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acknowledgements

The material presented in this book is as a result of four decades of experience in the
field of control engineering. During the 1960s, following an engineering apprentice-
ship in the aircraft industry, I worked as a development engineer on flight control
systems for high-speed military aircraft. It was during this period that I first observed
an unstable control system, was shown how to frequency-response test a system and
its elements, and how to plot a Bode and Nyquist diagram. All calculations were
undertaken on a slide-rule, which I still have. Also during this period I worked in
the process industry where I soon discovered that the incorrect tuning for a PID
controller on a 100 m long drying oven could cause catastrophic results.

On the 1st September 1970 I entered academia as a lecturer (Grade 1) and in that
first year, as I prepared my lecture notes, I realized just how little I knew about
control engineering. My professional life from that moment on has been one of
discovery (currently termed °‘life-long learning’). During the 1970s I registered for
an M.Phil. which resulted in writing a FORTRAN program to solve the matrix
Riccati equations and to implement the resulting control algorithm in assembler on a
minicomputer.

In the early 1980s I completed a Ph.D. research investigation into linear quadratic
Gaussian control of large ships in confined waters. For the past 17 years I have
supervised a large number of research and consultancy projects in such areas as
modelling the dynamic behaviour of moving bodies (including ships, aircraft missiles
and weapons release systems) and extracting information using state estimation
techniques from systems with noisy or incomplete data. More recently, research
projects have focused on the application of artificial intelligence techniques to
control engineering projects. One of the main reasons for writing this book has been
to try and capture four decades of experience into one text, in the hope that engineers
of the future benefit from control system design methods developed by engineers of
my generation.

The text of the book is intended to be a comprehensive treatment of control
engineering for any undergraduate course where this appears as a topic. The book
is also intended to be a reference source for practising engineers, students under-
taking Masters degrees, and an introductory text for Ph.D. research students.
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is a calculator. However, it is recognized that powerful software packages exist to
aid control system design. At the time of writing, MATLAB, its Toolboxes and
SIMULINK have emerged as becoming the industry standard control system design
package. As a result, Appendix 1 provides script file source code for most examples
presented in the main text of the book. It is suggested however, that these script files
be used to check hand calculation when used in a tutorial environment.
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and delivered as part of a Masters programme.

When compiling the material for the book, decisions had to be made as to what
should be included, and what should not. It was decided to place the emphasis on the
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Introduction to control
engineering

1.1 Historical review

Throughout history mankind has tried to control the world in which he lives. From
the earliest days he realized that his puny strength was no match for the creatures
around him. He could only survive by using his wits and cunning. His major asset
over all other life forms on earth was his superior intelligence. Stone Age man devised
tools and weapons from flint, stone and bone and discovered that it was possible to
train other animals to do his bidding — and so the earliest form of control system was
conceived. Before long the horse and ox were deployed to undertake a variety of
tasks, including transport. It took a long time before man learned to replace animals
with machines.

Fundamental to any control system is the ability to measure the output of the
system, and to take corrective action if its value deviates from some desired value.
This in turn necessitates a sensing device. Man has a number of ‘in-built’ senses
which from the beginning of time he has used to control his own actions, the actions
of others, and more recently, the actions of machines. In driving a vehicle for
example, the most important sense is sight, but hearing and smell can also contribute
to the driver’s actions.

The first major step in machine design, which in turn heralded the industrial
revolution, was the development of the steam engine. A problem that faced engineers
at the time was how to control the speed of rotation of the engine without human
intervention. Of the various methods attempted, the most successful was the use of
a conical pendulum, whose angle of inclination was a function (but not a linear
function) of the angular velocity of the shaft. This principle was employed by James
Watt in 1769 in his design of a flyball, or centrifugal speed governor. Thus possibly
the first system for the automatic control of a machine was born.

The principle of operation of the Watt governor is shown in Figure 1.1, where
change in shaft speed will result in a different conical angle of the flyballs. This in
turn results in linear motion of the sleeve which adjusts the steam mass flow-rate to
the engine by means of a valve.

Watt was a practical engineer and did not have much time for theoretical analysis.
He did, however, observe that under certain conditions the engine appeared to hunt,
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Flyballs

Nt

Fig. 1.1 TheWatt centrifugal speed governor.

where the speed output oscillated about its desired value. The elimination of hunting,
or as it is more commonly known, instability, is an important feature in the design of
all control systems.

In his paper ‘On Governors’, Maxwell (1868) developed the differential equations
for a governor, linearized about an equilibrium point, and demonstrated that stabil-
ity of the system depended upon the roots of a characteristic equation having
negative real parts. The problem of identifying stability criteria for linear systems
was studied by Hurwitz (1875) and Routh (1905). This was extended to consider the
stability of nonlinear systems by a Russian mathematician Lyapunov (1893). The
essential mathematical framework for theoretical analysis was developed by Laplace
(1749-1827) and Fourier (1758-1830).

Work on feedback amplifier design at Bell Telephone Laboratories in the 1930s was
based on the concept of frequency response and backed by the mathematics of complex
variables. This was discussed by Nyquist (1932) in his paper ‘Regeneration Theory’,
which described how to determine system stability using frequency domain methods.
This was extended by Bode (1945) and Nichols during the next 15 years to give birth to
what is still one of the most commonly used control system design methodologies.

Another important approach to control system design was developed by Evans
(1948). Based on the work of Maxwell and Routh, Evans, in his Root Locus method,
designed rules and techniques that allowed the roots of the characteristic equation to
be displayed in a graphical manner.
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The advent of digital computers in the 1950s gave rise to the state-space formula-
tion of differential equations, which, using vector matrix notation, lends itself readily
to machine computation. The idea of optimum design was first mooted by Wiener
(1949). The method of dynamic programming was developed by Bellman (1957), at
about the same time as the maximum principle was discussed by Pontryagin (1962).
At the first conference of the International Federation of Automatic Control
(IFAC), Kalman (1960) introduced the dual concept of controllability and observ-
ability. At the same time Kalman demonstrated that when the system dynamic
equations are linear and the performance criterion is quadratic (LQ control), then
the mathematical problem has an explicit solution which provides an optimal control
law. Also Kalman and Bucy (1961) developed the idea of an optimal filter (Kalman
filter) which, when combined with an optimal controller, produced linear-quadratic-
Gaussian (LQG) control.

The 1980s saw great advances in control theory for the robust design of systems
with uncertainties in their dynamic characteristics. The work of Athans (1971),
Safanov (1980), Chiang (1988), Grimble (1988) and others demonstrated how uncer-
tainty can be modelled and the concept of the Hoo norm and u-synthesis theory.

The 1990s has introduced to the control community the concept of intelligent
control systems. An intelligent machine according to Rzevski (1995) is one that is
able to achieve a goal or sustained behaviour under conditions of uncertainty.
Intelligent control theory owes much of its roots to ideas laid down in the field of
Artificial Intelligence (AI). Artificial Neural Networks (ANNs) are composed of
many simple computing elements operating in parallel in an attempt to emulate their
biological counterparts. The theory is based on work undertaken by Hebb (1949),
Rosenblatt (1961), Kohonen (1987), Widrow-Hoff (1960) and others. The concept of
fuzzy logic was introduced by Zadeh (1965). This new logic was developed to allow
computers to model human vagueness. Fuzzy logic controllers, whilst lacking the
formal rigorous design methodology of other techniques, offer robust control with-
out the need to model the dynamic behaviour of the system. Workers in the field
include Mamdani (1976), Sugeno (1985) Sutton (1991) and Tong (1978).

1.2 Control system fundamentals

1.2.1 Concept of a system

Before discussing the structure of a control system it is necessary to define what is
meant by a system. Systems mean different things to different people and can include
purely physical systems such as the machine table of a Computer Numerically
Controlled (CNC) machine tool or alternatively the procedures necessary for the
purchase of raw materials together with the control of inventory in a Material
Requirements Planning (MRP) system.

However, all systems have certain things in common. They all, for example,
require inputs and outputs to be specified. In the case of the CNC machine tool
machine table, the input might be the power to the drive motor, and the outputs
might be the position, velocity and acceleration of the table. For the MRP system
inputs would include sales orders and sales forecasts (incorporated in a master
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Inputs< ) —> >Outpu'(s
\ \A
/
Boundary

Fig. 1.2 The concept of a system.

production schedule), a bill of materials for component parts and subassemblies,
inventory records and information relating to capacity requirements planning. Mate-
rial requirements planning systems generate various output reports that are used in
planning and managing factory operations. These include order releases, inventory
status, overdue orders and inventory forecasts. It is necessary to clearly define the
boundary of a system, together with the inputs and outputs that cross that boundary.
In general, a system may be defined as a collection of matter, parts, components or
procedures which are included within some specified boundary as shown in Figure
1.2. A system may have any number of inputs and outputs.

In control engineering, the way in which the system outputs respond in changes to
the system inputs (i.e. the system response) is very important. The control system
design engineer will attempt to evaluate the system response by determining a
mathematical model for the system. Knowledge of the system inputs, together with
the mathematical model, will allow the system outputs to be calculated.

It is conventional to refer to the system being controlled as the plant, and this, as
with other elements, is represented by a block diagram. Some inputs, the engineer will
have direct control over, and can be used to control the plant outputs. These are
known as control inputs. There are other inputs over which the engineer has no
control, and these will tend to deflect the plant outputs from their desired values.
These are called disturbance inputs.

In the case of the ship shown in Figure 1.3, the rudder and engines are the control
inputs, whose values can be adjusted to control certain outputs, for example heading
and forward velocity. The wind, waves and current are disturbance inputs and will
induce errors in the outputs (called controlled variables) of position, heading and
forward velocity. In addition, the disturbances will introduce increased ship motion
(roll, pitch and heave) which again is not desirable.

Rudder —»
Engines ——»
Wind @ ———>»
Waves ——»
Current —»

—— » Position
Ship ———  » Forward Velocity

——————» Heading
— " Ship Motion
(roll, pitch, heave)

Fig. 1.3 A ship as a dynamic system.
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Disturbance
Input

Control Input -

+ Controlled Variable
—>®—> Plant —— e
Output

Summing
Point

Fig. 1.4 Plant inputs and outputs.

Generally, the relationship between control input, disturbance input, plant and
controlled variable is shown in Figure 1.4.

1.2.2 Open-loop systems

Figure 1.4 represents an open-loop control system and is used for very simple
applications. The main problem with open-loop control is that the controlled vari-
able is sensitive to changes in disturbance inputs. So, for example, if a gas fire is
switched on in a room, and the temperature climbs to 20 °C, it will remain at that
value unless there is a disturbance. This could be caused by leaving a door to the
room open, for example. Or alternatively by a change in outside temperature. In
either case, the internal room temperature will change. For the room temperature to
remain constant, a mechanism is required to vary the energy output from the gas fire.

1.2.3 Closed-loop systems

For a room temperature control system, the first requirement is to detect or sense
changes in room temperature. The second requirement is to control or vary the energy
output from the gas fire, if the sensed room temperature is different from the desired
room temperature. In general, a system that is designed to control the output of a
plant must contain at least one sensor and controller as shown in Figure 1.5.

Forward Path

v

Summing
Point £ rror Control Output
Desired Value * Signal Signal Value
4>®4> Controller > Plant »>

Measured Value

Sensor <

Feedback Path

Fig. 1.5 Closed-loop control system.



6 Advanced Control Engineering

Figure 1.5 shows the generalized schematic block-diagram for a closed-loop, or
feedback control system. The controller and plant lic along the forward path, and the
sensor in the feedback path. The measured value of the plant output is compared at
the summing point with the desired value. The difference, or error is fed to the
controller which generates a control signal to drive the plant until its output equals
the desired value. Such an arrangement is sometimes called an error-actuated system.

1.3 Examples of control systems

1.3.1 Room temperature control system

The physical realization of a system to control room temperature is shown in Figure
1.6. Here the output signal from a temperature sensing device such as a thermocouple
or a resistance thermometer is compared with the desired temperature. Any differ-
ence or error causes the controller to send a control signal to the gas solenoid valve
which produces a linear movement of the valve stem, thus adjusting the flow of gas to
the burner of the gas fire. The desired temperature is usually obtained from manual
adjustment of a potentiometer.

Insulation
) Outside
Desired - Control Temperature
Temperature | Potentio- Signal Gas Solenoid Actual
——p| meter > »—[1 Valve Room
Controller 4L Temperature
Measured - e Gas
Temperature i Gas Fire —»Heat
Flow-rate ~ Heat —»Loss
[ > Input
| —»  C
| > Thermometer
Fig. 1.6 Room temperature control system.
Outside
Temperature
Gas Heat I_nsula-
Error Control Flow-rate | ogg | tion Actual
. ; ; (m°/s)
Desired Signal Signal (W)\ Temperature
Temperature| Potentio-|  + (V) (V)| Gas Gas _ (°C)
—» meter —>®—> Controller —p{ Solenoid —» Burner —>®—> Room P>
(°C) (V) _ Valve +
Heat
Input
(W)
Thermometer |4

\

Fig. 1.7 Block diagram of room temperature control system.
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A detailed block diagram is shown in Figure 1.7. The physical values of the signals
around the control loop are shown in brackets.

Steady conditions will exist when the actual and desired temperatures are the same,
and the heat input exactly balances the heat loss through the walls of the building.

The system can operate in two modes:

(a) Proportional control: Here the linear movement of the valve stem is proportional to
the error. This provides a continuous modulation of the heat input to the room
producing very precise temperature control. This is used for applications where temp-
erature control, of say better than 1°C, is required (i.e. hospital operating theatres,
industrial standards rooms, etc.) where accuracy is more important than cost.

(b) On—off control: Also called thermostatic or bang-bang control, the gas valve is
either fully open or fully closed, i.e. the heater is either on or off. This form of
control produces an oscillation of about 2 or 3°C of the actual temperature
about the desired temperature, but is cheap to implement and is used for low-cost
applications (i.c. domestic heating systems).

1.3.2 Aircraft elevator control

In the early days of flight, control surfaces of aircraft were operated by cables
connected between the control column and the elevators and ailerons. Modern
high-speed aircraft require power-assisted devices, or servomechanisms to provide
the large forces necessary to operate the control surfaces.

Figure 1.8 shows an elevator control system for a high-speed jet.

Movement of the control column produces a signal from the input angular sensor
which is compared with the measured elevator angle by the controller which generates
a control signal proportional to the error. This is fed to an electrohydraulic servovalve
which generates a spool-valve movement that is proportional to the control signal,

Desired
Angle Elevator

Output Angular
Sensor

" Control Control/Signal

Column

Actual
Angle

Controller

Angular
Sensor Measured Angle /

Hydraulic Electrohydraulic
Cylinder Servovalve

Fig. 1.8 Elevator control system for a high-speed jet.
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Fluid
Desired Error Control Flows-rate Hydraulic Actual
Angle Signal Signal (m/s) Force Angle
(deg) | Input |(V)+_ (V) M | servo —1(N) (deg)
. - Hydraulic ~
— gggtsjl)arr —>(X)—>| Controller —» a1 ] Cylinder || Elevator >

Output
Angular
Sensor

A

V)

Fig. 1.9 Block diagram of elevator control system.

thus allowing high-pressure fluid to enter the hydraulic cylinder. The pressure differ-
ence across the piston provides the actuating force to operate the elevator.

Hydraulic servomechanisms have a good power/weight ratio, and are ideal for
applications that require large forces to be produced by small and light devices.

In practice, a ‘feel simulator’ is attached to the control column to allow the pilot to
sense the magnitude of the aerodynamic forces acting on the control surfaces, thus
preventing excess loading of the wings and tail-plane. The block diagram for the
elevator control system is shown in Figure 1.9.

1.3.3 Computer Numerically Controlled (CNC) machine tool

Many systems operate under computer control, and Figure 1.10 shows an example of
a CNC machine tool control system.

Information relating to the shape of the work-piece and hence the motion of the
machine table is stored in a computer program. This is relayed in digital format, in a
sequential form to the controller and is compared with a digital feedback signal from
the shaft encoder to generate a digital error signal. This is converted to an analogue

Computer
Controller Machine Table Movement
—
Shaft
Encoder
Computer 565 565 _
Program DC-Servomotor 7777 /777 5
_’I>—> TS F A Dty Loy 7] ettt B
Lead-Screw X
i Bearing U
Digital Power
- Controller Amplifier Tachogenerator
Digital Positional Feedback
r Analogue Velocity Feedback

Fig. 1.10 Computer numerically controlled machine tool.
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Digital
Desired Position . . Control Actual Actual
Digital Signal Torque Velocity Position
Error (V) Nm (m/s) (m)
L V) DC :
Computer| + Digital + Power Machine
Program [ >&™ Controller Amplifier [ SEIVO =¥ ropjg Integrator

Analogue Tacho-
Velocity Feedback generator

Digital Positional | Shaft
Feedback | Encoder

A

Fig. 1.11 Block diagram of CNC machine-tool control system.

control signal which, when amplified, drives a d.c. servomotor. Connected to the
output shaft of the servomotor (in some cases through a gearbox) is a lead-screw to
which is attached the machine table, the shaft encoder and a tachogenerator. The
purpose of this latter device, which produces an analogue signal proportional to
velocity, is to form an inner, or minor control loop in order to dampen, or stabilize
the response of the system.

The block diagram for the CNC machine tool control system is shown in Figure 1.11.

1.3.4 Ship autopilot control system

A ship autopilot is designed to maintain a vessel on a set heading while being
subjected to a series of disturbances such as wind, waves and current as shown in
Figure 1.3. This method of control is referred to as course-keeping. The autopilot can
also be used to change course to a new heading, called course-changing. The main
elements of the autopilot system are shown in Figure 1.12.

The actual heading is measured by a gyro-compass (or magnetic compass in a
smaller vessel), and compared with the desired heading, dialled into the autopilot by
the ship’s master. The autopilot, or controller, computes the demanded rudder angle
and sends a control signal to the steering gear. The actual rudder angle is monitored
by a rudder angle sensor and compared with the demanded rudder angle, to form a
control loop not dissimilar to the elevator control system shown in Figure 1.8.

The rudder provides a control moment on the hull to drive the actual heading
towards the desired heading while the wind, waves and current produce moments that
may help or hinder this action. The block diagram of the system is shown in Figure 1.13.

Desired Heading Actual rudder-angle

Auto-pilot Steering-gear

Gyro-coerbés‘S‘ .

VXY —ol.
_tu_aI_Héa_dl_n_q@D ___ [ D 0 _._‘.::’._.:_._._. ...............
SAAVAN Demanded rudder-angle
Measured rudder-angle

A

Fig. 1.12 Ship autopilot control system.
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Actual Disturbance

. Course Demanded Rudder Mc:\lment Actual
Desired Error Rudder Angle (Nm) Hoadi
Heading ) : Angle (deg) [Rudder (edae |;19
(deg) Potentio-| * Autopilot | * Steering] + ¥ - 9

—P Charact- —Ng}—b Hull >

meter v (Controller) | Gear a
(V) (V)4 eristics |
Rudder Rudder
Angle Moment
Sensor (Nm)
Measured Gyro- P
Heading (V) Compass

Fig. 1.13 Block diagram of ship autopilot control system.

1.4 Summary

In order to design and implement a control system the following essential generic
elements are required:

Knowledge of the desired value: Tt is necessary to know what it is you are trying to
control, to what accuracy, and over what range of values. This must be expressed
in the form of a performance specification. In the physical system this information
must be converted into a form suitable for the controller to understand (analogue
or digital signal).

Knowledge of the output or actual value: This must be measured by a feedback
sensor, again in a form suitable for the controller to understand. In addition, the
sensor must have the necessary resolution and dynamic response so that the
measured value has the accuracy required from the performance specification.
Knowledge of the controlling device: The controller must be able to accept meas-
urements of desired and actual values and compute a control signal in a suitable
form to drive an actuating element. Controllers can be a range of devices, including
mechanical levers, pneumatic elements, analogue or digital circuits or microcomputers.
Knowledge of the actuating device: This unit amplifies the control signal and
provides the ‘effort’ to move the output of the plant towards its desired value. In
the case of the room temperature control system the actuator is the gas solenoid valve
and burner, the ‘effort” being heat input (W). For the ship autopilot system the
actuator is the steering gear and rudder, the ‘effort’ being turning moment (Nm).
Knowledge of the plant: Most control strategies require some knowledge of the
static and dynamic characteristics of the plant. These can be obtained from
measurements or from the application of fundamental physical laws, or a com-
bination of both.

1.4.1 Control system design

With all of this knowledge and information available to the control system designer,
all that is left is to design the system. The first problem to be encountered is that the
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Define System
Performance
Specification

v

Identify System
Components

r

Model Behaviour Select

of Plant and Alternative
System Components
Components

A

No

Is Component

Response Acceptable?
Yes

Define Control
Strategy

<
<

Simulate Modify
System Control
Response Strategy
A

No

Does Simulated
Response Meet

Performance Specification? Yes

Implement
Physical System

Measure System Modify Control
Response Strategy
No
Does System
Yes

Response Meet
Performance Specification?

Fig. 1.14 Steps in the design of a control system.
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knowledge of the system will be uncertain and incomplete. In particular, the dynamic
characteristics of the system may change with time (time-variant) and so a fixed
control strategy will not work. Due to fuel consumption for example, the mass of an
airliner can be almost half that of its take-off value at the end of a long haul flight.

Measurements of the controlled variables will be contaminated with electrical
noise and disturbance effects. Some sensors will provide accurate and reliable data,
others, because of difficulties in measuring the output variable may produce highly
random and almost irrelevant information.

However, there is a standard methodology that can be applied to the design of
most control systems. The steps in this methodology are shown in Figure 1.14.

The design of a control system is a mixture of technique and experience. This book
explains some tried and tested, and some more recent approaches, techniques and
methods available to the control system designer. Experience, however, only comes
with time.



System modelling

2.1 Mathematical models

If the dynamic behaviour of a physical system can be represented by an equation, or
a set of equations, this is referred to as the mathematical model of the system. Such
models can be constructed from knowledge of the physical characteristics of the
system, i.e. mass for a mechanical system or resistance for an electrical system.
Alternatively, a mathematical model may be determined by experimentation, by
measuring how the system output responds to known inputs.

2.2 Simple mathematical model of a motor vehicle

Assume that a mathematical model for a motor vehicle is required, relating the accel-
erator pedal angle 6 to the forward speed u, a simple mathematical model might be

u(t) = ab(t) (2.1)

Since u and 6 are functions of time, they are written u(¢) and 6(¢). The constant a
could be calculated if the following vehicle data for engine torque 7, wheel traction
force F, acrodynamic drag D were available

T = b(t) (2.2)
F=cT (2.3)
D = du(?) (2.4)

Now aerodynamic drag D must equal traction force F

D=F
du(t) = cT
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Forward
Speed
u()
(m/s)

Accelerator angle 6(t) (degrees)
Fig. 2.1 Vehicle forward speed plotted against accelerator angle.

from (2.2)
du(t) = cbo(1)

giving
u(t) = (%) 0(¢) (2.5)

Hence the constant for the vehicle is

. (%) 2.6)

If the constants b, ¢ and d were not available, then the vehicle model could be
obtained by measuring the forward speed u(r) for a number of different accelerator
angles 0(¢) and plotting the results, as shown in Figure 2.1.

Since Figure 2.1 shows a linear relationship, the value of the vehicle constant « is
the slope of the line.

2.3 More complex mathematical models

Equation (2.1) for the motor vehicle implies that when there is a change in accelerator
angle, there is an instantaneous change in vehicle forward speed. As all car drivers
know, it takes time to build up to the new forward speed, so to model the dynamic
characteristics of the vehicle accurately, this needs to be taken into account.

Mathematical models that represent the dynamic behaviour of physical systems
are constructed using differential equations. A more accurate representation of the
motor vehicle would be

e% + fu = g6(¢) 2.7)

Here, du/dt is the acceleration of the vehicle. When it travels at constant velocity, this
term becomes zero. So then
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Su(r) = g6(1)
u(t) = </§) 0(1) 2:8)

Hence (g/f) is again the vehicle constant, or parameter a in equation (2.1)

2.3.1 Differential equations with constant coefficients

In general, consider a system whose output is x(z), whose input is y(¢) and contains
constant coefficients of values a, b, ¢, ..., z. If the dynamics of the system produce a
first-order differential equation, it would be represented as

dx
X + bx = cy(?) 2.9)

a

If the system dynamics produced a second-order differential equation, it would be
represented by
d’x b dx
G h
dr dr
If the dynamics produce a third-order differential equation, its representation
would be

+ cx = ey(t) (2.10)

dx d’x dx
a——+b +c—

a5 a7 dz + ex = fy(?) (2.11)

Equations (2.9), (2.10) and (2.11) are linear differential equations with constant
coefficients. Note that the order of the differential equation is the order of the highest
derivative. Systems described by such equations are called linear systems of the same
order as the differential equation. For example, equation (2.9) describes a first-order
linear system, equation (2.10) a second-order linear system and equation (2.11) a
third-order linear system.

2.4 Mathematical models of mechanical systems

Mechanical systems are usually considered to comprise of the linear lumped para-
meter elements of stiffness, damping and mass.

2.4.1 Stiffness in mechanical systems

An elastic element is assumed to produce an extension proportional to the force (or
torque) applied to it.
For the translational spring

Force < Extension

15
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(a) Translational Spring (b) Rotational Spring

Fig. 2.2 Linear elastic elements.

If xi(#) > x,(¢), then
P(1) = K(xi(1) — xo(1)) (2.12)
And for the rotational spring
Torque o< Twist
If 6i(r) > 0,(¢), then
T(1) = K(6i(1) — 00(1)) (2.13)

Note that K, the spring stiffness, has units of (N/m) in equation (2.12) and (Nm/rad)
in equation (2.13).

2.4.2 Damping in mechanical systems

A damping element (sometimes called a dashpot) is assumed to produce a velocity
proportional to the force (or torque) applied to it.
For the translational damper

Force «x Velocity

P(1) = Cv(1) = cdgt" (2.14)
And for the rotational damper
Torque < Angular velocity
T(t) = Cuw(t) = Cdde; (2.15)
i
c P(Y)
| —>
e N —— )
|
— » T(1) I;, w(h)
(a) Translational Damper (b) Rotational Damper

Fig. 2.3 Linear damping elements.
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Note that C, the damping coefficient, has units of (Ns/m) in equation (2.14) and
(Nm s/rad) in equation (2.15).

2.4.3 Mass in mechanical systems

The force to accelerate a body is the product of its mass and acceleration (Newton’s
second law).
For the translational system

Force o< Acceleration

d d’
P(t) = ma(t) = md—‘; =m dt)go (2.16)
For the rotational system
Torque < Angular acceleration
dw,  d%
T(1) = To(1) = 1% -1 2.17)

In equation (2.17) I is the moment of inertia about the rotational axis.

When analysing mechanical systems, it is usual to identify all external forces by
the use of a ‘Free-body diagram’, and then apply Newton’s second law of motion in
the form:

Z F = ma for translational systems
or
Z M = I« for rotational systems (2.18)

Example 2.1

Find the differential equation relating the displacements x;j(f) and x,(f) for the
spring—mass—damper system shown in Figure 2.5. What would be the effect of
neglecting the mass?

P a(t)

(a) Translational Acceleration (b) Angular Acceleration

Fig. 2.4 Linear mass elements.

17
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K
4_, Spring m |

(0 Damper
X,(f)
Fig. 2.5 Spring—mass—damper system.
dx,
K(x —x,) ¢—— m —> Cﬁ

Fig. 2.6 Free-body diagram for spring—mass—damper system.

Solution

Using equations (2.12) and (2.14) the free-body diagram is shown in Figure 2.6.

From equation (2.18), the equation of motion is

Z Fy = ma,

dx, d’x,
K(xi — x,) — CW:m iz
d’x, dx,
KXi — KXO = WIW ?
Putting in the form of equation (2.10)
d*x dx
m dtzo + Cd—lo + Kx, = Kx;(1)

Hence a spring—mass—damper system is a second-order system.

If the mass is zero then

ZF\ZO

dx
K(xi—x,)—C dto =0
dx
Kx; — Kx, =C dlo
Hence
dx,
C + Kx, = Kxi(1)

d¢

Thus if the mass is neglected, the system becomes a first-order system.

(2.19)

(2.20)
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Torque T(1) c Angular velocity
/\‘_gz _______ _’____@__%f\«”w

Y Y

Fig. 2.7 Flywheelin bearings.

Example 2.2

A flywheel of moment of inertia 7 sits in bearings that produce a frictional moment of
C times the angular velocity w(#) of the shaft as shown in Figure 2.7. Find the
differential equation relating the applied torque 7'(¢) and the angular velocity w(?).

Solution
From equation (2.18), the equation of motion is

ZM:Ia

dw
() - Co=1g
li—f + Cw=T() 2.21)

Example 2.3

Figure 2.8 shows a reduction gearbox being driven by a motor that develops a torque
T (). It has a gear reduction ratio of ‘n” and the moments of inertia on the motor
and output shafts are I, and I, and the respective damping coefficients Cp, and C,.
Find the differential equation relating the motor torque 7},(7) and the output angular
position 6,(¢).

a and b are the pitch circle radii
I, Cn of ?hg gears. Hence gear reduction
] ] ratio is n=bla

\
pasps=
T ¥on | | .

|—|I

Il
— ==

0,(1)
lo M e

I
e

Fig. 2.8 Reduction gearbox.
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Motor Shaft

X(t) = Gear tooth Output Shaft
reaction force

Fig. 2.9 Free-body diagrams for reduction gearbox.

Gearbox parameters
Im = 5% 10 %kgm?
I, = 0.01 kgm’
Cm = 60 x 107® Nms/rad
Co, = 0.15Nm s/rad
n=150:1

Solution
The free-body diagrams for the motor shaft and output shaft are shown in Figure 2.9.
Equations of Motion are

(1) Motor shaft

d*0,
E M = ImF
d*0p

b,
T(1) = G = aX(0) = I~ 3"

dt

re-arranging the above equation,

1 d%0,, do,,
X(1) = - (Tm(t) — I T Cn W) (2.22)
(2) Output shaft
d’6,,
M =1I,——>
Z dtz
2
px(e)— ¢, 3% _j 4%

dr ° de
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re-arranging the above equation,

L/, &%,  db,
X(1) = b <10 T +Co W) (2.23)

Equating equations (2.22) and (2.23)

d%o, de,

b
= (’0 TG E)

a

d%0,, dby,
(Tm(t) - Im W - Cm W)

Kinematic relationships

D () = o)

a

doy _ db,
dr 7 dr

4’0, d%0,
az "ag

Hence

d*e, do, d?e, do,
n (Tm(l) — nImF — I’lcm E) = (10 W + Co E)

giving the differential equation

2

d’, db,
(Io + n’In) 2 T (Gt n*Cn) 3 = "Tn() (2.24)

The terms (I, 4+ n°I,) and (C, + n*>Cy,) are called the equivalent moment of inertia I,
and equivalent damping coefficient C. referred to the output shaft.
Substituting values gives

I, = (0.01 + 50% x 5 x 107%) = 0.0225 kg m?
Ce = (0.15+ 50% x 60 x 107) = 0.3 Nm s/rad

From equation (2.24)

2
d0, + 0.3d9°

0.0225
dr? dr

= 50T (1) (2.25)

2.5 Mathematical models of electrical systems

The basic passive elements of electrical systems are resistance, inductance and capa-
citance as shown in Figure 2.10.

21
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—> (1)
(a) Resistance

v,(D) L vo(1)
0000000000000000000000

—> (1)
(b) Inductance

V(1) I I c vo(1)
—> ()
(c) Capacitance

Fig. 2.10 Passive elements of an electrical system.

For a resistive element, Ohm’s Law can be written
(v1(2) — va(1)) = Ri(2)

For an inductive element, the relationship between voltage and current is

di
dt
For a capacitive element, the electrostatic equation is
(1) = C(ri (1) — va(1))
Differentiating both sides with respect to ¢

f%:mozcémm—h@)

Note that if both sides of equation (2.28) are integrated then

(1)~ 1a(0) = o / idi

(@) =wm@)=L

Example 2.4

(2.26)

(2.27)

(2.28)

(2.29)

Find the differential equation relating v;(¢) and v,(¢) for the RC network shown in

Figure 2.11.

Solution
From equations (2.26) and (2.29)

vi(0) = va(t) = Ri(7)

nm:%/m:

(2.30)
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R
v ity c = vo(f)

Fig. 2.11 RCnetwork.

or
C% =i(t) (2.31)
substituting (2.31) into (2.30)
vi() = wa(t) = RC% (2.32)
Equation (2.32) can be expressed as a first-order differential equation
RC% + v = () (2.33)

Example 2.5
Find the differential equations relating v;(¢) and v,(¢) for the networks shown in
Figure 2.12.

R L
—1 e
vy (D r\ cL AU
i(t)

<

(a)
i (0)+ (D) R, R,
— 1} {
N
—
vi(f) () C,T vy(h) i C, T vo(f)

v

(b)

Fig. 2.12 Electrical networks.
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Solution for Network (a) Figure 2.12
From equations (2.26), (2.27) and (2.29)

v (f) — va(f) = Ri(?) + L9

dr
. (2.34)
n(t) = Ie / idt
or
dV2
2 2.
C T i(1) (2.35)
substituting (2.35) into (2.34)
dV2 d de
() — wn(t) = RCw +L <C dl)
or
() = a(1) = RC% n LC‘LV2 (2.36)
Equation (2.36) can be expressed as a second-order differential equation
Lcd2 +RC%+V i (0) 2.37)
Solution for Network (b) Figure 2.12
System equations
vi() = v3(t) = Ry (i1 (1) + 02(1)) (2.38)
1 ) dvs
v3(t) = F/ iidt or C1 =11(7) (2.39)
1
v3(1) — v2(1) = Roix(1) (2.40)
1 [, dv, .
va(t) = a/ irdt or Czd—; = ir() (2.41)
From equation (2.40)
v3(0) = Roia (1) + va ()
Substituting for () using equation (2.41)
dv,
v3(t) = RyCr—— —|— va(t) (2.42)

dr
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Hence from equations (2.42) and (2.39)

d dv,
i) =Cr— & {chz T Vz(l)}

d d\)z

=R CiCr—= a7 +C1 dz (2.43)
Substituting equations (2.41), (2.42) and (2.43) into equation (2.38)
dv d?y dv, dv
vi(1) — {chzd—t2+ Vz(l)} = {R2C1C2 a2 2+ O o TG d:}
which produces the second-order differential equation
dZ

RIR,C\(Cy— a7 —|—(R C +R1C2+R2C2)—+V2 =vi(t) (2.44)

2.6 Mathematical models of thermal systems

It is convenient to consider thermal systems as being analogous to electrical systems
so that they contain both resistive and capacitive elements.

2.6.1 Thermal resistance Ry

Heat flow by conduction is given by Fourier’s Law
KA, — 62)
¢

The parameters in equation (2.45) are shown in Figure 2.13. They are

Or = (2.45)

(6, — 6,) = Temperature differential (K)
A = Normal cross sectional area (m?)
¢ = Thickness (m)
K = Thermal conductivity (W/mK)
Ot = Heat flow (J/s = W)

04 Qr

L

Fig. 2.13 Heat flow through a flat plate.
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Equation (2.45) can be written in the same form as Ohm’s Law (equation (2.26))
(01(1) — 02(1)) = RrQ1(1) (2.46)

where Rt is the thermal resistance and is

14
2.6.2 Thermal capacitance Cy
The heat stored by a body is
H(t) = mC,0(1) (2.48)
where
H = Heat (J)
m = Mass (kg)

C, = Specific heat at constant
pressure (J/kg K)
0 = Temperature rise (K)

If equation (2.48) is compared with the electrostatic equation

o) = Cv(1) (2.49)
then the thermal capacitance Cr is

Cr =mCy (2.50)

To obtain the heat flow Qr, equation (2.48) is differentiated with respect to time

dH de
or
dg
or(t) = Cry, (2.52)

Example 2.6

Heat flows from a heat source at temperature 6;(¢) through a wall having ideal
thermal resistance Rt to a heat sink at temperature 6,(¢) having ideal thermal
capacitance Ct as shown in Figure 2.14. Find the differential equation relating
01(¢) and 65(¢).

Solution
(1) Wall: From equation (2.46)

(01(1) — 02(0))

Or() =1

(2.53)
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Wall
N
Heat
Source Heat
61(1) Sink Oa(t)
Cr
v
Fig. 2.14 Heat transfer system.
(2) Heat sink: From equation (2.52)
de
0r(n) = Crg (2.54)

Equating equations (2.53) and (2.54)
()~ 0x(1) _ ., dby

C
Rt T dt
Re-arranging to give the first-order differential equation
dé
RTch—t2 + 6, = 0,(1) (2.55)

2.7 Mathematical models of fluid systems

Like thermal systems, it is convenient to consider fluid systems as being analogous to
electrical systems. There is one important difference however, and this is that the
relationship between pressure and flow-rate for a liquid under turbulent flow condi-
tions is nonlinear. In order to represent such systems using linear differential equa-
tions it becomes necessary to linearize the system equations.

2.7.1 Linearization of nonlinear functions for small
perturbations

Consider a nonlinear function Y = f(x) as shown in Figure 2.15. Assume that it is
necessary to operate in the vicinity of point @ on the curve (the operating point)
whose co-ordinates are X, Y.

For the small perturbations AX and AY about the operating point « let

AX = x

2.56
AY =y (2.56)

27
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If the slope at the operating point is

dy
dx

a
then the approximate linear relationship becomes
_dYy

YT ax

x (2.57)

Example 2.7

The free-body diagram of a ship is shown in Figure 2.16. It has a mass of 15 x 10°kg
and the propeller produces a thrust of K, times the angular velocity n of the propeller,
K, having a value of 110 x 10° Ns/rad. The hydrodynamic resistance is given by the
relationship R = C, V2, where C, has a value of 10,000 Ns?/m?. Determine, using
small perturbation theory, the linear differential equation relating the forward speed
v(¢) and propeller angular velocity n(f) when the forward speed is 7.5m/s.

Solution
Linearize hydrodynamic resistance equation for an operating speed V, of 7.5m/s.

R=CyV?
dRr
av = 2C,V
dR
—| =2C\V,
dv|, ¢
=2x 10000 x 7.5
dR
il = C = 150000 Ns/m
Y
AY
i Y = f(x)
Ya .............................................................. 5 2 Approximate Iinear
relationship
S S PR
X, X

Fig. 2.15 Linearization of a nonlinear function.
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X,V,a,
m
T=K,n
—> «—
R=C,V?
Fig. 2.16 Free-body diagram of ship.
Hence the linear relationship is
R=Cv (2.58)
Using Newton’s second law of motion
Z Fy = may
dv
T—R=m—
T
dv
K,n—Cv= ma
dv
m—+ Cv=K,n (2.59)
dz
Substituting values gives
d
(15 x 106)d—:+ (150 x 10%)y = (110 x 10*)n(?) (2.60)

Example 2.8
In Figure 2.17 the tank of water has a cross-sectional area 4, and under steady
conditions both the outflow and inflow is ¥, and the head is H,,.

(a) Under these conditions find an expression for the linearized valve resistance Ry
given that flow through the valve is

V = A4,Cq\/2gH,

where

V = volumetric flow-rate (m?/s)
A, = valve flow area (m?)
C4 = coefficient of discharge

g = acceleration due to gravity (m/s’)
H = head across the valve (m)
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(b) If the steady value of the head H, is 1.5m, what is the valve resistance Ry when

A, = 15x 1073 m?
g=9.81m/s?
Cy=0.6

(c) If the inflow now increases an amount v; producing an increase in head / and an
increase in outflow v,, find the differential equation relating v; and v, when the
tank cross-sectional area A is 0.75m?.

Solution

(a) Flow through the valve is given by

V = A,Cy\/2gH

now

ar

dH

av
dH|,

The linearized relationship is

hence

= A,C4(29)"? x 0.5H, >

= AVCd = —

2H, h

h = RfV2

Fig. 2.17 Tank and valve system.

2.61)
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(b) Inserting values gives

R 1 2% 1.5
f T 15x 103 x 0.6V 981

Ry = 61.45s/m? (2.62)

(c) Tank (Continuity Equation)

Inflow — Outflow = A d—h

dt
dh
(Va + Vl) - (Va + VZ) = Aa
dh
—v=A— 2.63
Vi — T (2.63)
Valve (Linearized Equation)
h= Rsz
and
dh de
=R = 2.64
dt Tdr 2.64)
Substituting equation (2.64) into equation (2.63)
dV2
vy — AR —2
Vi—W"n f dr
giving
dV2
AR{‘E + vy = vi(2) (2.65)
Inserting values gives
d
46.09% vy = ni(0) (2.66)

2.8 Further problems

Example 2.9

A solenoid valve is shown in Figure 2.18. The coil has an electrical resistance of 4 €2,
an inductance of 0.6 H and produces an electromagnetic force F.(¢) of K. times the
current (). The valve has a mass of 0.125kg and the linear bearings produce
a resistive force of C times the velocity u(z). The values of K. and C are 0.4 N/A
and 0.25 Ns/m respectively. Develop the differential equations relating the voltage
v(¢) and current i(¢) for the electrical circuit, and also for the current i(z) and velocity
u(t) for the mechanical elements. Hence deduce the overall differential equation
relating the input voltage v(¢) to the output velocity u(z).
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u(t) R.LK,

+— X nNnnAnnn K
< Fo(0)
4—

m ) ) (VAW N
7 A c

()

V()

Fig. 2.18 Solenoid valve.
Solution

L%JrRi =w(?)

du .
m + Cu = K.i(t)

d*u du

Example 2.10

The laser-guided missile shown in Figure 2.19 has a pitch moment of inertia of
90kgm?. The control fins produce a moment about the pitch mass centre of
360 Nm per radian of fin angle 5(¢). The fin positional control system is described
by the differential equation

o.z% + B(1) = u(h)

where u(t) is the control signal. Determine the differential equation relating the
control signal u(z) and the pitch angle 6(¢).

Solution

e _d%

Fig. 2.19 Laser-guided missile.
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Fig. 2.20 Torsional spring—mass—damper system.

Example 2.11

A torsional spring of stiffness K, a mass of moment of inertia 7 and a fluid damper
with damping coefficient C are connected together as shown in Figure 2.20. If the
angular displacement of the free end of the spring is #;(¢) and the angular displace-
ment of the mass and damper is 6,(7), find the differential equation relating 6;(¢) and
0,(1) given that

I =2.5kgm?
C =12.5Nms/rad
K =250 Nm/rad

Solution

d%0, de,
2. 12.5—22 4+ 2506, = 2500
5 AT 5 T 500, 506;(7)

Example 2.12
A field controlled d.c. motor develops a torque 7y, (¢) proportional to the field current
ir(f). The rotating parts have a moment of inertia 7 of 1.5kgm? and a viscous
damping coefficient C of 0.5 Nm s/rad.

When a current of 1.0 A is passed through the field coil, the shaft finally settles
down to a steady speed w,(#) of Srad/s.

(a) Determine the differential equations relating i¢(f) and wq(?).
(b) What is the value of the coil constant K., and hence what is the torque developed
by the motor when a current of 0.5 A flows through the field coil?

Solution

dw,
1
(a) T

(b) K. =2.5Nm/A. T = 1.25Nm

+ Cw, = K.i(2)
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R
1] ¥
V(0 cT ()
N RZ A
L
Fig. 2.21 Passive RC network.
Oven
v(?) Qo yr
Burner 01
Ry

Fig. 2.22 Drying oven.

Example 2.13
Figure 2.21 shows a passive electrical network. Determine the differential equation

relating v (¢) and vy (7).

Solution

dV2
R _ =
1C T + <

R+ Ry
R

) vy = vi(1)

Example 2.14
A drying oven which is constructed of firebrick walls is heated by an electrically
operated gas burner as shown in Figure 2.22. The system variables and constants are
v1(¢) = burner operating voltage (V)

Qi(t) = heat input to oven (W)

0,(¢) = internal oven temperature (K)

0s(t) = temperature of surroundings (K)

K = burner constant = 2000 W/V
Rt = thermal resistance of walls = 0.5 x 10~ min K/J

Ct = oven thermal capacitance = 1 x 10*7J /K

Find the differential equation relating v;(¢), 6,(f) and 64(¢).

Solution

dé,
SW + 00 = V](t) + QS(Z)



Time domain analysis

3.1 Introduction

The manner in which a dynamic system responds to an input, expressed as a function
of time, is called the time response. The theoretical evaluation of this response is said
to be undertaken in the time domain, and is referred to as time domain analysis. It is
possible to compute the time response of a system if the following is known:

e the nature of the input(s), expressed as a function of time
e the mathematical model of the system.

The time response of any system has two components:

(a) Transient response: This component of the response will (for a stable system)
decay, usually exponentially, to zero as time increases. It is a function only of the
system dynamics, and is independent of the input quantity.

(b) Steady-state response: This is the response of the system after the transient
component has decayed and is a function of both the system dynamics and the
input quantity.

X,(t)
Transient Period x(t)

< X(t)

Steady-State Error

Transient
Error

Steady-State Period

L

Fig. 3.1 Transient and steady-state periods of time response.



36 Advanced Control Engineering

The total response of the system is always the sum of the transient and steady-state
components. Figure 3.1 shows the transient and steady-state periods of time
response. Differences between the input function xi() (in this case a ramp function)
and system response x,(#) are called transient errors during the transient period, and
steady-state errors during the steady-state period. One of the major objectives of
control system design is to minimize these errors.

3.2 Laplace transforms

In order to compute the time response of a dynamic system, it is necessary to solve
the differential equations (system mathematical model) for given inputs. There are
a number of analytical and numerical techniques available to do this, but the one
favoured by control engineers is the use of the Laplace transform.

This technique transforms the problem from the time (or 7) domain to the Laplace
(or 5) domain. The advantage in doing this is that complex time domain differential
equations become relatively simple s domain algebraic equations. When a suitable
solution is arrived at, it is inverse transformed back to the time domain. The process
is shown in Figure 3.2.

The Laplace transform of a function of time f{) is given by the integral

ZLIf(0] = /0 f(e™dr = F(s) 3.1

where s is a complex variable o £ jw and is called the Laplace operator.

s Domain F(s)

> Algebraic
equations
Laplace g
Transform .
, Inverse ~
Z1fit)=Fs) Laplace 2 FA)]=f)
Transform
Time Domain f(t)
Differential <

equations

Fig. 3.2 The Laplace transform process.



Time domain analysis 37

3.2.1 Laplace transforms of common functions

Example 3.1
f(t) =1 (called a unit step function).

Solution
From equation (3.1)

ZLLA(0] = F(s) = /0 S le s

= [_l(e—sf)]
s 0

= {—1(0— 1)} _1 (3.2)
N N

Example 3.2
fay=c

LU = F(s) = /0 " eatgsigy

00
_ / ef(SJru)tdt
0
00
e (s+a)t)
s + a 0

— (0 —1)}
S+Cl

(3.3)

Table 3.1 gives further Laplace transforms of common functions (called Laplace
transform pairs).

3.2.2 Properties of the Laplace transform

(a) Derivatives: The Laplace transform of a time derivative is

dtnf (1) = "F(s) = f(0)"" = f'(0)s" > — - - (3.4)

where £{(0), //(0) are the initial conditions, or the values of f(¢), d/dz f(¢) etc. at 1 = 0
(b) Linearity

LN £ /(0] = Fi(s) £ Fa(s) (3.5)
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Table 3.1 Common Laplace transform pairs

Time function f(t) Laplace transform £ f(¢)] = F(s)
1 unit impulse 4(¢) 1
2 unit step 1 /s
3 unit ramp ¢ 1/s?
n!
4 lll F
—at 1
S (s+a)
—at a
6 1-e s(s + a)
7  sinwt MLM
8 coswt 2 jwz
9