ = (A+BF )x+ Br,

y = (C +DF )x+Dr, (9.3)
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which were determined by substituting u = Fx+ r into the description of the
uncompensated open-loop system (9.1).

The state feedback gain matrix F affects the closed-loop system behavior.
This is accomplished by altering the matrices A and C of (9.1). In fact, the
main influence of F is exercised through the matrix A, resulting in the matrix
A + BF of the closed-loop system. The matrix F affects the eigenvalues of
A + BF and, therefore, the modes of the closed-loop system. The effects of
F can also be thought of as restricting the choices for u (= Fx for r = 0)
so that for apppropriate F , certain properties, such as asymptotic Lyapunov
stability, of the equilibrium x = 0 are obtained.

Open- Versus Closed-Loop Control

The linear state feedback control law (9.2) can be expressed in terms of the
initial state x(0) = x0. In particular, working with Laplace transforms, we
obtain û = F x̂+ r̂ = F [(sI−A)−1x0 +(sI−A)−1Bû]+ r̂, in view of sx̂−x0 =
Ax̂+Bû, derived from ẋ = Ax+Bu. Collecting terms, we have [I − F (sI −
A)−1B]û = F (sI −A)−1x0 + r̂. This yields

û = F [sI − (A+BF )]−1x0 + [I − F (sI −A)−1B]−1r̂, (9.4)

where the matrix identities [I − F (sI − A)−1B]−1F (sI − A)−1 ≡ F (sI −
A)−1[I −BF (sI −A)−1]−1 ≡ F [sI − (A+BF )]−1 have been used.

Expression (9.4) is an open-loop (feedforward) control law, expressed in
the Laplace transform domain. It is phrased in terms of the initial conditions
x(0) = x0, and if it is applied to the open-loop system (9.1), it generates
exactly the same control action u(t) for t ≥ 0 as the state feedback u = Fx+r
in (9.2). It can readily be verified that the descriptions of the compensated
system are exactly the same when either control expressions, (9.2) or (9.4),
are used. In practice, however, these two control laws hardly behave the same,
as explained in the following.

First, notice that in the open-loop scheme (9.4), the initial conditions x0

are assumed to be known exactly. It is also assumed that the plant parameters
in A and B are known exactly. If there are uncertainties in the data, this
control law may fail miserably, even when the differences are small, since
it is based on incorrect information without any way of knowing that these
data are not valid. In contrast to the above, the feedback law (9.2) does not
require knowledge of x0. Moreover, it receives feedback information from x(t)
and adjusts u(t) to reflect the current system parameters, and consequently,
it is more robust to parameter variations. Of course the feedback control law
(9.2) will also fail when the parameter variations are too large. In fact, the
area of robust control relates feedback control law designs to bounds on the
uncertainties (due to possible changes) and aims to derive the best design
possible under the circumstances.

The point we wish to emphasize here is that although open- and closed-
loop control laws may appear to produce identical effects, typically they do
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not, the reason being that the mathematical system models used are not
sufficiently accurate, by necessity or design. Feedback control and closed-loop
control are preferred to accommodate ever-present modeling uncertainties in
the plant and the environment.

At this point, a few observations are in order. First, we note that feeding
back the state in synthesizing a control law is a very powerful mechanism,
since the state contains all the information about the history of a system that
is needed to uniquely determine the future system behavior, given the input.
We observe that the state feedback control law considered presently is linear,
resulting in a closed-loop system that is also linear. Nonlinear state feedback
control laws are of course also possible. Notice that when a time-invariant
system is considered, the state feedback is typically static, unless there is
no choice (as in certain optimal control problems), resulting in a closed-loop
system that is also time-invariant. These comments justify to a certain extent
the choice of linear, time-invariant, state feedback control to compensate linear
time-invariant systems.

The problem of stabilizing a system by using state feedback is considered
next.

Stabilization

The problem we wish to consider now is to determine a state feedback con-
trol law (9.2) having the property that the resulting compensated closed-loop
system has an equilibrium x = 0 that is asymptotically stable (in the sense
of Lyapunov) when r = 0. (For a discussion of asymptotic stability, refer to
Subsection 3.3.3 and to Chapter 4.) In particular, we wish to determine a
matrix F ∈ Rm×n so that the system

ẋ = (A+BF )x, (9.5)

where A ∈ Rn×n and B ∈ Rn×m has equilibrium x = 0 that is asymptotically
stable. Note that (9.5) was obtained from (9.3) by letting r = 0.

One method of deriving such stabilizing F is by formulating the problem
as an optimal control problem, e.g., as the Linear Quadratic Regulator (LQR)
problem. This is discussed at the end of this section.

Alternatively, in view of Subsection 3.3.3, the equilibrium x = 0 of (9.5)
is asymptotically stable if and only if the eigenvalues λi of A + BF satisfy
Reλi < 0, i = 1, · · · , n. Therefore, the stabilization problem for the time-
invariant case reduces to the problem of selecting F in such a manner that
the eigenvalues of A + BF are shifted into desired locations. This will be
studied in the following subsection. Note that stabilization is only one of the
control objectives, although a most important one, that can be achieved by
shifting eigenvalues. Control system design via eigenvalue (pole) assignment
is a topic that is addressed in detail in a number of control books.
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9.2.2 Eigenvalue Assignment

Consider again the closed-loop system ẋ = (A+BF )x given in (9.5). We shall
show that if (A,B) is fully controllable (-from-the-origin, or reachable), all
eigenvalues of A+ BF can be arbitrarily assigned by appropriately selecting
F . In other words, “the eigenvalues of the original system can arbitrarily be
changed in this case.” This last statement, commonly used in the literature,
is rather confusing: The eigenvalues of a given system ẋ = Ax + Bu are
not physically changed by the use of feedback. They are the same as they
used to be before the introduction of feedback. Instead, the feedback law
u = Fx+ r, r = 0, generates an input u(t) that, when fed back to the system,
makes it behave as if the eigenvalues of the system were at different locations
[i.e., the input u(t) makes it behave as a different system, the behavior of
which is, we hope, more desirable than the behavior of the original system].

Theorem 9.2. Given A ∈ Rn×n and B ∈ Rn×m, there exists F ∈ Rm×n such
that the n eigenvalues of A+BF can be assigned to arbitrary, real, or complex
conjugate locations if and only if (A,B) is controllable (-from-the-origin, or
reachable).

Proof. (Necessity): Suppose that the eigenvalues ofA+BF have been arbitrar-
ily assigned, and assume that (A,B) in (9.1) is not fully controllable. We shall
show that this leads to a contradiction. Since (A,B) is not fully controllable,
in view of the results in Section 6.2, there exists a similarity transformation
that will separate the controllable part from the uncontrollable part in (9.5).
In particular, there exists a nonsingular matrix Q such that

Q−1(A+BF )Q = Q−1AQ+ (Q−1B)(FQ) =
[
A1 A12

0 A2

]
+
[
B1

0

]
[F1, F2]

=
[
A1 +B1F1 A12 + B1F2

0 A2

]
, (9.6)

where [F1, F2] � FQ and (A1, B1) is controllable. The eigenvalues of A+BF
are the same as the eigenvalues of Q−1(A+BF )Q, which implies that A+BF
has certain fixed eigenvalues, the eigenvalues of A2, that cannot be shifted
via F . These are the uncontrollable eigenvalues of the system. Therefore,
the eigenvalues of A + BF have not been arbitrarily assigned, which is a
contradiction. Thus, (A,B) is fully controllable.

(Sufficiency): Let (A,B) be fully controllable. Then by using any of the
eigenvalue assignment algorithms presented later in this section, all the eigen-
values of A+BF can be arbitrarily assigned. �

Lemma 9.3. The uncontrollable eigenvalues of (A,B) cannot be shifted via
state feedback.

Proof. See the necessity part of the proof of Theorem 9.2. Note that the
uncontrollable eigenvalues are the eigenvalues of A2. �
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Example 9.4. Consider the uncontrollable pair (A,B), where A =
[

0 −2
1 −3

]
,

B =
[

1
1

]
. This pair can be transformed to a standard form for uncontrollable

systems, namely, Â =
[
−2 1

0 −1

]
, B̂ =

[
1
0

]
, from which it can easily be

seen that −1 is the uncontrollable eigenvalue, whereas −2 is the controllable
eigenvalue.

Now if F = [f1, f2], then det(sI−(A+BF )) = det
[
s− f1, 2 − f2
−1 − f1 s+ 3 − f2

]
=

s2 + s(−f1 − f2 + 3) + (−f1 − f2 + 2) = (s+ 1)(s+ (−f1 − f2 + 2)). Clearly,
the uncontrollable eigenvalue −1 cannot be shifted via state feedback. The
controllable eigenvalue −2 can be shifted arbitrarily to (f1 + f2 − 2) by F =
[f1, f2].

It is now quite clear that a given system (9.1) can be made asymptotically
stable via the state feedback control law (9.2) only when all the uncontrollable
eigenvalues of (A,B) are already in the open left part of the s-plane. This is
so because state feedback can alter only the controllable eigenvalues.

Definition 9.5. The pair (A,B) is called stabilizable if all its uncontrollable
eigenvalues are stable. �

Before presenting methods to select F for eigenvalue assignment, it is of
interest to examine how the linear feedback control law u = Fx + r given in
(9.2) affects controllability and observability. We write

[
sI − (A+BF ) B
−(C +DF ) D

]
=
[
sI −A B
−C D

] [
I 0

−F I

]
(9.7)

and note that

rank[λI − (A+BF ), B] = rank[λI −A,B]

for all complex λ. Thus, if (A,B) is controllable, then so is (A + BF,B) for
any F . Furthermore, notice that in view of

CF = [B, (A+BF )B, (A +BF )2B, . . . , (A+BF )n−1B]

= [B,AB,A2B, . . . , An−1B]

⎡
⎢⎢⎢⎢⎢⎣

I FB F (A+BF )B ·
0 I FB ·

I ·
. . .

I

⎤
⎥⎥⎥⎥⎥⎦
, (9.8)
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R(CF ) = R([B,AB, . . . , An−1B]) = R (C). This shows that F does not alter
the controllability subspace of the system. This in turn proves the following
lemma.

Lemma 9.6. The controllability subspaces of ẋ = Ax + Bu and ẋ = (A +
BF )x+Br are the same for any F . �

Although the controllabiliity of the system is not altered by linear state
feedback u = Fx + r, this is not true for the observability property. Note
that the observability of the closed-loop system (9.3) depends on the matrices
(A + BF ) and (C + DF ), and it is possible to select F to make certain
eigenvalues unobservable from the output. In fact this mechanism is quite
common and is used in several control design methods. It is also possible
to make observable certain eigenvalues of the open-loop system that were
unobservable.

Several methods are now presented to select F to arbitrarily assign the
closed-loop eigenvalues.

Methods for Eigenvalue Assignment by State Feedback

In view of Theorem 9.2, the eigenvalue assignment problem can now be stated
as follows. Given a controllable pair (A,B), determine F to assign the n
eigenvalues of A+BF to arbitrary real and/or complex conjugate locations.
This problem is also known as the pole assignment problem, where by the term
“pole” is meant a “pole of the system” (or an eigenvalue of the “A” matrix).
This is to be distinguished from the “poles of the transfer function.”

Note that all matrices A,B, and F are real, so the coefficients of the
polynomial det[sI − (A + BF )] are also real. This imposes the restriction
that the complex roots of this polynomial must appear in conjugate pairs.
Also, note that if (A,B) is not fully controllable, then (9.6) can be used
together with the methods described a little later, to assign all the controllable
eigenvalues; the uncontrollable ones will remain fixed.

It is assumed in the following discussion that B has full column rank; i.e.,

rankB = m. (9.9)

This means that the system ẋ = Ax + Bu has m independent inputs. If
rankB = r < m, this would imply that one could achieve the same result by
manipulating only r inputs (instead of m > r). To assign eigenvalues in this
case, one can proceed by writing

A+BF = A+ (BM)(M−1F ) = A+ [B1, 0]
[
F1

F2

]
= A+B1F1, (9.10)

where M is chosen so that BM = [B1, 0] with B1 ∈ Rn×r and rankB1 = r.
Then F1 ∈ Rr×n can be determined to assign the eigenvalues of A + B1F1,
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using any one of the methods presented next. Note that (A,B) is controllable
implies that (A,B1) is controllable. The state feedback matrix F is given in
this case by

F = M

[
F1

F2

]
, (9.11)

where F2 ∈ R(m−r)×n is arbitrary.

1. Direct Method

Let F = [fij ], i = 1, . . . ,m, j = 1, . . . , n, and express the coefficients of the
characteristic polynomial of A+BF in terms of fij ; i.e.,

det(sI − (A+BF )) = sn + gn−1(fij)sn−1 + · · · + g0(fij).

Now if the roots of the polynomial

αd(s) = sn + dn−1s
n−1 + · · · + d1s+ d0

are the n desired eigenvalues, then the fij , i = 1, . . . ,m, j = 1, . . . , n, must
be determined so that

gk(fij) = dk, k = 0, 1, . . . , n− 1. (9.12)

In general, (9.12) constitutes a nonlinear system of algebraic equations;
however, it is linear in the single-input case, m = 1. The main difficulty in
this method is not so much in deriving a numerical solution for the nonlinear
system of equation, but in carrying out the symbolic manipulations needed
to determine the coefficients gk in terms of the fij in (9.12). This difficulty
usually restricts this method to the simplest cases, with n = 2 or 3 and m = 1
or 2 being typical.

Example 9.7. For A =
[

1/2 1
1 2

]
, B =

[
1
1

]
, we have det(sI−A) = s(s−5/2),

and therefore, the eigenvalues of A are 0 and 5/2. We wish to determine F so
that the eigenvalues of A+BF are at −1 ± j.

If F = [f1, f2], then det(sI−(A+BF )) = det
([

s−1/2 −1
−1 s−2

]
− [ 1

1 ] [f1, f2]
)

=

det
[
s− 1/2 − f1, −1 − f2
−1 − f1, s− 2 − f2

]
= s2 + s(− 5

2 − f1− f2)+ f1− 1
2f2. The desired

eigenvalues are the roots of the polynomial

αd(s) = (s− (−1 + j))(s− (−1 − j)) = s2 + 2s+ 2.

Equating coefficients, one obtains − 5
2 − f1 − f2 = 2, f1 − 1

2f2 = 2, a linear
system of equations. Note that it is linear because m = 1. In general one must
solve a set of nonlinear algebraic equations. We have

F = [f1, f2] = [−1/6,−13/3]

as the appropriate state feedback matrix.
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2. The Use of Controller Forms

Given that the pair (A,B) is controllable, there exists an equivalence trans-
formation matrix P so that the pair (Ac = PAP−1, Bc = PB) is in con-
troller form (see Section 6.4). The matrices A + BF and P (A + BF )P−1 =
PAP−1 +PBFP−1 = Ac+BcFc have the same eigenvalues, and the problem
is to determine Fc so that Ac + BcFc has desired eigenvalues. This problem
is easier to solve than the original one because of the special structures of Ac
and Bc. Once Fc has been determined, then the original feedback matrix F
is given by

F = FcP. (9.13)

We shall now assume that (A,B) has already been reduced to (Ac, Bc) and
describe methods of deriving Fc for eigenvalue assignment.

Single-Input Case (m = 1). We let

Fc = [f0, . . . , fn−1]. (9.14)

In view of Section 6.4, since Ac, Bc are in controller form, we have

AcF � Ac +BcFc

=

⎡
⎢⎢⎢⎣

0 1 . . . 0
...

...
...

0 0 . . . 1
−α0 −α1 · · · −αn−1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ [f0, . . . , fn−1]

=

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−(α0 − f0) −(α1 − f1) · · · −(αn−1 − fn−1)

⎤
⎥⎥⎥⎦ , (9.15)

where αi, i = 0, . . . , n−1, are the coefficients of the characteristic polynomial
of Ac; i.e.,

det(sI −Ac) = sn + αn−1s
n−1 + · · · + α1s+ α0. (9.16)

Notice that AcF is also in companion form, and its characteristic polynomial
can be written directly as

det(sI −AcF ) = sn + (αn−1 − fn−1)sn−1 + · · · + (α0 − f0). (9.17)

If the desired eigenvalues are the roots of the polynomial

αd(s) = sn + dn−1s
n−1 + · · · + d0, (9.18)

then by equating coefficients, fi, i = 0, 1, . . . , n− 1, must satisfy the relations
di = αi − fi, i = 0, 1, . . . , n− 1, from which we obtain
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fi = αi − di, i = 0, . . . , n− 1. (9.19)

Alternatively, note that there exists a matrix Ad in companion form, the
characteristic polynomial of which is (9.18). An alternative way of deriving
(9.19) is then to set AcF = Ac +BcFc = Ad, from which we obtain

Fc = B−1
m [Adm −Am], (9.20)

where Bm = 1, Adm = [−d0, . . . ,−dn−1] and Am = [−α0, . . . ,−αn−1]. There-
fore, Bm, Adm , and Am are the nth rows of Bc, Ad, and Ac, respectively (see
Section 6.4). Relationship (9.20), which is an alternative formula to (9.19), has
the advantage that it is in a form that can be generalized to the multi-input
case studied below.

Example 9.8. Consider the matricesA =
[

1/2 1
1 2

]
, B =

[
1
1

]
of Example 9.7.

Determine F so that the eigenvalues of A+BF are −1± j, i.e., so that they
are the roots of the polynomial αd(s) = s2 + 2s+ 2.

To reduce (A,B) into the controller form, let

C = [B,AB] =
[

1 3/2
1 3

]
and C−1 =

2
3

[
3 −3/2

−1 1

]
,

from which P =
[
q
qA

]
= 1

3

[
−2 2

1 2

]
[see (6.38) in Section 6.4]. Then P−1 =

[
−1 1
1/2 1

]
and

Ac = PAP−1 =
[

0 1
0 5/2

]
, Bc =

[
0
1

]
.

Thus, Am = [0, 5/2] and Bm = 1. Now Ad =
[

0 1
−2 −2

]
and Adm = [−2, −2]

since the characteristic polynomial of Ad is s2 + 2s + 2 = αd(s). Applying
(9.20), we obtain that

Fc = B−1
m [Adm −Am] = [−2,−9/2]

and F = FcP = [−2,−9/2]
[
−2/3 2/3

1/3 2/3

]
= [−1/6,−13/3] assigns the eigen-

values of the closed-loop system at −1± j. This is the same result as the one
obtained by the direct method given in Example 9.7. If αd(s) = s2 +d1s+d0,
then Adm = [−d0,−d1], Fc = B−1

m [Adm −Am] = [−d0,−d1 − 5/2], and

F = FcP =
1
3
[2d0 − d1 −

5
2
, −2d0 − 2d1 − 5].

In general the larger the difference between the coefficients of αd(s) and α(s),
(Adm−Am), the larger the gains in F . This is as expected, since larger changes
require in general larger control action.
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Note that (9.20) can also be derived using (6.55) of Section 6.4. To see
this, write

AcF = Ac +BcFc = (Āc + B̄cAm) + (B̄cBm)Fc = Āc + B̄c(Am +BmFc).

Selecting Ad = Āc + B̄cAdm and requiring AcF = Ad implies

B̄c[Am +BmFc] = B̄cAdm ,

from which Am +BmFc = Adm , which in turn implies (9.20).
After Fc has been found, to determine F so that A + BF has desired

eigenvalues, one should use F = FcP given in (9.13). Note that P , which
reduces (A,B) to the controller form, has a specific form in this (m = 1) case
[see (6.38) of Section 6.4]. Combining these results, it is possible to derive a
formula for the eigenvalue assigning F in terms of the original pair (A,B)
and the coefficients of the desired polynomial αd(s). In particular, the 1 × n
matrix F that assigns the n eigenvalues of A + BF at the roots of αd(s) is
unique and is given by

F = −eTnC−1αd(A), (9.21)

where en = [0, . . . , 0, 1]T ∈ Rn and C = [B,AB, . . . , An−1B] is the controlla-
bility matrix. Relation (9.21) is known as Ackermann’s formula; for details,
see [1, p. 334].

Example 9.9. To the system of Example 9.8, we apply (9.21) and obtain

F = −eT2 C−1αd(A)

= −[0, 1]
[

2 −1
−2/3 2/3

]([
1/2 1
1 2

]2

+ 2
[

1/2 1
1 2

]
+ 2

[
1 0
0 1

])

= −[−2/3, 2/3]
[
17/4 9/2
9/2 11

]
= [−1/6,−13/3],

which is identical to the F found in Example 9.8.

Multi-Input Case (m > 1). We proceed in a way completely analogous to the
single-input case. Assume that Ac and Bc are in the controller form, (6.54).
Notice that AcF � Ac + BcFc is also in (controller) companion form with
an identical block structure as Ac for any Fc. In fact, the pair (AcF , Bc) has
the same controllability indices μi, i = 1, . . . ,m, as (Ac, Bc). This can be seen
directly, since

Ac +BcFc = (Āc + B̄cAm) + (B̄cBm)Fc = Āc + B̄c(Am +BmFc), (9.22)

where Āc and B̄c are defined in (6.55). We can now select an n×n matrix Ad
with desired characteristic polynomial
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det(sI −Ad) = αd(s) = sn + dn−1s
n−1 + · · · + d0, (9.23)

and in companion form, having the same block structure as AcF or Ac; that is,
Ad = Āc+B̄cAdm. Now if AcF = Ad, then in view of (9.22), B̄c(Am+BmFc) =
B̄cAdm. From this, it follows that

Fc = B−1
m [Adm −Am], (9.24)

where Bm, Adm, and Am are the m σjth rows of Bc, Ad, and Ac, respectively,
and σj =

∑j
i=1 μi, j = 1, . . . ,m. Note that this is a generalization of (9.20)

of the single-input case.
We shall now show how to select an n × n matrix Ad in multivariable

companion form to have the desired characteristic polynomial.
One choice is

Ad =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−d0 −d1 · · · −dn−1

⎤
⎥⎥⎥⎦ ,

the characteristic polynomial of which is αd(s). In this case the m×n matrix
Adm is given by

Adm =

⎡
⎢⎢⎢⎣

0 · · · 0 1 · · · 0 · · · 0
...

...
...

...
...

0 · · · 0 0 · · · 1 · · · 0
−d0 · · · −dn−1

⎤
⎥⎥⎥⎦ ,

where the ith row, i = 1, . . . ,m− 1, is zero everywhere except at the σi + 1
column location, where it is one.

Another choice is to select Ad = [Aij ], i, j = 1, . . . ,m, with Aij = 0 for
i �= j, i.e.,

Ad =

⎡
⎢⎢⎢⎣

A11 0 · · · 0
0 A22 · · · 0
...

...
. . .

...
0 0 · · · Amm

⎤
⎥⎥⎥⎦ ,

noting that det(sI −Ad) = det(sI −A11) . . . det(sI −Amm). Then

Aii =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

. . .
...

0 1
× · · · ×

⎤
⎥⎥⎥⎦ ,

where the last row is selected so that det(sI − Aii) has desired roots. The
disadvantage of this selection is that it may impose unnecessary restrictions
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on the number of real eigenvalues assigned. For example, if n = 4,m = 2 and
the dimensions of A11 and A22, which are equal to the controllability indices,
are d1 = 3 and d2 = 1, then two eigenvalues must be real.

There are of course other selections for Ad, and the reader is encouraged
to come up with additional choices. A point that should be quite clear by now
is that Fc (or F ) is not unique in the present case, since different Fc can be
derived for different Adm, all assigning the eigenvalues at the same desired
locations. In the single-input case, Fc is unique, as was shown. Therefore, the
following result has been established.

Lemma 9.10. Let (A,B) be controllable, and suppose that n desired real com-
plex conjugate eigenvalues for A+BF have been selected. The state feedback
matrix F that assigns all eigenvalues of A + BF to desired locations is not
unique in the multi-input case (m > 1). It is unique in the single-input case
m = 1. �

Example 9.11. Consider the controllable pair (A,B), where A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦

and B =

⎡
⎣

0 1
1 1
0 0

⎤
⎦. It was shown in Example 6.17, that this pair can be reduced

to its controller form

Ac = PAP−1 =

⎡
⎣

0 1 0
2 −1 0
1 0 0

⎤
⎦ , Bc = PB =

⎡
⎣

0 0
1 1
0 1

⎤
⎦ ,

where P =

⎡
⎣

0 0 1/2
0 1 −1/2
1 0 −1/2

⎤
⎦. Suppose we desire to assign the eigenvalues ofA+BF

to the locations {−2,−1 ± j}, i.e., at the roots of the polynomial αd(s) =
(s+ 2)(s2 + 2s+ 2) = s3 + 4s2 + 6s+ 4. A choice for Ad is

Ad1 =

⎡
⎣

0 1 0
0 0 1

−4 −6 −4

⎤
⎦ , leading to Adm1

=
[

0 0 1
−4 −6 −4

]
,

and

Fc1 = B−1
m [Adm1 −Am] =

[
1 1
0 1

]−1 [[ 0 0 1
−4 −6 −4

]
−
[

2 −1 0
1 0 0

]]

=
[

1 −1
0 1

] [
−2 1 1
−5 −6 −4

]
=
[

3 7 5
−5 −6 −4

]
.

Alternatively,
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Ad2 =

⎡
⎣

0 1 0
−2 −2 0

0 0 −2

⎤
⎦ , from which Adm2 =

[
−2 −2 0

0 0 −2

]

and

Fc2 = B−1
m [Adm2 −Am] =

[
1 −1
0 1

] [
−4 −1 0
−1 0 −2

]

=
[
−3 −1 2
−1 0 −2

]
.

Both F1 = Fc1P =
[

5 7 −9/2
−4 −6 5/2

]
and F2 = Fc2P =

[
2 −1 −2

−2 0 1/2

]
assign

the eigenvalues of A+BF to the locations {−2,−1± j}.
The reader should plot the states of the equation ẋ = (A + BF )x for

F = F1 and F = F2 when x(0) = [1, 1, 1]T and should comment on the
differences between the trajectories.

Relation (9.24) gives all feedback matrices, Fc (or F = FcP ), that assign
the n eigenvalues of Ac+BcFc (or A+BF ) to desired locations. The freedom
in selecting such Fc is expressed in terms of the different Ad, all in companion
form, with Ad = [Aij ] and Aij of dimensions μi × μj , which have the same
characteristic polynomial. Deciding which one of all the possible matrices
Ad to select, so that in addition to eigenvalue assignment other objectives
can be achieved, is not apparent. This flexibility in selecting F can also be
expressed in terms of other parameters, where both eigenvalue and eigenvector
assignment are discussed, as will now be shown.

3. Assigning Eigenvalues and Eigenvectors

Suppose now that F was selected so that A+BF has a desired eigenvalue sj
with corresponding eigenvector vj . Then [sjI − (A + BF )]vj = 0, which can
be written as

[sjI −A,B]
[

vj
−Fvj

]
= 0. (9.25)

To determine an F that assigns sj as a closed-loop eigenvalue, one could first
determine a basis for the right kernel (null space) of [sjI − A,B], i.e., one

could determine a basis
[

Mj

−Dj

]
such that

[sjI −A,B]
[

Mj

−Dj

]
= 0. (9.26)

Note that the dimension of this basis is (n + m) − rank[sjI − A,B] = (n +
m)− n = m, where rank[sjI −A,B] = n since the pair (A,B) is controllable.
Since it is a basis, there exists a nonzero m× 1 vector aj so that
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[
Mj

−Dj

]
aj =

[
vj

−Fvj

]
. (9.27)

Combining the relations −Djaj = −Fvj and Mjaj = vj , one obtains

FMjaj = Djaj . (9.28)

This is the relation that F must satisfy for sj to be a closed-loop eigenvalue.
The nonzero m×1 vector aj can be chosen arbitrarily. Note that Mjaj = vj is
the eigenvector corresponding to sj . Note also that aj represents the flexibility
one has in selecting the corresponding eigenvector, in addition to assigning an
eigenvalue. The n × 1 eigenvector vj cannot be arbitrarily assigned; rather,
the m×1 vector aj can be (almost) arbitrarily selected. These mild conditions
on aj are discussed below.

Theorem 9.12. The pair (sj , vj) is an (eigenvalue, eigenvector)-pair of A+
BF if and only if F satisfies (9.28) for some nonzero vector aj such that

vj = Mjaj with
[

Mj

−Dj

]
a basis of the null space of [sjI −A,B] as in (9.26).

Proof. Necessity has been shown. To prove sufficiency, postmultiply sjI−(A+
BF ) by Mjaj and use (9.28) to obtain (sjI − A)Mjaj − BDjaj = 0 in view
of (9.26). Thus,

[sjI − (A+BF )]Mjaj = 0,

which implies that sj is an eigenvalue of A + BF and Mjaj = vj is the
corresponding eigenvector. �

If relation (9.28) is written for n desired eigenvalues sj , where the aj
are selected so that the corresponding eigenvectors vj = Mjaj are linearly
independent, then

FV = W, (9.29)

where V � [M1a1, . . . ,Mnan] and W � [D1a1, . . . , Dnan] uniquely specify
F as the solution to these n linearly independent equations. When sj are
distinct, the n vectors Mjaj , j = 1, . . . , n, are linearly independent for almost
any nonzero aj , and so V has full rank. When sj have repeated values, it may
still be possible under certain conditions to select aj so that Mjaj are linearly
independent; however, in general, for multiple eigenvalues, (9.29) needs to be
modified, and the details for this can be found in the literature. Also note that
if sj+1 = s∗j , the complex conjugate of sj , then the corresponding eigenvector
vi+1 = v∗j = M∗

j a
∗
j .

Relation (9.29) clearly shows that the F that assigns all n closed-loop
eigenvalues is not unique (see also Lemma 9.10). All such F are parameterized
by the vectors aj that in turn characterize the corresponding eigenvectors. If
the corresponding eigenvectors have been decided upon—of course within the
set of possible eigenvectors vj = Mjaj—then F is uniquely specified. Note



366 9 State Feedback and State Observers

that in the single-input case, (9.28) becomes FMj = Dj, where vj = Mj . In
this case, F is unique.

Example 9.13. Consider the controllable pair (A,B) of Example 9.11 given
by

A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , B =

⎡
⎣

0 1
1 1
0 0

⎤
⎦ .

Again, it is desired to assign the eigenvalues of A + BF at −2,−1 ± j. Let
s1 = −2, s2 = −1 + j, and s3 = −1 − j. Then, in view of (9.26),

[
M1

−D1

]
=

⎡
⎢⎢⎢⎢⎣

1 1
−1 0

2 0
−1 −2

1 2

⎤
⎥⎥⎥⎥⎦
,

[
M2

−D2

]
=

⎡
⎢⎢⎢⎢⎣

1 1
j 0
2 0

2 + j −1 + j
1 1 − j

⎤
⎥⎥⎥⎥⎦
,

and
[

M3

−D3

]
=
[
M∗

2

−D∗
2

]
, the complex conjugate, since s3 = s∗2.

Each eigenvector vi = Miai, i = 1, 2, 3, is a linear combination of the
columns of Mi. Note that v3 = v∗2 . If we select the eigenvectors to be

V = [v1, v2, v3] =

⎡
⎣

1 1 1
0 j −j
0 2 2

⎤
⎦ ,

i.e., a1 =
[

0
1

]
, a2 =

[
1
0

]
, and a3 =

[
1
0

]
, then (9.29) implies that

F

⎡
⎣

1 1 1
0 j −j
0 2 2

⎤
⎦ =

[
2 −2 − j −2 + j

−2 −1 −1

]
,

from which we have

F =
1
4j

[
2 −2 − j −2 + j

−2 −1 −1

]⎡
⎣

4j 0 −2j
0 2 j
0 −2 j

⎤
⎦

=
[

2 −1 −2
−2 0 1/2

]
.

As it can be verified, this matrix F is such that A + BF has the desired
eigenvalues and eigenvectors.
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Remarks

At this point, several comments are in order.

1. In Example 9.13, if the eigenvectors were chosen to be the eigenvectors of
A + BF1 (instead of A + BF2) of Example 9.11, then from FV = W , it
follows that F would have been F1 (instead of F2).

2. When si = s∗i+1, then the corresponding eigenvectors are also complex
conjugates; i.e., vi = v∗i+1. In this case we obtain from (9.29) that

FV = F [. . . , viR + jviI , viR − jviI , . . . ]
= [. . . , wiR + jwiI , wiR − jwiI , . . . ] = W.

Although these calculations could be performed over the complex numbers
(as was done in the example), this is not necessary, since postmultiplica-
tion of FV = W by ⎡

⎢⎢⎣
I

1
2 −j 1

2
1
2 +j 1

2

I

⎤
⎥⎥⎦

shows that the above equation FV = W is equivalent to

F [. . . , viR, viI , . . . ] = [. . . , wiR, wiI , . . . ],

which involves only reals.

3. The bases
[

Mj

−Dj

]
, j = 1, . . . , n, in (9.26) can be determined in an alterna-

tive way and the calculations can be simplified if the controller form of the

pair (A,B) is known. In particular, note that [sI−A,B]
[
P−1S(s)
D(s)

]
= 0,

where the n×m matrix S(s) is given by S(s) = block diag[1, s, . . . , sμi−1]
and the μi, i = 1, . . . ,m, are the controllability indices of (A,B). Also, the
m×m matrix D(s) is given by D(s) = B−1

m [diag[sμ1 , · · · sμm ]−AmS(s)].
Note that S(s) and D(s) were defined in the Structure Theorem (con-
trollable version) in Section 6.4. It was shown there that (sI −Ac)S(s) =
BcD(s), from which it follows that (sI−A)P−1S(s) = BD(s), where P is a
similarity transformation matrix that reduces (A,B) to the controller form
(Ac = PAP−1, Bc = PB). Since P−1S(s) and D(s) are right coprime

polynomial matrices (see Section 7.5), we have rank
[
P−1S(sj)
D(sj)

]
= m for

any sj , and therefore,
[
P−1S(sj)
D(sj)

]
qualifies as a basis for the null space

of the matrix [sjI − A,B] (P = I when A,B are in controller form; i.e.,
A = Ac and B = Bc.)
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Example 9.13 continued. Continuing the above example, the controller
form of (A,B) was found in Example 9.11 using

P−1 =

⎡
⎣

1 0 1
1 1 0
2 0 0

⎤
⎦ .

Here S(s) =

⎡
⎣

1 0
s 0
0 1

⎤
⎦ , D(s) =

[
s2 + s− 1 −s

−1 s

]
,

and
[
M(s)

−D(s)

]
=
[
P−1S(s)
−D(s)

]
=

⎡
⎢⎢⎢⎢⎣

1 1
s+ 1 0

2 0
−(s2 + s− 1) s

1 −s

⎤
⎥⎥⎥⎥⎦
.

Then

[
M1

−D1

]
=
[
M(−2)

−D(−2)

]
=

⎡
⎢⎢⎢⎢⎣

1 1
−1 0

2 0
−1 −2

1 2

⎤
⎥⎥⎥⎥⎦
,

[
M2

−D2

]
=
[
M(−1 + j)

−D(−1 + j)

]
=

⎡
⎢⎢⎢⎢⎣

1 1
j 0
2 0

2 + j −1 + j
1 1 − j

⎤
⎥⎥⎥⎥⎦
,

and
[

M3

−D3

]
=
[
M∗

2

−D∗
2

]
, which are precisely the bases used above.

Remarks (cont.)

4. If in Example 9.13 the only requirement were that (s1, v1) = (−2, (1, 0, 0)T ),

then F (1, 0, 0)T = (2, −2)T ; i.e., any F =
[

2 f12 f13
2 f22 f23

]
will assign the

desired values to an eigenvalue of A+BF and its corresponding eigenvec-
tor.

5. All possible eigenvectors v1 and v2(v3 = v∗2) in Example 9.13 are given by

v1 = M1a1 =

⎡
⎣

1 1
−1 0

2 0

⎤
⎦
[
a11

a12

]
and v2 = M2a2 =

⎡
⎣

1 1
j 0
2 0

⎤
⎦
[
a21 + ja31

a22 + ja32

]
,
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where the aij are such that the set {v1, v2, v3} is linearly independent (i.e.,
V = [v1, v2, v3] is nonsingular) but otherwise arbitrary. Note that in this
case (sj distinct), almost any arbitrary choice for aij will satisfy the above
requirement; see [1, Appendix A.4].

9.2.3 The Linear Quadratic Regulator (LQR): Continuous-Time
Case

A linear state feedback control law that is optimal in some appropriate sense
can be determined as a solution to the so-called Linear Quadratic Regulator
(LQR) problem (also called the H2 optimal control problem). The LQR prob-
lem has been studied extensively, and the interested reader should consult
the extensive literature on optimal control for additional information on the
subject. In the following discussion, we give a brief outline of certain central
results of this topic to emphasize the fact that the state feedback gain F
can be determined to satisfy, in an optimal fashion, requirements other than
eigenvalue assignment, discussed above. The LQR problem has been studied
for the time-varying and time-invariant cases. Presently, we will concentrate
on the time-invariant optimal regulator problem.

Consider the time-invariant linear system given by

ẋ = Ax+Bu, z = Mx, (9.30)

where the vector z(t) represents the variables to be regulated—to be driven
to zero.

We wish to determine u(t), t ≥ 0, which minimizes the quadratic cost

J(u) =
∫ ∞

0

[zT (t)Qz(t) + uT (t)Ru(t)]dt (9.31)

for any initial state x(0). The weighting matrices Q,R are real, symmetric,
and positive definite; i.e., Q = QT , R = RT , and Q > 0, R > 0. This is the
most common version of the LQR problem. The term zTQz = xT (MTQM)x
is nonnegative, and it minimizes its integral forces z(t) to approach zero as t
goes to infinity. The matrix MTQM is in general positive semidefinite, which
allows some states to be treated as “do not care” states. The term uTRu with
R > 0 is always positive for u �= 0, and it minimizes its integral forces u(t) to
remain small. The relative “size” of Q and R enforces tradeoffs between the
size of the control action and the speed of response.

Assume that (A,B,Q1/2M) is controllable (-from-the-origin) and observ-
able. It turns out that the solution u∗(t) to this optimal control problem
can be expressed in state feedback form, which is independent of the initial
condition x(0). In particular, the optimal control u∗ is given by

u∗(t) = F ∗x(t) = −R−1BTP ∗
c x(t), (9.32)



370 9 State Feedback and State Observers

where P ∗
c denotes the symmetric positive definite solution of the algebraic

Riccati equation

ATPc + PcA− PcBR
−1BTPc +MTQM = 0. (9.33)

This equation may have more than one solution but only one that is pos-
itive definite (see Example 9.14). It can be shown that u∗(t) = F ∗x(t) is
a stabilizing feedback control law and that the minimum cost is given by
Jmin = J(u∗) = xT (0)P ∗

c x(0).
The assumptions that (A,B,Q1/2M) are controllable and observable may

be relaxed somewhat. If (A,B,Q1/2M) is stabilizable and detectable, then
the uncontrollable and unobservable eigenvalues, respectively, are stable, and
P ∗
c is the unique, symmetric, but now positive-semidefinite solution of the

algebraic Riccati equation. The matrix F ∗ is still a stabilizing gain, but it is
understood that the uncontrollable and unobservable (but stable) eigenvalues
will not be affected by F ∗.

Note that if the time interval of interest in the evaluation of the cost goes
from 0 to t1 <∞, instead of 0 to ∞, that is, if

J(u) =
∫ t1

0

[zT (t)Qz(t) + uT (t)Ru(t)]dt, (9.34)

then the optimal control law is time-varying and is given by

u∗(t) = −R−1BTP ∗(t)x(t), 0 ≤ t ≤ t1, (9.35)

where P ∗(t) is the unique, symmetric, and positive-semidefinite solution of
the Riccati equation, which is a matrix differential equation of the form

− d

dt
P (t) = ATP (t) + P (t)A− P (t)BR−1BTP (t) +MTQM, (9.36)

where P (t1) = 0. It is interesting to note that if (A,B,Q1/2M) is stabiliz-
able and detectable (or controllable and observable), then the solution to this
problem as t1 → ∞ approaches the steady-state value P ∗

c given by the alge-
braic Riccati equation; that is, when t1 → ∞ the optimal control policy is
the time-invariant control law (9.32), which is much easier to implement than
time-varying control policies.

Example 9.14. Consider the system described by the equations ẋ = Ax +

Bu, y = Cx, where A =
[

0 1
0 0

]
, B =

[
0
1

]
, C = [1, 0]. Then (A,B,C) is

controllable and observable and C(sI −A)−1B = 1/s2. We wish to determine
the optimal control u∗(t), t ≥ 0, which minimizes the performance index

J =
∫ ∞

0

(y2(t) + ρu2(t))dt,
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where ρ is positive and real. Then R = ρ > 0, z(t) = y(t), M = C, and
Q = 1 > 0. In the present case the algebraic Riccati equation (9.33) assumes
the form

ATPc + PcA−PcBR−1BTPc +MTQM

=
[

0 0
1 0

]
Pc + Pc

[
0 1
0 0

]
− 1
ρ
Pc

[
0
1

]
[0 1]Pc +

[
1
0

]
[1 0]

=
[

0 0
1 0

] [
p1 p2

p2 p3

]
+
[
p1 p2

p2 p3

] [
0 1
0 0

]
− 1
ρ

[
p1 p2

p2 p3

] [
0 0
0 1

] [
p1 p2

p2 p3

]

+
[

1 0
0 0

]
=
[

0 0
0 0

]
,

where Pc =
[
p1 p2

p2 p3

]
= PTc . This implies that

−1
ρ
p2
2 + 1 = 0, p1 −

1
ρ
p2p3 = 0, 2p2 −

1
ρ
p3
3 = 0.

Now Pc is positive definite if and only if p1 > 0 and p1p3 − p2
2 > 0. The

first equation above implies that p2 = ±√
ρ. However, the third equation,

which yields p2
3 = 2ρp2, implies that p2 = +

√
ρ. Then p2

3 = 2ρ
√
ρ and p3 =

±
√

2ρ
√
ρ. The second equation yields p1 = 1

ρp2p3 and implies that only p3 =
+
√

2ρ
√
ρ is acceptable, since we must have p1 > 0 for Pc to be positive

definite. Note that p1 > 0 and p3 − p2
2 = 2ρ− ρ = ρ > 0, which shows that

P ∗
c =

[√
2
√
ρ

√
ρ√

ρ
√

2ρ
√
ρ

]

is the positive definite solution of the algebraic Riccati equation. The optimal
control law is now given by

u∗(t) = F ∗x(t) = −R−1BTP ∗
c x(t) = −1

ρ
[0, 1]P ∗

c x(t).

The eigenvalues of the compensated system, i.e., the eigenvalues of A+BF ∗,
can now be determined for different ρ. Also, the corresponding u∗(t) and y(t)
for given x(0) can be plotted. As ρ increases, the control energy expended to
drive the output to zero is forced to decrease. The reader is asked to verify
this by plotting u∗(t) and y(t) for different values of ρ when x(0) = [1, 1]T .
Also, the reader is asked to plot the eigenvalues of A+BF ∗ as a function of
ρ and to comment on the results.

It should be pointed out that the locations of the closed-loop eigenvalues,
as the weights Q and R vary, have been studied extensively. Briefly, for the
single-input case and for Q = qI and R = r in (9.31), it can be shown that the
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optimal closed-loop eigenvalues are the stable zeros of 1 + (q/r)HT (−s)H(s),
where H(s) = M(sI − A)−1B. As q/r varies from zero (no state weighting)
to infinity (no control weighting), the optimal closed-loop eigenvalues move
from the stable poles of HT (−s)H(s) to the stable zeros of HT (−s)H(s).
Note that the stable poles of HT (−s)H(s) are the stable poles of H(s) and
the stable reflections of its unstable poles with respect to the imaginary axis
in the complex plane, whereas its stable zeros are the stable zeros of H(s) and
the stable reflections of its unstable zeros.

The solution of the LQR problem relies on solving the Riccati equation. A
number of numerically stable algorithms exist for solving the algebraic Riccati
equation. The reader is encouraged to consult the literature for computer
software packages that implement these methods. A rather straightforward
method for determining P ∗

c is to use the Hamiltonian matrix given by

H �
[

A −BR−1BT

−MTQM −AT
]
. (9.37)

Let [V T1 , V T2 ]T denote the n eigenvectors of H that correspond to the n stable
[Re (λ) < 0] eigenvalues. Note that of the 2n eigenvalues of H , n are stable
and are the mirror images reflected on the imaginary axis of its n unstable
eigenvalues. When (A,B,Q1/2M) is controllable and observable, then H has
no eigenvalues on the imaginary axis [Re(λ) = 0]. In this case the n stable
eigenvalues of H are in fact the closed-loop eigenvalues of the optimally con-
trolled system, and the solution to the algebraic Riccati equation is then given
by

P ∗
c = V2V

−1
1 . (9.38)

Note that in this case the matrix V1 consists of the n eigenvectors of A+BF ∗,
since for λ1 a stable eigenvalue of H , and v1 the corresponding (first) column
of V1, we have

[λ1I − (A+BF ∗)]v1 = [λ1I −A+BR−1BTV2V
−1
1 ]v1

=
[
[λ1I, 0]

[
V1

V2

]
− [A,−BR−1BT ]

[
V1

V2

]]
V −1

1 v1

=

[
0 × ··· ×
...

...
...

0 × ··· ×

]
V −1

1 v1 =

[
0 × ··· ×
...

...
...

0 ×···×

][ 1
0
...
0

]
=

[
0
...
0

]
,

where the fact that
[
V1

V2

]
are eigenvectors of H was used. It is worth reflecting

for a moment on the relationship between (9.38) and (9.29). The optimal
control F derived by (9.38) is in the class of F derived by (9.29).

9.2.4 Input–Output Relations

It is useful to derive the input–output relations for a closed-loop system
that is compensated by linear state feedback. Given the uncompensated or
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open-loop system ẋ = Ax+Bu, y = Cx+Du, with initial conditions x(0) = x0,
we have

ŷ(s) = C(sI −A)−1x0 +H(s)û(s), (9.39)

where the open-loop transfer function H(s) = C(sI − A)−1B + D. Under
the feedback control law u = Fx + r, the compensated closed-loop system is
described by the equations ẋ = (A+BF )x+Br, y = (C +DF )x+Dr, from
which we obtain

ŷ(s) = (C +DF )[sI − (A+BF )]−1x0 +HF (s)r̂(s), (9.40)

where the closed-loop transfer function HF (s) is given by

HF (s) = (C +DF )[sI − (A+BF )]−1B +D.

Alternative expressions for HF (s) can be derived rather easily by substituting
(9.4), namely,

û(s) = F [sI − (A+BF )]−1x0 + [I − F (sI −A)−1B]−1r̂(s),

into (9.39). This corresponds to working with an open-loop control law that
nominally produces the same results when applied to the system [see the
discussion on open- and closed-loop control that follows (9.4)]. Substituting,
we obtain

ŷ(s) = [C(sI −A)−1 +H(s)F [sI − (A+BF )]−1]x0

+H(s)[I − F (sI −A)−1B]−1r̂(s). (9.41)

Comparing with (9.40), we see that (C + DF )[sI − (A + BF )]−1 = C(sI −
A)−1 +H(s)F [sI − (A+BF )]−1, and that

HF (s) = (C +DF )[sI − (A+BF )]−1B +D

= [C(sI −A)−1B +D][I − F (sI −A)−1B]−1

= H(s)[I − F (sI −A)−1B]−1. (9.42)

The last relation points out the fact that ŷ(s) = HF (s)r̂(s) can be ob-
tained from ŷ(s) = H(s)û(s) using the open-loop control û(s) = [I − F (sI −
A)−1B]−1r̂(s).

Using Matrix Fractional Descriptions

Relation (9.42) can easily be derived in an alternative manner, using fractional
matrix descriptions for the transfer function, introduced in Section 7.5. In
particular, the transfer function H(s) of the open-loop system {A,B,C,D} is
given by

H(s) = N(s)D−1(s),
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where N(s) = CS(s) +DD(s), with S(s) and D(s) satisfying (sI −A)S(s) =
BD(s) (refer to the proof of the controllable version of the Structure Theo-
rem given in Section 6.4). Notice that it has been assumed, without loss of
generality, that the pair (A,B) is in controller form.

Similarly, the transfer function HF (s) of the compensated system {A +
BF,B,C +DF,D} is given by

HF (s) = NF (s)D−1
F (s),

where NF (s) = (C + DF )S(s) + DDF (s), with S(s) and DF (s) satisfying
[sI − (A + BF )]S(s) = BDF (s). This relation implies that (sI − A)S(s) =
B[DF (s) + FS(s)], from which we obtain DF (s) + FS(s) = D(s). Then
NF (s) = CS(s) +D[FS(s) +DF (s)] = CS(s) +DD(s) = N(s); that is,

HF (s) = N(s)D−1
F (s), (9.43)

where DF (s) = D(s) − FS(s).
Note that I − F (sI − A)−1B in (9.42) is the transfer function of the

system {A,B,−F, I} and can be expressed as DF (s)D−1(s), where DF (s) =
−FS(s) + ID(s). Let M(s) = (DF (s)D−1(s))−1. Then (9.43) assumes the
form

HF (s) = N(s)D−1
F (s) = (N(s)D−1(s))(D(s)D−1

F (s)) = H(s)M(s). (9.44)

Relation HF (s) = N(s)D−1
F (s) also shows that the zeros of H(s) [in

N(s); see also Subsection 7.5.4] are invariant under linear state feedback;
they can be changed only via cancellations with poles. Also observe that
M(s) = D(s)D−1

F (s) is the transfer function of the system {A+BF,B, F, I}.
This implies that HF (s) in (9.42) can also be written as

HF (s) = H(s)[F (sI − (A+BF ))−1B + I], (9.45)

which is a result that could also be shown directly using matrix identities.

Example 9.15. Consider the system ẋ = Ax+Bu, y = Cx, where

A = Ac =

⎡
⎣

0 1 0
2 −1 0
1 0 0

⎤
⎦ and B = Bc =

⎡
⎣

0 0
1 1
0 1

⎤
⎦

as in Example 9.11, and let C = Cc = [1, 1, 0]. HF (s) will now be deter-
mined. In view of the Structure Theorem developed in Section 6.4, the transfer
function is given by H(s) = N(s)D−1(s), where

N(s) = CcS(s) = [1, 1, 0]

⎡
⎣

1 0
s 0
0 1

⎤
⎦ = [s+ 1, 0]
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and

D(s) = B−1
m [Λ(s) −AmS(s)] =

[
1 1
0 1

]−1
⎡
⎣
[
s2 0
0 s

]
−
[

2 −1 0
1 0 0

]⎡
⎣

1 0
s 0
0 1

⎤
⎦
⎤
⎦

=
[

1 −1
0 1

] [
s2 + s− 2 0

−1 s

]
=
[
s2 + s− 1 −s

−1 s

]
.

Then

H(s) = N(s)D−1(s) = [s+ 1, 0]
[
s2 + s− 1 −s

−1 s

]−1

= [s+ 1, 0]
[
s s
1 s2 + s− 1

]
1

s3 + s2 − 2s

=
1

s(s2 + s− 2)
[s(s+ 1), s(s+ 1)] =

s+ 1
s2 + s− 2

[1, 1].

If Fc =
[

3 7 5
−5 −6 −4

]
(which is Fc1 of Example 9.11), then

DF (s) = D(s) − FcS(s) =
[
s2 + s− 1 −s

−1 s

]
−
[

3 7 5
−5 −6 −4

]⎡
⎣

1 0
s 0
0 1

⎤
⎦

=
[
s2 − 6s− 4 −s− 5

6s+ 4 s+ 4

]
.

Note that detDF (s) = s3 + 4s2 + 6s + 4 = (s + 2)(s2 + 2s + 2) with roots
−2,−1 ± j, as expected. Now

HF (s) = N(s)D−1
F (s) = [s+ 1, 0]

[
s+ 4 s+ 5

−6s− 4 s2 − 6s− 4

]
1

(s+ 2)(s2 + 2s+ 2)

=
s+ 1

(s+ 2)(s2 + 2s+ 2)
[s+ 4, s+ 5].

Note that the zeros of H(s) and HF (s) are identical, located at −1. Then
HF (s) = H(s)M(s), where

M(s) = D(s)D−1
F (s) =

[
s2 + s− 1 −s

−1 s

] [
s+ 4 s+ 5

−6s− 4 s2 − 6s− 4

]
1

s3+4s2+6s+4

=
[
s3 + 11s2 + 7s− 4 12s2 + 8s− 5
−6s2 − 5s− 4 s3 − 6s2 − 5s− 5

]
1

s3+4s2+6s+4

= [I − Fc(sI −Ac)−1Bc]−1.

Note that the open-loop uncompensated system is unobservable, with 0 being
the unobservable eigenvalue, whereas the closed-loop system is observable;
i.e., the control law changed the observability of the system.
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9.2.5 Discrete-Time Systems

Linear state feedback control for discrete-time systems is defined in a way that
is analogous to the continuous-time case. The definitions are included here for
purposes of completeness.

We consider a linear, time-invariant, discrete-time system described by
equations of the form

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k), (9.46)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and k ≥ k0, with
k ≥ k0 = 0 being typical.

Definition 9.16. The linear (discrete-time, time-invariant) state feedback
control law is defined by

u(k) = Fx(k) + r(k), (9.47)

where F ∈ Rm×n is a gain matrix and r(k) ∈ Rm is the external input vector.
�

The compensated closed-loop system is now given by

x(k + 1) = (A+BF )x(k) +Br(k),
y(k) = (C +DF )x(k) +Dr(k). (9.48)

In view of Section 3.5, the system x(k + 1) = (A+BF )x(k) is asymptot-
ically stable if and only if the eigenvalues of A + BF satisfy |λi| < 1, i.e., if
they lie strictly within the unit disk of the complex plane. The stabilization
problem for the time-invariant case therefore becomes a problem of shifting
the eigenvalues of A +BF , which is precisely the problem studied before for
the continuous-time case. Theorem 9.2 and Lemmas 9.3 and 9.6 apply without
change, and the methods developed before for eigenvalue assignment can be
used here as well. The only difference in this case is the location of the desired
eigenvalues: They are assigned to be within the unit circle to achieve stability.
We will not repeat here the details for these results.

Input–output relations for discrete-time systems, which are in the spirit of
the results developed in the preceding subsection for continuous-time systems,
can be derived in a similar fashion, this time making use of the z-transform
of x(k + 1) = Ax(k) +Bu(k), x(0) = x0 to obtain

x̂(z) = z(zI −A)−1x0 + (zI −A)−1Bû(z). (9.49)

[Compare expression (9.49) with x̂(s) = (sI −A)−1x0 + (sI −A)−1Bû(s).]
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9.2.6 The Linear Quadratic Regulator (LQR): Discrete-Time Case

The formulation of the LQR problem in the discrete-time case is analogous to
the continuous-time LQR problem. Consider the time-invariant linear system

x(k + 1) = Ax(k) + Bu(k), z(k) = Mx(k), (9.50)

where the vector z(t) represents the variables to be regulated. The LQR prob-
lem is to determine a control sequence {u∗(k)}, k ≥ 0, which minimizes the
cost function

J(u) =
∞∑
k=0

[zT (k)Qz(k) + uT (k)Ru(k)] (9.51)

for any initial state x(0), where the weighting matrices Q and R are real
symmetric and positive definite.

Assume that (A,B,Q1/2M) is reachable and observable. Then the solution
to the LQR problem is given by the linear state feedback control law

u∗(k) = F ∗x(k) = −[R+BTP ∗
c B]−1BTP ∗

c Ax(k), (9.52)

where P ∗
c is the unique, symmetric, and positive definite solution of the

(discrete-time) algebraic Riccati equation, given by

Pc = AT [Pc − PcB[R +BTPcB]−1BTPc]A+MTQM. (9.53)

The minimum value of J is J(u∗) = Jmin = xT (0)P ∗
c x(0).

As in the continuous-time case, it can be shown that the solution P ∗
c can

be determined from the eigenvectors of the Hamiltonian matrix , which in this
case is

H =
[
A+BR−1BTA−TMTQM −BR−1BTA−T

−A−TMTQM A−T

]
, (9.54)

where it is assumed that A−1 exists. Variations of the above method that relax
this assumption exist and can be found in the literature. Let [V T1 , V

T
2 ]T be n

eigenvectors corresponding to the n stable (|λ| < 1) eigenvalues of H . Note
that out of the 2n eigenvalues of H , n of them are stable (i.e., within the unit
circle) and are the reciprocals of the remaining n unstable eigenvalues (located
outside the unit circle). When (A,B,Q1/2M) is controllable (-from-the-origin)
and observable, then H has no eigenvalues on the unit circle (|λ| = 1). In fact
the n stable eigenvalues of H are in this case the closed-loop eigenvalues of
the optimally controlled system.

The solution to the algebraic Riccati equation is given by

P ∗
c = V2V

−1
1 . (9.55)

As in the continuous-time case, we note that V1 consists of the n eigenvectors
of A+BF ∗.
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Example 9.17. We consider the system x(k + 1) = Ax(k) + Bu(k), y(k) =

Cx(k), where A =
[

0 1
0 0

]
, B =

[
0
1

]
, C = [1, 0] and we wish to determine

the optimal control sequence {u∗(k)}, k ≥ 0, that minimizes the performance
index

J(u) =
∞∑
k=0

(y2(k) + ρu2(k)),

where ρ > 0. In (9.51), z(k) = y(k), M = C, Q = 1, and R = ρ. The reader is
asked to determine u∗(k) given in (9.52) by solving the discrete-time algebraic
Riccati equation (9.53) in a manner analogous to the solution in Example 9.14
(for the continuous-time algebraic Riccati equation).

9.3 Linear State Observers

Since the states of a system contain a great deal of useful information, there are
many applications where knowledge of the state vector over some time interval
is desirable. It may be possible to measure states of a system by appropriately
positioned sensors. This was in fact assumed in the previous section, where
the state values were multiplied by appropriate gains and then fed back to
the system in the state feedback control law. Frequently, however, it may be
either impossible or simply impractical to obtain measurements for all states.
In particular, some states may not be available for measurement at all (as in
the case, for example, with temperatures and pressures in inaccessible parts of
a jet engine). There are also cases where it may be impractical to obtain state
measurements from otherwise available states because of economic reasons
(e.g., some sensors may be too expensive) or because of technical reasons
(e.g., the environment may be too noisy for any useful measurements). Thus,
there is a need to be able to estimate the values of the state of a system from
available measurements, typically outputs and inputs (see Figure 9.2). Given
the system parameters A, B, C, D and the values of the inputs and outputs
over a time interval, it is possible to estimate the state when the system is
observable. This problem, a problem in state estimation, is discussed in this
section. In particular, we will address the so-called full-order and reduced-
order asymptotic estimators, which are also called full-order and reduced-order
observers.

9.3.1 Full-Order Observers: Continuous-Time Systems

We consider systems described by equations of the form

ẋ = Ax+Bu, y = Cx+Du, (9.56)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m.
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State Observer

{ A, B, C, D}
u y

x̂

Figure 9.2. Linear state observer configuration

Full-State Observers: The Identity Observer

An estimator of the full state x(t) can be constructed in the following manner.
We consider the system

˙̂x = Ax̂+Bu+K(y − ŷ), (9.57)

where ŷ � Cx̂+Du. Note that (9.57) can be written as

˙̂x = (A−KC)x̂+ [B −KD,K]
[
u
y

]
, (9.58)

which clearly reveals the role of u and y (see Figure 9.3). The error between the
actual state x(t) and the estimated state x̂(t), e(t) = x(t) − x̂(t), is governed
by the differential equation

ė(t) = ẋ(t) − ˙̂x(t) = [Ax+Bu] − [Ax̂+Bu+KC(x− x̂)]

or
ė(t) = [A−KC]e(t). (9.59)

Solving (9.59), we obtain

e(t) = exp[(A−KC)t]e(0). (9.60)

Now if the eigenvalues of A − KC are in the left half-plane, then e(t) → 0
as t → ∞, independently of the initial condition e(0) = x(0) − x̂(0). This
asymptotic state estimator is known as the Luenberger observer .

Lemma 9.18. There exists K ∈ Rn×p so that the eigenvalues of A−KC are
assigned to arbitrary real or complex conjugate locations if and only if (A,C)
is observable.

Proof. The eigenvalues of (A−KC)T = AT − CTKT are arbitarily assigned
via KT if and only if the pair (AT , CT ) is controllable (see Theorem 9.2 of the
previous section) or, equivalently, if and only if the pair (A,C) is observable.

�
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u

+

y

B – KD K

+

A – KC

n

+

+

x(t)^
x̂∫

Σ

Σ

Figure 9.3. Full-state identity observer configuration

Discussion

If (A,C) is not observable, but the unobservable eigenvalues are stable, i.e.,
(A,C) is detectable, then the error e(t) will still tend to zero asymptotically.
However, the unobservable eigenvalues will appear in this case as eigenvalues
of A−KC, and they may affect the speed of the response of the estimator in
an undesirable way. For example, if the unobservable eigenvalues are stable
but are located close to the imaginary axis, then their corresponding modes
will tend to dominate the response, most likely resulting in a state estimator
that converges too slowly to the actual value of the state.

Where should the eigenvalues of A−KC be located? This problem is dual
to the problem of closed-loop eigenvalue placement via state feedback and
is equally difficult to resolve. On the one hand, the observer must estimate
the state sufficiently fast, which implies that the eigenvalues should be placed
sufficiently far from the imaginary axis so that the error e(t) will tend to zero
sufficiently fast. On the other hand, this requirement may result in a high
gain K, which tends to amplify existing noise, thus reducing the accuracy of
the estimate. Note that in this case, noise is the only limiting factor of how
fast an estimator may be, since the gain K is realized by an algorithm and
is typically implemented by means of a digital computer. Therefore, gains of
any size can easily be introduced. Compare this situation with the limiting
factors in the control case, which is imposed by the magnitude of the required
control action (and the limits of the corresponding actuator). Typically, the
faster the compensated system, the larger the required control magnitude.

One may of course balance the tradeoffs between speed of response of the
estimator and effects of noise by formulating an optimal estimation problem
to derive the best K. To this end, one commonly assumes certain probabilistic
properties for the process. Typically, the measurement noise and the initial
condition of the plant are assumed to be Gaussian random variables, and one
tries to minimize a quadratic performance index. This problem is typically
referred to as the Linear Quadratic Gaussian (LQG) estimation problem.
This optimal estimation or filtering problem can be seen to be the dual of
the quadratic optimal control problem of the previous section, a fact that will
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be exploited in deriving its solution. Note that the well-known Kalman filter
is such an estimator. In the following discussion, we shall briefly discuss the
optimal estimation problem. First, however, we shall address the following
related issues.

1. Is it possible to take K = 0 in the estimator (9.57)? Such a choice would
eliminate the information contained in the term y− ŷ from the estimator,
which would now be of the form

˙̂x = Ax̂+Bu. (9.61)

In this case, the estimator would operate without receiving any informa-
tion on how accurate the estimate x̂ actually is. The error e(t) = x(t)−x̂(t)
would go to zero only when A is stable. There is no mechanism to af-
fect the speed by which x̂(t) would approach x(t) in this case, and this
is undesirable. One could perhaps determine x(0), using the methods in
Section 5.4, assuming that the system is observable. Then, by setting
x̂(0) = x(0), presumably x̂(t) = x(t) for all t ≥ 0, in view of (9.61). This
of course is not practical for several reasons. First, the calculated x̂(0) is
never exactly equal to the actual x(0), which implies that e(0) would be
nonzero. Therefore, the method would rely again on A being stable, as
before, with the advantage here that e(0) would be small in some sense
and so e(t) → 0 faster. Second, this scheme assumes that sufficient data
have been collected in advance to determine (an approximation to) x(0)
and to initialize the estimator, which may not be possible. Third, it is as-
sumed that this initialization process is repeated whenever the estimator
is restarted, which may be impractical.

2. If derivatives of the inputs and outputs are available, then the state x(t)
may be determined directly (see Exercise 5.12 in Chapter 5). The esti-
mate x̂(t) is in this case produced instantaneously from the values of the
inputs and outputs and their derivatives. Under these circumstances, x̂(t)
is the output of a static state estimator, as opposed to the above dynamic
state estimator, which leads to a state estimate x̂(t) that only approaches
the actual state x(t) asymptotically as t → ∞ [e(t) = x(t) − x̂(t) → 0
as t → ∞]. Unfortunately, this approach is in general not viable since
noise present in the measurements of u(t) and y(t) makes accurate cal-
culations of the derivatives problematic, and since errors in u(t), y(t) and
their derivatives are not smoothed by the algebraic equations of the static
estimator (as opposed to the smoothing effects introduced by integration
in dynamic systems). It follows that in this case the state estimates may
be erroneous.

Example 9.19. Consider the observable pair

A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , C = [1, 0, 0].
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We wish to assign the eigenvalues of A−KC in a manner that enables us to de-
sign a full-order/full-state asymptotic observer. Let the desired characteristic
polynomial be αd(s) = s3 + d2s

2 + d1s+ d0, and consider

AD = AT =

⎡
⎣

0 0 0
1 0 2
0 1 −1

⎤
⎦ and BD = CT =

⎡
⎣

1
0
0

⎤
⎦ .

To reduce (AD, BD) to controller form, we consider

C = [BD, ADBD, A2
DBD] =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ = C−1.

Then P =

⎡
⎣

q
qAD
qA2

D

⎤
⎦ =

⎡
⎣

0 0 1
0 1 −1
1 −1 3

⎤
⎦ and P−1 =

⎡
⎣
−2 1 1

1 1 0
1 0 0

⎤
⎦,

from which we obtain

ADc = PADP
−1 =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ and BDc = PBD =

⎡
⎣

0
0
1

⎤
⎦ .

The state feedback is then given by FDc = B−1
m [Adm − Am] = [−do,−d1 −

2,−d2 + 1] and FD = FDcP = [−d2 + 1, d2 − d1 − 3, d1 − d0 − 3d2 + 5]. Then

K = −FTD = [d2 − 1, d1 − d2 + 3, d0 − d1 + 3d2 − 5]T

assigns the eigenvalues of A−KC at the roots of αd(s) = s3 +d2s
2 +d1s+d0.

Note that the same result could also have been derived using the direct method
for eigenvalue assignment, using |sI − (A− (k0, k1, k2)TC)| = αd(s). Also, the
result could have been derived using the observable version of Ackermann’s
formula, namely,

K = −FTD = αd(A)O−1en,

where FD = −eTnC−1
D αd(AD) from (9.21). Note that the given system has

eigenvalues at 0, 1,−2 and is therefore unstable. The observer derived in this
case will be used in the next section (Example 9.25) in combination with state
feedback to stabilize the system ẋ = Ax +Bu, y = Cx, where

A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , B =

⎡
⎣

0 1
1 1
0 0

⎤
⎦ , and C = [1, 0, 0]

(see Example 9.11), using only output measurements.
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Example 9.20. Consider the system ẋ = Ax, y = Cx, where A =
[

0 −2
1 −2

]

and C = [0, 1], and where (A,C) is in observer form. It is easy to show that
K = [d0 − 2, d1 − 2]T assigns the eigenvalues of A − KC at the roots of
s2 + d1s+ d0. To verify this, note that

det(sI − (A−KC)) = det
([

s 0
0 s

]
−
[

0 −d0

1 −d1

])
= s2 + d1 + d0.

The error e(t) = x(t)− x̂(t) is governed by the equation ė(t) = (A−KC)e(t)
given in (9.59). Noting that the eigenvalues of A are −1 ± j, select different
sets of eigenvalues for the observer and plot the states x(t), x̂(t) and the error
e(t) for x(0) = [2, 2]T and x̂(0) = [0, 0]T . The further away the eigenvalues of
the observer are selected from the imaginary axis (with negative real parts),
the larger the gains in K will become and the faster x̂(t) → x(t).

Partial or Linear Functional State Observers

The state estimator studied above is a full-state estimator or observer; i.e.,
x̂(t) is an estimate of the full-state vector x(t). There are cases where only
part of the state vector, or a linear combination of the states, is of interest. In
control problems, for example, F x̂(t) is used and fed back, instead of Fx(t),
where F is an m×n state feedback gain matrix. An interesting question that
arises at this point is as follows: Is it possible to estimate directly a linear
combination of the state, say, Tx, where T ∈ Rñ×n, ñ ≤ n? For details of this
problem see materials starting with [1, p. 354].

9.3.2 Reduced-Order Observers: Continuous-Time Systems

Suppose that p states, out of the n state, can be measured directly. This
information can then be used to reduce the order of the full-state estimator
from n to n− p. Similar results are true for the estimator of a linear function
of the state, but this problem will not be addressed here. To determine a
full-state estimator of order n− p, first consider the case when C = [Ip, 0]. In
particular, let

[
ẋ1

ẋ2

]
=
[
A11 A12

A21 A22

] [
x1

x2

]
+
[
B1

B2

]
u

z = [Ip, 0]
[
x1

x2

]
, (9.62)

where z = x1 represents the p measured states. Therefore, only x2(t) ∈
R(n−p)×1 is to be estimated. The system whose state is to be estimated is
now given by
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ẋ2 = A22x2 + [A21, B2]
[
x1

u

]

= A22x2 + B̃ũ, (9.63)

where B̃ � [A21, B2] and ũ �
[
x1

u

]
=
[
z
u

]
is a known signal. Also,

ỹ � ẋ1 −A11x1 −B1u = A12x2, (9.64)

where ỹ is known. An estimator for x2 can now be constructed. In particular,
in view of (9.57), we have that the system

˙̂x2 = A22x̂2 + B̃ũ+ K̃(ỹ −A12x̂2)

= (A22 − K̃A12)x̂2 + (A21z +B2u) + K̃(ż −A11z −B1u) (9.65)

is an asymptotic state estimator for x2. Note that the error e satisfies the
equation

ė = ẋ2 − ˙̂x2 = (A22 − K̃A12)e, (9.66)

and if (A22, A12) is observable, then the eigenvalues of A22 − K̃A12 can be
arbitrarily assigned making use of K̃. It can be shown that if the pair (A =
[Aij ], C = [Ip, 0]) is observable, then (A22, A12) is also observable (prove this
using the eigenvalue observability test of Section 6.3). System (9.65) is an
estimator of order n − p, and therefore, the estimate of the entire state x is[
z
x̂2

]
. To avoid using ż = ẋ1 in ỹ given by (9.64), one could use x̂2 = w+ K̃z

and obtain from (9.65) an estimator in terms of w, z, and u. In particular,

ẇ = (A22−K̃A12)w+[(A22−K̃A12)K̃+A21−K̃A11]z+[B2−K̃B1]u. (9.67)

Then w is an estimate of x̂2 − K̃z and of course w+ K̃z is an estimate for x̂2.
In the above derivation, it was assumed for simplicity that a part of the

state x1, is measured directly; i.e., C = [Ip, 0]. One could also derive a reduced-
order estimator for the system

ẋ = Ax+Bu, y = Cx.

To see this, let rankC = p and define a similarity transformation matrix

P =
[
C

Ĉ

]
, where Ĉ is such that P is nonsingular. Then

˙̄x = Āx̄+ B̄u, y = C̄x̄ = [Ip, 0]x̄, (9.68)

where x̄ = Px, Ā = PAP−1, B̄ = PB, and C̄ = CP−1 = [Ip, 0]. The trans-
formed system is now in an appropriate form for an estimator of order n− p
to be derived, using the procedure discussed above. The estimate of x̄ is
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[
y
ˆ̄x2

]
, and the estimate of the original state x is P−1

[
y
ˆ̄x2

]
. In particular,

x̄2 = w + K̃y, where w satisfies (9.67) with z = y, [Aij ] = Ā = PAP−1, and[
B1

B2

]
= B̄ = PB. The interested reader should verify this result.

Example 9.21. Consider the system ẋ = Ax + Bu, y = Cx, where A =[
0 −2
1 −2

]
, B =

[
0
1

]
, and C = [0, 1]. We wish to design a reduced n − p =

n− 1 = 2 − 1 = 1, a first-order asymptotic state estimator.

The similarity transformation matrix P =
[
C

Ĉ

]
=
[

0 1
1 0

]
leads to (9.68),

where x̄ = Px and Ā = PAP−1 =
[

0 1
1 0

] [
0 −2
1 −2

] [
0 1
1 0

]
=
[
−2 1
−2 0

]
, B̄ =

PB =
[

1
0

]
, and C̄ = CP−1 = [1, 0]. The system {Ā, B̄, C̄} is now in an

appropriate form for use of (9.67). We have Ā =
[
A11 A12

A21 A22

]
=
[
−2 1
−2 0

]
,

B̄ =
[
B1

B2

]
=
[

1
0

]
, and (9.67) assumes the form

ẇ = (−K̃)w + [−K̃2 + (−2) − K̃(−2)]y + (−K̃)u,

which is a system observer of order 1.
For K̃ = −10 we have ẇ = 10w − 122y + 10u, and w + K̃y = w − 10y is

an estimate for ˆ̄x2. Therefore,
[

y
w − 10y

]
is an estimate of x̄, and

P−1

[
y

w − 10y

]
=
[

0 1
1 0

] [
y

w − 10y

]
=
[
w − 10y

y

]

is an estimate of x(t) for the original system.

9.3.3 Optimal State Estimation: Continuous-Time Systems

The gain K in the estimator (9.57) above can be determined so that it is
optimal in an appropriate sense. This is discussed briefly below. The interested
reader should consult the extensive literature on filtering theory for additional
information, in particular, the literature on the Kalman–Bucy filter.

In addressing optimal state estimation, noise with certain statistical prop-
erties is introduced in the model and an appropriate cost functional is set up
that is then minimized. In the following discussion, we shall introduce some of
the key equations of the Kalman–Bucy filter and we will point out the dual-
ity between the optimal control and estimation problems. We concentrate on
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the time-invariant case, although, as in the LQR control problem discussed
earlier, more general results for the time-varying case do exist.

We consider the linear time-invariant system

ẋ = Ax+Bu + Γw, y = Cx+ v, (9.69)

where w and v represent process and measurement noise terms. Both w and v
are assumed to be white, zero-mean Gaussian stochastic processes; i.e., they
are uncorrelated in time and have expected values E[w] = 0 and E[v] = 0.
Let

E[wwT ] = W, E[vvT ] = V (9.70)

denote their covariances, where W and V are real, symmetric, and positive
definite matrices, i.e., W = WT ,W > 0, and V = V T , V > 0. Assume that
the noise processes w and v are independent; i.e., E[wvT ] = 0. Also assume
that the initial state x(0) of the plant is a Gaussian random variable of known
mean, E[x(0)] = x0, and known covariance, E[(x(0)−x0)(x(0)−x0)T ] = Pe0.
Assume also that x(0) is independent of w and v. Note that all these are
typical assumptions made in practice.

Consider now the estimator (9.57), namely,

˙̂x = Ax̂+Bu +K(y − Cx̂) = (A−KC)x̂+Bu+Ky, (9.71)

and let (A,ΓW 1/2, C) be controllable (-from-the-origin) and observable. It
turns out that the error covariance E[(x− x̂)(x− x̂)T ] is minimized when the
filter gain is given by

K∗ = P ∗
e C

TV −1, (9.72)

where P ∗
e denotes the symmetric, positive definite solution of the quadratic

(dual) algebraic Riccati equation

PeA
T +APe − PeC

TV −1CPe + ΓWΓ T = 0. (9.73)

Note that P ∗
e , which is in fact the minimum error covariance, is the posi-

tive semidefinite solution of the above Riccati equation if (A,ΓW 1/2, C) is
stabilizable and detectable. The optimal estimator is asymptotically stable.

The above algebraic Riccati equation is the dual to the Riccati equation
given in (9.33) for optimal control and can be obtained from (9.33) making
use of the substitutions

A→ AT , B → CT ,M → Γ T and R → V,Q→W. (9.74)

Clearly, methods that are analogous to the ones developed by solving the
control Riccati equation (9.33) may be applied to solve the Riccati equation
(9.71) in filtering. These methods are not discussed here.
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Example 9.22. Consider the system ẋ = Ax, y = Cx, whereA =
[

0 0
1 0

]
, C =

[0, 1], and let Γ =
[

1
0

]
, V = ρ > 0, W = 1. We wish to derive the optimal

filter gain K∗ = P ∗
e C

TV −1 given in (9.72). In this case, the Riccati equa-
tion (9.73) is precisely the Riccati equation of the control problem given in
Example 9.14. The solution of this equation was determined to be

P ∗
e =

[√
2
√
ρ

√
ρ√

ρ
√

2ρ
√
ρ

]
.

We note that this was expected, since our example was chosen to satisfy (9.74).
Therefore,

K∗ = P ∗
e

[
0
1

]
1
ρ

=
[ √

ρ√
2ρ

√
ρ

]
1
ρ
.

9.3.4 Full-Order Observers: Discrete-Time Systems

We consider systems described by equations of the form

x(k + 1) = Ax(k) +Bu(k), y = Cx(k) +Du(k), (9.75)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×m, and D ∈ Rp×m.
The construction of state estimators for discrete-time systems is mostly

analogous to the continuous-time case, and the results that we established
above for such systems are valid here as well, subject to obvious adjustments
and modifications. There are, however, some notable differences. For exam-
ple, in discrete-time systems, it is possible to construct a state estimator that
converges to the true value of the state in finite time, instead of infinite time
as in the case of asymptotic state estimators. This is the estimator known as
the deadbeat observer. Furthermore, in discrete-time systems it is possible to
talk about current state estimators, in addition to prediction state estimators.
In what follows, a brief description of the results that are analogous to the
continuous-time case is given. Current estimators and deadbeat observers that
are unique to the discrete-time case are discussed at greater length.

Full-State Observers: The Identity Observer

As in the continuous-time case, following (9.57) we consider systems described
by equations of the form

x̂(k + 1) = Ax̂(k) +Bu(k) +K[y(k) − ŷ(k)], (9.76)

where ŷ(k) � Cx̂(k) +Dx(k). This can also be written as
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x̂(k + 1) = (A−KC)x̂(k) + [B −KD,K]
[
u(k)
y(k)

]
. (9.77)

It can be shown that the error e(k) � x(k)−x̂(k) obeys the equation e(k+1) =
(A − KC)e(k). Therefore, if the eigenvalues of A − KC are inside the open
unit disk of the complex plane, then e(k) → 0 as k → ∞. There exists K so
that the eigenvalues of A−KC can be arbitrarily assigned if and only if the
pair (A,C) is observable (see Lemma 9.18).

The discussion following Lemma 9.18 for the case when (A,C) is not com-
pletely observable, although detectable, is still valid. Also, the remarks on
appropriate locations for the eigenvalues of A−KC and noise being the lim-
iting factor in state estimators are also valid in the present case. Note that
the latter point should seriously be considered when deciding whether to use
the deadbeat observer described next.

To balance the tradeoffs between speed of the estimator response and noise
amplification, one may formulate an optimal estimation problem as was done
in the continuous-time case, the Linear Quadratic Gaussian (LQG) design
being a common formulation. The Kalman filter (discrete-time case) that is
based on the “current estimator” described below is such a quadratic estima-
tor. The LQG optimal estimation problem can be seen to be the dual of the
quadratic optimal control problem discussed in the previous section. As in
the continuous-time case, optimal estimation in the discrete-time case will be
discussed only briefly as follows. First, however, several other related issues
are addressed.

Deadbeat Observer

If the pair (A,C) is observable, it is possible to select K so that all the
eigenvalues of A − KC are at the origin. In this case e(k) = x(k) − x̂(k) =
(A − KC)ke(0) = 0, for some k ≤ n; i.e., the error will be identically zero
within at most n steps. The minimum value of k for which (A − KC)k = 0
depends on the size of the largest block on the diagonal of the Jordan canonical
form of A−KC. (Refer to the discussion on the modes of discrete-time systems
in Subsection 3.5.5.)

Example 9.23. Consider the system x(k+1) = Ax(k), y(k) = Cx(k), where

A =

⎡
⎣

0 2 1
1 −1 0
0 0 0

⎤
⎦ , C =

[
0 1 0
0 1 1

]

is in observer form. We wish to design a deadbeat observer. It is rather easy
to show (compare with Example 9.11) that

K =

⎡
⎣ATdm −

⎡
⎣

2 1
−1 0

0 0

⎤
⎦
⎤
⎦
[
−1 0

1 −1

]
,
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which was determined by taking the dual AD = AT , BD = CT in controller
form, using FD = B−1

m [Adm −Am] and K = −FTD .
The matrix ATdm

consists of the second and third columns of a matrix

Ad =

⎡
⎣

0 × ×
1 × ×
0 × ×

⎤
⎦ in observer (companion) form with all its eigenvalues at 0.

For Ad1 =

⎡
⎣

0 0 0
1 0 0
0 1 0

⎤
⎦, we have

K1 =

⎡
⎣
⎡
⎣

0 0
0 0
1 0

⎤
⎦−

⎡
⎣

2 1
−1 0

0 0

⎤
⎦
⎤
⎦
[
−1 0

1 −1

]
=

⎡
⎣

1 1
−1 0
−1 0

⎤
⎦ ,

and for Ad2 =

⎡
⎣

0 0 0
1 0 0
0 0 0

⎤
⎦, we obtain

K2 =

⎡
⎣
⎡
⎣

0 0
0 0
0 0

⎤
⎦−

⎡
⎣

2 1
−1 0

0 0

⎤
⎦
⎤
⎦
[
−1 0

1 −1

]
=

⎡
⎣

1 1
−1 0

0 0

⎤
⎦ .

Note that A − K1C = Ad1 , A2
d1

=

⎡
⎣

0 0 0
0 0 0
1 0 0

⎤
⎦, and A3

d1
= 0, and that A −

K2C = Ad2 and A2
d2

= 0. Therefore, for the observer gain K1, the error
e(k) in the deadbeat observer will become zero in n = 3 steps, since e(3) =
(A−K1C)3e(0) = 0. For the observer gain K2, the error e(k) in the deadbeat
observer will become zero in 2 < n steps, since e(2) = (A −K2C)2e(0) = 0.
The reader should determine the Jordan canonical forms of Ad1 and Ad2 and
verify that the dimension of the largest block on the diagonal is 3 and 2,
respectively.

The comments in the discussion following Lemma 9.18 on taking K = 0
are valid in the discrete-time case as well. Also, the approach of determining
the state instantaneously in the continuous-time case, using the derivatives of
the input and output, corresponds in the discrete-time case to determining the
state from current and future input and output values (see Exercise 5.12 in
Chapter 5). This approach was in fact used to determine x(0) when studying
observability in Section 5.4. The disadvantage of this method is that it requires
future measurements to calculate the current state. This issue of using future
or past measurements to determine the current state is elaborated upon next.

Current Estimator

The estimator (9.76) is called a prediction estimator . The state estimate x̂(k)
is based on measurements up to and including y(k− 1). It is often of interest
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in applications to determine the state estimate x̂(k) based on measurements
up to and including y(k). This may seem rather odd at first; however, if the
computation time required to calculate x̂(k) is short compared with the sample
period in a sampled-data system, then it is certainly possible practically to
determine the estimate x̂(k) before x(k + 1) and y(k + 1) are generated by
the system. If this state estimate, which is based on current measurements of
y(k), is to be used to control the system, then the unavoidable computational
delays should be taken into consideration.

Now let x̄(k) denote the current state estimate based on measurements up
through y(k). Consider the current estimator

x̄(k) = x̂(k) +Kc(y(k) − Cx̂(k)), (9.78)

where
x̂(k) = Ax̄(k − 1) +Bu(k − 1); (9.79)

i.e., x̂(k) denotes the estimate based on model prediction from the previous
time estimate, x̄(k − 1). Note that in (9.78), the error is y(k) − ŷ(k), where
ŷ(k) = Cx̂(k) (D = 0), for simplicity.

Combining the above, we obtain

x̂(k) = (I −KcC)Ax̄(k − 1) + [(I −KcC)B,−Kc]
[
u(k − 1)
y(k)

]
. (9.80)

The relation to the prediction estimator (9.76) can be seen by substituting
(9.78) into (9.79) to obtain

x̂(k + 1) = Ax̂(k) +Bu(k) +AKc[y(k) − Cx̂(k)]. (9.81)

Comparison with the prediction estimator (9.76) (with D = 0) shows that it
is clear that if

K = AKc, (9.82)

then (9.81) is indeed the prediction estimator, and the estimate x̂(k) used in
the current estimator (9.78) is indeed the prediction state estimate. In view
of this, we expect to obtain for the error ê(k) = x(k) − x̂(k) the difference
equation

ê(k + 1) = (A−AKcC)ê(k). (9.83)

To determine the error ē(k) = x(k)− x̄(k) we note that ē(k) = ê(k)− (x̄(k)−
x̂(k)). Equation (9.78) now implies that x̄(k) − x̂(k) = KcCe(k). Therefore,

ē(k) = (I −KcC)ê(k). (9.84)

This establishes the relationship between errors in current and prediction
estimators.

Premultiplying (9.81) by I −KcC (assuming |I −KcC| �= 0), we obtain

ē(k + 1) = (A−KcCA)ē(k), (9.85)
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which is the current estimator error equation. The gainKc is chosen so that the
eigenvalues of A−KcCA are within the open unit disk of the complex plane.
The pair (A,CA) must be observable for arbitrary eigenvalue assignment.
Note that the two error equations (9.83) and (9.85) have identical eigenvalues.

Example 9.24. Consider the system x(k+1) = Ax(k), y(k) = Cx(k), where

A =
[

0 −2
1 −2

]
, C = [0, 1], which is in observer form (see also Example 9.20).

We wish to design a current estimator. In view of the error equation (9.85),
we consider

det(sI − (A−KcCA)) = det
([

s 0
0 s

]
−
([

0 −2
1 −2

]
−
[
k0

k1

]
[1 − 2]

))

= det
[
s+ k0 2 − 2k0

k1 − 1 s+ 2 − 2k1

]

= s2 + s(2 − 2k1 + k0) + (2 − 2k1)

= s2 + d1s+ d0 = αd(s),

a desired polynomial, from which Kc = [k0, k1]T = [d1 − d0,
1
2 (2− d0)]T . Note

that AKc = [d0 − 2, d1 − 2]T = K, found in Example 9.20, as noted in (9.82).
The current estimator (9.80) is now given by x̄(k) = (A − KcCA)x̄(k −

1) −KcCBu(k − 1) +Kcy(k), or

x̄(k) =
[

−k0 −2 + 2k0

1 − k1 −2 + 2k1

]
x̄(k − 1) +

[
k0

k1

]
y(k).

Partial or Linear Functional State Observers

The problem of estimating a linear function of the state, Tx(k), T ∈ Rñ×n,
where ñ ≤ n, using a prediction estimator, is completely analogous to the
continuous-time case.

9.3.5 Reduced-Order Observers: Discrete-Time Systems

It is possible to estimate the full state x(k) using an estimator of order n− p,
where p = rankC. If a prediction estimator is used for that part of the state
that needs to be estimated, then the problem in the discrete-time case is
completely analogous to the continuous-time case, discussed before.

9.3.6 Optimal State Estimation: Discrete-Time Systems

The formulation of the Kalman filtering problem in discrete-time is analogous
to the continuous-time case.
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Consider the linear time-invariant system given by

x(k + 1) = Ax(k) +Bu(k) + Γw(k), y(k) = Cx(k) + v, (9.86)

where the process and measurement noises w, v are white, zero-mean Gaus-
sian stochastic processes; i.e., they are uncorrelated in time with E[w] = 0
and E[v] = 0. Let the covariances be given by

E[wwT ] = W, E[vvT ] = V, (9.87)

where W = WT ,W > 0 and V = V T , V > 0. Assume that w, v are indepen-
dent, that the initial state x(0) is Gaussian of known mean (E[x(0)] = x0),
that E[(x(0)− x0)(x(0)− x0)T ] = Pe0, and that x(0) is independent of w and
v.

Consider now the current estimator (9.76), namely,

x̄(k) = x̂(k) +Kc[y(k) − Cx̂(k)],

where x̂(k) = Ax̄(k − 1) + Bu(k − 1) and x̂(k) denotes the prior estimate of
the state at the time of a measurement.

It turns out that the state error covariance is minimized when the filter
gain is

K∗
c = P ∗

e C
T (CP ∗

e C
T + V )−1, (9.88)

where P ∗
e is the unique, symmetric, positive definite solution of the Riccati

equation

Pe = A[Pe − PeC
T [CPeCT + V ]−1CPe]AT + ΓWΓ T . (9.89)

It is assumed here that (A,ΓW 1/2, C) is reachable and observable. This alge-
braic Riccati equation is the dual to the Riccati equation (9.53) that arose in
the discrete-time LQR problem and can be obtained by substituting

A→ AT , B → CT ,M → Γ T and R → V,Q→W. (9.90)

It is clear that, as in the case of the LQR problem, the solution of the alge-
braic Riccati equation can be determined using the eigenvectors of the (dual)
Hamiltonian.

The filter derived above is called the discrete-time Kalman filter. It is
based on the current estimator (9.78). Note that AKc yields the gain K of
the prediction estimator [see (9.82)].

9.4 Observer-Based Dynamic Controllers

State estimates, derived by the methods described in the previous section,
may be used in state feedback control laws to compensate given systems.
This section addresses this topic.
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In Section 9.2, the linear state feedback control law was introduced. There
it was implicitly assumed that the state vector x(t) is available for measure-
ment. The values of the states x(t) for t ≥ t0 were fed back and used to
generate a control input in accordance with the relation u(t) = Fx(t) + r(t).
There are cases, however, when it may be either impossible or impractical
to measure the states directly. This has provided the motivation to develop
methods for estimating the states. Some of these methods were considered in
Section 9.3. A natural question that arises at this time is the following: What
would happen to system performance if, in the control law u = Fx + r, the
state estimate x̂ were used in place of x as in Figure 9.4? How much, if any,
would the compensated system response deteriorate? What are the difficulties
in designing such estimator-(observer-)based linear state feedback controllers?
These questions are addressed in this section. Note that observer-based con-
trollers of the type described in the following are widely used.

r y+

+

F

System

State 
Observer

u

x̂

Figure 9.4. Observer-based controller

In the remainder of this section we will concentrate primarily on full-
state/full-order observers and (static) linear state feedback, as applied to lin-
ear time-invariant systems. The analysis of partial-state and/or reduced-order
observers with static or dynamic state feedback is analogous; however, it is
more complex. In this section, continuous-time systems are addressed. The
discrete-time case is completely analogous and will be omitted.

9.4.1 State-Space Analysis

We consider systems described by equations of the form

ẋ = Ax+Bu, y = Cx+Du, (9.91)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. For such systems,
we determine an estimate x̂(t) ∈ Rn of the state x(t) via the (full-state/full-
order) state observer (9.57) given by

˙̂x = Ax̂+Bu +K(y − ŷ)

= (A−KC)x̂+ [B −KD,K]
[
u
y

]
,

z = x̂, (9.92)
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where ŷ = Cx̂+Du. We now compensate the system by state feedback using
the control law

u = F x̂+ r, (9.93)

where x̂ is the output of the state estimator and we wish to analyze the
behavior of the compensated system. To this end we first eliminate y in (9.92)
to obtain

˙̂x = (A−KC)x̂+KCx+Bu. (9.94)

The state equations of the compensated system are then given by

ẋ = Ax+BFx̂+Br,

˙̂x = KCx+ (A−KC +BF )x̂+Br, (9.95)

and the output equation assumes the form

y = Cx+DFx̂+Dr, (9.96)

where u was eliminated from (9.91) and (9.94), using (9.93). Rewriting in
matrix form, we have

[
ẋ
˙̂x

]
=
[
A BF
KC A−KC +BF

] [
x
x̂

]
+
[
B
B

]
r,

y = [C, DF ]
[
x
x̂

]
+Dr, (9.97)

which is a representation of the compensated closed-loop system. Note that
(9.97) constitutes a 2nth-order system. Its properties are more easily studied if
an appropriate similarity transformation is used to simplify the representation.
Such a transformation is given by

P

[
x
x̂

]
=
[
I 0
I −I

] [
x
x̂

]
=
[
x
e

]
, (9.98)

where the error e(t) = x(t) − x̂(t). Then the equivalent representation is
[
ẋ
ė

]
=
[
A+BF −BF

0 A−KC

] [
x
e

]
+
[
B
0

]
r,

y = [C +DF, −DF ]
[
x
e

]
+Dr. (9.99)

It is now quite clear that the closed-loop system is not fully controllable with
respect to r (this can be explained in view of Subsection 6.2.1). In fact, e(t)
does not depend on r at all. This is of course as it should be, since the error
e(t) = x(t) − x̂(t) should converge to zero independently of the externally
applied input r.



9.4 Observer-Based Dynamic Controllers 395

The closed-loop eigenvalues are the roots of the polynomial

|sIn − (A+BF )||sIn − (A−KC)|. (9.100)

Recall that the roots of |sIn − (A+BF )| are the eigenvalues of A+BF that
can arbitrarily be assigned via F provided that the pair (A,B) is controllable.
These are in fact the closed-loop eigenvalues of the system when the state x
is available and the linear state feedback control law u = Fx+ r is used (see
Section 9.2). The roots of |sIn−(A−KC)| are the eigenvalues of (A−KC) that
can arbitrarily be assigned via K provided that the pair (A,C) is observable.
These are the eigenvalues of the estimator (9.92).

The above discussion points out that the design of the control law (9.93)
can be carried out independently of the design of the estimator (9.92). This is
referred to as the Separation Property and is generally not true for more com-
plex systems. The separation property indicates that the linear state feedback
control law may be designed as if the state x were available and the eigenval-
ues of A+BF are assigned at appropriate locations. The feedback matrix F
can also be determined by solving an optimal control problem (LQR). If state
measurements are not available for feedback, a state estimator is employed.
The eigenvalues of a full-state/full-order estimator are given by the eigenval-
ues of A−KC. These are typically assigned so that the error e(t) = x(t)− x̂(t)
becomes adequately small in a short period of time. For this reason, the eigen-
values of A − KC are (empirically) taken to be about 6 to 10 times further
away from the imaginary axis (in the complex plane, for continuous-time sys-
tems) than the eigenvalues of A + BF . The estimator gain K may also be
determined by solving an optimal estimation problem (the Kalman filter).
In fact, under the assumption of Gaussian noise and initial conditions given
earlier (see Section 9.3), F and K can be found by solving, respectively, op-
timal control and estimation problems with quadratic performance criteria.
In particular, the deterministic LQR problem is first solved to determine the
optimal control gain F ∗, and then the stochastic Kalman filtering problem is
solved to determine the optimal filter gain K∗. The separation property (i.e.,
Separation Theorem—see any optimal control textbook) guarantees that the
overall (state estimate feedback) Linear Quadratic Gaussian (LQG) control
design is optimal in the sense that the control law u∗(t) = F ∗x̂(t) minimizes
the quadratic performance index E[

∫∞
0

(zTQz+uTRu)dt]. As was discussed in
previous sections, the gain matrices F ∗ and K∗ are evaluated in the following
manner.

Consider
ẋ = Ax+Bu+ Γw, y = Cx+ v, z = Mx (9.101)

with E{wwT } = W > 0 and E[vvT ] = V > 0 and with Q > 0, R > 0 denoting
the matrix weights in the performance index E[

∫∞
0 (zTQx+uTRu)dt]. Assume

that both (A,B,Q1/2M) and (A,ΓW 1/2, C) are controllable and observable.
Then the optimal control law is given by

u∗(t) = F ∗x̂(t) = −R−1BTP ∗
c x̂(t), (9.102)
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where P ∗
c > 0 is the solution of the algebraic Riccati equation (9.33) given by

ATPc + PcA− PcBR
−1BTPc +MTQM = 0. (9.103)

The estimate x̂ is generated by the optimal estimator

˙̂x = Ax̂+Bu +K∗(y − Cx̂), (9.104)

where
K∗ = P ∗

c C
TV −1, (9.105)

in which P ∗
e > 0 is the solution to the dual algebraic Riccati equation (9.71)

given by
PeA

T +APe − PeC
TV −1CPe + ΓWΓ T = 0. (9.106)

Designing observer-based dynamic controllers by the LQG control design
method has been quite successful, especially when the plant model is accu-
rately known. In this approach the weight matrices Q, R and the covariance
matricesW , V are used as design parameters. Unfortunately, this method does
not necessarily lead to robust designs when uncertainties are present. This lim-
itation has led to an enhancement of this method, called the LQR/LTR (Loop
Transfer Recovery) method, where the design parameters W and V are se-
lected (iteratively) so that the robustness properties of the LQR design are
recovered.

Finally, as mentioned earlier, the discrete-time case is analogous to the
continuous-time case and its discussion will be omitted.

Example 9.25. Consider the system ẋ = Ax+Bu, y = Cx, where

A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , B =

⎡
⎣

0 1
1 1
0 0

⎤
⎦ , C = [1, 0, 0].

This is a controllable and observable but unstable system with eigenvalues of
A equal to 0,−2, 1. A linear state feedback control u = Fx+ r was derived in
Example 9.11 to assign the eigenvalues ofA+BF at −2,−1±j. An appropriate
F to accomplish this was shown to be

F =
[

2 −1 −2
−2 0 1/2

]
.

If the state x(t) is not available for measurement, then an estimate x̂(t) is
used instead; i.e., the control law u = F x̂ + r is employed. In Example 9.19,
a full-order/full-state observer, given by

˙̂x = (A−KC)x̂+ [B,K]
[
u
y

]
,
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was derived [see (9.58)] with the eigenvalues of A − KC determined as the
roots of the polynomial αd(s) = s3 + d2s

2 + d1s+ d0. It was shown that the
(unique) K is in this case

K = [d2 − 1, d1 − d2 + 3, d0 − d1 + 3d2 − 5]T ,

and the observer is given by

˙̂x =

⎡
⎣

1 − d2 1 0
−d1 + d2 − 3 0 1

−d0 + d1 − 3d2 + 5 2 −1

⎤
⎦ x̂+

⎡
⎣

0 1 d2 − 1
1 1 d1 − d2 + 3
0 0 d0 − d1 + 3d2 − 5

⎤
⎦
[
u
y

]
.

Using the estimate x̂ in place of the control state x in the feedback control law
causes some deterioration in the behavior of the system. This deterioration
can be studied experimentally. (See the next subsection for analytical results.)
To this end, let the eigenvalues of the observer be at, say, −10,−10,−10; let
x(0) = [1, 1, 1]T and x̂(0) = [0, 0, 0]T ; plot x(t), x̂(t), and e(t) = x(t)− x̂(t);
and compare these with the corresponding plots of Example 9.11, where no
observer was used. Repeat the above with observer eigenvalues closer to the
eigenvalues of A+BF (say, at −2,−1± j) and also further away. In general
the faster the observer, the faster e(t) → 0, and the smaller the deterioration
of response; however, in this case, care should be taken if noise is present in
the system.

9.4.2 Transfer Function Analysis

For the compensated system (9.99) [or (9.97)], the closed-loop transfer func-
tion T (s) between y and r is given by

ỹ(s) = T (s)r̃(s) = [(C +DF )[sI − (A+BF )]−1B +D]r̃(s), (9.107)

where ỹ(s) and r̃(s) denote the Laplace transforms of y(t) and r(t), respec-
tively. The function T (s) was found from (9.99), using the fact that the un-
controllable part of the system does not appear in the transfer function (see
Section 7.2). Note that T (s) is the transfer function of {A+BF,B,C+DF,D};
i.e., T (s) is precisely the transfer function of the closed-loop system HF (s)
when no state estimation is present (see Section 9.2). Therefore, the com-
pensated system behaves to the outside world as if there were no estimator
present. Note that this statement is true only after sufficient time has elapsed
from the initial time, allowing the transients to become negligible. (Recall
what the transfer function represents in a system.) Specifically, taking Laplace
transforms in (9.99) and solving, we obtain

[
x̃(s)
ẽ(s)

]
=
[

[sI−(A+BF )]−1 −[sI−(A+BF )]−1BF [sI−(A−KC)]−1

0 [sI−(A+BF )]−1

] [
x(0)
e(0)

]

+
[

[sI−(A+BF )]−1B
0

]
r̃(s),

ỹ(s) = [C +DF,−DF ]
[
x̃(s)
ẽ(s)

]
+Dr̃(s). (9.108)
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Therefore,

ỹ(s) = (C +DF )[sI − (A+BF )]−1x(0)

− [(C +DF )[sI − (A+BF )]−1BF [sI − (A−KC)]−1

+DF [sI − (A+BF )]−1]e(0) + T (s)r̃(s), (9.109)

which indicates the effects of the estimator on the input–output behavior of
the closed-loop system. Notice how the initial conditions for the error e(0) =
x(0) − x̂(0) influence the response. Specifically, when e(0) �= 0, its effect can
be viewed as a disturbance that will become negligible at steady state. The
speed by which the effect of e(0) on y will diminish depends on the location
of the eigenvalues of A+BF and A−KC, as can be easily seen from relation
(9.109).

Two-Input Controller

In the following discussion, we will find it of interest to view the observer-based
controller discussed previously as a one-vector output (u) and a two-vector
input (y and r) controller. In particular, from ˙̂x = (A−KC)x̂+(B−KD)u+
Ky given in (9.92) and u = F x̂+ r given in (9.93), we obtain the equations

˙̂x = (A−KC +BF −KDF )x̂+ [K,B −KD]
[
y
r

]
,

u = F x̂+ r. (9.110)

This is the description of the (nth order) controller shown in Figure 9.4.
The state x̂ is of course the state of the estimator, and the transfer function
between u and y, r is given by

ũ(s) = F [sI − (A−KC +BF −KDF )]−1Kỹ(s)

+ [F [sI − (A−KC +BF −KDF )]−1(B −KD) + I]r̃(s). (9.111)

If we are interested only in “loop properties,” then r can be taken to be zero;
in which case, (9.111) (for r = 0) yields the output feedback compensator,
which accomplishes the same control objectives (that are typically only “loop
properties”) as the original observer-based controller. This fact is used in the
LQG/LTR design approach. When r �= 0, (9.111) is not appropriate for the
realization of the controller since the transfer function from r, which must be
outside the loop, may be unstable. Note that an expression for this controller
that leads to a realization of a stable closed-loop system is given by

ũ(s) = [F [sI−(A−KC+BF−KDF )]−1[K,B−KD]+[0, I]]
[
ỹ(s)
r̃(s)

]
(9.112)

(see Figure 9.5). This was also derived from (9.110). The stability of general
two-input controllers (with two degrees of freedom) is discussed at length in
Chapter 10.
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Controller System
r

Figure 9.5. Two-input controller

At this point, we find it of interest to determine the relationship of the
observer-based controller and the conventional block controller configuration
of Figure 9.6. Here, the requirement is to maintain the same transfer functions
between inputs y and r and output u. (For further discussion of stability and
attainable response maps in system controlled by output feedback controllers,
refer to Chapter 10.) We proceed by considering once more (9.92) and (9.93)
and by writing

ũ(s) = F [sI − (A−KC)]−1(B −KD)ũ(s)

+ F [sI − (A−KC)]−1Kỹ(s) + r̃(s) = Guũ(s) +Gy ỹ(s) + r̃(s).

( I  – Gu ) –1 System
r u y+

+

Gy

Σ

Figure 9.6. Conventional block controller configuration

This yields
ũ(s) = (I −Gu)−1[Gy ỹ(s) + r̃(s)] (9.113)

(see Figure 9.6). Notice that

Gy = F [sI − (A−KC)]−1K; (9.114)

i.e., the controller in the feedback path is stable. The matrix (I − Gu)−1 is
not necessarily stable; however, it is inside the loop and therefore the internal
stability of the compensated system is preserved. Comparing with (9.111), we
obtain

(I −Gu)−1 = F [sI − (A−KC +BF −KDF )]−1(B −KD) + I. (9.115)

Also, as expected, we have

(I −Gu)−1Gy = F [sI − (A−KC +BF −KDF )]−1K. (9.116)

These relations could have been derived directly as well by the use of matrix
identities; however, such derivation is quite involved.
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Example 9.26. For the system ẋ = Ax + Bu, y = Cx with A =
[

0 −2
1 −2

]
,

B =
[

0
1

]
, and C = [0, 1], we have H(s) = C(sI − A)−1B = s

s2+2s+2 . In

Example 9.20, it was shown that the gain matrix K = [d0−2, d1−2]T assigns
the eigenvalues of the asymptotic observer (ofA−KC) at the roots of s2+d1s+

d0. In fact sI − (A−KC) =
[

s d0

−1 s+ d1

]
. It is straightforward to show that

F = [12a0 − 1, 2− a1] will assign the eigenvalues of the closed-loop system (of

A+BF ) at the roots of s2+a1s+a0. Indeed, sI−(A+BF ) =
[

s 2
− 1

2a0 s+ a1

]
.

Now in (9.113) we have

Gy(s) = F (sI − (A−KC))−1K

= s((d0−2)( 1
2a0−1)+(d1−2)(2−a1))+((d0−d1)(a0−2)+(d0−2)(2−a1))

s2+d1s+d0
,

Gu(s) = F (sI − (A−KC))−1 B = s(2−a1)−d0( 1
2a0−1)

s2+d1s+d0
,

(1 −Gu)−1 = s2+d1s+d0
s2+s(d1+a1−2)+ 1

2a0d0
.

9.5 Summary and Highlights

Linear State Feedback

• Given ẋ = Ax + Bu, y = Cx +Du and the linear state feedback control
law u = Fx+ r, the closed-loop system is

ẋ = (A+BF )x+Br, y = (C +DF )x +Dr. (9.3)

• If u were implemented via open-loop control, it would be given by

û = F [sI − (A+BF )]−1x(0) + [I − F (sI −A)−1B]−1r̂. (9.4)

• The eigenvalues ofA+BF can be assigned to arbitrary real and/or complex
conjugate locations by selecting F if and only if the system [or (A,B)] is
controllable. The uncontrollable eigenvalues of (A,B) cannot be shifted
(see Theorem 9.2 and Lemma 9.3).

• Methods to select F to assign the closed-loop eigenvalues in A+BF include
1. the direct method (see (9.12)), and
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2. using controller forms (see (9.20 and (9.24)).
Controller forms are used to derive Ackermann’s formula (m = 1)

F = −eTnC−1αd(A), (9.21)

where en = [0, . . . , 0, 1]T , C = [B, . . . , An−1B] is the controllability
matrix and αd(s) is the desired closed-loop characteristic polynomial
(its roots are the desired eigenvalues).

3. Assigning eigenvalues and eigenvectors (see Theorem 9.12).
The flexibility in choosing F that assigns the n closed-loop eignvalues
(when m > 1) is expressed in terms of desired closed-loop eigenvectors
that can be partially assigned,

FV = W, (9.29)

where V � [M1a1, . . . ,Mnan] and W � [D1a1, . . . , Dnan] uniquely
specify F as the solution to these n linearly independent equations.
When sj are distinct, the n vectors Mjaj, j = 1, . . . , n, are linearly
independent for almost any nonzero aj , and V has full rank.

• Optimal Control Linear Quadratic Regulator. Given ẋ = Ax + Bu, z =
Mx, find u(t) that minimizes the quadratic cost

J(u) =
∫ ∞

0

[zT (t)Qz(t) + uT (t)Ru(t)]dt. (9.31)

Under controllability and observability conditions, the solution is unique
and it is given as a linear state feedback control law

u∗(t) = F ∗x(t) = −R−1BTP ∗
c x(t), (9.32)

where P ∗
c is the symmetric, positive definite solution of the algebraic Ric-

cati equation

ATPc + PcA− PcBR
−1BTPc +MTQM = 0. (9.33)

The corresponding discrete-time case optimal control is described in (9.51),
(9.52), and (9.53).

• The closed-loop transfer function Hf (s) is given by

HF (s) = (C +DF )[sI − (A+BF )]−1B +D

= [C(sI −A)−1B +D][I − F (sI −A)−1B]−1

= H(s)[I − F (sI −A)−1B]−1

= H(s)[F (sI − (A+BF ))−1B + I].

See also (9.42) and (9.45). Also

HF (s) = N(s)D−1
F (s) = [N(s)D−1(s)][D(s)D−1

F (s)]

= H(s)[D(s)D−1
F (s)]. (9.44)
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Linear State Observers

• Given ẋ = Ax+Bu, y = Cx+Du, the Luenberger observer is

˙̂x = Ax̂+Bu+K(y − ŷ), (9.57)

where ŷ = Cŷ +D or

˙̂x = (A−KC)x̂+ [B −KD,K]
[
u
y

]
, (9.58)

where K is chosen so that all the eigenvalues of A − KC have negative
real parts. Then the error e(t) = x(t)− x̂(t) will go to zero asymptotically.

• The eigenvalues of A−KC can be assigned to arbitrary real and/or com-
plex conjugate locations by selecting K if and only if the system [or (A,C)]
is observable. The unobservable eigenvalues of (A,C) cannot be shifted.
This is the dual problem to the control problem of assigning eigenvalues
in A+BF , and the same methods can be used (see Lemma 9.18).

• Optimal State Estimation. Consider ẋ = Ax + Bu + Γw, y = Cx + v,
where w, v are process and measurement noise. Let the state estimator be

˙̂x = Ax̂+Bu+K(y − Cx̂) (9.117)
= (A−KC)x̂+Bu+Ky, (9.71)

and consider minimizing the error covariance E[(x − x̂)(x − x̂)T ]. Under
certain controllability and observability conditions, the solution is unique
and it is given by

K∗ = P ∗
e C

TV −1, (9.72)

where P ∗
e is the symmetric, positive definite solution of the quadratic

(dual) algebraic Riccati equation

PeA
T +APe − PeC

TV −1CPe + ΓWΓ T = 0. (9.73)

This problem is the dual to the Linear Quadratic Regulator problem.
• The discrete-time case is analogous to the continuous-time case [see (9.76)].

The current estimator is given in (9.78)–(9.80). The optimal current esti-
mator is given by (9.88) and (9.89).

Observer-Based Dynamic Controllers

• Given ẋ = Ax + Bu, y = Cx + Du with the state feedback u = Fx + r,
if the state is estimated via a Luenberger observer, then the closed-loop
system is

[
ẋ
ė

]
=
[
A+BF −BF

0 A−KC

] [
x
e

]
+
[
B
0

]
r, (9.118)

y = [C +DF, −DF ]
[
x
e

]
+Dr. (9.99)

The error e = x− x̂.
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• The design of the control law (F ) can be carried out independently of the
design of the estimator (K) [see (9.101)–(9.106]. (Separation property)

• The compensated system behaves to the outside world as if there were
no estimator present—after sufficient time so the transients have become
negligible [see (9.109)].

• The observer based dynamic controller is a special case of a two degrees
of freedom controller [see (9.113)–(9.115)].

9.6 Notes

The fact that if a system is (state) controllable, then all its eigenvalues can
arbitrarily be assigned by means of linear state feedback has been known
since the 1960s. Original sources include Rissanen [20], Popov [18], and Won-
ham [24]. (See also remarks in Kailath [11, pp. 187, 195].)

The present approach for eigenvalue assignment via linear state feedback,
using the controller form, follows the development in Wolovich [23]. Acker-
mann’s formula first appeared in Ackermann [2].

The development of the eigenvector formulas for the feedback matrix that
assign all the closed-loop eigenvalues and (in part) the corresponding eigen-
vectors follows Moore [17]. The corresponding development that uses (A,B)
in controller (companion) form and polynomial matrix descriptions follows
Antsaklis [4]. Related results on static output feedback and on polynomial
and rational matrix interpolation can be found in Antsaklis and Wolovich [5]
and Antsaklis and Gao [6]. Note that the flexibility in assigning the eigenvalues
via state feedback in the multi-input case can be used to assign the invariant
polynomials of sI−(A+BF ); conditions for this are given by Rosenbrock [21].

The Linear Quadratic Regulator (LQR) problem and the Linear Quadratic
Gaussian (LQG) problem have been studied extensively, particularly in the
1960s and early 1970s. Sources for these topics include the books by Anderson
and Moore [3], Kwakernaak and Sivan [12], Lewis [13], and Dorato et al. [10].
Early optimal control sources include Athans and Falb [7] and Bryson and
Ho [9]. A very powerful idea in optimal control is the Principle of Optimality,
Bellman [8], which can be stated as follows: “An optimal trajectory has the
property that at any intermediate point, no matter how it was reached, the
remaining part of a trajectory must coincide with an optimal trajectory, com-
puted from the intermediate point as the initial point.” For historical remarks
on this topic, refer, e.g., to Kailath [11, pp. 240–241].

The most influential work on state observers is the work of Luenberger.
Although the asymptotic observer presented here is generally attributed to
him, Luenberger’s Ph.D. thesis work in 1963 was closer to the reduced-order
observer presented above. Original sources on state observers include Luen-
berger [14], [15], and [16]. For an extensive overview of observers, refer to the
book by O’Reilly [19].
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When linear quadratic optimal controllers and observers are combined
in control design, a procedure called LQG/LTR (Loop Transfer Recovery)
is used to enhance the robustness properties of the closed-loop system. For
a treatment of this procedure, see Stein and Athans [22] and contemporary
textbooks on multivariable control.
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Exercises

9.1. Consider the system ẋ = Ax + Bu, where A =
[
−0.01 0

0 −0.02

]
and

B =
[

1 1
−0.25 0.75

]
with u = Fx.

(a) Verify that the three different state feedback matrices given by

F1 =
[
−1.1 −3.7

0 0

]
, F2 =

[
0 0

−1.1 1.2333

]
, F3 =

[
−0.1 0

0 −0.1

]

all assign the closed-loop eigenvalues at the same locations, namely, at
−0.1025 ± j0.04944. Note that in the first control law (F1) only the first
input is used, whereas in the second law (F2), only the second input is
used. For all three cases, plot x(t) = [x1(t), x2(t)]T when x(0) = [0, 1]T

and comment on your results. This example demonstrates how different
the responses can be for different designs even though the eigenvalues of
the compensated system are at the same locations.

(b) Use the eigenvalue/eigenvector assignment method to characterize all F
that assign the closed-loop eigenvalues at −0.1025± j0.04944. Show how
to select the free parameters to obtain F1, F2, and F3 above. What are
the closed-loop eigenvectors in these cases?

9.2. For the system ẋ = Ax + Bu with A ∈ Rn×n and B ∈ Rn×m, where
(A,B) is controllable and m > 1, choose u = Fx as the feedback control
law. It is possible to assign all eigenvalues of A + BF by first reducing this
problem to the case of eigenvalue assignment for single-input systems (m = 1).
This is accomplished by first reducing the system to a single-input controllable
system. We proceed as follows.

Let F = g · f , where g ∈ Rm and fT ∈ Rn are vectors to be selected. Let
g be chosen such that (A,Bg) is controllable. Then f in
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A+BF = A+ (Bg)f

can be viewed as the state feedback gain vector for a single-input controllable
system (A,Bg), and any of the single-input eigenvalue assignment methods
can be used to select f so that the closed-loop eigenvalues are at desired
locations.

The only question that remains to be addressed is whether there exists g
such that (A,Bg) is controllable. It can be shown that if (A,B) is controllable
and A is cyclic, then almost any g ∈ Rm will make (A,Bg) controllable. (A
matrix A is cyclic if and only if its characteristic and minimal polynomials
are equal.) In the case when A is not cyclic, it can be shown that if (A,B,C)
is controllable and observable, then for almost any real output feedback gain
matrix H , A+BHC is cyclic. So initially, by an almost arbitrary choice of H
or F = HC, the matrix A is made cyclic, and then by employing a g, (A,Bg)
is made controllable. The state feedback vector gain f is then selected so that
the eigenvalues are at desired locations.

Note that F = gf is always a rank one matrix, and this restriction on
F reduces the applicability of the method when requirements in addition to
eigenvalue assignment are to be met.

(a) For A,B as in Exercise 9.4, use the method described above to determine
F so that the closed-loop eigenvalues are at −1± j and −2± j. Comment
on your choice for g.

(b) For A =
[

0 1
1 1

]
and B =

[
1 0
0 1

]
, characterize all g such that the closed-

loop eigenvalues are at −1.

9.3. Consider the system x(k + 1) = Ax(k) +Bu(k), where

A =

⎡
⎣

1 4 0
2 −1 0
0 0 1

⎤
⎦ , B =

⎡
⎣

0 0
1 0

−1 1

⎤
⎦ .

Determine a linear state feedback control law u(k) = Fx(k) such that all the
eigenvalues of A+BF are located at the origin. To accomplish this, use

(a) reduction to a single-input controllable system,
(b) the controller form of (A,B),
(c) det(zI − (A+BF )) and the resulting nonlinear system of equations.

In each case, plot x(k) with x(0) = [1, 1, 1]T and comment on your results.
In how many steps does your compensated system go to the zero state?

9.4. For the system ẋ = Ax+Bu, where

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 1 −3 4

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

1 0
0 0
0 0
0 1

⎤
⎥⎥⎦ ,
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determine F so that the eigenvalues of A+BF are at −1± j and −2± j. Use
as many different methods to choose F as you can.

9.5. Consider the SISO system ẋc = Acxc + Bcu, y = Ccxc + Dcu, where
(Ac, Bc) is in controller form with

Ac =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−α0 −α1 · · · −αn−1

⎤
⎥⎥⎥⎦ , Bc =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ , Cc = [c0, c1, . . . , cn−1],

and let u = Fcx + r = [f0, f1, . . . , fn−1]x + r be the linear state feedback
control law. Use the Structure Theorem of Section 6.4 to show that the open-
loop transfer function is

H(s) = Cc(sI −Ac)−1Bc +Dc =
cn−1s

n−1 + · · · + c1s+ c0
sn + αn−1sn−1 + · · · + α1s+ α0

+Dc

=
n(s)
d(s)

and that the closed-loop transfer function is

HF (s) = (Cc +DcFc)[sI − (Ac +BcFc)]−1Bc +Dc

=
(cn−1 +Dcfn−1)sn−1 + · · · + (c1s+Dcf1)s+ (c0 +Dcf0)
sn + (αn−1 − fn−1)sn−1 + · · · + (α1 − f1)s+ (α0 − f0)

+Dc

=
n(s)
dF (s)

.

Observe that state feedback does not change the numerator n(s) of the trans-
fer function, but it can arbitrarily assign any desired (monic) denominator
polynomial dF (s) = d(s) − Fc[1, s, . . . , sn−1]T . Thus, state feedback does not
(directly) alter the zeros of H(s), but it can arbitrarily assign the poles of
H(s). Note that these results generalize to the MIMO case [see (9.43)].

9.6. Consider the system ẋ = Ax+Bu, y = Cx, where

A =

⎡
⎣

0 1 0
0 0 1
1 0 −1

⎤
⎦ , B =

⎡
⎣

0
0
1

⎤
⎦ , C = [1, 2, 0].

(a) Determine an appropriate linear state feedback control law u = Fx +
Gr (G ∈ R) so that the closed-loop transfer function is equal to a given
desired transfer function

Hm(s) =
1

s2 + 3s+ 2
.
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We note that this is an example of model matching, i.e., compensating
a given system so that it matches the input–output behavior of a de-
sired model. In the present case, state feedback is used; however, output
feedback is more common in model matching.

(b) Is the compensated system in (a) controllable? Is it observable? Explain
your answers.

(c) Repeat (a) and (b) by assuming that the state is not available for mea-
surement. Design an appropriate state observer, if possible.

9.7. Design an observer for the oscillatory system ẋ(t) = v(t), v̇(t) = −ω2
0x(t),

using measurements of the velocity v. Place both observer poles at s = −ω0.

9.8. Consider the undamped harmonic oscillator ẋ1(t) = x2(t), ẋ2(t) =
−ω2

0x1(t) + u(t). Using an observation of velocity y = x2, design an ob-
server/state feedback compensator to control the position x1. Place the state
feedback controller poles at s = −ω0±jω0 and both observer poles at s = −ω0.
Plot x(t) for x(0) = [1, 1]T and ω0 = 2.

9.9. A servomotor that drives a load is described by the equation d2θ
dt2 + dθ

dt = u,
where θ is the shaft position (output) and u is the applied voltage. Choose u
so that θ and dθ

dt will go to zero exponentially (when their initial values are
not zero). To accomplish this, proceed as follows.

(a) Derive a state-space representation of the servomotor.
(b) Determine linear state feedback, u = Fx + r, so that both closed-loop

eigenvalues are at −1. Such F is actually optimal since it minimizes J =∫∞
0

[θ2 +
(
dθ
dt

)2
+ u2]dt.

(c) Since only θ and u are available for measurement, design an asymptotic
state estimator (with eigenvalues at, say, −3) and use the state estimate
x̂ in the linear state feedback control law. Write the transfer function and
the state-space description of the overall system and comment on stability,
controllability, and observability.

(d) Plot θ and dθ/dt in (b) and (c) for r = 0 and initial conditions equal to
[1, 1]T .

(e) Repeat (c) and (d), using a reduced-order observer of order 1.

9.10. Consider the LQR problem for the system ẋ = Ax+Bu, where (A,B)
is controllable and the performance index is given by

J̃(u) =
∫ ∞

0

e2αt[xT (t)Qx(t) + uT (t)Ru(t)]dt,

where α ∈ R,α > 0 and Q ≥ 0, R > 0.

(a) Show that u∗ that minimizes J̃(u) is a fixed control law with constant
gains on the states, even though the weighting matrices Q̃ = e2αtQ, R̃ =
e2αtR are time varying. Derive the algebraic Riccati matrix equation that
characterizes this control law.
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(b) The performance index given above has been used to solve the question
of relative stability. In light of your solution, how do you explain this?

Hint : Reformulate the problem in terms of the transformed variables x̃ =
eαtx, ũ = eαtu.

9.11. Consider the system ẋ =
[

0 1
1 1

]
x+

[
1
0

]
u and the performance indices

J1, J2 given by

J1 =
∫ ∞

0

(x2
1 + x2

2 + u2)dt and J2 =
∫ ∞

0

(900(x2
1 + x2

2) + u2)dt.

Determine the optimal control laws that minimize J1 and J2. In each case,
plot u(t), x1(t), x2(t) for x(0) = [1, 1]T and comment on your results.

9.12. Consider the system ẋ =
[

0 1
1 0

]
x+

[
0

−1

]
u, y = [1, 0]x.

(a) Use state feedback u = Fx to assign the eigenvalues of A+BF at −0.5±
j0.5. Plot x(t) = [x1(t), x2(t)]T for the open- and closed-loop system with
x(0) = [−0.6, 0.4]T .

(b) Design an identity observer with eigenvalues at −α ± j, where α > 0.
What is the observer gain K in this case?

(c) Use the state estimate x̂ from (b) in the linear feedback control law u =
F x̂, where F was found in (a). Derive the state-space description of the
closed-loop system. If u = F x̂ + r, what is the transfer function between
y and r?

(d) For x(0) = [−0.6, 0.4]T and x̂(0) = [0, 0]T , plot x(t), x̂(t), y(t), and u(t) of
the closed-loop system obtained in (c) and comment on your results. Use
α = 1, 2, 5, and 10, and comment on the effects on the system response.

Remark: This exercise illustrates the deterioration of system response when
state observers are used to generate the state estimate that is used in the
feedback control law.

9.13. Consider the system

x(k + 1) = Ax(k) +Bu(k) + Eq(k), y(k) = Cx(k),

where q(k) ∈ Rr is some disturbance vector. It is desirable to completely
eliminate the effects of q(k) on the output y(k). This can happen only when
E satisfies certain conditions. Presently, it is assumed that q(k) is an arbitrary
r × 1 vector.

(a) Express the required conditions on E in terms of the observability matrix
of the system.

(b) If A =
[

1 1
1 1

]
, C = [1, 1], characterize all E that satisfy these conditions.
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(c) Suppose E ∈ Rn×1, C ∈ Rp×1, and q(k) is a step, and let the objective
be to asymptotically reduce the effects of q on the output. Note that this
specification is not as strict as in (a), and in general it is more easily
satisfied. Use z-transforms to derive conditions for this to happen.
Hint : Express the conditions in terms of poles and zeros of {A,E,C}.

9.14. Consider the system ẋ = Ax +Bu, y = Cx +Du, where

A =
[

0 0
0 0

]
, B =

[
1 0
0 1

]
, C =

[
1 0
1 2

]
, D =

[
1 0
0 1

]
.

Let u = Fx + r be a linear state feedback control law. Determine F so that
the eigenvalues of A+BF are −1,−2 and are unobservable from y. What is
the closed-loop transfer function HF (s) (ŷ = HF r̂) in this case?
Hint: Select the eigenvalues and eigenvectors of A+BF .

9.15. Consider the controllable and observable SISO system ẋ = Ax + Bu,
y = Cx with H(s) = C(sI −A)−1B.

(a) If λ is not an eigenvalue of A, show that there exists an initial state x0

such that the response to u(t) = eλt, t ≥ 0, is y(t) = H(λ)eλt, t ≥ 0.
What happens if λ is a zero of H(s)?

(b) Assume that A has distinct eigenvalues. Let λ be an eigenvalue of A
and show that there exists an initial state x0 such that with “no input”
( u(t) ≡ 0 ), y(t) = keλt, t ≥ 0, for some k ∈ R.
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Feedback Control Systems

10.1 Introduction

This chapter focuses on one and two degrees of freedom feedback control sys-
tems that have been studied, using Polynomial Matrix (PMD) and Matrix
Fractional (MFD) Descriptions. The chapter starts by considering in Sec-
tion 10.2 interconnected systems and their properties, with emphasis on sys-
tems connected via feedback interconnections. Internal stability is central in
the development, and all stabilizing feedback controllers are parameterized
in Section 10.3. The role of the Diophantine equation is also explained. In
Section 10.4 two degrees of freedom controllers are studied at length.

10.2 Interconnected Systems

Interconnected systems, connected in parallel, series, and feedback configura-
tions are studied in the present section. It is shown that particular intercon-
nections may introduce uncontrollable, unobservable, or unstable modes into
a system; for a more detailed development, see [1, p. 568, Subsection 7.3C].
Feedback configurations, as well as series interconnections, are of particular
importance in the control of systems.

10.2.1 Systems Connected in Parallel and in Series

In Parallel

Consider first systems S1 and S2 connected in parallel as shown in Figure 10.1,
and let

P1(q)z1(t) = Q1(q)u1(t), y1(t) = R1(q)z1(t) (10.1)

and
P2(q)z2(t) = Q2(q)u2(t), y2(t) = R2(q)z2(t) (10.2)
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u

u1

u2

y1

y2

y

S1

S2

S

+

+

Figure 10.1. Systems connected in parallel

be representations (PMDs) for S1 and S2, respectively; see Section 7.5. Since
u(t) = u1(t) = u2(t) and y(t) = y1(t) + y2(t), the overall system description
is given by

[
P1(q) 0

0 P2(q)

] [
z1(q)
z2(q)

]
=
[
Q1(q)
Q2(q)

]
u(t), y(t) = [R1(q), R2(q)]

[
z1(t)
z2(t)

]
.

(10.3)
If the systems S1 and S2 are described by the state-space representations
ẋi = Aixi + Biui, yi = Cixi + Diui, i = 1, 2, then the overall system state-
space description is given by

[
ẋ1

ẋ2

]
=
[
A1 0
0 A2

] [
x1

x2

]
+
[
B1

B2

]
u,

y = [C1, C2]
[
x1

x2

]
+ [D1 +D2]u. (10.4)

If H1(s), H2(s) are the transfer function matrices of S1 and S2, respectively,
then the overall transfer function can be found from ŷ(s) = ŷ1(s) + ŷ2(s) =
H1(s)û1(s) +H2(s)û2(s) = [H1(s) +H2(s)]û(s) to be

H(s) = H1(s) +H2(s). (10.5)

Note that if both H1(s) and H2(s) are proper, then H(s) is also proper.

In Series

Consider now systems S1 and S2 connected in series, as shown in Figure 10.2,
and let (10.1) and (10.2) describe the systems. Here u2(t) = y1(t). To derive

u1 u2y1 y2

S

S1 S2

Figure 10.2. Systems connected in series
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the overall system description, consider P2z2 = Q2u2 = Q2y1 = Q2R1z1.
Then

[
P1 0

−Q2R1 P2

] [
z1
z2

]
=
[
Q1

0

]
u1,

y2 = [0, R2]
[
z1
z2

]
.

(10.6)

If the systems S1, S2 are described by the state-space representations ẋi =
Aixi +Ciui, yi = Cixi +Diui, i = 1, 2, then it can be shown that the overall
system state-space description is given by

[
ẋ1

ẋ2

]
=
[
A1 0
B2C1 A2

] [
x1

x2

]
+
[

B1 0
B2D1 B2

] [
u1

r2

]
,

[
y1
y2

]
=
[

C1 0
D2C1 C2

] [
x1

x2

]
+
[

D1 0
D2D1 D2

] [
u1

r2

]
.

(10.7)

IfH1(s), H2(s) are the transfer function matrices of S1 and S2, then the overall
transfer function ŷ2(s) = H(s)û1(s) is

H(s) = H2(s)H1(s). (10.8)

It can be shown that if both H1 and H2 are proper, then H is also proper.
Note that poles of H1 and H2 may cancel in the product H2H1 and any
cancellation implies that there are uncontrollable/unobservable eigenvalues in
the overall system internal description.

10.2.2 Systems Connected in Feedback Configuration

Consider systems S1 and S2 connected in a feedback configuration as shown
in Figure 10.3a, or equivalently as in Figure 10.3b. Let

P1(q)z1(t) = Q1(q)u1(t), y1(t) = R1(q)z1(t) (10.9)

and
P2(q)z2(t) = Q2(q)u2(t), y2(t) = R2(q)z2(t) (10.10)

be polynomial matrix representations of S1 and S2, respectively. Since

u1(t) = y2(t) + r1(t), (10.11)
u2(t) = y1(t) + r2(t), (10.12)

where r1 and r2 are external inputs, the dimensions of the vector inputs
and outputs, u1 and y2 and also u2 and y1 must be the same. To derive
the overall system description we consider P1z1 = Q1u1 = Q1(y2 + r1) and
P2z2 = Q2u2 = Q2(y1+r2) where y1 and y2 are as above. Then the closed-loop
is described by
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+

u1

r2

y1

y2

S1

S2

+

u2

r1

+

+

+

u1r2 y1y2+ u2

r1

S1S2 +

+

(a)

(b)

Figure 10.3. Feedback configuration

[
P1 −Q1R2

−Q2R1 P2

] [
z1
z2

]
=
[
Q1 0
0 Q2

] [
r1
r2

]
,

[
y1
y2

]
=
[
R1 0
0 R2

] [
z1
z2

]
.

(10.13)
Note that the condition for the closed-loop system to be well defined is that

det
([

P1 −Q1R2

−Q2R1 P2

])
�= 0. (10.14)

If this condition is not satisfied, then the closed-loop system cannot be de-
scribed by the polynomial matrix representations discussed here.

If the systems S1 and S2 are described by the state-space representations
ẋi = Aixi + Biui, yi = Cixi + Diui, i = 1, 2, then it can be shown that the
closed-loop system state-space description is

[
ẋ1
ẋ2

]
=
[
A1+B1M2D2C1 B1M2C2

B2M1C1 A2+B2M1D1C2

]
[ x1
x2 ] +

[
B1M2 B1M2D2
B2M1D1 B2M1

]
[ r1r2 ] ,

[ y1y2 ] =
[

M1C1 M1D1C2
M2D2C1 M2C2

]
[ x1
x2 ] +

[
M1D1 M1D1D2

M2D2D1 M2D2

]
[ r1r2 ] , (10.15)

where M1 = (I − D1D2)−1 and M2 = (I − D2D1)−1. It is assumed that
det(I −D1D2) = det(I −D2D1) �= 0.

It is not difficult to see that in the case of state-space representations the
conditions for the closed-loop system state-space representation to be well
defined is det(I − D1D2) �= 0. When D1 = 0 and D2 = 0, then (10.15)
simplifies to
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[
ẋ1

ẋ2

]
=
[
A1 B1C2

B2C1 A2

] [
x1

x2

]
+
[
B1 0
0 B2

] [
r1
r2

]
,

[
y1
y2

]
=
[
C1 0
0 C2

] [
x1

x2

]
. (10.16)

Example 10.1. Consider systems S1 and S2 in a feedback configuration with
H1(s) = s

s+1 and H2(s) = 1 and consider the realizations {P1, Q1, R1,W1} =
{q + 1, q, 1, 0} and {P2, Q2, R2,W2} = {1, 1, 1, 0}. Then (10.13) becomes

[
q + 1 −q
−1 1

] [
z1
z2

]
=
[
q 0
0 1

] [
r1
r2

]
,

[
y1
y2

]
=
[

1 0
0 1

] [
z1
z2

]
.

Since det
([

q + 1 −q
−1 1

])
= 1 �= 0, this is a well-defined polynomial matrix

description for the closed-loop system. Note that the transfer function matrix

of the closed-loop system is H(s) =
[

1 0
0 1

] [
s+ 1 −s
−1 1

]−1 [
s 0
0 1

]
=
[
s s
s s+ 1

]
,

which is not proper, whereas H1 and H2 were both proper.
Now if state-space realizations of H1(s) = −1

s+1 + 1 and H2(s) = 1 are
considered, namely {A1, B1, C1, D1} = {−1, 1,−1, 1} and {A2, B2, C2, D2} =
{0, 0, 0, 1}, then 1 − D1D2 = 1 − 1 · 1 = 0; i.e., a state-space description of
the closed-loop does not exist. This is to be expected since the closed-loop
transfer function is nonproper and as such cannot be represented by a state-
space realization {A,B,C,D}.

Next, let H1(s) and H2(s) be the transfer function matrices of S1 and S2;
i.e., ŷ1(s) = H1(s)û1(s) and ŷ2(s) = H2(s)û2(s). In view of û1 = ŷ2 + r̂1
and û2 = ŷ1 + r̂2, we have ŷ1 = H1û1 = H1(ŷ2 + r̂1) = H1H2û2 + H1r̂1 =
H1H2ŷ1 +H1H2r̂2 +H1r̂1 or

(I −H1H2)ŷ1 = H1H2r̂2 +H1r̂1. (10.17)

Also, ŷ2 = H2û2 = H2(ŷ1+ r̂2) = H2H1û1+H2r̂2 = H2H1ŷ2+H2H1r̂1+H2r̂2
or

(I −H2H1)ŷ2 = H2H1r̂1 +H2r̂2. (10.18)

Note that det(I −H1H2) = det(I −H2H1), and assume that the determinant
is nonzero. Then

[
ŷ1
ŷ2

]
=
[

(I −H1H2)−1H1 (I −H1H2)−1H1H2

(I −H2H1)−1H2H1 (I −H2H1)−1H2

] [
r̂1
r̂2

]

=
[
H11 H12

H21 H22

] [
r̂1
r̂2

]
.

(10.19)
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The significance of the assumption det(I −H1H2) �= 0 can be seen as fol-
lows. Let D̃1z̃1 = Ñ1u1, y1 = z̃1 and D2z2 = u2, y2 = N2z2 be representations
of the systems S1 and S2. As will be shown below, the closed-loop system
description in this case is given by (D̃1D2 − Ñ1N2)z2 = Ñ1r1 + D̃1r2 and
y1 = D2z2−r2 and y2 = N2z2. Now note that I−H1H2 = I−D̃−1

1 Ñ1N2D
−1
2 =

D̃−1
1 (D̃1D2− Ñ1N2)D−1

2 , which implies that det(I−H1H2) �= 0 if and only if
det(D̃1D2 − Ñ1N2) �= 0; i.e., if det(I −H1H2) = 0, then the closed-loop sys-
tem cannot be described by the polynomial matrix representations discussed
in this chapter. Thus, the assumption that det(I −H1H2) �= 0 is essential for
the closed-loop system to be well defined.

Example 10.2. Consider H1(s) = s
s+1 and H2(s) = 1 as in Example 10.1.

Here 1 − H1H2 = 1
s+1 �= 0, and therefore, the closed-loop system is well

defined. Relation (10.19) assumes in this case the form
[
ŷ1
ŷ2

]
=
[
s s
s s+ 1

] [
r̂1
r̂2

]
,

a nonproper transfer function that is the transfer function matrixH(s) derived
in Example 10.1.

For simplicity, assume that both S1 and S2 in Figure 10.3 are controllable
and observable and consider the following representations.

For system S1:

(1a) D1(q)z1(t) = u1(t), y1(t) = N1(q)z1(t) (10.20)

or
(1b) D̃1(q)z̃1(t) = Ñ1(q)u1(t), y1(t) = z̃1(t), (10.21)

where (D1(q), N1(q)) are rc and (D̃1(q), Ñ1(q)) are lc.
For system S2:

(2a) D2(q)z2(t) = u2(t), y2(t) = N2(q)z2(t) (10.22)

or
(2b) D̃2(q)z̃2(t) = Ñ2(q)u2(t), y2(t) = z̃2(t), (10.23)

where (D2(q), N2(q)) are rc and (D̃2(q), Ñ2(q)) are lc.
In view of the connections

u1(t) = y2(t) + r1(t), u2(t) = y1(t) + r2(t), (10.24)

the closed-loop feedback system of Figure 10.3 can now be characterized as
follows [see also (10.13)]:
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(i) Using descriptions (1a) and (2a), and Eqs. 10.20 and 10.21, we have
[

D1 −N2

−N1 D2

] [
z1
z2

]
=
[
I 0
0 I

] [
r1
r2

]
,

[
y1
y2

]
=
[
N1 0
0 N2

] [
z1
z2

]
. (10.25)

(ii) Using descriptions (1b) and (2b), we have
[

D̃1 −Ñ1

−Ñ2 D̃2

] [
z̃1
z̃2

]
=

[
Ñ1 0
0 Ñ2

][
r1
r2

]
,

[
y1
y2

]
=
[
I 0
0 I

] [
z̃1
z̃2

]
. (10.26)

(iii) Using descriptions (1b) and (2a), we have
[
D̃1 −Ñ1N2

−I D2

] [
z̃1
z2

]
=
[
Ñ1 0
0 I

] [
r1
r2

]
,

[
y1
y2

]
=
[
I 0
0 N2

] [
z̃1
z2

]
. (10.27)

Also, D2z2 = u2 = y1 + r2 = D̃−1
1 Ñ1u1 + r2 = D̃−1

1 Ñ1(y2 + r1) + r2 =
D̃−1

1 Ñ1(N2z2 + r1) + r2 and y1 = u2 − r2 = D2z2 − r2, from which we
obtain

(D̃1D2 − Ñ1N2)z2 = [Ñ1, D̃1]
[
r1
r2

]
,

[
y1
y2

]
=
[
D2

N2

]
z2 +

[
0 −I
0 0

] [
r1
r2

]
.

(10.28)
(iv) Using descriptions (1a) and (2b), we have

[
D1 −I

−Ñ2N1 D2

] [
z1
z̃2

]
=
[
I 0
0 Ñ2

] [
r1
r2

]
,

[
y1
y2

]
=
[
N1 0
0 I

] [
z1
z̃2

]
. (10.29)

Also, D1z1 = u1 = y2 + r1 = D̃−1
2 Ñ2u2 + r1 = D̃−1

2 Ñ2(y1 + r2) + r1 =
D̃−1

2 Ñ2(N1z1 + r2) + r1 and y2 = u1 − r1 = D1z1 − r1, from which we
obtain

(D̃2D1 − Ñ2N1)z1 = [D̃2, Ñ2]
[
r1
r2

]
,

[
y1
y2

]
=
[
N1

D1

]
z1 +

[
0 0

−I 0

] [
r1
r2

]
.

(10.30)

Controllability and Observability

The preceding descriptions of the closed-loop system given in (i), (ii), (iii),
and (iv) are equivalent and have the same uncontrollable and unobservable
modes. The systems S1 and S2 were taken to be controllable and observable,
and so the uncontrollability and unobservability discussed below is due to the
feedback interconnection only.
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Controllability. To study controllability, consider the representation (10.25).

It can be seen from the matrices
[

D1 −N2

−N1 D2

]
and

[
I 0
0 I

]
that the eigenvalues

that are uncontrollable from r1 will be the roots of the determinant of a
gcld of [−N1, D2] and the eigenvalues that are uncontrollable from r2 will
be the roots of a gcld of [D1,−N2]. The closed-loop system is controllable

from
[
r1
r2

]
. Clearly, all possible eigenvalues that are uncontrollable from r1

are eigenvalues of S2. These are the poles of H2 = N2D
−1
2 that cancel in the

product H2N1. Similarly, all possible eigenvalues that are uncontrollable from
r2 are eigenvalues of S1. These are the poles of H1 = N1D

−1
1 that cancel in

the product H1N2.

Observability. To study observability, consider the representation (10.26).

From the matrices

[
D̃1 −Ñ1

−Ñ2 D̃2

]
and

[
I 0
0 I

]
, it can be seen that the eigen-

values that are unobservable from y1 will be the roots of the determinant of

a gcrd of

[
−Ñ1

D̃2

]
and the eigenvalues that are unobservable from y2 will be

the roots of the determinant of a gcrd of

[
D̃1

−Ñ2

]
. The closed-loop system is

observable from
[
y1
y2

]
. Clearly, all possible eigenvalues that are unobservable

from y1 are eigenvalues of S2. These are the poles of H2 = D̃−1
2 Ñ2 that cancel

in the product Ñ1H2. Similarly, all possible eigenvalues that are unobservable
from y2 are eigenvalues of S1. These are the poles of H1 = D̃−1

1 Ñ1 that cancel
in the product Ñ2H1, H2[H1, I].

Example 10.3. Consider systems S1 and S2 connected in the feedback con-
figuration of Figure 10.3, and let S1 and S2 be described by the transfer func-
tionsH1(s) = s+1

s−1 , andH2(s) = a1s+a0
s+b . For the closed-loop to be well defined,

we must have 1−H1H2 = 1− s+1
s−1

a1s+a0
s+b = (1−a1)s

2+(b−a1−a0−1)s−(b+a0)
(s−1)(s+b) �= 0.

Note that for a1 = 1, a0 = −1, and b = 1, H2 = s−1
s+1 and 1−H1H2 = 1−1 = 0.

Therefore, these values are not allowed for the parameters if the closed-loop
system is to be represented by a PMD. If state-space descriptions are to be
used, let D1 = lims→∞H1(s) = 1 and D2 = lims→∞H2(s) = a1, from which
we have 1−D1D2 = 1−a1 �= 0 for the closed-loop system to be characterized
by a state-space description. Let us assume that a1 �= 1.

The uncontrollable and unobservable eigenvalues can be determined from
a PMD such as (10.28). Alternatively, in view of the discussion just preceding
this example, we conclude the following. (i) The eigenvalues that are uncon-
trollable from r1 are the poles of H2 that cancel in H2N1 = a1s+a0

s+b (s+1); i.e.,
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there is an eigenvalue that is uncontrollable from r1 (at −1) only when b = 1.
If this is the case, −1 is also an eigenvalue that is unobservable from y1. (ii)
The poles of H1 that cancel in H1N2 = s+1

s−1 (a1s+a0) are the eigenvalues that
are uncontrollable from r2; i.e., there is an eigenvalue that is uncontrollable
from r2 (at +1) only when a0/a1 = −1. If this is the case, +1 is also an
eigenvalue that is unobservable from y2.

Stability

The closed-loop feedback system is internally stable if and only if all of its
eigenvalues have negative real parts. The closed-loop eigenvalues can be deter-
mined from the closed-loop descriptions derived above. First recall the iden-
tities

det
[
A D
C B

]
= det(A) det(B − CA−1D) = det(B) det(A−DB−1C), (10.31)

where in the first expression it was assumed that det(A) �= 0 and in the second
expression it was assumed that det(B) �= 0. The proof of this result is im-

mediate from the matrix identities
[

I 0
−CA−1 I

] [
A D
C B

]
=
[
A D
0 B − CA−1D

]

and
[
I −DB−1

0 I

] [
A D
C B

]
=
[
A−DB−1C 0

C B

]
.

We now consider the polynomial matrices
[

D1 −N2

−N1 D2

]
,

[
D̃1 −Ñ1

−Ñ2 D̃2

]
,

(D̃1D2 − Ñ1N2), and (D̃2D1 − Ñ2N1) from the closed-loop descriptions in
(i), (ii), (iii), and (iv). Then

det
([

D1 −N2

−N1 D2

])
= det(D1) det(D2 −N1D

−1
1 N2)

= det(D1) det(D2 − D̃−1
1 Ñ1N2)

= det(D1) det(D̃−1
1 ) det(D̃1D2 − Ñ1N2)

= α1 det(D̃1D2 − Ñ1N2), (10.32)

where α1 is a nonzero real number. Also

det
([

D1 −N2

−N1 D2

])
= det(D2) det(D1 −N2D

−1
2 N1)

= det(D2) det(D1 − D̃−1
2 Ñ2N1)

= det(D2) det(D̃−1
2 ) det(D̃2D1 − Ñ2N1)

= α2 det(D̃2D1 − Ñ2N1), (10.33)
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where α2 is a nonzero real number.
Similarly,

det

([
D̃1 −Ñ1

−Ñ2 D̃2

])
= α̂1 det(D̃2D1 − Ñ2N1), (10.34)

where α̂1 = det(D̃1) det(D−1
1 ) is a nonzero real number, and

det

([
D̃1 −Ñ1

−Ñ2 D̃2

])
= α̂2 det(D̃1D2 − Ñ1N2), (10.35)

where α̂2 = det(D̃2) det(D−1
2 ) is a nonzero real number. These computations

verify that the equivalent representations given by (i), (ii), (iii), and (iv) have
identical eigenvalues.

The following theorem presents conditions for the internal stability of the
feedback system of Figure 10.3. These conditions are useful in a variety of
circumstances. Assume that the systems S1 and S2 are controllable and ob-
servable and that they are described by (10.20)–(10.23) with transfer function
matrices given by

H1 = N1D
−1
1 = D̃−1

1 Ñ1 (10.36)

and
H2 = N2D

−1
2 = D̃−1

2 Ñ2, (10.37)

where the (Ni, Di) are rc and the (Ñi, D̃i) are lc for i = 1, 2. Let α1(s) and
α2(s) be the pole (characteristic) polynomials of H1(s) and H2(s), respec-
tively. Note that αi(s) = ki det(Di(s)) = k̃i det(D̃i(s)), i = 1, 2, for some
nonzero real numbers ki, k̃i. Consider the feedback system in Figure 10.3.

Theorem 10.4. The following statements are equivalent:

(a) The closed-loop feedback system in Figure 10.3 is internally stable.
(b) The polynomial

(i) det
([

D1 −N2

−N1 D2

])
, or

(ii) det

([
D̃1 −Ñ1

−Ñ2 D̃2

])
, or

(iii) det(D̃1D2 − Ñ1N2), or
(iv) det(D̃2D1 − Ñ2N1)
is Hurwitz; that is, its roots have negative real parts.

(c) The polynomial

α1(s)α2(s) det(I −H1(s)H2(s)) = α1(s)α2(s) det(I −H2(s)H1(s))
(10.38)

is a Hurwitz polynomial.
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(d) The poles of

[
û1

û2

]
=
[

I −H2

−H1 I

]−1 [
r̂1
r̂2

]

=
[

(I −H2H1)−1 H2(I −H1H2)−1

H1(I −H2H1)−1 (I −H1H2)−1

] [
r̂1
r̂2

]
(10.39)

are stable; i.e., they have negative real parts.
(e) The poles of

[
ŷ1
ŷ2

]
=
[
−H2 I
I −H1

]−1 [ 0 H2

H1 0

] [
r̂1
r̂2

]

=
[

(I −H1H2)−1H1 (I −H1H2)−1H1H2

(I −H2H1)−1H2H1 (I −H2H1)−1H2

] [
r̂1
r̂2

]
(10.40)

are stable.

Proof. See [1, p. 583, Theorem 3.15]. �

Remarks

It is important to consider all four entries in the transfer function (10.40)

between
[
y1
y2

]
and

[
r1
r2

]
[or in (10.39) between

[
u1

u2

]
and

[
r1
r2

]
] when con-

sidering internal stability. Note that the eigenvalues that are uncontrollable
from r1 or r2 will not appear in the first or the second column of the transfer
matrix, respectively. Similarly, the eigenvalues that are unobservable from y1
or y2 will not appear in the first or the second row of the transfer matrix,
respectively. Therefore, consideration of the poles of some of the entries only
may lead to erroneous results, since possible uncontrollable or unobservable
modes may be omitted from consideration, and these may lead to instabilities.

Closed-Loop Characteristic Polynomial. The open-loop characteristic poly-
nomial of the feedback system is α1(s)α2(s). The closed-loop characteristic
polynomial is a monic polynomial, αcl(s), with roots equal to the closed-loop
eigenvalues; i.e., it is equal to any of the polynomials in (b) within a multi-
plication by a nonzero real number. Then, relation (10.38) implies, in view of
(iv), that the determinant of the return difference matrix (I −H1(s)H2(s)) is
the ratio of the closed-loop characteristic polynomial over the open-loop char-
acteristic polynomial within a multiplication by a nonzero real number.

Example 10.5. Consider the feedback configuration of Figure 10.3 with
H1 = s+1

s−1 and H2 = a1s+a0
s+b the transfer functions of systems S1 and S2,

respectively. Let a1 �= 1 so that the loop is well defined in terms of state-space
representations (and all transfer functions are proper). (See Example 10.3.)
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All polynomials in (b) of Theorem 10.4 are equal within a multiplication
by a nonzero real number, to the closed-loop characteristic polynomial given
by αcl(s) = s2 + b−a1−a0−1

1−a1
s − b+a0

1−a1
. This polynomial must be a Hurwitz

polynomial for internal stability. If α1(s) = s − 1 and α2(s) = s + b are
the pole polynomials of H1 and H2, then the polynomial in (c) is given by
α1(s)α2(s)(1 − H1(s)H2(s)) = (1 − a1)s2 + (b − a1 − a0 − 1)s − (b + a0) =
(1 − a1)αcl(s), which implies that the return difference 1 − H1(s)H2(s) =
(1−a1)

αcl(s)
α1(s)α2(a) . Note that (1−H1H2)−1 = (1−H2H1)−1 = (s−1)(s+b)

α(s) with
α(s) = (1−α1)αcl(s) and the transfer function matrix in (d) of Theorem 10.4
is given by [

û1

û2

]
=

[
(s−1)(s+b)

α(s)
(s−1)(a1s+a0)

α(s)
(s+1)(s+b)

α(s)
(s−1)(s+b)

α(s)

][
r̂1
r̂2

]
.

The polynomial α(s) has a factor s + 1 when b = 1. Notice that α(−1) =
2 − 2b = 0 when b = 1. If this is the case (b = 1), then

[
û1

û2

]
=

[
s−1
ᾱ(s)

(s−1)(a1s+a0)
α(s)

s+1
ᾱ(s)

s−1
ᾱ(s)

][
r̂1
r̂2

]
,

where α(s) = (s+ 1)ᾱ(s). Notice that three out of four transfer functions do
not contain the pole at −1 in ᾱ(s). Recall that when b = 1,−1 is an eigenvalue
that is uncontrollable from the r1 eigenvalue and it cancels in certain transfer
functions as expected (see Example 10.3). Similar results can be derived when
a0/a1 = −1. This illustrates the necessity for considering all the transfer
functions between u1, u2 and r1, r2 when studying the internal stability of the
feedback system. Similar results can be derived when considering the transfer
functions between y1, y2 and r1, r2 in (e).

10.3 Parameterization of All Stabilizing Feedback
Controllers

In this section, it is shown that all stabilizing feedback controllers can be
conveniently parameterized. These parameterizations are very important in
control since they are fundamental in methodologies such as the optimal H∞

approach to control design. Our development builds on the controllability,
observability, and particularly the internal stability results introduced in Sec-
tion 10.2, as well as on Diophantine Equation results [1, Subsection 7.2E].
First, in Subsection 10.3.1, all stabilizing feedback controllers are parameter-
ized, using PMDs. Parameterizations are introduced, using first the polyno-
mial matrix parameters (i) Dk, Nk and D̃k, Ñk and then the stable rational
parameter (ii) K = NkD

−1
k = D̃−1

k Ñk. These parameters are very convenient
in characterizing stability, but cumbersome when properness of the controller
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transfer function is to be guaranteed. A parameterization that uses proper
and stable MFDs and involves a proper and stable parameter K ′ is then in-
troduced in Subsection 10.3.2. This is very convenient when properness of H2

is to be guaranteed. The parameter K ′ is closely related to the parameter K
used in the second approach enumerated above. This type of parameterization
is useful in certain control design methods such as optimal H∞ control de-
sign. Two degrees of freedom feedback controllers offer additional capabilities
in control design and are discussed in Subsection 10.3.2. Control problems are
also described in this subsection.

In the following discussion, the term “stable system S” is taken to mean
that the eigenvalues of the internal description of system S have negative real
parts (in the continuous-time case); i.e., the system S is internally stable.
Note that when the transfer functions in (10.39) and (10.40) of the feedback
system S are proper, internal stability of S implies bounded-input, bounded-
output stability of the feedback system, since the poles of the various transfer
functions are a subset of the closed-loop eigenvalues.

10.3.1 Stabilizing Feedback Controllers Using Polynomial MFDs

Now consider systems S1 and S2 connected in the feedback configuration
shown in Figure 10.3. Given S1, it is shown how to parameterize all systems
S2 so that the closed-loop feedback system is internally stable. Thus, if S1 = S,
called the plant, is a given system to be controlled, then S2 = Sc is viewed
as the feedback controller that is to be designed. Presently we provide the
parameterizations of all stabilizing feedback controllers.

Theorem 10.6. Assume that the system S1 is controllable and observable
and is described by the PMD (or PMFD) as (a) D1z1 = u1, y1 = N1z1
given in (10.20), or by (b) D̃1z̃1 = Ñ1u1, y1 = z̃1 given in (10.21). Let the
pair (D1, N1) and the pair (D̃1, Ñ1) be doubly coprime factorizations of the
transfer function matrix H1(s) = N1D

−1
1 = D̃−1

1 Ñ1. That is,

UU−1 =
[
X1 Y1

−Ñ1 D̃1

] [
D1 −Ỹ1

N1 X̃1

]
=
[
I 0
0 I

]
, (10.41)

where U is a unimodular matrix (i.e., detU is a nonzero real number) and
X1, Y1, X̃1, Ỹ1 are appropriate matrices. Then all the controllable and observ-
able systems S2 with the property that the closed-loop feedback system eigen-
values are stable (i.e., they have negative real parts) are described by

(a) D̃2z̃2 = Ñ2u2, y2 = z̃2, (10.42)

where D̃2 = D̃kX1 − ÑkÑ1 and Ñ2 = −(D̃kY1 + ÑkD̃1) with X1, Y1, Ñ1, D̃1

given in (10.41) and the parameters D̃k and Ñk are selected arbitrarily under
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the conditions that D̃−1
k exists and is stable, and the pair (D̃k, Ñk) is lc and

is such that det(D̃kX1 − ÑkÑ1) �= 0.
Equivalently, all stabilizing S2 can be described by

(b) D2z2 = u2, y2 = N2z2, (10.43)

where D2 = X̃1Dk − N1Nk and N2 = −(Ỹ1Dk + D1Nk) with X̃1, Ỹ1, Ñ1, D̃1

given in (10.41) and the parameters Dk and Nk are selected arbitrarily under
the conditions that D−1

k exists and is stable, and the pair (Dk, Nk) is rc and
is such that det(X̃1Dk −N1Nk) �= 0.

Furthermore, the closed-loop eigenvalues are precisely the roots of det D̃k

or of detDk. In addition, the transfer function matrix of S2 is given by

H2 = −(D̃kX1 − ÑkÑ1)−1(D̃kY1 + ÑkD̃1)

= −(Ỹ1Dk +D1Nk)(X̃1Dk −N1Nk)−1. (10.44)

Proof. The closed-loop description in case (a) is given by (10.30) and in case
(b) it is given by (10.28). It can be shown [1, Subsection 7.2E] that the ex-
pression in (a) and (b) above can also be written as

[D̃2,−Ñ2] = [D̃k, Ñk]U (10.45)

and that [
N2

D2

]
= U−1

[
−Nk
Dk

]
(10.46)

are parameterizations of all solutions of the Diophantine equation

D̃2D1 − Ñ2N1 = D̃k (10.47)

and
D̃1D2 − Ñ1N2 = Dk, (10.48)

respectively, where we let D̃k and Dk be desired closed-loop matrices. The
fact that D̃−1

k (or D−1
k ) exists and is stable guarantees that all the closed-

loop eigenvalues, which are the poles of D̃−1
k (or of D−1

k ), will be stable. The
condition det(D̃kX1−ÑkÑ1) �= 0 (or det(X̃1Dk−N1Nk) �= 0) guarantees that
det D̃2 �= 0 (or detD2 �= 0) and therefore the polynomial matrix description
for S2 in (10.28) is well defined. Finally, note that the pair (D̃k, Ñk) is lc if
and only if the pair (D̃2, Ñ2) is lc as can be seen from [D̃2,−Ñ2] = [D̃k, Ñk]U
given in (10.45) where U unimodular. This then implies that the description
{D̃2, Ñ2, I} for S2 is both controllable and observable. Similarly, the pair
(Dk, Nk) is rc, which guarantees that {D2, I,N2} with D2 and N2 given in
(10.46) is also a controllable and observable description for S2. �

In place of the polynomial matrix parameters D̃k, Ñk or Dk, Nk, it is pos-
sible to use a single parameter, a stable rational matrix K. This is shown
next.
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Theorem 10.7. Assume that the system S1 is controllable and observable and
is described by its transfer function matrix

H1 = N1D
−1
1 = D̃−1

1 Ñ1, (10.49)

where the pairs (N1, D1), (D̃1, Ñ1) are doubly coprime factorizations satisfying
(10.41). Then all the controllable and observable systems S2 with the property
that the closed-loop feedback system eigenvalues are stable (i.e., they have
strictly negative real parts) are described by the transfer function matrix

H2 = −(X1 −KÑ1)−1(Y1 +KD̃1)

= −(Ỹ1 +D1K)(X̃1 −N1K)−1, (10.50)

where the parameter K is an arbitrary rational matrix that is stable and is
such that det(X1 −KÑ1) �= 0 or det(X̃1 −N1K) �= 0. Furthermore, the poles
of K are precisely the closed-loop eigenvalues.

Proof. This is in fact a corollary to Theorem 10.6. It is called a theorem here
since it was historically one of the first results established in this area. The
parameter K is called the Youla parameter .

In Theorem 10.6, descriptions for H2 were given in (10.44) in terms of the
parameters D̃k, Ñk and Dk, Nk. Now in view of −D̃kNk+ ÑkDk = 0, we have

D̃−1
k Ñk = NkD

−1
k = K, (10.51)

which is a stable rational matrix. Since the pair (D̃k, Ñk) is lc and the pair
(Nk, Dk) is rc, they are coprime factorizations for K. Therefore, H2 in (10.50)
can be written as the H2 of (10.44) given in the previous theorem, from which
the controllable and observable internal descriptions for S2 in (10.42) and
(10.43) can immediately be derived. Conversely, (10.50) can immediately be
derived from (10.44), using (10.51). Note that the poles of K are the roots of
det D̃k or detDk, which are the closed-loop eigenvalues. �

Example 10.8. Consider H1 = s+1
s−1 . Here N1 = Ñ1 = s+ 1 and D1 = D̃1 =

s− 1. These are doubly coprime factorizations (a trivial case) since (10.41) is
satisfied. We have

UU−1 =
[
X1 Y1

−Ñ1 D̃1

] [
D1 −Ỹ1

N1 X̃1

]

=
[

s+ 1
2 −s+ 3

2
−(s+ 1) s− 1

] [
s− 1, −(−s+ 3

2 )
s+ 1, s+ 1

2

]
=
[

1 0
0 1

]
.

In view of (10.44) and (10.50), all stabilizing controllers H2 are then given by

H2 = −
(−s+ 3

2 )dk + (s− 1)nk
(s+ 1

2 )dk − (s+ 1)nk
= −

(−s+ 3
2 ) + (s− 1)K

(s+ 1
2 ) − (s+ 1)K

,

where K = nk/dk is any stable rational function.
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Example 10.9. Consider H1(s) = [ 1
s2 ,

s+1
s2 ] = [1, 0]

[
s2 −(s+ 1)
0 1

]−1

=

N1D
−1
1 = 1

s2 [1, s+ 1] = D̃−1
1 Ñ1, which are coprime polynomial MFDs. Rela-

tion (10.41) is given by

UU−1 =
[
X1 Y1

−Ñ1 D̃1

] [
D1 −Ỹ1

N1 X̃1

]

=

⎡
⎣

1 s+ 1 −s2 + 1
s s2 + s+ 1 −s3
−1 −(s+ 1) s2

⎤
⎦
⎡
⎣
s2 −(s+ 1) −(s+ 1)
0 1 s
1 0 1

⎤
⎦

=

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ .

All stabilizing controllers may then be determined by applying (10.44) or
(10.50).

Remark

In [1, pp. 592–605] a complete treatment of several different parameterizations
of all stabilizing controllers is given. The first two parameterizations involving
Dk and K were presented here. Another interesting parameterization involves
Q1 and Q2 [1, p. 597], which in the case when the plant is stable, it becomes
particularly attractive [1, p. 597, Corollary 4.4].

10.3.2 Stabilizing Feedback Controllers Using Proper and Stable
MFDs

In the above development all systems S2 that internally stabilize the closed-
loop feedback system were parametrically characterized. In that development
H1, the transfer function of S1 was not necessarily proper and the stabilizing
H2 as well as the closed-loop system transfer function were not necessarily
proper either. Recall that a system is said to be internally stable when all
of its eigenvalues, which are the roots of its characteristic polynomial, have
strictly negative real parts. Polynomial matrix descriptions that can easily
handle the case of nonproper transfer functions were used to derive the above
results and the case of proper H1 and H2 was handled by restricting the
parameters used to characterize all stabilizing controllers.

Here we concentrate exclusively on the case of proper transfer functionsH1

of S1 and parametrically characterize all proper H2, which internally stabilize
the closed-loop system. For this purpose, proper and stable matrix fractional
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descriptions (MFDs) of H1 and H2 are used. Such MFDs are now described
[1, Subsection 7.4C].

Consider H(s) ∈ R(s)p×m to be proper, i.e., lims→∞H(s) <∞, and write
the MFD as

H(s) = N ′(s)D′(s)−1, (10.52)
where the N ′(s) and D′(s) are proper and stable rational matrices that
we denote here as N ′(s) ∈ RHp×m

∞ and D′(s) ∈ RHm×m
∞ ; that is, they

are matrices with elements in RH∞, the set of all proper and stable ra-
tional functions with real coefficients. For instance, if H(s) = s−1

(s−2)(s+1) ,

then H(s) =
[

s−1
(s+2)(s+3)

] [
(s−2)(s+1)
(s+2)(s+3)

]−1

=
[

s−1
(s+1)2

] [
s−2
s+1

]−1

are examples
of proper and stable MFDs.

A pair (N ′, D′) ∈ RH∞ is called right coprime (rc) in RH∞ if there exists
a pair (X ′, Y ′) ∈ RH∞ such that

X ′D′ + Y ′N ′ = I. (10.53)

This is a Diophantine Equation over the ring of proper and stable rational
functions. It is also called a Bezout Identity.

Let H = N ′D′−1, and write (10.53) as X ′ + Y ′H = D′−1. Since the left-
hand side is proper, D′−1 is also proper; i.e., in the MFD given by H =
N ′D′−1, where the pair (N ′, D′) is rc, D′ is biproper (D′ and D′−1 are both
proper).

Note that X ′−1, where X ′ satisfies (10.53), does not necessarily exist.
If, however, H is strictly proper (lims→∞H(s) = 0), then lims→∞X ′(s) =
lims→∞D′(s)−1 is a nonzero real matrix, and in this case X ′−1 exists and is
proper; i.e., in this case X ′ is biproper.

When the Diophantine Equation (10.53) is used to characterize all stabi-
lizing controllers, it is often desirable to have solutions (X ′, Y ′) where X ′ is
biproper. This is always possible. Clearly, when H is strictly proper, this is
automatically true, as was shown. When H is not strictly proper, however,
care should be exercised in the selection of the solutions of (10.53).

As in the polynomial case, doubly coprime factorizations in RH∞ of a
transfer function matrix H1 = N ′

1D
′−1
1 = D̃′−1

1 Ñ ′
1, where D′

1, N
′
1 ∈ RH∞

and D̃′
1, Ñ ′

1 ∈ RH∞ are important in obtaining parametric characterizations
of all stabilizing controllers. Assume therefore that

U ′U ′−1 =
[

X ′
1 Y ′

1

−Ñ ′
1 D̃′

1

] [
D′

1 −Ỹ ′
1

N ′
1 X̃ ′

1

]
=
[
I 0
0 I

]
, (10.54)

where U ′ is unimodular in RH∞, i.e., U ′ and U ′−1 ∈ RH∞. Also, assume that
X ′

1 and X̃ ′
1 have been selected so that detX ′

1 �= 0 and det X̃ ′
1 �= 0.

Internal Stability

Consider now the feedback system in Figure 10.3, and let H1 and H2 be
the transfer function matrices of S1 and S2, respectively, which are assumed
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to be controllable and observable. Internal stability of a system can be de-
fined in a variety of equivalent ways in terms of the internal description of
the system. For example, in this chapter, polynomial matrix internal descrip-
tions were used and the system was considered as being internally stable
when its eigenvalues were stable; i.e., they have negative real parts. In The-
orem 10.4, it was shown that the closed-loop feedback system is internally

stable if and only if the transfer function between
[
u1

u2

]
and

[
r1
r2

]
or
[
y1
y2

]

and
[
r1
r2

]
have stable poles, i.e., if and only if the poles of

[
I −H2

−H1 I

]−1

or
[
−H2 I
I −H1

]−1 [ 0 H1

H1 0

]
, respectively, are stable.

In this section we shall regard the feedback system to be internally stable
when [

I −H2

−H1 I

]−1

∈ RH∞, (10.55)

i.e., when all the transfer function matrices in (10.55) are proper and stable.
In this way, internal stability can be checked without necessarily involving
internal descriptions of S1 and S2. This approach to stability has advantages
since it can be extended to systems other than linear, time-invariant systems.

Theorem 10.10. Let H1 = N ′
1D

′−1
1 = D̃′−1

1 Ñ ′
1 be doubly coprime MFDs in

RH∞. Then the closed-loop feedback system is internally stable if and only if
H2 has an lc MFD in RH∞, H2 = D̃′−1

2 Ñ ′
2, such that

D̃′
2D

′
1 − Ñ ′

2N
′
1 = I, (10.56)

or if and only if H2 has an rc MFD in RH∞, H2 = N ′
2D

′−1
2 , such that

D̃′
1D

′
2 − Ñ ′

1N2 = I. (10.57)

Proof. See [1, p. 615, Corollary 4.12]. �

In the following discussion, all proper stabilizing controllers are now pa-
rameterized.

Theorem 10.11. Let H1 = N ′
1D

′−1
1 = D̃′−1

1 Ñ ′
1 be doubly coprime MFDs in

RH∞ that satisfy (10.54). Then all H2 that internally stabilize the closed-loop
feedback system are given by

H2 = −(X ′
1 −K ′Ñ ′

1)−1(Y ′
1 +K ′D̃′

1) = −(Ỹ ′
1 +D′

1K
′)(X̃ ′

1 −N ′
1K

′)−1,
(10.58)

where K ′ ∈ RH∞ is such that (X ′
1 − K ′Ñ ′

1)−1 (or (X̃1 − N ′
1K

′)−1) exists
and is proper.
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Proof. It can be shown that all solutions of D̃2D
′
1 − Ñ2N

′
1 = I are given by

[D̃′
2,−Ñ ′

2] = [I,K ′]
[

X ′
1 Y ′

1

−Ñ ′
1 D̃′

1

]
, (10.59)

where K ′ ∈ RH∞. The proof of this result is similar to the proof of the cor-
responding result for the polynomial matrix Diophantine Equation. Similarly,
all solutions of D̃′

1D
′
2 − Ñ ′

1N
′
2 = I are given by

[
N ′

2

D′
2

]
=

[
D′

1 −Ỹ ′
1

N ′
1 X̃ ′

1

] [
−K ′

I

]
, (10.60)

where K ′ ∈ RH∞. The result follows then directly from Theorem 10.10. �
The above theorem is a generalization of the Youla parameterization of

Theorem 10.7 over the ring of proper and stable rational functions.
It is interesting to note that in view of (10.54),H2 in (10.58) can be written

as follows. Assume that X−1
1 and X̃−1

1 exist. Then

H2 = −(Ỹ ′
1 +X ′−1

1 (I − Y ′
1N

′
1)K

′)(X̃1 −N ′
1K

′)−1

= −[Ỹ ′
1X̃ ′−1

1 (X̃ ′
1 −N ′

1K
′) +X ′−1

1 K ′](X̃1 −N ′
1K

′)−1

= −Ỹ ′
1X̃ ′−1

1 −X ′−1
1 K ′(X̃1 −N ′

1K
′)−1 = H20 +H2a; (10.61)

i.e., any stabilizing controller H2 can be viewed as the sum of an initial sta-
bilizing controller H20 = −Ỹ ′

1X̃ ′−1

1 and an additional controller H2a, which
depends on K ′. When K ′ = 0, then H2a, is zero.

Example 10.12. Let H1 = 1
s−1 = ( 1

s+1 )( s−1
s+1 )−1 = N ′

1D
′−1
1 = ( s−1

s+a )−1( 1
s+a ) =

D̃′−1
1 Ñ ′1 with a > 0, which are doubly coprime factorizations. Note that
[
X ′

1 Y ′
1

−Ñ ′
1 D̃′

1

] [
D′

1 −Ỹ ′
1

N ′
1 X̃ ′

1

]
=
[ s+3

s+2
s+5
s+2

− 1
s+a

s−1
s+a

] [ s−1
s+1 − (s+5)(s+a)

(s+1)(s+2)
1
s+1

(s+3)(s+a)
(s+1)(s+2)

]
=
[

1 0
0 1

]
.

All stabilizing H2 are parametrically characterized by (10.58).

Example 10.13. In the above example H2 = −(b + 1), b > 0 characterizes
all static stabilizing H2. Then for a = 1, we have

K ′ = −
(
s+ 5
s+ 2

− s+ 3
s+ 2

(b + 1)
)(

s− 1
s+ 1

+
b+ 1
s+ 1

)−1

= −
(
−bs− 3b+ 2

s+ 2

)(
s+ b

s+ 1

)−1

=
(s+ 1)(bs+ 3b− 2)

(s+ 2)(s+ b)
,

which will yield the desired H2 = −(b + 1). The closed-loop eigenvalue is in
this case at −b as can easily be verified.
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Parameterizations Using State-Space Descriptions

Consider H = N ′D′−1 = D̃′−1
Ñ ′, a doubly coprime factorization in RH∞;

i.e., (10.54) is satisfied. It is possible to express all proper and stable matrices
in (10.54) in terms of the matrices of a state-space realization of the transfer
function matrix H(s). In particular, we have the following result.

Lemma 10.14. Let {A,B,C,D} be a stabilizable and detectable realization
of H(s), i.e., H(s) = C(sI − A)−1B + D, which is also denoted by H(s) s=[
A B
C D

]
, and with (A,B) stabilizable and (A,C) detectable. Let F be a state

feedback gain matrix such that all the eigenvalues of A + BF have negative
real parts, and let K be an observer gain matrix such that all the eigenvalues
of A−KC have negative real parts. Define

U ′ =
[

X ′ Y ′

−Ñ ′ D̃′

]
s=

⎡
⎣
A−KC B −KD K

−F I 0
−C −D I

⎤
⎦ (10.62)

and

Û ′ =

[
D′ −Ỹ ′

N ′ X̃ ′

]
s=

⎡
⎣
A+BF B −K

F I 0
C +DF D I

⎤
⎦ . (10.63)

Then (10.54) holds and H = N ′D′−1 = D̃′−1
Ñ ′ are coprime factorizations

of H.

Proof. Relation (10.54) can be shown to be true by direct computation, which
it is left to the reader to verify. Clearly, U ′, Û ′ ∈ RH∞. ThatN ′, D′ and D̃′, Ñ ′

are coprime is a direct consequence of (10.54). That N ′D′−1 = D̃′−1
Ñ ′ = H

can be shown by direct computation and is left to the reader. �

In view of Lemma 10.14, U ′ and U ′−1 ∈ RH∞ in (10.54) can be expressed
as

U ′ =
[

X ′ Y ′

−Ñ ′ D̃′

]
=
[
−F
−C

]
[sI−(A−KC)]−1[B−KD,K]+

[
I 0

−D I

]
(10.64)

and

U ′−1 =

[
D′ −Ỹ ′

N ′ X̃ ′

]
=
[

F
C +DF

]
[sI − (A+BF )]−1[B,−K] +

[
I 0
D I

]
.

(10.65)
These formulas can be used as follows. A stabilizable and detectable real-
ization {A,B,C,D} of H(s) is first determined, and appropriate F and K
are found so that A + BF and A − KC have eigenvalues with negative real
parts. Then U ′ and U ′−1 are calculated from (10.64) and (10.65). Note that
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appropriate state feedback gain matrices F and observer gain matrices K can
be determined, using the methods discussed in Chapter 9. The matrices F
and K may be determined, for example, by solving appropriate optimal lin-
ear quadratic control and filtering problems. All proper stabilizing controllers
H2 = N ′

2D
′−1
2 = D̃′−1

2 Ñ ′
2 of the plant H1 are then characterized as in Theo-

rem 10.11.
It can now be shown, in view of Lemma 10.14, that all stabilizing con-

trollers are described by

˙̂x = (A+BF −K(C +DF ))x̂+Ky + (B −KD)r1,
u = F x̂+ r1, r2 = y − (C +DF )x̂−Dr1, r1 = K ′(q)r2, (10.66)

which can be rewritten as

˙̂x = Ax̂+Bu+K(y − (Cx̂ +Du)),
u = F x̂+K ′(q)(y − (Cx̂+Du)). (10.67)

Thus, every stabilizing controller is a combination of an asymptotic (full-state,
full-order) estimator or observer and a stabilizing state feedback, plus K ′(q)r2
with r2 = y − (Cx̂+Du), the output “error” (see Figure 10.4).

x̂
+

r2

+

+

r1

+

+

+

+

+

– D

B

A

– C

K (q)

uy
∫

x̂
FK

Figure 10.4. A state-space representation of all stabilizing controllers

10.4 Two Degrees of Freedom Controllers

Consider the two degrees of freedom controller SC in the feedback configu-
ration of Figure 10.5. Here SH represents the system to be controlled and is
described by its transfer function matrix H(s) so that

ŷ(s) = H(s)û(s). (10.68)
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The two degrees of freedom controller SC is described by its transfer function
matrix C(s) in

û(s) = C(s)
[
ŷ(s)
r̂(s)

]
= [Cy(s), Cr(s)]

[
ŷ(s)
r̂(s)

]
. (10.69)

Since the controller SC generates the input u to SH by processing indepen-
dently y, the output of SH , and r, it is called a two degrees of freedom con-
troller.

r u y
SC SH

Figure 10.5. Two degrees of freedom controller SC

In the following discussion, we shall assume that H is a proper transfer
function and we shall determine proper controller transfer functions C, which
internally stabilize the feedback system in Figure 10.5. The restriction that
H and C are proper may easily be removed, if so desired.

10.4.1 Internal Stability

Theorem 10.15. Given is the proper transfer function H of SH , and the
proper transfer function C of SC in (10.69) where det(I − CyH) �= 0. The
closed-loop system in Figure 10.5 is internally stable if and only if

(i) û = Cy ŷ internally stabilizes the system ŷ = Hû, and
(ii) Cr is such that the rational matrix

M � (I − CyH)−1Cr (10.70)

(u = Mr) satisfies D−1M = X, a stable rational matrix, where Cy satis-
fies (i) and H = ND−1 is a right coprime polynomial matrix factorization.

Proof. Consider controllable and observable polynomial matrix descriptions
(PMDs) for SH , given by

Dz = u, y = Nz (10.71)

and for SC , given by

D̃cz̃c = [Ñy, Ñr]
[
y
r

]
, u = z̃c, (10.72)

where the N,D are rc and the D̃c, [Ñy, Ñr] are lc polynomial matrices. The
closed-loop system is then described by
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(D̃cD − ÑcN)z = Ñrr, y = Nz (10.73)

and is internally stable if the roots of det D̃o, where D̃o � D̃cD − ÑcN , have
negative real parts.

(Necessity) Assume that the closed-loop system is internally stable, i.e.,
D̃−1
o is stable. Since Cy = D̃−1

c Ñy is not necessarily a left coprime poly-
nomial factorization, write [D̃c, Ñy] = GL[D̃Cy , ÑCy ], where GL is a gcld
of the pair (D̃c, Ñy). Then D̃CyD − ÑCyN = G−1

L D̃o = D̃k, where D̃k

is a polynomial matrix, with D̃−1
k stable; note also that G−1

L is stable.
Hence, u = Cyy = D̃−1

Cy
ÑCyy internally stabilizes y = Hu = ND−1u;

i.e., part (i) of the theorem is true. To show that (ii) is true, we write
M = (I − CyH)−1Cr = DD̃−1

k D̃Cy(D̃−1
c Ñr) = DD̃−1

k G−1
L Ñr = DX , where

X � D̃−1
o Ñr is a stable rational matrix. This shows that (ii) is also necessary.

(Sufficiency) Let C satisfy (i) and (ii) of the theorem. If C = D̃−1
c [Ñy, Ñr]

is an lc polynomial MFD andGL is a gcld of the pair (D̃c, Ñy), then [D̃c, Ñy] =
GL[D̃Cy , ÑCy ] is true for some lc matrices D̃Cy and ÑCy(Cy = D̃−1

Cy
ÑCy). Be-

cause (i) is satisfied, D̃CyD− ÑCyN = D̃k, where D̃−1
k is stable. Premultiply-

ing by GL we obtain D̃cD − ÑyN = GLD̃k. Now if G−1
L is stable, then D̃−1

o ,
where D̃o � D̃cD− ÑyN = GLD̃k, will be stable since D̃−1

k is stable. To show
this, write D−1M = D−1(I − CyH)−1Cr = D̃−1

k D̃Cy(D̃−1
c Ñr) = D̃−1

k G−1
L Ñr

and note that this is stable, in view of (ii). Observe now that the GL, Ñr are
lc; if they were not, then C = D̃−1

c [Ñy, Ñr] would not be a coprime factoriza-
tion. In this case no unstable cancellations take place in D̃−1

k G−1
L Ñr (D̃−1

k is
stable) and therefore, if D−1M is stable, then (GLD̃k)−1 = D̃−1

o is stable or
the closed-loop system is internally stable. �

Remarks

(i) It is straightforward to show the same results, using proper and stable
factorizations of H given by

H = N ′D′−1, (10.74)

where the pair (N ′, D′) ∈ RH∞ and (N ′, D′) is rc, and of

C = D̃′−1

c [Ñ ′
y, Ñ ′

r], (10.75)

where the pair (D̃′
c, [Ñ ′

y, Ñ ′
r]) ∈ RH∞ and (D̃′

c, [Ñ ′
y, Ñ ′

r]) is lc. The
proof is completely analogous and is left to the reader. The only change
in the theorem will be in its part (ii), which will now read as follows: Cr
is such that the rational matrix M � (I − CyH)−1Cr satisfies D′−1M =
X ′ ∈ RH∞, where Cy satisfies (a) and H = N ′D′−1 is an rc MFD in
RH∞.
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(ii) Theorem 10.15 separates the role of Cy , the feedback part of the two
degrees of freedom controller C, from the role of Cr, in achieving internal
stability. Clearly, if only feedback action is considered, then only part (i) of
the theorem is of interest; and if open-loop control is desired, then Cy = 0
and (i) implies that for internal stability H must be stable and Cr = M
must satisfy part (ii). In (ii) the parameter M = DX appears naturally
and in (i) the way is open to use any desired feedback parameterizations.
In view of Theorem 10.15 it is straightforward to parametrically charac-
terize all internally stabilizing controllers C. In the theorem it is clearly
stated [Part (i)] that Cy must be a stabilizing controller. Therefore, any
parametric characterization of the ones developed in the previous subsec-
tions, as in [1, Subsection 7.4], can be used for Cy . Also, Cr is expressed
in terms of D−1M = X (or D′−1M = X ′).

Theorem 10.16. Given that ŷ = Hû is proper with H = ND−1 = D̃−1Ñ
doubly coprime polynomial MFDs, all internally stabilizing proper controllers

C in û = C

[
ŷ
r̂

]
are given by

(a) C = (I+QH)−1[Q,M ] = [(I+LN)D−1]−1[L,X ], (10.76)

where Q = DL and M = DX are proper with L,X and D−1(I + QH) =
(I + LN)D−1 stable, so that (I +QH)−1 exists and is proper; or

(b) C = (X1−KÑ)−1[−(X2+KD̃), X ], (10.77)

where K and X are stable so that (X1−KÑ1)−1 exists and C is proper. Also,

X1 and X2 are determined from UU−1 =
[
X1 X2

−Ñ D̃

][
D −X̃2

N X̃1

]
=
[
I 0
0 I

]
with

U unimodular.
If H = N ′D′−1 = D̃′−1

Ñ ′ are doubly coprime MFDs in RH∞, then all
stabilizing proper C are given by

(c) C = (X ′
1−K ′Ñ ′)−1[−(X ′

2+K ′D̃′), X ′], (10.78)

where K ′, X ′ ∈ RH∞ so that (X ′
1 − K ′Ñ ′)−1 exists and is proper. Also,

U ′U ′−1 =
[

X ′
1 X

′
2

−Ñ ′ D̃′

] [
D′ −X̃ ′

2

N ′ X̃ ′
1

]
=
[
I 0
0 I

]
with U ′, U ′−1 ∈ RH∞.

(d) C = (I+QH)−1[Q,M ] = [(I+L′N ′)D′−1]−1[L′, X ′], (10.79)

where Q = D′L′, M = D′X ′ ∈ RH∞ with L′, X ′ and D′−1(I + QH) =
(I + L′N ′)D′−1 ∈ RH∞ so that (I + QH)−1 or (I + L′N ′)−1 exists and is
proper.

Proof. The proof is based on the parameterizations of Section 10.3. For de-
tails, and for additional discussion of the parameters L and L′, see [1, p. 624,
Theorem 4.2.2]. �
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Remarks

(a) In [1, pp. 592–605] a complete treatment of different parameterizations
of all stabilizing controllers is given. Parameter K in the theorem above
was discussed earlier and parameters Q, X and L are discussed in [1,
pp. 597–605].

(b) Notice that in the above theorem Cy is parameterized by K or Q or L,
whereas Cr is parameterized by M or X .

10.4.2 Response Maps

It is straightforward to express the maps between signals of interest of
Figure 10.6 in terms of the parameters in Theorem 10.16. For instance,

u = C

[
y
r

]
= [Cy, Cr]

[
y
r

]
= CyHu + Crr, from which we have u =

(I − CyH)−1Crr = Mr. (In the following discussion, we will use the sym-
bols u, y, r, etc. instead of û, ŷ, r̂, etc. for convenience.) If expressions in
(d) of Theorem 10.16 are used, then

u = D′X ′r, and y = Hu = N ′D′−1D′X ′r = N ′X ′r (10.80)

in view of (I − CyH)−1 = D′(I + L′N ′)D′−1. Similar results can be derived
using the other parameterizations in Theorem 10.16. To determine expres-
sions for other maps of interest in control systems, consider Figure 10.6,
where du and dy are assumed to be disturbances at the input and out-
put of the plant H , respectively, and η denotes measurement noise. Then,

u = [Cy , Cr]
[
y + dy + η

r

]
+ du, from which we have u = (I −CyH)−1[Crr +

Cydy + Cyη + du] and y = Hu = H(I − CyH)−1[Crr + Cydy + Cyη + du].

r u yoC H

dydu

+
+

+
+

η

y

Figure 10.6. Two degrees of freedom control configuration

Then, in view of (10.79) in Theorem 10.16, we obtain

u = D′X ′r +D′L′dy +D′L′η +D′(I + L′N ′)D′−1du

= Mr +Qdy +Qη + Sidu (10.81)

and
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y = N ′X ′r +N ′L′dy +N ′L′η +N ′(I + L′N ′)D′−1du

= Tr + (So − I)dy +HQη +HSidu. (10.82)

Notice that Q = (I − CyH)−1Cy = D′L′ is the transfer function between u
and dy or η. Also,

Si � (I − CyH)−1 = D′(I + L′N ′)D′−1 = I +QH (10.83)

is the transfer function between u and du. The matrix Si is called the input
comparison sensitivity matrix . Notice also that yo = y + dy = Tr + Sody +
HQη +HSidu; i.e.,

So = (I −HCy)−1 = I +HQ (10.84)

is the transfer function between yo and dy. The matrix So is called the output
comparison sensitivity matrix . The sensitivity matrices Si and So are impor-
tant quantities in control design. Now

So −HQ = So −N ′L′ = I (10.85)

since HQ = H(I − CyH)−1Cy = HCy(I −HCy)−1 = −I + (I −HCy)−1 =
−I + So, where So and HQ are the transfer functions from yo to dy and η,
respectively. Equation (10.85) states that disturbance attenuation (or sensi-
tivity reduction) and noise attenuation cannot occur over the same frequency
range. This is a fundamental limitation of the feedback loop and occurs also
in two degrees of freedom control systems. Similarly we note that

Si −QH = I. (10.86)

We now summarize some of the relations discussed above:

T = H(I − CyH)−1Cr = HM = NX (y = Tr),

M = (I − CyH)−1Cr = DX (u = Mr),

Q = (I − CyH)−1Cy = DL (u = Qdy),

So = (I −HCy)−1 = I +HQ (yo = Sody),

Si = (I − CyH)−1 = I +QH (u = Sidu),

where y = Tr denotes the relation between y and r from (10.82) when all the
other signals are zero. Similar expressions hold for the rest of the relations.

Realizing Desired Responses

The input–output maps attainable from r, using an internally stable two de-
grees of freedom configuration, can be characterized directly. In particular,
consider the two maps described by
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[
y
u

]
=
[
T
M

]
r, (10.87)

i.e., the command/output map T and the command/input map M . Let H =
ND−1 be an rc polynomial MFD.

Theorem 10.17. The stable rational function matrices T and M are real-
izable with internal stability by means of a two degrees of freedom control
configuration [which satisfies (10.87)] if and only if there exists a stable X so
that [

T
M

]
=
[
N
D

]
X. (10.88)

Proof. (Necessity) Assume that T and M in (4.169) are realizable with in-
ternal stability. Then in view of Theorem 10.15, X � D−1M is stable. Also,
y = Hu = (ND−1)(Mr) = NXr.

(Sufficiency) Let (10.88) be satisfied. If X is stable, then T and M are
stable. Also, note that T = HM . We now show that in this case a controller
configuration exists to implement these maps (see Figure 10.7). Note that

u = M̂r + Cy(T̂ r + y) = [Cy, M̂ + CyT̂ ]
[
y
r

]
, from which we obtain

u = (I + CyH)−1(M̂ + Cy T̂ )r. (10.89)

Now if M̂ = M and T̂ = T , then in view of T = HM , this relation implies
that u = (I + CyH)−1(I + CyH)Mr = Mr and y = Hu = HMr = Tr. Fur-
thermore, Cy is a stabilizing feedback controller, and the system is internally
stable since T̂ and M̂ are stable. �

+

+

M

T Cy H
y

^

^ ur

Figure 10.7. Feedback realization of (T, M)

Note that other (than Figure 10.7), internally stable controller configura-
tions to attain these maps are possible. (The realization of both response maps
T and M , instead of only T as in the case of the Model Matching Problem,
makes the convenient formulation in Theorem 10.17 possible. The realization
of both T and M is sometimes referred to as the Total Synthesis Problem; see
[6], [7] and the references therein.)

The results of Theorem 10.17 can be expressed in terms of H = N ′D′−1,
rc MFDs in RH∞. In particular, we have the following result.
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Theorem 10.18. T,M ∈ RH∞ are realizable with internal stability by means
of a two degrees of freedom control configuration [which satisfies (10.87)] if
and only if there exists X ′ ∈ RH∞ so that

[
T
M

]
=
[
N ′

D′

]
X ′. (10.90)

Proof. The proof is completely analogous to the proof of Theorem 10.17, and
it is omitted. �

Remarks

(i) It is now clear that given any desirable response maps
[
y
u

]
=
[
T
M

]
r

such that
[
T
M

]
=
[
N ′

D′

]
X ′, where X ′ ∈ RH∞, the pair (T,M) can be

realized with internal stability by using for instance a controller (10.79),
C = [(I + L′N ′)D′−1]−1[L′, X ′], where [(I + L′N ′)D′−1, L′] ∈ RH∞ and
X ′ is given above, as can easily be verified. It is clear that there are
many C, which realize such T and M , and they are all parameterized via
the parameter L′ ∈ RH∞, which for internal stability must satisfy the
condition (I + L′N ′)D′−1 ∈ RH∞. Other parameterizations such as K ′

can also be used. In other words, the maps T,M can be realized by a
variety of configurations, each with different feedback properties.

(ii) In a two degrees of freedom feedback control configuration, all admissible
responses from r under condition of internal stability are characterized in
terms of the parameters X (or M), whereas all response maps from dis-
turbance and noise inputs that describe feedback properties of the system
can be characterized in terms of parameters such as K or Q or L. This
is the fundamental property of two degrees of freedom control systems: It
is possible to attain the response maps from r independently from feed-
back properties such as response to disturances and sensitivity to plant
parameter variations.

Example 10.19. We consider H(s) = (s−1)(s+2)
(s−2)2 and wish to character-

ize all proper and stable transfer functions T (s) that can be realized by
means of some control configuration with internal stability. Let H(s) =
s−1

(s+2)

(
(s−2)2

(s+2)2

)−1

= N ′D′−1 be an rc MFD in RH∞. Then in view of Theo-

rem 10.18, all such T must satisfy N ′−1
T = s+2

s−1T = X ′ ∈ RH∞. Therefore,
any proper T with a zero at +1 can be realized via a two degrees of freedom
feedback controller with internal stability. In general, all unstable zeros of H
must appear in T for internal stability to be possible. This shows a fundamen-
tal limitation of feedback control.
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Now if a single degree of freedom controller must be used, the class of real-
izable T (s) under internal stability is restricted. In particular, if the unity feed-
back configuration {I,Gff , I} in Figure 10.10 below is used, then all proper
and stable T that are realizable under internal stability are again given by
T = N ′X ′ = s−1

s+2X
′ where X ′ = L′ ∈ RH∞ [see 10.100] and in addition

(I + X ′N ′)D′−1 = (1 + X ′ s−1
s+2 ) (s+2)2

(s−2)2 ∈ RH∞; i.e., X ′ = nx/dx is proper
and stable and should also satisfy (s + 2)dx + (s − 1)nx = (s − 2)2p(s) for
some polynomial p(s). This illustrates the restrictions imposed by the unity
feedback controller, as opposed to a two degrees of freedom controller.

It is not difficult to prove the following result.

Theorem 10.20. T,M, S ∈ RH∞ are realizable with internal stability by a
two degrees of freedom control configuration that satisfy (10.87) and (10.85)
[S = So, see Figure 10.6 and (10.81), (10.82)] if and only if there exist
X ′, L′ ∈ RH∞ so that

⎡
⎣
T
M
S

⎤
⎦ =

⎡
⎣
N ′ 0
D′ 0
0 N ′

⎤
⎦
[
X ′

L′

]
+

⎡
⎣

0
0
I

⎤
⎦ , (10.91)

where (I + L′N ′)D′−1 ∈ RH∞. Similarly, T,M,Q ∈ RH∞ are realizable if
and only if there exist X ′, L′ ∈ RH∞ so that

⎡
⎣
T
M
Q

⎤
⎦ =

⎡
⎣
N ′ 0
D′ 0
0 D′

⎤
⎦
[
X ′

L′

]
, (10.92)

where (I + L′N ′)D′−1 ∈ RH∞.

Proof. The proof is straightfoward in view of Theorem 10.18. Note that S or
Q are selected in such a manner that the feedback loop has desirable feedback
characteristics that are expressed in terms of these maps. �

10.4.3 Controller Implementations

The controller C = [Cy, Cr] may be implemented, for example, as a system Sc
as shown in Figure 10.5 and described by (10.72); or as shown in Figure 10.7
with C = [Cy ,M + CyT ], where Cy stabilizes H and T,M are desired stable
maps that relate r to y and r to u; i.e., y = Tr and u = Mr. There are
also alternative ways of implementing a stabilizing controller C. In the follow-
ing discussion, the common control configuration of Figure 10.8, denoted by
{R;Gff , Gfb}, is briefly discussed together with several special cases.
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+

+
R

y
Gff

Gfb

H
r u

Figure 10.8. Two degrees of freedom controller {R; Gff , Gfb}

{R;Gff , Gfb} Configuration

Consider the system in Figure 10.8. Note that since

u = [Cy, Cr]
[
y
r

]
= [GffGfb, GffR]

[
y
r

]
, (10.93)

{R;Gff , Gfb} is a two degrees of freedom control configuration that is as
general as the ones discussed before. To see this, let C = [Cy , Cr] =

D̃′−1

c [Ñ ′
y, Ñ ′

r] be an lc MFD in RH∞ and let

R = Ñ ′
r, Gff = D̃′−1

c , Gfb = Ñ ′
y. (10.94)

Note that R and Gfb are always stable; also, G−1
ff exists and is stable. Assume

now that C was chosen so that

D̃′
cD

′ − Ñ ′
yN

′ = Ũ ′, (10.95)

where Ũ ′, Ũ ′−1
∈ RH∞. Then the system in Figure 10.8 with R,Gff and Gfb

given in (10.94) is internally stable. See [1, p. 630] for the proof of this claim.
We shall now discuss briefly some special cases of the {R;Gff , Gfb} con-

trol configuration, which are quite common in practice. Note that the con-
figurations below are simpler; however, they restrict the choices of attainable
response maps and so the flexibility offered to the control designer is reduced.

(i) {I;Gff , Gfb} Controller

+

+r Gff

Gfb

H
yu

Figure 10.9. The {I ; Gff , Gfb} controller

In this case u = [Cy , Cr]
[
y
r

]
= [GffGfb, Gff ]

[
y
r

]
; that is,
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Cy = CrGfb. (10.96)

See Figure 10.9. In view of (10.79) given in Theorem 10.16, this implies that

L′ = X ′Gfb (10.97)

or that the choice for the parameters L′ and X ′ is not completely independent
as in the {R;Gff , Gfb} case. The L′ and X ′ must of course satisfy L′, X ′ and
(I+L′N ′)D′−1 ∈ RH∞. In addition, in this case L′ and X ′ must be so that a
proper solution Gfb of (10.97) exists and no unstable poles cancel in X ′Gfb.
Note that these poles will cancel in the product GffGfb and will lead to an
unstable system. Since L′ and X ′ are both stable, we will require that (10.97)
has a solution Gfb ∈ RH∞. This implies that if, for example, X ′−1 exists,
then X ′ and L′ must be such that X ′−1L′ ∈ RH∞; i.e., the X ′ and L′ have
the same unstable zeros and L′ is “more proper” than X ′. This provides some
guidelines about the conditions X ′ and L′ must satisfy. Also,

Gff = [(I + L′N ′)D′−1]−1X ′. (10.98)

It should be noted that the state feedback law implemented by a dynamic
observer can be represented as a {I;Gff , Gfb} controller. See [1, Section 7.4B,
Figure 7.8].

(ii) {I;Gff , I} Controller

+

+r u
Gff H

y

Figure 10.10. The {I ; Gff , I} controller

A special case of (i) is the common unity feedback control configuration;

see Figure 10.10. Here u = [Cy, Cr]
[
y
r

]
= [Gff , Gff ]

[
y
r

]
; that is,

Cr = Cy, (10.99)

which in view of (10.79) implies that

X ′ = L′. (10.100)

In this case the responses between y or u and r (characterized byX ′) cannot be
designed independently of feedback properties such as sensitivity (character-
ized by L′). This is a single degree of freedom controller and is used primarily
to attain feedback control specifications. This case is discussed further below.
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+

+
R

r y
Gff H

u

Figure 10.11. The {R; Gff , I} controller

(iii) {R;Gff , I} Controller

Here u = [Cy, Cr]
[
y
r

]
= [Gff , GffR]

[
y
r

]
; that is,

Cr = CyR. (10.101)

See Figure 10.11. In view of (10.79) given in Theorem 10.16, this implies that

X ′ = L′R. (10.102)

The L′ and X ′ must satisfy L′, X ′, (I +L′N ′)D′−1 ∈ RH∞. In addition, they
must be such that (10.102) has a solution R ∈ RH∞. Note that R stable is
necessary for internal stability. The reader should refer to the discussion in
(i) above for the implications of such assumptions on X ′ and L′. Also,

Gff = [(I + L′N ′)D′−1]−1L′. (10.103)

(iv) {R; I,Gfb} Controller

+

+
R

r y
H

Gfb

u

Figure 10.12. The {R; I,Gfb} controller

In this case

u = [Cy, Cr]
[
y
r

]
= [Gfb, R]

[
y
r

]
. (10.104)

See Figure 10.12. For internal stability, R must be stable. In view of (10.79)
given in Theorem 10.16, this implies the requirement [(I+L′N ′)D′−1]−1X ′ ∈
RH∞, in addition to L′, X ′, (I+L′N ′)D−1 ∈ RH∞, which imposes significant
additional restrictions on L′. Here

[Gfb, R] = [(I + L′N ′)D′−1]−1[L′, X ′]. (10.105)
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+

+r y
H

Gfb

u

Figure 10.13. The {I ; I, Gfb} controller

(v) {I; I,Gfb} Controller

This is a special case of (iv), a single degree of freedom case where R = I; see
Figure 10.13. Here, R = I implies that

X ′ = (I + L′N ′)D′−1, (10.106)

or that, X ′ and L′ must satisfy additionally the relation

D′X ′ − L′N ′ = I, (10.107)

a (skew) Diophantine Equation. This is in addition to the condition that
L′, X ′, (I + L′N ′)D−1 ∈ RH∞.

Unity (Error) Feedback Configuration

Consider the unity feedback (error feedback) control system depicted in Fig-
ure 10.14, where H and C are the transfer function matrices of the plant
and controller, respectively [see also Figure 10.10 and (10.99), (10.100)]. This
configuration is studied further below.

r u y
C

e

d

+

_ H

Figure 10.14. Unity feedback control system

Assume that (I +HC)−1 exists. It is not difficult to verify the relations

y = (I +HC)−1HCr + (I +HC)−1d � Tr + Sd,

u = (I + CH)−1Cr − (I + CH)−1Cd � Mr −Md. (10.108)

If they are compared with relations (10.81)–(10.86) for the two degrees of
freedom controller, then u = Cyy + Crr, Cy = −C and Cr = C, since u =
−Cy+Cr. Hence, for the error feedback system of Figure 10.14, the relations
following (10.86) assume the forms
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M = (I + CH)−1C = DX = −Q = −DL,
T = H(I + CH)−1C = (I +HC)−1HC = HM = NX,

So = (I +HC)−1 = I +HQ = I −HM = I − T,

Si = (I + CH)−1 = I +QH = I −MH. (10.109)

If now Theorem 10.16 is applied to the present error feedback case, then it
can be seen that all stabilizing controllers are given by

C = [(I −XN)D−1]−1X, (10.110)

where [(I −XN)D−1, X ] is stable and (I − XN)−1 exists. H = ND−1 is a
right coprime (rc) polynomial matrix factorization.

Similarly, it can be shown by applying Theorem 10.16 that if H is proper
and H = N ′D′−1 is an rc MFD in RH∞, then all proper stabilizing controllers
are given by

C = [(I −X ′N ′)D′−1]−1X ′, (10.111)

where [(I −X ′N ′)D′−1
, X ′] ∈ RH∞ and (I −X ′N ′)−1 exists and is proper.

H Square and Nonsingular

Assume now that H is proper and H−1 exists; i.e., H is square and nonsingu-
lar. Let H = ND−1 be an rc polynomial MFD. If T is the closed-loop transfer
function between y and r, it can be shown that the system will be internally
stable if and only if

[N−1(I − T )H,N−1T ] (10.112)

is stable. Assume that T �= I in order for the loop to be well defined. Note
that if T is proper, then

C = H−1T (I − T )−1 (10.113)

is proper if and only if H−1T is proper and I − T is biproper.

SISO Case

If, in addition, it is assumed that H and T are single-input, single-output
transfer functions with H = n/d, the closed-loop system will be stable if and
only if

(1 − T )d−1 = Sd−1 and Tn−1 (10.114)

are stable, i.e., if and only if the sensitivity matrix has as zeros all the unstable
poles of the plant and the closed-loop transfer function has as zeros all the
unstable zeros of the plant.

This is a result that is well known in the classical control literature (refer
to the book by J. R. Ragazzini and G. F. Franklin, Sampled Data Control
Systems, McGraw-Hill, New York, 1958). It is derived here by specializing
the more general multi-input, multi-output case results to the single-input,
single-output case.



10.4 Two Degrees of Freedom Controllers 445

Example 10.21. Given H(s) = s−1
(s−2)(s+1) , all scalar proper transfer func-

tions T that can be realized via the error feedback configuration, shown in
Figure 10.14, under internal stability, are to be characterized. When an er-
ror feedback configuration is used, T must satisfy the following conditions:
[(1 − T )d−1, Tn−1] =

[
dT −nT

(s−2)(s+1) ,
nT

dT (s−1)

]
stable; that is, T must be stable

and dT − nT = (s − 2)d̂T , nT = (s − 1)n̂T (T must have as zero the un-
stable zero of H). The controller C = nT (s−2)(s+1)

(dT −nT )(s−1) = n̂T (s+1)

d̂T
. For C to be

proper H−1T = (s−2)(s+1)nT

(s−1)dT
must be proper and 1 − T = dT −nT

dT
must be

biproper; these are satisfied when deg dT ≥ degnT +1. The closed-loop eigen-
values are the zeros of dcd + ncn = d̂T (s − 2)(s + 1) + n̂T (s + 1)(s − 1) =
(s+ 1)[(dT − nT ) + nT ] = (s+ 1)dT .

If T is to be realized via a two degrees of freedom controller instead, in
view of Theorem 10.17, the stability requirement is that T = NX = (s− 1)X
with X stable.

It may be of interest to use Theorem 10.18 and proper and stable factoriza-

tions. In this case, let H = s−1
(s−2)(s+1) =

(
s−1

(s+1)2

)(
s−2
s+1

)−1

. Then T is realiz-
able with internal stability using a two degrees of freedom configuration if and
only if N ′−1T = (s+1)2nT

(s−1)dT
= X ′ is proper and stable. That is nT = (s− 1)n̂T

and deg dT ≥ deg nT + 1. In the error feedback case, [(1 − T )d′−1, Tn′−1] =[
(dT −nT )(s+1)

dT (s−2) , nt(s+1)2

dT (s−1)

]
must be proper and stable, which imply, for stabil-

ity, that T should be stable, dT − nT = (s − 2)d̂T , nT = (s − 1)n̂T ; and for
properness, deg dT ≥ deg nT + 1 as before.

10.4.4 Some Control Problems

In control problems, design specifications typically include requirements for in-
ternal stability or pole placement, low sensitivity to parameter variations, dis-
turbance attenuation, and noise reduction. Also, requirements such as model
matching, diagonal decoupling, static decoupling, regulation, and tracking are
included in the specifications.

Internal stability has, of course, been a central theme throughout this
book, and in this section, all stabilizing controllers were parameterized. Pole
placement was also studied in Chapter 9, using state feedback. Sensitivity
and disturbance noise reduction are treated by appropriately selecting the
feedback controller Cy. Methodologies to accomplish these control goals, fre-
quently in an optimal way, are developed in many control books. It should be
noted that many important design approaches such as the H∞ optimal control
design method are based on the parameterizations of all feedback stabilizing
controllers discussed above. In particular, an appropriate or optimal controller
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is selected by restricting the parameters used, so that additional control goals
are accomplished optimally, while guaranteeing internal stability in the loop.

Our development of the theory of two degrees of freedom controllers can
be used directly to study model matching and decoupling, and a brief outline
of this approach is given in the following. Note that this does not, by far,
constitute a complete treatment of these important control problems, but
rather, an illustration of the methodologies introduced in this section.

Model Matching Problem

In the model matching problem, the transfer function of the plant H(s) (y =
Hu) and a desired transfer function T (s) (y = Tr) are given and a transfer
function M(s) (u = Mr) is sought so that

T (s) = H(s)M(s). (10.115)

Typically, H(s) is proper, and the proper and stable T (s) is to be obtained
from H(s) using a controller under the condition of internal stability. There-
fore, M(s) can in general not be implemented as an open-loop controller,
but rather, as a two degrees of freedom controller. In view of Theorem 10.18,
if H = N ′D′−1 is an rc MFD in RH∞, then the pair (T,M) can be real-
ized with internal stability if and only if there exists X ′ ∈ RH∞ so that[
T
M

]
=
[
N ′

D′

]
X ′. Note that an M that satisfies (10.115) must first be se-

lected (there may be an infinite number of solutions M). In the case when
detH(s) �= 0, T can be realized with internal stability by means of a two
degrees of freedom control configuration if and only if N ′−1

T = X ′ ∈ RH∞
(see Example 10.19). In this case M = D′X ′. Now if the model matching
is to be achieved by a more restricted control configuration, then additional
conditions are imposed on T for this to happen, which are expressed in terms
of X ′ (see, for instance, Example 10.19 for the case of the unity feedback
configuration).

Decoupling Problem

In the problem of diagonal decoupling, T (s) in (10.115) is not completely
specified but is required to be diagonal, proper, and stable. In this problem
the first input affects only the first output, the second input affects only the
second output, and so forth. If H(s)−1 exists, then diagonal decoupling under
internal stability via a two degrees of freedom control configuration is possible
if and only if

N ′−1
T = N ′−1

⎡
⎢⎣
n1
d1

. . .
nm

dm

⎤
⎥⎦ = X ′ ∈ RH∞, (10.116)
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where H = N ′D′−1 is an rc MFD in RH∞ and T (s) = diag[ni(s)/di(s)],
i = 1, . . . ,m. It is clear that if H(s) has only stable zeros, then no additional
restrictions are imposed on T (s). Relation (10.116) implies restrictions on the
zeros of ni(s) when H(s) has unstable zeros.

It is straightforward to show that if diagonal decoupling is to be accom-
plished by means of more restricted control configurations, then additional
restrictions will be imposed on T (s) via X ′. (See Exercise 10.5 below for the
case of diagonal decoupling via linear state feedback.) A problem closely re-
lated to the diagonal decoupling problem is the problem of the inverse of
H(s). In this case, T (s) = I.

In the problem of static decoupling, T (s) ∈ RH∞m is square and also
satisfies T (0) = Λ, a real nonsingular diagonal matrix. An example of such

T (s) is T (s) = 1
d(s)

[
s2 + 1 s(s2 + 2)
s(s+ 2) s2 + 3s+ 1

]
, where d(s) is a Hurwitz polyno-

mial. Note that if T (0) = Λ, then a step change in the first input r will affect
only the first output in y at steady-state and so forth. Here y = Tr = T 1

s
and lims→0 sT

1
s = T (0) = Λ, which is diagonal and nonsingular. For this to

happen, with internal stability when H(s) is nonsingular (see Theorem 10.18),
we must have N ′−1

T = X ′ ∈ RH∞, from which can be seen that static de-
coupling is possible if and only if H(s) does not have zeros at s = 0. If this is
the case and if in addition H(s) is stable, static decoupling can be achieved
with just a precompensation by a real gain matrix G where G = H−1(0)Λ. In
this case T (s) = H(s)G = H(s)H−1(0)Λ from which T (0) = Λ.

10.5 Summary and Highlights

Interconnected Systems—Feedback

• Let y = H1u and u = H2y + r, where the plant H1 = N1D
−1
1 , and the

controller H2 = D̃−1
2 Ñ2 are both coprime MFD. Then the closed-loop

system is stable if and only if det(D̃2D1 − Ñ2N1) is a Hurwitz polynomial

or the poles of
[

I −H2

−H1 I

]−1

are stable (see Theorem 10.4).

• The Diophantine Equation

D̃2D1 − Ñ2N1 = D̃k

is important for feedback systems. The roots of det D̃k are the closed-loop
eigenvalues. See (10.30).

• For interconnected systems in parallel and series, see (10.3)–(10.5) and
(10.6)–(10.8).
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Parameterization of All Stabilizing Feedback Controllers

• Given H1 = N1D
−1
1 = D̃−1

1 Ñ1, a doubly coprime factorization, all feed-
back stabilizing controllers H2 are given by

H2 = −(D̃kX1 − ÑkÑ1)−1(D̃kY1 + ÑkD̃1)

= −(Ỹ1Dk +D1Nk)(X̃1Dk −N1Nk)−1, (10.44)

where

UU−1 =
[

X1 Y1

−Ñ1 D̃1

] [
D1 −Ỹ1

N1 X̃1

]
=
[
I 0
0 I

]
(10.41)

with U a unimodular matrix. The polynomial matrices Ñk and Nk in

D̃−1
k Ñk = NkD

−1
k = K (10.51)

are arbitrary and D̃−1
k , D−1

k stable; the closed-loop eigenvalues are the
roots of det D̃k or of detDk (see Theorem 10.6).

• Equivalently, all stabilizing controllers are given by

H2 = −(X1 −KÑ1)−1(Y1 +KD̃1)

= −(Ỹ1 +D1K)(X̃1 −N1K)−1, (10.50)

where the poles of K are the closed-loop eigenvalues (see Theorem 10.7).

• Given H1 = N ′
1D

′−1
1 = D̃′−1

1 Ñ ′
1, a doubly coprime MFDs in RH∞, then

all proper stabilizing controllers H2 are given by

H2 = −(X ′
1 −K ′Ñ ′

1)−1(Y ′
1 +K ′D̃′

1) = −(Ỹ ′
1 +D′

1K
′)(X̃ ′

1 −N ′
1K

′)−1,
(10.58)

where K ′ ∈ RH∞, any rational proper and stable matrix (see Theo-
rem 10.11).

• See (10.67) for all stabilizing controllers in terms of state-space descrip-
tions.

Two Degrees of Freedom Controllers

• Given H = ND−1 right coprime,

û(s) = [Cy(s), Cr(s)]
[
ŷ(s)
r̂(s)

]
(10.69)

stabilizes H if and only if
(i) û = Cy ŷ stabilizes ŷ = Hû, and
(ii) Cr is such that

M � (I − CyH)−1Cr (10.70)

(u = Mr) satisfies D−1M = X , a stable rational matrix (see Theo-
rem 10.15).
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• See Theorem 10.16 for parameterizations of all stabilizing two degrees of
freedom controllers.

• See (10.81) and (10.82) for relations between u, y and external inputs and
disturbances.

• Given y = ND−1u, y = Tr and u = Mr are realizable via any control
configuration with internal stability if and only if

[
T
M

]
=
[
N
D

]
X,

where X is stable. See Theorems 10.17 and 10.18.
• The cases when a more restricted controller is used are addressed. See

(10.96)–(10.107). The error or unity feedback controller is further discussed
in (10.108)–(10.114).

• The model matching problem, the diagonal decoupling problem, and the
static decoupling problem are discussed. See Subsection 10.4.4.

10.6 Notes

Two books that are original sources on the use of polynomial matrix descrip-
tions in Systems and Control are Rosenbrock [18] and Wolovich [22]. In the
former, what is now called Rosenbrock’s matrix is employed and relations to
state-space descriptions are emphasized. In the latter, what are now called
Polynomial Matrix Fractional Descriptions are emphasized and the relation
to state space is accomplished primarily by using controller forms and the
Structure Theorem, which was presented in Chap 6. Good general sources for
the polynomial matrix description approach include also the books by Vardu-
lakis [19], Kailath [16], and Chen [9]. A good source for the study of feedback
systems using PMDs and MFDs is the book by Callier and Desoer [8].

The development of the properties of interconnected systems, addressed
in Section 10.2, which include controllability, observability, and stability of
systems in parallel, in series, and in feedback configurations is primarily based
on the approach taken in Antsaklis and Sain [7], Antsaklis [3] and [4], and
Gonzalez and Antsaklis [14].

Parameterizations of all stabilizing controllers are of course very impor-
tant in control theory today. Historically, their development appears to have
evolved in the following manner (see also the historical remarks on the Dio-
phantine Equation in [1, Subsection 7.2E]): Youla et al. [23] introduced the
K parameterization (as in Theorem 10.7 above) in 1976 and used it in the
Wiener–Hopf design of optimal controllers. This work is considered to be the
seminal contribution in this area. The proofs of the results on the parameter-
izations in Youla et al. [23] involve transfer functions and their characteristic
polynomials. Neither the Diophantine Equation nor PMDs of the system are
used (explicitly). It should be recalled that in the middle 1970s most of the
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control results in the literature concerning MIMO systems involved state-
space descriptions and a few employed transfer function matrices. The PMD
descriptions of systems were only beginning to make some impact. A version
of the linear Diophantine Equation, namely, AX + Y B = C polynomial in
z−1 was used in control design by Kucera in work reported in 1974 and 1975.
In that work, parameterizations of all stabilizing controllers were implicit,
not explicit, in the sense that the stabilizing controllers were expressed in
terms of the general solution of the Diophantine Equation, which in turn can
be described parametrically. Explicit parameterizations were reported later
in Kucera [17] in 1979. Antsaklis [2] in 1979 introduced the doubly coprime
MFDs (used in this book and in the literature) for the first time with the
polynomial Diophantine Equation, working over the ring of polynomials, to
derive parameterizations of all stabilizing controllers and to prove the results
by Youla et al. in an alternative way. In this work, internal system descrip-
tions were connected directly to stabilizing controller parameterizations via
the polynomial Diophantine Equation. In Desoer et al. [10] in 1980 parame-
terizations K ′ of all stabilizing controllers using coprime MFDs in rings other
than polynomial rings (including the ring of proper and stable rational func-
tions) were derived. It should also be noted that proper and stable MFDs
had apparently been used earlier by Vidyasagar. In Zames [24] in 1981, a pa-
rameterization Q of all stabilizing controllers, but only for stable plants was
introduced and used in H∞ optimal control design. (Similar parameterizations
were also used elsewhere, but apparently not to characterize all stabilizing con-
trollers; for example, they were used in the design of the closed-loop transfer
function in control systems and in sensitivity studies in the 1950s and 1960s,
and also in the “internal model control” studies in chemical process control
in the 1980s.) A parameterization X of all stabilizing controllers (where X is
closely related to the attainable response in an error feedback control system),
valid for unstable plants as well, was introduced in Antsakis and Sain [6]. Pa-
rameterizations involving proper and stable MFDs were further developed in
the 1980s in connection with optimal control design methodologies, such as
H∞ optimal control, and connections to state-space approaches were derived.
Two degrees of freedom controllers were also studied, and the limitations of
the different control configurations became better understood. By now, MDFs
and PMDs have become important system representations and their study is
essential, if optimal control design methodologies are to be well understood.
See [1, Subsections 7.2E and Section 7.6] for further discussion of controller
parameterizations.

The material on two degrees of freedom controllers in Section 10.4 is based
on Antsaklis [4] and Gonzalez and Antsaklis [12], [13], [14], [15]; a good source
for this topic is also Vidyasagar [20]. Note that the main stability theorem
(Theorem 10.15) first appeared in Antsaklis [4] and Antsaklis and Gonzalez [5].
For additional material on model matching and decoupling, consult Chen [9],
Kailath [16], Falb and Wolovich [11], Williams and Antsaklis [21], and the
extensive list of references therein.
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Exercises

10.1. Consider the double integrator H1 = 1
s2 .

(a) Characterize all stabilizing controllers H2 for H1.
(b) Characterize all proper stabilizing controllers H2 for H1 of order 1.

10.2. Consider the double integrator H1 = 1
s2 .

(a) Derive a minimal state-space realization for H1, and use Lemma 10.14 to
derive doubly coprime factorizations in RH∞.

(b) Use the polynomial Diophantine Equations to derive factorizations in
RH∞.

10.3. Consider H1 = [ s
2+1
s2 , s+1

s3 ].

(a) Derive a minimal state-space realization {A,B,C,D}, and use Lemma 10.14
and Theorem 10.11 to parameterize all stabilizing controllers H2.

(b) Derive a stabilizing controller H2 of order three by appropriately selecting
K ′. What are the closed-loop eigenvalues in this case? Comment on your
results.

10.4. Consider H =
[ 1
s+1

2
s+3

1
s+1

1
s+1

]
.

(a) Derive an rc MFD in RH∞, H = N ′D′−1.

(b) Let T =
[ n1
d1

0
0 n2

d2

]
, and characterize all diagonal T that can be realized

under internal stability via a two degrees of freedom control configuration.

10.5. In the model matching problem, the transfer function matrices H ∈
Rp×m(s) of the plant and T ∈ Rp×m(s) of the model must be found so that
T = HM . M is to be realized via a feedback control configuration under
internal stability. Here we are interested in the model matching problem via
linear state feedback . For this purpose, let H = ND−1 an rc polynomial
factorization with D column reduced. Then Dz = u, y = Nz is a minimal
realization of H . Let the state feedback control law be defined by u = Fz+Gr,
where F ∈ R[s]m×m, G ∈ Rm×m with detG �= 0 and degcj

F < degcj
D. To
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allow additional flexibility, let r = Kv and K ∈ Rm×q. Note that HF,GK =
ND−1

F GK = (ND−1)(DD−1
F GK) = (ND−1)[D(G−1DF )−1K] = HM where

DF = D − F .
In view of the above, solve the model matching problem via linear state

feedback, determine F,G, and K, and comment your results when

(a) H = (s+1)(s+2)
2s2−3s+2 , T = s+1

s+2 ,

(b) H =
[
s+1
s 0
1
s

s+2
s

]
, T = I2,

(c) H =
[ s+2
s+1

s+3
s+2

1
s+1 0

]
, T =

[ s+1
s+4−2

(s+2)(s+4)

]
.

Hint: The model matching problem via linear state feedback is quite easy to
solve when p = m and rankH = m in view of (G−1DF )−1K = D−1M =
D−1H−1T = N−1T .
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Appendix

This appendix consists of nine parts. In the first eight, Sections A.1–A.8, we
present results from linear algebra used throughout this book. In the last
part, Section A.9, we address some numerical considerations. In all cases,
our aim is to present a concise summary of pertinent results and not a full
development of the subject on hand. For a more extensive exposition of the
materials presented herein, refer to Antsaklis and Michel [1, Section 2.2] and
to the other sources cited at the end of this appendix.

A.1 Vector Spaces

In defining vector space, we require the notion of a field.

A.1.1 Fields

Definition A.1. Let F be a set containing more than one element, and let
there be two operations “+” and “·” defined on F (i.e., “+” and “·” are
mappings of F × F into F ), called addition and multiplication, respectively.
Then for each α, β ∈ F there is a unique element α + β ∈ F , called the sum
of α and β, and a unique element αβ � α · β ∈ F , called the product of α
and β. We say that {F ; +, ·} is a field provided that the following axioms are
satisfied:

(i) α+ (β + γ) = (α+ β) + γ and α · (β · γ) = (α · β) · γ for all α, β, γ ∈ F
(i.e., “+” and “·” are associative operations);

(ii) α + β = β + α and α · β = β · α for all α, β ∈ F (i.e., “+” and “·” are
commutative operations);

(iii) α · (β + γ) = α · β + α · γ for all all α, β, γ ∈ F (i.e., “·” is distributive
over “+”);

(iv) There exists an element 0F ∈ F such that 0F +α = α for all α ∈ F (i.e.,
0F is the identity element of F with respect to “+”);
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(v) There exists an element 1F ∈ F, 1F �= 0F , such that 1F · α = α for all
α ∈ F (i.e., 1F is the identity element of F with respect to “·”);

(vi) For every α ∈ F , there exists an element −α ∈ F such that α+(−α) = 0F
(i.e., −α is the additive inverse of F );

(vii) For any α �= 0F , there exists an α−1 ∈ F such that α · (α−1) = 1F (i.e.,
α−1 is the multiplicative inverse of F ). �

In the sequel, we will usually speak of a field F rather than of “a field
{F ; +, ·}.”

Perhaps the most widely known fields are the field of real numbers R and
the field of complex numbers C. Another field that we will encounter (see
Example A.11) is the field of rational functions (i.e., rational fractions over
polynomials).

As a third example, we let F = {0, 1} and we define on F (binary) addition
as 0 + 0 = 0 = 1 + 1, 1 + 0 = 1 = 0 + 1 and (binary) multiplication as
1 · 0 = 0 · 1 = 0 · 0 = 0, 1 · 1 = 1. It is easily verified that {F ; +, ·} is a field.

As a fourth example, let P denote the set of polynomials with real co-
efficients and define addition “+” and multiplication “·” on P in the usual
manner. Then {F ; +, ·} is not a field since, e.g., axiom (vii) in Definition A.1
is violated (i.e., the multiplicative inverse of a polynomial p ∈ P is not neces-
sarily a polynomial).

A.1.2 Vector Spaces

Definition A.2. Let V be a nonempty set, F a field, “+” a mapping of V ×V
into V , and “·” a mapping of F × V into V . Let the members x ∈ V be
called vectors, let the elements α ∈ F be called scalars, let the operation “+”
defined on V be called vector addition, and let the mapping “·” be called scalar
multiplication or multiplication of vectors by scalars. Then for each x, y ∈ V ,
there is a unique element, x+ y ∈ V , called the sum of x and y, and for each
x ∈ V and α ∈ F , there is a unique element, αx � α · x ∈ V , called the
multiple of x by α. We say that the nonempty set V and the field F , along
with the two mappings of vector addition and scalar multiplication, constitute
a vector space or a linear space if the following axioms are satisfied:

(i) x+ y = y + x for every x, y ∈ V ;
(ii) x+ (y + z) = (x+ y) + z for every x, y, z ∈ V ;
(iii) There is a unique vector in V , called the zero vector or the null vector

or the origin, that is denoted by 0V and has the property that 0V +x = x
for all x ∈ V ;

(iv) α(x + y) = αx+ αy for all α ∈ F and for all x, y ∈ V ;
(v) (α + β)x = αx + βx for all α, β ∈ F and for all x ∈ V ;
(vi) (αβ)x = α(βx) for all α, β ∈ F and for all x ∈ V ;
(vii) 0Fx = 0V for all x ∈ V ;
(viii) 1Fx = x for all x ∈ V . �
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When the meaning is clear from context, we will write 0 in place of 0F , 1 in
place of 1F , and 0 in place of 0V . To indicate the relationship between the set
of vectors V and the underlying field F , we sometimes refer to a vector space
V over the field F , and we signify this by writing (V, F ). However, usually,
when the field in question is clear from context, we simply speak of a vector
space V . If F is the field of real numbers R, we call the space a real vector
space. Similarly, if F is the field of complex numbers C, we speak of a complex
vector space.

Examples of Vector Spaces

Example A.3. Let V = Fn denote the set of all ordered n-tuples of elements
from a field F . Thus, if x ∈ Fn, then x = (x1, . . . , xn)T , where xi ∈ F ,
i = 1, . . . , n. With x, y ∈ Fn and α ∈ F , let vector addition and scalar
multiplication be defined as

x+ y = (x1, . . . , xn)T + (y1, . . . , yn)T

� (x1 + y1, . . . , xn + yn)T (A.1)

and
αx = α(x1, . . . , xn)T � (αx1, . . . , αxn)T . (A.2)

In this case the null vector is defined as 0 = (0, . . . , 0)T and the vector −x is
defined as −x = −(x1, . . . , xn)T = (−x1, . . . ,−xn)T . Utilizing the properties
of the field F , all axioms of Definition A.2 are readily verified, and therefore,
Fn is a vector space. We call this space the space Fn of n-tuples of elements
of F . If in particular we let F = R, we have Rn, the n-dimensional real
coordinate space. Similarly, if we let F = C, we have Cn, the n-dimensional
complex coordinate space.

We note that the set of points in R2, (x1, x2), that satisfy the linear equa-
tion

x1 + x2 + c = 0, c �= 0,

with addition and multiplication defined as in (A.1) and (A.2), is not a vector
space.

Example A.4. Let V = R∞ denote the set of all infinite sequences of real
numbers,

x = {x1, x2, . . . , xk, . . . } � {xi},
let vector addition be defined similarly as in (A.1), and let scalar multiplication
be defined similarly as in (A.2). It is again an easy matter to show that this
space is a vector space.

On some occasions we will find it convenient to modify V = R∞ to consist
of the set of all real infinite sequences {xi}, i ∈ Z.
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Example A.5. Let 1 ≤ p ≤ ∞, and define V = lp by

lp = {x ∈ R∞ :
∞∑
i=1

|xi|p <∞}, 1 ≤ p <∞,

l∞ = {x ∈ R∞ : sup
i
{|xi|} <∞}. (A.3)

Define vector addition and scalar multiplication on lp as in (A.1) and (A.2),
respectively. It can be verified that this space, called the lp-space, is a vector
space.

In proving that lp, 1 ≤ p ≤ ∞, is indeed a vector space, in establishing
some properties of norms defined on the lp-spaces, in defining linear trans-
formations on lp-spaces, and in many other applications, we make use of the
Hölder and Minkowski Inequalities for infinite sums, given below. (These in-
equalities are of course also valid for finite sums.) For proofs of these results,
refer, e.g., to Michel and Herget [9, pp. 268–270].

Hölder’s Inequality states that if p, q ∈ R are such that 1 < p < ∞
and 1/p + 1/q = 1, if {xi} and {yi} are sequences in either R or C, and if∑∞

i=1 |xi|p <∞ and
∑∞
i=1 |yi|q <∞, then

∞∑
i=1

|xiyi| ≤ (
∞∑
i=1

|xi|p)1/p(
∞∑
i=1

|yi|q)1/q. (A.4)

Minkowski’s Inequality states that if p ∈ R, where 1 ≤ p <∞, if {xi} and
{yi} are sequences in either R or C, and if

∑∞
i=1 |xi|p <∞ and

∑∞
i=1 |yi|p <

∞, then

(
∞∑
i=1

|xi ± yi|p)1/p ≤ (
∞∑
i=1

|xi|p)1/p + (
∞∑
i=1

|yi|p)1/p. (A.5)

If in particular p = q = 2, then (A.4) reduces to the Schwarz Inequality for
sums .

Example A.6. Let V = C([a, b], R). We note that x = y if and only if x(t) =
y(t) for all t ∈ [a, b], and that the null vector is the function that is zero for
all t ∈ [a, b]. Let F denote the field of real numbers, let α ∈ F , and let vector
addition and scalar multiplication be defined pointwise by

(x+ y)(t) = x(t) + y(t) for all t ∈ [a, b] (A.6)

and
(αx)(t) = αx(t) for all t ∈ [a, b]. (A.7)
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Then clearly x + y ∈ V whenever x, y ∈ V, αx ∈ V , whenever α ∈ F and
x ∈ V , and all the axioms of a vector space are satisfied. We call this space the
space of real-valued continuous functions on [a, b], and we frequently denote
it simply by C[a, b].

Example A.7. Let 1 ≤ p < ∞, and let V denote the set of all real-valued
functions x on the interval [a, b] such that

∫ b

a

|x(t)|pdt <∞. (A.8)

Let F = R, and let vector addition and scalar multiplication be defined as
in (A.6) and (A.7), respectively. It can be verified that this space is a vector
space.

In this book we will usually assume that in (A.8), integration is in the
Riemann sense. When integration in (A.8) is in the Lebesgue sense, then the
vector space under discussion is called an Lp-space (or the space Lp[a, b]).

In proving that the Lp-spaces are indeed vector spaces, in establishing
properties of norms defined on Lp-spaces, in defining linear transformations
on Lp-spaces, and in many other applications, we make use of the Hölder and
Minkowski Inequalities for integrals, given below. (These inequalities are valid
when integration is in the Riemann and the Lebesgue senses.) For proofs of
these results, refer, e.g., to Michel and Herget [9, pp. 268–270].

Hölder’s Inequality states that if p, q ∈ R are such that 1 < p < ∞ and
1/p+ 1/q = 1, if [a, b] is an interval on the real line, if f, g : [a, b] → R, and if∫ b
a
|f(t)|pdt <∞ and

∫ b
a
|g(t)|qdt <∞, then

∫ b

a

|f(t)g(t)|dt ≤ (
∫ b

a

|f(t)|pdt)1/p(
∫ b

a

|g(t)|qdt)1/q. (A.9)

Minkowski’s Inequality states that if p ∈ R, where 1 ≤ p < ∞, if f, g :
[a, b] → R, and if

∫ b
a |f(t)|pdt <∞ and

∫ b
a |g(t)|pdt <∞, then

(
∫ b

a

|f(t) ± g(t)|pdt)1/p ≤ (
∫ b

a

|f(t)|pdt)1/p + (
∫ b

a

|g(t)|pdt)1/p. (A.10)

If in particular p = q = 2, then (A.9) reduces to the Schwarz Inequality
for integrals.

Example A.8. Let V denote the set of all continuous real-valued functions
on the interval [a, b] such that

max
a≤t≤b

|x(t)| <∞. (A.11)
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Let F = R, and let vector addition and scalar multiplication be defined as
in (A.6) and (A.7), respectively. It can readily be verified that this space is a
vector space.

In some applications it is necessary to expand the above space to the set
of measurable real-valued functions on [a, b] and to replace (A.11) by

ess sup
a≤t≤b

|x(t)| <∞, (A.12)

where ess sup denotes the essential supremum; i.e.,

ess sup
a≤t≤b

|x(t)| = inf{M : μ{t : |x(t)| > M} = 0, },

where μ denotes the Lebesgue measure. In this case, the vector space under
discussion is called the L∞-space.

A.2 Linear Independence and Bases

We now address the important concepts of linear independence of a set of
vectors in general and bases in particular. We first require the notion of linear
subspace.

A.2.1 Linear Subspaces

A nonempty subset W of a vector space V is called a linear subspace (or a
linear manifold ) in V if (i) w1 + w2 is in W whenever w1 and w2 are in W ,
and (ii) αw is in W whenever α ∈ F and w ∈ W . It is an easy matter to
verify that a linear subspace W satisfies all the axioms of a vector space and
may as such be regarded as a linear space itself.

Two trivial examples of linear subspaces include the null vector (i.e., the
set W = {0} is a linear subspace of V ) and the vector space V itself. Another
example of a linear subspace is the set of all real-valued polynomials defined
on the interval [a, b] that is a linear subspace of the vector space consisting
of all real-valued continuous functions defined on the interval [a, b] (refer to
Example A.6).

As another example of a linear subspace (of R2), we cite the set of all
points on a straight line passing through the origin. On the other hand, a
straight line that does not pass through the origin is not a linear subspace of
R2.

It is an easy matter to show that if W1 and W2 are linear subspaces of a
vector space V , then W1 ∩W2, the intersection of W1 and W2, is also a linear
subspace of V . A similar statement cannot be made, however, for the union
of W1 and W2 (prove this). Note that to show that a set V is a vector space,
it suffices to show that it is a linear subspace of some vector space.
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A.2.2 Linear Independence

Throughout this section, we let {α1, . . . , αn}, αi ∈ F , denote an indexed set
of scalars and we let {v1, . . . , vn}, vi ∈ V , denote an indexed set of vectors.

Now let W be a set in a linear space V (W may be a finite set or an infinite
set). We say that a vector v ∈ V is a finite linear combination of vectors in
W if there is a finite set of elements {w1, . . . , wn} in W and a finite set of
scalars {α1, . . . , αn} in F such that

v = α1w
1 + · · · + αnw

n.

Now let W be a nonempty subset of a linear space V and let S(W ) be the
set of all finite linear combinations of the vectors from W ; i.e., w ∈ S(W ) if
and only if there is some set of scalars {α1, . . . , αm} and some finite subset
{w1, . . . , wm} of W such that w = α1w

1 + · · ·+αmw
m, where m may be any

positive integer. Then it is easily shown that S(W ) is a linear subspace of V ,
called the linear subspace generated by the set W .

Now if U is a linear subspace of a vector space V and if there exists a set
of vectors W ⊂ V such that the linear space S(W ) generated by W is U , then
we say that W spans U . It is easily shown that S(W ) is the smallest linear
subspace of a vector space V containing the subset W of V . Specifically, if U
is a linear subspace of V and if U contains W , then U also contains S(W ).

As an example, in the space (R2, R), the set S1 = {e1} = {(1, 0)T} spans
the set consisting of all vectors of the form (a, 0)T , a ∈ R, whereas the set
S2 = {e1, e2}, e2 = (0, 1)T spans all of R2.

We are now in a position to introduce the notion of linear dependence.

Definition A.9. Let S = {v1, . . . , vm} be a finite nonempty set in a linear
space V . If there exist scalars α1, . . . , αm, not all zero, such that

α1v
1 + · · · + αmv

m = 0, (A.13)

then the set S is said to be linearly dependent (over F ). If a set is not linearly
dependent, then it is said to be linearly independent. In this case relation
(A.13) implies that α1 = · · · = αm = 0. An infinite set of vectors W in
V is said to be linearly independent if every finite subset of W is linearly
independent. �

Example A.10. Consider the linear space (Rn, R) (see Example A.3), and
let e1 = (1, 0, . . . , 0)T , e2 = (0, 1, 0, . . . , 0)T , . . . , en = (0, . . . , 0, 1)T . Clearly,∑n

i=1 αie
i = 0 implies that αi = 0, i = 1, . . . , n. Therefore, the set S =

{e1, . . . , en} is a linearly independent set of vectors in Rn over the field of real
numbers R.
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Example A.11. Let V be the set of 2-tuples whose entries are complex-
valued rational functions over the field of complex-valued rational functions.
Let

v1 =
[

1/(s+ 1)
1/(s+ 2)

]
, v2 =

[
(s+ 2)/[(s+ 1)(s+ 3)]

1/(s+ 3)

]
,

and let α1 = −1, α2 = (s+ 3)/(s+ 2). Then α1v
1 + α2v

2 = 0, and therefore,
the set S = {v1, v2} is linearly dependent over the field of rational functions.
On the other hand, since α1v

1 +α2v
2 = 0 when α1, α2 ∈ R is true if and only

if α1 = α2 = 0, it follows that S is linearly independent over the field of real
numbers (which is a subset of the field of rational functions). This shows that
linear dependence of a set of vectors in V depends on the field F .

A.2.3 Linear Independence of Functions of Time

Example A.12. Let V = C((a, b), Rn), let F = R, and for x, y ∈ V and
α ∈ F , define addition of elements in V and multiplication of elements in V
by elements in F by (x+y)(t) = x(t)+y(t) for all t ∈ (a, b) and (αx)(t) = αx(t)
for all t ∈ (a, b). Then, as in Example A.6, we can easily show that (V, F ) is
a vector space. An interesting question that arises is whether for this space,
linear dependence (and linear independence) of a set of vectors can be phrased
in some testable form. The answer is affirmative. Indeed, it can readily be
verified that for the present vector space (V, F ), linear dependence of a set of
vectors S = {φ1, . . . , φk} in V = C((a, b), Rn) over F = R is equivalent to
the requirement that there exist scalars αi ∈ F , i = 1, . . . , k, not all zero, such
that

α1φ1(t) + · · · + αkφk(t) = 0 for all t ∈ (a, b).

Otherwise, S is linearly independent.
To see how the above example applies to specific cases, let V = C((−∞,∞),

R2), and consider the vectors φ1(t) = [1, t]T , φ2(t) = [1, t2]T . To show that
the set S = {φ1, φ2} is linearly independent (over F = R), assume for pur-
poses of contradiction that S is linearly dependent. Then there must exist
scalars α1 and α2, not both zero, such that α1[1, t]T + α2[1, t2]T = [0, 0]T for
all t ∈ (−∞,∞). But in particular, for t = 2, the above equation is satisfied
if and only if α1 = α2 = 0, which contradicts the assumption. Therefore,
S = {φ1, φ2} is linearly independent.

As another specific case of the above example, let V = C((−∞,∞), R2)
and consider the set S = {φ1, φ2, φ3, φ4}, where φ1(t) = [1, t]T , φ2(t) =
[1, t2], φ3(t) = [0, 1]T , and φ4(t) = [e−t, 0]. The set S is clearly independent
over R since α1φ1(t) +α2φ2(t) +α3φ3(t) +α4φ4(t) = 0 for all t ∈ (−∞,∞) if
and only if α1 = α2 = α3 = α4 = 0.
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A.2.4 Bases

We are now in a position to introduce another important concept.

Definition A.13. A set W in a linear space V is called a basis for V if

(i) W is linearly independent, and
(ii) the span of W is the linear space V itself; i.e., S(W ) = V . �

An immediate consequence of the above definition is that if W is a linearly
independent set in a vector space V , then W is a basis for S(W ).

To introduce the notion of dimension of a vector space, it is shown that
if a linear space V is generated by a finite number of linearly independent
elements, then this number of elements must be unique. The following results
lead up to this.

Let {v1, . . . , vn} be a basis for a linear space V . Then it is easily shown
that for each vector v ∈ V , there exist unique scalars α1, . . . , αn such that

v = α1v
1 + · · · + αnv

n.

Furthermore, if u1, . . . , um is any linearly independent set of vectors in V ,
then m ≤ n. Moreover, any other basis of V consists of exactly n elements.
These facts allow the following definitions.

If a linear space V has a basis consisting of a finite number of vectors,
say, {v1, . . . , vn}, then V is said to be a finite-dimensional vector space and
the dimension of V is n, abbreviated dimV = n. In this case we speak of an
n-dimensional vector space. If V is not a finite-dimensional vector space, it is
said to be an infinite-dimensional vector space.

By convention, the linear space consisting of the null vector is finite-
dimensional with dimension equal to zero.

An alternative to the above definition of dimension of a (finite-dimensional)
vector space is given by the following result, which is easily verified: Let V
be a vector space that contains n linearly independent vectors. If every set
of n+ 1 vectors in V is linearly dependent, then V is finite-dimensional and
dimV = n.

The preceding results enable us now to introduce the concept of coordi-
nates of a vector. We let {v1, . . . , vn} be a basis of a vector space V , and we
let v ∈ V be represented by

v = ξ1v
1 + · · · + ξnv

n.

The unique scalars ξ1, . . . , ξn are called the coordinates of v with respect to
the basis {v1, . . . , vn}.

Example A.14. For the linear space (Rn, R), let S = {e1, . . . , en}, where
the ei ∈ Rn, i = 1, . . . , n, were defined earlier (in Example A.10). Then
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S is clearly a basis for (Rn, R) since it is linearly independent and since
given any v ∈ Rn, there exist unique real scalars αi, i = 1, . . . , n, such that
v =

∑n
i=1 αie

i = (α1, . . . , αn)T ; i.e., S spans Rn. It follows that with every
vector v ∈ Rn, we can associate a unique n-tuple of scalars

⎡
⎢⎣
α1

...
αn

⎤
⎥⎦ or (α1, . . . , αn)

relative to the basis {e1, . . . , en}, the coordinate representation of the vector
v ∈ Rn with respect to the basis S = {e1, . . . , en}. Henceforth, we will refer
to the basis S of this example as the natural basis for Rn.

Example A.15. We note that the vector space of all (complex-valued) poly-
nomials with real coefficients of degree less than n is an n-dimensional vec-
tor space over the field of real numbers. A basis for this space is given by
S = {1, s, . . . , sn−1} where s is a complex variable. Associated with a given
element of this vector space, say p(s) = α0+α1s+ · · ·+αn−1s

n−1, we have the
unique n-tuple given by (α0, α1, . . . , αn−1)T , which constitutes the coordinate
representation of p(s) with respect to the basis S given above.

Example A.16. We note that the space (V,R), where V = C([a, b], R), given
in Example A.6 is an infinite-dimensional vector space.

A.3 Linear Transformations

Definition A.17. A mapping T of a linear space V into a linear space W ,
where V and W are vector spaces over the same field F , is called a linear
transformation or a linear operator provided that

(L-i) T (x+ y) = T (x) + T (y) for all x, y ∈ V , and
(L-ii) T (αx) = αT (x) for all x ∈ V and α ∈ F . �

In the following discussion, we consider three specific examples of linear
transformations.

Example A.18. Let (V,R) = (Rn, R) and (W,R) = (Rm, R) be vector spaces
defined as in Example A.3, let A = [aij ] ∈ Rm×n, and let T : V → W be
defined by the equation

y = Ax, y ∈ Rm, x ∈ Rn,

where Ax denotes multiplication of the matrix A and the vector y. It is easily
verified using the properties of matrices that T is a linear transformation.
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Example A.19. Let (V,R) = (lp, R) be the vector space defined in Ex-
ample A.5 (modified to consist of sequences {xi}, i ∈ Z, in place of {xi},
i = 1, 2, . . . ). Let h : Z × Z → R be a function having the property that for
each x ∈ V , the infinite sum

∞∑
k=−∞

h(n, k)x(k)

exists and defines a function of n on Z. Let T : V → V be defined by

y(n) =
∞∑

k=−∞
h(n, k)x(k).

It is easily verified that T is a linear transformation.
The existence of the above sum is ensured under appropriate assumptions.

For example, by using the Hölder Inequality, it is readily shown that if, e.g.,
for fixed n, {h(n, k)} ∈ l2 and {x(k)} ∈ l2, then the above sum is well defined.
The above sum exists also if, e.g., {x(k)} ∈ l∞ and {h(n, k)} ∈ l1 for fixed n.

Example A.20. Let (V,R) denote the vector space given in Example A.7,
and let k ∈ C([a, b] × [a, b], R) have the property that for each x ∈ V , the
Riemann integral ∫ b

a

k(s, t)x(t)dt

exists and defines a continuous function of s on [a, b]. Let T : V → V be
defined by

(T x)(s) = y(s) =
∫ b

a

k(s, t)x(t)dt.

It is readily verified that T is a linear transformation of V into V .

Henceforth, if T is a linear transformation from a vector space V (over
a field F ) into a vector space W (over the same field F ) we will write T ∈
L(V,W ) to express this. In the following discussion, we will identify some of
the important properties of linear transformations.

A.3.1 Linear Equations

With T ∈ L(V,W ) we define the null space of T as the set

N (T ) = {v ∈ V : T v = w = 0}
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and the range space of T as the set

R(T ) = {w ∈W : w = T v, v ∈ V }.

Note that since T 0 = 0,N (T ) and R(T ) are never empty. It is easily verified
that N (T ) is a linear subspace of V and that R(T ) is a linear subspace of
W . If V is finite-dimensional (of dimension n), then it is easily shown that
dimR(T ) ≤ n. Also, if V is finite-dimensional and if {w1, . . . , wn} is a basis
for R(T ) and vi is defined by T vi = wi, i = 1, . . . , n, then it is readily proved
that the vectors v1, . . . , vn are linearly independent.

One of the important results of linear algebra, called the fundamental theo-
rem of linear equations , states that for T ∈ L(V,W ) with V finite-dimensional,
we have

dimN (T ) + dimR(T ) = dimV.

For the proof of this result, refer to any of the references on linear algebra
cited at the end of Chapters 4, 6, 8, and 9.

The above result gives rise to the notions of the rank, ρ(T ), of a linear
transformation T of a finite-dimensional vector space V into a vector space
W , which we define as the dimension of the range space R(T ), and the nullity,
ν(T ), of T , which we define as the dimension of the null space N (T ).

With the above machinery in place, it is now easy to establish the following
important results concerning linear equations.

Let T ∈ L(V,W ), where V is finite-dimensional, let s = dimN (T ), and
let {v1, . . . , vs} be a basis for N (T ). Then it is easily verified that

(i) a vector v ∈ V satisfies the equation T v = 0 if and only if v =
∑s
i=1 αiv

i

for some set of scalars {α1, . . . , αs}, and furthermore, for each v ∈ V such
that T v = 0 is true, the set of scalars {α1, . . . , αs} is unique;

(ii) if w0 ∈ W is a fixed vector, then T v = w0 holds for at least one vector
v ∈ V (called the solution of the equation T v = w0) if and only if
w0 ∈ R(T ); and

(iii) if w0 is any fixed vector in W and if v0 is some vector in V such that
T v0 = w0 (i.e., v0 is a solution of the equation T v0 = w0), then a vector
v ∈ V satisfies T v = w0 if and only if v = v0 +

∑s
i=1 βiv

i for some set of
scalars {β1, . . . , βs}, and furthermore, for each v ∈ V such that T v = w0,
the set of scalars {β1, . . . , βs} is unique.

A.3.2 Representation of Linear Transformations by Matrices

In the following discussion, we let (V, F ) and (W,F ) be vector spaces over the
same field and we let A : V →W denote a linear mapping. We let {v1, . . . , vn}
be a basis for V , and we set v̄1 = Av1, . . . , v̄n = Avn. Then it is an easy matter
to show that if v is any vector in V and if (α1, . . . , αn) are the coordinates of
v with respect to {v1, . . . , vn}, then Av = α1v̄

1 + · · ·+αnv̄
n. Indeed, we have

Av = A(α1v
1 + · · · + αnv

n) = α1Av1 + · · · + αnAvn = α1v̄
1 + · · · + αnv̄

n.
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Next, we let {v̄1, . . . , v̄n} be any set of vectors in W . Then it can be shown
that there exists a unique linear transformation A from V into W such that
Av1 = v̄1, . . . ,Avn = v̄n. To show this, we first observe that for each v ∈ V
we have unique scalars α1, . . . , αn such that

v = α1v
1 + · · · + αnv

n.

Now define a mapping A : V →W as

A(v) = α1v̄
1 + · · · + αnv̄

n.

Clearly, A(vi) = v̄i, i = 1, . . . , n. We first must show that A is linear and, then,
that A is unique. Given v = α1v

1 + · · ·+αnv
n and w = β1v

1 + · · ·+βnv
n, we

have A(v+w) = A[(α1 +β1)v1 + · · ·+(αn+βn)vn] = (α1 +β1)v̄1 + · · ·+(αn+
βn)v̄n. On the other hand, A(v) = α1v̄

1+· · ·+αnv̄n,A(w) = β1v̄
1+· · ·+βnv̄n.

Thus, A(v)+A(w) = (α1v̄
1+ · · ·+αnv̄n)+(β1v̄

1+ · · ·+βnv̄n) = (α1+β1)v̄1+
· · ·+(αn+βn)v̄n = A(v+w). In a similar manner, it is easily established that
αA(v) = A(αv) for all α ∈ F and v ∈ V . Therefore, A is linear. Finally, to
show that A is unique, suppose there exists a linear transformation B : V →W
such that Bvi = v̄i, i = 1, . . . , n. It follows that (A − B)vi = 0, i = 1, . . . , n,
and, therefore, that A = B.

These results show that a linear transformation is completely determined
by knowing how it transforms the basis vectors in its domain, and that this
linear transformation is uniquely determined in this way. These results enable
us to represent linear transformations defined on finite-dimensional spaces
in an unambiguous way by means of matrices. We will use this fact in the
following development.

Let (V, F ) and (W,F ) denote n-dimensional and m-dimensional vector
spaces, respectively, and let {v1, . . . , vn} and {w1, . . . , wm} be bases for V
and W , respectively. Let A : V → W be a linear transformation, and let
v̄i = Avi, i = 1, . . . , n. Since {w1, . . . , wm} is a basis for W , there are unique
scalars {aij}, i = 1, . . . ,m, j = 1, . . . , n, such that

Av1 = v̄1 = a11w
1 + a21w

2 + · · · + am1w
m,

Av2 = v̄2 = a12w
1 + a22w

2 + · · · + am2w
m,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Avn = v̄n = a1nw

1 + a2nw
2 + · · · + amnw

m.

(A.14)

Next, let v ∈ V . Then v has the unique representation v = α1v
1 + α2v

2 +
· · · + αnv

n with respect to the basis {v1, . . . , vn}. In view of the result given
at the beginning of this subsection, we now have

Av = α1v̄
1 + · · · + αnv̄

n. (A.15)

Since Av ∈ W,Av has a unique representation with respect to the basis
{w1, . . . , wm}, say,
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Av = γ1w
1 + γ2w

2 + · · · + γmw
m. (A.16)

Combining (A.14) and (A.16), and rearranging, in view of the uniqueness of
the representation in (A.16), we have

γ1 = a11α1 + a12α2 + · · · + a1nαn,

γ2 = a21α1 + a22α2 + · · · + a2nαn,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
γm = am1α1 + am2α2 + · · · + amnαn,

(A.17)

where (α1, . . . , αn)T and (γ1, . . . , γm)T are coordinate representations of v ∈ V
and Av ∈ W with respect to the bases {v1, . . . , vn} of V and {w1, . . . , wm}
of W , respectively. This set of equations enables us to represent the linear
transformation A from the linear space V into the linear space W by the
unique scalars {aij}, i = 1, . . . ,m, j = 1, . . . , n. For convenience we let

A = [aij ] =

⎡
⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn

⎤
⎥⎥⎦ . (A.18)

We see that once the bases {v1, . . . , vn}, {w1, . . . , wm} are fixed, we can rep-
resent the linear transformation A by the array of scalars in (A.18) that are
uniquely determined by (A.14). Note that the jth column of A is the co-
ordinate representation of the vector Avj ∈ W with respect to the basis
{w1, . . . , wm}.

The converse to the preceding statement also holds. Specifically, with the
bases for V and W still fixed, the array given in (A.18) is uniquely associated
with the linear transformation A of V into W . The above discussion gives rise
to the following important definition.

Definition A.21. The array given in (A.18) is called the matrix A of the
linear transformation A from a linear space V into a linear space W (over
F ) with respect to the basis {v1, . . . , vn} of V and the basis {w1, . . . , wm}
of W . �

If in Definition A.21, V = W , and if for both V and W the same ba-
sis {v1, . . . , vn} is used, then we simply speak of the matrix A of the linear
transformation A with respect to the basis {v1, . . . , vn}.

In (A.18) the scalars (ai1, ai2, . . . , ain) form the ith row of A and the
scalars (a1j , a2j , . . . , amj)T form the jth column of A. The scalar aij refers to
that element of matrix A that can be found in the ith row and jth column of
A. The array in (A.18) is said to be an m×n matrix. If m = n, we speak of a
square matrix. Consistent with the above discussion, an n× 1 matrix is called
a column vector, column matrix, or n-vector, and a 1 × n matrix is called a
row vector. Finally, if A = [aij ] and B = [bij ] are two m × n matrices, then
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A = B; i.e., A and B are equal if and only if aij = bij for all i = 1, . . . ,m, and
for all j = 1, . . . , n. Furthermore, we call AT = [aij ]T = [aji] the transpose of
A.

The preceding discussion shows in particular that if A is a linear trans-
formation of an n-dimensional vector space V into an m-dimensional vector
space W ,

w = Av, (A.19)

if γ = (γ1, . . . , γm)T denotes the coordinate representation of w with respect
to the basis {w1, . . . , wm}, if α = (α1, . . . , αn)T denotes the coordinate rep-
resentation of v with respect to the basis {v1, . . . , vn}, and if A denotes the
matrix of A with respect to the bases {v1, . . . , vn}, {w1, . . . , wm}, then

γ = Aα, (A.20)

or equivalently,

γi =
n∑
j=1

aijαj , i = 1, . . . ,m (A.21)

which are alternative ways to write (A.17).

The Rank of a Matrix

Let A denote the matrix representation of a linear transformation A. The
rank of A, ρ(A), is defined as the rank of A, ρ(A). It can be shown that the
rank ρ(A) of an m×n matrix A is the largest number of linearly independent
columns of A. The rank is also equal to the largest numbers of linearly inde-
pendent rows of A. It also equals the dimension of the largest nonzero minor
of A.

A.3.3 Solving Linear Algebraic Equations

Now consider the linear system of equations given by

Aα = γ, (A.22)

where A ∈ Rm×n and γ ∈ Rm are given and α ∈ Rn is to be determined.

1. For a given γ, a solution α of (A.22) exists (not necessarily unique) if and
only if γ ∈ R(A), or equivalently, if and only if

ρ([A, γ]) = ρ(A). (A.23)

2. Every solution α of (A.22) can be expressed as a sum

α = αp + αh, (A.24)
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where αp is a specific solution of (A.22) and αh satisfies Aαh = 0. This
result allows us to span the space of all solutions of (A.22). Note that
there are

dimN (A) = n− ρ(A) (A.25)

linearly independent solutions of the system of equations Aβ = 0.
3. Aα = γ has a unique solution if and only if (A.23) is satisfied and

ρ(A) = n ≤ m. (A.26)

4. A solution α of (A.22) exists for any γ if and only if

ρ(A) = m. (A.27)

If (A.27) is satisfied, a solution of (A.22) can be found by using the relation

α = AT (AAT )−1γ. (A.28)

When in (A.22), ρ(A) = m = n, then A ∈ Rn×n and is nonsingular and
the unique solution of (A.28) is given by

α = A−1γ. (A.29)

Example A.22. Consider

Aα =

⎡
⎣

0 0 0
0 0 1
0 0 0

⎤
⎦α = γ. (A.30)

It is easily verified that {(0, 1, 0)T} is a basis for R(A). Since a solution of
(A.30) exists if and only if γ ∈ R(A), γ must be of the form γ = (0, k, 0)T ,
k ∈ R. Note that

ρ(A) = 1 = ρ([A, γ]) = rank

⎡
⎣

0 0 0 0
0 0 1 k
0 0 0 0

⎤
⎦ ,

as expected. To determine all solutions of (A.30), we need to determine an αp
and an αh [see (A.24)]. In particular, αp = (0 0 k)T will do. To determine αh,
we consider Aβ = 0. There are dimN (A) = 2 linearly independent solutions
of Aβ = 0. In particular, {(1, 0, 0)T , (0, 1, 0)T} is a basis for N (A). Therefore,
any solution of (A.30) can be expressed as

α = αp + αh =

⎡
⎣

0
0
k

⎤
⎦+

⎡
⎣

1 0
0 1
0 0

⎤
⎦
[
c1
c2

]
,

where c1, c2 are appropriately chosen real numbers.



A.4 Equivalence and Similarity 471

A.4 Equivalence and Similarity

From our previous discussion it is clear that a linear transformation A of
a finite-dimensional vector space V into a finite-dimensional vector space W
can be represented by means of different matrices, depending on the particular
choice of bases in V and W . The choice of bases may in different cases result
in matrices that are easy or hard to utilize. Many of the resulting “standard”
forms of matrices, called canonical forms , arise because of practical consid-
erations. Such canonical forms often exhibit inherent characteristics of the
underlying transformation A.

Throughout this section, V and W are finite-dimensional vector spaces
over the same field F, dim V = n, and dimW = m.

A.4.1 Change of Bases: Vector Case

Our first aim will be to consider the change of bases in the coordinate repre-
sentation of vectors. Let {v1, . . . , vn} be a basis for V , and let {v̄1, . . . , v̄n} be
a set of vectors in V given by

v̄i =
n∑
j=1

pjiv
j , i = 1, . . . , n, (A.31)

where pij ∈ F for all i, j = 1, . . . , n. It is easily verified that the set
{v̄1, . . . , v̄n} forms a basis for V if and only if the n × n matrix P = [pij ]
is nonsingular (i.e., detP �= 0). We call P the matrix of the basis {v̄1, . . . , v̄n}
with respect to the basis {v1, . . . , vn}. Note that the ith column of P is the
coordinate representation of v̄i with respect to the basis {v1, . . . , vn}.

Continuing the above discussion, let {v1, . . . , vn} and {v̄1, . . . , v̄n} be two
bases for V and let P be the matrix of the basis {v̄1, . . . , v̄n} with respect to
the basis {v1, . . . , vn}. Then it is easily shown that P−1 is the matrix of the
basis {v1, . . . , vn} with respect to the basis {v̄1, . . . , v̄n}.

Next, let the sets of vectors {v1, . . . , vn}, {v̄1, . . . , v̄n}, and {ṽ1, . . . , ṽn} be
bases for V . If P is the matrix of the basis {v̄1, . . . , v̄n} with respect to the
basis {v1, . . . , vn} and if Q is the matrix of the basis {ṽ1, . . . , ṽn} with respect
to the basis {v̄1, . . . , v̄n}, then it is easily verified that PQ is the matrix of
the basis {ṽ1, . . . , ṽn} with respect to the basis {v1, . . . , vn}.

Continuing further, let {v1, . . . , vn} and {v̄1, . . . , v̄n} be two bases for V
and let P be the matrix of the basis {v̄1, . . . , v̄n} with respect to the basis
{v1, . . . , vn}. Let a ∈ V , and let αT = (α1, . . . , αn) denote the coordinate
representation of a with respect to the basis {v1, . . . , vn} (i.e., a =

∑n
i=1 αiv

i).
Let ᾱT = (ᾱ1, . . . , ᾱn) denote the coordinate representation of a with respect
to the basis {v̄1, . . . , v̄n}. Then it is readily verified that

Pᾱ = α.
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Example A.23. Let V = R3, F = R, and let a = (1, 2, 3)T ∈ R3 be
given. Let {v1, v2, v3} = {e1, e2, e3} denote the natural basis for R3; i.e.,
e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T . Clearly, the coordinate repre-
sentation α of a with respect to the natural basis is (1, 2, 3)T .

Now let {v̄1, v̄2, v̄3} be another basis for R3, given by v̄1 = (1, 0, 1)T , v̄2 =
(0, 1, 0)T , v̄3 = (0, 1, 1)T . From the relation

(1, 0, 1)T = v̄1 = p11v
1 + p21v

2 + p31v
3 = p11

⎡
⎣

1
0
0

⎤
⎦+ p21

⎡
⎣

0
1
0

⎤
⎦+ p31

⎡
⎣

0
0
1

⎤
⎦ ,

we conclude that p11 = 1, p21 = 0, and p31 = 1. Similarly, from

(0, 1, 0)T = v̄2 = p12v
1 + p22v

2 + p32v
3 = p12

⎡
⎣

1
0
0

⎤
⎦+ p22

⎡
⎣

0
1
0

⎤
⎦+ p32

⎡
⎣

0
0
1

⎤
⎦ ,

we conclude that p12 = 0, p22 = 1, and p32 = 0. Finally, from the relation

(0, 1, 1)T = v̄3 = p13

⎡
⎣

1
0
0

⎤
⎦+ p23

⎡
⎣

0
1
0

⎤
⎦+ p33

⎡
⎣

0
0
1

⎤
⎦ ,

we obtain that p13 = 0, p23 = 1, and p33 = 1.
The matrix P = [pij ] of the basis {v̄1, v̄2, v̄3} with respect to the basis

{v1, v2, v3} is therefore determined to be

P =

⎡
⎣

1 0 0
0 1 1
1 0 1

⎤
⎦ ,

and the coordinate representation of a with respect to the basis {v̄1, v̄2, v̄3} is
given by ᾱ = P−1α, or

ᾱ =

⎡
⎣

1 0 0
0 1 1
1 0 1

⎤
⎦
−1 ⎡
⎣

1
2
3

⎤
⎦ =

⎡
⎣

1 0 0
1 1 −1

−1 0 0

⎤
⎦
⎡
⎣

1
2
3

⎤
⎦ =

⎡
⎣

1
0
2

⎤
⎦ .

A.4.2 Change of Bases: Matrix Case

Having addressed the relationship between the coordinate representations of a
given vector with respect to different bases, we next consider the relationship
between the matrix representations of a given linear transformation relative
to different bases. To this end, let A ∈ L(V,W ) and let {v1, . . . , vn} and
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{w1, . . . , wm} be bases for V and W , respectively. Let A be the matrix of
A with respect to the bases {v1, . . . , vn} and {w1, . . . , wm}. Let {v̄1, . . . , v̄n}
be another basis for V , and let the matrix of {v̄1, . . . , v̄n} with respect to
{v1, . . . , vn} be P . Let {w̄1, . . . , w̄m} be another basis for W , and let Q be the
matrix of {w1, . . . , wm} with respect to {w̄1, . . . , w̄m}. Let Ā be the matrix of
A with respect to the bases {v̄1, . . . , v̄n} and {w̄1, . . . , w̄m}. Then it is readily
verified that

Ā = QAP. (A.32)

This result is depicted schematically in Figure A.1.

V
A−→W

{v1, . . . , vn}
ν = P ν̄

A−→ {w1, · · · , wm}
ω = Aν

P ↑ ↓ Q

{v̄1, . . . , v̄n}
ν̄

Ā−→ {w̄1, . . . , w̄m}
ω̄ = Qω

Figure A.1. Schematic diagram of the equivalence of two matrices

A.4.3 Equivalence and Similarity of Matrices

The preceding discussion motivates the following definition.

Definition A.24. An m × n matrix Ā is said to be equivalent to an m ×
n matrix A if there exists an m × m nonsingular matrix Q and an n × n
nonsingular matrix P such that (A.32) is true. If Ā is equivalent to A, we
write Ā ∼ A. �

Next, let V = W , let A ∈ L(V, V ), let {v1, . . . , vn} be a basis for V , and
let A be the matrix of A with respect to {v1, . . . , vn}. Let {v̄1, . . . , v̄n} be
another basis for V whose matrix with respect to {v1, . . . , vn} is P . Let Ā
be the matrix of A with respect to {v̄1, . . . , v̄n}. Then it follows immediately
from (A.32) that

Ā = P−1AP. (A.33)

The meaning of this result is depicted schematically in Figure A.2. The
above discussion motivates the following definition.

Definition A.25. An n×n matrix Ā is said to be similar to an n×n matrix
A if there exists an (n× n) nonsingular matrix P such that
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V
A−→ V

{v1, . . . , vn} A−→ {v1, . . . , vn}
↑ P ↓ P−1

{v̄1, . . . , v̄n} Ā−→ {v̄1, . . . , v̄n}

Figure A.2. Schematic diagram of the similarity of two matrices

Ā = P−1AP.

If Ā is similar to A, we write Ā ∼ A. We call P a similarity transformation.
�

It is easily verified that if Ā is similar to A [i.e., (A.33) is true], then A is
similar to Ā; i.e.,

A = PĀP−1. (A.34)

In view of this, there is no ambiguity in saying “two matrices are similar,” and
we could just as well have used (A.34) [in place of (A.33)] to define similarity
of matrices. To sum up, if two matrices A and Ā represent the same linear
transformation A ∈ L(V, V ), possibly with respect to two different bases for
V , then A and Ā are similar matrices.

A.5 Eigenvalues and Eigenvectors

Definition A.26. Let A be an n×n matrix whose elements belong to the field
F . If there exist λ ∈ F and a nonzero vector α ∈ Fn such that

Aα = λα, (A.35)

then λ is called an eigenvalue of A and α is called an eigenvector of A corre-
sponding to the eigenvalue λ. �

We note that if α is an eigenvector of A, then any nonzero multiple of α
is also an eigenvector of A.

A.5.1 Characteristic Polynomial

Let A ∈ Cn×n. Then

det(A− λI) = α0 + α1λ+ α2λ
2 + · · · + αnλ

n (A.36)

[note that α0 = det(A) and αn = (−1)n]. The eigenvalues of A are precisely
the roots of the equation

det(A− λI) = α0 + α1λ+ α2λ
2 + · · · + αnλ

n = 0 (A.37)

and A has at most n distinct eigenvalues.
We call (A.36) the characteristic polynomial of A, and we call (A.37) the

characteristic equation of A.
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Remarks

The above definition of characteristic polynomial is the one usually used in
texts on linear algebra and matrix theory (refer, e.g., to some of the books
on this subject cited at the end of this chapter). An alternative to the above
definition is given by the expression

α(λ) � det(λI −A) = (−1)n det(A− λI).

Now consider

det(A− λI) = (λ1 − λ)m1(λ2 − λ)m2 · · · (λp − λ)mp , (A.38)

where λi, i = 1, . . . , p, are the distinct roots of (A.37) (i.e., λi �= λj , if i �= j).
In (A.38), mi is called the algebraic multiplicity of the root λi. The mi are
positive integers, and

∑p
i=1 mi = n.

The reader should make note of the distinction between the concept of
algebraic multiplicity mi of λi, given above, and the (geometric) multiplicity
li of an eigenvalue λi, given by li = n− ρ(λiI −A). In general these need not
be the same.

A.5.2 The Cayley–Hamilton Theorem and Applications

We now state and prove a result that is very important in linear systems
theory.

Theorem A.27. (Cayley–Hamilton Theorem) Every square matrix satisfies
its characteristic equation. More specifically, if A is an n × n matrix and
p(λ) = det(A− λI) is the characteristic polynomial of A, then p(A) = O.

Proof. Let the characteristic polynomial for A be p(λ) = α0+α1λ+· · ·+αnλn,
and let B(λ) = [bij(λ)] be the classical adjoint of (A − λI). (For a nonsin-
gular matrix C with inverse C−1 = 1

det(C) adj(C), adj(C) is called the classi-
cal adjoint of C.) Since the bij(λ) are cofactors of the matrix A − λI, they
are polynomials in λ of degree not more than n − 1. Thus, bij(λ) = βij0 +
βij1λ+ · · ·+βij(n−1)λ

n−1. Letting Bk = [βijk] for k = 0, 1, . . . , n− 1, we have
B(λ) = B0 +λB1 + · · ·+λn−1Bn−1 and (A−λI)B(λ) = [det(A−λI)]I. Thus,
(A−λI)[B0+λB1+· · ·+λn−1Bn−1] = (α0+α1λ+· · ·+αnλn)I. Expanding the
left-hand side of this equation and equating like powers of λ, we have −Bn−1 =
αnI, ABn−1 −Bn−2 = αn−1I, . . . , AB1 −B0 = α1I, AB0 = α0I. Premultiply-
ing the above matrix equations by An, An−1, . . . , A, I, respectively, we have
−AnBn−1 = αnA

n, AnBn−1 − An−1Bn−2 = αn−1A
n−1, . . . , A2B1 − AB0 =

α1A,AB0 = α0I. Adding these matrix equations, we obtain O = α0I+α1A+
· · · + αnA

n = p(A), which was to be shown. �
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As an immediate consequence of the Cayley–Hamilton Theorem, we have
the following results: Let A be an n×n matrix with characteristic polynomial
given by (A.37). Then (i) An = (−1)n+1[α0I + α1A + · · · + αn−1A

n−1]; and
(ii) if f(λ) is any polynomial in λ, then there exist β0, β1, . . . , βn−1 ∈ F such
that

f(A) = β0I + β1A+ · · · + βn−1A
n−1. (A.39)

Part (i) follows from the Cayley–Hamilton Theorem and from the fact
that αn = (−1)n. To prove part (ii), let f(λ) be any polynomial in λ and
let p(λ) denote the characteristic polynomial of A. From a result for poly-
nomials (called the division algorithm), we know that there exist two unique
polynomials g(λ) and r(λ) such that

f(λ) = p(λ)g(λ) + r(λ), (A.40)

where the degree of r(λ) ≤ n − 1. Now since p(A) = 0, we have that f(A) =
r(A) and the result follows.

The Cayley–Hamilton Theorem can also be used to express n× n matrix-
valued power series (as well as other kinds of functions) as matrix polynomials
of degree n− 1. Consider in particular the matrix exponential eAt defined by

eAt =
∞∑
k=0

(tk/k!)Ak, t ∈ (−a, a). (A.41)

In view of the Cayley–Hamilton Theorem, we can write

f(A) = eAt =
n−1∑
i=0

αi(t)Ai. (A.42)

In the following discussion, we present a method to determine the coefficients
αi(t) in (A.42) [or βi in (A.39)].

In accordance with (A.38), let p(λ) = det(A − λI) =
∏p
i=1(λi − λ)mi be

the characteristic polynomial of A. Also, let f(λ) and g(λ) be two analytic
functions. Now if

f (l)(λi) = g(l)(λi), l = 0, . . . ,mi − 1, i = 1, . . . , p, (A.43)

where f (l)(λi) = dlf
dλl (λ)|λ=λi ,

∑p
i=1mi = n, then f(A) = g(A). To see this,

we note that condition (A.43) written as (f − g)l(λi) = 0 implies that f(λ)−
g(λ) has p(λ) as a factor; i.e., f(λ) − g(λ) = w(λ)p(λ) for some analytic
function w(λ). From the Cayley–Hamilton Theorem we have that p(A) = O
and therefore f(A) − g(A) = O.

Example A.28. As a specific application of the Cayley–Hamilton Theorem,

we evaluate the matrix A37, where A =
[

1 0
1 2

]
. Since n = 2, we assume, in
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view of (A.39), that A37 is of the form A37 = β0I + β1A. The characteristic
polynomial of A is p(λ) = (1− λ)(2− λ), and the eigenvalues of A are λ1 = 1
and λ2 = 2. In this case, f(λ) = λ37 and r(λ) in (A.40) is r(λ) = β0 +β1λ. To
determine β0 and β1 we use the fact that p(λ1) = p(λ2) = 0 to conclude that
f(λ1) = r(λ1) and f(λ2) = r(λ2). Therefore, we have that β0 + β1 = 137 = 1
and β0 + 2β1 = 237. Hence, β1 = 237 − 1 and β0 = 2 − 237. Therefore,

A37 = (2 − 237)I + (237 − 1)A or A37 =
[

1 0
237 − 1 237

]
.

Example A.29. Let A =
[
−1 1
−1 1

]
, and let f(A) = eAt, f(λ) = eλt, and

g(λ) = α1λ + α0. The matrix A has an eigenvalue λ = λ1 = λ2 = 0 with
multiplicity m1 = 2. Conditions (A.43) are given by f(λ1) = g(λ1) = 1 and
f (1)(λ1) = g(1)(λ1), which imply that α0 = 1 and α1 = t. Therefore,

eAt = f(A) = g(A) = α1A+ α0I =
[
−α1 + α0 α1

−α1 α1 + α0

]
=
[

1 − t t
−t 1 + t

]
.

A.5.3 Minimal Polynomials

For purposes of motivation, consider the matrix

A =

⎡
⎣

1 3 −2
0 4 −2
0 3 −1

⎤
⎦ .

The characteristic polynomial of A is p(λ) = (1 − λ)2(2 − λ), and we know
from the Cayley–Hamilton Theorem that

p(A) = O. (A.44)

Now let us consider the polynomial m(λ) = (1−λ)(2−λ) = 2−3λ+λ2. Then

m(A) = 2I − 3A+A2 = O. (A.45)

Thus, matrix A satisfies (A.45), which is of lower degree than (A.44), the
characteristic equation of A.

More generally, it can be shown that for an n× n matrix A, there exists
a unique polynomial m(λ) such that (i) m(A) = O, (ii) m(λ) is monic (i.e.,
if m is an nth-order polynomial in λ, then the coefficient of λn is unity), and
(iii) if m′(λ) is any other polynomial such that m′(A) = O, then the degree of
m(λ) is less or equal to the degree of m′(λ) [i.e., m(λ) is of the lowest degree
such that m(A) = O]. The polynomial m(λ) is called the minimal polynomial
of A.
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Let f(λ) be any polynomial such that f(A) = O (e.g., the characteristic
polynomial). Then it is easily shown that m(λ) divides f(λ) [i.e., there is
a polynomial q(λ) such that f(λ) = q(λ)m(λ)]. In particular, the minimal
polynomial of A, m(λ), divides the characteristic polynomial of A, p(λ). Also,
it can be shown that p(λ) divides [m(λ)]n.

Next, let p(λ) be given by

p(λ) = (λ1 − λ)m1(λ2 − λ)m2 · · · (λp − λ)mp , (A.46)

where m1, . . . ,mp are the algebraic multiplicities of the distinct eigenvalues
λ1, . . . , λp of A, respectively. It can be shown that

m(λ) = (λ− λ1)μ1(λ− λ2)μ2 · · · (λ− λp)μp , (A.47)

where 1 ≤ μi ≤ mi, i = 1, . . . , p.
It can also be shown that (λ − λi)μi is the minimal polynomial of the

Ai diagonal block in the Jordan canonical form of A, which we discuss in the
next section. When A has all n distinct eigenvalues, the Jordan canonical form
has n diagonal blocks and, therefore, μi = 1 and p(λ) = m(λ). The Jordan
canonical form is described in Section A.6 and in [1, Section 2.2].

A.6 Diagonal and Jordan Canonical Form of Matrices

Let A be an n×n matrix A ∈ Cn×n. The following developement follows [10].
To begin with, let us assume that A has distinct eigenvalues λ1, . . . , λn. Let vi
be an eigenvector of A corresponding to λi, i = 1, . . . , n. Then it can be easily
shown that the set of vectors {v1, . . . , vn} is linearly independent over C, and
as such, it can be used as a basis for Cn. Now let Ã be the representation
of A with respect to the basis {v1, . . . , vn}. Since the ith column of Ã is the
representation of Avi = λivi with respect to the basis {v1, . . . , vn}, it follows
that

Ã =

⎡
⎢⎢⎢⎣

λ1 0
λ2

. . .
0 λn

⎤
⎥⎥⎥⎦ � diag(λ1, . . . , λn). (A.48)

Since A and Ã are matrix representations of the same linear transformation,
it follows that A and Ã are similar matrices. Indeed, this can be checked by
computing

Ã = P−1AP, (A.49)

where P = [v1, . . . , vn] and where the vi are eigenvectors corresponding to λi,
i = 1, . . . , n. Note that AP = ÃP is true because the ith column of AP is
Avi, which equals λivi, the ith column of ÃP .
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When a matrix Ã is obtained from a matrix A via a similarity transfor-
mation P , we say that matrix A has been diagonalized. Now if the matrix A
has repeated eigenvalues, then it is not always possible to diagonalize it. In
generating a “convenient” basis for Cn in this case, we introduce the con-
cept of generalized eigenvector. Specifically, a vector v is called a generalized
eigenvector of rank k of A, associated with an eigenvalue λ if and only if

(A− λIn)kv = 0 and (A− λIn)k−1v �= 0, (A.50)

where In denotes the n × n identity matrix. Note that when k = 1, this
definition reduces to the preceding defintion of eigenvector.

Now let v be a generalized eigenvector of rank k associated with the eigen-
value λ. Define

vk = v,

vk−1 = (A− λIn)v = (A− λIn)vk,

vk−2 = (A− λIn)2v = (A− λIn)vk−1,

...

v1 = (A− λIn)k−1v = (A− λIn)v2.

(A.51)

Then for each i, 1 ≤ i ≤ k, vi is a generalized eigenvector of rank i. We call
the set of vectors {v1, . . . , vk} a chain of generalized eigenvectors.

For generalized eigenvectors, we have the following results:

(i) The generalized eigenvectors {v1, . . . , vk} defined in (A.51) are linearly
independent.

(ii) The generalized eigenvectors of A associated with different eigenvalues
are linearly independent.

(iii) If u and v are generalized eigenvectors of rank k and l, respectively,
associated with the same eigenvalue λ, and if ui and vj are defined by

ui = (A− λIn)k−iu, i = 1, . . . , k,

vj = (A− λIn)l−jv, j = 1, . . . , l,

and if u1 and v1 are linearly independent, then the generalized eigenvec-
tors u1, . . . , uk, v1, . . . , vl are linearly independent.

These results can be used to construct a new basis for Cn such that the
matrix representation of A with respect to this new basis is in the Jordan
canonical form J . We characterize J in the following result: For every complex
n× n matrix A, there exists a nonsingular matrix P such that the matrix

J = P−1AP

is in the canonical form
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J =

⎡
⎢⎢⎢⎣

J0 0
J1

. . .
0 Js

⎤
⎥⎥⎥⎦ , (A.52)

where J0 is a diagonal matrix with diagonal elements λ1, . . . , λk (not neces-
sarily distinct), i.e.,

J0 = diag(λ1, . . . , λk),

and each Jp is an np × np matrix of the form

Jp =

⎡
⎢⎢⎢⎢⎣

λk+p 1 0 · · · 0

0 λk+p 1
. . .

...
...

...
. . . 1

0 0 · · · λk+p

⎤
⎥⎥⎥⎥⎦
, p = 1, . . . , s,

where λk+p need not be different from λk+q if p �= q and k+n1 + · · ·+ns = n.
The numbers λi, i = 1, . . . , k + s, are the eigenvalues of A. If λi is a simple
eigenvalue of A, it appears in the block J0. The blocks J0, J1, . . . , Js are called
Jordan blocks, and J is called the Jordan canonical form.

Note that a matrix may be similar to a diagonal matrix without having
distinct eigenvalues. The identity matrix I is such an example. Also, it can
be shown that any real symmetric matrix A has only real eigenvalues (which
may be repeated) and is similar to a diagonal matrix.

We now give a procedure for computing a set of basis vectors that yield the
Jordan canonical form J of an n × n matrix A and the required nonsingular
transformation P that relates A to J :

1. Compute the eigenvalues of A. Let λ1, . . . , λm be the distinct eigenvalues
of A with multiplicities n1, . . . , nm, respectively.

2. Compute n1 linearly independent generalized eigenvectors of A associated
with λ1 as follows: Compute (A − λ1In)i for i = 1, 2, . . . until the rank
of (A − λ1In)k is equal to the rank of (A − λ1In)k+1. Find a generalized
eigenvector of rank k, say u. Define ui = (A− λ1In)k−iu, i = 1, . . . , k. If
k = n1, proceed to step 3. If k < n1, find another linearly independent
generalized eigenvector with the largest possible rank; i.e., try to find
another generalized eigenvector with rank k. If this is not possible, try
k− 1, and so forth, until n1 linearly independent generalized eigenvectors
are determined. Note that if ρ(A−λ1In) = r, then there are totally (n−r)
chains of generalized eigenvectors associated with λ1.

3. Repeat step 2 for λ2, . . . , λm.
4. Let u1, . . . , uk, . . . be the new basis. Observe, from (A.51), that
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Au1 = λ1u1 = [u1u2 · · ·uk · · · ][λ1, 0, . . . , 0]T ,

Au2 = u1 + λ1u2 = [u1u2 · · ·uk · · · ][1, λ1, 0, . . . , 0]T ,
...

Auk = uk−1 + λ1uk = [u1u2 · · ·uk · · · ][0, . . . , 0, 1, λ1, 0, . . . , 0]T ,

with λ1 in the kth position, which yields the representation J in (A.52)
of A with respect to the new basis, where the k× k matrix J1 is given by

J1 =

⎡
⎢⎢⎢⎢⎣

λ1 1 · · · 0

0 λ1

...
. . . 1

0 · · · λ1

⎤
⎥⎥⎥⎥⎦
.

Note that each chain of generalized eigenvectors generates a Jordan block
whose order equals the length of the chain.

5. The similarity transformation that yields J = Q−1AQ is given by Q =
[u1, . . . , uk, . . . ].

6. Rearrange the Jordan blocks in the desired order to yield (A.52) and the
corresponding similarity transformation P .

Example A.30. The characteristic equation of the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 −1 1 1 0 0
1 1 −1 −1 0 0
0 0 2 0 1 1
0 0 0 2 −1 −1
0 0 0 0 1 1
0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

is given by
det(A− λI) = (λ− 2)5λ = 0.

Thus, A has eigenvalue λ2 = 2 with multiplicity 5 and eigenvalue λ1 = 0 with
multiplicity 1.

Now compute (A− λ2I)i, i = 1, 2, . . . , as follows:

(A− 2I) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 1 1 0 0
1 −1 −1 −1 0 0
0 0 0 0 1 1
0 0 0 0 −1 −1
0 0 0 0 −1 1
0 0 0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

and ρ(A− 2I) = 4,
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(A− 2I)2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 2 2 0 0
0 0 2 2 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 2 −2
0 0 0 0 −2 2

⎤
⎥⎥⎥⎥⎥⎥⎦

and ρ(A− 2I)2 = 2,

(A− 2I)3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −4 4
0 0 0 0 4 −4

⎤
⎥⎥⎥⎥⎥⎥⎦

and ρ(A− 2I)3 = 1,

(A− 2I)4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 8 −8
0 0 0 0 −8 8

⎤
⎥⎥⎥⎥⎥⎥⎦

and ρ(A− 2I)4 = 1.

Since ρ(A− 2I)3 = ρ(A− 2I)4, we stop at (A− 2I)3. It can be easily verified
that if u = [0 0 1 0 0 0]T , then (A−2I)3u = 0 and (A−2I)2u = [2 2 0 0 0 0]T �=
0. Therefore, u is a generalized eigenvector of rank 3. So we define

u1 � (A− 2I)2u =
[
2 2 0 0 0 0

]T
,

u2 � (A− 2I)u =
[
1 −1 0 0 0 0

]T
,

u3 � u =
[
0 0 1 0 0 0

]T
.

Since we have only three generalized eigenvectors for λ2 = 2 and since the
multiplicity of λ2 = 2 is five, we have to find two more linearly independent
eigenvectors for λ2 = 2. So let us try to find a generalized eigenvector of rank
2. Let v = [0 0 1 − 1 1 1]T . Then (A − 2I)v = [0 0 2 − 2 0 0]T �= 0 and
(A− 2I)2v = 0. Moreover, (A− 2I)v is linearly independent of u1, and hence,
we have another linearly independent generalized eigenvector of rank 2. Define

v2 � v =
[
0 0 1 −1 1 1

]T

and

v1 = (A− 2I)v =
[
0 0 2 −2 0 0

]T
.

Next, we compute an eigenvector associated with λ1 = 0. Since w =
[0 0 0 0 1 − 1]T is a solution of (A− λ1I)w = 0, the vector w will do.

Finally, with respect to the basis w1, u1, u2, u3, v1, v2, the Jordan canonical
form of A is given by
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J =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 2 1 0 0 0
0 0 2 1 0 0
0 0 0 2 0 0
0 0 0 0 2 1
0 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 0 0 0
0 λ2 1 0 0 0
0 0 λ2 1 0 0
0 0 0 λ2 0 0
0 0 0 0 λ2 1
0 0 0 0 0 λ2

⎤
⎥⎥⎥⎥⎥⎥⎦

(A.53)

and

P =
[
w1 u1 u2 u3 v1 v2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 2 1 0 0 0
0 2 −1 0 0 0
0 0 0 1 2 1
0 0 0 0 −2 −1
1 0 0 0 0 1

−1 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (A.54)

The correctness of P is easily checked by computing PJ = AP .

A.7 Normed Linear Spaces

In the following discussion, we require for (V, F ) that F be either the field of
real numbers R or the field of complex numbers C. For such linear spaces we
say that a function ‖ · ‖: V → R+ is a norm if

(N-i) ‖ x ‖≥ 0 for every vector x ∈ V and ‖ x ‖= 0 if and only if x is the
null vector (i.e., x = 0);

(N-ii) for every scalar α ∈ F and for every vector x ∈ V , ‖ αx ‖= |α| ‖ x ‖,
where |α| denotes the absolute value of α when F = R and the modulus
when F = C; and

(N-iii) for every x and y in V , ‖ x + y ‖ ≤ ‖ x ‖ + ‖ y ‖. (This inequality is
called the triangle inequality.)

We call a vector space on which a norm has been defined a normed vector
space or a normed linear space.

Example A.31. On the linear space (Rn, R), we define for every x =
(x1, . . . , xn)T ,

‖ x ‖p= (
n∑
i=1

|xi|p)1/p, 1 ≤ p <∞ (A.55)

and
‖ x ‖∞= max{|xi| : 1 ≤ i ≤ n}. (A.56)

Using Minkowski’s Inequality for finite sums, see (A.5), it is an easy matter
to show that for every p, 1 ≤ p ≤ ∞, ‖ · ‖p is a norm on Rn. In addition to
‖ · ‖∞, of particular interest to us will be the cases p = 1 and p = 2; i.e.,
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‖ x ‖1=
n∑
i=1

|xi| (A.57)

and

‖ x ‖2=

(
n∑
i=1

|xi|2
)1/2

. (A.58)

The norm ‖ · ‖1 is sometimes referred to as the taxicab norm or Manhattan
norm, whereas, ‖ · ‖2 is called the Euclidean norm. The linear space (Rn, R)
with norm ‖ · ‖2 is called a Euclidean vector space.

The foregoing norms are related by the inequalities

‖ x ‖∞ ≤‖ x ‖1 ≤ n ‖ x ‖∞, (A.59)

‖ x ‖∞ ≤‖ x ‖2 ≤
√
n ‖ x ‖∞, (A.60)

‖ x ‖2 ≤‖ x ‖1 ≤
√
n ‖ x ‖2 . (A.61)

Also, for p = 2, we obtain from the Hölder Inequality for finite sums, (A.4),
the Schwarz Inequality

|xT y| = |
n∑
i=1

xiyi| ≤
(

n∑
i=1

|xi|2
)1/2( n∑

i=1

|yi|2
)1/2

(A.62)

for all x, y ∈ Rn.

The assertions made in the above example turn out to be also true for the
space (Cn, C). We ask the reader to verify these relations.

Example A.32. On the space lp given in Example A.5, let

‖ x ‖p=
( ∞∑
i=1

|xi|p
)1/p

, 1 ≤ p <∞,

and
‖ x ‖∞= sup

i
|xi|.

Using Minkowski’s Inequality for infinite sums, (A.5), it is an easy matter to
show that ‖ · ‖p is a norm for every p, 1 ≤ p ≤ ∞.

Example A.33. On the space given in Example A.7, let

‖ x ‖p=
(∫ b

a

|x(t)|pdt
)1/p

, 1 ≤ p <∞.
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Using Minkowski’s Inequality for integrals, (A.10), see Example A.7, it can
readily be verified that ‖ · ‖p is a norm for every p, 1 ≤ p < ∞. Also, on
the space of continuous functions given in Example A.8, assume that (A.11)
holds. Then

‖ x ‖∞= max
a≤t≤b

|x(t)|

is easily shown to determine a norm. Furthermore, expression (A.12) can also
be used to determine a norm.

Example A.34. We can also define the norm of a matrix. To this end, con-
sider the set of real m × n matrices, Rm×n = V and F = R. It is easily
verified that (V, F ) = (Rm×n, R) is a vector space, where vector addition is
defined as matrix addition and multiplication of vectors by scalars is defined
as multiplication of matrices by scalars.

For a given norm ‖ · ‖u on Rn and a given norm ‖ · ‖v on Rm, we define
‖ · ‖vu: Rm×n → R+ by

‖ A ‖vu= sup{‖ Ax ‖v: x ∈ Rn with ‖ x ‖u= 1}. (A.63)

It is easily verified that

(M-i) ‖ Ax ‖v≤‖ A ‖vu ‖ x ‖u for any x ∈ Rn,
(M-ii) ‖ A+B ‖vu≤‖ A ‖vu + ‖ B ‖vu,
(M-iii) ‖ αA ‖vu= |α| ‖ A ‖vu for all α ∈ R,
(M-iv) ‖ A ‖vu≥ 0 and ‖ A ‖vu= 0 if and only if A is the zero matrix (i.e.,

A = 0),
(M-v) ‖ A ‖vu≤

∑m
i=1

∑n
j=1 |aij | for any p-vector norms defined on Rn and

Rm.

Properties (M-ii) to (M-iv) clearly show that ‖ · ‖vu defines a norm on
Rm×n and justifies the use of the term matrix norm. Since the matrix norm
‖ · ‖vu depends on the choice of the vector norms, ‖ · ‖u, and ‖ · ‖v, defined
on U � Rn and V � Rm, respectively, we say that the matrix norm ‖ · ‖uv is
induced by the vector norms ‖ · ‖u and ‖ · ‖v. In particular, if ‖ · ‖u=‖ · ‖p
and ‖ · ‖v=‖ · ‖p, then the notation ‖ A ‖p is frequently used to denote the
norm of A.

As a specific case, let A = [aij ] ∈ Rm×n. Then it is easily verified that

‖ A ‖1 = max
j

(
m∑
i=1

|aij |
)
,

‖ A ‖2 = [maxλ(ATA)]1/2,

where maxλ(ATA) denotes the largest eigenvalue of ATA and
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‖ A ‖∞= max
i

⎛
⎝

n∑
j=1

|aij |

⎞
⎠ .

When it is clear from context which vector spaces and vector norms are
being used, the indicated subscripts on the matrix norms are usually not used.
For example, if A ∈ Rm×n and B ∈ Rn×k, it can be shown that

(M-vi) ‖ AB ‖≤‖ A ‖ ‖ B ‖.
In (M-vi) we have omitted subscripts on the matrix norms to indicate inducing
vector norms.

We conclude by noting that it is possible to define norms on (Rm×n, R)
that need not be induced by vector norms. Furthermore, the entire discussion
given in Example A.34 holds also for norms defined on complex spaces, e.g.,
(Cm×n, C).

A.8 Some Facts from Matrix Algebra

Determinants

We recall that the determinant of a matrix A = [aij ] ∈ Rn×n, detA, can be
evaluated by the relation

detA =
∑
j

aijdij for any i = 1, 2, . . . , n,

where dij = (−1)i+j detAij and Aij is the (n− 1) × (n− 1) matrix obtained
by deleting the ith row and jth column of A. The term dij is the cofactor
of A corresponding to aij and detAij is the ijth minor of the matrix . The
principal minors of A are obtained by letting i = j, i, j = 1, . . . n.

If any column (or row) of A is multiplied by a scalar k, then the determi-
nant of the new matrix is k detA. If every entry is multiplied by k, then the
determinant of the new matrix is kn detA. Also,

detAT = detA where AT is the transpose of A.

Determinants of Products

detAB = detAdetB when A and B are square matrices, and
det[Im − AB] = det[In −BA] where A ∈ Rm×n and B ∈ Rn×m.

Determinants of Block Matrices

det
[m×m
A

m×n
B

C
n×m D

n×n

]
= detAdet[D − CA−1B], detA �= 0

= detD det[A−BD−1C], detD �= 0.
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Inverse A−1 of A

If A ∈ Rn×n and if A is nonsingular (i.e., detA �= 0), then AA−1 = A−1A = I.

A−1 =
1

detA
adj(A),

where adj(A) = [dij ]T is the adjoint of A, where dij is the cofactor of A
corresponding to aij . When

A =
[
a b
c d

]

is a 2 × 2 matrix, then

A−1 =
1

ad− cb

[
d −b

−c a

]
.

If A ∈ Rm×m and C ∈ Rn×n, if A and C are nonsingular, and if B ∈ Rm×n

and D ∈ Rn×m, then

(A+BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1.

For example

[
I + C(sI −A)−1B

]−1
= I − C(sI −A+BC)−1B.

When A ∈ Rm×n and B ∈ Rn×m, then

(Im +AB)−1 = Im −A(In +BA)−1B.

Sylvester Rank Inequality

If X ∈ Rp×n and Y ∈ Rn×m, then

rankX + rankY − n ≤ rank(xy) ≤ min{rankX, rankY }.

A.9 Numerical Considerations

Computing the rank of the controllability matrix [B,AB, . . . , An−1B], the
eigenvalues of A, or the zeros of the system {A,B,C,D} typically requires
the use of a digital computer. When this is the case, one must deal with
the selection of an algorithm and interpret numerical results. In doing so,
two issues arise that play important roles in numerical computations using a
computer, namely, the numerical stability or instability of the computational
method used, and how well or ill conditioned the problem is numerically.

An example of a problem that can be ill conditioned is the problem of
calculating the roots of a polynomial, given its coefficients. This is so because
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for certain polynomials, small variations in the values of the coefficients, in-
troduced say via round-off errors, can lead to great changes in the roots of
the polynomial. That is to say, the roots of a polynomial can be very sensitive
to changes in its coefficients. Note that ill conditioning is a property of the
problem to be solved and does not depend on the floating-point system used
in the computer, nor on the particular algorithm being implemented.

A computational method is numerically stable if it yields a solution that
is near the true solution of a problem with slightly changed data. An example
of a numerically unstable method to compute the roots of ax2 + 2bx+ c = 0
is the formula (−b ±

√
(b2 − ac))/a, which for certain parameters a, b, c may

give erroneous results in finite arithmetic. This instability is caused by the
subtraction of two approximately equal large numbers in the numerator when
b2 >> ac. Note that the roots may be calculated in a numerically stable way,
using the mathematically equivalent, but numerically very different, expres-
sion c/(−b∓

√
(b2 − ac)).

We would like of course, to always use numerically stable methods, and we
would prefer to have well-conditioned problems. In what follows, we discuss
briefly the problem of solving a set of algebraic equations given by Ax = b.
We will show that a measure of how ill conditioned a given problem is, is
the size of the condition number (to be defined) of the matrix A. There are
many algorithms to numerically solve Ax = b, and we will briefly discuss
numerically stable ones. Singular values, singular value decomposition, and
the least-squares problem are also discussed.

A.9.1 Solving Linear Algebraic Equations

Consider the set of linear algebraic equations given by

Ax = b, (A.64)

where A ∈ Rm×n, b ∈ Rm and x ∈ Rn is to be determined.

Existence and Uniqueness of Solutions

See also Sec. A.3, (A.22)–(A.29). Given (A.64), for a given b, a solution x
exists if and only if b ∈ R(A), or equivalently, if and only if

ρ ([A, b]) = ρ(A). (A.65)

Every solution of (A.64) can be expressed as a sum

x = xp + xh, (A.66)

where xp is a specific solution and xh satisfies Axh = 0. There are

dimN (A) = n− ρ(A) (A.67)



A.9 Numerical Considerations 489

linearly independent solutions of the systems of equations Ax = 0.
Ax = b has a unique solution if and only if (A.65) is satisfied and

ρ(A) = n ≤ m. (A.68)

A solution exists for any b if and only if ρ(A) = m. In this case, a solution
may be found using

x = AT (AAT )−1b.

When ρ(A) = m = n, then A is nonsingular and the unique solution is

x = A−1b. (A.69)

It is of interest to know the effects of small variations of A and b to the
solution x of this system of equations. Note that such variations may be
introduced, for example, by rounding errors when calculating a solution or by
noisy data.

Condition Number

Let A ∈ Rn×n be nonsingular. If A is known exactly and b has some uncer-
tainty Δb associated with it, then A(x+Δx) = b+Δb. It can then be shown
that the variation in the solution x is bounded by

‖ Δx ‖
‖ x ‖ ≤ cond(A)

‖ Δb ‖
‖ b ‖ , (A.70)

where ‖ · ‖ denotes any vector norm (and consistent matrix norm) and
cond(A) denotes the condition number of A, where cond(A) �‖ A ‖ ‖ A−1 ‖.
Note that

cond(A) = σmax(A)/σmin(A), (A.71)

where σmax(A) and σmin(A) are the maximum and minimum singular values
of A, respectively (see the next section). From the property of matrix norms,
‖ AA−1 ‖≤‖ A ‖ ‖ A−1 ‖, it follows that cond(A) ≥ 1. This also follows
from the expression involving singular values. If cond(A) is small, then A is
said to be well conditioned with respect to the problem of solving linear
equations. If cond(A) is large, then A is ill conditioned with respect to the
problem of solving linear equations. In this case the relative uncertainty in
the solution (‖ Δx ‖ / ‖ x ‖) can be many times the relative uncertainty in
b (‖ Δb ‖ / ‖ b ‖). This is of course undesirable. Similar results can be derived
when variations in both b and A are considered, i.e., when b and A become
b+Δb and A+ΔA. Note that the conditioning of A, and of the given problem,
is independent of the algorithm used to determine a solution.

The condition number of A provides a measure of the distance of A to the
set of singular (reduced rank) matrices. In particular, if ‖ ΔA ‖ is the norm of
the smallest perturbation ΔA such that A+ΔA is singular, and is denoted by
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d(A), then dA/ ‖ A ‖= 1/ cond(A). Thus, a large condition number indicates
a short distance to a singularity and it is not surprising that this implies great
sensitivity of the numerical solution x of Ax = b to variations in the problem
data.

The condition number of A plays a similar role in the case when A is not
square. It can be determined in terms of the singular values of A defined in
the next subsection.

Computational Methods

The system of equations Ax = b is easily solved if A has some special form
(e.g., if it is diagonal or triangular). Using the method of Gaussian elimina-
tion, any nonsingular matrix A can be reduced to an upper triangular matrix
U . These operations can be represented by premultiplication of A by a se-
quence of lower triangular matrices. It can then be shown that A can be
represented as

A = LU, (A.72)

where L is a lower triangular matrix with all diagonal elements equal to 1 and
U is an upper triangular matrix. The solution of Ax = b is then reduced to
the solution of two systems of equations with triangular matrices, Ly = b and
Ux = y. This method of solving Ax = b is based on the decomposition (A.72)
of A, which is called the LU decomposition of A.

If A is a symmetric positive definite matrix, then it may be represented as

A = UTU, (A.73)

where U is an upper triangular matrix. This is known as the Cholesky de-
composition of a positive definite matrix. It can be obtained using a variant
of Gaussian elimination. Note that this method requires half of the opera-
tions necessary for Gaussian elimination on an arbitrary nonsingular matrix
A, since A is symmetric.

Now consider the system of equations Ax = b, where A ∈ Rm×n, and let
rankA = n(≤ m). Then

A = Q

[
R
O

]
= [Q1, Q2]

[
R
O

]
= Q1R, (A.74)

where Q is an orthogonal matrix (QT = Q−1) and R ∈ Rn×n is an upper
triangular matrix of full rank n. Expression (A.74) is called the QR decom-
position of A. When rankA = r, the QR decomposition of A is expressed
as

AP = Q

[
R1 R2

0 0

]
, (A.75)

where Q is orthogonal, R1 ∈ Rr×r is nonsingular and upper triangular, and
P is a permutation matrix that represents the moving of the columns during
the reduction (in QTAP ).
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The QR decomposition can be used to determine solutions of Ax = b. In
particular, consider A ∈ Rm×n with rankA = n(≤ m) and assume that a
solution exists. First, determine the QR decomposition of A given in (A.74).

Then QTAx = QT b or
[
R
0

]
x = QT b (since QT = Q−1) or Rx = c. Solve this

system of equations, where R is triangular and c = [In, 0]QT b. In the general
case when rank(A) = r ≤ min(n,m), determine the QR decomposition of
A (2.7) and assume that a solution exists. The solutions are given by x =

P

[
R−1

1 (c−R2y)
y

]
, c = [Ir , 0]QT b, where y ∈ Rm−r is arbitrary.

A related problem is the linear least-squares problem where a solution x
of the system of equations Ax = b is to be found that minimizes ‖ b−Ax ‖2.
This is a more general problem than simply solving Ax = b, since solving it
provides the “best” solution in the above sense, even when an exact solution
does not exist. The least-squares problem is discussed further in a subsequent
subsection.

A.9.2 Singular Values and Singular Value Decomposition

The singular values of a matrix and the Singular Value Decomposition The-
orem play a significant role in a number of problems of interest in the area
of systems and control, from the computation of solutions of linear systems
of equations, to computations of the norm of transfer matrices at specified
frequencies, to model reduction, and so forth. In what follows, we provide a
brief description of some basic results and we introduce some terminology.

Consider A ∈ Cn×n, and let A∗ = ĀT ; i.e., the complex conjugate trans-
pose of A. A ∈ Cn×n is said to be Hermitian if A∗ = A. If A ∈ Rn×n,
then A∗ = AT and if A = AT , then A is symmetric. A ∈ Cn×n is unitary if
A∗ = A−1. In this case A∗A = AA∗ = In. If A ∈ Rn×n, then A∗ = AT and if
AT = A−1, i.e., if ATA = AAT = In, then A is orthogonal .

Singular Values

Let A ∈ Cm×n, and consider AA∗ ∈ Cm×m. Let λi, i = 1, . . . ,m denote the
eigenvalues of AA∗, and note that these are all real and nonnegative numbers.
Assume that λ1 ≥ λ2 ≥ · · ·λr ≥ · · · ≥ λm. Note that if r = rankA =
rank(AA∗), then λ1 ≥ λ2 ≥ · · · ≥ λr > 0 and λr+1 = · · · = λm = 0. The
singular values σi of A are the positive square roots of λi, i = 1, . . . ,min(m,n).
In fact, the nonzero singular values of A are

σi = (λi)1/2, i = 1, . . . , r, (A.76)

where r = rankA, whereas the remaining (min(m,n) − r) of the singular
values are zero. Note that σ1 ≥ σ2 ≥ · · · ≥ σr > 0, and σr+1 = σr+2 = · · · =
σmin(m,n) = 0. The singular values could also have been found as the square
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roots of the eigenvalues of A∗A ∈ Cn×n (instead of AA∗ ∈ Cm×m). To see
this, consider the following result.

Lemma A.35. Let m ≥ n. Then

|λIm −AA∗| = λm−n|λIn −A∗A|; (A.77)

i.e., all eigenvalues of A∗A are eigenvalues of AA∗ that also has m− n addi-
tional eigenvalues at zero. Thus AA∗ ∈ Cm×m and A∗A ∈ Cn×n have precisely
the same r nonzero eigenvalues (r = rankA); their remaining eigenvalues,
(m− r) for AA∗ and (n− r) for A∗A, are all at zero. Therefore, either AA∗

or A∗A can be used to determine the r nonzero singular values of A. All
remaining singular values are zero.

Proof. The proof is based on Schur’s formula for determinants. In particular,
we have

D(λ) =
∣∣∣∣
λ1/2Im A

A∗ λ1/2In

∣∣∣∣ = |λ1/2Im| |λ1/2In −A∗λ−1/2ImA|

= |λ1/2Im| |λ−1/2In| |λIn −A∗A|

= λ
m−n

2 · |λIn −A∗A|,

(A.78)

where Schur’s formula was applied to the (1, 1) block of the matrix. If it is
applied to the (2, 2) block, then

D(λ) = λ
n−m

2 · |λIm −AA∗|. (A.79)

Equating (A.78) and (A.79) we obtain |λIm−AA∗| = λm−n|λIn−A∗A|, which
is (A.78). �

Example A.36. A =
[

2 1 0
0 0 0

]
∈ R2×3. Here rankA = r = 1, λi(AA∗) =

λi

⎛
⎝
[

2 1 0
0 0 0

]⎡
⎣

2 0
1 0
0 0

⎤
⎦
⎞
⎠ = λi

([
5 0
0 0

])
= {5, 0} and λ1 = 5, λ2 = 0. Also,

λi(A∗A) = λi

⎛
⎝
⎡
⎣

2 0
1 0
0 0

⎤
⎦
[

2 1 0
0 0 0

]⎞
⎠ = λi

⎛
⎝
⎡
⎣

4 2 0
2 1 0
0 0 0

⎤
⎦
⎞
⎠, and λ1 = 5, λ2 = 0, and

λ3 = 0. The only nonzero singular value is σ1 =
√
λ1 = +

√
5. The remaining

singular values are zero.

There is an important relation between the singular values of A and its
induced Hilbert or 2-norm, also called the spectral norm ‖ A ‖2=‖ A ‖s. In
particular,
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‖ A ‖2 (=‖ A ‖s) = sup
‖x‖2=1

‖ Ax ‖2= max
i

{(λi(A∗A))1/2} = σ̄(A), (A.80)

where σ̄(A) denotes the largest singular value of A. Using the inequalities
that are axiomatically true for induced norms, it is possible to establish re-
lations between singular values of various matrices that are useful in MIMO
control design. The significance of the singular values of a gain matrix A(jw)
is discussed later in this section.

There is an interesting relation between the eigenvalues and the singular
values of a (square) matrix. Let λi, i = 1, . . . , n denote the eigenvalues of
A ∈ Rn×n, let λ(A) = mini |λi|, and let λ(A) = maxi |λi|. Then

σ(A) ≤ λ(A) ≤ λ(A) ≤ σ(A). (A.81)

Note that the ratio σ̄(A)/σ(A), i.e., the ratio of the largest and smallest
singular values of A, is called the condition number of A, and is denoted by
cond(A). This is a very useful measure of how well conditioned a system of
linear algebraic equations Ax = b is (refer to the discussion of the previous
section). The singular values provide a reliable way of determining how far
a square matrix is from being singular, or a nonsquare matrix is from losing
rank. This is accomplished by examining how close to zero σ(A) is. In con-
trast, the eigenvalues of a square matrix are not a good indicator of how far
the matrix is from being singular, and a typical example in the literature to
illustrate this point is an n × n lower triangular matrix A with −1’s on the
diagonal and +1’s everywhere else. In this case, σ(A) behaves as 1/2n and
the matrix is nearly singular for large n, whereas all of its eigenvalues are at
−1. In fact, it can be shown that by adding 1/2n−1 to every element in the
first column of A results in an exactly singular matrix (try it for n = 2).

Singular Value Decomposition

Let A ∈ Cm×n with rankA = r ≤ min(m,n). Let A∗ = ĀT , the complex
conjugate transpose of A.

Theorem A.37. There exist unitary matrices U ∈ Cm×n and V ∈ Cn×n

such that
A = UΣV ∗, (A.82)

where Σ =
[

Σr 0r×(n−r)
0(m−r)×r 0(m−r)×(n−r)

]
with Σr = diag(σ1, σ2, . . . , σr) ∈ Rr×r

selected so that σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Proof. For the proof, see for example, Golub and Van Loan [7], and Patel et
al. [11]. �

Let U = [U1, U2] with U1 ∈ Cm×r, U2 ∈ Cm×(m−r) and V = [V1, V2] with
V1 ∈ Cn×r, V2 ∈ Cn×(n−r). Then
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A = UΣV ∗ = U1ΣrV
∗
1 . (A.83)

Since U and V are unitary, we have

U∗U =
[
U∗

1

U∗
2

]
[U1, U2] = Im, U

∗
1U1 = Ir (A.84)

and

V ∗V =
[
V ∗

1

V ∗
2

]
[V1, V2] = In, V

∗
1 V1 = Ir. (A.85)

Note that the columns of U1 and V1 determine orthonormal bases for R(A)
and R(A∗), respectively. Now

AA∗ = (U1ΣrV
∗
1 )(V1ΣrU

∗
1 ) = U1Σ

2
rU

∗
1 , (A.86)

from which we have

AA∗U1 = U1Σ
2
rU

∗
1U1 = U1Σ

2
r . (A.87)

If ui, i = 1, . . . , r, is the ith column of U1, i.e., U1 = [u1, u2, . . . , ur], then

AA∗ui = σ2
i ui, i = 1, . . . , r. (A.88)

This shows that the σ2
i are the r nonzero eigenvalues of AA∗; i.e., σi, i =

1, . . . , r, are the nonzero singular values of A. Furthermore, ui, i = 1, . . . , r,
are the eigenvectors of AA∗ corresponding to σ2

i . They are the left singular
vectors of A. Note that the ui are orthonormal vectors (in view of U∗

1U1 = Ir).
Similarly,

A∗A = (V1ΣrU
∗
1 )(U1ΣrV

∗
1 ) = V1Σ

2
rV

∗
1 , (A.89)

from which we obtain

A∗AV1 = V1Σ
2
rV

∗
1 V1 = V1Σ

2
r . (A.90)

If vi, i = 1, . . . , r, is the ith column of V1, i.e., V1 = [v1, v2, . . . , vr], then

A∗Avi = σ2
i vi, i = 1, 2, . . . , r. (A.91)

The vectors vi are the eigenvectors of A∗A corresponding to the eigenvalues
σ2
i . They are the right singular vectors of A. Note that the vi are orthonormal

vectors (in view of V ∗
1 V1 = Ir).

The singular values are unique, whereas the singular vectors are not. To
see this, consider

V̂1 = V1 diag(ejθi) and Û1 = U1 diag(e−jθi).

Their columns are also singular vectors of A.
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Note also that A = U1ΣrV
∗
1 implies that

A =
r∑
i=1

σiuiv
∗
i . (A.92)

The significance of the singular values of a gain matrix A(jw) is now briefly
discussed. This is useful in the control theory of MIMO systems. Consider the
relation between signals y and v, given by y = Av. Then

max
‖v‖2 �=0

‖ y ‖2

‖ v ‖2
= max

‖v‖2 �=0

‖ Av ‖2

‖ v ‖2
= σ̄(A)

or

max
‖v‖2=1

‖ y ‖2 = max
‖v‖2=1

‖ Av ‖2= σ̄(A). (A.93)

Thus, σ̄(A) yields the maximum amplification, in energy terms (2-norm), when
the transformation A operates on a signal v. Similarly,

min
‖v‖2=1

‖ y ‖2= min
‖v‖2=1

‖ Av ‖2= σ(A). (A.94)

Therefore,

σ(A) ≤ ‖ Av ‖2

‖ v ‖2
≤ σ̄(A), (A.95)

where ‖ v ‖2 �= 0. Thus the gain (energy amplification) is bounded from above
and below by σ̄(A) and σ(A), respectively. The exact value depends on the
direction of v.

To determine the particular directions of vectors v for which these (max
and min) gains are achieved, consider (A.92) and write

y = Av =
r∑
i=1

σiuiv
∗
i v. (A.96)

Notice that |v∗i v| ≤ ||vi||||v|| = ||v||, since ||vi|| = 1, with equality holding only
when v = αvi, α ∈ C. Therefore, to maximize, consider v along the singular
value directions vi and let v = αvi with |α| = 1 so that ||v|| = 1. Then in view
of v∗i vj = 0, i �= j and v∗i vj = 1, i = j, we have that y = Av = αAvi = ασiui
and ||y||2 = ||Av||2 = σi, since ||ui||2 = 1. Thus, the maximum possible gain
is σ1; i.e., max

‖v‖2=1
||y||2 = max

‖v‖2=1
||Av||2 = σ1(= σ̄(A)), as was shown above.

This maximum gain occurs when v is along the right singular vector v1. Then
Av = Av1 = σ1u1 = y in view of (A.92); i.e., the projection is along the
left singular vector u1, also of the same singular value σ1. Similarly, for the
minimum gain, we have σr = σ(A) = min

‖v‖2=1
||y||2 = min

‖v‖2=1
||Av||2; in which

case, Av = Avr = σrur = y.
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Additional interesting properties include

R(A) = R(U1) = span{u1, . . . , ur}, (A.97)
N (A) = R(V2) = span{vr+1, . . . , vn}, (A.98)

where U = [u1, . . . , ur, ur+1, . . . , um] = [U1, U2], V = [v1, . . . , vr, vr+1, . . . , vn]
= [V1, V2].

A.9.3 Least-Squares Problem

Consider now the least-squares problem where a solution x to the system of
linear equations Ax = b is to be determined that minimizes ‖ b−Ax ‖2. Write
min
x

‖ b − Ax ‖2
2= min

x
(b − Ax)T (b − Ax) = min

x
(xTATAx − 2bTAx + bT b).

Then ∇x(xTATAx− 2bTAx+ bT b) = 2ATAx− 2AT b = 0 implies that the x,
which minimizes ‖ b−Ax ‖2, is a solution of

ATAx = AT b. (A.99)

Rewrite this as V1Σ
2
rV

T
1 x = (U1ΣrV

T
1 )T b = V1ΣrU

T
1 b in view of (A.89) and

(A.83). Now x = V1Σ
−1
r UT1 b is a solution. To see this, substitute and note

that V T1 V1 = Ir . In view of the fact that N (ATA) = N (A) = R(V2) =
span{vr+1, . . . , vn}, the complete solution is given by

xw = V1Σ
−1
r UT1 b+ V2w (A.100)

for some w ∈ Rm−r. Since V1Σ
−1
r UT1 b is orthogonal to V2w for all w,

x0 = V1Σ
−1
r UT1 b (A.101)

is the optimal solution that minimizes ‖ b −Ax ‖2.
The Moore–Penrose pseudo-inverse of A ∈ Rm×n can be shown to be

A+ = V1Σ
−1
r UT1 . (A.102)

We have seen that x = A+b is the solution to the least-squares problem.
It can be shown that this pseudo-inverse minimizes ‖ AA+ − Im ‖F , where
‖ A ‖F denotes the Frobenius norm of A, which is equal to the square root
of trace[AAT ] =

∑m
i=1 λi(AA

T ) =
∑m
i=1 σ

2
i (A). It is of interest to note that

the Moore–Penrose pseudo-inverse of A is defined as the unique matrix that
satisfies the conditions (i) AA+A = A, (ii) A+AA+ = A+, (iii) (AA+)T =
AA+, and (iv) (A+A)T = A+A.

Note that if rankA = m ≤ n then it can be shown that A+ = AT (AAT )−1;
this is, in fact, the right inverse of A, since A(AT (AAT )−1) = Im. Similarly,
if rankA = n ≤ m, then A+ = (ATA)−1AT , the left inverse of A, since
((ATA)−1AT )A = In.

Singular values and singular value decomposition are discussed in a number
of references. See for example, Golub and Van Loan [7], Patel et al. [11], Petkov
et al. [12], and DeCarlo [5].
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A.10 Notes

Standard references on linear algebra and matrix theory include Birkhoff and
MacLane [4], Halmos [8], and Gantmacher [6]. Our presentation in this ap-
pendix follows Michel and Herget [9]. Conditioning and numerical stability of
a problem are key issues in the area of numerical analysis. Our aim in Sec-
tion A.9 was to make the reader aware that depending on the problem, the
numerical considerations in the calculation of a solution may be nontrivial.
These issues are discussed at length in many textbooks on numerical analysis.
Examples of good books in this area include Golub and Van Loan [7] and
Stewart [13] where matrix computations are emphasized. Also, see Petkov et
al. [12] and Patel et al. [11] for computational methods with emphasis on
system and control problems. For background on the theory of algorithms,
optimization algorithms, and their numerical properties, see Bazaraa et al. [2]
and Bertsekas and Tsitsiklis [3].
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Solutions to Selected Exercises

Exercises of Chapter 1

1.10 Δẋ = (k1k2/L)Δx+ k2Δu, Δy = (k1/L)Δx where L = 2
√
k − k1k2t.

1.12 (a)
[
Δẋ1

Δẋ2

]
=
[

0 1
1 1

] [
Δx1

Δx2

]
.

(b) x1 = x, x2 = ẋ[
Δẋ1

Δẋ2

]
=
[

0 1
0 −3

] [
Δx1

Δx2

]
+
[

0
−1

]
Δu.

1.13 x1 = φ, x2 = φ̇, x3 = s, x4 = ṡ⎡
⎢⎢⎣
Δẋ1

Δẋ2

Δẋ3

Δẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
g
L′ 0 0 F

L′M
0 0 0 1
0 0 0 − F

M

⎤
⎥⎥⎦

⎡
⎢⎢⎣
Δx1

Δx2

Δx3

Δx4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
− 1
L′M
0
1
M

⎤
⎥⎥⎦Δμ.

Exercises of Chapter 2

2.4 (b) Not linear; time-invariant; causal.

2.5 Causal; linear; not time-invariant.

2.6 Noncausal; linear; time-invariant.

2.7 Not linear.

2.8 Noncausal; time-invariant.

2.9 Noncausal; nonlinear (affine).

2.10 y(n) =
∑∞
k=−∞ u(l)[s(n, l)− s(n, l−1)], where s(n, l) =

∑∞
l=−∞ h(n, k)

p(k − l) is the unit step response of the system.
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Exercises of Chapter 3

3.1 (a) (α1, α2, α3) = (1, 0, 5). (b) (ᾱ1, ᾱ2, ᾱ3) = (s, 2, s+ 1/s).

3.2 a = [1, 0,−2]T , ā = [0, 1/2, 1/2].

3.3 A basis is {(1, α)T }, α ∈ R.

3.4 It is a vector space of dimension n2. The set of nonsingular matrices is
not a vector space since closure of matrix addition is violated.

3.5 Dependent over the field of rational functions; independent over the field
of reals.

3.6 (a) Rank is 1 over complex numbers. (b) 2 over reals. (c) 2 over rational
functions. (d) 1 over rational functions.

3.8 Directly, from the series definition of eAt or using system concepts.

3.9 See also Subsection 6.4.1.

3.11 (λki , v
i) is an (eigenvalue, eigenvector) pair of Ak. Then f(A)vi =

f(λi)vi.

3.13 Substitute x(t) = Φ(t, t0)z(t) into ẋ = A(t)x+B(t)u.

3.14 Take derivatives of both sides of Φ(t, τ)Φ(τ, t) = I with respect to τ .

3.19 Verify that Φ(t, 0) = eAt is the solution of Φ(t, 0) = AΦ(t, 0), Φ(0, 0) = I.

3.21 Use Exercise 3.19. x2
1 + x2

2 = 2 = (
√

2)2, so trajectory is a circle.

3.22 x(0) = [1, 1]T is colinear to the eigenvector of eigenvalue 1, and so et is
the only mode that appears in the solution.

3.23 (a) Take t = 0 in the expression for eAt.

3.25 (a) x(0) = [−1, 1, 0]T .

3.30 (I −A)x(0) = Bu(0); u(0) = 2.

Exercises of Chapter 4

4.1 Set of equilibria is {(−4v, v, 5v)T : v ∈ R}.

4.2 Set of equilibria is {( 1
kπ , 0)T : k ∈ N\{0}} ∪ {(0, 0)T }.

4.3 x = 0 is uniformly asymptotically stable; x = 1 is unstable.

4.5 A > 0.

4.7 x = 0 is exponentially stable; x = 1 is unstable.

4.9 Uniformly BIBO stable.
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4.10 (a) Set of equilibria {(α,−α)T ∈ R2 : α ≥ 0}. (b) No equilibrium.

4.12 x = 0 is stable.

4.13 x = 0 is stable.

4.14 x = 0 is not stable.

4.15 x = 0 is not stable.

4.18 (a) x = 0 is stable. (b) x = 0 is stable.

4.21 x = 0 is unstable.

4.22 Not BIBO stable. Theorem cannot be applied.

Exercises of Chapter 5

5.2 (a) Controllable from u, observable from y. (b) when u1 = 0, controllable
from u2; when u2 = 0, not controllable from u1. (c) not observable from y1;
observable from y2.

5.3 (a) Use u(t) = BT eA
T (T−t)W−1

r (0, T )(x1 − eATx0).

5.4 (a) It can be reached in two steps, with u(0) = 3, u(1) = −1.
(b) Any x = (b, a, a)T will be reachable. a, b ∈ R.
(c) x = (0, 0, a)T unobservable. a ∈ R.

5.10 (a) u(0) = −1, u(1) = 2; (b) y(1) = (1, 2)Tu(0).

5.11 x0 = [1 0 α]T , α ∈ R.

Exercises of Chapter 6

6.2 (b) λ = 3 uncontrollable (first pair); λ = −1 uncontrollable (second pair).

6.3 Controllability indices are 1, 3.

6.7 Use controller form or Sylvester’s Rank Inequality.

6.13 (a) It is controllable. (b) It is controllable from f1 only. (c) It is observ-
able.

Exercises of Chapter 7

7.1 Use the standard form for uncontrollable systems.

7.5 λ1 = 1 is both controllable and observable, λ2 = − 1
2 is uncontrollable

but observable, and λ3 = − 1
2 is controllable but unobservable.
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7.6 (a) λ = 2 is uncontrollable and unobservable. (b) H(s) = 1
s+1

[
1 1
1 0

]
.

(c) It is not asymptotically stable, but it is BIBO stable.

7.7 (a) pH(s) = s2(s+ 2), mH(s) = s(s+ 2). (b) zH(s) = 1.

7.8 (a) pH(s) = s3 = mH(s). (b) zH(s) = 1.

7.10 (a) They are rc. (b) They are not lc; a glcd is
[
s 0
0 1

]
.

7.13 (a) It is uncontrollable and unobservable.

(b) H(s) = 2
s+1

[
−1 2

0 0

]
.

Exercises of Chapter 8

8.4 pH = s2 − 1; McMillan degree is 2.

8.6 (a) pH(s) = s(s+ 1)(s+ 3); McMillan degree is 3.

(b) A =

⎡
⎣

0 0 0
0 −1 0
0 0 −3

⎤
⎦, B =

⎡
⎣

1 0
0 1
1 0

⎤
⎦, C =

[
1 2 0
0 −1 1

]
, D =

[
0 1
0 1

]
.

8.10 (a) pH(s) = s2(s+ 1)2 so the order of any minimal realization is 4.
(b) Take u1 = 0, and find the McMillan degree, which is 2. So in a fourth
order realization, system will not be controllable from u2 only. System will be
observable from y1.

8.12 pH(s) = s3, and so 3 is the order of any minimal realization. A minimal

realization is A =

⎡
⎣

0 1 0
0 0 0
0 0 0

⎤
⎦, B =

⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦, C =

[
0 1 −1
1 1 0

]
, D =

[
1 0 1
0 0 0

]
.

Exercises of Chapter 9

9.4 F = gf , g = (0, 1)T , f = (−11 − 19 − 12;−10) (after reducing the
system to single-input controllable).

9.6 (a) G = 1
2 , F = [−2,− 7

2 ,−
5
2 ]. (b) controllable but unobservable.

9.9 (a) Let x1 = θ, x2 = θ̇. Then A =
[

0 1
0 −1

]
, B =

[
0
1

]
, C =

[
1 0
]
.

(b) F = [−1,−1].

9.11 F = [−3.7321,−6, 4641] minimizes J1.

9.12 (a) F =
[
3
2 , 1
]
. (b) K = [2α, α2 + 2]T .
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9.13 (a) OE = 0. (b) E = α(1,−1)T .

9.14 F = −
[
1 0
1 2

]
.

9.15 (a) x0 = −(λI −A)−1B; If λ is a zero of H(s), a pole-zero cancellation
will occur. (b) x0 = αv, where v is the eigenvector corresponding to λ.

Exercises of Chapter 10

10.1 (a) For X1 = X̃1 = 0, Y1 = Ỹ1 = 1, H2 = (1 + s2K)/K, where K is any
stable rational function. Alternatively, for X ′

1 = X̃ ′
1 = (s2 +8s+24)/(s+2)2,

Y ′
1 = Ỹ ′

1 = (32s+16)/(s+2)2, N ′
1 = Ñ ′

1 = 1/(s+2)2, D′
1 = D̃′

1 = s2/(s+2)2,
and H2 = (32s+ 16− s2K ′)/(s2 + 8s+ 24−K ′), where K ′ is any proper and
stable rational function.
(b) In general, it is not easy (or may be impossible) to restrict appropriately
K or K ′, so H2 is of specific order. Here let H2 = (b1s + b0)/(s + a0) and
establish conditions on the parameters so that the closed-loop system is stable.

10.4 (b) N ′−1T = X ′, a proper and stable function, implies conditions on
ni, di of T .

10.5 (a) In view of the hint, N−1T = 1/(s + 2)2 = 1/G−1DF , from which
G = 2, F (s) = FS(s) = [−6,−11][1, s]T .



Index

A/D, analog-to-digital converter, 117
Abel’s formula, 80
Ackermann’s formula, 361, 382, 401
Adjoint equation, 132, 133
Adjoint of a matrix, 487
Algebraic multiplicity, 475,

see also Eigenvalue
Asymptotic behavior, 94, 121,

see also Mode of system
Asymptotic state estimator, see State

observer
Automobile suspension system, 140
Autonomous, 10,

see also Linear ordinary differential
equation; System

Axioms
of a field, 455
of a norm, 483
of a vector space, 456

Basis, see Vector space
BIBO stable, 170, 174, 187, 189,

see also Stability
Biproper, 427,

see also Rational function

Canonical form, 471
Jordan, 88, 478–481

Canonical Structure Theorem, 245, 269,
see also Kalman’s Decomposition

Theorem
Cauchy–Peano existence theorem, 18
Cayley–Hamilton Theorem, 91, 127, 475
Characteristic

equation, 474

polynomial, 474,

see also Matrix; Transfer function

value, see Eigenvalue

vector, see Eigenvector

Cholesky decomposition, 490

Circuit, 14, 279, 286, 291

Closed-loop control, 353, 400

Cofactor, 486,

see also Matrix

Command input, see Reference input

Companion form matrix, 137

Condition number, 489,

see also Matrix

Constructibility, 222, 230,

see also Observability

continuous-time system, 222–224

discrete-time system, 202, 228

Gramian, 223

Continuous function

at a point, 7

over an interval, 7

uniformly, 7

Control problems, 445

Controllability (-to-the-origin), 209,
210, 230, 303, 307

continuous-time system, 209, 230

discrete-time system, 216

eigenvalue/eigenvector (PBH) test,
248

from the origin, see Reachability

Gramian, 210

indices, 256
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Controllability (Cont’d)
matrix, 197, 206, 230
output, 234

Controllable (-to-the-origin), 199, 209,
230

companion form, see Controller form
eigenvalues, 240
mode, 240
single-input, 405
subspace, 209

Controller
digital, 116
feedback, 352, 411
implementations, 439
with two degrees of freedom, 431, 448

Controller form, 251, 270
multi-input, 256, 270
single-input, 252, 270

Converter(A/D, D/A), 117
Convolution

integral, 69
sum, 62

Coprime, 299, 301, 307, 423, 448,
see also Polynomial matrices

D/A, digital-to-analog converter, 117
Deadbeat

control, 136
observer, 388

Decoupling
diagonal, 446, 449
static, 447, 449

Degree, McMillan, 321, 345
Detectable, 380
Determinant, 486,

see also Matrix
Determinantal divisor, 283
Diagonal decoupling, 446, 449
Difference equations, 51,

see also Solutions of difference
equations

Differential equations, ordinary,
see also Solutions of differential

equations
classification, 10
first-order, 9
linear, 20, 21
linear homogeneous, 11, 12, 28
linear homogeneous with constant

coefficients, 11, 12, 78

linear nonhomogeneous, 11, 12, 30, 78
nth-order, 11
systems of first-order, 10

Digital signal, 117
Diophantine equation, 424, 427, 447

all solutions, 424, 429
Bezout identity, 427

Dirac delta distribution, 65, 66, 73, 92
Direct link matrix, 105
Discrete-time impulse, 60
Discrete-time Kalman filter, 391,

see also Kalman filter
Divisor, common, 298
Domain of attraction, 166,

see also Equilibrium
Double integrator, 120, 139
Doubly coprime, 423, 448, 450,

see also Coprime
Dual system, 203, 232

Eigenvalue, 474
algebraic multiplicity, 475
controllable, 240
critical, 152
geometric multiplicity, 475
multiple, 475
observable, 243

Eigenvalue or pole assignment, 357, 401
direct method, 358, 400
eigenvector assignment, 364, 401
using controller form, 359, 401

Eigenvector, 474
generalized, 479

Equilibrium, 124, 129, 142, 174, 188,
see also Stability
attractive, 145
domain of attraction, 145
qualitative characterization, 144
trivial solution, 143

Equivalence
of internal representations, 105, 115,

303
of matrices, 473
zero-input, 107
zero-state, 107

Estimator, see State observer
Euclidean

norm, 484
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Euler
method, 38

External input, 352

Feedback
configuration, 413
control, 411
gain matrix, 352
output, 351, 392, 411
state, 351, 400

Feedback stabilizing controller, 422, 448
parameterizations, polynomial MFD,

423, 448
parameterizations, proper and stable

MFD, 426, 448
two degrees of freedom, 434, 449

Field, 455
Frequency response, 138
Function, 7

continuous, 7
Hamiltonian, 34
indefinite, 155
piecewise continuous, 8, 31
positive definite, semidefinite, 155

Fundamental matrix, 78–81, 127
Fundamental theorem of linear

equations, 466

Gaussian elimination, 490
Generalized distance function, 154,

see also Lyapunov function
Generalized eigenvector, 479
Generalized energy function, 154,

see also Lyapunov function
Generalized function, 66,

see also Dirac delta distribution
Geometric multiplicity, 475,

see also Eigenvalue
Gram

matrix, 211
Gramian

constructibility, 223
controllability, 210
observability, 220, 231
reachability, 206, 230

Hamiltonian
dynamical systems, 34
function, 34
matrix, 372

Hamiltonian matrix, 377
Hankel matrix, 322, 345
Harmonic oscillator, 134
Hermite form, 299, 301
Hölder’s Inequality, 458
Hurwitz matrix, 165
Hybrid system, 118

Ill conditioned, 489
Impulse response

continuous-time, 70, 71, 73
discrete-time, 64, 72

Impulse response matrix, 64, 68, 70, 71
Indices

controllability, 256
observability, 265

Infinite series method, 87, 127,
see also Matrix, exponential

Initial conditions, 5, 6
Initial time, 5, 6
Initial-value problem, 8, 11, 32, 51

examples, 13
solutions, 17

Input
command or reference, 352
comparison sensitivity matrix, 436
decoupling zeros, 287, 305
external, 352
function observability, 235
output decoupling zeros, 288, 305
vector, 5

Input-output description, see System
representations, descriptions

Instability, 160
Integral equation, 10
Integral representation, 65
Integration, forward rectangular rule,

38
Internal description, see System

representations, descriptions
Internal stability, 144–169, 173–186, 188
Invariant factors, polynomials, 283
Invariant property of (A, B), 260
Invariant subspace, 209, 227
Inverted pendulum, 43,

see also Pendulum

Jacobian matrix, 21, 32
Jordan canonical form, 88, 478–481
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Kalman filter
continuous-time, 385
discrete-time, 391

Kalman–Bucy filter, 385
Kalman’s Decomposition Theorem, 245,

269

Lagrange’s equation, 35
Lagrangian, 36
Laplace transform, 92, 127
Least-order realization, 318
Least-squares, 491
Leonhard–Mikhailov stability criterion,

190
Level curve, 157,

see also Lyapunov function
Lienard equation, 15, 167
Limit cycle, 42
Linear algebraic equation

fundamental theorem, 466
solutions, 469, 488

Linear operator, see Linear transforma-
tion

Linear ordinary difference equations,
52, 53

Linear ordinary differential equation,
see also Solutions of differential

equations
autonomous, 10
homogeneous, 11, 12, 28
matrix, 80
nonhomogeneous, 11, 12, 30
periodic, 10, 12

Linear space, see Vector space
Linear system, 57
Linear transformation, 464

fundamental theorem, 466
null space, 465
nullity, 466
orthogonal, 491
principle of superposition, 50
range space, 466
representation by a matrix, 466

Linearization, 6, 21, 32, 164, 185, 189
examples, 24

Linearized equation, 22, 23, 32
Linearly dependent, 461, 462,

see also Vector
Linearly independent, 210, 461, 462,

see also Vector
Lipschitz condition, 18, 20
LQG (linear quadratic Gaussian)

problem, 385, 402, 403
LQR (linear quadratic regulator)

problem
continuous-time, 369
discrete-time, 377, 401

LU decomposition, 490
Luenberger observer, 379, 402
Lyapunov function, 154, 183

construction of, 160
level curve, 157

Lyapunov matrix equation, 153, 179,
189

Lyapunov stability, 144, 148, 188, 189,
see also Stability

Lyapunov’s Direct or Second Method,
153

Markov parameter, 137, 315, 322, 345
Matrix

characteristic polynomial, 474
Cholesky decomposition, 490
cofactor, 486
companion form, 137
condition number, 489
controllability, 197, 230
determinant, 486
diagonal, 478
equivalent, 473
exponential, 85, 127
fundamental, 80
Gram, 211
Hamiltonian, 372, 377
Hankel, 322, 345
Hermite form, 299, 301
Hermitian, 491
Hurwitz, 165
ill conditioned, 489
impulse response, 64, 68, 70, 71
indefinite, 154
inverse, 487
Jacobian, 21, 32
Jordan, 478–481
LU decomposition, 490
minimal polynomial, 477
minor, 155, 284, 307, 486
Moore–Penrose inverse, 496
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Matrix (Cont’d)
negative definite, semidefinite, 154
nonsingular, 487
norm, 485
observability, 220, 231
orthogonal, 491
positive definite, semidefinite, 154
proper rational, 105
QR decomposition, 490
rank, 469
Rosenbrock system, 286, 305
Schur stable, 178
similar, 473
Smith form, 283
Smith–McMillan form, 284, 307
state transition, 82, 109, 127
symmetric, 154, 491
system, 286, 305
Toeplitz, 227
unimodular, 283
unitary, 491
well conditioned, 489

Matrix fractional description, 293, 297,
308,

see also System representations,
descriptions

McMillan degree, 321, 345
MIMO system multi-input/multi-

output, 56
Minimal polynomial, 284, 477
Minkowski’s Inequality, 458
Mode of system, 95, 122, 127,

see also System
Model matching problem, 446, 449, 452
Modeling, 2
Moore–Penrose pseudo-inverse, 496

Natural basis, 464,
see also Basis; Vector space

Negative,
see also Function; Matrix
definite, semidefinite, 154

Nonlinear systems, 4, 147, 164, 185, 189
Norm

Euclidean, 484
induced, 485
Manhattan, 484
matrix, 485
taxicab, 484

Observability, 219, 223, 230, 304, 307
continuous-time system, 219, 221, 230

discrete-time system, 226
eigenvalue/eigenvector (PBH) test,

248

Gramian, 220, 231
indices, 265
matrix, 220, 231
subspace, see Unobservable

Observable
eigenvalue mode, 243

Observer, Luenberger, 379, 402,
see also State observer

Observer form, 263, 271
multi-output, 265, 271
single-input, 263, 271

Open-loop control, 353, 400
Operator, linear, see Linear transforma-

tion
Optimal

control problem, LQR, 369, 377, 401
estimation problem, LQG, 385, 391,

402, 404

Optimality principle, 403
Orthogonal, 491

matrix, 491
Output

comparison sensitivity matrix, 436
decoupling zeros, 287, 305
equation, 5
function controllability, 235

reachability, controllability, 234
vector, 5

Peano–Baker series, 29, 33, 82
Pendulum

inverted, 43

simple, 17, 24, 45
Phase

plane, 134
portrait, 42

variable, 134
Picard iterations, 20

with successive approximations, 28
Pole assignment problem, 357,

see also Eigenvalue or pole assignment
Pole polynomial, 284, 307
Pole, zero relations, 290, 306
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Poles at infinity, 283
Poles of a transfer function, 284
Poles of the system, 283, 306,

see also Eigenvalue
Polynomial

monic, 477
Polynomial matrices

coprime, left, right, 299, 301, 307
division algorithm, 476
doubly coprime, 423, 448, 450
greatest common divisors, 298, 300
Hermite form, 299, 301
Smith form, 283
unimodular, 283

Polynomial matrix description, 292,
see also System representations,

descriptions
Positive,

see also Function; Matrix
definite, indefinite, semidefinite, 155

Prediction estimator, 389
Predictor–corrector method, 40
Proper transfer function, 105

QR decomposition, 490
Quadratic form, 154
Quantization, 117

Rank, 469
test, 249

Rational function
biproper, 427
proper and stable, 308

Rayleigh’s dissipation function, 36
Reachability, 205, 214, 216,

see also Controllability, from the
origin

continuous-time system, 205, 230
discrete-time system, 198, 214, 230
Gramian, 206, 230
matrix, see Controllability
output, 234
subspace, 206

Reachable, 198, 205, 214, 230,
see also Controllable; Controllability,

from the origin
state, 205
subspace, 206

Realization algorithms, 324, 345

controller/observer form, 326, 345
matrix A diagonal, 339, 345
singular-value decomposition, 341,

345
using duality, 324, 345

Realization of systems, 314, 343, 345
existence and minimality, 316, 345
least order, irreducible, minimal

order, 318, 321, 345
Reconstructible, see Constructibility
Reference input, 352
Response, 49, 55, 71

maps, 435
total, 100, 111, 128
zero-input, 100, 111
zero-state, 100, 111

Return difference matrix, 421, 422
Riccati equation

continuous-time case, 370, 401
discrete-time case, 386, 402

Rosenbrock system matrix, 286, 305
Routh–Hurwitz stability criterion, 190
Runge–Kutta method, 39

Sampled data system, 116, 129
Sampling period, rate, 119, 129
Scalar, 456
Schur–Cohn stability criterion, 190
Schwarz Inequality, 458
Semigroup property, 109
Sensitivity matrix, 436
Separation principle, property, 395, 403
Shift operator, 75
Signal, digital, 117
Similarity transformation, 105, 474
Singular

value, 491
value decomposition, 493
vector, left, right, 494

SISO system
single-input/single-output, 56

Smith form, 283
Smith–McMillan form, 284, 307
Solutions of algebraic equations, 469,

488
Solutions of difference equations

particular, 55
total, 55

Solutions of differential equations, 9,
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see also Variation of constants
formula

bounded, 148
continuable, 19
continuation, 18
continuous dependence on initial

conditions, 20
continuous dependence on parame-

ters, 19, 20
existence, 18, 27, 33
homogeneous, 28–30, 53
noncontinuable, 18, 19
particular, 31
Peano–Baker series, 29
predictor–corrector method, 40
Runge–Kutta, 39
successive approximations, Picard

iterations, 20, 28
total, 31

Space
of n-tuples, 457
of real-valued continuous functions,

459
span, 461

Spring, 16
Spring mass system, 139
Stability, 124, 129, 141, 148, 304, 307,

419, 427
asymptotic, 124, 145, 149, 150, 177,

178, 185
asymptotic in the large, 146, 149,

152, 177, 180
attractive equilibrium, 145, 175
bounded-input/bounded-output

(BIBO), 170, 174, 187, 189
causal, 58, 61, 62, 64, 70, 72, 73
domain of attraction, 145, 175
exponential, 145, 150, 177
exponential in the large, 150, 152
external, 170
global asymptotic, 150
input–output, 170, 186, 189, 281, 306
linear systems, continuous, 148
linear systems, discrete, 173
Lyapunov, 144, 148, 188, 189, 281,

306
Routh–Hurwitz criterion, 190
Schur–Cohn, 190

Stabilizable, 356

Stable, see Stability
Standard form

Kalman’s canonical, 244, 269
uncontrollable system, 238, 269
unobservable system, 241

State
partial, 295
phase variable, 134
variables, 5
vector, 5

State equation, 5
State estimator, see State observer
State feedback, 352, 400,

see also Feedback
eigenvalue assignment, 355, 400
input–output relations, 372
optimal, 369, 377, 401

State observer, 378, 402
current, 389, 402
deadbeat, 388
full-order, 378, 387
identity, 379, 387
optimal, 385, 391, 402
partial state, 383, 391
prediction, 389
reduced-order, 383, 391

State transition matrix, 82, 109
State unconstructible, 222, 223
State unobservable, 220, 223
Structure theorem

controllable version, 261, 270
observable version, 267, 271

Successive approximations, Picard
iterations, 20, 28, 32,

see also Solutions of differential
equations

Superposition principle, 50, 57
Sylvester Rank Inequality, 319, 487
System

at rest, 63, 69
autonomous, 10
causal, 58, 72, 73
conservative, 34
continuous-time, 5
discrete-time, 4, 6, 50, 60, 72
distributed parameter, 4
dual, 203, 232
finite-dimensional, 4, 6
Hamiltonian, 35
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System (Cont’d)
hybrid, 118
infinite-dimensional, 4
linear, 57
lumped parameter, 4
matrix, 286, 305
memoryless, 57
mode, 95, 122, 127
nonanticipative, 58
nonlinear, 4
realization, 314, 343, 345
sampled data, 116, 129
single input/single output, 56
time-invariant, 59, 72
time-varying, 59
with memory, 57, 72

System interconnections
feedback, 413, 447
parallel, 411, 447
series, or tandem, 412, 447

System representations, descriptions
balanced, 342, 345
continuous-time, 48
controller form, 251, 257, 270
differential/difference operator, 292,

307
discrete-time, 50
equivalence, of, 105, 115, 128
external, 6, 56, 72, 293
input–output, 56, 72, 73
internal, 6, 293
matrix fractional, 293, 297, 308
observer form, 263, 266, 271
polynomial matrix, 292, 295, 307,

308, 416
standard form, uncontrollable,

unobservable, 238, 239, 241, 242,
269

state-space, 5

Time reversibility, 109
Toeplitz matrix, 227
Trajectory, 42, 134
Transfer function

McMillan degree, 321, 345
minimal polynomial, 284
pole polynomial, 284
strictly proper, 105

Triangle inequality, 483

Truncation operator, 74
Two degrees of freedom controller, 431,

448

Unconstructible, 227,
see also Constructibility
subspace, 227

Uncontrollable,
see also Controllability
eigenvalues, modes, 240, 269

Unimodular matrix, 283
Unit

pulse, or unit impulse, response, 61
pulse, or unit sample, 60
step function, 92
step sequence, 60

Unit impulse, 66, 73
Unity feedback, 441, 443, 449
Unobservable, 219,

see also Observability
eigenvalues, modes, 243
subspace, 219

van der Pol equation, 15, 42
Variation of constants formula, 31, 33,

132
Vector, 456

coordinate representation, 464
linearly dependent, 461, 462
linearly independent, 461, 462

Vector space, 456
basis, 463, 472
dimension, 463
examples, 457
finite-dimensional, 463
normed, 483
null, 465

Youla parameter, 425, 429, 449

z-Transform, 112
Zero, 286, 287, 304, 307

at infinity, 310
decoupling input/output, 288, 305
direction, 292
invariant, 287, 305, 307
of transfer functions, 288, 305, 306
polynomial, 287, 305, 307
system, 287
transmission, 288, 305
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Zero-input response, 100, 111,
see also Response

Zero-order hold, 117

Zero-state response, 100, 111,
see also Response
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ing and Birkhäuser, 2005, second printing, with A.N. Michel).

Dr. Antsaklis has been guest editor of special issues of the IEEE Transac-
tions of Automatic Control and the Proceedings of the IEEE on Hybrid and
on Networked Control Systems. He serves on the editorial boards of several
journals, and he currently serves as Associate-Editor-at-Large of the IEEE
Transactions of Automatic Control.

Dr. Antsaklis has served as program chair and general chair of major
systems and control conferences including the Conference on Decision and
Control, and he was the 1997 President of the IEEE Control Systems Society
(CSS). He has been a plenary and keynote speaker at a number of confer-



516 About the Authors

ences and research workshops and currently serves as the president of the
Mediterranean Control Association.

Dr. Antsaklis serves on the Scientific Advisory Board for the Max-Planck-
Institut für Dynamik komplexer technischer Systeme, Magdeburg, Germany.
He is currently a member of the subcommittee on Networking and Information
Technology of the President’s Council of Advisors for Science and Technol-
ogy (PCAST), which advises the President of the United States on science
and technology federal policy issues regarding technology, scientific research
priorities, and math and science education.

Dr. Antsaklis is an IEEE Fellow for his contributions to the theory of feed-
back stabilization and control of linear multivariable systems, a Distinguished
Lecturer of the IEEE Control Systems Society, a recipient of the IEEE Distin-
guished Member Award of the Control Systems Society, and an IEEE Third
Millennium Medal recipient. He is the 2006 recipient of the Brown Engineering
Alumni Medal from Brown University, Providence, Rhode Island.

Anthony N. Michel received the Ph.D. degree in electrical engineering from
Marquette University and the D.Sc. in applied mathematics from the Tech-
nical University of Graz, Austria. He has extensive industrial and academic
experience with interests in control systems, circuit theory, neural networks,
and applied mathematics. His most recent work is concerned with stability
analysis of finite- and infinite-dimensional discontinuous dynamical systems.
He has held faculty positions at Iowa State University and the University
of Notre Dame and visiting faculty positions at the Technical University in
Vienna, Austria, the Johannes Kepler University in Linz, Austria, and the
Ruhr University in Bochum, Germany. He is currently the Frank M. Freimann
Professor of Engineering Emeritus and the Matthew H. McCloskey Dean of
Engineering Emeritus at the University of Notre Dame.

Dr. Michel has co-authored ten books and a number of publications in
journals, conference proceedings, and books. He is a past Editor-in-Chief of
the IEEE Transactions on Circuits and Systems and has held a variety of
positions on the editorial boards of the IEEE Transactions on Automatic
Control ; IEEE Transactions on Neural Networks ; Circuits, Systems and Sig-
nal Processing; International Journal of Hybrid Systems; Nonlinear Analysis ;
and other journals. He is a past president of the IEEE Circuits and Systems
Society and has been a member of the executive committees of several pro-
fessional organizations.

Dr. Michel is a Life Fellow of the IEEE. He received three prize paper
awards from the IEEE Control Systems Society and the IEEE Circuits and
Systems Society. He was awarded the IEEE Centennial Medal (1984), the
Golden Jubilee Medal of the IEEE Circuits and Systems Society (1999), and
the IEEE Third Millennium Medal (2000). He was a Fulbright Scholar at
the Technical University of Vienna (1992), and he received the 1995 Technical
Achievement Award of the IEEE Circuits and Systems Society, the Alexander
von Humboldt Research Award for Senior U.S. Scientists (1997), the Distin-



About the Authors 517

guished Member Award of the IEEE Control Systems Society (1998), and the
2005 Distinguished Alumnus Award of the College of Engineering, Marquette
University.


	front-matter.pdf
	c1.pdf
	c2.pdf
	c4.pdf
	c5.pdf
	c6.pdf
	c8.pdf
	c9.pdf
	c10.pdf
	c11.pdf
	c12.pdf
	back-matter.pdf

