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Preface

Every structure or machine element in mechanical, civil, aero-
space, marine, biomedical, automotive, or other engineering 
applications constitutes a continuous system. When subjected 

to an oscillating load, this system undergoes a vibratory behavior. 
Vibrations are an engineering concern in these applications because 
they may cause a catastrophic failure (complete collapse) of the  
machine or structure because of excessive stresses and amplitudes 
(resulting mainly from resonance) or because of material fatigue over 
a period of time. Documented examples are numerous. One of these 
is the collapse of the newly completed Tacoma Narrows Bridge in 
1940, opened barely four months before, which swayed and collapsed 
in a 42-mile-per-hour wind undergoing a torsional mode resonance. 
In addition, vibrations can cause difficulties to users either because 
of excessive amplitudes or because of manifesting themselves into 
noise (particularly at higher frequencies). Other applications of vibra-
tions of continuous systems can be found in sound recognitions and 
acoustical and music fields. 

Vibrations of continuous systems is an extremely interesting 
subject. Discovering theoretically how strings, rods, beams, plates, 
shells, and other continuous bodies vibrate— particularly, in what 
shapes and at what frequencies they vibrate freely—is fascinating. 
And how they respond when subjected to fluctuating exciting forces 
and pressures is also interesting, and especially important in practical 
applications. Moreover, vibrations of continuous systems is an ideal 
subject to help understand the behaviors and meanings of partial 
differential equations and eigenvalue problems. The interplay 
between mathematics and physical understanding is emphasized 
throughout this book. 

Although this work has been written as a textbook to be used in 
classes, it is also suitable for independent study. Read carefully, the 
paragraphs follow as they would in a lecture. Students (or readers) 
should have beforehand at least a basic understanding of ordinary 
differential equations and, preferably, some background in the 
vibrations of discrete systems. Otherwise, they will need to do 

xi
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supplementary reading in these subjects as they proceed. Some 
understanding of partial differential equations would also be 
beneficial.

Basic descriptions and explanations of vibrational concepts and 
phenomena are given in Chap. 1 (Introduction). This should be read 
carefully when beginning the book, and then read again as one 
progresses subsequently. Chapter 1 explains to the reader how the 
following chapters evolve as parts of a general development of the 
subject. 

Each chapter after the first has problems at its end. Most of them 
were used as homework problems in the classes taught by the first 
author. They are chosen so as to develop understanding of the topic by 
the student. Most of them require significant thought and time spent 
(more than one hour each). For most of them, use of a computer should 
reduce the time required, and improve accuracy. 

This book was initially written by the first author over a 30-year 
period. The second author wrote Secs 4.13 and 4.14 and Chap. 9, in 
addition to contributions to introductory sections of many chapters 
and his overall sponsorship and supervision of production of the 
whole manuscript. It is the result of the first author’s 50 years of 
research in the field of vibrations of continuous systems, and having 
taught a graduate-level course of the same title at Ohio State University 
for 35 years. His research in the field resulted in the monograph 
Vibration of Plates, published in 1969, which presented results 
(theoretical and experimental) from approximately 500 research 
papers and reports. Vibration of Shells, published in 1973, summarized 
approximately 1000 references. Sources worldwide in all languages 
were used. The first monograph has been cited many hundreds of 
times by others in their publications, the second one almost as many. 
In addition, the first author supervised 40 Ph.D. dissertations and 20 
M.Sc. theses, most of which dealt with the vibrations of continuous 
systems. The graduate student research, as well as collaboration with 
others, resulted in more than 100 published technical papers with the 
first author on vibrations of continuous systems. This book is also the 
result of 20 years of experience in this field, mostly in industry, by the 
second author. During that time he published approximately 40 
technical papers on the subject (in addition to a similar number in the 
area of automotive noise and vibration). The second author taught the 
material for about 10 years at Oakland and Mississippi State 
universities. He also published a book on Vibration of Laminated Shells 
and Plates in 2004 which reviewed hundreds of papers in the field and 
is the first on the subject. The second author is also the co-author of 
two recent books on vehicle dynamics published in 2008 and 2009. He 
is supervising 10 graduate students (mostly Ph.D.s working on 
vibrations of continuous systems). 
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CHAPTER 1
Introduction

What do we mean by “vibrations of continuous systems”? 
“Vibrations” is a word generally understood by everyone. 
Webster’s New Collegiate Dictionary gives its first (i.e., 

primary) definition of vibration as a “periodic motion of the particles 
of an elastic body or medium in alternately opposite directions from 
the position of equilibrium where that equilibrium has been 
disturbed.” In the same source, “periodic” is defined as “occurring or 
recurring at regular intervals.” These definitions are meant primarily 
for the layman, and they suit our technical needs reasonably well. 
For us the motions will be periodic in time. Rigorously periodic 
means the motion repeats itself exactly. In this book, we will also 
encounter “nearly periodic” motions as, for example, in the case of 
damped free vibrations.

A “continuous system” is not so obvious. In our present  
study, perhaps “continuous body” or “continuum” would be more 
immediately clear. But “continuous system” has been the termino
logy generally used for the past century or more for what we will 
deal with here, probably to contrast it with a “discrete system.” 
Continuous systems will be described and discussed in some detail 
in the following section. 

1.1 What Is a Continuous System?
Consider a bar (or rod) of elastic material which is fixed at the left 
end, as depicted in Fig. 1.1(a), and is completely free otherwise. The 
material of the bar is continuous. If its crosssectional area (it may be 
circular, square, or otherwise) is A, and its total mass is M, then, the 
mass density at every point in the rod is ρ = M/Aℓ, where ℓ is the bar 
length. This assumes that the material is homogeneous. Otherwise, ρ 
would not be a constant, but vary from point to point. 

A discrete model of the bar is seen in Fig. 1.1(b). The mass has been 
“lumped” at five equally spaced points, including two at the ends 
and three in the interior. One could regard the bar as having been 
divided into three interior segments of length ℓ/4, with the entire 
mass of each segment concentrated at the centers (x = ℓ/4, ℓ/2, 3ℓ/4); 
and two shorter segments, each of length ℓ/8, to represent the ends. 

1
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Thus, the interior discrete masses are each M/4, and the masses of 
the end segments are M/8, placed at the two ends of the bar.

The bar also has stiffness in the longitudinal (x) direction. In the 
continuous bar, the stiffness occurs uniformly along it. In the discrete 
model, it is represented by massless springs connecting the points of 
concentrated mass. If the bar is uniform (that is, having the same 
crosssection everywhere), then, the springs are each four times  
as stiff as the overall bar stiffness. Thus, each spring has a stiffness  
k = 4 AE/ℓ, where E is the modulus of elasticity (Young’s modulus)  
of the material, assumed to be linearly elastic everywhere. 

Now consider the displacements of points along the bar due to 
the forces acting longitudinally along it, either applied at its ends or 
distributed throughout it. The forces may be either static or dynamic. 
This onedimensional (1D) continuous system represents the system 
accurately, especially if the bar is slender (i.e., ℓ is much greater than 
the average crosssectional dimension). The discrete system is an 
approximation. That is, the continuous model can determine the 
displacements accurately, whereas the discrete model can only 
approximate them. As more points of concentrated mass are utilized, 
the approximation is improved. We will return to this example in 
more detail in Sec. 1.2.

Another example of a continuous system is a perfectly flexible 
string, fixed at its two ends and stretched with a tensile force (T). 
This is shown in Fig. 1.2(a). Ignoring gravity, the string would be 
stretched into a straight line by the tension. But due to transverse 
forces (static or dynamic) or vibratory motions, it is also shown in a 
typical deformed shape. The string has continuous mass all along, its 
total mass being M. Its transverse displacement (w) is a continuous 
function of the coordinate (x) which locates points along the string. 

Figure 1.2(b) shows a possible discrete model of the continuous 
string in its transversely deformed shape. The distributed mass is 

Figure 1.1 (a) A continuous bar of mass M; (b) a discrete model of the bar.

x 
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M 
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replaced by three equally spaced particles of mass M/4 in its interior. 
The mass particles are interconnected by massless filaments, which 
are straight lines between the particles. The transverse displacement 
of the complete string is characterized now by the displacements of 
only the three mass points (w1, w2, w3). The continuous system, which 
has infinite degrees of freedom (d.o.f.) in the transverse direction, 
has been replaced by a system with only three d.o.f.

Returning to the bar in Fig. 1.1, instead of longitudinal 
displacements, it could undergo torsional displacements, as measured 
by the angle (θ) by which each crosssection rotates about the axis of 
the bar. In this situation, the rod is frequently called a “shaft,” as 
used in some mechanical equipment. Or, alternatively, the rod could 
undergo transverse displacements (w). In this latter situation the bar 
is typically called a “beam,” which undergoes bending. A discrete 
representation for torsion would involve concentrated mass moments 
of inertia, with interconnecting massless torsional springs. The beam 
discrete model would be significantly more complicated, involving 
both translations and rotations of discrete masses, connected by 
translational and rotational springs. 

The examples given above (string, bar, shaft, beam) are all one-
dimensional problems. That is, the displacements of points along the 
body are functions of a single coordinate (x) along it. However, in 
each case the continuous system has infinite d.o.f., because the body 
has an infinite number of points of mass, each capable of moving 
differently than the others.

Still more examples of continuous systems are membranes, plates, 
and shells. Figure 1.3 shows a flat membrane of arbitrary shape, 
stretched in its plane by tensile force (T) around its boundary. Like 
the string, the membrane is assumed to be perfectly flexible. The 
body is twodimensional (2D) because it takes two coordinates (e.g., 
x and y) to locate points in it. Static or dynamic displacements may 

Figure 1.2 (a) A continuous string of mass M, displaced transversely;  
(b) a discrete model of the string.

x

T

T

T

T
M/8 M/8

M/4 M/4
M/4

(a)
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occur either in the plane of the membrane, or out of its plane 
(transverse). Membranes are typically very thin, so that their bending 
stiffness is negligible. If significant bending (and/or twisting) 
stiffness is present, the body is considered to be a plate, and this 
stiffness is included in the analysis. If the body is not flat, but has 
curvature to form a surface, then it is a membrane shell (perfectly 
flexible) or a general shell (with bending and/or twisting stiffness). 
However, shells are also 2D because their displacements are 
determined by those of their middle surfaces (midway between the 
inner and out surfaces), and it takes only two coordinates to locate a 
point on a surface.

The foregoing 1D and 2D idealizations can often be made for 
structural elements. However, if they are not slender (or thin), then it 
may be necessary to carry out a 3D analysis of the displacements. 
Such an analysis is typically much more difficult than one which is 
1D or 2D. 

Typical structures are still more complicated. Examples of these 
are aircraft, buildings, automobiles, bridges, ships, and machinery. 
These may be regarded as assemblages of continuous systems 
(beams, plates, shells, etc.). In such cases, because of the geometrical 
complication involved, the structures are typically treated as dis
crete systems, with their components being approximated, using 
thousands of d.o.f. sometimes to represent the deformations of the 
entire structure. Nevertheless, understanding of the behavior of the 
relatively simple continuum models can often help greatly in  
the understanding of the more complicated structure, either a single 
part of it, or the entire body. For example, a submarine, an airplane 

X

y

T

T

Figure 1.3 Flat membrane with tensile force (T) around its boundary.
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wing, or a television transmission tower, each of them being a 
complicated structure, will typically have its most important lowest 
free vibration frequencies occurring in mode shapes which are 
similar to those encountered for bars and beams.

1.2  A Comparison of Frequencies Obtained from 
Continuous and Discrete Models

Let us return to the fixedfree bar described earlier in Fig. 1.1 and 
consider its longitudinal vibrations. Let its natural frequencies be 
written in nondimensional form by the parameter ω ω* /= M AE . 
That is, for a given rod of mass (M), length (ℓ), crosssectional  
area (A), and modulus of elasticity (E), knowing ω* allows one to 
determine the frequency (ω). Moreover, as it can be easily shown 
(see Chap. 3) for bars of arbitrary M, ℓ, A, and E, the nondimensional 
frequencies for the continuous bar are exactly ω* = π/2, 3π/2, 5π/2, 
etc. (π = 3.14159 . . .).

Although Fig 1.1(b) shows a four d.o.f. discrete model of the rod, 
one could also model the rod by less (1, 2, 3) or more (> 4) vibrating, 
concentrated masses. Models having one, two, and three d.o.f.  
are shown in Fig. 1.4. Also shown is a discrete model having an 
arbitrary number (n) of d.o.f. The stiffness of the connecting springs 
are k = n (AE/ℓ) each.

k

k

k

k k k k k

k k

k

1 d.o.f.

2 d.o.f.

3 d.o.f.

n d.o.f.

M/2

M/2

M/3 M/3

M/4

M/6

M/2n M/2nM/n M/n M/n

M/6

M/4

M/2

Figure 1.4 One, two, three, and multiple (n) degree-of-freedom discrete 
models of the fixed-free bar.
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Drawing free body diagrams for each concentrated mass, and 
using either Newton’s Laws or Lagrange’s Equations (an energy 
formulation), one may obtain equations of motion for each of the 
systems. Assuming free (undamped) vibrations, the single d.o.f. 
system readily yields the frequency ω* .= 2  For multiple (n) d.o.f. 
discrete representations, ω* are found from the roots (eigenvalues) of 
the following determinant equation:

 

( )
( )

( )

2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0

0 1 2 1 0 0 0 0

− − − −
− − − − − −

− − − − − −
− − − − − − − − −

λ
λ

λ
−− −

− − − − − −

− − − − −

=

0 0 0 0 0 1 2 1

0 0 0 0 0 0 1
1
2

2

0

( )

( )

λ

λ
 

(1.1)

where λ ω= ( */ )n 2 . For two d.o.f., one truncates the determinant, 
using only the top and bottom rows (note the 1/2 in the bottom row). 
For more d.o.f., one adds rows of the intermediate type shown, in 
between the top and bottom rows. Finding the roots of a determinant 
of order n of the type shown in (1.1) is a simple matter for a modern 
digital computer if n is not extremely large (say, n > 1000). 

Table 1.1 lists the first (i.e., lowest) five values of ω* for discrete 
models having n = 1, 2, . . . , 20 d.o.f. It is seen that, as n increases, the 
frequencies approach the exact values of the continuous system. 
Moreover, the lowest frequency (called the “fundamental frequency”) 
is obtained reasonably accurate (ω* = 1.5643) using only the five d.o.f. 
The resulting error of approximation is only 0.4 percent. However, 

n Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

 1
 2
 3
 4
 5
 7
10
15
20

1.4142
1.5307
1.5529
1.5607
1.5643
1.5675
1.5692
1.5701
1.5704

–
3.6955
4.2426
4.4446
4.5399
4.6239
4.6689
4.6930
4.7015

–
–
5.7956
6.6518
7.0711
7.4484
7.6537
7.7646
7.8036

–
–
–

7.8463
8.9101
9.8995

10.4500
10.7510
10.8576

–
–
–
–

9.8769
11.8541
12.9890
13.6197
13.8447

∞ (exact) 1.5708 4.7124 7.8540 10.9956 14.1372

Table 1.1 Nondimensional Frequencies ω* = ω M AE/  for n d.o.f. Discrete 
Models of Longitudinal Vibrations of a Fixed-Free Bar, as Described in Fig. 1.4
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the errors for the second, third, fourth, and fifth frequencies are 3.7, 
10.0, 26.6, and 54.2 percents, respectively. 

1.3 A Preview of the Subsequent Chapters
Let us now have a preview of what will follow in this book, in the 
order in which it is presented. This should help significantly in the 
overall understanding of the subject, especially, for readers who have 
interests beyond the material specifically presented here. 

Each chapter follows in the order of its mathematical com
plexity. This order is seen in Table 1.2. The transverse vibrations of 
strings are mathematically the most simple. Only one coordinate, 
measured along the string, is sufficient to define the classical 
problem of the transversely vibrating taut string, and the governing 
partial differential equation of motion is only of second order. The 
longitudinal or torsional vibrations of a straight bar are of the same 
mathematical complexity. Indeed, it will be shown that direct 
analogies exist between the string and rod problems, which allow 
the results from one to be applied to the other. 

Analyzing the bending vibrations of a straight beam also req
uires only one coordinate, measured along the length. But the 
governing differential equation is then of fourth order, requiring 
satisfying two boundary conditions at each end of the beam, whereas 
the string and rod only require one. Thus, the differential equation 
and solutions of problems are somewhat more complicated.

The thin, flat, stretched membrane requires two coordinates to 
locate each point on it, and thus it is a 2D problem. Fortunately,  
like the string, the differential equation of motion for transverse 
vibrations only contains second derivatives. The inplane vibrations 
of such a membrane could also be analyzed but is not considered 
here. This would entail the solution of a plane elasticity problem, 
having a set of fourthorder partial differential equations. The 

Table 1.2 Mathematical Complexity of Continuous Systems

Chapter Continuous systems Dimensionality
Differential 
order

2
3
4
5
6
7
8

String
Bar
Beam
Membrane
Plate
Shell
Three dimensional

1
1
1
2
2
2
3

2
2
4
2
4
8
6
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resulting free vibration frequencies are typically of little interest, for 
they are usually at least one order of magnitude higher than those of 
transverse vibration.

A flat plate is typically thicker than a membrane, and has 
significant bending stiffness. Thus, like the beam, the equation of 
motion is now of fourth order. But, like the membrane, two coordinates 
are needed to locate each point on the midplane of the plate. Inplane 
vibrations would be the same as for the membrane, and seldom of 
interest. 

Shells are like plates except that, instead of being flat, they have 
curvature. The curvature results in their being among the most 
efficient of all structural elements. Still, two coordinates can locate 
all points on their midsurfaces. But typical shells have both bending 
and stretching stiffness interacting with each other, resulting in 
eighthorder equations of motion. If the bending stiffness is negligible, 
the body is a membrane shell (e.g., a balloon), which may be examined 
as a special case of the shell vibration analysis. 

Finally, the last category of continuous systems listed in Table 1.2 
is denoted as “threedimensional.” This simply means that none of 
the simplifying kinematics assumptions used to develop equations 
of motion for the forging system are employed. The governing 3D 
equations of motion are not particularly complicated, but the necessity 
of using three coordinates causes greater difficulty in solving typical 
vibration problems. 

In the subsequent chapters the governing equations of motion 
are first developed for each of the continuous system. This is done by 
making classical assumptions of structural mechanics about the 
material (linearly elastic, isotropic, homogeneous). The exact solutions 
of these partial differential equations are developed for free vibration, 
and boundary conditions (edge restraints) are applied. This results in 
mathematical eigenvalue problems, the solutions of which are the 
eigenvalues (nondimensional frequencies) and corresponding 
eigenfunctions (mode shapes). It is interesting to mention here that 
the term “eigenvalues,” used in mathematics, comes from a partial 
translation of the German word “Eigenwert.” A translation of “wert” 
is “value.” A more complete, and perhaps better, translation would 
be “proper value.”

The emphasis in this work is strongly on the free vibration 
problem—determining natural frequencies and corresponding mode 
shapes. Some attention is given in Chaps. 2 through 5 to strings, rods, 
beams, and membranes subjected to timeperiodic exciting forces or 
displacements. Similar methods could be applied to the more 
complicated plate, shell, and 3D forced vibration problems. But in 
typical vibration studies it is most important to know the free 
vibration frequencies, where “resonance” (large displacement and 
stress amplitude) may occur. The magnitudes of such amplitudes 
require further calculation, and being able to quantify the damping 
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presence (e.g., viscous, aerodynamic, dry friction, internal). Moreover, 
as it will be demonstrated in Chaps. 2 through 5, the standard forced 
vibration analysis of a continuous system is expressed in terms of the 
orthogonal eigenfunctions of the free vibration analysis. 

Exact solutions of the partial differential equations of motion for 
continuous systems are only possible for a limited set of problems, 
depending on the necessary end conditions (mathematical boundary 
conditions) to be satisfied. For other cases, it is necessary to use an 
approximate method. The method should be able to generate free 
vibration frequencies and mode shapes which are sufficiently 
accurate, and require a reasonable amount of computational 
capability and time. The finite element method, in all its variations, 
is undoubtedly most widely used now for this purpose, especially 
for complex structures (e.g., aircraft, turbomachinery, buildings, 
bridges, naval vessels). In this book the approximate methods of 
Rayleigh and Ritz are used throughout for the relatively simple 
geometrical shapes analyzed. Like the finite element methods, they 
are based on energy principles (instead of differential equations) 
and, if used properly, will converge to exact frequencies and mode 
shapes if sufficient d.o.f. are made available. The Ritz method, in parti
cular, has been used in hundreds of published research papers.

With one exception, the analysis carried out in the subsequent 
chapters is all linear. That is, assumptions are made such that the 
differential equations and boundary conditions utilized are all linear. 
The one exception is at the end of Chap. 2, where the nonlinear 
vibrations of the taut string are taken up. Generally, nonlinear effects 
became significant in all the continuous systems in this book when 
the vibratory displacements became “large.” In the case of the string, 
it is seen that, unless the initial tension is extremely large, relatively 
small transverse vibration amplitudes can cause significant nonlinear 
effects. Nonlinearity may also affect the problem because of nonlinear 
material behavior. The solution of nonlinear vibration problems for 
continuous systems is an extremely complex and difficult subject, 
and therefore will be otherwise omitted here. 

Some topics are looked into for the 1D configurations (strings, 
rods, beams) which are not taken up for the subsequent 2D and 3D 
situations, namely: 

Elastic supports, internally or at the boundaries•	

Discontinuous bodies•	

Buckling•	

These are not addressed in the latter chapters simply because the 
problems became more difficult and the solutions more lengthy. But, 
in principle, the same logic can be applied there as in the 1D problems. 
Particularly important are buckling aspects under certain static 
loading conditions. These are explained carefully for beams in 
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Sec. 4.11, but described only briefly for plates (Sec. 6.8), and mentioned 
for membranes (Example 5.3). In general, observing when any natural 
frequency approaches zero as static loading is increased is an 
excellent way to determine buckling loads of structural elements, 
both theoretically and experimentally.



CHAPTER 2
Transverse Vibrations 

of Strings

A string constitutes one of the most fundamental continuous 
systems. It is an important element in engineering and 
physical sciences. In engineering, strings can exist in many 

applications. These include belts in automotive systems and power 
transmission machines, cables in many structures and machines, 
electric power transmission lines, ropes in many devices, as well as 
other uses. In biomedical engineering, human cords are actually 
strings. Their vibrational characteristics are important in many 
applications including voice recognition.

In music and acoustics, strings constitute a major element in 
many musical instruments. Stringed instruments can be divided into 
different groups. There are ones in which the strings are supported 
by a neck and a bridge, for instance, a guitar or a violin. In other 
groups, the instruments have the strings contained within a frame or 
mounted on a body, such as a piano, cimbalom, or autoharp. The 
vibrational characteristics of these strings are the basic element of 
design in these instruments. 

In physical sciences, strings may be used to study waves, their 
characteristics and propagation. The fundamental equations of wave 
propagation in strings have many analogies in physical sciences, 
including sound propagation.

The transverse vibration of strings will be studied in this chapter. 
Longitudinal vibrations of a string are also possible. For such motion, 
a string behaves the same as a bar, which will be taken up in Chap. 3. 
The fundamental differential equations of transverse vibration will 
be derived. Free vibrations will then be explored to determine the 
natural frequencies and mode shapes. Vibratory motion resulting 
from initial conditions will be investigated. Forced vibration with 
and without damping will also be treated. Approximate methods, 
particularly the Rayleigh and Ritz methods, will be explored. Various 
complicating effects like gravity, attached mass, and discontinuous 
strings will be covered. A section on nonlinear vibration of strings is 
also included.

11
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2.1 Differential Equation of Motion
Figure 2.1 shows a completely flexible string (that is, having no 
bending stiffness) of length ℓ which is stretched to an initial tension 
(T0). To be specific, the string is shown as being held at both ends by 
rigid walls, although the differential equation of motion to be derived 
does not depend on the end (or boundary) conditions. Indeed, as we 
shall see later, other physically meaningful boundary conditions can 
exist for the string. 

The longitudinal coordinate (x) in Fig. 2.1 is taken in the direction 
of the initial, undeformed string. The coordinate origin is shown at 
the left wall, but this is arbitrary; it may be chosen anywhere. The 
string is shown in a representative, deformed shape that it has at a 
typical instant while undergoing vibration. Let the transverse 
direction be z, and w be the displacement of the string at any instant 
in the z direction, measured from the straight line, static equilibrium 
position (assuming that transverse gravity forces are not present). 
This notation for displacement components will be used consistently 
throughout this book. That is,

Coordinate Associated displacement

x u

y v

z w

A typical infinitesimal element of length ds, measured along the 
deformed string, is also shown in Fig. 2.1. The displacement w 
describes the motion of this typical element, and it depends on (i.e., 
is a function of) both its longitudinal location (x) and time (t). That is, 
w = w(x,t). 

In Fig. 2.2, the infinitesimal element is drawn enlarged and all 
forces acting on it are shown, yielding a free body diagram. The 
tension (T) is not necessarily constant, but may vary both with x (or s) 

ds 

w 
x 

ℓ

z

Figure 2.1 A flexible string of length ℓ.
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and t. The angle (θ) that the string makes with the horizontal axis 
also varies with x (or s) and t. In this chapter (except in Sec. 2.14), it 
will be assumed that the vibratory displacements are small (compared 
to ℓ), and that θ is also small everywhere. An external, distributed 
force (p, having dimensions of force per unit length) is also shown, 
acting normal (perpendicular) to the string. 

Summing forces in the z direction gives

 

F T T
T
s

ds
s

ds

pds

z∑ = − + + ∂
∂







+ ∂
∂







+ ( ) =

sin sin

cos

θ θ θ

θ ρρds
w

t
( ) ∂

∂

2

2  (2.1)

where ρ = ρ(x) is the mass density per unit length of string. Using the 
trigonometric identity for the sine of the sum of two angles, and 
replacing sin(α) by α, and cos(α) by 1 for small angles, yields

 

sin sin cos cos sinθ θ θ θ θ θ+ ∂
∂







= ∂
∂







+ ∂
∂


s

ds
s

ds
s

dsi i





= + ∂
∂

sin cosθ θ θ
i

s
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(2.2)

Substituting (2.2) into (2.1), expanding the indicated product, 
canceling out the T sin(θ) terms, one obtains

 
T

s
T
s

T
s

ds
s

p ds
w

cos sin cos cosθ θ θ θ θ θ ρ∂
∂

+ ∂
∂

+ ∂
∂

∂
∂

+





= ∂
∂

i
2

tt
ds2

 
(2.3)

It is seen that all terms except one in (2.3) contain ds (i.e., they 
are first-order differentials). The remaining one contains (ds)2, 

Figure 2.2 A free body diagram of a string infinitesimal element.
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which is of higher order, and can therefore be discarded with no 
error. Doing so, and dividing through by the length ds, (2.3) may be 
rewritten as

 

∂
∂

+ =
∂
∂s

T p
w

t
( sin ) cosθ θ ρ

2

2  
(2.4)

As written, (2.4) is a nonlinear partial differential equation, with 
T depending on w. Indeed, if one wanted to consider large amplitude 
vibrations of the string, it could be useful. But we will avoid this 
difficult problem by making certain linearizing assumptions. First, 
assume that the slope of the displaced string (∂w/∂x) is small for all 
values of x and t. Then,

 
sin tan , cos ,θ θ θ≈ =

∂
∂

≈
∂
∂

=
∂
∂

w
x s x

1
 

(2.5)

This allows one to replace (2.4) by

 

∂
∂

∂
∂







+ = ∂
∂x

T
w
x

p
w

t
ρ

2

2
 

(2.6)

Second, assume that the initial tension T0 is sufficiently large, and 
that the transverse displacement w is sufficiently small, so that T may 
be assumed constant during the motion (i.e., T = T0). Then, (2.6) 
simplifies further to

 
T

w
x

p
w

t0

2

2

2

2
∂
∂

+ = ∂
∂

ρ
 

(2.7)

which is the equation of motion governing forced vibration of the 
string. To simplify notation, we will not bother with the subscript on 
T. We will return to this equation in Sec. 2.9.

For the free vibration problem, p = 0, and (2.7) becomes

 
T

w
x

w
t

∂
∂

=
∂
∂

2

2

2

2ρ
 

(2.8)

This is the well-known one-dimensional “wave equation” of 
physics. Why it should be called this will be seen in Sec. 2.5. Note 
that in all of the above equations, the string density may vary, i.e., 
ρ = ρ(x). However, for ease in obtaining mathematical solutions,  
ρ will be taken as constant for the next several sections of this 
chapter. 
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2.2 Free Vibrations; Classical Solution
For the case ρ = constant, the classical method of separation of 
variables will now be employed to obtain a solution to (2.8). It must 
be noted, however, that this procedure cannot be used for solving all 
partial differential equations, as will be seen in Chap. 6. 

Assume that the solution to (2.8) may be written in variables 
separable form; that is,

 w x t X( , ) = φ  (2.9)

where X = X(x) and φ = φ(t) are each a function of one of the independent 
variables. Substituting (2.9) into (2.8) yields

 TX X′′ = ′′φ ρ φ  (2.10)

where the double primes indicate differentiation twice with respect 
to the arguments x and t of functions X and φ, respectively. Dividing 
through (2.10) by Xφ, and collecting constants on one side of the 
equation, allows us to rewrite (2.10) as

 

′′
= 





X
X T

ρ φ
φ

″

 
(2.11)

Now the fundamental argument is made that since the left-hand 
side of (2.11) is a function only of x, and the right-hand side (R.H.S.) of 
(2.11) is a function only of t, then the equation can only be valid if 
each side equals a constant. For convenience, call this constant –α 2. 
As a consequence, we may write

 ′′ + =X Xα 2 0  (2.12a)

 ′′ + =φ ω φ2 0  (2.12b)

where

 
ω

α
ρ

2
2

=
T

  
(2.13)

Before considering solutions to (2.12) let us first write down the 
boundary conditions for the problem, assuming both ends of the string 
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are fixed, as in Fig. 2.1. Because (2.8) is a second-order differential 
equation, we can expect one boundary condition per end, viz

 w t( , )0 0=  (2.14a)

 w t( , ) = 0  (2.14b)

These imply, from (2.9),

 X( )0 0=  (2.15a)

 x( ) = 0  (2.15b)

There are three possible types of solution to (2.12) depending on 
whether α2 is negative, zero, or positive.

Case I: α2 < 0. Let β2 ≡ α2. Then, (2.12a) has the solution in terms of 
hyperbolic functions

 X A x B x= +sinh coshβ β  (2.16)

where A and B are constants to be determined. Substituting (2.16) 
into (2.15a), and recalling that sinh 0 = 0 and cosh 0 = 1, yields B = 0. 
Further, substituting (2.16) into (2.15b) yields A sinh βℓ = 0. This can 
be satisfied if either A = 0 or sinh βℓ = 0. If A = B = 0, then (2.16), 
together with (2.9), shows that no motion can exist. This trivial 
solution is the special case of static equilibrium with no displacement, 
but is of no interest to us. If sinh βℓ = 0, then, β = 0. But, β = B = 0 yields 
again the trivial solution according to (2.16).

Case II:  α2 = 0. Then, (2.12a) has the solution

 X Ax B= +  (2.17)

Applying boundary conditions, (2.15) requires A = B = 0, which again 
is a trivial solution.

Case III: α2 > 0. Then, (2.12a) has the solution in terms of trigonometric 
functions

 X A x B x= +sin cosα α  (2.18)

Substituting (2.18) into (2.15a) requires that B = 0. Further, (2.15b) 
yields A sin αℓ = 0. If A = 0, a trivial solution again results. Thus, the 
only nontrivial possibility is sin αℓ = 0, which gives

 α π …= = ∞m m( , , , )1 2  (2.19)
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The solution to (2.12b) is

 φ ω ω= +C t D tsin cos  (2.20)

where, from (2.13) and (2.19)

 
ω π

ρ
= = ∞m T

m


…( , , , )1 2
 

(2.21)

and C and D are constants of integration to be determined from the 
initial conditions for a particular problem. We recognize from (2.20) 
that ω is the circular frequency of free vibration (usually determined in 
radians/sec). The cyclic frequency ( f ) is related to ω by

 
f =

ω
π2  

(2.22)

and has dimensions of cycles per second or hertz (Hz). Equation 
(2.21) tells us that the freely vibrating string has an infinite number of 
possible frequencies, and that the frequencies are integer multiples of 
the first frequency (which is called the fundamental frequency). 
However, as it will be seen in subsequent problems for continuous 
systems, this fortunate circumstance is most unusual. Equation (2.21) 
also shows that each frequency is increased as the tension in the 
string is increased, or as the length or density is decreased. This 
physical behavior is not unexpected, and is obvious enough to anyone 
who has played around with a guitar. While ρℓ is a measure of the 
total mass present in the system, T/ℓ is a measure of the stiffness. The 
period (τm) for the mth vibration frequency (ωm) is the reciprocal of 
the cyclic frequency, or 2π/ωm. 

Equation (2.19) tells us that αℓ are the eigenvalues of the problem. 
That is, they are the “proper values” which, if chosen, permit us to 
obtain a nontrivial solution satisfying both the differential equation 
and boundary conditions, all of which are homogeneous. For this 
problem, the αℓ parameters are the nondimensional frequencies. That is, 
(2.19) may be rewritten as

 
α ω ρ π  …= = = ∞

T
m m( , , , )1 2

 
(2.23)

which, of course, is a rearrangement of (2.21). Continuing, the sin αx 
are the eigenfunctions. For each αℓ, determined from (2.21), there exists 
one eigenfunction. This gives the displaced shape of the string 
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vibrating in this mode and, in the usual terminology, is called the 
mode shape. While the constant B in (2.18) was found to be zero, the 
remaining constant A remains arbitrary, and is combined with C and 
D from (2.20) when rewriting (2.9). Thus, the amplitude of the 
eigenfunction is arbitrary at this stage and will ultimately be 
determined from the initial conditions.

Summarizing the above results, it may be said that a taut string is 
capable of executing free vibrations with a displacement function w 
given by

 w x t x C t D tm m m m m m( , ) sin ( sin cos )= +α ω ω  (2.24)

The subscript m has been added to identify the mth mode shape (or, 
simply, mode), which vibrates with a frequency ωm, and with an 
amplitude determined by Cm and Dm. The first four mode shapes 
(i.e., the four having the lowest frequencies) are depicted in Fig. 2.3. 
It is observed that m = 1, 3, . . . yields the symmetric modes, and that 
m = 2, 4, . . . furnishes the antisymmetric modes (with respect to the 
symmetry axis for the problem, which is at the center of the string). 
The points of zero displacement are called the “node points.” The 
mode shapes are drawn in Fig. 2.3 as if they each have the same 
amplitude; but it is clear that the small slope assumptions (2.5) 
would be seriously violated for m = 3 and 4, as drawn.

Symmetric 

1 = 

2 = 2 1 

3 = 3 1 

4 = 4 1 

ℓ
T

Symmetric 

Antisymmetric 

Antisymmetric 

m = 4 

m = 3 

m = 2 

m = 1

Figure 2.3 The first four mode shapes of a fixed string.
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2.3 Initial Conditions
In a general case, a string could be set into motion by giving it both 
initial displacement and velocity. These conditions could be written as

 w x f x( , ) ( )0 =  (2.25a)

 

∂
∂

=
w
t

x g x( , ) ( )0
 

(2.25b)

where f(x) and g(x) are any functions continuous over the interval 
0 ≤ x ≤ ℓ which also satisfy the boundary conditions f(0) = f(ℓ) = 
g(0) = g(ℓ) = 0 (assuming that both ends of the string are fixed). In 
the special case when a string is plucked at one or more points, g(x) 
= 0. Another special case is where f(x) = 0. This is possible if the 
string is set into motion by an initial impact.

Because (2.24) is a solution to the linear differential equation (2.8) 
for every value of m, then a linear superposition of such solutions is 
also a solution. Thus, a general solution of (2.8) may be taken as

 
w x t x C t D t

m
m m m m m, sin sin cos( ) = +( )

=

∞

∑
1

α ω ω
 

(2.26)

Thus, the free vibration of the string is assumed to be represented by 
the superposition of its free vibration modes, each having its own 
amplitude and its own frequency. Substituting (2.26) into (2.25a) yields

 
f x D xm m

m

( ) sin=
=

∞

∑ α
1  

(2.27)

Multiplying both sides of (2.27) by sin αnx, where αn = nπ/ℓ, and n is 
also an integer, and integrating both sides of the equation from 0 to ℓ, 
one finds that

 
sin

/
m x n x

dx
m n
m n

π π

i

 


sin
if

if0

0

2∫ =
≠
=



  

(2.28a)
  (2.28b)

The first of these two equations is a statement of the orthogonality of 
the eigenfunctions. Because of this, all terms but one on the R.H.S. of 
2.27 vanish. The sole remaining term, which exists when m = n, 
results from using (2.28b):

 
D f x x dxm m= ∫

2
0


( )sin( )α
 

(2.29)
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Thus, (2.27) is the Fourier series expansion for f(x), and (2.29) is the 
well-known formula for calculating the Fourier coefficients. 

Similarly, substituting (2.26) into (2.25b) and carrying out the 
same operations described above gives

 
C g x x dxm

m
m= ∫

2
0ω

α



( )sin( )
 

(2.30)

where attention must be called to ωm in the denominator.
In the special case of initial displacement only, with no initial 

velocity, (2.30) gives Cm = 0, with the Dm being determined from (2.29). 
Conversely, for initial velocity only, Dm = 0, and Cm is given by (2.30).

Example 2.1 A taut string of length ℓ is plucked at its one-quarter point as 
shown in Fig. 2.4 and is released from rest. Determine the ensuing motion.

Solution

w x f x D x

x
x

x
x

m m( , ) ( ) sin0
4 0

4
4
3

1
4

= = =
≤ ≤

−



 ≤ ≤




α

δ

δ









if

if




=

∞

∑
m 1

D f x x dx

x x dx

m m

m

=

= 



 + 





∫

∫

2

2
4

2 4
3

0

4



  







( )sin

sin
/

α

δ α δ 11
0

4
−



∫ x

x dxm
/

sinα

Integrating by parts, where needed, gives

D
m

m
m = 32

3 42
δ
π

π
( )

sin

ℓ 3ℓ

4 4

Figure 2.4 Initial shape of plucked string in Example 2.1.
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whence

w x t
m

m
x tm m

m

( , ) sin sin cos=
=

∞

∑32
3

1
42 2

1

δ
π

π α ω

where

α π ω π
ρm m

m m T= =
 

,

In detail, the Fourier series expansion of the initial shape is

w x
x x x

( , ) . sin . sin . sin

.

0 0 7642 0 2702
2

0 0849
3

0 0 30

= + +


+ −

δ π π π
  

66
5

sin
π x


+ 


This shows the relative amplitudes with which the various modes are excited 
by this particular initial shape. The second and third modes have amplitudes 
that are 35 percent and 11 percent as large, respectively, as the first mode. 
Moreover, the 4th, 8th, 12th, . . . modes are not excited at all by this initial 
shape. These modes have node points where the string is plucked. This is a first 
example of the more general observation that one cannot generate a vibration 
mode if the excitation occurs at the node point of the mode. Thus, the relative 
strengths of the overtones, compared with the fundamental tone, that one hears 
from the string of a musical instrument depend on what point it is plucked, and 
some overtones may not be excited at all.

A plot of the first three sums of the Fourier series for the displacement when 
t = 0 is shown in Fig. 2.5. Using only the first three (or four) terms of the series 
is seen to give a poor approximation to the exact shape in the vicinity of the 
maximum displacement.

1.0 

0.8 
w(x,o) 

0.6 

0.4 

0.2 

0 0.25 

3 or 4 
terms 

exact 
2 terms 

1 term 

0.50 0.75 1.0 

x
ℓ

Figure 2.5 A plot of the first three sums of the Fourier series for the 
displacement when t = 0 in Example 2.1.
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2.4 Consideration of Transverse Gravity
In the preceding sections, it was implicitly assumed that the free 
vibration takes place in the absence of gravitational forces. This could 
be possible if the system were in space, sufficiently far removed from 
significant gravitational effects, or if the forces were acting perpen-
dicular to the plane of motion (i.e., in the y direction in Fig. 2.1).

Let us now suppose that gravity acts in the negative z direction in 
Fig. 2.1, and that the change in T due to it is negligible. The resulting 
infinitesimal force p dx in (2.1) is then replaced by −ρg ds, where g is 
the gravitational acceleration constant, and (2.8) becomes

 
T

w
x

g
w

t
∂
∂

− =
∂
∂

2

2

2

2ρ ρ
  

(2.31)

Equation (2.31) is a nonhomogeneous differential equation, but it is 
linear. Its solution w(x,t) may therefore be regarded as the sum of two 
parts, i.e.,

 
w w wc p= +

 (2.32)

where wc is the complementary solution, obtained when ρg is ignored, 
and wp is a suitable particular solution. The word “suitable” should 
be emphasized here, for various forms of particular solution may be 
possible, all differing from each other by terms of the complementary 
solution. 

If we choose wp to be the static displacement of the string due to 
the gravitational force, then wp is the solution of

 
T

w

x
gp∂

∂
=

2

2 ρ
 (2.33)

which is

 
w

g
T

x C C xp = 



 + +

ρ
2

2
1 2

 (2.34)

where C1 and C2 are arbitrary constants of integration. If C1 and C2 are 
chosen so that wp also satisfies the boundary conditions wp(0) = wp(ℓ) 
= 0, then, C1 = 0, C2 = −ρgℓ/2T and the general solution (2.32) becomes

 
w w

g
T

x xc= − 



 −

ρ
2

2( )
 

(2.35)

where wc is the previous solution ignoring gravity, given by (2.26).
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Thus, (2.35) may be regarded as a vibrational motion (wc) 
superimposed on a static displacement (wp) due to gravity. 
Furthermore, the free vibration frequencies are unaffected by g, inasmuch 
as the αm are determined to be the same as without gravity in order 
to satisfy w(ℓ)= 0. However, one must be careful not to extrapolate 
this conclusion to other problems. It applies to a string subjected to 
transverse gravity. For some other types of problems, gravity will be 
seen to have an effect on the vibration frequencies (but for others, it 
will not). However, this should not be a surprise, for in elementary 
texts on vibrations, it is quickly shown that even for single degree-of-
freedom (d.o.f.) systems, gravity may or may not affect the frequency, 
depending on the problem considered. 

2.5 Free Vibrations; Traveling Wave Solution
It was shown in Sec. 2.3 that if the vibration of a string is commenced 
by giving the string an initial displacement f(x) and releasing it, the 
subsequent motion is given by

 
w x t D x t

m
m m m( , ) sin cos=

=

∞

∑
1

α ωi
 

(2.36)

But since, from (2.19) and (2.21), ωm = αmc, where c = T/ρ , then (2.36) 
may be written as 

 
w x t D x ct

m
m m m( , ) sin cos=

=

∞

∑
1

α αi
 

(2.37)

Using the trigonometric identity

 
sin cos [sin( ) sin( )]α α α α α αm m m m m mx ct x ct x cti = + + −1

2  
(2.38)

allows us to rewrite (2.37) as

 
w x t D x ct D x ct

m
m m

m
m m( , ) sin ( ) sin ( )[ ] [ ]= + + −

=

∞

=

∞

∑ ∑1
2

1
21 1

α α
 (2.39)

But, using (2.27), (2.39) may be simply stated as

 
w x t f x ct f x ct( , ) ( ) ( )= + + −1

2
1
2  

(2.40)

where, as before, f(x) is the initial displacement function.
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If one were to plot an arbitrary mathematical function f(x), then, 
f(x − ct) and f(x + ct) would be the same function shifted forwards and 
backwards an amount ct, as shown in Fig. 2.6. Thus, (2.40) tells us 
that, as an alternative to (2.36), the displacement at any instant of 
time (t) after the beginning of motion (t = 0) may be regarded as the 
superposition of two functions. Each function has the same shape as 
the initial displacement, but only half the amplitude, shifted forwards 
and backwards an amount ct. Physically, this corresponds to two 
half-amplitude waves, one moving forwards and the other moving 
backwards along the string, with a wave velocity c T= /ρ . Because 
(2.40) is also a solution to (2.8), the latter is often called the “wave 
equation.”

Example 2.2 A taut string is initially deformed into the shape shown in 
Fig. 2.7 and released from rest. Use the traveling wave solution to determine 
its subsequent motion.

Solution
Figure 2.8 shows the string at seven equally spaced time intervals, beginning 
with t = 0 and ending with t = τ1/2 where τ π ρ1 12 2= 2 =  /T  is the period 
of the vibration (i.e., the time when the initial shape reappears), as may be 
determined from (2.23). In the sketch, the string is drawn between the rigid 
walls x = 0 and x = ℓ, but an additional length ℓ is also shown on each side of 
the actual string to permit us to keep track of the function (i.e., the traveling 
waves) beyond the limits of the boundaries. Actually, the complete function is 
a periodic one from −∞ < x < ∞.

At t = 0, the displaced shape is shown in 0 ≤ x ≤ ℓ as a solid line, whereas  
the dashed line shows one of the functions of half-amplitude which will  
travel with increasing t. The function is antisymmetric with respect to x = 0  

Figure 2.6 The function f(x) shifted forwards and backwards an amount ct. 
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[i.e., f(x) = −f(−x)] and it is periodic in x, with period 2ℓ [i.e., f(x + 2ℓ) = f(x)], 
both properties being clear from (2.27). These properties are present for all t  
and readily permit one to draw 1

2 f x ct( )−  and 1
2 f x ct( )+  outside of the interval 

0 ≤ x ≤ ℓ once they are known within the interval.
At t = τ1/12, the two half-waves are completely separated, and the one 

traveling to the right is on the verge of infringing on the boundary at x = ℓ. But 
at the same instant, another half-wave traveling to the left from the subsequent 
interval ℓ ≤ x ≤ 2 ℓ begins to make contact with x = ℓ.

ℓ

2 

ℓ

6 

ℓ

6 

ℓ

6

Figure 2.7 Initially deformed string of Example 2.2.

x=0 – ℓ ℓ 2ℓ 

t=0 

t=1/12
ct=ℓ/6

t=21/12
ct=ℓ/3

t=31/12
ct=ℓ/2

t=41/12
ct=2ℓ/3

t=51/12
ct=5ℓ/6

t=61/12
ct=ℓ

Figure 2.8 Travelling wave of Example 2.2 at various times.
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During the time τ1/12 < t < τ1/6, the two half-waves partially cancel each 
other and at t = τ1/6 they exactly cancel each other in the vicinity of the wall, 
5ℓ/6 < x < 7ℓ/6. The model of a reflected wave may also be used in place of the 
left-traveling wave to explain the cancellation. At every t, the two half-waves 
superimpose so that w(ℓ, t) = 0 exactly.

The displaced shapes of the string for t > τ1/2 are obtained by proceeding 
upwards from one sketch to another in Fig 2.8, beginning with the one for t = 
τ1/2. That is, for example, w(x, 7τ1/12) = w(x, 5τ1/12).

It is seen that the traveling wave solution permits one to determine the shape 
of the string at any instant by a relatively simple graphical procedure, compared 
with the large amount of numerical computation typically required by the 
classical eigenfunction superposition approach laid out in Sec. 2.3.

2.6 Other End Conditions
Only a string having both of its ends fixed has thus far been 
considered. Let us now take up a more general case, as shown in 
Fig. 2.9. There one sees a string that has one end (x = 0) fixed, but the 
other end is attached to a mass (M) that can move transversely 
without friction. Moreover, the mass is constrained by a spring of 
stiffness k. Gravity is ignored, for, as seen in Sec. 2.4, it has no effect 
on the free vibration frequencies or mode shapes.

The solution to (2.8) given by (2.9), (2.18), and (2.20) will again be 
used. The boundary condition w(0, t) = 0 again requires that B = 0, so 
that (2.18) again reduces to

 X A x= sinα  (2.41)

where α is a constant yet to be determined.
The boundary condition at x = ℓ is a complicated one, which must 

be determined by drawing a free body diagram of the attached mass 
in a typical position, displaced w(ℓ, t) from the static equilibrium 
position. This is seen in Fig. 2.10. The three forces shown are the 
tension in the string (T), the normal force (N) of the constraining 

W 

M 

k 

X

ℓ

Figure 2.9 A more general end condition for a string.
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boundary against the mass, and the restoring force in the constraining 
spring (kw), all drawn in their positive directions.

Summing forces vertically, we then obtain

 
− − =

∂
∂

T kw t M
w

t
tsin ( , ) ( , )θ  

2

2   
(2.42)

But sin ( , )/θ = ∂ ∂w t x  for small θ. Assuming w x t X x t( , ) ( ) ( )= φ ,

 − ′ − = −TX kX M X( ) ( ) ( )  ω 2  (2.43)

or, using (2.41),

 ( ) sin cosM k A TAω α α α2 − =i  i   (2.44)

Dividing by A cos αℓ and then rearranging gives

 
tanα α

ω
 =

−
T

M k2
 

(2.45)

kw (ℓ, t)

w (ℓ, t)

N 

M 

Equilibrium 

position 

T

Figure 2.10 A free body diagram of a mass connected at a string end and 
attached to a spring.
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Substituting (2.13) and rewriting (2.45) in nondimensional form 
yields the frequency equation

 
tan

* */
β

β β
=

−
1

M k  
(2.46)

where M* and k* are the nondimensional mass and stiffness ratios, 
respectively, defined by

 
M

M
k

k
T

* , *
/

≡ ≡
ρ   

(2.47)

and β ≡ α is the nondimensional frequency:

 
β ω

ρ
= 

T  
(2.48)

For selected values of M* and k*, the values of β which satisfy (2.46) are 
the eigenvalues for the problem. There are infinite numbers of β for 
each choice of M* and k*. The eigenfunctions (mode shapes) are then 
given by (2.41), which can be written in the more convenient form

 X A= sinβe  (2.49)

where e ≡ x/ℓ.
To find the eigenvalues of the transcendental equation (2.46), one 

may rearrange it as

 
tan

* */
( )β

β β
β−

−
= =1

0
M k

f
 

(2.50)

Then, for fixed values of M* and k*, one may determine the roots of 
(2.50). This may be done by simply plotting f(β) and determining its 
zero values; alternatively, various numerical techniques may be used. 
However, these procedures require using at least a programmable 
hand calculator, if not a small computer, if many eigenvalues are to 
be found. 

If extensive numerical results are sought, it is easier to fix β in 
(2.46) and then solve for corresponding sets of M* and k* from the 
linear form

 
M

k
*

*
cotβ

β
β− =

 
(2.51)

This procedure was used to make the plots shown in Fig. 2.11. For a 
chosen value of M*, a number of values of the nondimensional 
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frequency parameter β/π were taken, and (2.51) was used to calculate 
explicitly the corresponding k*, thereby achieving any single curve of 
Fig. 2.11.

Figure 2.11 shows how the frequency of the system varies as 
the stiffness ratio is changed. For good physical understanding, 
one should imagine a string having fixed values of ℓ, ρ, and T. Then 
the abscissa of Fig. 2.11 is obtained by varying the external spring 
stiffness (k), and the various curves are obtained by varying the 
amount of external mass (M). To see better the change in ω due to 
changing k, the common logarithm of k* is used as the abscissa, 
giving the range 10−2 ≤ k* ≤ 102. Two sets of curves are drawn, with 
each set having four values of M*, ranging from zero (no additional 
external mass) to five (large external mass). The first set, having 
the smaller values of β/π, yields the fundamental frequencies. The 
second set, having the larger values, yields the second mode 
frequencies.

For M* = 0, β/π varies from 0.5 (for k* = 0; i.e., log k* = −∞) to 1.0 
(for k* = ∞) for the fundamental mode. The latter case is that of the 
rigid wall, which the curves approach for all values of M* as k* is 
increased. In the former case, one has the problem of a string having 
a free end—that is, constrained longitudinally, but not transversely—
which would be difficult to achieve physically without having 
significant M*. For the second mode, β/π → 2 as k* → ∞, for all M*, 
and β/π → 1.5 as k* → 0 for M*= 0. Moreover, the curves for the second 

2.0 

1.5 

SECOND 
MODE 

FIRST 
MODE 

M* = 0 

M* = 0 

M* = 1 

M* = 1 

M* = 5 

M* = 5 

M* = 0.2 

M* = 0.2 

1.0 

0.5 

0 
–2 –1 0 1 2 




T (= ) ℓ




log k*(=log k 
T/ℓ 

)

Figure 2.11 Frequency parameters for a string with an attached mass one end.
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mode change more rapidly than those for the fundamental mode. For 
very large M* (say M* = 100), the curves would change extremely 
rapidly from β/π = 0 (or 1) to β/π = 1 (or 2) as k* is increased.

2.7 Discontinuous Strings
A discontinuity in a string may arise in various ways. One example 
is the string to which a concentrated mass (i.e., a particle) is attached 
at an intermediate point. Another example is a string having one 
density over part of its length, and another over the remaining part. 
A straightforward approach to such problems is to use a separate 
solution to the equation of motion (2.8) for each part of the string 
which is continuous, enforcing the necessary continuity or 
discontinuity conditions at the junction points, along with the 
boundary conditions. This will be illustrated below with an example 
of the first type mentioned above.

A taut string of density ρ has a particle of mass M attached to it 
at one-fourth its length, as shown in Fig. 2.12. We will investigate the 
free vibrations of this system.

The equations of motion for the two segments of string are

 
T

w
x

w
t

x
∂
∂

= ∂
∂
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(2.52a)
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(2.52b)

Two separate coordinates x1 and x2 are used for the two segments, 
and are measured from the two rigid boundaries as shown in Fig. 2.12 
to simplify the solution. The transverse displacements in the two 
segments are also separately denoted by w1 and w2.

ℓ
ℓ

4 4 
3 

M 

W1 W2 

X2 X1

Figure 2.12 A taut string with a particle of mass M attached to it at one-fourth 
its length.



 30 C h a p t e r  T w o  T r a n s v e r s e  V i b r a t i o n s  o f  S t r i n g s  31

Following the procedure used in Sec. 2.2, solutions to (2.52) may 
be taken as

 w x t X x t w x t X x t1 1 1 1 1 1 2 2 2 2 2 2= = + = = +( , ) ( )sin( ), ( , ) ( )sin( )ω φ ω φ

 

X x A x B x
X x A x B x

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

( ) sin cos ,

( ) sin cos

= +
= +

α α
α α  (2.53)

where ω α ρ1 1= T/  and /ω α ρ2 2= T . Applying the boundary 
conditions:

 w t X B1 1 10 0 0 0 0( , ) ( )= → = → =   

 w t X B2 2 20 0 0 0 0( , ) ( )= → = → =  (2.54)

At the junction point, there must be continuity of displacements. 
That is,
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 (2.55)

or

 
A t A t1

1
1 1 2

2
2 24

3
4
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α ω φ α ω φ
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i+ = +

 
(2.56)

For (2.56) to be satisfied for all t requires that ω1 = ω2 and that φ1 = φ2. 
Consequently from above, α1 = α2, and will simply be called α. Then, 
(2.56) reduces to

 
A A1 24

3
4

sin sin
α α 

=
 

(2.57)

The slopes are discontinuous at the junction. However, they are 
related to each other through the equation of motion for the particle. 
Using the free body diagram in Fig. 2.13, this equation is seen to be
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(2.58)

where, it is noted, the slopes in Fig. 2.13 have been drawn to be positive 
in accordance with the positive directions of x1, x2, w1, and w2. Using 
(2.53) and some of the previously determined results, (2.58) becomes
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It is observed that the R.H.S. of (2.58) could have been equally well 
given as M w t t∂ ∂2

2
23 4( / , )/ , but then the R.H.S. of (2.59) could be 

obtained by substituting (2.57).
Equations (2.57) and (2.59) form a set of two homogeneous 

simultaneous equations in A1 and A2. They may be written in matrix 
form as

 

si
β

β β

n sin
4

3β
4

−
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=



















0

0* sβ in cos cos
4 4

3β
4

− −M






 

(2.60)

where β ≡ αℓ and M* ≡ M/ρℓ. One solution of (2.60) is clearly A1 =  
A2 = 0, which is a trivial solution of no value to us. However, if we 
were to attempt to solve (2.60) directly for A1, for example, by means of 
the well-known Cramer’s Rule, the solution would be presented as 
the quotient of two determinants, as follows:

 

A1

0
3β
4

0
=

−sin

sin β

β β
* sβ in cos

−cos

−sin

− −cos

3β
4

4
3β
4

4 4
3β

M
44





  

(2.61)

The numerator determinant is clearly zero. The only hope for a 
nonzero (also called “nontrivial”) solution for A1 is to have the 

Figure 2.13 Free body diagram of a mass connecting two taut strings.
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denominator determinant also zero, which would put the quotient 
into the indeterminate form 0/0. Therefore, we try setting:

 

sin sin

* sin cos cos

β β

β β β β
4

3
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4 4
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4
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 −
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(2.62)

Expanding (2.62) yields

 
− + −



 =sin cos sin * sin cos

β β β β β β
4

3
4

3
4 4 4

0i i M
 

(2.63)

This can be put into a more simple form by using the trigonometric 
identity for the sine of the sum of the angles β/4 and 3β/4. Then, (2.63) 
becomes

 
sin * sin sinβ β β β− =M i i

4
3
4

0
 

(2.64)

Or, dividing through (2.63) by sin β/4 ∙ sin 3β/4 yields an alternative 
form, which has a nice “symmetry” and could be even more useful:
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(2.65)

As we will soon see, Eqs. (2.64) and (2.65) do have nontrivial solutions 
for β. Either one may be called the “frequency equation” (or the 
“characteristic equation”) for the problem, for the β ω ρ=  /T  
satisfying them are the eigenvalues, or nondimensional frequencies. 
Correspondingly, the determinant displayed in (2.62) is called the 
“frequency determinant” (or “characteristic determinant”). If any β 
so determined is substituted back into either of the two equations 
(2.57) or (2.59) that generated the frequency determinant, then the 
corresponding eigenvector A2/A1 can be determined. Clearly, (2.57) is 
the simpler form to use in the present case, yielding
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(2.66)

The eigenfunctions for the problem are then, using (2.53) and (2.54),

 X A1 1 1 1 10 0 25( ) sin ( . )ξ βξ ξ= ≤ ≤  

 
X A2 2 1 2 2
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3 4

0 0 75( )
sin( / )
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sin ( . )ξ β
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 ≤ ≤

 
(2.67)
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where ξ1 = x1/ℓ and ξ2 = x2/ℓ are nondimensional coordinates. The 
amplitude A1 is arbitrary, and may be set equal to unity for 
simplicity.

Choosing M* = 0.5, thereby adding considerable, but not 
overwhelming, concentrated mass to the string, (2.65) yields the 
eigenvalues, the first six of which are listed in the first column of 
Table 2.1. [If a more comprehensive parametric study were desired 
for a wide range of M*, one could assume values of β and solve (2.65) 
explicitly for the corresponding M*.] For comparison, the values for 
M* = 0 (no added mass) are also included. It is seen that each of the 
first six frequencies are significantly reduced by the added mass, 
except the fourth one (β = 4π = 12.566). Because for this mode the 
particle lies at a node point of the fourth mode of the string with no 
added mass, it does not affect this frequency. Similarly, it would not 
affect the frequencies of the higher modes having multiples of four 
half-waves.

The third column of Table 2.1 shows the results of a possible 
“engineering approximation” to the problem when M* = 0.5. Here the 
added mass is “smeared out”—that is, the mass is uniformly 
distributed over the length of the string—yielding a string of uniform 
mass density 1.5 ρ. Numerical data are then obtained for Table 2.1 by 
replacing ρ by 1.5ρ, which results in the values of column 2 being 
divided by 1 5.  to yield column 3. It is seen that the representation 
provides a reasonable approximation for the first frequency (6.3 
percent error), but a poor one for the others. Usually, “smearing out” 
a concentrated mass uniformly will result in fundamental frequencies 
higher than the exact values. However, this might not be the case if 
the particle were located close to a wall.

Let us now determine the mode shapes for the first two 
frequencies when M* = 0.5. Substituting the values β = 2.4137 and 

Table 2.1 Frequency Parameters β ω ρ=  /T  for a String Having a Particle 
Attached at Its One-Quarter Length.

Exact solutions “Smeared out” 
mass (M* = 0.5)M* = 0.5 M* = 0

2.4137 3.1416 2.5651

4.8033 6.2832 5.1302

8.6413 9.4248 7.6953

12.566 12.566 10.260

13.336 15.708 12.854

16.922 18.850 15.391
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4.8033 from Table 2.1 into (2.66) yields A2/A1 = 0.584 and −2.097, 
respectively. Setting A1 = 1 and plotting (2.67) yield the first  
two mode shapes, depicted in Fig. 2.14. In these sketches the 
eigenfunctions are also plotted as dashed lines beyond their limits  
of application to show their shapes more clearly.

2.8 Damped Free Vibrations
If a string is given an initial displacement and released from rest, the 
motion will not continue unabated, as assumed in Sec. 2.3, but in 
reality will diminish as time increases due to the inevitable presence 
of damping. Damping of various types can exist, independently or 
concurrently. Viscous damping occurs if the string vibrates in a 
viscous fluid, and the damping force can then be assumed 
proportional to the velocity. Aerodynamic damping may also occur, 
and then the damping force is taken to be proportional to the square 
of the velocity. Dry friction (or Coulomb) damping could exist if the 

M 

M 

X1 = sin (0.7683      ) 

X2 = 0.584 sin (0.7683 

X1 

) 

x1
ℓ

x2
ℓ

X1 = sin (1.5289         ) 

X2 

X1 

x1
ℓ

= –2.097 sin (1.5289 ) X2 
x2
ℓ

Figure 2.14 The mode shapes for the lowest two frequencies of a string with 
an attached mass M* = 0.5 at x = /4.
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string were supported by a horizontal plane having friction, while 
the string undergoes horizontal motion. Or these types of damping 
could also enter through the boundary conditions. Another 
important type is inherent material damping (also called “hysteretic” 
or “structural” damping). The present section will concern itself 
only with viscous damping, so as to provide an introduction to the 
topic of damped free vibrations. 

We begin by returning to the equation of motion. For the case of 
viscous damping, the externally applied force per unit length (p) in 
(2.1) is taken to be –c(∂w/∂t), where c is a constant which establishes 
the magnitude of the damping force. The negative sign is required 
because p was assumed to be in the positive direction of w (Fig. 2.2), 
whereas the damping force must be in opposition to a positive 
velocity. Making this substitution in (2.7) result to
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w
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w
t
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w
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=
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+
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2

2

2

2ρ
 

(2.68)

for the equation of motion for free, damped vibrations of a string.
In addition to the viscous shearing force, it should be noted that 

the inertia of the surrounding medium may also be transmitted to 
the string by normal force. This is usually accommodated in (2.68) by 
replacing ρ by a larger “effective mass” coefficient. We will not 
consider this complication here.

One could solve (2.68) by separation of variables, but let us simply 
assume that the string can vibrate in the same shape as it would 
without damping. That is, if the string has both ends fixed,

 w x t t x mm m m( , ) ( )sin ( , , )= =Φ α 1 2 …  (2.69)

for the mth mode, where αm= mπ/ℓ as before. This clearly satisfies the 
boundary conditions at both ends of the string. Substituting (2.69) 
into (2.68) gives

 ( )sinρφ φ α φ α′′ + ′ + =m m m m mc T x2 0  (2.70)

For this to be satisfied for all x, then

 ρφ φ α φ′′ + ′ + =m m m mc T 2 0  (2.71)

which is the classical equation of motion for the free, damped 
vibration of a single d.o.f. system. In this case, the d.o.f. is modal, 
rather than the displacement of a single point.
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The solution of (2.71) is obtained by direct analogy with the 
equation for the single d.o.f. system, as given in Appendix A, replac-
ing m by ρ, k by T mα

2 , and retaining c (although it has different 
dimensions in the two problems).

Consequently, in the case of overdamped motion the mth mode 
responds as

 φ ζ ω ζ ω ζ ω
m

t
m

t
m

tt C Dm m m m m m( ) e ( e e )= +− − − −2 21 1
 (2.72)

where ωm is the undamped natural frequency, given by (2.21), ζm ≡ c/ccm 
is the damping ratio, and where

 
c T

m
T mccm m c= = =2 22

1α ρ
π

ρ
  

(2.73)

is the critical damping coefficient for the mth mode. Thus, as for the 
single d.o.f. system, overdamped motion requires that ζm > 1. Since 
ccm is different for each mode, then so is ζm. And because ccm increases 
with m—indeed, (2.73) shows that ccm is an integer multiple of its 
value for the first mode—then the possibility exists for a string to 
have its lower modes overdamped (ζm > 1) while its higher modes are 
underdamped (ζm < 1). Indeed, from (2.73), ζm = c/mcc1 = ζ1/m. Thus, 
for an initial displacement shape which is arbitrary, all modes will be 
present, some being overdamped, other underdamped. However, if 
the first mode is underdamped, then (2.73) tells us that all modes are 
underdamped.

In the case of underdamped motion, the solution of (2.71) is

 φ ζ ω ζ ωζ ω
m

t
m m m m m mt C t D tm m( ) e ( sin cos )= − + −− 1 12 2

 (2.74)

with ωm, ζm, and ccm again defined as above.
The two types of motion described by (2.72) and (2.74) are both 

exponentially decaying in amplitude: the first one being nonos-
cillatory (and in no sense a vibration) and the second one being 
oscillatory. In the second case, the “damped natural frequency” of 
the oscillatory motion is 1 2−ζ ωm m , which clearly decreases as the 
damping coefficient (c) increases. In both cases, the coefficients Cm 
and Dm are determined by the initial conditions.

For arbitrary initial conditions, more than a single mode will be 
involved. Then,

 
w x t t x
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where φm is given either by (2.72) or (2.74). For example, if the string m 
is released from rest such that w(x,0) = f(x), and if the modes are all 
underdamped, then at t = 0, (2.74) and (2.75) yield

 m
m mD x f x

=

∞

∑ =
1

sin ( )α
 

(2.76)

Thus, the Dm are obtained by (2.29). Then, applying ∂ω/∂t(x,0) = 0 
yields 
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(2.77)

and the motion is completely determined.
 Finally, let us consider in more detail the rate of decay of the 

motion, which is governed by the exponential coefficient ζmωm in 
both (2.72) and (2.74). Using (2.21) and (2.73), rewriting this yields
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(2.78)

This shows us that not only ζmωm can be expressed in terms of 
the parameters cc1 and w1 of the first mode but, more importantly, 
that it is the same for all modes. Thus, the decay rates are the same 
for all modes of a simple string on which viscous damping is 
acting.

2.9  Forced Vibrations; Eigenfunction 
Superposition Method

Suppose now that a string is subjected to a transverse distributed 
force, p(x,t), which has the dimensions of force per unit length. 
Physically, one may regard this as being a pressure which excites 
motion, except that the pressure has been multiplied by a proper 
cross-sectional dimension of the string, so that p has the required 
units. In general, p may vary independently with both x and t. It is 
taken to be positive in the direction of positive z (or w), as shown in 
Fig. 2.15.

If a viscous damping force is present, then considering (2.7) and 
(2.68), the equation of motion for the system can be written as
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(2.79)
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The displacement response w(x,t) may be regarded as the sum of two 
parts. The first part is the complementary solution of (2.79), obtained 
from the equation itself by setting p(x,t) = 0. This solution has already 
been presented in Sec. 2.8. The second part is the particular solution 
of (2.79). In this section, we will concern ourselves only with the 
particular solution. In the case of periodic exciting force, the particular 
solution yields the steady-state response of the system, whereas the 
complementary solution yields the transient response. The latter 
decays with time and eventually vanishes, for all practical purposes, 
but the steady-state response continues for all time.

Let us assume once again that both ends of the string are fixed. 
One procedure to determine the steady-state solution of (2.79) is to 
assume that p may be expressed as

 
p x t p t

m x

m
m( , ) ( )sin=

=

∞

∑
1

π
  

(2.80)

That is, the pressure is assumed to be made up of components, 
that each component has the same shape as an eigenfunction of the 
free, undamped vibration problem, and that each have the possibility 
of independent variation over time. One may then further assume 
that displacement response can be expressed in terms of the responses 
of the individual eigenfunctions (or mode shapes), i.e.,

 
w x t t

m x

m
m( , ) ( )sin=

=

∞

∑
1

φ π
  

(2.81)

Substituting (2.80) and (2.81) into (2.79), and recognizing that the 
latter must be satisfied for all points along the string (i.e., arbitrary 
choice of x), the following ordinary differential equation results:

 ρφ φ α φ′′ + ′ + = = … ∞m m m m mc T p mt( ) , , ,( ) ( )2 1 2  (2.82)

Figure 2.15 A forcing function for a string.
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where αm = mπ/ℓ as before. Let us assume further that the exciting 
pressure varies sinusoidally with time. Then, (2.80) can be expressed as

 
p x t P x t t P x

m
m m( , ) ( )sin sin sin= =

=

∞

∑Ω Ω
1

α
 

(2.83)

where Ω is the forcing (or exciting) frequency, and Pm is the Fourier 
coefficient representing the amplitude of each component of exciting 
pressure. Following the same procedure which was used to obtain 
(2.29), the Pm are found from 

 
P P x x dxm m= ∫

2
0


( )sinα
 

(2.84)

Thus, for sinusoidal exciting pressure, (2.82) becomes

 ρφ φ α φ′′ + ′ + = = … ∞m m m m mc T P t m( ) sin ( , , , )2 1 2Ω  (2.85)

Equation (2.85) determines the response of each mode to the 
corresponding pressure component. It is of the same form as the 
equation of motion for a single d.o.f., discrete system (mass, dashpot, 
spring, and exciting force). However, in this case, it represents the 
response of a single modal d.o.f. of the system. Using the summary of 
results for a forced vibration of a single d.o.f. system in Appendix A, 
replacing m by ρ, k by T mα

2 , and F0 by Pm, the solution of (2.85) may be 
set down as 

 φm m mA t B t= −sin cosΩ Ω  (2.86)

where
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(2.87c)

In the above expressions, ( ) /δ αst m m mP T= 2 , which is the amplitude of 
the static displacement of the mth mode if the string were subjected 
to a static pressure Pm sin αmx, and ζm is the damping ratio used in  
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Sec. 2.8; i.e., ζm = c/ccm, c T mccm m c= =2 2
1α ρ . Equation (2.86) has a 

sin Ωt term, which represents the component of the motion in-phase 
with the exciting force, and a cos Ωt term, which represents the out-
of-phase component. The latter always lags the in-phase response; 
hence, the term is written in (2.86) with a minus sign preceding it, so 
that both Am and Bm are positive coefficients. 

Alternatively, the response may be expressed in terms of an 
amplitude (Cm) and a phase angle (φm):

 φ φm m mC t= −sin( )Ω  (2.88)

Because the in- and out-of-phase components may be regarded as 
orthogonal components of a rotating vector, it follows that Cm is the 
magnitude of the resultant vector, i.e., C A Bm m m= +2 2 . By simple 
manipulation, using a trigonometric identity, as is done in 
introductory vibration texts, it can be shown that
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In the case of no damping, Bm = 0 in (2.86), and φm = 0 in (2.88). 
Then, by (2.87a) or (2.89a) and (2.87c), the amplitude of the motion 
becomes
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(2.90)

It is worthwhile to take the time to review the plots of Cm/(δst)m 
and φm, which are the same as the curves of C/δst and φ for the 
discrete, single d.o.f. system shown in Appendix A. Most importantly, 
it is seen that as Ω → ωm, if no damping is present (ζm = 0), the 
amplitude of the mth mode becomes infinite, and that if damping is 
small, the amplitude becomes large.

If one were to excite a string with pressure p(x, t) = P(x) sin Ωt, 
where P(x) is some rather general function, beginning with Ω = 0 and 
slowly increasing Ω, (2.87c) together with (2.89a) show that at every 
natural frequency (ωm), the mth mode would be strongly excited if 
damping were small. This large amplitude response, which would 
occur at each natural frequency, is called a resonance. Thus, as in any 
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continuous system, an infinite number of resonances would exist. 
However, if some damping is present (as in the case of any real 
system), then, the amplitudes at the resonant frequencies will 
typically decrease as m is increased. To show this, let us rewrite 
(2.89a) in the case when the exciting frequency exactly equals one of 
the natural frequencies. Then ∆m = (2ζm)2, and
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(2.91)

Equation (2.91) shows that the amplitude of the mth mode varies 
inversely with m in an explicit manner. Moreover, the magnitudes of 
the Fourier coefficients (Pm) of the loading representation typically 
decrease as m increases, which also reduces Cm as m is increased. Pm 
need not decrease at the beginning of the series. For example, if a 
loading function P(x) should resemble the fifth mode, then P5 would 
be the largest magnitude; but thereafter, as m increases, Pm would 
decrease. 

It should also be said that, as for a discrete system, if absolutely 
no damping were present, and if the exciting frequency were exactly 
equal to one of the natural frequencies, the amplitude of the motion 
would not instantly become very large. Rather, it would take time 
for the amplitude to grow. As it is shown in the introductory 
vibration texts, (2.86) and (2.88) are not valid solutions of (2.85) 
when Ω is the same as a natural frequency, and no damping is 
present. Instead, if Ω = ωm with c = 0, then, the particular solution of 
(2.85) is

 
φ δm mt t t( ) ( ) cos= − 1

2 st Ω Ω
 

(2.92)

which may be regarded as a sinusoidal function, shifted π/2 in time, 
having an amplitude which increases linearly with time. That it 
should take time for the amplitude to grow to an unbounded value is 
physically clear, for as the amplitude of the motion increases, so does 
the energy (kinetic plus potential) of the system, and work must be 
done by the external pressure p(x, t) over a finite displacement, and 
consequently over a finite length of time, to cause the energy to 
increase.

Ultimately, one is usually interested in knowing the behavior of 
a particular point, say x = x0, on the string. Most importantly, one 
wishes to know the total amplitude of the displacement of the point. 
Equation (2.89a) supplies only the amplitude of a single mode. These 
amplitudes cannot be straightforwardly added to obtain the total 
amplitude if damping is present, because the phase angles φm are 
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different for each mode. Returning to (2.81) and (2.86), the total 
displacement of the point x = x0 is

 

w x t A t B t x

A x t
m

m m m

m m

( , ) ( sin cos )sin

sin sin

0
1

0

0

= −

= ( ) −
=

∞
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∑

Ω Ω

Ω

α

α ∑∑( )
= −

B x t

W t
m msin cos

sin( )

α 0 Ω

Ω Φ  (2.93)

where W and Φ are defined by

 
W A x B xm m m m= ( ) + ( )∑ ∑sin sinα α0

2
0

2

 
(2.94a)

 
φ

α
α

= − ∑
∑

tan
sin

sin
1 0

0

B x

A x
m m

m m  
(2.94b)

the summations, of course, extending for all m. Thus, the total 
amplitude W may be regarded as the vector sum of the amplitudes 
of the separate displacement components at point x = x0. Equation 
(2.94a) shows that the in-phase components Am sinαmx0 are added 
up separately, and so are the out-of-phase components Bm sinαmx0 
and the total resultant amplitude is found by the same procedure 
used to obtain the magnitude of any vector. Equation (2.94b) 
suggests that the phase angle of the motion varies along the string, 
that is, φ = φ(x).

To generalize the analysis, let us now consider the response of a 
string subjected to an exciting pressure which is periodic in time, as 
depicted by the representative function of Fig. 2.16. Then Pm(t) in 
(2.80) and (2.82) is such a periodic function, having a period, τ. 
Further, expand Pm(t) into its Fourier components in time, i.e.,

 
p a a n t b n ttm m

m
mn mn( ) ( cos sin )= + +

=

∞

∑0
1

Ω Ω
 

(2.95)

where Ω is the frequency of the periodic forcing function, Ω = 2π/τ. 
Then, by a procedure similar to that followed in Sec. 2.3, the Fourier 
coefficients are determined as

 
a p dttm m0 0

1= ∫τ
τ

( )
 

(2.96a)
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a p n t dttmn m= ∫

2
0τ
τ

( )cos Ω
 

(2.96b)

 
b p n t dttmn m= ∫

2
0τ
τ

( )sin Ω
 

(2.96c)

From (2.96a), it can be seen that am0 represents the average value 
of the forcing function over the period. This may be regarded as a 
constant, static pressure acting along the string, causing a static 
deflection, whereas the amn and bmn cause vibratory displacements 
about that static position. Solving (2.82), the static displacement (φm0) 
of the mth mode due to am0 is φ αm m ma T0 0

2= / . The dynamic 
displacement is obtained by substituting the time-varying terms of 
(2.95) on the R.H.S. of (2.82) and solving the ordinary differential 
equation for the response φm(t) of the mth mode. The behavior of the 
mth mode then is of the form 

 
φ φm m

n
mn mnA n t B n t= + +

=

∞

∑0
1

( sin cos )* *Ω Ω
 

(2.97)

where Amn
*  and Bmn

*  are constants.

Example 2.3 A stretched string of length ℓ with two fixed ends is subjected to 
a uniformly distributed, sinusoidal forcing pressure 

p(x, t) = q0 sinΩt

where q0 and Ω are constants, with transverse, viscous damping present. 
Investigate the steady-state, dynamic response of a point located at the middle 
of the string.

Figure 2.16 A representative periodic function.
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Solution
Locating the coordinate origin at the left end of the string, and expressing the 
transverse loading in terms of the eigenfunctions,
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The motion is expressed by (2.81), with terms defined by (2.86) and (2.87). To 
use these, we must evaluate:

( )
( )

( , , , )δ
α π π πst m
m

m

P
T

q
m T m

q
m T

m= = = = …2
0

2

2
0

2

3 3
4 4

1 3 5i
 

Thus, the static displacement (for Ω = 0) can be written as
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This may also be obtained from the static equilibrium equation, which is the 
specialized form of (2.79):

T
W
x

q
∂
∂

+ =
2

2 0 0

Solving it, and evaluating the two constants of integration from the boundary 
conditions,

W x
q
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and the nondimensional displacement may be written as
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From the above work, it can be seen that (δst)m/δ  =  32/m3π3, so that at the 
middle,
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with Am/(δst)m and Bm/(δst)m given by (2.87). For these expressions,

ζ
ρ πm
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c
c

c
T m

= = 



2



Ω Ω Ω
ω ω

ω
ω ωm m m

=






=
1

1

1

1

where ω π ρ1 = ( / ) / T .
Let us look first at the response of the individual modes in the case of no 

damping. From above, their nondimensional amplitudes are determined to 
be

W
m

A m
m m

m m

m
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δ δ
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π ω
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− ( )
−32

2
32 1

1 13 3 3 3

1 2
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where Wm is the amplitude of the mth mode displacement. A plot of Wm/δ as a 
function of the frequency ratio Ω/ω1 = 0 is shown in Fig. 2.17 for the first three 
modes excited (m = 1, 3, 5). For the first mode W1/δ = 1.032 at Ω/ω1 = 0. This 
component of the static deflection exceeds unity. But when other components 
are added (Wm/δ = –0.038, W5/δ = 0.008, etc), the total static deflection is unity. 
We now study the changes in the amplitudes of the modes (Wm) as the forcing 
frequency (Ω) is slowly increased, by observing how Wm/δ changes with  
Ω/ω1. For a given system (given ℓ, T, q0), δ and ω1 are constants. As Ω is increased 
from Ω = 0, the vibration amplitude of the first mode increases slowly at first, 
but soon it grows rapidly. At Ω/ω1 = 0.5, W1/δ = 1.33. But, by Ω/ω1 = 0.8, it is 
becoming large (W1/δ = 2.87), and it continues to increase at an increasing rate 
as Ω/ω1 → 1 (for example, at Ω/ω1 = 0.9, W1/δ = 5.43). As Ω/ω1 passes through 
unity, there is a phase reversal (φ1 changes from 0° to 180°), which causes the 
amplitude to change suddenly from ∞ to −∞. We shall see below that this is 
the behavior of the mathematical solution of this highly idealized problem 
(namely, absolutely no damping), and that this flip-flop cannot really occur 
in physical reality. For Ω/ω1 > 1, W1/δ decreases rapidly in magnitude at first, 
and has small values at the subsequent resonance intervals (W1/δ = –0.13 at  
Ω/ω1 = 3 and W1/δ = –0.04 at Ω/ω1 = 5).

For the second excited mode (W3/δ), the amplitude is quite small for all  
Ω/ω1 < 3, except for exciting frequencies close to resonance (W3/δ = –0.07 at  
Ω/ω1 = 2, W3/δ = –0.12 at Ω/ω1 = 2.5), where it increases extremely rapidly  
(W3/δ = –1.92 at Ω/ω1 = 2.97). At resonance (Ω/ω1 = 3), W3/δ flip-flops from  
−∞ to ∞, and decreases very rapidly thereafter. Thus, the second excited 
mode (m = 3) has a much sharper resonance behavior than the first mode. 
For the third excited mode (m = 5), the aforementioned characteristics become  
still more exaggerated. That is, the initial increase of the curve is still slower 
(W5/δ = 0.009 at Ω/ω1 = 1, W5/δ = 0.013 at Ω/ω1 = 3), and no attempt is made to 
show these small values in Fig. 2.17 until resonance is approached. There, the 
amplitude climbs extremely rapidly (W5/δ = 0.42 at Ω/ω1 = 4.95 and W5/δ = 2.07 
at Ω/ω1 = 4.99), before another flip-flop occurs.

Now, let us consider the total response of the system—that is, the superposition 
of the modal responses—and include the effects of damping. This is obtained 
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by (2.94a) and is plotted in Fig. 2.18. There, nondimensional amplitude (W/δ) 
is plotted versus Ω/ω1 over a frequency range which includes the first three 
resonances. The six curves shown correspond to various nondimensional 
damping ratios c/cc1, where c Tc1 2= ( / )π ρ  [see (2.73)] is the critical damping 
coefficient of the first mode. Thus, for a given system having prescribed ℓ, T, 
and ρ, c/cc1 is a measure of the amount of damping present. For no damping  
(c/cc1 = 0), the curve shown is a superposition of the curves for the separate 
modes (Fig. 2.17) discussed above. It is shown with all positive values, instead 
of flip-flopping from +∞ to −∞ at Ω/ω1 = 1. To explain this, we could say that we 
are plotting the absolute value of W/δ. But a more simple explanation, which is 
also physically more appealing, is to say that the curve shown is actually for a 
very small amount of damping present (say, c/cc1 < 10−6). 

The curve for “small” damping (c/cc1 = 0.1) in Fig. 2.18 peaks at W/δ = 5.18 
for Ω/ω1 = 0.99. It should be mentioned here that while c/cc1 = 0.1 seems to be 
a small number, it represents a rather large amount of viscous damping in a 
physical system. Peaks occur again at W/δ = 0.59 for Ω/ω1 = 2.98, and W/δ = 
0.21 for Ω/ω1 = 5.01. Thus, with any damping present, the uniformly distributed 
exciting pressure causes a much larger response in the vicinity of the first 
natural frequency than it does for the subsequent ones. The positions of peak 
amplitude are shifted to the left of Ω/ω1 = 1 and Ω/ω1 = 3 with damping present, 
as occurs in a single d.o.f. system. (The vicinity of Ω/ω1 = 3 is seen better in the 
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Figure 2.17 A plot of Wm/δ as a function of the frequency ratio Ω/ωl = 0 for 
the first three modes excited in Example 2.3.
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magnified view of Fig. 2.19.) However, the peak amplitude in the vicinity of Ω/
ω1 = 5 is shifted to the right. Between 3.6 < Ω/ω1 < 4.5, the vibratory motion 
virtually ceases when small damping is present, as can be seen in Fig. 2.20. 
Remarkably, with no damping, the amplitude is exactly zero for Ω/ω1 = 4.

All the curves in Fig. 2.18 begin with W/δ = 1 for Ω/ω1 = 0. When damping 
increases, the peak amplitudes are reduced, with peak values being shifted 
further to the left or to the right of resonance values. For c/cc1 = 1 the peak has 
been shifted to the origin Ω/ω1 = 0, where it remains for larger c/cc1.

Figure 2.21 is a plot showing how the phase angle φ, as determined by 
(2.94b), changes with the frequency ratio Ω/ω1 for a point taken at the center 
of the string. For 0 < Ω/ω1 < 1.5, φ is seen to vary in a manner quite similar 
to a one d.o.f. system; however, the curves have slightly different values  
of φ (approximately 90°) at Ω/ω1 = 1. In the range 2 < Ω/ω1 < 4, φ is seen  
to vary between 180° and 360° for small or moderate damping. If the plot  
were extended to larger Ω/ω1, one would find that the curves for the intervals 
1 < Ω/ω1 < 5, 5 < Ω/ω1 < 9, 9 < Ω/ω1 < 13, and so on, would look quite similar 
for each interval. That is, the plot of the phase angle is almost periodic, with 
a period of Ω/ω1 = 4. One also finds that for any fixed values of c/cc1 and  
Ω/ω1, the phase angle varies with x. That is, different points along the string 
have different phase angles.

2.10 Forced Vibrations; Closed Form Exact Solutions
Now let us consider another approach to the problem of forced 
vibration of a string. We will limit ourselves to forcing functions 
which are sinusoidal in time. 
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Figure 2.18 The total response of the system, including damping, of 
Example 2.3.
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Figure 2.19 Magnified vibratory amplitudes in the vicinity of Ω/ω1 = 3.
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Figure 2.20 Magnified vibratory amplitudes in the range 3.0 < Ω/ω1 < 5.0.
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Consider first the case of no damping, which simplifies matters 
considerably. The equation of motion (2.79) then becomes

 
T

w
x

P x t
w

t
∂
∂

+ = ∂
∂

2

2

2

2( ) sinΩ ρ
 

(2.98)

It would seem reasonable to assume that, if an elastic system were to 
be excited by a sinusoidal force, the response would also be sinusoidal 
in time and that, if no damping were present, the motion would be 
in-phase with the exciting force (or perhaps 180° out-of-phase, which 
is obtained by changing the sign of the response amplitude). 
Therefore, we can assume that

 w x t X x t( , ) ( ) sin= Ω  (2.99)

Substituting this into (2.98) yields

 TX X P x′′ + = −ρΩ2 ( )  (2.100)

which has the solution

 X x C x C x Xp( ) sin cos= + +1 2β β  (2.101)
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Figure 2.21 The phase angle ξ as a function of the frequency ratio Ω/ω1 for a 
point taken at the center of the string.
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where Xp is a suitable particular solution, and where
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ω
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(2.102)

In (2.102), ω1 is the first natural frequency of the string. But since 
ρω π1

2 2/ ( / )T = 

 
β

ω
=







π Ω

1  
(2.103)

Equation (2.101) is fascinating. One must first find a particular 
solution Xp for the loading condition at hand, and evaluate C1 and C2 
from the boundary conditions, before (2.101) is completely determined. 
But, after these are known, (2.101) allows one to calculate in closed 
form the displacement of a point x = x0 along the string, instead of 
having to sum an infinite series [i.e., (2.93) with Bm = 0]. Even more 
interestingly, the arguments of the trigonometric functions each 
change as Ω is varied. Thus, (2.101) is quite a simple expression to 
describe the amplitude and shape of the string as Ω is varied. 
Certainly, it is easier to evaluate at any point x = x0 than to follow the 
eigenfunction superposition method laid out in the preceding 
section.

Example 2.4 Use the closed-form solution method to evaluate the displacement 
at the middle of the string in Example 2.3 when no damping is present.

Solution
Setting P(x) equal to the constant q0 in (2.100), a particular solution is easily 
found, so that the complete solution for the displacement is given by
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where δ is the static displacement of the string at its middle, as determined in 
Example 2.3. Substituting these, the displacement at the middle of the string 
is given by

X


 
 

2
8

2 2
12

1
2



 = 



 − + −





δ
π

ω β β β β
Ω

(csc cot )sin cos

with β ℓ = π(Ω/ω1)  from (2.103). By means of trigonometric identities, this result 
may be simplified, and finally written in nondimensional form as

X /
sec

2 8
2

12
( ) = −



δ λ

λ

where  = βℓ = π(Ω/ω1). It is observed that lim {[ ( / )]/ }λ→ =0 2 2 1X  , as 
expected. 

When damping is present, solution (2.99) would not be expected to 
fit, for one would expect a phase angle between the applied force and 
the displacement response. An attempt to substitute (2.99) into (2.79), 
with p(x,t) = P(x) sin (Ωt), substantiates this. It is therefore necessary 
to generalize the assumed solution to

 w x t X t X tx x( , ) sin cos( ) ( )= −1 2Ω Ω  (2.104)

The minus sign is used in (2.104) because it is expected, from previous 
experience with forced vibration problems, that the motion will lag 
the excitation.

Substituting (2.104) into (2.79) yields

 

[ ( )]sin

[ ]cos

TX X c X P x t

TX X c X t

′′+ − +

− ′′ + + =
1

2
1 2

2
2

2 1 0

ρ

ρ

Ω Ω Ω

Ω Ω Ω  (2.105)

For (2.105) to be satisfied for all time (t), because of the orthogonality 
of sinΩt and cosΩt, the bracketed coefficients of sin Ωt and cos Ωt in 
(2.105) must independently be zero. That is

 TX X c X P x′′+ − = −1
2

1 2ρΩ Ω ( )  

 TX X c X′′ + + =2
2

2 1 0ρΩ Ω  (2.106)

Equations (2.106) are a fourth-order system of ordinary differential 
equations having constant coefficients, which are coupled together 
through the damping terms. Before solving them, let us put them 
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into nondimensional form. First, define ξ = x/ℓ, where ℓ is the length 
of the string. Then, ′′ = ′′X x X( ) ( )/ξ 2, and (2.106) becomes
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(2.107b)

Utilizing (2.102) and (2.103) 
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(2.108)

Further, utilizing the damping ratio ζm = c/ccm and (2.73), 
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where ζ1 = c/cc1. Finally, define P T Q( ) / ( )ξ ξi 2 = . Then, (2.107) may be 
rewritten in nondimensional form as

 ′′+ − = −X X X Q1
2

1 1 22λ λ( ) ( )π ζ ξ  (2.110a)

 ′′ + − =X X X2
2

2 1 12 0λ πλζ( )  (2.110b)

Solving (2.110b) for X1 and substituting into (2.110a) gives

 X X QX2
2 4 2 2

1
2

2 122 4 2IV + + + =′′λ λ π λ ζ πλζ( )  (2.111)

The solution to (2.111) consists of the sum of complementary (X2c) and 
particular (X2p ) solutions; that is

 X X Xc p2 2 2= +  (2.112)
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To determine the complementary solution, first rewrite the 
homogeneous equation as

 [ ( ])D D X c
4 2 2 4 4

22 0+ + + =λ λ γ  (2.113)
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then, (2.113) yields
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Then, 
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Therefore, the four roots for p may be written as
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where 
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Since, by (2.116), R > 2 for nonzero damping, constants a and b 
defined by (2.117) must always be real numbers. The complementary 
solution to (2.111) is therefore

 

X C e C e C e C e

e
c

a ib a ib a ib a ib

a

2 1 2 3 4= ′ + ′ + ′ + ′

=

+ − − + − −( ) ( ) ( ) ( )ξ ξ ξ ξ

ξ(( ) ( )sin cos sin cos

sinh si

* * * *C b C b e C b C b

C a

a
1 2 3 4

1

ξ ξ ξ ξ
ξ

ξ+ + +
=

−

i nn cosh sin

sinh cos cosh cos

b C a b

C a b C a b

ξ ξ ξ
ξ ξ ξ ξ

+
+ +

2

3 4

i

i i  (2.118)

where C ′1,. . ., C ′4, C*1,. . ., C*4, and C1,. . ., C4 are each sets of four constants 
of integration. Of the three solution forms shown in (2.118), the last 
one is ordinarily the most useful. To verify that it is, indeed, a 
complementary solution to (2.111), one may substitute it back into 
(2.113), using (2.117) for a and b, and (2.116) for R, as needed. A 
particular solution to (2.111) depends on Q = Q(ξ), and may be found 
straightforwardly.

Substituting (2.112) and (2.118) back into (2.110b) permits direct 
determination of X1. It is found to be

 

X C a b C a b

C a b C a C
1 4 3

2 1

= +
− −

sinh sin cosh sin

sinh cos cosh

ξ ξ ξ ξ
ξ ξ ξ
i i

i i 22 1cosb X pξ +
 (2.119)

where X1p arises from the substitution of X2p into (2.110b), and C1, . . . ,C4 
are the same constants of integration as in (2.118).

To evaluate C1, . . ., C4, one must apply the boundary conditions. 
For example, suppose both ends of the string (ξ = 0, 1) are fixed. Then 
the boundary conditions are:

 w t X X( , ) , ( )( )0 0 0 0 001 2= ⇒ = =and  

 w t X X( , ) , ( )( )1 0 0 1 011 2= ⇒ = =and  (2.120)
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This yields four simultaneous equations to determine the four 
unknowns C1, . . . ,C4. If the loading function P(ξ) and boundary 
conditions are both symmetric with respect to the middle of the 
string, then only the even functions of (2.118) and (2.112) need be 
retained (i.e., C2 = C3 = 0), and C1 and C4 are determined from only two 
simultaneous equations. These arise from the boundary conditions:

 
w t X X±



 = → = =











1
2

0
1
2

0
1
2

01 2, ,
 

(2.121)

The determination and evaluation of closed-form, exact solutions 
for the forced response of a string with viscous damping present will 
ordinarily be an easier procedure to follow than that using 
eigenfunction superposition (Sec. 2.9).

Example 2.5 Generalize the solution of Example 2.4 to include the effects of 
viscous damping.

Solution
Setting P(ξ) equal to the constant q0 in (2.107), Q in (2.110a) and (2.111) is 
given by

Q
q

T
Q= ≡0

2

0


A particular solution to (2.111) is

X
Q Q

p2
1 0

2 2 2
1
2

2
0

4 4
2

4
=

+
=

+
πλζ

λ π λ ζ
γ

λ γ

From (2.110b), X1p is found to be

X
Q
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2
0

4 4= −
+

λ
λ γ

which is inserted in (2.119). The boundary conditions (2.121) will then yield
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Inverting to solve for C1 and C4,
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where ∆ is the determinant of the coefficient matrix, given by

∆ = +sinh sin cosh cos2 2 2 2

2 2 2 2
a b a b
i i

The displacement of an arbitrary point is therefore given by

w t X t X t( , ) sin cos( ) ( )ξ ξ ξ= −1 2Ω Ω

where 

X C a b C a C b Q1 4 1 2

2

4 4 0( ) sinh sin cosh cosξ ξ ξ ξ ξ γ
λ γ

= − −
+

i i

X C a b C a C b Q2 1 4 2

2

4 4 0( ) sinh sin cosh cosξ ξ ξ ξ ξ γ
λ γ

= + +
+

i i

and , γ, R, and a and b are determined from (2.108), (2.114), (2.116), and (2.117), 
respectively. The displacement may also be normalized with respect to the 
static displacement at the center of the string (δ) by dividing through X1 and 
X2 by

δ = =1
8

1
8

0
2

0
q

T
Q



The displacement at any value of ξ may also be expressed as 

w t X X t( , ) sin( )ξ φ= + −1
2

2
2 Ω

where the phase angle φ by which the motion lags the exciting force is

φ ξ( ) tan= −1 2

1

X
X

2.11 Energy Functionals for a String
A string undergoing free, undamped vibrations will at a typical 
instant of time possess both potential and kinetic energy. Its potential 
energy will be greatest when it is in its maximum displacement state, 
measured from the equilibrium position. Its kinetic energy will be 
greatest as it passes through the equilibrium position with its 
maximum velocity. As in any system undergoing free, undamped 
vibrations, potential energy decreases as kinetic energy increases, 
and vice versa, the sum of the two quantities being constant at all 
times. 
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As we shall see in the next two sections, useful methods exist for 
analyzing the free vibrations of a string which utilize the potential 
and kinetic energies, rather than its differential equation of motion. 
Let us therefore formulate expressions for these quantities.

Consider an infinitesimal element of string which has the length 
dx in its straight, equilibrium position. As before, it has an initial 
tensile force (T) in it, which is sufficiently large to be considered 
constant during subsequent transverse displacements. Returning to 
Fig. 2.2, which shows the element in a typical, displaced position, we 
see that it has stretched to the length ds, with dx = ds cos θ, where tan θ 
is the slope of the string at the instant. The increase in potential energy 
of the string is measured by the increase in its internal strain energy. 
For the element, this is the product of the internal force (T), which 
remains unchanged during deformation (in contrast with other 
physical systems, where it begins at zero and increases) and the 
elongation of the element. Thus, the change in potential energy of the 
element is 

 d PE T ds dx T ds ds( ) ( ) ( cos )= − = − θ  (2.122)

But 

 
cos( )

! !
θ θ θ= − + −1

2 4

2 4


 

(2.123)

Therefore, for small θ

 
d PE

T
ds T

w
dx

dx( ) = = ∂





θ2 2

2
1
2  

(2.124)

and the potential energy (PE) of the entire string is

 
PE T

w
x

dx= ∂
∂





∫

1
2

2

0



 
(2.125)

T is left inside the integrand for generality, for in certain types of 
problems (e.g., a string hanging freely by its weight, undergoing 
transverse oscillations), T may be a function of x, even though it does 
not depend on w or t. 

The kinetic energy (KE) of the element shown in Fig. 2.2 at any 
instant is

 
d KE ds

w
t

( ) = ( ) ∂
∂







1
2

2

ρ
 

(2.126)

where again ρ is mass per unit length.
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The kinetic energy of the entire string is then

 
KE

w
t

xd= ∂
∂





∫

1
2

2

0
ρ


 
(2.127)

where ρ is left inside the integrand to provide for strings that have 
variable density, ρ = ρ(x).

The quantities PE and KE given by (2.125) and (2.127), respectively, 
are functions of the displacement (w). However, w is in turn a function 
of both x and t. Therefore, these “functions of functions” are termed 
“functionals.”

2.12 Rayleigh Method
If a string is vibrating with a frequency ω in one of its mode shapes 
of free, undamped vibration, the maximum potential energy (PEmax) 
occurs when the displacements of all points along the string are 
maximum, and their velocities are zero. Thus, PEmax occurs when 
KE = 0. Conversely, the maximum kinetic energy (KEmax) occurs when 
the velocities of all points are maximum, which occurs while the 
string passes through the equilibrium position (i.e., w = 0). Thus, 
KEmax exists when PE = 0. Because the total energy of the system must 
be conserved (i.e., PE + KE = constant), then

 PE KEmax max=  (2.128)

Regardless of the initial conditions, it is always possible to begin the 
time coordinate for the problem so that the displacement in the 
vibrating mode may be expressed as

 w x t X x t( , ) ( )sin= ω  (2.129)

so that the more general form, sin(ωt + φ) is not needed. Then, 
substituting (2.129) into (2.125), PEmax is observed to occur where  
sin2 ωt = 1, whence

 
PE T X dxmax = ′( )∫

1
2

2

0



 
(2.130)

Substituting (2.129) into (2.127), KEmax is observed to occur where  
cos2 ωt = 1, whence

 KE KEmax max= ω2 *

 (2.131)
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where 

 
KE X dxmax

* = ∫
1
2

2
0

ρ


 
(2.132)

Substituting (2.131) into (2.128) yields the frequency formula

 
ω2 = PE

KE
max

max
*

 
(2.133)

If one takes X(x) = sin mπx/ℓ, which is the exact shape of the mth 
mode of a uniform string fixed at both ends as described by (2.24), 
and substitutes this into (2.133), using (2.130) and (2.132), the exact 
value of the mth frequency is found, which was given in (2.21).

In his classic book Theory of Sound (Sections 88 and 89), first 
published in 1877, Lord Rayleigh [1] made an important, practical 
extension of the use of (2.133) when the exact mode shape is not 
known. For this reason, the R.H.S. of (2.133) for vibrating systems, in 
general, is called “Rayleigh’s Quotient.” Rayleigh’s extension is to 
assume a mode shape, if it is not known exactly, and use (2.133), 
together with (2.130) and (2.132) in the case of a string, to determine 
an approximate value of the frequency. The displacement function 
selected should clearly satisfy the geometric boundary conditions 
present (i.e., zero displacement for the string); that is, it must be an 
admissible function. If the function chosen approximates closely the 
exact eigenfunction, then, the frequency determined by (2.133) will 
closely approximate the exact frequency. Finally, because the 
approximating function does not give the string the freedom it needs 
to vibrate in the shape it desires, constraint is added to the system. 
The effect of adding constraint to a vibrating system is to increase the 
frequencies of the modes constrained. This is called “Rayleigh’s 
Principle.” Thus, if (2.133) gives an approximate frequency, it will be 
an upper bound to the true fundamental frequency. If several 
different approximate, admissible functions are chosen for X(x) and 
used in (2.133), they will all yield upper bounds to the exact ω, and 
the lowest will be the most accurate (the least upper bound). The 
Rayleigh method has been used by many in the published literature. 
Most notable is the short monograph by Temple and Bickley [2].

Example 2.6 Let the fundamental mode shape of a vibrating string be 
approximated by a simple polynomial, and use Rayleigh’s method to obtain 
an approximate frequency.

Solution
With the coordinates shown in Fig. 2.1, the most simple polynomial which 
satisfies the boundary conditions is

X x x x x x( ) ( )( ) ( )= − − = −0  
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From (2.130) and (2.132), we obtain

PE
T

KEmax max= = 3 5

6 60
, * ρ

whence (2.133) yields

ω
ρ

2
210= T


or 

ω ρ


T
= =10 3 1623.

Comparing this with the exact fundamental frequency of ω ρ π / .T = = 3 1416, 
obtained from (2.21), one finds the upper bound approximate frequency to be 
quite close—within 0.66 percent of the exact value. 

A slightly more complicated function could have been chosen as the cubic 
polynomial

X(x) = x2 (x – ℓ)

for this, too, is an admissible function. However, this yields 
ω ρ / .T = =14 3 7417 which is 19.1 percent too high. This large error is 
caused by the extremely poor representation of the first mode shape by 
the cubic polynomial. The cubic function forces zero slope (as well as zero 
displacement) at x = 0, and a skewed mode shape upon the string. In contrast, 
the previous second-degree function, which is a parabola symmetric about 
the midpoint of the string, fits the half-sine wave exact eigenfunction very 
closely (Fig. 2.22).

2.13 Ritz Method
Because Rayleigh’s Quotient (2.133) yields an upper bound on the 
exact frequency, one would like to choose admissible functions so as 
to minimize the value of ω2 determined by it. This may be done by 
trial and error, choosing various X(x), and comparing results. 

x = x (ℓ – x)

x 

x = x2 (ℓ – x)

ℓ

Figure 2.22 Possible polynomials for representing the first mode.
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However, it would be preferable to have a procedure which would 
straightforwardly improve on the previous value of ω2 and, even 
more importantly, would converge to the exact value if followed 
sufficiently long.

Such a method was presented by Ritz [3] in 1908, and was 
subsequently used by him on a much more complicated problem of 
plate vibrations. However, the method is applicable to any free 
vibration problem.

The Ritz method depends on choosing a set of admissible 
functions φi(x), each of which satisfies at least the geometric boundary 
conditions for the problem, and letting the desired mode shape be 
approximated by a sum of such functions; i.e.,

 
X x C x

i

I

i i( ) ( )=
=
∑

1

φ
 

(2.134)

where the Ci are arbitrary coefficients which will be determined from 
minimization of the frequency. Equation (2.134) may be substituted 
into (2.133). After the integrations required by (2.130) and (2.132) are 
made, ω2 is a function of the I coefficients Ci, which may be regarded 
as variables to be chosen so as to minimize ω2. The direct method of 
minimizing a function of several variables is to take partial derivatives 
of the function with respect to each of the variables, in turn, and to 
solve the resulting set of simultaneous equations for the values of the 
variables corresponding to the minimum.

Before carrying out the above procedure in detail for any specific 
problem, it is desirable to apply it first in general to (2.133) to obtain 
an algebraically more simple form of the simultaneous minimizing 
equations. The minimizing equations are

 

∂
∂

= = …( )
( , , , )
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0 1 2
C

i I
i  

(2.135)

Substituting (2.133) into (2.135),
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Substituting PE KEmax max= ω2 *  from (2.133), we obtain

 
KE

PE
C Ci i

max
max maxKE*

*∂
∂

− ∂
∂







=ω2 0
 

Because KEmax
*  is never zero except in a trivial solution, the foregoing 

may be divided through by it to yield the following more useful set 
of minimizing equations:

 

∂
∂

− = = …
C

PE KE i I
i
( ) ( , , , )*

max maxω2 0 1 2
 

(2.136)

This is a set of I simultaneous, linear, algebraic equations in the 
unknown Ci. However, the equations are homogeneous (zero right-
hand-sides). For a nontrivial solution, the determinant of the 
coefficient matrix is set equal to zero. The roots of the determinant 
are the I values of ω2. The lowest value of ω2 is an upper bound 
approximation to the fundamental frequency, and the higher values 
are also upper bound approximations (albeit, usually less accurate) 
to higher frequencies for the string. Substituting any value of ω2 so 
obtained back into the I simultaneous equations in Ci, and ignoring 
any one of the equations, the remaining set of I-1 simultaneous 
equations may be made nonhomogeneous by dividing through by 
one of the Ci, and they may be solved for the eigenvectors 
corresponding to the ω2 used. 

In the published technical literature, one sometimes finds the 
Ritz method called the “Rayleigh–Ritz method.” But, as we have seen 
above, the Rayleigh and Ritz methods are two different procedures. 
This is further clarified in [4].

Example 2.7 Determine the fundamental frequency of a uniform string of 
length ℓ hanging freely in a vertical position, loaded by its own weight.

Solution
Choose coordinates as shown in Fig. 2.23. The tension in any section of the 
string is then

T g x= −ρ ( )

where ρ is mass per unit length, and g is the gravitational acceleration constant. 
The differential equation of motion (2.6) is

∂
∂

− ∂
∂







= ∂
∂x

g x
w
x

w
t

ρ ρ( )
2

2

or

g x
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w
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− ∂
∂

= ∂
∂

2

2

2
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This variable coefficient differential equation may be solved by the method 
of Frobenius, or it may be transformed into a form of Bessel’s equation, but 
let us get relatively simple, straightforward solutions by Rayleigh and Ritz 
methods.

One simple admissible function is the straight line, depicted in Fig. 2.23(a):

X(x) = x

Substituting this into (2.130) and (2.132) yields PE gmax = ρ 2 4/  and 
KEmax

* /= ρ3 6, whence (2.133) gives ω = =3 2 1 225g g/ . /  . This result may 
be compared with that for the classical, single d.o.f. pendulum, where all mass 
is concentrated at the free end, and is connected to a hinge at the fixed end by 
means of a rigid, massless rod. This highly idealized configuration has the well-
known frequency, ω = g/ . Another well-known result is the frequency of a  
rigid bar pendulum having uniformly distributed mass, ω = 3 2g/  . This 
frequency is exactly the same as that found above for the string having a straight 
line mode shape, for it is exactly the same problem—uniformly distributed 
mass and weight, and all points constrained to move in a straight line. Since 
it seems unlikely that a perfectly flexible string should behave the same as a 
rigid bar, the result of introducing curvature into the problem [Fig. 2.23(b) and 
(c)] should be investigated. 

Consider next the positive curvature shown in Fig. 2.23(b). This would seem 
to be a reasonable mode shape, because the fundamental mode shape of a 
double pendulum is similar. This mode shape could be represented by the 
simple parabola

X(x) = x2

Substituting this function into (2.130)–(2.132) gives ω = =5 3g g/ /. 1 291 . 
Because both approximate solutions are upper bounds on the exact frequency, 
the parabolic shape is clearly a worse approximation than the straight-line 
shape. This could mean either that the curvature should be opposite as in 
Fig. 2.23(c), or that the parabolic function is locally inaccurate for the string 
(i.e., the curvature should be positive, but different).

The parabolic function of the shape shown in Fig. 2.23(c) is

X x x x( ) = −2 2

Using this with the Rayleigh method gives ω = 1 369. /g , which is the worst 
result thus far!

(a)

z,w

x
(b) (c) (d)

ℓ

Figure 2.23 Possible admissible functions for hanging string vibrations.
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From the above information, it would seem that a two-function approxi-
mation consisting of a linear function, plus a second-degree correction 
function, could be used with the Ritz method to improve on the linear function 
approximation. That is, choose

X x C x C x( ) = +1 2
2

Adding the x2 term cannot yield a result worse than that from the linear 
function alone, for the Ritz method could yield C2 = 0 if the x2 term gave no 
improvement. Substituting this two term polynomial into (2.130), (2.132), and 
(2.136) yields two simultaneous equations, which may be written in matrix 
form as

g g

g g

C

C

 

 


− −

− −




























2
3

2
3

1
2

2
3

1
2

2
3

2
5

2 2

2 2

1

2

ω ω

ω ω







=



















0

0

It should be mentioned that the derivatives of (2.136) should be taken before 
the integrations are carried out. This reduces the labor significantly. The 
coefficient matrix given above has the typical characteristics of one generated 
by the Ritz method; that is,

1. It is fully populated (no zero elements).
2. It has ω 2 in each element.
3. It is symmetric.

Setting its determinant equal to zero, and expanding it, yields the following 
frequency equation:

3 32 40 02λ λ− + =

where  = ω2ℓ /γ is the square of the nondimensional frequency. The roots of 
the frequency equation are

λ λ1 2
16 2 34

3
1 4460

16 2 34
3

9 2206= − = = + =. , .

The corresponding frequencies are

ω ω1 21 2025 3 0365= =. / , . /g g 

Exact values of the first two frequency parameters are obtained from a 
solution involving Bessel functions ([5], p. 107). They are (to five significant 
figures):

ω ω1 21 2024 2 7600= =. / , . /g g 

Thus, one sees that the Ritz approximation to the first frequency is extremely 
close (0.008 percent error), whereas the second frequency is much worse 
(10 percent error). This is also typical of the Ritz method. That is, both 
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frequencies obtained by the Ritz method are upper bounds on the first two 
frequencies; however, the lowest one is usually a closer upper bound.

The eigenvectors for the two modes are found by returning to the matrix 
equation in C1 and C2, and substituting the eigenvalues () into either one of 
them. This yields the eigenvectors

C
C

C
C

2

1 1

2

1 2

0 638 1 305





=






= −.
,

.
 

Consequently, the first two approximate mode shapes are

X X1
2

2
20 638 1 305( ) , ( ). .ξ ξξ ξ ξ ξ= + = −

where ξ = x / ℓ. It is clear that both terms of the originally assumed displacement 
contribute significantly to each mode shape, although the linear term is most 
important for the first mode and the second degree term is most important for 
the second mode. Thus, the fundamental mode shape resembles Fig. 2.23(b), 
except that it has significant slope at its attachment point (∂y/∂x ≠ 0 at x = 0). 
The second mode shape is depicted in Fig. 2.23(d).

Fundamental frequencies obtained by the various approximate displacement 
functions are summarized in Table 2.2.

2.14 Large Amplitude Vibrations
In deriving the equation of motion (2.8) for the free vibrations of a 
string, two assumptions were made in order that it resulted in being 
linear: 

 1. The tension (T) in the static equilibrium position is large and 
the transverse displacement is small so that the tension may 
be treated as a constant during the motion.

 2. The slope of the string is everywhere small during the 
motion, so that sin tan /θ θ≈ = ∂ ∂w x  and cos θ ≈ 1, where θ is 
the angle the string makes with the straight line equilibrium 
position, as shown in Fig. 2.2.

Of these two assumptions, the first is the most important, for as the 
tension in the string increases from its equilibrium value during 
finite amplitude, transverse displacement, the frequencies are 
increased. In the extreme case of a string which is slack (no tension 

Table 2.2 Values of ω g/ for the Fundamental Frequency of a Freely 
Hanging String, by Various Methods

Exact

Rayleigh method Ritz 
method

Simple 
pendulumX = x X = x2 X = 2ℓx – x2

1.2024 1.2247 1.2910 1.3693 1.2025 1.0000
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when in equilibrium), the linear theory gives zero frequencies, which 
is clearly wrong.

A generalization of the equation of motion to account for changing 
tension was presented by Kirchhoff [6] more than a century ago. It 
can be written as

 
T

EA w
x

dx
w

x
w

t0

2

0

2

2

2

22
+

∂
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∂

=
∂
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(2.137)

where T0 now represents the tensile force in the equilibrium position 
and the second term in the brackets is the tension increase due to 
transverse displacement averaged over the length of the string. It 
will be recalled from Sec. 2.11 that, for small slopes, the change in 
length of an infinitesimal portion due to w is

 
ds dx

w
x

dx− =
∂
∂









1
2

2

 
(2.138)

 
Therefore, the average strain in the string is

 
e = ∂

∂




∫

1
2

2

0L
w
x

dx


 
(2.139)

Assuming that the string stretches linearly in accordance with 
Hooke’s Law, then the average value of tension increase is

 T EA1 = e  (2.140)

where E is Young’s modulus and A is the cross-sectional area of the 
string (assumed to be constant in this analysis). Thus, T1 is the 
second term in the brackets of (2.137). The mass density per unit 
length is ρ, as before, also assumed to be constant with respect to 
time.

The integro-differential equation (2.137) is nonlinear, and appears 
formidable in comparison with (2.8). However, a variables separable 
form of solution is possible, and it is exact. Assume that

 
w x t t

m x
( , ) ( ) sin=φ

π
  

(2.141)

That is, it is assumed that the mode shapes are the same as those of 
the linear analysis. Clearly, the boundary conditions w(0,t) = w(ℓ,t) = 0 
are thereby satisfied.
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Substituting (2.141) into (2.137) yields
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(2.142)

This nonlinear, ordinary differential equation in φ is the well-known 
Duffing equation of motion for a single d.o.f. system having a “hard” 
spring. It has an exact solution in terms of elliptic integrals (cf. [7], pp. 
312–316). The motion is periodic in time, although not simple 
harmonic (which the linear solution is, for single mode excitation). It 
should be noted that, while the linear analysis permits superposition 
of responses of the individual modes to permit dealing with arbitrary 
initial conditions, the nonlinear analysis does not, for (2.137) would 
not be satisfied by the superimposed solution.

If slopes become significant (in comparison with unity), then, the 
more general equation of motion
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(2.143)

may be used, obtained by summing forces in the transverse direction 
as in Sec. 2.1. For large slopes, longitudinal motion (in the x-direction 
in Fig. 2.1) also becomes significant, and enters the problem through 
the equation of motion
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(2.144)

where u is the longitudinal component of displacement. Assuming a 
linearly elastic material, it may be shown that T is a function of both 
w and u, given by [8]
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(2.145)

where e0 = T0/EA is the equilibrium strain. Substituting (2.145) into 
(2.143) and (2.144) results in a set of highly nonlinear, coupled 
equations in w and u. An exact solution of these equations is 
intractable; however, accurate approximate solutions were obtained 
[8] by means of a form of the Galerkin method using incremental 
time steps, and also by finite differences. It is found that, if the string 
is displaced into a single half-sine wave mode shape initially and 
released from rest, the resulting motion is not periodic, although for 
moderate amplitudes (δ/ℓ = 0.1, where δ is the displacement ampli-
tude), it is nearly so.
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Table 2.3 presents the ratio of the fundamental frequency obtained 
from the two types of nonlinear solutions discussed above to that 
from linear analysis for a variety of nondimensional amplitudes  
(δ/ℓ = 0.01, 0.05, 0.1, 0.2, 0.4) and of equilibrium strains (e0 = 10−1, 10−2, 
10−3, 10−4, 10−5). From these results, it is clear that the linear solution is 
reasonably accurate only under very restricted conditions. For 
example, for a moderate equilibrium strain (e0 = 10−3) and a very 
small transverse displacement (δ/ℓ = 0.01), the linear frequency is too 
small by 8.9 percent. If e0 is reduced to 10−4, the frequency of the 
nonlinear model becomes 67 percent higher than that of the linear 
analysis. If instead the initial displacement becomes visually obvious 
(δ/ℓ = 0.1), then, the frequency is seen to be 4.298 times as great as the 
linear one. It is also clear that for a string which is nearly slack in its 
equilibrium position (e0 < 10−4), the linear theory gives extremely 
inaccurate results.

For metallic strings (i.e., wires), one can tolerate only small 
equilibrium strains (e0 < 10−3) so that the yield stress of the material 
is not exceeded; otherwise, the linear stress–strain assumption of the 
theory is not valid. Thus, for example, a steel wire undergoing e0 = 
10−3, having a Young’s modulus E = 30 × 106 psi, has a tensile stress of 
300,000 psi if the linear relationship holds, which is in the vicinity of 
the yield stress for high-strength, small-diameter wire which can be 
found in a piano. Transverse displacement in the shape of a half-sine 
wave causes an additional average strain of

 
e1

2 2

4
= 





π δ
L  

(2.146)

Thus, a very small displacement of δ1/L  = 0.01 would result in an 
additional average strain of 0.25 × 10−3, which would cause the yield 
stress (and perhaps the rupture stress) of the wire having e0 = 10−3 to 
be exceeded. Similarly, if δ/ℓ = 0.10, (2.146) yields e1 = 2.5 × 10−3, which 
would cause failure, no matter how small e0 is.

However, for some nonmetallic strings, the full ranges of δ/ℓ and 
e0 used in Table 2.3 may be practical. 

Note that the frequencies listed in Table 2.3 determined from 
Kirchhoff’s relatively simple equation (2.137) agree remarkably well 
with those from the coupled, large-slope analysis for most of the 
ranges of δ/ℓ and e0. Significant disagreement occurs, as expected, for 
δ/ℓ = 0.40, because of the large slopes involved.

2.15 Some Concluding Remarks
Although many aspects of the vibrating string were considered in 
this chapter, a few were not taken up which have received some 
attention in the published literature.
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Variable coefficient, linear differential equations arise in the 
case of a string hanging by its own weight, T = T(x), or having 
variable density, ρ = ρ(x). It is recommended that such problems be 
dealt with by the Rayleigh and Ritz methods as discussed in Secs. 
2.12 and 2.13. In some cases, these differential equations may be 
solved in terms of Bessel functions, if the proper transformation can 
be found, but in general, they cannot be. If T(x) or ρ(x) can be 
expressed as Cxn, where C is a constant and n is an integer, then an 

δ/L e0

Coupled, large-slope 
equations

Kirchhoff equation 
(2.137)

0.01 10−1

10−2

10−3

10−4

10−5

1.050
1.014
1.089
1.673
4.324

1.001
1.009
1.088
1.673
4.331

0.05 10−1

10−2

10−3

10−4

10−5

1.073
1.213
2.335
6.718

21.02

1.023
1.207
2.338
6.732

21.07

0.10 10−1

10−2

10−3

10−4

10−5

1.142
1.674
4.298

13.23
41.73

1.148
1.673
4.331

13.35
42.10

0.20 10−1

10−2

10−3

10−4

10−5

1.366
2.785
8.208

25.76
81.40

1.314
2.850
8.479

26.64
84.17

0.40 10−1

10−2

10−3

10−4

10−5

1.896
4.844

14.87
46.76
*

1.966
5.420

16.86
53.24

168.3

*Results not available due to numerical instability.

Table 2.3 Ratio (ω /ωL) of Nonlinear to Linear Fundamental Frequencies
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exact solution of the governing differential equation is possible in 
terms of infinite power series of x (the Frobenius method). Bessel’s 
solution is one example of this.
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Problems
1 A string of length ℓ has both ends fixed. At time t = 0, its initial shape is 
described by

 
w x

x x
x

( , )
sin( / ) /

/
0

2 0 2

0 2
=

≤ ≤
≤ ≤





π  
 

if

if
 

and is released from rest. Use the modal superposition method to determine 
its displacement at instant t = 1

8 0τ  where τ0 is the fundamental period of the 
string. Plot this function to show the shape of the string at this instant.

2 Solve Problem 1 utilizing the traveling wave method. Show the displaced 
shape at t/τ0 = 0, 1/16, 1/8, 1/4, 3/8, and 1/2.

3 Solve Example 2.1 by the traveling wave method. Show the displaced 
shape of at t/τ0 = 0, 0.1, 0.2, 0.3, 0.4, 0.5.

4 In the case when k* = 1, plot the mode shapes corresponding to the frequen
cies found on Fig. 2.11. Draw the four curves (for M* = 0, 0.2, 1, 5) for the first mode 
together on a single graph, and those for the second mode together on a second 
graph. From physical considerations, add the curves for M* = ∞, and verify them 
from the limiting cases of the frequency and mode shape equations.

5  A. Set up a frequency determinant for the example of the string having a 
particle attached at its onequarter point (Sec. 2.7). Use two displacement 
functions, w1 and w2 and measure x from the left boundary for both 
functions, so that w1 and w2 are valid for 0 < x < ℓ/4 and ℓ/4 < x < ℓ, 
respectively.
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B. Expand the determinant and, by means of trigonometric identities, 
try to reduce the resulting equation to the form of (2.63). If unsuccessful, 
verify that the determinant is probably correct by showing that β = 2.4136 
is a root of it when M* = 0.5, as it is for (2.63).

6 A composite string of total length ℓ consists of two segments aℓ and 
bℓ (Fig. 2.24), each having uniform, but different mass densities cρ and dρ, 
respectively, as shown below (a, b, c, and d are constants), and ρ is here the 
average density of the entire string.

A. Derive the frequency equation for the system. Put it into a form containing
β ω ρ=  /T , a/b, and c/d as nondimensional parameters. (Hint: To simplify 
the algebra, use two coordinate origins x1 and x2 for the two portions of the 
string, with origins at the two fixed ends.)

B. Let a/b = 1 and c/d = 5. Solve for the first four, nondimensional 
frequencies. Compare these with the ones for a uniform string having the 
same total mass.

C. Plot the first two mode shapes for Part B.

D. Choose appropriate values of a, b, c, and d to permit an approximate 
representation of the concentrated mass problem of Sec. 2.7, determine 
the first four eigenvalues, and compare them with those found in the first 
column of Table 2.1.

7 Consider the twodimensional motion of a string; that is, the simultaneous 
vibration in the xz and xyplanes with displacement components w and v, 
respectively. Let a string of length ℓ, having both ends fixed, be given the 
following initial conditions:

 
w x w

x w
t

x( , ) sin , ( , )0 0 00=
∂
∂

=
π
  

 
v x

v
t

x v
x

( , ) , ( , ) sin0 0 0 0=
∂
∂

=
π
  

ℓ

ℓ

ℓ

Figure 2.24 Problem 6.
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where w0 and v0 are constants indicating the magnitudes of the initial 
displacement and velocity components.

A. Suppose that there is no damping. Show that the subsequent motion of 
the string is a whirling one, and find the path in the yzplane of a typical 
point located at x = x0. Determine the condition under which the path is 
circular. 

B. Suppose now that the string is immersed in a viscous medium, with a 
damping constant c effective for every point on the string. Assuming that 
initially the string is whirling with all points executing circular paths, 
determine the subsequent motion of a typical point when the string is 
released from the initial path. Assume the system to be underdamped.

C. Let ζ = c/cc = 0.2 for the system of Part B. For a typical point on the string, 
make a plot of one displacement component (v) versus the other (w) over 
the length of time 0 ≤ t ≤ 2τ, where τ π ω ρ= =2 21/ / T .

8 Consider again the free vibration of the string plucked at its quarter point 
and released from rest, as in Example 2.1. However, now let the string be 
immersed in a viscous medium with a damping resistance such that the 
damping ratio for the first vibration mode is ζ1 = 0.3.

A. Show that the first mode completes one cycle of decaying motion in 

the time t = = −τ π ζ ω2 1 1
2

1/  where ω1 is the undamped frequency of 
the first mode.

B. If the maximum initial displacement is δ, make plots of the shape of the 
string at t = τ/2 and t = τ.

9 The string shown (Fig. 2.25) is subjected to a distributed pressure given by

 
p x t q

x
t( , ) sinmax=


Ω

 

Assuming no damping, determine the responses of the first three modes 
at the point x = 2ℓ/3. Plot them in nondimensional form on a single graph 
having Ω/ω1 as the abscissa. If any modes are not excited, explain physically 
why this should be.

ℓ

Figure 2.25 Problem 9.
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10 Use the eigenfunction superposition method to determine the total 
response of the point x = 2ℓ/3 in Problem 9 in the case of small damping 
(c/cc1 = 0.1). Make a plot similar to the curve for c/cc1 = 0.1 in Fig. 2.18, and 
explain any significant differences.

11 Do Problem 10 utilizing the closed form solution method.

A. For c/cc1 = 0

B. For c/cc1 = 0.1

12 A string of length ℓ (Fig. 2.26) is immersed in a viscous medium and is 
subjected to a transverse pressure given by

 
p x t

x
t( , ) sin ( )= π


Ψ

 

where Ψ(t) is a function periodic in time, with period τ, as shown.

A. Determine the steady state response of the string.

B. Let the damping vanish. Plot the steady state displacement of the middle 
of the string (x = /2) as a function of time for τ = 0.9 τ0, 1.5 τ0, and 2 τ0 where 
τ0 is the period of the fundamental free vibration mode.

13 Do Problem 12 when the transverse pressure is uniformly distributed 
along the length of the string, with intensity p0.

14 A. Prove that the orthogonality relationship 

 
c X X dx d X X dx m nm n
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m n
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Figure 2.26 Problem 12.
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is valid for the composite string of Problem 6, where x1 and x2 are the two 
coordinates suggested in Part A of Problem 6, and where Xm and Xn are 
eigenfunctions defined, for example, by

 
X

X x x a
X x x bm

m

m
=

≤ ≤
≤ ≤





1 1 1

2 2 2

0
0

( )
( )

for
for


  

If you cannot prove the relationship in general, then let a/b = 1 and c/d = 5, and 
use the eigenfunctions of Problem 6 to verify the relationship computationally 
for all combinations of m,n = 1,2,3,4. But be sure to do this with sufficient digits 
to preserve accuracy.

B. Let the composite string of Problem 6B be given an initial displacement 
in the shape of halfsine wave, i.e.,

 
f x A

x
( ) sin=

π
  

where A is a constant. The string is then released from rest. There is no damping. 
Use the above orthogonality relationship to determine the subsequent motion 
w(x,t). On a single graph, plot the shape of the string at t = 0, τ1/6, τ1/3, τ1/2, 
2τ1/3, 5τ1/6, and τ1 where τ1 is the period of free vibration of the fundamental 
(lowest frequency) mode. 

15 A string of length  and total mass M has a circular cross section, the 
radius of which varies linearly from R at one end to 2R at the other. The 
string is horizontal, and both ends are fixed. Use the Rayleigh method with 
an assumed mode shape in the form of the static deflection of the string to 
find the fundamental frequency. Plot the approximate mode shape.

16 Solve Problem 15 by the Ritz method, using the sum of two admissible 
functions to represent the mode shape. Choose your functions carefully so 
that a result better than that of Problem 15 will be found.
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CHAPTER 3
Longitudinal and 

Torsional Vibrations 
of Bars

Among the fundamental components of continuous systems 
are bars. Bars are components that have one dimension 
(length) considerably larger than the other two. In that, they 

share the same definition as a beam with only one distinction: the 
loading. Loading in beams is in the transverse direction. Their 
motion is mainly in a direction perpendicular to their longitudinal 
axis. Beams will be studied in the next chapter. Bars, on the other 
hand, take axial or torsional loads and can deform longitudinally 
and rotationally around their longitudinal axis. 

Bars are often referred to as shafts, rods, or columns. In static 
analysis, we often refer to them as bars when they take axial tensile 
load. If they are under compressive loads, we call them columns. If 
subjected to torsion, we refer to them as shafts or rods. In a dynamic 
analysis, if the motion is rotational around their longitudinal axis, 
they are usually denoted as shafts. If their motion is in the longitudinal 
direction, they are simply called bars or rods. 

Longitudinal and torsional vibrations of bars are typically  
higher in frequencies than in their beam-like transverse bending 
modes. They could, however, be vulnerable for excitation in certain 
applications causing potential engineering challenges. Truss 
members, hydraulic cylinders, as well as other components can be 
subjected to axial forces that excite mainly their longitudinal 
frequencies. Shafts in automotive and general power transmission 
applications may be subjected to torsional loading from the engine or 
from electric or other motors exciting their torsional frequencies. 

The longitudinal and torsional vibrations of bars will be studied 
in this chapter. The fundamental equations will first be derived. Free 
longitudinal and torsional vibration is treated. A striking similarity 
with the wave equation of the transverse vibration of a string is 
noted, leading to analogy in many solutions. Forced vibration is 

77



 78 C h a p t e r  T h r e e  L o n g i t u d i n a l  a n d  T o r s i o n a l  V i b r a t i o n s  o f  B a r s  79

studied with emphasis on internal material damping. Energy 
functionals are then generated and used in numerical analyses by 
the Rayleigh and Ritz methods.

3.1 Equation of Motion for Longitudinal Vibrations
A bar (or rod) of length ℓ and cross-sectional area A is depicted in 
Fig. 3.1. The area need not be constant; however, cross-sectional shapes 
at all values of x will be assumed similar in order to avoid coupling 
between longitudinal and torsional displacements. The material of 
the bar is elastic; however, it need not be homogeneous. Its material 
properties may vary as a function of x. Consider the longitudinal (or 
extensional) vibration of the bar (i.e., motion in the x-direction).

A differential element of length dx is taken at a typical coordinate 
location x. Its free body diagram is shown in Fig. 3.2. The force P is 
the resultant of the longitudinal stress σx acting internally on A, 
where σx is assumed to be uniform over the cross-section. P varies 
along the length, and is also a function of time, i.e., P = P(x,t). In 
addition, a distributed force (p) is shown, having dimensions of force 
per unit length of bar, which results from external sources, either 
internally or externally applied. Examples of this would be magnetic 
or surface traction forces. 

Summing forces in the x-direction:

 
− + +
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∂
∂

∂
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ρ
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(3.1)

where ρ is now mass per unit volume, and u is the displacement in 
the x-direction. Substituting P = σxA and simplifying gives

 

∂
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∂
∂x

A p A
u
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(3.2)

dx

Cross-section

A

x

ℓ

Figure 3.1 A bar (or rod) of length ℓ and cross-sectional area A. 
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For a linearly elastic material subjected to uniaxial stress, σx = Eεx, 
where E is Young’s modulus and εx is the longitudinal strain. The 
latter is related to the displacement by εx = ∂u/∂x. Therefore, (3.2) 
becomes
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(3.3)

In (3.3), A, E, and ρ may all be functions of x, whereas p may be a 
function of both x and t. This is the equation of motion for a rather 
general class of problems.

If A and E are both constant, then (3.3) becomes
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(3.4)

which is identical to (2.7), except that T has been replaced by AE, ρ by 
ρA, and w by u.

For free vibrations, p = 0, and (3.4) reduces to 
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(3.5)

which is analogous to (2.8).

p
P

dx

P + dxP
X

Figure 3.2 Free body diagram of a differential element of length dx subjected 
to longitudinal forces.
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3.2 Equation of Motion for Torsional Vibrations
Let us consider now the torsional vibrations of the same bar, shown 
in Fig. 3.1. This consists of the rotation of each cross-section about the 
longitudinal axis which passes through the centroids of the cross-
sections. We will restrict ourselves to cross-sections having at least 
two symmetry axes (such as the ellipse seen in Fig. 3.1) to avoid 
coupling between twisting and bending displacements.

A typical element of length dx, determined by parallel planes 
located at x and x + dx, is again chosen. A free body diagram of it is 
drawn in Fig. 3.3. A twisting moment Mt is shown acting on the cross-
section taken at the x-plane. This moment is the resultant of the 
internal shear stresses τxy and τxz (Fig. 3.4), which exist on the cross-
section and vary as functions of the transverse coordinates y and z 
(as well as with x and t). The twisting moment is related to the shear 
stresses by (see Fig. 3.4).

 
M y z dydzt xz xy

A

= −∫∫ ( )τ τ
 

(3.6)

Mt is therefore a function of x and t. The possibility of an externally 
applied twisting moment mt, having the dimensions of moment per 
unit length is also shown in Fig. 3.3.

Summing moments about the x-axis:
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(3.7)

where dIc is the mass moment of inertia of the infinitesimal element 
about the x-axis, and θ is the rotation angle (in radians) of the cross-
section; θ = θ (x,t). Looking in detail at dIc: 

 
dI r dm dx r dA Jdxc

A

= = =∫∫ ∫∫2 2ρ ρ
 

(3.8)

mt
Mt

Mt dx+
x

Mt

dx

Figure 3.3 Free body diagram of a typical element of length dx subjected to 
torsional moments.
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where r is the polar coordinate of a typical point in the cross-section 
(see Fig. 3.4), ρ is mass per unit volume (assumed now to be constant 
throughout the cross-section), and J is the “polar area moment of 
inertia” of the cross-section (more properly, the polar second moment 
of the area), defined by

 
J r dydz

A

= ∫∫ 2

 
(3.9)

For example, J = πR4/2 for a circle with radius R, and J = a4/6 for a 
square with side a. Substituting (3.8) into (3.7) and simplifying,
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m J
t
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t+ = ρ θ2

2
 

(3.10)

The twisting moment is related to the angle of twist by a linear 
relationship of the form

 
M k G

xt = θ
θ∂

∂  
(3.11)

where kθ is the torsional stiffness coefficient for the cross-section, 
which may be evaluated by the St. Venant formulation of classical 
elasticity theory (cf. [1], pp. 291–315), and G is the shear modulus for 
the material. A partial listing of J and kθ for various cross-sectional 
shapes is given in Table 3.1. Numerous data for kθ are available for 
other shapes (cf. [2], pp. 194–199).

Figure 3.4 Internal shear stresses τxy and τxz that result in a twisting 
moment Mt. 
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Shape J kθ kθ  /J

Circle mR4

2
mR4

2

1

Hollow 
Circle

π
2 2

4
1
4( )R R− π

2 2
4

1
4( )R R−

1

Ellipse π   ( )ab a b2 2

64
+ π  

( )
a b

a b

3 3

2 216 +

4
2a

b
b
a

+





Square

a

a

a4

6

0.1406a4 
([1], p. 313)

0.8436

2×1 
Rectangle 

5
96

4a
0.0286a4  

([1], p. 312)
0.549

Equilateral 
Triangle

3
48

4 a 3
80

4 a 0.600

Table 3.1 J and kθ for Various Cross-Sectional Shapes
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It should also be mentioned that the classical elasticity theory 
analysis described above assumes that cross-sections are free to 
warp out of their planes during torsional displacements. All but 
circular cross-sections will typically warp. If one or both ends of a 
bar are rigidly fixed, so that an end cannot warp, and if the bar is not 
slender (so that the end effects are small), then the additional stiffness 
due to warping constraint must be considered.

Substituting (3.11) into (3.10) yields

 

∂
∂

∂
∂

∂
∂x

k G
x

m J
ttθ

θ ρ θ





+ =
2

2
 

(3.12)

In (3.12) kθ, G, ρ, and J may all be functions of x, whereas mt may 
be a function of both x and t. If kθ, G, ρ, and J are constants, and if free 
vibrations are of interest, then (3.12) may be written as

 
k G

x
J

tθ
θ ρ θ∂

∂
∂
∂

2

2

2

2=
 

(3.13)

Equation (3.13) is analogous to (2.8) and (3.5).

3.3 Free Vibration of Bars
It has been shown in the preceding two sections that the equations of 
longitudinal or torsional motion, (3.5) or (3.13), for uniform rods are 
of the same form as that for a uniform string (2.8). Therefore, all the 
free vibration results for strings obtained in Chap. 2 are also directly 
applicable to the other two problems simply by replacing T and ρ by 
AE and ρA, respectively, for longitudinal vibrations, and by kθG and 
ρJ, respectively, for torsional vibrations. If the mathematical boundary 
conditions applied to either u or θ on the bar are the same as those for 
w on the string, then the problems are entirely analogous. 

Thus, for the rod of length ℓ having both ends fixed, (2.23) yields 
the frequencies of longitudinal vibrations 

 
ω ρ πm E

m m …= = ∞( , , , )1 2
 

(3.14)

and the frequencies of torsional vibrations 

 
ω ρ π

θ
m

J
k G

m m …= = ∞( , , , )1 2
 

(3.15) 
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It should be remembered that ρ for the string is mass per unit length, 
whereas for both types of rod vibrations, it is mass per unit 
volume. 

It is seen from (3.14) and (3.15) that neither longitudinal nor 
torsional frequencies are affected by the cross-sectional size of the 
bar. Longitudinal frequencies also do not depend on the cross-
sectional shape. However, torsional frequencies are proportional to 

k Jθ / , which does depend on the shape. Values of kθ/J for various 
shapes are listed in Table 3.1. It is seen, for example, that the torsional 
frequencies of bars of elliptical cross-section having a/b = 2 are 20 
percent less than those of circular bars, whereas bars of rectangular 
cross-section with a/b = 2 have frequencies 26 percent less. 

From (3.14) and (3.15) it is seen that the ratio of the longitudinal 
frequencies to the torsional frequencies of a bar is ( / )( / )E G J kθ . 
Because E/G > 1 and J/kθ ≥ 1, the longitudinal frequencies are greater 
than the torsional ones for all cross-sectional shapes.

Adapting further the results from Chap. 2, longitudinal and 
torsional mode shapes (eigenfunctions) for bars having both ends 
fixed are

 X x xm m( ) = sinα  ( . )3 16

where am = mπ/ℓ and m = 1, 2, . . . ,∞. While bars, like strings, can 
vibrate in a single mode if the motion is begun properly (e.g., initial 
displacement in the shape of the eigenfunction, and no initial 
velocity), arbitrary initial conditions require a superposition of modes 
to represent the motion, with u(x,t) or θ(x,t) given by (2.26), and the 
Fourier coefficients given by (2.29) and (2.30) as before. The traveling 
wave solution described by (2.40) is applicable to longitudinal and 
torsional rod vibrations by using wave velocities c = E/ρ  and c = 

k G Jθ ρ/ , respectively.
Other boundary conditions exist for longitudinal and torsional 

vibrations of bars which are physically possible and important. 
Particularly important are the fixed-free and free-free boundaries. 
For example, the boundary conditions for the fixed-free bar in the 
case of longitudinal vibrations are

 u t X( , ) ( )0 0 0 0= → =  (3.17a) 

 
,

∂
∂

( ) = → ( ) =′u
x

t X 0 0
 

(3.17b)

Condition (3.17b) is derived from

 
P t AE t AE

u
x

tx  , , ,( ) = ( ) = ∂
∂

( ) =ε 0
 

(3.18)
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Applying (3.17a) to the differential equation solution (2.18) once 
again requires B = 0, so that the eigenfunction is

 X x x( ) = sinα  (3.19)

Condition (3.17b) yields

 α αi cos = 0  (3.20)

whence,

 
α π
 …= − = ∞( )( )

, , ,
2 1

2
1 2

m
m

 
(3.21)

Since ω2 = Eα2/ρ

 
ω ρ π

m E
m

m …= − = ∞( )( )
, , ,

2 1
2

1 2
 

(3.22)

is the infinite set of nondimensional frequencies. The first four mode 
shapes may be seen in Fig. 3.5. Similar results are applicable to the 
torsion problem by analogy. The corresponding boundary conditions 
for a fixed-free string are mathematically possible, but physically 
they are unrealistic. The free end of the string would have to be 
attached to a massless bead, which must slide freely in the transverse 
direction without friction, and at the same time apply the necessary 
string tension!

m = 1
2ℓ

E

m = 2

m = 3

m = 4

=1

2 = 3 1

3 = 5 1

4 = 7 1

Figure 3.5 The first four mode shapes for the longitudinal vibration of a bar 
with one end fixed and other free.
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3.4 Other Solutions by Analogy
Discontinuities may arise in bars for the same reasons as in strings 
(see Sec. 2.7), and the previous solutions obtained for strings in such 
cases are directly applicable to the longitudinal and torsional 
vibrations of equivalent bars by analogy. Thus, for example, the 
solution in Sec. 2.7 for a string having an intermediate mass M 
attached, given by (2.65) and (2.67), may be used for the longitudinal 
vibrations of a bar also having such a mass. To do so, α = β/ℓ is simply 
redefined as ω ρ/E, and M* as M/ρAℓ.

For forced vibrations of bars with viscous damping, (3.4) yields

 
AE

u
x

p x t A
u

t
c

u
t

∂
∂

+ ( ) = ∂
∂

+ ∂
∂

2

2

2

2, ρ
 

(3.23)

for longitudinal motions. The damping force term c∂u/∂t would 
typically arise due to drag forces acting along the sides of the bar in 
opposition to the motion. Similarly, for torsional vibrations (3.12) 
gives

 
k G

x
m x t J

t
c

ttθ
θ ρ θ θ∂

∂
+ ( ) = ∂

∂
+ ∂

∂

2

2

2

2,
 

(3.24)

where mt is typically an external exciting torque distributed along 
the sides of the bar. The damping constant c has different dimensions 
in (3.23) and (3.24).

For free vibrations with damping, p and mt are omitted from (3.23) 
and (3.24). The resulting equations are seen to be in the same form as 
(2.68). Thus, the solutions presented for the string in Sec. 2.8 may be 
used for longitudinal or torsional motions of bars by replacing T and 
ρ either by AE and ρA, or by kθG and ρJ, as appropriate. 

The same comment applies to forced vibration problems. That is, 
comparing (3.23) and (3.24) with (2.79), it is seen that the same 
substitutions permit one to use the results of Secs. 2.9 and 2.10 
straightforwardly for bar vibrations in the case of viscous damping.

3.5 Free Vibrations of Bars with Variable Cross-Section
If a bar is made of a material which is homogeneous, then E, p, and G 
are constants in (3.3) and (3.12). The resulting equations of motion for 
free vibration are

 

∂
∂

∂
∂

∂
∂x

A
u
x

A
E

u
t







=
ρ 2

2
 

(3.25)
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∂
∂

∂
∂

∂
∂x

k
x

J
G tθ

θ ρ θ





=
2

2
 

(3.26)

where A, kθ, and J are functions of x if the cross-section is varying in 
a continuous manner (i.e., a step change in cross-section would be 
represented by a discontinuous bar, as discussed in Sec. 3.4).

Consider first the longitudinal vibrations. Assuming sinusoidal 
time response in the case of free vibrations,

 u x t X x t, sin( )( ) = ( ) +ω φ  (3.27)

(3.25) becomes

 

d X
dx A

dA
dx

dX
dx E

X
2

2

21
0+ +







=ρω

 
(3.28)

Suppose the area varies as

 A A xn= 0  (3.29)

where A0 is a constant. Then (3.28) becomes:

 
X

n
x

X
E

X′′ + ′ + =
ρω 2

0
 

(3.30)

where X’ = dX/dx, etc. Define ν and k by the following equations:

 
ν = − =n

k
E

1
2

2
2

,
ρω

 
(3.31)

and (3.30) may be rewritten as

 
X

x
X k X′′ + + ′ + =2 1

02ν

 
(3.32)

Now make a substitution of dependent variables such that 

 X x x U x( ) = − ( )ν  (3.33)

which converts (3.32) to

 
x U xU k x U2 2 2 2 0′′ + ′ + −( ) =ν

 
(3.34)
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This is the classical form of Bessel’s equation. Its solution may be 
written as

 U C J kx C Y kx= ( ) + ( )1 2ν ν  (3.35)

where Jν and Yν are Bessel functions of the first and second kind, 
respectively. The “order” of the Bessel functions is ν, which may be 
an integer or not.

A brief summary of some of the important properties of Bessel 
functions may be found in Appendix B. A bibliography of useful 
references on Bessel functions is also given at the end of Appendix B.

Substituting (3.33) and (3.35) into (3.27) yields

 u x t C J kx C Y kx x t, sin( ) = ( ) + ( )  +( )−
1 2ν ν

ν ω φ  (3.36)

where ν and k are defined by (3.31). The frequencies and mode shapes 
of free vibration are determined by applying the boundary 
conditions.

Example 3.1
A. Determine the frequency equation for the longitudinal vibrations of a bar 
of circular cross-section and length ℓ, fixed at both ends, where the radius 
varies linearly as

r r
x
a

= 0

and where the radius at the small end is r0 as shown in Fig. 3.6.
B. Evaluate the nondimensional frequencies and mode shapes for the case 

when a = ℓ. Compare these with those of a uniform thickness bar having the 
same average radius (3r0/2).

Solution
Part A. The cross-sectional area varies with x according to

A r
r
a

x= = 



π π2 0

2
2

a

x

ro

ℓ

Figure 3.6 A bar of circular cross-section with a linearly varying radius fixed at 
both ends.



 88 C h a p t e r  T h r e e  L o n g i t u d i n a l  a n d  T o r s i o n a l  V i b r a t i o n s  o f  B a r s  89

Thus, A0 = π (r0/a)2 and n = 2 in (3.29). Referring to (3.31) and (3.35), (3.33) 
becomes

X x x C J kx C Y kx( ) [ ]( ) ( )/
/ /= +−1 2

1 1 2 2 1 2  

Bessel functions of order 1/2 have the particular relationship Y1/2(z) = −J−1/2(z), 
and are also related to trigonometric functions by

J z
z

z1 2
2

/ sin( ) =
π  

J z
z

z− ( ) =1 2
2

/ cos
π  

Therefore, the solution above may be rewritten as

X
x

C kx C kx= +1
1 2( sin cos )

 

where 2/πk  and a minus sign have been incorporated into the arbitrary 
coefficients C1 and C2.

For the particular case when A = A0x2, an exact solution to the equation of 
motion may be found without using Bessel functions. Returning to (3.3), setting 
p = 0, and substituting the area variation,

E
x

x
u
x

x
u

t
∂

∂
∂
∂

∂
∂

2 2
2

2




 = ρ

or

x
u

x
u
x E

x
u

t
∂
∂

∂
∂

∂
∂

2

2

2

22+ = 





ρ

which may be rewritten as

∂
∂

∂
∂

2

2

2

2x
ux

E t
ux( ) = 





ρ
( )

This is once again our wave equation (2.8), except that the dependent variable 
is replaced by the product ux. The solution is therefore

ux C kx C kx t( sin cos ) sin( )= + −1 2 i ω φ

with k2 = ρω2/E, which agrees with the result obtained above using Bessel 
functions.
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Applying the boundary conditions at x = a and x = a + ℓ = b,

U(a) = 0 → C1 sin ka + C2 cos ka = 0

U(b) = 0 → C1 sin kb + C2 cos kb = 0

For a nontrivial solution,

sin cos
sin cos

ka ka
kb kb

= 0

whence, sin ka ∙ cos kb − sin kb ∙ cos ka = 0

or, using the well-known trigonometric identity,

sin ( ) sink a b k− = − = 0     (frequency equation)

Part B. The roots of the frequency equation are clearly

kℓ = mπ (m = 1, 2, . . . ,∞)

and those are seen from (3.31) to be the nondimensional frequencies

ω ρ π …
E

m m= = ∞( , , , )1 2
 

The frequencies for the bar with linear taper are seen to be the same as those 
for the untapered (constant radius) bar. This unusual result applies only when 
n = 2 in (3.29), with both ends fixed. For other n, or other end conditions, it 
would not apply. The frequencies do not depend on the actual cross-sectional 
size. Moreover, they do not depend on the actual shape, but rather on how the 
area varies. Thus, a bar of rectangular cross-section having linear taper in both 
dimensions, so that A = A0x2, would have the same longitudinal frequencies as 
the circular one in this example.

To determine the mode shapes, we substitute the eigenvalues kℓ back into 
one of the two boundary condition equations, say the first, whence the mth 
eigenvector is

C
C

ka
m a

m2

1
0= − = − = − =tan tan tan

π π


and the mth eigenfunction (mode shape) is

X
C
x

m x m a m x
m = −





1 sin tan cos
π π π
 

i


where C1 is an arbitrary amplitude coefficient determined by the initial 
conditions. The mode shape is significantly different than that for the bar 
having uniform cross-section (3.16).

The torsional vibrations of variable cross-section bars are 
complicated by the existence of two parameters, kθ and J, in (3.26), 
both depending on x. Whereas the area (A) varies with the second 
power of the cross-sectional dimension, both kθ and J vary with the 
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fourth power. This is clear for the configurations shown in Table 3.1. 
For an elliptical cross-section, for example, one may write

 
J

a b
a

b
a

= 



 + 

















π 4 2

64
1

 
(3.37)

 
k

a
a b a bθ

π=
+

4

216 1( / )[( / ) ]  
(3.38)

so that both parameters depend on the aspect ratio (a/b), but vary 
with the fourth power of the cross-sectional dimension (a). Assuming 
sinusoidal motion (3.27), then (3.26) becomes

 

d X
dx k

dk
dx

dX
dx

J
Gk

X
2

2

21
0+ +







=
θ

θ

θ

ρ ω

 
(3.39)

From (3.37) and (3.38), it is seen that ρJω2/Gkθ is a constant. If kθ is 
taken to vary as

 k k xn
θ = 0  (3.40)

where k0 is a constant, substitution of (3.40) into (3.39) results in

 
X

n
x

X k X′′ + ′ + =2 0
 

(3.41)

where k2 = ρJω2/Gkθ. This equation is of the same form as (3.30), so a 
solution in Bessel functions is again possible. However, since the area 
varies only with the square of the cross-sectional dimension, while kθ 
varies with the fourth power, the Bessel functions required for the 
torsional vibration analysis are of different order than those for the 
longitudinal vibrations.

3.6 Forced Vibrations of Bars; Material Damping
In Sec. 3.4 it was shown that forced vibrations for the longitudinal or 
torsional vibrations of bars subjected to distributed viscous damping 
could be analyzed, by analogy, with the same methods as for the 
transverse vibrations of strings. However, another type of damping 
is inherent in the material from which bars are made. This is called 
material damping (also known in the technical literature as 
“hysteretic” or “structural” damping). It does not enter the linearized 
analysis for the string.
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Suppose a completely free rod is placed in a vacuum chamber, being 
held in the horizontal position by two threads from which it is hanging. 
Suppose further that the air is evacuated, and that one or more of the 
longitudinal free vibration modes are excited, perhaps by impact. As the 
bar executes its free vibrations, it will be seen that the amplitude 
decreases, even though viscous or aerodynamic damping forces are not 
present. The decay in amplitude is due to material damping.

Material damping may be incorporated into the problem by 
regarding the elastic moduli as complex quantities, that is,

 E E i G G i* , *= +( ) = +( )1 1η η  (3.42)

where i = −1, and η is the loss factor (also known as “damping factor”) 
for the material (the values of η may be somewhat different for E* 
and G* , but for simplicity will be taken the same in this introductory 
study). Values of η are typically very small for metals (10−6 < η < 10−3), 
but can be quite large for other materials such as rubber or plastic 
(10−2 < η < 1). For more understanding of material damping, including 
the concept of complex modulus, the excellent monograph by 
Snowdon [3] is recommended.

With material damping the equations of motion for longitudinal 
and torsional vibrations are written as

 
AE i

u
x

p x t A
u

x
1

2

2

2

2,+( ) + ( ) =η ρ∂
∂

∂
∂  

(3.43a)

 
k E i

x
m x t J

xtθ η θ ρ θ
1

2

2

2

2,+( ) + ( ) =∂
∂

∂
∂  

(3.43b)

For excitation which is sinusoidal in time, it is convenient to 
express the distributed longitudinal force or twisting moment as

 p x t P x e m x t M x ei t
t t

i t, , , ( )( ) = ( ) ( ) =Ω Ω
 (3.44)

where Ω is the exciting frequency. The responses u(x,t) and θ(x,t) are 
then also taken in complex form.

Consider the longitudinal vibration problem. A solution for the 
displacement may be assumed as

 u x t U x iU x ei t, [ ]( ) = ( ) − ( )1 2
Ω

 (3.45)

where the real part (U1) is in phase with the exciting force, and  
the imaginary part (−iU2) lags the exciting force by 90 degrees. 
Substituting (3.44) and (3.45) into (3.43a) gives

 AE i U iU e Pe A U iU ei t i t i t1 01 2
2

1 2
’’ ’’+( ) −( ) + + −( ) =η ρΩ Ω ΩΩ  (3.46)
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Since this must be satisfied at all times, separating the coefficient 
of eiΩt into its real and imaginary parts yields

 
U

E
U U

P
AE1

2 2

1 2

2
’’ ’’+







+ = −

ρ ηΩ  

 
(3.47a)

 
U

E
U U2

2 2

2 1 0’’ ’’+






− =

ρ ηΩ 

 
(3.47b)

where the nondimensional variable ξ = x/ℓ is now being used. These 
may be written as

 U U U Q1
2

1 2
’’ ’’ ( )+ + = −λ η ξ  (3.48)

 U U U2
2

2 1 0’’ ’’+ − =λ η  (3.49)

where λ ρ2
2 2

= Ω 
E

, Q
P

AE
ξ ξ( ) = ( )2

Equations (3.48) and (3.49) are seen to be of a different form than 
(2.110), which arose from viscous damping. Most notably, the coupling 
terms involve the second derivatives in the present case, rather than 
the functions themselves. Using the following linear transformation 
of variables

 X U U1 1 2= +η  (3.50a)

 X U U2 1 2= − +η  (3.50b)

or

 
U X X1 2 1 2

1
1

=
+

−
η

η( )
 

(3.51a)

 
U X X2 2 1 2

1
1

=
+

+
η

η( )
 

(3.51b)

then (3.48) and (3.49) become

 
X X X Q1

2

2 1 21
’’ +

+
−( ) = − ( )λ

η
η ξ

 
(3.52a)
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X X X2

2

2 2 11
0’’ +

+
+( ) =λ

η
η

 
(3.52b)

Equations (3.52) are seen to have the same form as (2.110), except that 
λ2/(1 + η2) is in place of λ2, and λ2η/(1 + η2) is in place of 2πλζ1. Using 
these replacements, the solutions (2.118) and (2.119) for viscously 
damped strings and rods are seen to be directly applicable to the rod 
having material damping as well.

Example 3.2 A rod has one end fixed, while the other end is subjected to an 
exciting force P0 sin Ωt, as shown in Fig. 3.7. The material has a damping loss 
factor η. Determine the amplitude of the motion of the free end, U0, as a function 
of P0, Ω, and η.

Solution
For this problem, the R.H.S. of (3.52a) is zero; therefore, only the complementary 
solution of (3.52) is needed. The exciting force will enter the problem through 
a boundary condition.

Defining β λ
η

γ ηλ
η

ηβ2
2

2
2

2

2
2

1 1
=

+
=

+
=and , (3.52) becomes

X X X1
2

1
2

2 0’’ + − =β γ

X X X2
2

1
2

1 0’’ + + =β γ

Using the solutions (2.118) and (2.119) found previously for (2.110),

X1 = C4 sinh aξ ∙ sin bξ + C3 cosh aξ ∙ sinbξ − C2 sinh aξ ∙ cos bξ 
− C1 cosh aξ ∙ cos bξ

X2 = C1 sinh aξ ∙ sin bξ + C2 cosh aξ ∙ sin bξ + C3 sinh aξ ∙ cos bξ 
+ C4 cosh aξ ∙ cos bξ

where a
R= − β 2

2
, b

R= + β 2

2
, R = + =

+
β γ λ

η
4 4

2

21

ℓ
Po sin t

Figure 3.7 A rod has one end fixed and the other subjected to a longitudinal 
exciting force P0 sinΩt.
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B.C.1  u t U U0 0 0 0 0 01 2, ,( ) = → ( ) = ( ) = .

U X X C C
U X X C

1 1 2 1 4

2 1 2

0 0 0 0 0 0
0 0 0 0 0

( ) = → ( ) − ( ) = → − − =
( ) = → ( ) + ( ) = → −

η η
η η 11 4

1 40
0

+ =




→ = =
C

C C

The solutions for U1 and U2, therefore, reduce to

U C C a b C C a b1 2 3 2 2 3
1

1
=

+
−( ) − +( ) η

η ξ ξ η ξ ξcosh sin sinh cosi i

U C C a b C C a b2 2 3 2 2 3
1

1
=

+
+( ) + − +( ) η

η ξ ξ η ξ ξcosh sin sinh cosi i

Defining new constants as A
C C

A
C C

1
3 2

2 2
2 3

21 1
= −

+
= +

+
η
η

η
η

, , then

U A a b A a b1 1 2= −cosh sin sinh cosξ ξ ξ ξi i

U A a b A a b2 2 1= +cosh sin sinh cosξ ξ ξ ξi i

B.C.2. AE
u
x

t P t U
P
AE

Uo
o

st
∂
∂

( ) = → ( ) = = ( ) =


, sin ,’ ’Ω 1 21 1 0δ

where δst is the displacement of the end of a rod loaded statically. The last two 
equations allow one to solve for A1 and A2 as

A
c

c d
A

d
c dst st1 2 2 2 2 2=

+
= −

+
δ δ,

where c = a sinh a ∙ sin b + b cosh a ∙ cos b

d = a cosh a ∙ cos b − b sinh a ∙ sin b

c2 + d2 = (a2 + b2)(sinh2 a ∙ sin2 b + cosh2 a ∙ cos2 b)

Then the amplitude of the motion of the free end is given by

U U U0 1
2

2
21 1= ( ) + ( )

Substituting U1 and U2 from above, then A1 and A2, expanding, and collecting 
terms finally yields the relatively simple closed form:

U a b a b
a b a b ast

0
2 2 2 2

2 2 2 2 2δ
=

+
+ +

sinh cos cosh sin
( )(sinh sin cosh

i i
i ii cos )2 b

In evaluating U st0 /δ , it is useful to rewrite λ as
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λ ρ
ω

ω ρ π
ω

= =












=






Ω Ω Ω
 

E E1
1

12

This is used to calculate a and b.
A plot of U st0 /δ  versus Ω/ω1 over the frequency range 0 ≤ Ω/ω1 ≤ 4 is shown 

in Fig. 3.8. Resonances are seen to occur in the vicinities of Ω/ω1 = 1 and 3, as 
expected. However, unlike a single degree-of-freedom system with material 
damping, (cf. [4]), the maximum amplitudes do not occur exactly at the natural 
frequencies.

3.7 Energy Functionals and Rayleigh and Ritz Methods
In order to employ Rayleigh and Ritz methods with free vibration 
problems for bars, it is necessary to have the proper energy 
functionals.

For longitudinal vibrations, the potential energy of the system 
consists of the strain energy due to deformation. Consider again the 
infinitesimal volume of the bar having cross-sectional area A and 
length dx, shown in Fig. 3.2. The infinitesimal quantity of strain 
energy in this volume is

 
d PE P de( ) = 1

2  
(3.53)

where de is the infinitesimal elongation of the bar element during 
vibratory motion. The “1/2” is required because, during the 

10.0 

0.1 

0.2 

0.5 

8.0 

6.0 

4.0 

2.0 

0.0 
0.0 1.0 2.0 3.0 4.0 

Uo 

st 

1 

= 0.01

Figure 3.8 A plot of U st0 /δ  versus Ω/ω1  for Example 3.2.
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elongation, the longitudinal force begins at zero as elongation begins. 
For our linearly elastic material, the force increases proportionally 
with the elongation. Thus, P/2 represents the average force applied 
during the elongation. Since P = σxA and de = εxdx, where σx is the 
longitudinal stress and εx is the longitudinal strain,

 
d PE A dxx x( ) = 1

2
σ ε

 
(3.54)

Further, σx = Eεx and εx = ∂u/∂x. Substituting these into (3.54) and 
integrating the strain energy over the entire bar, we obtain

 
PE AE

u
x

dx= ∂
∂





∫

1
2

2

0



 
(3.55)

If A and E are not functions of x, they may be brought in front  
of the integral sign. Otherwise, (3.55) is capable of dealing with 
variable cross-section and/or nonhomogeneous (E varying with x) 
bars.

The kinetic energy of the volume of mass depicted in Fig. 3.2 is 
clearly

 
d KE Adx

u
t

( ) = ∂
∂







1
2

2

( )ρ
 

(3.56)

Thus, the kinetic energy of longitudinal vibrations for the entire  
bar is

 
KE A

u
t

dx= ∂
∂





∫

1
2 0

2

ρ
 

(3.57)

For torsional vibrations, the strain energy stored in the infinitesimal 
volume shown in Fig. 3.3 is

 
d PE M

x
dxt( ) = ∂

∂
1
2

θ

 
(3.58)

where (∂θ/∂x)dx is the rotation of one end with respect to the other. 
Substituting (3.11) into (3.58) and integrating over the length, the 
potential energy in the entire bar is then

 
PE k G

x
dx= ∂

∂




∫

1
2 0

2

θ
θ

 
(3.59)
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The kinetic energy of the bar element undergoing torsional 
rotation about its centroidal axis is

 
d KE dI

tc( ) = ∂
∂







1
2

2θ

 
(3.60)

Substituting (3.8) into (3.60) and integrating over the length yields 
the kinetic energy for the entire bar:

 
KE J

t
dx= ∂

∂




∫

1
2 0

2

ρ θ

 
(3.61)

The energy functionals may also be obtained from those of  
the vibrating string by use of the analogy described at the beginn-
ing of Sec. 3.3. Thus, (3.55) or (3.59) could be obtained from (2.125) 
by replacing T by AE or by kθG, respectively. Similarly, (3.57) and 
(3.61) are also found from (2.127) by replacing ρ by ρA and ρJ, 
respectively. 

Rayleigh and Ritz methods are applied to the longitudinal and 
torsional vibration of bars as was discussed for the string in Secs. 2.12 
and 2.13. Using the Rayleigh method, one describes either u(x,t) or 
θ(x,t) as in (2.129), where again X(x) must satisfy the geometric 
constraints on the boundaries. An approximate natural frequency is 
then calculated by use of Rayleigh’s Quotient (2.133), with the 
maximum potential energy obtained by replacing u and θ by X in 
(3.55) and (3.59), and the maximum kinetic energy by replacing ∂u/∂t 
and ∂θ/∂t by ωX in (3.57) and (3.61). If the mode shape X(x) is chosen 
with reasonable accuracy, then the corresponding frequency 
calculated from Rayleigh’s Quotient will be reasonably accurate. 
More accurate results may be obtained with the Ritz method by 
choosing a set of admissible functions as in (2.134) and writing the 
minimizing equations (2.136), where

 KE KEmax max= ω2 *
 (3.62)
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Problems
1  A. Determine the torsional vibration frequencies of a bar of length ℓ  

having both ends free.

B. Plot the first four mode shapes and locate the node points.

C. Show that the antisymmetric modes and frequencies are the same as 
that of a fixed-free bar of length ℓ/2.

D. Show that ω = 0 is not only a solution to the problem, but that a  
nontrivial motion is described by it.

2 Consider the longitudinal and torsional vibrations of a rod made of 
aluminum (G/E = 0.4).

A. Determine the ratio of the frequencies of longitudinal vibration (ωL) to 
those of torsion (ωT) for rods having both ends fixed, and cross-sections 
which are:

1. Circular
2. Square
3. A 4 × 1 rectangle

B. Prove whether or not the ratios found in Part A are valid for rods having 
aℓℓ possibℓe end conditions of the same type.

3 Return to Example 2.1 in Chap. 2. Show carefully to what longitudinal and 
torsional vibration problems for rods the results correspond. Draw sketches 
of the rods in their initially deformed positions.

4 A bar of length ℓ has one end fixed and the other free. The free end is 
subjected to a static, longitudinal force P, causing the end to displace an 
amount δ = Pℓ/AE. Suddenly the force P is removed. Determine the subsequent 
motion u(x,t) of the bar as a summation of the responses of the free vibration 
mode shapes (see Sec. 2.3). 

5 Solve Problem 4 using a traveling wave solution (see Sec. 2.5).

A. Determine u(x,t).

B. Plot the displacement of points along the bar at t/τ1 = 1/16, 1/4, 5/16.

C. Plot the velocity of points along the bar at t/τ1 = 1/16, 1/4, 5/16.

D. Plot the stress (σx) along the bar at t/τ1 = 1/16, 1/4, 5/16.

6 A bar is hanging freely with its own weight ρ g A ℓ. The longitudinal  
axis is vertical. Prove, whether or not, for all boundary conditions, the 
frequencies and mode shapes of longitudinal motion are the same as those 
of the bar when gravity forces are ignored.

7 A rod of length ℓ is fixed at one end, and the other end is attached to a 
rigid mass M, which is free to move.
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A. Obtain the transcendental equation for the longitudinal vibration 
frequencies.

B. Evaluate the first four frequencies ω ρ /E for M/ρAℓ = 0.2, 1, and 5, 
where A is the cross-sectional area of the rod. Tabulate your results.

C. On a single graph, plot the fundamental mode shape for M/ρAℓ = 0, 
0.2, 1, 5, and ∞.

8 A shaft of noncircular cross-section and length ℓ has both ends fixed. A 
mass M having polar mass moment of inertia IM about the shaft axis is attached 
at an intermediate location x = < <η η( )0 1  measured from one end.

A. Apply boundary conditions to determine the frequency equation for 
free vibration frequencies of torsionaℓ motion.

B. Let η = 3 4/  in the result of Part A. Compare this with (2.65). Explain any 
similarities or differences between the two equations.

9  A. Find the natural frequencies of longitudinal vibration for a tapered 
circular bar of length ℓ which comes to a point (and is free) at one end, and 
is fixed at the other (Fig. 3.9). Its radius varies as r = r0x/ℓ. Note: the stress 
at the free end is not zero.

B. Determine the stress within the bar at a typical point as it vibrates in its 
fundamental mode. Express this in terms of displacement amplitude (δ) 
at the free end. Evaluate the stress at the free tip (x = 0). 

10 Determine the fundamental longitudinal frequency and mode shape of 
a bar of length ℓ which has a circular cross-section, with an area that varies 
linearly between A1 at one end and A2 at the other, when both ends are free. 
Compare this with the results for a bar having a uniform diameter. If the 
result depends on A2/A1, let this ratio be 4.

11 Repeat Example 3.1 for the problem of torsional vibrations.

12 A bar has one end fixed (x = 0) and the other free (x = ℓ). The fixed 
end is excited longitudinally with a displacement δ sin Ωt. Assuming a  
small amount or viscous damping is present, determine the steady state 
response u(x,t).

x

ℓ

Figure 3.9 Problem 9.
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13 Use the results of Problem 4 or 5 for u(x,t) to determine the potential and 
kinetic energies within the bar at any instant of time. Plot these on the same 
graph for 0 ≤ t ≤ τ0, where τ0 is the fundamental period of the bar. Plot also on 
the same graph the total energy in the system as a function of time.

14  A. Use the Rayleigh method with an assumed displacement in the 
form of an algebraic polynomial to obtain an approximate value of the 
fundamental frequency for the bar of Example 3.1 (with a = ℓ).

B. Add a term to the polynomial of Part A, and use the Ritz method to 
find an improved approximate frequency.

C. Compare the frequencies from above with the exact ones.

D. On a single graph, make a plot of the two approximations for the first 
mode shape from above, as well as the exact one. Normalize the mode 
shape curves so that each has a maximum value of unity.

15  A. Use the Rayleigh method to obtain a reasonably accurate approximate 
value of the fundamental frequency for Problem 8B. Explain why you 
think your solution is “reasonably accurate.”

B. Improve the solution of Part A by using the Ritz method, with the 
displacement taken as the sum of two admissible functions, each one 
applicable over the entire length of the shaft.
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CHAPTER 4
Beam Vibrations

A beam is typically described as a structural element having 
one dimension (length) which is many times greater than  
its other dimensions (width and depth). It may be straight  

or curved.
Beams are one of the most fundamental structural and machine 

components. Almost every structure or machine one can think of has 
one or more beam components. Buildings, steel framed structures, 
and bridges are examples of beam applications in civil engineering. 
In these applications, beams exist as structural elements or 
components supporting the whole structure. In addition, the whole 
structure can be modeled at a preliminary level as a beam. For 
example, a high-rise building can be modeled as a cantilever beam, 
or a bridge modeled as a simply supported beam. In mechanical 
engineering, rotating shafts carrying pulleys and gears are examples 
of beams. In addition, frames in machines (e.g., a truck) are beams. 
Robotic arms in manufacturing are modeled as beams as well. In 
aerospace engineering, beams (curved and straight) are found in 
many areas of the aircraft or space vehicle. In addition, the whole 
wing of a plane is often modeled as a beam for some preliminary 
analysis. Innumerable other examples of beams exist. 

In many of these applications, beams are subjected to dynamic 
loads. Imbalance in driveline shafts, combustion in crank shaft 
applications, wind or earthquake on a bridge or a structure, and impact 
load when a vehicle goes over a bump are all examples of possible 
dynamic loadings that beam structures can be exposed to. All of these 
loads and others can excite the vibration of the beam structure. This can 
cause durability concerns (because of potentially excessive dynamic 
stresses) or discomfort because of the resulting noise and vibration.

This chapter will be dedicated to the study of transverse vibrations 
of beams. The equations of motion will first be derived. Solutions are 
then found and discussed for the natural frequencies and mode 
shapes of various boundary conditions using exact methods. Beams 
with added masses and springs are also treated. Forced vibration is 
then discussed when the beam is subjected to transverse periodic 
loading. Beams that have internal supports or discontinuities are 
investigated. Energy functionals are developed for possible use in 

103
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approximate methods such as those of Rayleigh and Ritz as well as in 
finite element methods. Beams subjected to axial forces while 
undergoing transverse vibrations are also studied, leading to a 
physical understanding of buckling. Moderately thick beams, where 
both shear deformation and rotary inertia must be included, are also 
studied in this chapter.

4.1  Equations of Motion for Transverse Vibrations
Figure 4.1 shows a beam of length ℓ which is clamped at its left end. Its 
right end is supported by knife-edges which are capable of applying 
transverse forces, but no bending moment. This is one example of a 
simply supported end. Vibrational motion is assumed to take place 
strictly in the z-direction, with a displacement component w = w(x,t). 
For the sake of some increased generality, the beam shown has a 
cross-section of varying size, although it is assumed that all cross-
sections are similar in geometrical shape (to avoid coupling with 
motions which are either torsional or in the y-direction). Cross-
sections are assumed to have at least one axis of symmetry (the z-axis), 
also to avoid coupling with torsional or y-directional motions. For 
cross-sections having no symmetry, a more general theory, including 
coupling, would need to be used. It will also be assumed for the 
present that the length is at least 20 times the average depth 
(z-coordinate dimension). This restriction will be relaxed in Sec. 4.12.

The beam described above is very much like the rod shown 
previously in Fig. 3.1. The essential difference between the rod and 
the beam is in their displacement characteristics—the former may 
undergo either longitudinal or torsional vibrations, while the latter 
vibrates transversely (in the z-direction) only.

The usual strength of materials assumptions will be made for the 
transverse displacements of a beam. This makes the problem both 
mathematically and physically 1 dimensional; that is, w depends on 
x, but not on y or z. Thus, the motion of the beam is completely 
determined by the motion of its centerline (the line joining all 
centroids of cross-sections), and w is defined more precisely to be the 

dx 

z,w 

x 

z 

y

ℓ

Figure 4.1 A differential element of a beam.
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displacement of the centerline away from its straight equilibrium 
position (transverse gravitational effects may be ignored in the 
vibration problem). The displaced centerline may be envisioned like 
that of the string seen previously in Fig. 2.1.

Consider the differential beam element of length dx shown in 
Fig. 4.1. Figure 4.2 shows it in a typical displaced position with its 
centerline unstretched (ds = dx). One observes a transverse shearing 
force (V) and a bending moment (M) acting on the left face. Both 
quantities vary along the length of the beam and with time, V = 
V(x,t) and M = M(x,t), whether measured in the original, horizontal 
direction (x), or in the curvilinear direction (s). The bending moment 
is caused by stresses acting normal to the faces, which are zero at 
the unstretched centerline (the “neutral axis” of the beam) and vary 
linearly through the depth. These are the results of the classical 
Euler–Bernoulli beam theory which assumes that plane cross-
sections normal to the centerline remain plane and normal during 
deformation. Also shown in Fig. 4.2 is an external, distributed force 
p = p(x,t), having dimensions of force per unit length.

Summing forces in the direction normal to the centerline at the 
center of the element yields 

 
V V

V
s

ds pds Ads
t

− +






+ = ( )∂
∂

∂
∂

ρ
2

2
w

 
(4.1)

where it has been assumed that the beam is undergoing small ampli-
tude vibrations, so that the slope of the centerline (∂w/∂x) is everywhere 
small, and where ρ is mass per unit volume and A is the cross-sectional 
area. Cancelling terms in (4.1), and dividing by ds, it becomes

 
− + =

∂
∂

∂
∂

V
x

p A
w
t

ρ
2

2
 

(4.2)

where ∂/∂x = ∂/∂s for small slopes.

p 

V 

M 
ds 

V + V 
s ds 

CL
M + M 

s 
ds 

Figure 4.2 Free body diagram of a differential beam element.
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Summing moments about the center of the element and omitting 
some quantities which are higher order differentials, yields

 
− + + ∂

∂






− =M M
M
s

ds Vds 0
 

(4.3)

Here, setting the right-hand-side (R.H.S.) of (4.3) equal to zero implies 
that the rotary inertia of the element is being neglected (it will be 
included in Sec. 4.12). Cancelling terms, (4.3) becomes:

 
V

M
s

M
x

= =
∂
∂

∂
∂  

(4.4)

Returning to the classical, Euler-Bernoulli theory, as it is shown 
in standard strength of materials textbooks, the curvature at any 
location x along the beam is proportional to the bending moment 
there. In detail 

 
M EI

w
x

=
∂
∂

2

2
 

(4.5)

where ∂ 2w/∂x 2 is the linearized (i.e., small slope) curvature, and EI is 
the flexural rigidity (E is Young’s modulus of the material, and I is 
the second moment of the cross-sectional area with respect to the 
neutral axis, or “area moment of inertia”).

Substituting (4.4) and (4.5) into (4.2) results in

 

∂
∂ ∂ ∂

2

2

2

2

2

2x
EI

w
x

A
w
t

p
∂





+ ∂ =ρ

 
(4.6)

In this form the equation of motion is applicable to variable 
cross-section beams, with A = A(x) and I = I(x), and even nonhomo-
geneous beams, with E = E(x) and ρ = ρ(x). Of course, the standard 
Euler–Bernoulli beam theory limits one to linearly elastic 
materials.

If the beams studied are of homogeneous material and constant 
cross-section, (4.6) can be simplified to

 
EI

w
x

A
w
t

p
∂
∂

∂
∂

4

4

2

2+ =ρ
 

(4.7)

which is the equation governing forced vibration of the most simple 
type of beam, the forcing pressure being p = p(x,t).
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For free vibration, p = 0, and (4.7) becomes 

 
EI

w
x

A
w
t

∂
∂ ∂

4

4

2

2 0+ ∂ =ρ
 

(4.8)

4.2  Solution of the Differential Equation  
for Free Vibrations

Following the same separation of variables procedure used previously 
for the string in Sec. 2.2, we assume that the solution to (4.8) may be 
written as

 w(x,t) = XΦ (4.9)

where X = X(x) and Φ = Φ(t). Substituting (4.9) into (4.8) yields

 EIXIVΦ + ρAXΦ″ = 0 (4.10)

where XIV = d4X/dx4. Dividing through (4.10) by XΦ and collecting 
constants in one term, (4.10) may be rewritten as

 

X
X

A
EI

IV

= −





ρ Φ
Φ

"

 
(4.11)

Thus, the variables have been separated, and each side of (4.11) 
must equal a constant, say, α4. We therefore may write

 XIV – α4X = 0 (4.12a)

 Φ″ + ω2Φ = 0 (4.12b)

where  ω α
ρ

2
4

= EI
A

 (4.13)

To solve (4.12a), rewrite it first in operator form as

 (D4 – α4)X = 0 (4.14)

where D = d/dx, D2 = d2/dx2, etc. Equation (4.14) may be factored 
into

 ( )( )D D X2 2 2 2 0+ − =α α  (4.15)
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Because (4.15) is a linear differential equation, its solution is the sum 
of the solutions obtained from the separate equations

 ( )D X2 2 0+ =α  (4.16a) 

 ( )D X2 2 0− =α  (4.16b)

Assuming α2 to be positive, (4.16a) obviously has a solution in 
terms of trigonometric functions, and the solution to (4.16b) may be 
written in terms of either exponential or hyperbolic functions. The 
latter are preferred, for they are either even or odd, and where 
symmetry (or antisymmetry) of motion is present in a problem, the 
solution is simplified. Thus, the solution to (4.12a) becomes

 X x C x C x C x C x( ) sin cos sinh cosh= + + +1 2 3 4α α α α  (4.17)

where C1, . . . , C4 are constants of integration, and where sinh and 
cosh are the hyperbolic sine and cosine functions, respectively. Some 
useful information concerning the hyperbolic functions is given in 
Appendix C. Equation (4.15) shows that the solution for negative α2 is 
the same as (4.17). Solutions for α2 = 0 will be trivial, which may be 
shown by applying any set of boundary conditions.

The solution to (4.12b) is the sinusoidal behavior in time expected 
in a free, undamped vibration problem:

 Φ( ) sin cost D t D t= +1 2ω ω  (4.18)

where D1 and D2 are additional constants of integration. If (4.17) is 
multiplied by (4.18) to obtain w(x,t), the resulting form will have eight 
combined constants of integration. These are all determined from 
the boundary conditions and initial conditions for a particular 
problem, as will be seen later.

4.3  Classical Boundary Conditions—Frequencies and 
Mode Shares

The physical conditions which exist at the two ends of a beam must 
be expressed mathematically as boundary conditions, which are then 
applied to the solution (4.17). Two types of useful end conditions 
often found on beams have already been illustrated in Fig. 4.1—
clamped and simply supported. The free end is another commonly 
encountered situation. The corresponding boundary conditions for 
an end, say x = ℓ, are listed below:

Clamped: w
w
x

= ∂
∂

=0 0,  (4.19)
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Simply supported: w = 0, M
w

x
= → =0 0

2

2
∂
∂

 (4.20)

Free: M
w

x
= → =0 0

2

2
∂
∂

, V
w

x
= → =0 0

3

3
∂
∂

 (4.21)

Expression of the moment and shear boundary conditions in terms 
of w as given above is accomplished with the use of (4.5) and (4.4), 
respectively.

Considering all “simple” boundary conditions which are 
mathematically possible, they may be written as

 w V= =0 0 or   (4.22a)

 
∂
∂
w
x

M= =0 0 or   (4.22b)

Taking all combinations of (4.22), it is clear that there are four. 
Three have already been described in (4.19), (4.20), and (4.21). The 
fourth possibility is:

 
∂
∂
w
x

V= =0 0,  (4.23)

This condition is almost never considered in the published literature, 
because it is seldom encountered in structural applications. It could 
be found with a beam having an end cut normal to its neutral axis 
against a lubricated, rigid wall. Otherwise, it is virtually impossible 
to impose a physical constraint which prevents rotation at an end 
without causing significant shearing force during the vibratory 
motion, because of the translational inertia generated by the 
restraining device.

Vibration frequencies and mode shapes are determined by 
substituting (4.17) into four boundary conditions, two at each end 
of the beam. This yields a set of homogeneous simultaneous 
equations in the four unknowns C1, . . . ,C4. For a nontrivial solution, 
the determinant of the coefficient matrix is set equal to zero. The 
roots of this determinant are the eigenvalues, which are typically 
αℓ. From (4.13), the corresponding nondimensional frequencies are 
found:

 
β α ω ρ2 2 2= =( ) 

A
EI  

(4.24)

There are infinite sets of eigenvalues and nondimensional 
frequencies for each problem. Substituting any eigenvalue into any 
three of the four homogeneous boundary condition equations 
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permits one to solve for the corresponding amplitude ratios (or 
eigenvectors) C2/C1, C3/C1, and C4/C1. These determine the corres-
ponding eigenfunction, which is (4.17) rewritten as

 
X x C x

C
C

x
C
C

x
C
C

x( ) sin cos sinh cosh= + + +




1

2

1

3

1

4

1
α α α α

 
(4.25)

The mode shape X/C1 may then be plotted. The determination of  
C1 depends on the initial conditions (see Sec. 4.6).

Two example problems will now be solved to demonstrate the 
application of the procedure described above.

Example 4.1 Determine the free vibration frequencies and mode shapes for a 
beam of length ℓ which is simply supported at both ends.

Solution
From (4.20) the boundary conditions may be stated as

w t X

w
x

t X

w t X

w
x

( , ) ( )

( , ) ( )

( , ) ( )

0 0 0 0

0 0 0 0

0 0

2

2

2

2

= → =

∂ = → ′′ =

= → =

∂

∂

∂

 

(( , ) ( ) t X= → ′′ =0 0

Substituting (4.17) into the first two boundary conditions results in C2 =  
C4 = 0. The last two conditions will result in

sin sinh

( ) sin ( ) sinh

α α

α α α α

 

   −


















 =









2 2

1

3

0
0

C
C

Setting the determinant of the coefficient matrix equal to zero, and expanding 
it, yields:

2 02( ) sin sinhα α α  i  =

Both αℓ = 0 and sinh αℓ = 0 (which implies α = 0) give trivial solutions  
(ω = 0). The nontrivial solution is

sin ( , , , )α α π = → = = … ∞0 1 2m m

Substituting this result into either of the two equations arising from the second 
two boundary conditions gives C3 = 0. Thus, this problem yields the same, 
simple, sinusoidal mode shapes as were seen previously for a string having 
both ends fixed (Sec. 2.2). The nondimensional frequencies are

ω ρ π π π …2 2 2 24 9
A

EI
= , , ,
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Example 4.2 Repeat Example 4.1 for a beam having both ends free. 

Solution
The preceding example was fortuitous in that two boundary conditions 
immediately eliminated two constants, resulting in a determinant of only 
second-order generated by the remaining two conditions. If the same procedure 
were followed for the present problem, a fourth-order determinant would result, 
which would be considerably more complicated to evaluate. But the determinant 
orders may always be reduced if symmetry is present and one takes advantage 
of it. Then all vibration modes will be either symmetric or antisymmetric. To do 
so, one locates the origin of the coordinate system at the center of the beam.

Symmetric modes: X x C x C x( ) cos cosh= +2 4α α

′′ ±



 = = − +

′′′ ±



 = =

X C C

X C


i


i




2

0
2 2

2
0

2
2

4
2

2

α α α α
cos cosh

αα α α α3
4

3

2 2
i


i


sin sinh+ C

Expanding the frequency determinant, we have

sin cosh cos sinh
β β β β
2 2 2 2

0i i+ =
 
(β = αℓ)

or       tan tanh
β β
2 2

0− =

This has roots β = 0, 4.730, 10.996 . . . . The zero root in this case corresponds to a 
rigid body translational motion. From the boundary conditions the amplitude 
ratio is found to be

C
C

4

2
= − =sin

sinh
cos

cosh
β
β

β
β

/2
/2

/2
/2

which determines the mode shape completely for each β (except β = 0).

Antisymmetric modes: X x C x C x( ) sin sinh= +1 3α α

′′ ±



 = = − +

′′′ ±



 = = −

X C C

X C


i


i




2

0
2 2

2
0

1
2

3
2α α α α

sin sinh

11
3

3
3

2 2
α α α α
i


i


cos cosh+ C

Frequency equation: sin cosh cos sinh
β β β β
2 2 2 2

0i i− =

or       tan tanh
β β
2 2

0− =

Roots: β = 0 (rigid body rotation), 7.853, 14.137, . . .

Amplitude ratios: 
C
C

3

1

2
2

2
2

= =sin /
sinh /

cos /
cosh /

β
β

β
β

 (except for β = 0)

If one did not consider symmetry, but took the coordinate origin at one end of 
the beam, and expanded the resulting fourth-order determinant, after some 
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algebra and use of trigonometric identities, the following remarkably simple 
frequency equation would result:

cos cosh ( )β β β αi = =1

Using identities for cos (β/2) and cosh (β/2) (see Appendix C), one may show 
that this equation may be expanded into

or

tan tanh

tan tanh tan tanh

2 2

2 2
0

2 2 2 2
0

β β

β β β β

− =

+



 −



 =

which contains both frequency equations obtained previously for the symmetric 
and antisymmetric modes taken separately.

In Example 4.2, two mode shapes which corresponded to ω = 0 
were found. These were “rigid body” modes. Although they are not 
what we would usually call free vibration modes, they may be 
required in a forced vibration analysis. Therefore, a clear deter-
mination of them will now be made.

If ω = 0, then α = 0, and (4.14) becomes

 
d X
dx

4

4 0=
 

(4.26)

The solution to (4.26) is

 X x C C x C x C x( ) = + + +1 2 3
2

4
3  (4.27)

For the beam with both ends free, and the coordinate origin chosen 
at the center, for the symmetric modes, X(x) = C1 + C3x2, the condition 
X″′(±ℓ/2) = 0 is assured, and

 ′′ ±



 = → = ∴ =X C X x C

2

0 03 1, ( )  (4.28)

For the antisymmetric modes, X(x) = C2x + C4x3

 
′′′ =

′′ =










→ = ∴ =
±

±




























X

X

C X x C x




2

2

0

0

4 0 2, ( )

 (4.29)

Thus, X = C1 corresponds to rigid body translation, and X = C2x 
corresponds to rigid body rotation (of small amplitude).

In a similar way, it may be shown that the simply supported-free 
(SS–F) beam has one rigid body mode (rotation).

A summary of the nondimensional free vibration frequencies  
for all six combinations of classical end conditions for beams is given 
in Table 4.1. It is remarkable that the SS–F and F–F beams have  

113
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te

r Fo
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m C–C C–SS C–F SS–SS SS–F F–F

1 22.373 15.418 3.5160 9.8696 0 0

2 61.673 49.965 22.034 39.478 15.418 0

3 120.903 104.248 61.697 88.826 49.965 22.373

4 199.859 178.270 120.902 157.914 104.248 61.673

5 298.556 272.031 199.860 246.740 178.270 120.903

>5 (2m + 1)2 π 2/4 (4m + 1)2 π 2/16 (2m − 1)2 π2/4 m2 π 2 (4m − 3)2 π 2/16 (2m − 3)2 π 2/4

Table 4.1 Frequency Parameters β ω ρ2 2=  A EI/  for Beams

113
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the same frequencies as the C–SS and C–C beams, respectively, except 
for the one and two zero frequencies corresponding to rigid body 
modes. However, their mode shapes are considerably different. In 
Example 4.1, it was shown for SS–SS beams that the eigenvalues β = αℓ, 
which by (4.24) are the square roots of the frequency parameters, are 
all separated by π. Table 4.1 shows that the eigenvalues for all end 
conditions also become separated by π as higher frequencies are 
considered. As written, the eigenfunction in each case has its 
coordinate origin at the first-mentioned end of the beam.

Frequency equations and eigenfunctions for each of the six cases 
are summarized below.
Clamped–clamped:

 cos coshβ βi = 1  (4.30a)

 X = − − −(cosh cos ) (sinh sin )βξ βξ γ βξ βξ  (4.30b)

γ = 0 98250 1 00078 0 99997 1 00000. , . , . , . , …

Free–free:

 cos coshβ βi = 1 (4.31a)

 X = + − +(cosh cos ) (sinh sin )βξ βξ γ βξ βξ  (4.31b)

γ = same as clamped-clamped 

Clamped–SS:

 tan tanhβ β=  (4.32a)

 X = − − −(cosh cos ) (sinh sin )βξ βξ γ βξ βξ  (4.32b)

γ = 1.00078, 1.00000, . . .

Free–SS:

 tan tanhβ β=  (4.33a)

 X = + − +(cosh cos ) (sinh sin )βξ βξ γ βξ βξ  (4.33b)

γ = same as clamped-SS

Clamped–free:

 cos coshβ βi = −1  (4.34a)

 X = − − −(cosh cos ) (sinh sin )βξ βξ γ βξ βξ  (4.34b)

γ = 0 73410 1 01847 0 99922 1 00003 1 00000. , . , . , . , . ,…
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SS–SS:

 sin β = 0  (4.35a)

 X = sin βξ  (4.35b)

In the above equations, ξ = x/ℓ is measured in each case from  
the left end of the beam. The values of β are the square roots  
of the frequency parameters listed in Table 4.1. More accurate  
values of β and γ are available in the classical study of Young and 
Felgar [1].

Figure 4.3 depicts the first four mode shapes for each of the six 
cases. The rigid body modes of the SS–F and F–F beams are included. 
For each of the six cases, the first mode has no node point, the 
second mode has one node point, and each higher mode has one 
additional node point. For the higher modes of the SS–F beam, 
conservation of angular momentum about the hinged left end must 
be preserved at all times. Similarly, the higher modes of the F–F 
beam must conserve translational momentum, as well as rotational 
momentum about the center point of the equilibrium line for the 
beam. In Fig. 4.3 it is also observed that all mode shapes for the 
C –C, SS–SS, and F–F beams alternate between being symmetric 
and being antisymmetric.

C-C

1 2

MODE NUMBER

3 4

SS-SS

C-SS

C-F

SS-F

F-F

Figure 4.3 The first four mode shapes for beams with different boundaries.
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4.4  Other Boundary Conditions—Added Masses  
or Springs

The mathematical boundary conditions at a clamped end of a beam 
as used in Sec. 4.3 were zero displacement and zero rotation. However, 
in reality this never occurs. Even a steel beam perfectly welded to an 
infinitely large constraint block (i.e., an infinite half-space) would 
undergo rotation at this “clamped” end during vibration. This may 
cause significant decreases in the natural frequencies, especially the 
lower ones, as was shown in an interesting study by MacBain and 
Genin [2] for a cantilever. In real structures the rigid constraints 
acting on beams must often be replaced by elastic constraints. Then, 
the translational and rotational stiffnesses of the structure at the 
attachment end must be known from other analyses. Moreover, the 
mass of the attached structure may significantly affect the beam 
vibration frequencies and mode shapes.

Figure 4.4 shows a beam of length ℓ having rigid masses M1 and 
M2 attached to its ends. The masses are supported by translational 
springs at each end, having stiffnesses k1 and k2. Rotational springs 
with stiffnesses K1 and K2 are also shown attached to the masses. The 
origin of the x-coordinate system is placed off the beam to emphasize 
that it may be chosen anywhere.

Free vibration frequencies and mode shapes for the beam of 
Fig. 4.4 may be straightforwardly determined by using the solution 
(4.17) of the equation of motion and applying the proper boundary 
conditions at the ends. To determine the proper boundary conditions, 
it is essential that free body diagrams be shown for the two end 
masses. This is done in Fig. 4.5. The masses are shown having positive 
displacements (w) and positive rotations (∂w/∂x). These cause forces 
and moments within the external springs which act on the masses as 
shown. An incremental length of beam is shown attached at the 
proper side of each mass, and the internal shearing force (V) and 
bending moment (M) in each is also indicated, drawn in the positive 
directions as previously used in Fig. 4.2.

ℓ

Figure 4.4 A beam with springs and rigid masses and springs at each end. 
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For mass M1, summing forces in the z-direction (assuming small 
slopes, as usual):

 
− − = =V k w M

w
t

x x1 1

2

2 1
∂
∂

( )at 
 

(4.36a)

Summing moments about the center of mass C1, we obtain

 
M K

w
x

V
b

I
t

w
x

x xM− − 



 =







=1
1

2

2 12 1

∂
∂

∂
∂

∂
∂

i ( )at   
 

(4.36b)

where IM1
 is the mass moment of inertia of M1 about C1. The term on 

the R.H.S. of (4.36b) is the rotary inertia of M1, which could be large. 
Similarly, for mass M2 one obtains the following equations of 

motion:

 
V k w M

w
t

x x− = =2 2

2

2 2
∂
∂

( )at 
 

(4.37a)

 
− − − 



 =







=M K
w
x

V
b

I
t

w
x

x xM2
2

2

2 22 2

∂
∂

∂
∂

∂
∂

i ( )at 
 

(4.37b)

It is important to note that in writing (4.36) and (4.37):

1. Positive directions for force and moment summations were 
chosen in the directions of positive displacement and 
rotation, so that the inertia terms may be left with positive 
signs.

2. The signs of V and M change from (4.36) to (4.37).

Figure 4.5 Free body diagrams for the two end masses.
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Errors in signs due to incorrect reasoning in either of the above are 
easily made. A single sign error will typically yield worthless results 
for free vibration frequencies and mode shapes.

Assuming that w(x,t) = X(x) sin ωt or X(x) cos ωt for free vibrations, 
and using (4.4) and (4.5), then (4.36) and (4.37) become:

  
EIX X K I X

EIX k M X

EIb
M′′ − ′′′ − − ′ =

′′′ + − =















1
2 1 1

2

1 1
2

0

0

( )

( )

ω

ω







=at x x1

 

(4.38)

 
EIX X K I X

EIX k M X

EIb
M′′ − ′′′ − − ′ =

′′′ + − =















2
2 2

2

2 2
2

2
0

0

( )

( )

ω

ω







=at x x2

 

(4.39)

Substituting (4.17) into (4.38) and (4.39) yields four homogeneous 
equations in the unknown constants C1, ... ,C4. The fourth-order 
frequency determinant is written and eigenvalues αl are determined 
by plotting the determinant versus αl and finding its zeros.

The situation described above is extremely general, and many 
important problems may be solved as special cases. One example is 
the simply supported beam having rotational springs at both ends. 
In that case, k1 = k2 = ∞ and M1 = M2 = 0 in Fig. 4.4 and in (4.38) and 
(4.39). Another interesting example which is a special case will now 
be taken up.

Example 4.3 A beam of length ℓ has one end completely free. The other end 
is constrained by a translational spring and a rotational spring, as shown in 
Fig. 4.6.

A. Derive the characteristic equation for free vibration frequencies.
B.  Show that the characteristic equations for free–free, hinged– free, and 

clamped–free beams arise as special cases.
C.  Let / /k EI K EI K1

3
1 = = . Determine K so that the fundamental frequency 

is one-half that of a clamped–free (i.e., cantilever) beam.

ℓ
K1

K1

Figure 4.6 A beam with one end constrained by springs and the other end 
completely free.
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D.  For the value of K determined in Part C, calculate the first four 
nondimensional frequencies of the beam. Compare these with the 
corresponding ones for F–F and C–F beams.

E.  Plot the mode shape of the fundamental frequency in Part D.

Solution
Part A: Choosing the coordinate origin at the left end and substituting (4.17) 
into the boundary conditions at x = 0 and x = ℓ:

−
− − −

− −
−

 β β
β β

β β β β
β β β β

θ θ

3 3K K
K K

W W

sin cos sinh cosh
cos sin cosh sinh





































=





















C
C
C
C

1

2

3

4

0
0

0
0

where P, KW, and Kθ are the nondimensional parameters:

β α θ= = =
 

, ,K
k
EI

K
K
EIW

1
3

1

Expanding the frequency determinant and using cos sin2 2 1β β+ =  and 
cosh sinh2 2 1β β− = , it yields the characteristic equation:

K K K

K
W Wθ

θ

β β β β β β β

β β

(cos cosh ) (sin cosh cos sinh )

(sin co

i i i

i

+ − −

−

1
3 ssh cos sinh ) (cos cosh )β β β β β β+ − − =i i4 1 0

Part B: For an F–F beam, KW = Kθ = 0, yielding (4.31a). For an SS–F beam, divide 
through the above equation by KW; then set KW → ∞, Kθ = 0, which yields (4.33a). 
For a C–F beam, divide through by KW  Kθ; then set KW → ∞, Kθ → ∞, which yields 
(4.34a). In the above steps we are careful to divide by infinity, but not by zero.

Part C: The fundamental frequency of a cantilever beam is ω ρ= 3 5160 4. /EI A
(see Table 4.1). Therefore, take β = =3 5160 2 1 3259. / . . Using this, and setting 
KW = Kθ = K, the characteristic equation becomes

1 4887 7 5772 1 5803 02. . .K K− + =

This has two roots: K = 0.2179 and 4.8719. However, substituting K = 0.2179 
into the characteristic equation and solving for β yields β = 0.6423, 1.3259, 4.7742, 
7.8806, and the value 1.3259 corresponds to the second frequency for this beam 
having small end stiffness, so this root is inappropriate.

Part D: Using the second root (K = 4.8719) yields β = 1.3259, 2.3690, 5.1972,  
8.2177. Squaring these values permits comparison of nondimensional 
frequencies with those of the F–F and C–F beams, as seen below:

Mode 
number

ω ρ2 A EI/

K = 0 (F–F) K = 4.8719 K= ∞ (C–F)

1 0 1.7580 3.5160

2 0 5.6126 22.034

3 22.373 27.011 61.697

4 61.673 67.531 120.902
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As expected, the frequencies of the elastically constrained beam fall between 
those of the F–F and C–F beams.

Part E: To plot mode shapes it is first necessary to determine the eigenfunctions. 
For the desired values of KW = Kθ = K = 4.8719 and β = 1.3259, one may solve 
any three of the four simultaneous equations shown in Part A for the ratios 
C2/C1, C3/C1, and C4/C1. This part of the problem would be simplified if the 
coordinate origin had been chosen at the right end, rather than the left. Then 
the free end conditions would require that C1 = C3 and C2 = C4, and (4.17) could 
be written as:

X
C
C

( ) (sin sinh ) (cos cosh )ξ βξ βξ βξ βξ= + + +2

1

where ξ = x/ℓ. Then C2/C1 is determined from either of the two boundary 
conditions at the left end as

C
C

K
K

W

W

2

1

3

3= − + +
+ − +

β β β β β
β β β β

(cos cosh ) (sin sinh )
(sin sinh ) (cos coosh )

(sin sinh ) (cos cosh )
(cos cosh ) (sin

β

β β β β β
β β β β

θ

θ
= − − − +

− + −
K
K ssinh )β

The fundamental mode shape for KW = Kθ = K = 4.8719 is shown in Fig. 4.7. It 
is seen that the elastically constrained left end translates and rotates while the 
beam undergoes flexure.

4.5  Orthogonality of the Eigenfunctions
The eigenfunctions of free, undamped vibrations of beams form an 
orthogonal set of functions. The property of orthogonality will be 
found useful in dealing with initial conditions (Sec. 4.6) and with 
forced vibrations (Sec. 4.8). In order to take advantage of this property 

1.0 

X 
Xmax 

0.5 

0 
0 0.5 1.0

Figure 4.7 The fundamental mode shape for a beam with elastic supports at 
one end and the other free. KW = Kθ = K = 4.8719.
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later, the orthogonality property will be proven in this section, first 
for the classical type of boundary conditions seen in Sec. 4.3, and 
secondly for a representative problem of Sec. 4.4.

Consider the mth free vibration mode of a beam. In order for it to 
satisfy the equation of motion, its eigenfunction must be a solution of 
(4.12a). That is,

 X Xm
IV

m m− =α 4 0  (4.40)

where αm is the constant obtained from the mth eigenvalue, βm = αmℓ, 
as described in Sec. 4.3 and 4.4.

Consider further another mode, designated by the subscript n. 
Then its eigenfunction must satisfy

 X Xn
IV

n n− =α 4 0  (4.41)

Multiply (4.40) and (4.41) by Xn and Xm, respectively, and subtract 
the two equations, yielding

 X X X X X Xn m
IV

m n
IV

m n m n− − − =( )α α4 4 0  (4.42)

Integrating over the length of the beam yields

 
( ) ( )α αm n m n n m

IV
m n

IVX X dx X X X X dx4 4
0 0

− = −∫ ∫
 

 
(4.43)

Let us integrate by parts a typical term of the R.H.S.:

 

X X dx X X X X dx

X X X X

n m
IV

n m n m

n m n m

= ′′′[ ] − ′ ′′′

= ′′′[ ] − ′ ′′[
∫ ∫0 0 0

0

  

 ]] + ′′ ′′∫0 0

 
X X dxn m  

(4.44)

Similarly,

 
X X dx X X X X X X dxm n

IV
m n m n m n= ′′′[ ] − ′ ′′[ ] + ′′ ′′∫ ∫0 0 0 0

   

 
(4.45)

Substituting (4.44) and (4.45) into (4.43) gives

 

( )α αm n m n n m n m

m n m

X X dx X X X X

X X X

4 4
0 0 0

0

− = ′′′[ ] − ′ ′′[ ]
− ′′′[ ] + ′

∫
  

 ′′′[ ]Xn 0


 (4.46)

For the classical boundary conditions of Sec. 4.3, (4.22) req uires 
that either Xm = 0 or ′′′Xm = 0, and that either ′Xm = 0 or ′′Xm = 0. Similarly, 
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either Xn = 0 or ′′′Xn  = 0, and either ′Xn = 0 or ′′Xn  = 0. Thus, all bracketed 
terms on the R.H.S. of (4.46), when evaluated at the boundaries x = 0 
and x = ℓ, are zero. Thus, (4.46) becomes

 
( )α αm n m nX X dx4 4

0
0− =∫



 
(4.47)

If the modes have different frequencies, which is typically the case, 
then αm ≠ αn, and

 
X X dx m nm n = ≠∫0

0


( )
 

(4.48)

which is the orthogonality property. Using this, from (4.40) one can 
also show that

 
X X dx m nn m

IV = ≠∫0
0


( )

 
(4.49)

and from (4.44)

 
′ ′′′ = ≠∫ X X dx m nn m0

0


( )
 

(4.50a)

 
′′ ′′ = ≠∫ X X dx m nn m0

0


( )
 

(4.50b)

To deal with orthogonality for the more general boundary 
conditions described in Sec. 4.4, consider again the beam having 
elastic translational and rotational constraints at the left end (x = 0), 
and a free right end (x = ℓ), studied in Example 4.3. For the reasons 
given above, the bracketed quantities on the R.H.S. of (4.46) will all be 
zero for x = ℓ. At x = 0, the boundary conditions become:

 EIX k X′′′ + =1 0  (4.51a)

 EIX K X′′ − ′ =1 0  (4.51b)

for both Xm and Xn. Solving (4.51a) for Xm and Xn in terms of ′′′Xm  and 
′′′Xn , respectively, and (4.51b) for ′Xm  and ′Xn  in terms of ′′Xm  and ′′Xn , 

respectively, and substituting into the R.H.S. of (4.46), it is found that 
all terms cancel, yielding again (4.47).

Of course, the eigenfunctions could be proven orthogonal by 
substituting them in detail into (4.48) and evaluating the integral 
directly. But this would typically be much more complicated than the 
general procedures laid out above.
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4.6  Initial Conditions
From the results of Sec. 4.2, a general solution for the free, undamped, 
vibration displacement may be expressed as

 
w x t X x A t B tm m m m m

m

( , ) ( )( sin cos )= +
=

∞

∑ ω ω
1  

(4.52)

where Xm and ωm are the eigenfunction and natural frequency of the 
mth mode, respectively. Thus, a general motion may be represented 
by the superposition of free vibration modes, each vibrating at its 
own frequency.

Suppose the beam is given an initial displacement and velocity of 
arbitrary forms, f(x) and g(x), respectively, which are consistent with 
the boundary conditions at the ends, i.e.,

 w x f x( , ) ( )0 =  (4.53a)

 

∂
∂
w
t

x g x( , ) ( )0 =
 

(4.53b)

But, from (4.52),

 
w x B Xm m

m

( , )0 = ∑
 

(4.54a)

 

∂
∂
w
t

x A Xm m m
m

( , )0 = ∑ ω
 

(4.54b)

Therefore,

 
f x B Xm m

m

( ) = ∑
 

(4.55a)

 
g x A Xm m m

m

( ) = ∑ ω
 

(4.55b)

Multiply both sides of (4.55a) by Xn, where Xn represents the nth 

eigenfunction, and integrate over the length of the beam; i.e.,

 
f X dx B X X dxn m m n

m

=∫ ∑∫0 0

 

 
(4.56)

Interchanging the order of summation and integration on the  
R.H.S. of (4.56), and considering the orthogonality of Xm and Xn as 
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expressed by (4.48), it is seen that all terms of the infinite sum on the 
R.H.S. of (4.56) vanish, except when m = n. Thus, (4.56) yields

 

B
f X dx

X dx
m

m

m

= ∫
∫
0

2
0





 

(4.57)

Following the same procedure, one obtains from (4.55b)

 

A
g X dx

X dx
m

m m

m

= ∫
∫

1
0

2
0

/ω




 

(4.58)

Equations (4.57) and (4.58) are formulas which may be straight-
forwardly used to determine the amplitude components Am and Bm 
of each mode as the beam responds to initially imposed displacements 
and/or velocities. In the special case when the beam is given an initial 
displacement shape and released from rest, then g = 0 and (4.58) tells 
us that Am= 0. Conversely, if the beam were in its straight, equilibrium 
position and subjected to an impulsive loading of short duration (i.e., 
an impact), the subsequent free vibration motion would begin with 
f = 0, whence Bm = 0.

The eigenfunctions X(x) given previously in (4.30–4.35) for five of 
the six cases of combinations of simple edge conditions have already 
been normalized, that is, the dominator integrals needed for (4.57) 
and (4.58) evaluate to ℓ. The simple sine function given by (4.35b) is 
not normalized. The integral of its square is ℓ/2.

Example 4.4 A cantilever beam is initially deformed by a statically applied end 
moment M0, as depicted in Fig. 4.8. Suddenly the moment is released.

Make a plot of δ(t)/δ0 versus t/τ1 for 0 < t/τ1 < 6, where δ(t) and δ0 are the 
vibratory and static displacements of the free end, respectively, and where τ1 is 
the first natural period of free vibration. Is δ(t) a periodic function?

Figure 4.8 A cantilever beam deformed by a statically applied end moment M0.
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Solution
It is first necessary to determine the static displacement shape of the beam, 
from which it is released from rest. This is found by integrating the equation 
of motion (4.8) in the special case of equilibrium, i.e.,

EI
d w
dx

4
0

4 0=

which yields w C C x C x C x0 0 1 2
2

3
3= + + + . Applying the two boundary 

conditions at each end, the four constants are determined, and the initial, static 
displacement is found to be

w x f x
M x

EI
w

M
EI0

0
2

0 0
0

2

2 2
( ) ( ) , ( )= = = =and 

δ

Thus, Am = 0, and the Bm are determined by means of (4.57), where Xm(x) for  
the cantilever beam is given by (4.34b).

Evaluation of integrals needed for the numerator (4.57) is rather complicated. 
It may be done exactly, wherein considerable integration by parts is required 
for the numerator integrals. (As mentioned above, the denominator of (4.57) 
evaluates as ℓ.) Alternatively, the integration may be done numerically. 
In either case, the constants β and γ in the eigenfunction (4.34b) must be 
determined with precision if accurate values of Bm are to be obtained. The 
first five Bm are

B1 = 0.44539
B2 = −0.03937
B3 = 0.00825
B4 = −0.00301
B5 = 0.00142

It is seen that B1 is by far the largest coefficient, and so the response of the first 
mode strongly dominates the ensuing motion. This is as expected, because the 
parabolic initial shape approximates the first vibration mode shape reasonably 
well. If the beam were initially displaced in exactly the first mode shape, it 
would vibrate subsequently in that single mode—no other modes would be 
involved at all.

The graph shown in Fig. 4.9 is a plot of δ(t)/δ0 versus t/τ1, where τ1 = 2π/ω1 is 
the fundamental period, for six cycles of the response of the first mode. It is seen 
that, while the first mode dominates the response, the higher frequency modes 
make small contributions to the motion which disturb its smoothness.

Moreover, the motion is not periodic in time. If only two modes were 
superimposed the motion would be almost, but not exactly, periodic. For two 
superimposed modes to result in periodic motion, the ratio of the frequencies 
(ωm/ωn) must be a rational number. If more modes are involved, then all the 
frequency ratios must be rational numbers to have periodic motion. For the 
most simple string problems (see Secs. 2.2 and 2.3) and for beams having both 
ends simply supported this is the situation, but in general, it is not.

For example, consider two modes having a frequency ratio of exactly 1.4 = 
14/10 = 7/5. Then the superimposed motion would be periodic, with a period 
of 5τ1, or 7τ2 , where τ1 and τ2 are the periods of the two modes. If the ratio were 
exactly 1.41 = 141/100, then the superimposed period would be 100τ1 = 141τ2 . 
But if ω2/ω1 = 2  = 1.41421356. . ., then the superimposed motion would never 
repeat.

Figure 4.10 shows the shape of the beam at various times taken during the 
period of the first mode (τ1). The beam passes through the equilibrium position 
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after a quarter cycle of motion with a shape that has significant curvature. At 
the end of a half cycle, the shape is not the mirror image of the initial shape, as 
it would be if only a single mode were excited.

The nonperiodic dynamic behavior of a cantilever beam subjected to various 
types of initial static loadings, and then released, is discussed in more detail 
in Ref. [3].
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Figure 4.9 Tip displacement of a cantilever beam subjected to a bending 
moment at the end which is then released. 
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Figure 4.10 The shape of the cantilever beam with a released end moment at 
various times.
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4.7  Continuous and Discontinuous Beams
Figure 4.11 shows a beam of length ℓ supported at its ends (A and C) 
and at an intermediate point (B). Such a beam is often called 
“continuous” or “two-span.” The span lengths are ℓ1 and ℓ2, as shown. 
It is assumed that the amplitude of free vibrations is sufficiently 
small so that the weight of the beam will keep it in contact with all 
three supports at all times. If not, then knife-edge supports are added 
to the top side of the beam at the same locations. If contact were 
permitted to break at any of the points, the problem would become 
much more complicated.

One straightforward approach to solving the free vibration 
problem for the continuous beam depicted in Fig. 4.11 is to divide the 
beam into two parts of length ℓ1 and ℓ2, each having its displacement 
w1 and w2, respectively. Each displacement must satisfy the equation 
of motion (4.8) for its own region of applicability, as well as the proper 
continuity conditions at point B. Boundary conditions at A and C 
must also be enforced.

In detail, for the beam of Fig. 4.11, the equations of motion are
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A
w
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x
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∂

+ ∂
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(4.59a)
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(4.59b)

Solutions to each equation may be found in the forms of (4.9), 
(4.17), and (4.18). Applying the boundary conditions at both ends  
(x1 = 0 and x2 = 0) reduces them to the following.

 w x t A x B x t1 1 1 1 1 1 1( , ) ( sin sinh )sin= +α α ω  (4.60a)

 w x t A x B x t2 2 2 2 2 2 2( , ) ( sin sinh )sin= +α α ω  (4.60b)

A B 

x2 x1 

C 
ℓ1 ℓ2

Figure 4.11 A simply supported continuous beam.
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The frequency ω must be the same in both parts of the beam to  
permit subsequent satisfaction of the continuity conditions at B. In 
accordance with (4.13), it is related to α1 and α2 by

 
α ω ρ α α1

4
2

2
4 4= = ≡A

EI  
(4.61)

Since we will only concern ourselves with finding frequencies  
and mode shapes, and not in applying initial conditions, the sin (ωt) 
form in (4.60) is adequate.

The conditions at the common support point B are

 w t1 1 0( , ) =  (4.62a)

 w t2 2 0( , ) =  (4.62b)

 

∂
∂

∂
∂

w
x

t
w
x

t1

1
1

2

2
2( , ) ( , ) = −

 
(4.62c)

 M t M t( , ) ( , ) 1 2=  (4.62d)

where careful note of the sign differences in the slopes of (4.62c) 
should be made. The shearing force across B is, of course, not 
continuous, and an external reaction (R) is supplied by the support. 
This reaction may be found later, in terms of a unit amplitude of 
vibratory displacement, after the problem is solved. The downward 
force RB required for positive w1 and w2 is found from an infinitesimal 
length of beam taken across point B, and is

 
R V t V t EI
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(4.63)

The reactions at points A and C may be found in a similar manner.
Substituting (4.60) into the four conditions (4.62) yields four 

homogeneous equations in A1, B1, A2, and B2, which may be written 
in matrix form as

 

sin sinh
sin sinh

cos cosh cos cosh
sin sinh sin

β β
β β

β β β β
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0 0
0 0 r r

r r−
− rr r
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2
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0
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(4.64)
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where β = αℓ1 and r = ℓ2/ℓ1. The nondimensional frequencies β 2 are 
found from the roots of the fourth-order determinant arising from 
(4.64). The eigenvector components B1/A1, A2/A1, and B2/A1 are then 
found from any three of the equations in (4.64), which then determines 
the mode shapes according to (4.60).

It should be noted that in the special case when r = 1 (ℓ2 = ℓ1),  
the problem simplifies greatly. In that case the beam is symmetri-
cally supported and all mode shapes are either symmetric or 
antisymmetric. The symmetric mode shapes and frequencies are the 
same as those of an S–C beam of length ℓ1, and the antisymmetric 
ones are those of an S–S beam. Thus, for r = 1, the fundamental mode 
is antisymmetric.

Problems involving multiple spans may be solved in a similar 
manner. However, the amount of work involved increases 
considerably as the number of spans is increased. For general end 
conditions a frequency determinant of order 4N must be 
generated, where N is the number of spans. The problem of Fig. 
4.11 required only a fourth-order determinant because the choice 
of coordinate origins at the two simply supported ends to more 
easily satisfy the four end conditions is readily seen. 

An example of a discontinuous beam is seen in Fig. 4.12. In this 
case the depth of the beam is discontinuous, which changes the 
values of A and I in the equation of motion (4.8) in passing from one 
part of the beam to another. Similarly, a discontinuity in material 
could occur, causing abrupt changes in E and ρ. Still another type of 
discontinuity would be the imposition of a mass or a spring at a point 
along a beam. The vibration frequencies and mode shapes of any 
such discontinuous beams may be found straightforwardly by the 
method described earlier in this section. That is, separate solutions to 
(4.8) are taken. Two boundary conditions at each end and four 
conditions at the discontinuity point yield the needed characteristic 
determinant. For the beam of Fig. 4.12 the four conditions at point B 
are continuity of w, ∂w/∂x, M, and V.

A B C 

ℓ1 ℓ2

Figure 4.12 An example of a discontinuous beam.
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4.8  Forced Vibrations
Generalizing the equation of motion (4.7) for the forced vibration of 
uniform cross-section beams, it becomes
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(4.65)

where p = p(x,t) is a distributed force (with units of force/length) and 
c is a viscous damping coefficient [with units of force  time/(length)2] 
depending on such parameters as the viscosity of the surrounding 
medium and the cross-sectional shape of the beam. The “effective 
mass” of the surrounding medium (see Sec. 2.8) is neglected here. If 
the material damping within the beam is considered, then E is 
replaced by E(1+iη), as for bars (see Sec. 3.6).

In the previous chapters two exact methods were developed for 
the analysis of forced vibrations of strings and bars—eigenfunction 
superposition and closed form. Both are applicable to beam vibration 
analysis.

Following the eigenfunction superposition method, it is assumed 
that the loading may be expressed as

 
p x t p t X x

m
m m, ( )( ) = ( )

=

∞

∑
1  

(4.66)

where Xm is the eigenfunction of free, undamped vibration of the mth 

mode of the beam in question. Eigenfunctions for the six classical 
sets of boundary conditions were given by (4.30b)–(4.35b). Multiplying 
both sides of (4.66) by a typical eigenfunction Xn, integrating over the 
length of the beam, and taking advantage of the orthogonality 
relationship developed in (4.48), a formula for determining the pm(t) is 
obtained:
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(4.67)

Further a solution to (4.65) is assumed as

 
w x t t X xm m
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(4.68)
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Substituting (4.66) and (4.68) into (4.65) gives:

 
EI X A X c X p X

m
m m

IV

m
m
n

m
m

m m
m

m m∑ ∑ ∑ ∑+ + =Φ Φ Φρ ’

 
(4.69)

However, the Xm are solutions of the free vibration equation

 EIX A Xm
IV

m m− =ρ ω 2 0  (4.70)

Substituting EIX A Xm
IV

m m= ρ ω 2  into (4.69), multiplying both sides by 
Xn, integrating over the length of the beam, and making use of the 
orthogonality property of the eigenfunctions, there results

 ρ ρ ωA c A p t mm m m m mΦ Φ Φ’’ ’ ( ) ( , , , )+ + = = ∞2 1 2 …  (4.71)

Or, in terms of the nondimensional frequency parameter β (see  
Sec. 4.3)

 
β ω ρ

m m
A

EI
2 2= 

 
(4.72)

which was used in (4.30)–(4.35) and Table 4.1,
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(4.73)

Equation (4.73) is the one d.o.f., forced vibration equation for the 
mth mode. It is in the same form as (2.85) which arose in the forced 
vibration of strings. For forcing loads which are sinusoidal in time, 
its solution is therefore expressed by (2.86) and (2.87), where ρ is 
replaced by ρA, and T mα 2  by EI mβ 4 4/ . The response w(x0,t) of a point 
on the beam (x = x0) is then determined by (2.93) and (2.94). For more 
general, periodic forcing functions as described by (2.95) and (2.96), 
the response is given by (2.97).

If the closed-form method is followed, for a sinusoidal forcing 
function

 p x t P x t, ( )sin( ) = Ω  (4.74)

a solution to (4.65) is assumed to be

 w x t X x t X x t( , ) ( )sin ( )cos= −1 2Ω Ω  (4.75)
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Substituting (4.74) and (4.75) into (4.65) and requiring the sin Ωt and 
cos Ωt components to satisfy the equation independently yields

 X k X X QIV
1

4
1

4
2− + =γ ξ( )  (4.76a)

 X k X XIV
2

4
2

4
1 0− + =γ  (4.76b)

where derivatives are taken with respect to the nondimensional 
coordinate ξ = x/ℓ, and where
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Equations (4.76) are similar in form to (2.110). That is, they are 
both coupled sets of ordinary differential equations, with the 
coupling terms existing due to the damping. However (2.110) is of 
fourth order, which yielded four independent constants of 
integration, whereas (4.76) is of eighth order, and will consequently 
have eight independent constants of integration. Nevertheless, the 
complementary solution may be found straightforwardly [4], and a 
suitable particular solution to yield the desired Q(ξ) may be found. 
The eight constants of integration are then determined from the 
boundary conditions. If material damping is present, the closed-
form solution may again be determined straight forwardly [4].

In the case of no damping, the motion is in phase (or 180° out of 
phase) with the exciting force, and the closed-form solution may be 
taken as

 w x t X x t( , ) ( )sin= Ω  (4.78)

Substituting this into the equation of motion
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(4.79)

and using the nondimensional coordinates ξ = x/ℓ, one obtains

 X k X QIV − =4 ( )ξ  (4.80)

with k and Q again being defined by (4.77). The complementary 
solution to this equation is obtained by factoring the homogeneous 
equation into the operator form

  ( )( )D k D k XC
2 2 2 2 0+ − =  (4.81)
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where D2 = d2/d ξ2. The solution to (4.81) is

 X C k C k C k C kC = + + +1 2 3 4sin cos sinh coshξ ξ ξ ξ  (4.82)

Adding a particular solution which yields the proper R.H.S. of  
(4.80) yields the complete solution. The four constants C1, . . . , C4 are 
obtained from the boundary conditions.

The forced vibration behavior of beams will now be illustrated 
by two example problems.

Example 4.5 A cantilever beam of length ℓ is excited by a uniform, distributed 
pressure P x t q t, sin( ) = 0 Ω , where q0 is a constant. It vibrates in a viscous fluid. 
Neglecting the mass of any fluid being moved, find the response of the free 
end of the beam.

Solution
The eigenfunction superposition method is used, with the eigenfunctions given 
by (4.34b). Figure 4.13 shows the nondimensional displacement, W/δ, at the free 
end (where δ is the static, displacement) as a function of Ω/ω1, with Ω/ω1 being 
varied over a wide enough range to include the first two resonances. Curves 
are shown for two values of the damping ratio, c/cc1, where cc1 is the value of the 
critical damping for the first mode. That is,
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Figure 4.13 The nondimensional displacement of the free end as a function 
of Ω/ω1.
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The curves are similar to those seen previously for the string subjected to 
a uniformly distributed exciting pressure (Fig. 2.18). That is, the first peak 
value of W/δ  occurs close to Ω/ω1 = 1 and is much greater than for higher 
resonances.

Example 4.6 A uniformly distributed exciting force , sinp x t q t( ) = 0 Ω  is applied 
to a beam with both ends clamped, as shown in Fig. 4.14. The effects of damping 
may be neglected. Determine the displacement, w(x,t), and evaluate it at the 
middle of the beam.

Solution
The closed-form solution method is used. For a uniformly distributed loading, 
Q q EI= /0

4  in (4.80). A suitable particular solution to (4.80) is

X
Q
k

q
AP = − = −4

0
2ρ Ω

Because there is symmetry in both the loading and in the boundary conditions, 
the coordinate origin is chosen at the center of the beam, and the odd functions 
of ξ in the solution are discarded by setting C1 = C3 = 0 in (4.82). Thus the 
complete solution is

X C k C k Xp( ) cos coshξ ξ ξ= + +2 4

Applying the boundary conditions

X X
1
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2
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 = ′ 



 =

yields C
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X kp p

2 42 2
= − = −

∆ ∆
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where ∆ = +sin cosh cos sinh
k k k k
2 2 2 2
i i

Using Table 4.1, k in (4.77) may be rewritten as
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Figure 4.14 A uniformly distributed exciting force applied to a beam with both 
ends clamped.
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If Ω = ωi, where ωi is any of the free undamped vibration frequencies of  
the beam, ∆ = 0 (which is the characteristic equation one solves to find the ωi  
for the symmetric modes), and C2 and C4 both become infinite, as expected.

Finally, the complete solution may be expressed as

w t
q

EIk
k

k
k

k t( , ) (sinh cos sin cosh )sinξ ξ ξ= + −0
4

4 2 2

i ∆

∆ Ω

At the middle of the beam,

w t
q

EIk
k k

t( , ) sinh sin sin0
2 2

0
4

4= + −






i ∆

∆ Ω

which is a simple, closed-form expression to evaluate and plot. 

4.9  Energy Functionals—Rayleigh Method
It was shown in Chaps. 2 and 3 that the Rayleigh and Ritz methods 
are very useful for determining the natural frequencies of strings 
and bars, particularly when no simple, exact solutions exist. The 
same may be said about beams. To use these methods it is necessary 
to have at one’s disposal the expressions for the maximum potential 
and kinetic energies of the beam as it vibrates.

Potential energy is stored in the beam in the form of strain energy 
as it undergoes flexure. To evaluate it we consider an element of the 
beam having differential length dx, as shown in Fig. 4.15(a). This 
element may also be seen in Fig. 4.1. Figure 4.15(b) shows a view of 
the cross-section, looking along the x-axis. As stated in Sec. 4.1, the 
analysis is restricted to beams having at least one symmetry axis. A 
differential element of area dA is shown in the cross-section acting at 
a distance z from the neutral axis (N.A.) of the beam. Thus, the shaded 
rectangles shown in the two views represent the differential volume 
of the beam dA  dx.

The strain energy in the differential volume is

 
d PE dA dxx x( ) = 1

2
σ i ε

 
(4.83)

where σx is the bending stress at that location, and εx is the 
corresponding strain. The total strain energy in the beam is then

 
PE dAdxx xvol

= ∫
1
2

σ ε
 

(4.84)
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The stress at a distance z from the neutral axis is well known 
from strength of materials as

 
σ x

Mz
I

= −
 

(4.85)

Using this, along with the 1-dimensional stress–strain relationship, 
εx = σx/E, (4.84) becomes

 
PE

E
Mz
I

dA dx
A

= 















∫∫

1
2

1 2

0



 
(4.86)

where the volume integration has been separated into two parts, 
along the length of the beam and throughout the area. The area 
moment of inertia may be a function of x, but is constant for a 
given cross-section. Moreover, assume that the material is homo-
geneous throughout the cross-section (but not necessarily along 
the length). Then

 
PE

M
EI

z dA dx
A

= ( )∫∫
1
2

2

2
2

0



 
(4.87)

The definition of I is

 
I z dA

A
= ∫ 2

 
(4.88)

Figure 4.15 A beam with differential length dx and a cross-section with at 
least one symmetry axis. 
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Substituting this and (4.5) into (4.87) gives

 
PE EI

w
x

dx=





∫
1
2

2

2

2

0

∂
∂



 
(4.89)

Equation (4.89) is the total strain energy in the beam at any instant of 
time, since w = w(x,t). With E and I retained in the integrand, (4.89) is 
capable of representing nonhomogeneous materials, E = E(x), or 
variable cross-sections, I = I(x).

The translational kinetic energy of the element of beam volume 
shown shaded in Fig. 4.15 is

 
d KE dA dx

w
t

( ) ( )=






1
2

2

ρ i
∂
∂  

(4.90)

Assuming that the mass density (ρ) may vary along the length,  
ρ = ρ(x), but not within a cross-section, then the total kinetic energy 
of the beam at any instant is

 
KE A

w
t

dx=




∫

1
2

2

0
ρ ∂

∂


 
(4.91)

To use the Rayleigh method, one sets

 PE KEmax max=  (4.92)

(see Sec. 2.12). Assuming sinusoidal motion for the beam,

 w x t X x t( , ) ( )sin= ω  (4.93)

then       PE EI X dxmax = ′′( )∫
1
2

2

0


 (4.94)

and       KE AX dxmax = ∫
ω ρ

2
2

02


 (4.95)

Thus, one determines a natural frequency with the Rayleigh method 
by setting PE KEmax max=  and evaluating the quotient

 
ω 2 = PE

KE
max

max
*

 
(4.96)
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where         KE AX dxmax
* = ∫

1
2

2
0

ρ


 (4.97)

To use the Rayleigh method, one assumes a displacement function 
X(x) which reasonably approximates the shape of the desired free 
vibration mode. The closer it resembles the correct mode shape, the 
more accurate the frequency approximation will be. The geometric 
boundary conditions or other constraints (e.g., an intermediate point 
support on a continuous beam) must be satisfied exactly. However, 
the generalized force types of boundary conditions (i.e., bending 
moment or transverse shearing force) need not be satisfied. Indeed, 
satisfying the latter requires additional effort, but does not necessarily 
give better results.

Example 4.7 Use the Rayleigh method to obtain an approximate value of the 
fundamental frequency of a cantilever beam.

Solution
Various functions will be tried as assumed mode shapes. The one that yields 
the lowest frequency will be the best, for all frequencies obtained will be upper 
bounds to the exact value. For this problem we happen to know the exact value 
as well, which permits calculations of errors.

First trial function: If we did not already have the exact first mode shape from 
earlier analysis (which is depicted in Fig. 4.3), some physical observation of 
the vibrations of a knife blade held flat to a table with one hand and excited 
with the other would suggest a parabolic mode shape. That is, in terms of the 
coordinate origin shown in Fig. 4.8,

X = x2 

This simple function is the lowest degree polynomial which satisfies the 
geometric boundary conditions X(0) = X′(0) = 0. Substituting it into (4.94) 
and (4.97), and then using (4.96) yields ω ρ2 20 4 472A EI/ .= = . This is not 
very accurate, being 27.2 percent higher than the exact value of 3.516 seen in 
Table 4.1.

Second trial function: Another function which resembles the expected mode 
shape and satisfies the geometric boundary conditions is

X
x= −1

2
cos

π


Using this with (4.96) yields ω ρ2 3 664A EI/ .= , which is much better, as it 
has an error of only 4.2 percent.

Third trial function: Neither of the two preceding trial functions paid any 
attention to the boundary conditions of zero moment and shear at the free end. 
One wonders how much improvement would result if a function were used that 
satisfied both of them. For this purpose, choose a polynomial of higher degree, 
x2 + C3x3 + C4x4, which satisfies X(0) = X′(0) = 0, and determine C3 and C4 so that 
X″(ℓ) = X″′(ℓ) = 0 as well. Doing so gives

X
x= − + =



ξ ξ ξ ξ2 3 42

3
1
6 
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Substituting this into (4.96) results to ω ρ2 162 13 3 530A EI/ / .= = , which is 
a very good result, being only 0.4 percent higher.

Fourth trial function: The error in the fourth-degree polynomial assumption 
may be seen if one considers the static equilibrium equation

EIX pIV =

where p is a distributed static loading along the beam. This is known from 
elementary strength of materials, and may be obtained from (4.7) as well. In a 
free vibration situation, p may be regarded as “inertia loading,” p = – ρAω2X, 
due to the acceleration. If a beam were to deflect into a parabolic shape during 
vibration, XIV = 0, corresponding to zero inertia loading, which is completely 
unreasonable. Similarly, the fourth-degree function yields inertia loading 
which is constant along the beam. This is not a good representation, but at 
least it permits the inertia loading to be present in an average sense. Therefore, 
let us select a trial function which, when differentiated four times, would give 
us a second-degree inertia loading variation. Clearly, it would be a polynomial 
of sixth degree. If we simply choose

X = x6 

then the B.C. at x = 0 are satisfied as well. Rayleigh’s Quotient (4.96) then yields 
the terrible result ω ρ2 1300 36 061A EI/ .= = ! A sketch of the function shows 
that it varies much too rapidly as it approaches x = ℓ. Furthermore, it causes very 
large residual values of bending moment and shear at x = ℓ.

Fifth trial function: Choose X = C2x2 + C3x3 + x6. This function makes XIV  

second degree, regardless of the choice of C2 and C3, and satisfies X(0) =  
X′(0) = 0. The coefficients C2 and C3 are chosen so that X′(ℓ) = X″′(ℓ) = 0. This gives

X
x= − + =



45 202 3 6ξ ξ ξ ξ


Equation (4.96) gives ω ρ2 3 5164A EI/ .=  compared with the exact solution 
of 3.5160! Thus, this trial function gives an extremely accurate frequency, only 
0.01 percent above the exact value.

Before leaving this problem, we should reflect a bit more on why the various 
trial functions gave results of such different accuracies. Let us first look at 
the functions themselves, which are plotted in Fig. 4.16, normalized so as to 
all have unit values of displacement at the beam tip (ξ = x/ℓ = 1). The curves 
are numbered corresponding to the earlier discussion, and “0” identifies the 
exact solution eigenfunction. The fifth trial function falls virtually on the 
exact curve, and is so drawn (the largest difference is 0.0046, in the vicinity 
of ξ = 0.5). The third trial function used (fourth-degree polynomial) is also 
reasonably accurate, and is seen to lie close to the exact curve. The fourth 
function (X= ξ 6) gave very poor results, and lies far away from the other 
curves. Because KEmax

*
 depends on the integrals of the squares of these 

functions, one may visualize how the errors affect the denominator of 
Rayleigh’s Quotient (4.96).

However, to understand better the error in PEmax one should look at the 
linearized curvatures (X″) of the exact and trial functions. These are shown 
in Fig. 4.17, and are proportional to the bending moments, according to (4.5). 
As one would expect, errors in second derivatives are usually worse than the 
errors in the functions themselves. The fifth trial function again falls nearly on 
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Figure 4.16 Functions used for analysis of a cantilever beam using Rayleigh’s 
method. 
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Figure 4.17 Exact and trial function curvatures for a cantilever beam.
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the exact curve (the largest difference is 0.054, which is 1.5 percent, occurring at  
ξ = 0). The first and fourth functions do not yield the needed maximum X” at 
the wall and zero X” at the free end. Indeed X = ξ 6 yields zero displacement, 
slope, moment, and shearing force values at ξ = 0, a very strange situation 
indeed! The function 1 − cos(πξ/2) does not give zero shear force at the free 
end (the slope of X” is not zero).

To summarize the preceding example, in solving problems by the Rayleigh 
method, the following considerations are involved in the selection of 
approximate trial functions which are to be sufficiently accurate:

1. Geometric boundary conditions must be satisfied.
2.  It is usually better to satisfy all the generalized force boundary conditions 

as well.
3.  The function to be used should be plotted (or at least sketched). Does it 

reasonably represent the mode shape expected?
4.  Is the “inertia loading” obtained from taking higher derivatives (fourth 

order in the case of the beam) reasonably similar in shape to that of the 
displacement?

Accomplishing all of the above may result in a very complicated function. 
In that case, if necessary, differentiations and integrations may be performed 
numerically.

4.10  Ritz Method
To use the Ritz method a set of trial functions capable of representing 
the free vibration mode shapes is chosen as

 
X x C xi i

i

I

( ) ( )=
=
∑ φ

1  
(4.98)

where Ci are constants to be determined and the trial functions ϕi 

must each satisfy the geometric boundary conditions. The Ci are 
determined so that ω2, as given by (4.96), is minimized. 

The necessary minimizing equations are the same as those for 
the string (2.135). Following the procedure laid out in Sec. 2.13, these 
are cast into the form (2.136), which is more convenient for 
computations:

 

∂
∂

− = =
C

PE KE i I
i
( ) ( , , ... , )max max

*ω2 0 1 2
 

(4.99)

where now PEmax and KE*
max are the expressions (4.94) and (4.97) 

relevant to the beam.

Example 4.8 Use the Ritz method to obtain a reasonably accurate value  
of the fundamental frequency of a cantilever beam, and compare with the 
results found previously in Example 4.7, where the Rayleigh method was 
demonstrated.
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Solution
Any algebraic polynomial of the form

X C xi
i

i

I

=
=
∑

2

satisfies the geometric boundary conditions X(0) = X′(0) = 0 exactly, where it 
must be carefully noted that the series begins with i = 2.

Choosing the two term polynomial X = C2x2 + C3x3 gives

PE KE
EI

C C x dx
A

C x C x dxmax max
* ( ) ( )− = + − +∫ ∫ω ρ ω2

2 3
2

0

2

2
2

3
3 2

02
2 6

2
 

In applying (4.99), it is more efficient to carry out the minimizing differentiations 
∂/∂Ci first, instead of first squaring the integrands and integrating. The 
computational savings become more readily apparent if three or four term 
polynomials are employed for X. Equations (4.99) then generates two equations 
in C2 and C3 which may be written in matrix form as

4
5

6
6

6
6

12
7

2

3

−



 −





−



 −























λ λ

λ λ

C

C
















=



















=
0

0

2 4

λ ω ρ A
EI

It is observed that the coefficient matrix above is symmetric. This is to 
be expected when using the Ritz method, and is a necessary check on the 
correctness of calculations. Finding least common denominators for each of 
the above equations to eliminate the fractions, and expanding the frequency 
determinant, results in

λ λ2 1224 15 120 0− + =,

This has two roots, λ1 2 612 1 2 1 437 696, ( / ) , ,= ∓ , which yields the two non-
dimensional frequencies ω ρ2 3 5327A EI/ .=  and 34.807. The lower one is a 
reasonable upper bound approximation (0.48 percent error) to the exact value 
of 3.5160. The higher one is an upper bound approximation, albeit a very poor 
one, to the second nondimensional frequency of 22.034. The corresponding 
approximate mode shapes are obtained by substituting the roots for λ, one at 
a time, into either of the two equations in C2 and C3 given above, and solving 
for C3/C2. They are C3/C2 = −0.384/ℓ for the first mode, and C3/C2 = −1.216/ℓ for 
the second.

Comparing the approximate fundamental frequency found above with those 
determined in Example 4.6, it is seen that the cubic polynomial used here, 
with the optimum choice of C3/C2 being determined by the Ritz method, is 
about equally accurate as the fourth-degree polynomial used with the Rayleigh 
method (third trial function). Moreover, the amount of computational work and 
time required is about the same in both solutions.

Further improvement in the accuracy of the first two frequencies, as well as 
upper bound approximations to higher frequencies, may be achieved by taking 
additional terms in the algebraic polynomial representing the displacement. A 
summary of the results obtained using 2, 3, 6, and 10 polynomial terms is made in 
Table 4.2. Percentages by which the Ritz solutions differ from the exact solution 
are shown in parentheses in Table 4.2. Thus, using a three-term polynomial, 
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Table 4.2 Nondimensional Frequencies ω ρ2 A EI/  for a Cantilever Beam by the Ritz Method, Using Algebraic 
Polynomials

Mode 
number

Number of polynomial terms Exact 
values2 3 6 10

1
2
3
4
5
6
7
8
9

10

3.53273 (0.48)
34.8068 (57.97)

3.51707 (0.03)
22.2334 (0.90)

118.1444 (91.49)

3.51601 (0.00)
22.0348 (0.00)
61.7163 (0.03)

128.389 (6.19)
223.551 (11.85)
1006.013 (236.96)

3.51601 (0.00)
22.0345 (0.00)
61.6972 (0.00)
120.904 (0.00)
199.886 (0.01)
303.162 (1.54)
429.999 (3.12)
773.874 (39.40)
1082.564 (51.82)
5527.655 (520.57)

3.51601
22.0345
61.6972

120.902
199.860
298.556
416.991
555.165
713.079
890.732

*Value in parentheses is percent error in Ritz solution (two decimal places)
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the fundamental frequency is obtained very accurately (0.03 percent error), 
and a reasonable approximation for the second frequency is found; however, 
the third frequency, as expected is very poor. Using six polynomial terms, the 
fundamental frequency is seen to converge to six significant figures. Higher 
frequencies also converge to their exact values as additional terms are taken, 
which demonstrates that the polynomials form a set of functions which are 
mathematically complete as sufficient terms are employed, and that numerical 
roundoff error is no significant problem with ten terms. Using more than ten 
terms, one quickly encounters round off error difficulties (“ill conditioning”), 
which may be circumvented by using orthogonal polynomials.

Comparing further the Rayleigh and Ritz methods, one may say, 
in general, that the former can obtain reasonably accurate results, at 
least for fundamental frequencies, without a great deal of 
computational effort. However, some ingenuity and physical 
understanding of the vibrational behavior is required. Reasonably 
accurate estimates of higher frequencies are usually difficult to 
achieve. The Ritz method proceeds straightforwardly and requires 
little physical understanding. Exact frequencies, fundamental and 
higher ones, will be approached as closely as desired as additional 
terms in the trial function are taken, provided that:

1. The functions satisfy the geometric boundary conditions 
exactly.

2. The functions form a mathematically complete set (i.e., capable 
of representing any possible deflected shape of the beam) as 
the number of terms used increases.

3. Computational round off errors are not excessive.

As the last statement implies, truly accurate solutions with the Ritz 
method typically require computer programming. For 1-dimensional 
problems such as the beam, very accurate results can usually be 
obtained with single precision (i.e., eight significant figures) arithmetic.

4.11 Effects of Axial Forces
A beam having one end clamped and the other end simply supported, 
subjected to an axial force T at each end, is shown in its static 
equilibrium position in Fig. 4.18. For the sketch shown, T is constant 
everywhere along the beam. However, in general, T may vary along 
the length—that is, T = T(x)—when gravitational or other distributed 
forces act in the axial direction.

Suppose now the beam vibrates in the transverse direction. The 
equation of motion is obtained from a free body diagram of a 
differential element of length dx. This element is shown previously in 
Fig. 4.2, with the axial force superimposed as it was seen for the string 
in Fig. 2.2. To the previous equation of motion (4.1) for the beam must 
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be added the effect of the axial forces, as they were in (2.1). Making 
the same assumptions as for both problems previously—that is, the 
transverse displacements and slopes are small, and T does not 
depend on w or t, (4.2) becomes

 

∂
∂

∂
∂

∂
∂

∂
∂x

T
w
x

V
x

p A
w

t







− + = ρ
2

2
 

(4.100)

Summing moments about the center of mass of the element, it is 
found that the terms added to (4.3) are of higher differential order. 
Thus, T has no effect on the moment equation (4.4). Substituting (4.4) 
and the beam stiffness relationship (4.5) into (4.100) results in
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(4.101)

This is the equation of motion for forced vibrations (with damping 
omitted).

In the special case when the flexural rigidity (EI) vanishes, (4.101) 
reduces to (2.6) for a string. The only inconsistency is that, in the 
present problem, mass per unit length is ρA, whereas in (2.6) it was ρ. 
The other limiting case is when T = 0, resulting in our previous 
equation (4.6) for the beam. Thus, (4.101) is a generalization of both 
(2.6) and (4.6). However, in the present problem, T may be negative 
(compressive) as well as positive (tensile), whereas for the string it 
may only be positive. For free, undamped vibrations, p = 0. The class 
of problems one should study first is when EI, ρA, and T all are 
constant. Then the equation of motion reduces to

 
EI

w
x

A
w

t
T

w
x

∂
∂

∂
∂

∂
∂

4

4

2

2

2

2+ =ρ
 

(4.102)

which is seen to be a generalization of both (2.8) and (4.8).

ℓ

x 

T

Figure 4.18 A beam subjected to an axial force T at each end.
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The effects of axial forces on vibration frequencies may be most 
readily seen for beams having both ends simply supported. Assuming 
sinusoidal time response,

 w x t X x t( , ) ( )sin= ω  (4.103)

(4.102) becomes

 EIX TX A XIV − ′′ − =ρ ω 2 0  (4.104)

Because (4.104) contains only even derivatives of X, it is clear that

 
X x

m x
m( ) sin ( , , ...)= =π


1 2

 
(4.105)

is capable of satisfying (4.104) as well as the conditions X(0) = X″(0) = 
X(λ) = X″(λ) = 0 required at simply supported boundaries. Substituting 
(4.105) into (4.104) yields a simple, closed-form formula for the square 
of the nondimensional frequency parameter:

 

ω ρ π π
2 4

2 2 2 2
2 A

EI
m m

T
EI

= +




  

(4.106)

Figure 4.19 is a plot of (4.106) which shows the variation of the 
first two frequencies (squared) with the tensile force. It is seen that, 
for a given beam (fixed values of E, I, ℓ, ρ, and A), the frequency 
squared increases with increasing T in a linear manner. The rate of 
increase (i.e., the slope) of ω2 is four times as great for the second 
mode as for the first mode. For negative values of T, the frequencies 
are decreased. Thus, tensile forces increase the frequencies, while 
compressive forces decrease them. It is important to observe that (4.106) 
gives ω = 0 for m = 1 when T = –π2EI/ℓ2. This is the Euler critical buckling 
load for a column having both ends simply supported. Physically, 
this means that as one increases the compressive force on a beam, the 
fundamental frequency is lowered. As the load approaches the 
buckling value, the frequency approaches zero (the period of oscil-
lation becomes very long). This is an excellent way of determining a 
buckling load experimentally, without destroying the test specimen. 
That is, a curve of frequency versus axial force may be plotted and, as 
the frequency becomes small, the curve may be extrapolated to zero to 
determine the buckling load. However, one must be careful in 
approaching zero frequency, for the frequency itself (rather than its 
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square) changes rapidly as the critical load Tℓ 2/EI = –π2 is approached 
as a parabola (Fig. 4.20).

Figure 4.19 shows only the two lowest frequency curves. There 
are, of course, an infinite set of them. Correspondingly, there are an 
infinite set of buckling loads. However, as soon as the smallest one 
(in absolute value) is reached (the critical buckling load), it must be 
assumed that the beam will buckle, so that the higher frequencies 
have no physical meaning for larger compressive loads.

For beams having other end conditions, a more general solution 
to (4.104) must be derived. Rewriting (4.104) in operator form:
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T
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D
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X4 2
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=ω ρ

 

(4.107)

where D ≡ d/dx   This has an auxiliary equation:

 
m

T
EI

m
A

EI
4 2

2

0− 



 − =ω ρ

 
(4.108)

With roots    m
T
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T
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A
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2
2 2

2 2
= ± 



 +

ρ ω
 (4.109)

m = 2 (second 
mode)

m = 1 (fundamental 
mode)
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Tℓ2
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– 2 2 2 2

2ℓ4 A

Figure 4.19 Variation of the first two frequencies (squared) of a simply 
supported beam with the tensile force.
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Thus (4.107) may be factored into

 
D D X2

1
2 2

2
2 0+( ) −( ) =α α

 
(4.110)

where      α ρ ω
1 2
2

2 2

2 2, = + 
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T
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A
EI

 (4.111)

In this form, α1
2 and α2

2 are both always positive for ω2 > 0. The  
solution of (4.107) is therefore

 X x C x C x C x C x( ) sin cos sinh cosh= + + +1 1 2 1 3 2 4 2α α α α  (4.112)

with α1 and α2 given by (4.111), and C1, . . . ,C4 are constants of integra-
tion. In the more useful nondimensional form,

 X C C C C( ) sin cos sinh coshξ β ξ β ξ β ξ β ξ= + + +1 1 2 1 3 2 4 2  (4.113)

where   β α ρ ω
1 2 1 2

2 2 2 2 4

2 2, .= = +






+ ∓
  T
EI

T
EI

A
EI

 (4.114)

and ξ = x/ℓ.
The free vibration problem is solved in the general case by 

applying two B.C. at each end of the beam to yield a fourth-order 
frequency determinant.

If T is not constant, then the free vibration equation is
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∂
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∂
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2+ = +ρ
 

(4.115)

Tℓ2

EI

0– 2

ℓ2 A
EI

2

Figure 4.20 The frequency changes rapidly as the critical load parameter 
approaches the value (– π2).
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which is a differential equation with variable coefficients. If T is a 
simple algebraic polynomial (such as a linear function, for gravity 
loading, or a second-degree function, for centrifugal loading), then, 
exact solutions may be found [after time is taken out of the problem, 
using (4.103)] by the well-known method of Frobenius (cf. [5], p. 252), 
which yields X(x) in the form of a power series. A suitable substitution 
of variables may also transform the differential equation into a 
recognizable form of Bessel’s equation, whereupon X(x) may be 
expressed in terms of tabulated Bessel functions (which are also 
power series, as seen in Appendix B).

However, for a general form of axial loading, T = T(x), an exact 
solution is impossible. In such cases the Rayleigh and Ritz methods 
are very useful. Then the potential energy is composed of two 
parts—strain energy and load potential. The strain energy for a beam 
is as given by (4.89). The load potential was derived previously for a 
string, (2.130). Thus, the maximum potential energy during a cycle of 
free vibration is

 
PE EI X dx T X dxmax = ′′( ) + ′( )∫ ∫

1
2

1
2

2

0

2

0

 

 
(4.116)

and the maximum kinetic energy remains as in (4.95).

Example 4.9 A beam (or column) of length ℓ has one end clamped and the other 
one free, as shown in Fig. 4.21. The member is subjected to a body force per 
unit volume ρg, due to gravity or due to vertical acceleration of its base, causing 
internal compressive force.

Determine the fundamental frequency parameter ω ρ2 A EI/  as a function 
of a suitable nondimensional load parameter containing g. Compare results 
with other known ones in special cases, where possible.

ℓ

X 

g

Figure 4.21 A beam (or column) subjected to a body force (e.g., gravity). 
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Solution
The compressive force at any cross-section is ρgA(ℓ – x). Substituting T =  
–ρgA (ℓ – x) into (4.115), and assuming sinusoidal motion (4.103), gives

EIX gA l x X gAX A XIV − − ′′ − ′ − =ρ ρ ρ ω( ) 2 0

One could solve this equation by the method of Frobenius, but much more 
simple solutions may be found using the Rayleigh method.

From our experience with the unloaded cantilever beam in Example 4.7, it 
would seem that a good choice for X(x) would be the fourth-degree polynomial 
that satisfies all four boundary conditions:

X x x x x( ) = − +4 3 2 24 6 

Using this in (4.97) and (4.116), Rayleigh’s Quotient (4.96) gives

λ ω ρ γ γ= = −



 = −

2 4 162
13

1
1
8

12 46 1 558
 A
EI

. .

where γ ρ= gA EI3/  is a loading parameter which arises naturally in the 
solution of the equations. Increasing mass density (ρ), weight density (ρg), 
or axial acceleration (g, which would be the sum of downward gravitational 
acceleration and upward base acceleration) all cause proportional increases in 
γ. However, T should be regarded primarily as a measure of g, because ρ also 
appears in λ. The frequency formula may be compared with known results in 
three special cases:

1.  Unloaded beam (g = 0, whence γ = 0). The exact result in this case, 
ω ρ2 3 5160A EI/ .=  is known from Table 4.1.

2.  Hanging string (EI = 0, with g → −g and γ → −γ). The exact result 
ω / .g = 1 2024, is obtained from a solution using Bessel functions, 
as pointed out in Example 2.7.

3.  Static buckling (ω = 0). This problem also has an exact solution in terms 
of Bessel functions (cf. Timoshenko and Gere [6], p.103). The exact value 
of the critical loading parameter is γcr = 7.837.

For the present solution using the fourth-degree polynomial, results for the 
three special cases are found from the frequency formula to be: 

1.  g A EI= → = =0 12 46 3 5302ω ρ / . . (0.4 percent error, as seen in 
Example 4.7

2.  EI g= → = =0 1 558 1 248ω / . . (3.8 percent error)
3. ω γ= → = =0 12 46 1 558 8cr . / . (2.1 percent error)

The fourth-degree trial function therefore yields very accurate vibration 
frequencies for small γ, but for tensile loading together with small EI it is less 
accurate.

The second trial function used in Example 4.7 was

X x
x

( ) cos= −1
2
π


This gave a reasonable estimate of the frequency when g A EI= 0 2; ω ρ /  = 
3.664 (4.2 percent error). Using it in the present problem yields the frequency 
formula

ω ρ γ
2 4

13 42 1 618
 A
EI

= −. .
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The other two special cases of the formula are

EI g= → = =0 1 618 1 272ω / . .  (5.8 percent error)

ω γ= → = =0 13 42 1 618 8 294cr . / . .  (5.8 percent error)

Therefore, this simple function appears to be worse than the preceding one 
in all respects.

Finally, let us use the very accurate sixth-degree polynomial of Example 4.7, 
which may be written as

X x x x x( ) = − +6 3 3 4 220 45 

This gave an extremely accurate frequency when g A EI= =0 3 51642; ω ρ / .  
(0.01 percent error). Using it in the present problem results in

ω ρ γ
2 4

12 36 1 573
 A
EI

= −. .

The other two special case results are then

EI g= → = =0 1 573 1 254ω / . . (4.3 percent error)

ω γ= → = =0 12 36 1 573 7 858cr . / . . (0.3 percent error)

The three special cases are all upper bounds to the exact solution for each 
trial function used. The last function used gives the smallest values of ω for all 
positive γ; therefore, it is the most accurate for compressive loading. However, 
the first function is most accurate for large negative γ (such as the hanging 
string). None of the functions used can be very accurate for EI = 0 because 
all of them require X′(0) = 0. A better function would relax this constraint as 
EI → 0.

4.12  Shear Deformation and Rotary Inertia
In deriving the equation of motion for a beam at the beginning of this 
chapter, the translational inertia of a beam element was taken into 
account, but the rotary inertia was neglected. More than a century 
ago, Rayleigh ([7], p. 293) showed that “rotatory inertia” (in the 
language of his day) could have a significant effect on beam 
frequencies if the beam is not very slender. Nearly a half-century 
later, Timoshenko [8,9] demonstrated that if rotary inertia effects are 
to be included, then the shear flexibility should be considered in 
addition to the bending flexibility of a beam, for it is typically at least 
as important as rotary inertia. In honor of these classical papers, 
beams having both shear deformation and rotary inertia considered 
in their theoretical representations are often called “Timoshenko 
beams.” Less often, one finds the description “Rayleigh beam” for 
one where rotary inertia alone is added.

Let us modify our previously derived equations of motion, based 
on the classical, Euler–Bernoulli beam theory, to include both shear 
deformation and rotary inertia effects. Returning first to the moment 
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equation (4.3), rotary inertia may be straightforwardly added to its 
R.H.S. giving

 
− + + − =M M

M
s

ds Vds dJ
ty( )

∂
∂

∂
∂

2

2
ψ

 (4.117)

where, Ψ is the rotation angle of the cross-section and dJy is the mass 
moment of inertia of the element in Fig. 4.2 about an axis through its 
center of mass and parallel to the y-axis. For a beam which is of 
homogeneous material throughout its cross-section, even though it 
may be nonhomogeneous along its length, that is, ρ = ρ (x), dJy may be 
expressed in terms of the area moment of inertia (Iy, or simply I) by

 
dJ Idsy = ρ

 (4.118)

Substituting this into (4.117) and simplifying its results, we 
obtain

 

∂
∂

∂
∂

M
s

V I
t

− = ρ ψ2

2
 (4.119)

in place of (4.4). For small rotations, ∂M/∂s may be replaced by 
∂M/∂x.

Consider next the shear deformation. This may perhaps be most 
easily understood for a cantilever beam subjected to an upwardly 
directed, static force P applied to its free end, as depicted in Fig. 4.22. 
The force P causes a uniform shearing force V = −P along the entire 
length of the beam, and a uniform shear strain, γ  =  δ/ℓ, along the 
length, where δ  is the tip deflection. All cross-sections move parallel 
to each other, without rotating. The shearing force is the integral of 
the shear stress over the cross-sectional area:

 
V dA A

A
avg= =∫τ τ

 
(4.120)

dx 

X P

ℓ 

Figure 4.22  Shear deformation of a cantilever beam subjected to an upwardly 
directed, static force P applied to its free end.
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where τavg is the average shear stress on a cross-section. If γ defines the 
shear strain at the neutral axis, then the stress–strain relationship is

 τ γavg kG= −  (4.121)

where k is a constant called the “shear correction factor,” depending 
on the cross-sectional shape (k < 1). For a rectangular cross-section, 
for example, k = 2/3 = 0.667. For a circular cross-section, k = 3/4 = 
0.750. The minus sign is needed in (4.121) because positive shearing 
force V causes negative shear strain, according to our sign 
convention.

The slope of the neutral axis, when both bending and shear effects 
are considered, is the sum of the slopes arising from both types of 
flexibility:

 

∂
∂
w
x

= +ψ γ
 

(4.122)

The moment–curvature relationship (4.5) must be written in terms of 
bending slope only, i.e.,

 
M EI

x
=

∂
∂
ψ

 
(4.123) 

With (4.121) and (4.122), (4.120) becomes

 
V kGA

w
x

= − −






∂
∂

ψ
 

(4.124)

Substituting (4.124) into the force equation of motion (4.2), with kGA 
assumed to be constant, 
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(4.125)

Substituting (4.123) and (4.124) into the moment equation of motion 
(4.119), we obtain
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∂
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∂
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+ −
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2

2
 

(4.126)

Equations (4.125) and (4.126) are a fourth-order set of coupled 
differential equations, expressed in terms of the two dependent 
variables w(x,t) and Ψ (x,t). Alternatively, they could be expressed in 
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terms of w and γ. For the free vibrations (p = 0) and uniform beams 
(EI = constant), (4.125) and (4.126) become
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(4.127a)
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One can get a single, fourth-order equation by solving (4.127a) for 
∂Ψ/∂x and substituting it into (4.127b):
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(4.128)

In this form one sees the first two terms, representing classical beam 
theory, plus three additional terms. The last one is strange indeed, for 
it involves the fourth derivative of time. Rotary inertia is eliminated 
by setting terms containing ρI equal to zero (but not EIρ). Shear 
flexibility is eliminated by letting G → ∞. Thus, the last term in (4.128) 
is a coupling term which exists only if both effects are present. 
However, while (4.128) is interesting because it shows how the 
classical beam theory equation of motion is generalized to account 
for shear deformation and/or rotary inertia, it is not useful for solving 
most problems, for the boundary conditions typically involve both w 
and Ψ.

In recent decades, considerable study of the shear coefficient k 
has been made by researchers. Different values of k have been 
proposed so that the shear deformation beam theory more accurately 
represents different aspects of more complete theories, including 
3D theories in some cases. A summary of some of the various 
methods developed for selecting k may be found in the article by 
Cowper [10]. He also developed a procedure for determining values 
of k for low frequency vibrations which are quite consistent with 
the static, 3-dimensional theory of elasticity. Some of his results are 
summarized in Table 4.3. More complicated formulas for calculating 
k for structural sections are also available in Ref. [10].

The most useful boundary conditions are listed below.

Clamped: w = 0, Ψ = 0 (4.129a)

Simply supported:   w M EI
x

= = =0 0,
∂
∂
Ψ

 (4.129b)
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Shape K
Rectangle 10 1

12 11
+( )

+
ν
ν

Circle

6 1
7 6

+( )
+

ν
ν

Hollow 
circle

6 1 1

7 6 1 20 12

2 2

2 2 2

+( ) +( )
+( ) +( ) + +( )

ν

ν ν

m

m m

 

where m b a= /  

Ellipse

2b

2a
12 1 3 1

40 37 16 10

2 2 2

4 2

+( ) +( )
+( ) + +( ) +

ν

ν ν ν

n n

n n

 

where n a b= /  

Semicircle 1
1 305 1 273

+( )
+

ν
ν. .

Thin-walled 
circular 
tube

2 1
4 3

+( )
+

ν
ν

Thin-walled 
square 
tube

20 1
48 39

+( )
+

ν
ν

*v is Poisson’s ratio.

Table 4.3 Shear Stress Correction Factors k according to Cowper [10]
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Free:  M EI
x

V kGA
w
x

= = = − −






=
∂
∂

∂
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Ψ Ψ0 0,  (4.129c)

As in previous beam vibration problems, the most simple 
solution for frequencies and mode shapes is found when both ends 
are simply supported. Translation and bending rotations are 
assumed as

 w x t C x t( , ) sin sin= α ωi  (4.130a)

 ψ α ω( , ) cos sinx t D x t= i  (4.130b)

where α π= =m m/ , ( , ,...) 1 2 , and C and D are arbitrary constants. It 
is observed that (4.130) satisfy the simply supported boundary 
conditions exactly at x = 0 and x = ℓ. Substituting (4.130) into (4.127) 
yields

 kGA C D A C x t( ) sin sin− + +  =α α ρ ω α ω2 2 0i  

 − + − +  =EI D kGA C D I D x tα α ρ ω α ω2 2 0( ) cos sini  (4.131)

For (4.131) to be valid for all x and t,
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(4.132)

To nondimensionalize the terms in the coefficient matrix  
of (4.132), multiply through the first equation by ℓ4/EI, the second  
by ℓ3/EI and replace the constant C by its nondimensional  
form C/ℓ:
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(4.133)

where

 
λ ω ρ= = = 





2 2 2 2  A
EI

kGA
EI

k
G
E r

, ε
 

(4.134)

are nondimensional frequency and stiffness parameters, respectively, 
and ℓ/r is the slenderness ratio, where r is the radius of gyration  
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of the cross-section with respect to the neutral axis ( r I A/= ). For  
a nontrivial solution, the determinant of the coefficient matrix in 
(4.133) gives

 
λ λ π π π2
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(4.135)

To verify that (4.135) yields classical beam theory results as a 
limiting case, one may first set G E/ → ∞  to eliminate shear flexibi-
lity, whence by (4.134), ε → ∞ , and (4.135) reduces to
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(4.136)

It can be seen that, as a beam becomes slender (ℓ/r → ∞), then  
λ = (mπ)4, which agrees with results of Example 4.1 and Table 4.1. 

To include shear deformation effects, but not rotary inertia, one 
may return to (4.127b) and set its R.H.S. equal to zero. This makes the 
ρIω2 term zero in (4.132), whence (4.133) yields
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The roots of (4.135) are
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(4.138)

For each value of m used in (4.137), there are two values of λ, and 
hence two frequencies. Substituting each λ into either of the two 
equations in (4.133) determines the eigenvector D/C for each 
corresponding mode shape. The smaller λ, yielding the lower 
frequency, corresponds to a vibration mode which is predominantly 
flexural. The larger λ yields a mode which is predominantly 
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thickness–shear. These concepts will be explained more in the 
numerical example below.

Example 4.10 A beam of rectangular cross-section and length ℓ has both ends 
simply supported. If the depth of the beam is h, determine the effect of h/ℓ on 
the frequencies. Show the mode shapes for the case when h/ℓ = 0.4. Assume  
k = 2/3 and G/E= 0.4.

Solution
For a rectangular cross-section, I = bh3/12, where b is the width of the cross-
section. Since I = Ar2 = bhr2, then r h= / 12 , and   / ( / )( / ) ( / )r h h r h= = 12 . 
Equation (4.134) yields ε = 3.2(ℓ/h)2. Using these in (4.138), the nondimensional 
frequencies may be calculated by (4.137).

Table 4.4 summarizes the nondimensional fundamental frequency parameters 
λ ω ρ= 2 A EI/  for a range of h/ℓ ratios. The first values, λ1 , correspond to 

flexural modes. It is seen that for very slender beams (h/ℓ = 0.02), the bending 
frequency is only slightly reduced (0.1 percent), but for moderately deep beams 
(h/ℓ = 0.1) the frequency reduction is significant (1.9 percent). For very deep 
beams the decrease in frequency is seen to be large, although the accuracy of 
the Timoshenko beam theory for h/ℓ = 0.5 is questionable.

Consider now the second, third, and fourth bending frequencies of the beam 
having h/ℓ = 0.1. From Table 4.4 it may be seen that shear deformation and rotary 
inertia effects reduce these by 6.9, 13.4, and 20.5 percent, respectively, for the 
beam cross-sections at the node points of the higher modes duplicate simply 
supported boundary conditions. Thus, even for slender beams, these effects 
must be taken into consideration for the higher bending frequencies.

Table 4.4 also shows that the thickness–shear frequencies ( λ2 ) are much 
greater than the fundamental frequencies of bending, even for the deep beams 
considered. A more meaningful frequency parameter, ω ρ2h G/ , for thickness–
shear frequencies is also used in Table 4.4. It involves the beam thickness, 
instead of its length.

Finally, results are also given in Table 4.4 for k = 0.85, which is the shear 
correction factor in Table 4.3 according to Cowper’s theory (v = 0.5E/G–1 = 0.25, 
according to the theory of elasticity). It can be seen that using the higher value 
of k increases the bending frequencies, but only slightly.

To determine the mode shapes for h/ℓ = 0.4, substituting λ1 = 61.56 and  
λ2 = 2384 into either of the two homogeneous equations of (4.133) yields Dℓ/C = 
2.162 for the mode which is predominantly flexural, and Dℓ/C = – 34.676 for that 
which is predominantly thickness–shear. Figure 4.23(a) shows the shape of the 
beam in its flexural mode, with the amplitude coefficient C set arbitrarily at 0.1ℓ 
This yields for the slope of the neutral axes, ∂ω/∂ξ = 0.1π rad = 18.0 deg at the end 
(x = 0). The bending rotation at this cross-section is then Ψ = 0.217 rad = 12.4 deg, 
and the rotation of the neutral axis due to shear is γ = 18.0 – 12.4 = 5.6 deg.

Figure 4.23(b) depicts the thickness-shear mode when C is chosen to be 
0.02265ℓ, so that Ψ = –45.0 deg at the left end. Then ∂ω/∂ξ = 0.0712 rad = 4.1 deg, 
and γ = 49.1  deg at the end. Thus, the rotation of the neutral axis at the ends 
(4.1 deg) is small compared with the shear strain. However, if there were no 
coupling between the two types of modes, the neutral axis would not rotate at 
all in the thickness–shear mode.

It is interesting and worthwhile to examine the separate 
contributions of rotary inertia and shear deformation (flexibility) in 
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k Frequency

h/ 

0 0.02 0.05 0.1 0.2 0.3 0.4 0.5

0.67 ω ρ1
2 A EI/ 9.870 9.860 9.822 9.685 9.193 8.544 7.846 7.182

% decrease 0 0.1 0.5 1.9 6.9 13.4 20.5 27.2

ω ρ2
2 A EI/ ∞ 15,540 2497. 633.0 166.7 79.74 48.83 34.15

ω ρ2h G/ 2.828 2.837 2.849 2.889 3.043 3.276 3.566 3.897

0.85 ω ρ1
2 A EI/ 9.870 9.866 9.828 9.716 9.302 8.726 8.100 7.486

% decrease 0 0.0 0.4 1.6 5.7 11.6 17.9 24.2

ω ρ2
2 A EI/ ∞ 17.500 2810 710.8 185.8 87.93 53.28 36.91

ω ρ2h G/ – 3.196 3.207 3.244 3.392 3.612 3.981 4.211

Table 4.4 Fundamental Frequency Parameters for Simply Supported Rectangular Beams (G/E = 0.4), Considering Shear 
Deformation and Rotary Inertia

159
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decreasing beam frequencies. This is done in Table 4.5, where the 
frequency ratio ω/ωc is given for a moderately thick (h/ℓ = 0.1) beam 
as used in Example 4.10 (k = 2/3, G/E = 0.4), ω is the frequency 
including an effect, and ωc is the “classic” beam frequency (neglecting 
both shear deformation and rotary inertia); that is ω/ωc = ω/(mπ)2. 
Comparing the first two columns of results it is seen that rotary 
inertia has much less effect than shear deformation in decreasing 
frequencies. For m = 1 (fundamental mode) rotary inertia decreased 
the frequency 0.41 percent, whereas shear deformation lowers it 1.51 
percent. For the higher modes it is observed that shear deformation 
is even more important. 

In Table 4.5 one also sees that while for m = 1 the first thickness–
shear frequency is 65 times that of the first bending frequency, for  
m = 10 it is only 2.7 times as high. Moreover, the “bending modes” for 
the higher m involve considerable shear deformation, as well. This is 
seen by returning to the first of the two equations in (4.133) and 
solving for the amplitude ratio.

 

D
C

m
m( / ) ( )

= ( ) −ε

ε

π λ
π

2

 

Figure 4.23 The shape of the beam in its flexural and thickness-shear modes 
(h/ℓ = 0.4).
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The total slope of the neutral axis is dW dx C C m/ ( / )= =α π  . 
Therefore, the ratio of the bending slope to the total slope is 

 

ψ
π

π λ
πdW dx

D
C m

m
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= ( ) = ( ) −
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ε

ε

2

2
 

In Example 4.10, ε = 320. For m = 1, with h/ℓ = 0.1, the slope ratio 
determined by the last equation is 0.938, which is predominantly 
bending. But for m = 5 it is only 0.593, indicating that the shear slope 
(γ) is almost equal to it. For m = 10 the ratio is 0.287, showing dominance 
of the shear deformation. 

In Example 4.10. it was seen that for homogeneous, isotropic 
beams of moderate depth (h/ℓ = 0.1), shear deformation and rotary 
inertia effects cause a small decrease (2 percent) in the fundamental 
frequency, although frequencies for deeper beams and higher  
flexural modes are affected more significantly. However, for two 
types of beams encountered often in modern structural applications, 
the effects are typically much greater:

1. Sandwich beams composed of stiff outer layers and a soft core 
(such as foam, or a honeycomb material).

2. Laminated composite beams composed of stiff fibers (e.g., boron, 
graphite) embedded in a matrix material (e.g., epoxy resin).

In both cases the ratio of the transverse shear stiffness of the beam to 
its bending stiffness is much less than that of isotropic, homogeneous 

Mode  
(m)

ω/ωc 

Rotary 
inertia

Shear 
deformation Rotary inertia + shear definition

1 0.9959 0.9849 0.9811 63.99
2 .9839 .9435 .9314 16.85
3 .9649 .8847 .8651 8.064
4 .9401 .8183 .7945 4.939
5 .9107 .7514 .7268 3.455
6 .8784 .6884 .6650 2.622
7 .8442 .6310 .6100 2.101
8 .8094 .5799 .5614 1.747
9 .7747 .5347 .5187 1.494

10 .7407 .4948 .4816 1.305

Table 4.5 Separate Effects of Rotary Inertia and Shear Deformation on Simply 
Supported, Rectangular Beam Frequencies (h/ℓ = 0.1, G/E = 0.4, k = 2/3)
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beams, causing larger shear deformation effects. Rotary inertia 
effects are also greater for the first type (sandwich beams).

Returning to the isotropic, homogeneous beam and considering 
other boundary conditions, a more general solution of equation set 
(4.127) is necessary. We begin by assuming, for free vibrations,

 w x t W x t( , ) ( )sin= ω  

 ψ ω( , ) ( )sinx t x t= Ψ  (4.139)

Using the nondimensional coordinate ξ = x/ℓ, and ∂/∂x = (1/ℓ)/∂ξ  
etc., (4.127) then become

 kGA W A W( )′′ − ′ + = Ψ ρ ω 2 2 0  (4.140a)

 EI kGA W I′′ + ′ − + =Ψ Ψ Ψ  ( ) ρ ω 2 2 0  (4.140b)

Assume solutions to (4.140) as

 W Ce Des s= =ξ ξ, Ψ  (4.141)

where C, D, and s are constants. Inserting (4.141) into (4.140) results in
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(4.142)

Expanding the determinant of (4.142), we obtain

 

( ) ( )

( )

kGAEI s EI A kGA I s
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4 2 2 2 2 2

2 2 4 2 4 4 0
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ρ ω ρ ω
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   (4.143)

Using the nondimensional parameters in (4.134), then (4.143) may be 
written as 
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(4.144)

This has roots
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(4.145)

where
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(4.146)
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Clearly b c r2 2 2 24 1 4+ = − ( ) +λ λ[( / ) / ]ε   is always positive, therefore 
the values of s1

2  and s2
2  must be real numbers, and cannot be complex. 

However, s2
2  can be either positive, or negative, or zero which requires 

considering three cases.
Using (4.134) and (4.146), the three cases may be summarized as 

follows:

Case I.  s c k
G
E r2

2
4

0 0> > < 



, , λ 

 (4.147)

This case will typically occur for the lowest frequencies of the beam. 
The solutions to (4.140) then are

 W C C C C= + + +1 1 2 1 3 2 4 2sin cos sinh coshγ ξ γ ξ γ ξ γ ξ  (4.148a)

 Ψ = − + + +D D D D1 1 2 1 3 2 4 2cos sin cosh sinhγ ξ γ ξ γ ξ γ ξ  (4.148b)

where γ 1
2

1
2 21

2
4= − = + +s b b c( )

      
γ 2

2
2

2 21
2

4= = − + +s b b c( )
 

(4.149)

Equations (4.148) contain eight constants of integrations (C1, . . . , D4). 
However, the system of differential equations (4.140) is only of fourth 
order. One may obtain the ratios Di/Ci from either (4.140a) or (4.140b), 
both of which will yield the same results. Using (4.140a),
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(4.150)

Case II.   s c k
G
E r2

2
4

0 0< < > 



, , λ 

 (4.151)

This case will always occur for the highest frequencies of the 
beam, and especially for the thickness–shear frequencies. For this 
case, define γ 3

2
2
2= −s , so that γ 3

2 > 0. Then

 
γ 3

2 2

2
1
2

4= − +b
b c

 
(4.152)

The solutions to (4.140) then are:

 W C C C C= + + +1 1 2 1 3 3 4 3sin cos sin cosγ ξ γ ξ γ ξ γ ξ  (4.153a)
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 Ψ = − + − +D D D D1 1 2 1 3 3 4 3cos sin cos sinγ ξ γ ξ γ ξ γ ξ  (4.153b)

where from (4.140a)
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(4.154)

Case III.   s c k
G
E r r2

2
4 2

0 0= = = 



 = 



, , λ  

ε

For this very special case, (4.145) yields the roots s b1 2
2
, = − , 0 whence 

the solution is

 W C C C C= + + +1 1 2 1 3 4sin cosγ ξ γ ξ ξ  (4.155a)

 Ψ = − + + +D D D D1 1 2 1 3 4cos sinγ ξ γ ξ ξ  (4.155b)

where γ 1 = b , and with D1/C1 and D2/C2 being given by (4.150a). 
Substituting the last two terms of (4.155a) and (4.155b) into (4.140a), 
one obtains

 − + +( ) =εD C C3 3 4 0λ ξ  

whence, C3 = 0, and
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C r
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(4.156)

Similarly, (4.140b) yields

 
D D

r
3 4

2

0ξ λ+( ) 



 −













=


ε

 

which is identically satisfied because the bracketed quantity is zero 
in this case.

To solve a particular problem, two boundary conditions are 
applied at each end of the beam, as in (4.129), yielding a fourth-order 
frequency determinant. The roots of this determinant are the 
nondimensional frequency parameters. Both solution sets (4.148) and 
(4.153) for W and Ψ must be considered. As indicated above, for a 
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typical situation one may expect (4.148) to apply for the lowest 
frequencies. However, one must verify for each value of λ whether it 
is less than or greater than k(G/E)(λ/r)4. Corresponding mode shapes 
are determined in the usual manner; that is, the amplitude ratios  
C2/C1, C3/C1, and C4/C1 are evaluated from any three of the four 
equations generated from the boundary conditions.

In the case of symmetry (for example, a beam having identical 
added masses at each end) the problem is, of course, simplified by 
considering symmetric and antisymmetric modes. These modes are 
uncoupled from each other, resulting in two second-order frequency 
determinants.

Frequency equations and eigenfunctions were derived by 
Huang [11] for the six most common types of end conditions (C–C, 
C–SS, C–F, SS–SS, SS–F, F–F). Extensive tables and graphs of 
frequency correction factors to account for shear deformation and 
rotary inertia for all six sets of end conditions were also prepared 
by Huang [12].

The procedure described above for evaluating frequencies and 
mode shapes is a somewhat lengthy and complicated one, although it 
is exact. In effect, one must solve two eigenvalue problems. The first 
one determines proper values of the exponents (s) and the coefficient 
ratios Di/Ci so that the homogeneous differential equations are 
satisfied. The second one determines proper values of the frequency 
parameters (λ) so that the homogeneous boundary conditions are 
satisfied.

For considering the effects of shear deformation and rotary 
inertia in more complicated problems, the Rayleigh and Ritz methods 
are very useful. To be able to use them, we must generalize the 
potential and kinetic energy functionals of Sec. 4.9. To the strain 
energy of bending in (4.84) must be added the strain energy due to 
shear:

 
PE dAdxshear

vol

= ∫
1
2

τγ
 

(4.157)

Using (4.121) this becomes

 
PE

k
GA dxshear = − ∫2 0

2
γ

 
(4.158)

The potential energy due to bending results from the bending 
curvature, ∂ ∂ψ/ x :

 
PE EI

x
dxbending =





∫

1
2 0

2
∂
∂
ψ

 
(4.159)
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Adding this to (4.158) and using (4.122) to eliminate the shear  
strain in favor of the bending rotation gives the total potential  
energy as:

 
PE EI

x
dx

k
GA

w
x

dx=






− −




∫ ∫

1
2 20

2

0

2
∂
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ψ ψ
 

 
(4.160)

It is observed that the potential energy is decreased by the presence 
of the second term, which arises from the shear strain. This has the 
effect of decreasing the frequencies, as expected.

To the kinetic energy due to translation (4.91) must be added that 
due to rotation:

 
KE dJ

t
dxyrotation =





∫

1
2 0

2
∂
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ψ

 
(4.161)

Using (4.118), this becomes

 
KE I
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dxrotation =
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(4.162)

for small rotations. The total kinetic energy is therefore:
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(4.163)

The effect of the added rotary inertia is to increase the kinetic 
energy, which decreases the frequencies, as expected.

The Rayleigh method is applied by means of Rayleigh’s Quotient 
(4.96), whereas the Ritz method involves the minimizing equations 
(4.99). Assuming sinusoidal motion in time the needed functionals 
become:

 
PE EI dx
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KE AX dx I dxmax = +∫ ∫
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2

2
0

2
0

ρ ρ
 

Ψ
 

(4.164)

Whereas a reasonable mode shape for Ψ may be assumed, its 
amplitude relative to X is very difficult to estimate, so for practical 
purposes the Ritz method is better to employ.
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The forced vibration response of a Timoshenko beam may be 
treated by either the eigenfunction superposition or closed-form 
solution methods described in Sec. 4.8. However, if viscous damping 
is a factor, it may be desirable to consider damping due to rotations of 
beam cross-sections (boundary shear drag), as well as due to 
translation [13].

4.13  Curved Beams—Equations of Motion
Curved beams are beams that exhibit some curvature. This section 
will be limited to curved beams that lie in one plane, and whose radius 
of curvature is constant. As will be seen, such curvature introduces 
significant complexity to the beam problem. It raises the order of the 
differential equations for thin beams from 4 to 6, couples in-plane and 
transverse motions and complicates boundary conditions. 

A curved beam is characterized by its middle surface, which is 
defined by the polar coordinate α (Fig. 4.24), where

 α = Rθ (4.165)

The constant R identifies the radius of curvature of the middle 
surface of the beam. The equations derived earlier for straight beams 
can be generalized to those for curved. The equations presented 
here are for curved beams subjected to in-plane loading and/or 
vibrating in the α–z plane.

Middle surface strain (ε0) and curvature change (κ) are 

 
ε0 = + = − +

∂
α

κ ∂
α α

u w
R

w
R

u
∂ ∂

∂
∂

,
2

2
1

 
(4.166)

where u and w are displacements of the beam’s middle surface in the 
α and z directions; respectively. 

Figure 4.24 Parameters used for curved beams.
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The strain at an arbitrary point can be found from

 ε = ε0 + z (4.167)

The force (N) and moment (M) resultants are the integrals of the 
axial stress over the beam thickness (h):

 
N M b z dz

h

h
, ,

/

/[ ] = [ ]
−∫ 1

2

2
σ

 
(4.168)

N = EA ε0; and M = (Ebh3/12)κ 

where E is the modulus of elasticity of the material, b is the width 
of the cross-section (rectangular cross-sections), A = bh is the cross-
sectional area. All these parameters are assumed to be constants.

The above equations are valid for cylindrical bending of beams. 
The equations of motion may be obtained by taking a differential 
element of a beam having thickness h and midsurface length dα 
(Fig. 4.25) and summing the external and internal forces in the α and 
z direction, and the moments causing bending. The resulting 
equations of motion are
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(4.169)

where V is the shear force resultant, and pα and pn are external force 
(or body force) components tangent and normal to the beam 
midsurface, per unit length, respectively. It is noted that rotary inertia 
is neglected in the third equation. Solving the third equation in (4.169) 

M + ( M/ ) d

N + ( N/ ) d

V + ( V/ ) d

p

pn M 

N 

V 

R 

Figure 4.25 A differential curved beam element.
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for V, and substituting this into the second equation, the equations of 
motion become
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(4.170)

Multiplying the last of (4.170) through by −1 and substituting 
(4.166) and (4.168) into (4.170), the equations of motion are expressed 
in terms of the midsurface displacements in matrix form as
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(4.171)

where
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where D = Ebh3/12. Note that there exists coupling between in-plane 
and transverse displacements. Only if the beam is straight (R = ∞) 
that the in-plane and transverse displacements are decoupled.

The strain energy stored in a beam during elastic deformation in 
terms of the displacements is

 

U EA
u w

R
D

w
R

u
d

L
= +







+ − +
















∫

1
2

1
2 2

2

2
∂
∂α

∂
∂α

∂
∂α

α

 

(4.172)

Using the distributed external force components pα in the tangential 
(polar) direction, and pn in the normal direction, the work done by 
the external forces as the beam displaces is

 
W p u p w dnL

= +( )∫ α α0 0  (4.173)

The kinetic energy for the beam is
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(4.174)
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Boundary conditions may be obtained from a variational formulation. 
On each boundary, one must specify three conditions: 

 

u N
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w Q
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= + =

= =

= =
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0 0

0 0
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or

or
∂
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(4.175)

Note that there is an additional term (M/R) in the first boundary 
condition. This term does not exist for straight or slightly curved 
beams [14]. Boundaries may also be elastically constrained, with the 
constraints being represented as translational and rotational springs 
at the beam edges. 

4.14  Curved Beams—Vibration Analysis
The simple support boundary conditions may take two forms for 
curved beams at a boundary, namely
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(4.176a)

Similarly, the free boundary conditions may take the following forms:

 

F Q N M
F Q u M
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2 00

:
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= = =
= = =
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 (4.176b)

and the clamped boundary conditions can take the following 
forms:
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(4.176c)

Simply supported curved beams (with S1 boundary condition) 
will be studied in this section. For such beams, straightforward exact 
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solution can be found. The above S1 boundary conditions are exactly 
satisfied at both ends (α = −ℓ/2 and α = ℓ/2) by choosing:

 
u w A C tm m m m

m

M

, sin( ), cos( ) sin ,[ ] = [ ] ( )
=

∑ α α α α ω
1  

(4.177)

where αm = mπ/ℓ, m is an odd number and Am and Cm are arbitrary 
constants.

The external forces (important in forced vibration analysis) may 
be expanded in a Fourier series in α:
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where 
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Substituting (4.177) and (4.178) into the equations of motion written 
in terms of displacement (4.171) yields
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where: 
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These equations are valid for problems of forced vibrations. The 
static problem results when the frequency is set to zero. The free 
vibration problem arises by setting the pressure terms equal to 
zero. 

Table 4.6 shows nondimensional frequency parameters for a very 
slender (ℓ/h = 100) curved beam with S1 boundary conditions. It is 
observed that since the in-plane displacement is allowed to be free 
with this boundary condition, initial curvature has limited effect on 
these beams when they exhibit shallow curvature. Interestingly, 
increasing curvature does decrease the bending mode frequencies 
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for these beams with S1 boundaries. For m = 1, longitudinal mode 
frequencies are also listed in terms of the frequency parameter used 
in Chap. 3 for comparison purposes.

Exact solutions can be found for other boundary condition, but 
will not be sought here. Instead, approximate solutions using the 
Ritz method will be obtained. 

The deformation is assumed to be sinusoidal with time. 
Displacements are thus assumed as

 

u t U t

w t W t

α α ω
α α ω

, sin ,

, sin

( ) = ( )
( ) = ( )  (4.180)

Various functions can be used for U and W. Among the most 
commonly used functions are trigonometric functions, beam 
functions and algebraic polynomials. Beam functions are actually 
the free vibration mode shapes obtained in the analysis of straight 
beams, seen earlier in this chapter.

Algebraic polynomial trial functions are used in the analysis, as 
were used earlier in this chapter for straight beams, because they 
form a mathematically complete set of functions, which guarantees 
convergence to the exact solution as the number of terms taken 
increases. They are also relatively simple to use in the algebraic 
manipulation and computer programming subsequently required 
and can be differentiated and integrated exactly in the energy 
functionals needed. Using algebraic polynomials, one can solve for 
all possible combinations of boundary conditions for these beams. 

R/ℓ

Bending modes Longitudinal

m = 1 2 3 4 m = 1

ω ρ2 A EI/ ω ρ /E

– 9.8696 39.478 88.826 157.91 3.1416
10 9.8549 39.475 88.876 158.11 3.1432

5 9.8102 39.431 88.830 158.06 3.1480
3.33 9.7364 39.356 88.757 157.99 3.1559
2 9.4993 39.116 88.516 157.75 3.1811
1.25 8.9473 38.538 87.935 157.16 3.2419
1.0 8.4516 38.000 87.335 156.42 3.2970

Table 4.6 Exact Frequency Parameters ω ρ2 A EI/  for Curved Thin Beams with S1 
Boundary Conditions, ℓ/h = 100.
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Thus the displacement functions U and W are written in terms of the 
nondimensional coordinate ξ as

 
U C
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(4.181)

where ξ = α/ℓ, and Ci and Di are arbitrary coefficients to be determined 
subsequently.

The Ritz method requires the satisfaction of the geometric (or 
“forced”) boundary conditions only. Thus by suitable selection of i0 
and ℓ0 one can solve for any boundary conditions at ξ = 0, and by 
suitable selection of j0 and m0, one can solve for any boundary 
conditions at the other end (i.e., ξ = 1). For example, if one chooses the 
cantilever boundary conditions, where the edge at ξ = 0 is clamped 
and that at ξ = 1 is free, then one should satisfy u = w = dw/dα = 0 at 
ξ = 0. This is done by choosing i0 as 1 to satisfy u0 = 0 and ℓ0 = 2 to 
satisfy w = dw/dα = 0. One needs to satisfy no geometric boundary 
conditions at ξ = 1, which results in the selection of j0 and m0 as zeros. 
Table 4.7 shows a convergence study done with the Ritz method with 
the first column describing the degrees of freedom (d.o.f.) used. A 
reasonably close agreement for the first three frequencies is observed 
with the exact solution (Table 4.6) when a 2×8 solution is obtained.

Table 4.8 shows results obtained for the S2 boundary conditions. 
Note here that the frequencies are much higher than those for the S1 
case, due to the axial end constraints and a slight increase in curvature 
results in significant change in the frequency parameters. The table 
also shows results for the completely clamped case (i.e. C2 boundary 
condition), where a similar observation is made.

d.o.f. m = 1 2 3 4

2×6 9.500 40.98 93.00 215.8

2×7 9.500 39.12 92.91 167.8

2×8 9.500 39.12 88.53 164.8

2×9 9.500 39.12 88.52 157.9

Exact 9.499 39.12 88.52 157.8

Table 4.7 Convergence of the Frequency Parameters for Simply Supported S1 
Curved Thin Beam, ℓ/R = 0.5, ℓ/h = 100
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Additional complications for curved beams that can be 
considered are shear deformation and rotary inertia. In addition, 
beams made of composite materials can be treated [14].

References
1. D. Young and R. P. Felgar, Jr., “Tables of characteristic functions representing 

normal modes of vibration of a beam,” University of Texas Publication No. 
4913, 1949, 31 pp.

2. J. C. MacBain and J. Genin, “Natural frequencies of a beam considering sup-
port characteristics,” J. Sound Vib. 27 (1973): 197–206.

3. A. W. Leissa and M. Sonalla, “Nonperiodic vibration of a cantilever beam 
subjected to various initial conditions,” J. Sound Vib. 150 (1991): 83–99.

4. A. W. Leissa, “Closed form exact solutions for the steady state vibrations of 
continuous systems subjected to distributed exciting forces,” J. Sound Vib. 134 
(1989): 435–53.

5. C. R. Wylie, Jr., Advanced Engineering Mathematics, McGraw-Hill Book Co., 1951, 
640 pp.

6. S. P. Timoshenko and J.M. Gere, Theory of Elastic Stability, McGraw -Hill Book 
Co., 1961, 541 pp.

7. Lord Rayleigh, Theory of Sound, vol. I, 1st ed., MacMillan Co., 1877, 480 pp., 
reprinted by Dover Publications, 1945.

8. S. P. Timoshenko, “On the correction for shear of the differential equation for 
transverse vibrations of prismatic bars,” Phil. Mag ., Ser. 6, 41 (1921): 744–46.

9. S. P. Timoshenko, “On the transverse vibrations of bars of uniform crosssec-
tions,” Phil. Mag., Ser. 6, 43 (1922): 125–31.

10. G. R. Cowper, “The shear coefficient in Timoshenko’s beam theory,” J. Appl. 
Mech. 1966: 335–40.

11. T. C. Huang, “The effect of rotary inertia and of shear deformation on the 
frequency and normal mode equations of uniform beams with simple end 
conditions,” J. Appl. Mech., 1961: 579–84.

12. T. C. Huang, “Eigenvalues and modifying quotients of vibration of beams,” 
Report No. 25, Engr. Exper. Station, Univ. of Wisconsin, 1964, 65 pp.

13. A. W. Leissa and M. O. Hwee, “Forced vibrations of Timoshenko beams with 
viscous damping,” Developments in Mechanics (Proceedings of the Ninth 
Midwestern Mechanics Conference, Madison, Wisconsin), 1965: 71–81.

14. M. S. Qatu, Vibrations of Laminated Shells and Plates, Elsevier, 2004, 409 pp.

S2 boundary conditions C2 boundary conditions

R/ℓ m = 1 2 3 4 m = 1 2 3 4

– 9.870 39.48 88.83 157.9 22.37 61.67 120.9 199.9
100 10.35 39.48 88.83 157.9 22.56 61.67 120.9 199.9
20 18.43 39.47 88.98 157.9 26.59 61.67 121.1 199.9
10 32.47 39.45 89.50 157.9 36.31 61.68 121.6 199.8
5 39.38 60.15 93.10 157.8 60.16 61.57 124.2 199.7
2 38.86 82.28 157.3 165.3 61.03 103.0 168.4 199.1
1 37.09 82.18 155.5 237.1 59.16 107.9 197.0 268.5

Table 4.8 Curvature Effects on the Frequency Parameters for Curved Beam, ℓ/h = 100
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Problems
1  A. Derive the generalization of (4.8) which includes transverse gravitational 

effects.

B. Solve the derived equation, apply the boundary conditions for a beam 
having both ends simply supported, and determine the free vibration 
mode shapes with respect to the static equilibrium position.

C. Generalize the conclusion reached in Part B to a beam of variable cross-
section having arbitrary boundary conditions, and carefully explain how 
you reach this conclusion.

2  A. Derive the characteristic equation for Part A of Example 4.3 more easily 
by choosing the coordinate origin at the free end of the beam.

B. Plot the mode shape for the beam having the smaller root (K = 0.2179) 
and the same frequency (β2= 1.7580). Compare this mode shape with those 
of the F–F beam and with that plotted for the larger root (K = 4.8719) in 
Example 4.3.

C. Prove whether or not the higher frequencies and mode shapes for all finite 
K approach those of the free–free beam as the mode number is increased.

3 A beam has both ends simply supported, and has rotational springs of 
stiffness K also at each end (Fig. 4.26).

A. Derive the characteristic equation(s) for the free vibration frequencies 
(Hint: Consider symmetry and antisymmetry of the modes to reduce the 
work.)

B. Evaluate the first two nondimensional frequencies for Kℓ/EI = 0.1, 1, 10, 
and 100. Make sketches showing how they change as Kℓ/EI varies from  
0 to ∞ (consider a logarithmic scale for Kℓ/EI).

4 A cantilever beam of length ℓ has a mass M and a translational spring of 
stiffness k attached to its free end (Fig. 4.27). Prove whether or not the free 
vibration eigenfunctions are orthogonal. Use any method you wish.

K Kℓ

Figure 4.26 Problem 3.

ℓ

x 

M 

K

Figure 4.27 Problem 4.
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5 A beam has both ends clamped. A uniformly distributed static loading 
of q0 is applied. Suddenly the load is removed. Determine the subsequent 
w(x,t).

6 In Sec. 2.8 it was proved that, for the underdamped free vibrations of a 
string immersed in a viscous fluid, the amplitudes of all modes decayed at 
the same rate. Prove whether or not this is true for beams vibrating freely in 
a viscous fluid (for arbitrary boundary conditions). If it is not generally true, 
are there any boundary conditions for which it is true?

7 A. Verify (4.64).

B. Expand the determinant of (4.64) to arrive at a frequency equation. Use 
identities to simplify it. Show that for r = 1 the frequency equation factors 
into (4.32a) and (4.35a).

C. Let r = 1.5. Find the first two frequencies and plot the first two mode 
shapes.

8 Determine the first four frequencies of a continuous beam of length 3ℓ 
supported along three equal spans of length ℓ, as shown (Fig. 4.28). Plot also 
the corresponding mode shapes. (Hint: Consider the symmetry present.)

9 A C–C beam has a translational spring of stiffness k attached at an 
intermediate point (Fig. 4.29).

A. Set up a fourth order, determinant for finding the frequencies by using a 
separate coordinate origin at each end, and either by using displacement 
functions which satisfy the clamped B.C. exactly, or by reducing eight 
equations to four by adding or subtracting equations.

B. For the special case when ℓ1 = ℓ2 = ℓ/2, expand the determinant to obtain 
frequency equations.

C. For the special case of Part B, make a plot of the first two nondimensional 
frequencies ω ρ2 A EI/  versus kℓ3/EI  to show how they change with 
increasing spring stiffness.

ℓ ℓ ℓ

Figure 4.28 Problem 8.

ℓ1 ℓ2K

Figure 4.29 Problem 9.
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10 The frame shown (Fig. 4.30) may be regarded as two beams of lengths 
ℓ1 and ℓ2, welded together at a right angle. The longitudinal stiffness of 
each beam may be considered as infinite in comparison with the bending 
stiffnesses. Both ends of the frame are hinged.

A. Choosing a coordinate origin at the hinged end of each beam, set up 
the characteristic determinant for determining the frequencies of the 
frame. The reduced determinant will be of fourth order. Let the ρ, E, I, 
and A of each beam be equal, and express the determinant in terms of 
β ρ1 1

2= ω A EI/  and ℓ* = ℓ2/ℓ1.

B. Determine β1 when ℓ* = 2, and compare with similar known results for 
single straight beams of length ℓ1, ℓ2, and ℓ1 + ℓ2.

11  A. Let ℓ1 = ℓ2 in Problem 10. By taking into consideration the 45 deg 
symmetry axis passing through the corner of the frame which exists in 
this case, derive the two second-order characteristic determinants which 
yield all frequencies. Expand them to get frequency equations. Justify 
carefully and logically all boundary conditions used.

B. Determine the lowest two frequencies. Sketch the corresponding mode 
shapes (no calculations needed).

C. Suppose the longitudinal stiffnesses of the beams is finite, perhaps even 
the same order of magnitude as the transverse stiffnesses. Write down the 
system of differential equations and boundary conditions that would be 
required to solve this problem, but do not attempt to solve them.

12 A clamped–clamped beam has a concentrated force Q0 sin Ωt acting at 
its middle (Fig. 4.31). Assume no damping.

A. Use the eigenfunction superposition method to determine w(x,t). 
Represent the concentrated force in one of two ways:

(1) A direct delta function

ℓ1

ℓ2

Figure 4.30 Problem 10.
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(2)  A uniform distributed pressure p0 = Q0/b along a length b in the 
middle of the beam. Then take the limit as b/ℓ→ 0.

Hint: Take advantage of the symmetry present.

B. Evaluate w(x,t) at the middle of the beam for Ω/ω1 = 3. Compare  
this amplitude with the static deflection.

13 Solve problem 12 by the closed-form method. Plot the vibratory 
displacement shapes X(x)/δ of the beam for Ω/ω1 = 1.2, 3, and 5.2, where δ 
is the static displacement at the center and ω1 is the lowest free vibration 
frequency. Explain why the shapes appear as they do.

14 Use the Rayleigh method to find approximate values of the fundamental 
frequency of a C–SS beam, and compare with the exact value.

A. Use a trial function which satisfies only the geometric B.C.

B. Use one which satisfies all the B.C.

C. Determine the “inertia loading” caused by the two functions.

D. Use a trial function which will cause a reasonable inertia loading.

l5 Use the Rayleigh method to obtain an estimate of the fundamental 
frequency of a cantilever beam of length ℓ and linear taper (Fig. 4.32). The 
cross-section of the beam is circular, having a diameter which varies as  
d = d0(x/ℓ) in terms of the coordinate origin shown.

Set up Rayleigh’s Quotient by two approaches, one with an assumed mode 
shape X(x) and the other with Y(y). Compare the expected work required by 

ℓ/2 ℓ/2

Q0 sin t

Figure 4.31 Problem 12.

ℓ

x y

ℓ

Figure 4.32 Problem 15.
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the two approaches. Plot the two functions X and Y, as well as their “inertia 
loadings.” Use the one you consider best to get the numerical value for the 
frequency.

16 Use the Ritz method to determine the first two frequencies of a C–C beam 
with reasonable accuracy.

17 A beam has both ends clamped and is subjected to an axial force T which 
is uniform along its length.

A. Make a sketch of the beam and its boundary constraints or explain 
otherwise how this physical situation could arise.

B. Derive the frequency equation, in nondimensional form, which would 
yield the fundamental frequency.

C. Make a plot of ω/ω0 versus T/Pcr where ω0 is the fundamental frequency 
of the beam when T = 0, and Pcr is the critical value of buckling load. 
Plot this curve carefully as T/Pcr → −1. Compare this curve with that for 
the beam having both ends simply supported (both curves intersect the 
ordinate at +1 and the abscissa at −1).

D. On a single graph make a plot of the two mode shapes X/Xmax in the 
special cases when T/Pcr = 0 and −1, and compare. How do they compare 
in the case of the SS–SS beam?

18 A beam of length ℓ is welded on one end to a rigid circular ring having 
an inside radius, R, and its other end is free (Fig. 4.33). The ring rotates with 
constant angular speed Ω about its center. Considering free vibrations of the 
beam in the vertical direction (i.e., in the direction, z, of the angular velocity 
vector, Ω– ):

A. Determine ω ρ2 A EI/  for the fundamental frequency of the beam as 
a function of ℓ/R and Ω/ω0, where ω0 is the beam frequency when Ω = 0.

B. Using these results, plot ω ρ2 A EI/  versus Ω/ω0 for ℓ/R = 0.5, 1, 1.5.

C. There are at least two reasons why vibrations in the sideways (i.e. 
circumferential) direction would be more difficult to analyze. Explain why.

ℓ

x 

R 

Figure 4.33 Problem 18.
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19 Use the following method of finding a general solution to (4.127):

A. Uncouple (4.127a) and (4.127b) to find a single differential equation in 
Ψ, to complement (4.128).

B. Derive solutions for w and Ψ from the uncoupled equations. Convert 
these solutions into the same forms as (4.148) and (4.153).

C. Substitute the solutions obtained into (4.127b) to determine relation-
ships between the constants of integration, so that the final solution only 
has four such constants.

20 A beam of circular cross-section has both ends free. Its diameter is d and 
its length is ℓ. A free vibration analysis is desired which includes the effects 
of shear deformation and rotary inertia.

A. Derive the frequency equation for symmetric modes (only) in terms of 
ω ρ 2 A EI d/ , /   and G/E.

B. Show that ω = 0 is one solution to the frequency equation, and prove 
that this corresponds to a rigid body mode.

C. Assume that the beam is made of titanium. Make a plot of ω ρ2 A EI/  
versus ℓ/R for 3 < ℓ/R < 20 for the first two, non-zero, symmetric mode 
frequencies.

D. Evaluate the mode shape W(x) and Ψ(x) of the second, nonzero, 
symmetric mode frequency of the titanium beam when ℓ/d =5. Use this to 
draw the beam in its deformed shape in this mode.

21 Use the Ritz method to obtain an estimate of the effects of shear flexibility 
and rotary inertia on the fundamental frequency of a cantilever beam of 
length ℓ.

A. Choose suitable function X(x) = C1Φ1 (x) and Ψ(x) = C2Φ2 (x) where 
C1 and C2 are constants. Obtain the frequency determinant from which 
ω ρ2 A EI/  could be obtained. The other parameters are k, G/E,  
and ℓ/R.

B. Let k = 5/6 (rectangle) and G/E = 0.4 (e.g., steel). Evaluate ω ρ1
2 A EI/   

(ω1 is the fundamental frequency) for h/ℓ = 0, 0.1, 0.4, and compare the 
percent decreases with those shown in Table 4.4.



Chapter 5
Membrane 
Vibrations

A membrane is a structural element which is relatively thin in 
one direction compared with the other two, and is flat. It is 
stretched in its plane, thereby withstanding tensile stresses. 

However, it is perfectly flexible with respect to bending. It may be 
regarded as a two-dimensional generalization of the string, which 
was studied in Chap. 2. Indeed, the equations and methods used 
here will typically have strong similarities to ones found in Chap. 2. 
The major difference is that while the transverse vibration will be 
described by the displacement, w, it will be a function of two space 
variables (such as x and y) and time—i.e., w = w(x,y,t)—whereas, 
string vibrations involve only one space variable.

Membrane have many applications in various fields. In music 
and acoustics, membranes constitute major components in many 
musical instruments (e.g., drums). In addition, membrane surfaces 
constitute components of microphones, speakers, and other devices. 

In the physical sciences, membranes may be used to study two 
dimensional wave mechanics and propagation. The fundamental 
equations of wave propagation in two dimensions are the same as 
the membrane vibration equations. 

In bioengineering, many human tissues are considered as 
membranes. The vibration characteristics of an eardrum are 
important in understanding hearing. The design of hearing aid 
devices involves incorporating membranes in them.

The transverse vibrations of membrane are studied in this 
chapter. The equations of motion will be first derived. The free 
vibrations of rectangular, circular, annular, and sectorial membranes 
will then be examined. Some interesting mode shapes of free 
vibration will be discovered. Vibration of membranes under various 
initial conditions will be studied. Forced vibration will be treated 
using both modal expansion and closed-form solutions. The 
approximate methods of Rayleigh and Ritz will be introduced and 
used to solve problems which do not allow exact solutions, or when 
such solutions are not easy to obtain.

181
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5.1 Equation of Motion for Transverse Vibrations
The membrane is assumed to be stretched with sufficiently large 
stresses so that, like the string, if the subsequent transverse vibrational 
displacement is kept small, the stresses will remain essentially constant 
during vibration. In practice, this usually consists of stretching a 
membrane uniformly over a support frame as, for example, in the case 
of a drum. However, the tensile stress need not be uniform, and in 
reality it never is. Moreover, inplane shear stresses, in addition to tensile 
stresses, may be applied at the support frame (the membrane boundary). 
Such stresses are limited only by the requirement that at no point, and 
in no direction, within the membrane region will there be compressive 
stress. If a compressive stress component were to exist, the membrane 
would wrinkle because of its complete lack of bending stiffness.

Figure 5.1 depicts a membrane which is stretched over a boundary 
of arbitrary curvilinear shape. The stress applied externally is shown 
as a normal stress (σn) which may vary along the boundary. In 
addition a variable shear stress, which is not shown, may also act in 
the plane (xy) of the membrane and tangent to its boundary. These 
stresses are assumed not to vary with time. The membrane is shown 
in its static equilibrium position.

Consider now the transverse motion of an infinitesimal element 
of the membrane. It has dimensions dx × dy in the plane of the 
membrane, as shown in Fig. 5.1, and a thickness h. Figure 5.2 is a 
three-dimensional sketch of its middle surface in a typical displaced 
position. Shown on the element are the membrane stress resultants  
Tx , Txy , etc., acting on each side of the element. They each have the 
dimensions of force per unit tangent length, and are related to the 

Figure 5.1 Membrane of arbitrary boundary shape subjected to nonuniform 
tensile stress.
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stresses by Tx = σxh, Txy = τxyh, etc. Tx and Ty are normal stress resultants 
and Txy and Tyx are shear stress resultants. In Fig. 5.2, they are drawn in 
their positive directions in accordance with traditional notation used 
in the theory of elasticity (cf. [1]). Also shown is a pressure (q) having 
units of force/area, distributed over the surface of the membrane.

Assuming that the membrane slopes at all points and in all 
directions are small during the vibratory motion, and summing 
forces in the transverse (z) direction:
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where now ρ is mass density per unit volume of the material, and h 
is the membrane thickness. In the terms of (5.1), the sine of the angle 
made with the xy-plane was replaced by its tangent, as was done for 

Figure 5.2 Transversely displaced membrane element with stress resultants.
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the string in Chap. 2. It can be seen in (5.1) that not only are the stress 
resultants changing in magnitude, in general, as one moves across 
the element from one edge to an opposite edge, but they are changing 
in direction. These direction changes must be incorporated into the 
z-direction components of the stress resultants as in (5.1). A sketch 
showing all the positive slopes (∂w/∂x) and (∂w/∂y) and their positive 
rates of change is shown in Fig. 5.3.

A more careful derivation of (5.1) would, for example, in the first 
term, replace Tx by its average value {Tx + [Tx + (∂Tx/∂y)dy]}/2 along the 
edge, and ∂w/∂x by its average value {∂w/∂x + [∂w/∂x + (∂(∂w/∂x)/∂y)
dy]}/2. However, all the additional terms thus introduced are found 
to be higher order terms, yielding (5.1).

Taking the first line of (5.1), which arises from Tx, and expanding 
the second term, one obtains

   
− + + + +




T

w
x

dy T
w
x

T
w

x
dx

T
x

w
x

dx
T
x

dx
w

x
dxx x x

x x∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

2

2

2

2i



dy

 
(5.2)

The first two terms are first-order differential quantities, but cancel 
each other out. Two of the remaining terms contain dxdy, and are 
therefore second-order differentials, the same order as the pressure 
and inertia terms in (5.1). The last term in (5.2) contains (dx)2dy, which 
is a third-order differential. This term is therefore discarded, for it 
contributes nothing to (5.1). Using the same arguments on lines 2, 3, 
and 4 of (5.1), and dividing through by the area dxdy, it becomes
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Figure 5.3 Positive slopes and slope changes for a displaced element. 
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This may also be written as
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(5.4)

In this form, it is seen that the incremental changes of the 
z-components of the stress resultants as one moves across the 
element are what contribute to the equation of motion.

Summing moments about an axis parallel to z, and through the 
center of mass of the element shows that Txy = Tyx (the rotational 
inertia of the element contributes only a higher order differential 
term). Summing forces in the x and y directions, and assuming that 
there are no significant accelerations or body forces (e.g., gravity, 
centrifugal) in the x and y directions, one obtains the classical 
equilibrium equations of plane elasticity.
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Multiplying (5.5a) by ∂w/∂x, and (5.5b) by ∂w/∂y, and then subtrac-
ting both from (5.3), the latter becomes
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(5.6)

It is important to note that in this form, Tx, Ty, and Txy may all  
be functions of x and y. Tx, Ty, and Txy are determined by solving 
first a plane elasticity problem. Moreover, ρ and h may each be 
functions of x and y (material nonhomogeneity and variable 
thickness).

The most widely used form of (5.6) is the special case wherein 
the inplane shear stress is zero, and the remaining tensile stress  
is constant and the same in all directions (Tx = Ty = T):
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where ∇ 2 is the Laplacian operator
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in rectangular coordinates. The stress state Tx = Ty = T = constant 
satisfies all the required equations of plane elasticity, and therefore 
is acceptable. In many practical applications involving membranes 
this is the situation, or very nearly so. Moreover, ρ and h are nearly 
always assumed to be constant in (5.7). For free, undamped 
vibrations, (5.7) becomes
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(5.9)

which is the classical, two-dimensional wave equation. 

5.2 Free Vibrations of Rectangular Membranes
A rectangular membrane with planform dimensions a × b is shown 
in Fig. 5.4. Assume that uniform tension is applied to it in all 
directions, so that free vibrations are governed by the equation of 
motion (5.9). To determine the natural frequencies and mode 
shapes, we will proceed in the usual manner, that is, a solution to 
(5.9) will first be found, and then the boundary conditions will be 
applied.

Figure 5.4 Rectangular membrane subjected to equal tension in all directions.



 186 C h a p t e r  F i v e  M e m b r a n e  V i b r a t i o n s  187

Using the method of separation of variables, a solution to (5.9) is 
assumed in the form

 w x y t X x Y y t, , ( ) ( ) ( )( ) = i i Φ  (5.10)

Substituting this into (5.9), and dividing by XYΦ results in

 

′′
+

′′
= 





′′X
X

Y
Y

h
T
ρ Φ

Φ  
(5.11)

Each of the three terms in (5.11) is a function of a different variable (x, 
y, or t), therefore, the only way in which (5.11) may be valid is if each 
term is equal to a constant. Let these constants be −α2, −β2, and −γ2. 
Then, (5.11) yields

 ′′ + =X Xα2 0  (5.12a)

 ′′ + =Y Xβ2 0  (5.12b)

 
′′ +







=Φ ΦT
hρ

γ 2 0
 

 (5.12c)

and 

 α β γ2 2 2+ =  (5.13)

In anticipation of the solution form of (5.12c), replace (T/ρh)γ2 by the 
constant ω2, which will be, of course, the circular frequency. Solutions 
to (5.12) are then

 X A x B x= +sin cosα α  (5.14a)

 Y C y D y= +sin cosβ β  (5.14b)

 Φ = +E t F tsin cosω ω  (5. 14c)

where α β ρ ω2 2 2+ = 





h
T

 (5.15)

Boundary conditions where all edges are fixed will be considered. 
The boundary conditions are therefore (see Fig. 5.4)

 w y t w a y t w x t w x b t( , , ) ( , , ) ( , , ) ( , , )0 0 0= = = =   (5.16)
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whence 

 X X a Y Y b( ) ( ) ( ) ( )0 0 0= = = =  (5.17)

Substituting (5.14a) and (5.14b) into (5.17) gives B = D = 0 and

 
α π= =m

a
m( , , )1 2 …

  
(5.18a)

 
β π= =n

b
n( , , )1 2 …

 
 (5.18b)

The frequency is thus determined from (5.15) to be

 
ω π

ρ
= 



 + 

















T
h

m
a

n
b

2 2

 
(5.19)

Or, in nondimensional form,

 
λ ω ρ π= = + 



 = ∞a

h
T

m
a
b

n m n2
2

2 1 2 3( , , , , , )…
 

(5.20)

It is seen that the nondimensional frequency parameter ω ρa h T/  
depends on the aspect ratio (a/b) of the membrane and that, for any 
a/b, there is a doubly infinite set of frequencies depending on the 
choices of m and n.

Combining the remaining constants A, C, E, and F in (5.14), it may 
now be said that the membrane is capable of vibrating freely with a 
natural frequency ωmn and in a corresponding mode shape Wmn(x,y) 
where

 
W x y

m x
a

n y
bmn( , ) sin cos= π π

i
 

(5.21)

The complete motion of the membrane in this mode shape is 
described by

 w x y t W x y A t B tmn mn mn mn mn mn( , , ) ( , )( sin cos )= +ω ω  (5.22)

where Amn and Bmn are determined from the initial conditions.
Looking at (5.20), it is clear that the fundamental frequency of 

a rectangular membrane, regardless of a/b, will be for a mode 



 188 C h a p t e r  F i v e  M e m b r a n e  V i b r a t i o n s  189

shape having one half-sine wave in each direction (m = n = 1). The 
second frequency will then be for m, n = 1, 2 or 2, 1, depending on 
a/b. Beyond that, the sequence of modes becomes unclear, and one 
must evaluate (5.20) for various m and n to determine it. For 
example, the first ten nondimensional frequency parameters λ for 
a membrane with a/b = 1.5 are listed in ascending sequence in 
Table 5.1. The ratio ω/ω1 is also given, where ω1 is the fundamental 
(lowest) value. This shows that the first three frequencies are  
rather widely separated, but some others are close together (e.g., 
ω32 and ω41).

It is also interesting to compare the “density” of the frequency 
spacing for membranes with those of other structural elements. For 
a/b = 1.5, 12 frequencies are found within the range of frequency 
ratios 1 < ω/ω1 ≤ 3 (those in Table 5.1, plus ω51and ω33). For a string [see 
(2.23)], there are only three. For a beam having any of the classical 
boundary conditions (see Table 4.1), there are only two at most (for 
C–C and F–F beams). Thus, one can imagine that the experimental 
determination of resonant frequencies, especially when ten or more 
are needed, is more difficult for a membrane than for a string or 
beam. In particular, one is more likely to miss one of two close 
frequencies.

Figure 5.5 shows the first nine “nodal patterns” for the rectangular 
membrane with a/b = 1.5. These consist of planform views of the 
membrane showing the node lines (lines which remain stationary 
while all other parts of the membrane vibrate) for each of the mode 
shapes. Since, in this case, the half-waves between node lines are all 

Mode number m n λ ω ρ= a h T/ ω ω/ 1

1 1 1 5.664 1
2 2 1 7.854 1.387
3 1 2 9.935 1.754
4 3 1 10.538 1.861
5 2 2 11.327 1.999
6 3 2 13.329 2.353
7 4 1 13.421 2.370
8 1 3 14.482 2.557
9 2 3 15.471 2.731

10 4 2 15.708 2.773

Table 5.1 The First Ten Frequencies of a Membrane with Aspect Ratio (a/b) 
of 1.5
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sine waves, the nodal patterns readily describe the mode shapes. 
Plus and minus signs are used in Fig. 5.5 to emphasize that one region 
is moving towards the reader (+) while another is simultaneously 
moving away (−); these are not necessary and are usually omitted 
from nodal pattern drawings. The node lines in Fig. 5.5 are all straight, 
but this is not the usual case, especially for nonrectangular 
membranes.

It is possible to have two mode shapes having the same frequency 
for a particular membrane. This is obvious enough for a square  
(a/b = 1) configuration, where ω12 = ω21, ω13 = ω31, ω23 = ω32, etc. 
However, it may be shown from (5.20), for example, that ω12 = ω31 if 
a/b = 8 3/  = 1.633. In such cases the frequencies are said to be 
“degenerate.” A plot of λ2 versus (a/b)2 by means of (5.20), for all 
values of m and n, would show an infinite number of curve crossings, 
each of which corresponds to a degeneracy.

If two modes have the same frequency, then it is possible to  
start the motion so that both modes are present during the free 
vibration. Consider the square membrane and its degenerate 
frequencies ω12 = ω21. Superposition of the two mode shapes may be 
taken as

 
W x y C

x
a

y
a

C
x

a
y
a

( , ) sin sin sin sin= +12 21
2 2π π π π

i i
  

(5.23)

Figure 5.5 First nine nodal patterns for a/b = 1.5.
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If C21 = −C12 (subtracting, the two modes), then (5.23) indicates that 
along the line y = x, which is one diagonal of the square, W(x, y) = 0. 
Similarly, if C21 = + C12 (adding the two modes), then, the other diagonal, 
line y = a − x has no displacement. Thus, superposition of the modes 
yields two other mode shapes which have node lines along one 
diagonal or the other, as shown in Fig. 5.6(a).

Figure 5.6(b) shows the combined nodal patterns arising from the 
subtraction (C31 = −C13) and addition (C31 = +C13) of the (3, 1) and (1, 3) 
modes. The first causes both diagonal nodal lines to appear in the 
combined mode. The second yields a nodal line which is similar to 
(but slightly different from) a circle.

The superpositions shown in Fig. 5.6 involve equal amounts of the 
two modes being superimposed. Figure 5.7 shows some interesting 
nodal patterns which arise when one superimposes two degenerate 
modes unequally. As one changes the ratio Cmn/Cnm of the two 
amplitudes, a continuous change in the node line of the combined 
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+ 

– 

– – – 

– – 

– – 
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+ + 
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(a) (1,2) (2,1) modes

(b) (1,3) (3,1) modes

+ 

– 
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+ 

Figure 5.6 Nodal patterns for superimposed degenerate modes of square 
membranes.
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mode is seen to take place, and some node lines quite complicated in 
shape are seen to arise.

Finally, before leaving the topic of degenerate modes and their 
combined nodal patterns, it should be pointed out that because the 
node lines satisfy W(x, y) = 0, they may be regarded as boundaries of 
other membrane shapes vibrating with the same frequency. Thus, for 
example, the superimposed (1,2)∓(2,1) modes in Fig. 5.6(a) are also 
those of the isosceles right triangle. The fundamental frequency of 
the isosceles right triangle membrane is therefore ω ρa h T/ .= 7 025, 
where “a” now is the length of the short sides of the triangle. The 
second combined mode in Fig. 5.6(b) solves not only the problem of 
the membrane having the “nearly circular” boundary shape, but also 
that of a square membrane having a “nearly circular” inner boundary, 
as well (where, of course, the inner boundary has one particular size 
and location), with both boundaries being fixed (w = 0).

The problems discussed above were for rectangular membranes 
having all edges fixed. More general boundary conditions, such as 
an edge having an attached mass and/or a distributed spring, are 
possible, but are difficult to achieve physically. Such boundary 
conditions may be dealt with by methods similar to those for strings 
(see Sec. 2.6).

C21 = C12

C41 = –C14

C41 = –3.57C14

C51 = –C15

15 = 51

14 = 41

12 = 21

C51 = –1.02C15 C51 = –5C15

C41 = –10C14 C41 = – C14

C41 = –1.02C14 C41 = –2C14

C21 = 1.02C12 C21 = 2C12 C21 = C12

Figure 5.7 Some nodal patterns which arise when one superimposes two 
degenerate modes unequally.
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5.3 Circular Membranes
The equation of motion (5.9) for the free vibrations of membranes 
subjected to uniform tension (T) was solved in rectangular 
coordinates in Sec. 5.2, and was applied to membranes having 
rectangular boundaries. An exact solution to it is also possible in 
polar coordinates, which may be conveniently applied to membranes 
having circular boundaries.

Let us begin by assuming for free, undamped vibrations

 w r t W r t( , , ) ( , )sin( )θ θ ω φ= +   (5.24)

where, as before, ω is a natural frequency and φ is a phase angle 
(which depends on the initial conditions). Substituting (5.24) into  
(5.9) results in

 ∇ + =2 2 0W k W   (5.25)

where k2 is defined by

 

k
h
T

2
2

= ρ ω

 

 (5.26)

Figure 5.8 shows a circular membrane of radius “a” and an associated 
polar coordinate system (r, θ) having its origin at the membrane 
center. The Laplacian operator ∇ 2 in polar coordinates is

 
∇ = + +2

2

2 2

2

2
1 1∂

∂
∂
∂

∂
∂r r r r θ   

(5.27)

Figure 5.8 Circular membrane and polar coordinates.
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A solution to (5.25) is therefore assumed as

 W r W r n nn( , ) ( )cos ( , , )θ θ= = 1 2 …  (5.28)

Not only does this “fit” (5.25), but the integer values of n also give the 
desired periodicity needed by the solution in the case of the circular 
membrane, that is, W(r, θ) = W(r, θ+2π). Using (5.27) and (5.28) in (5.25) 
yields

 

d W
dr r

dW
dr

k
n
r

Wn n
n

2

2
2

2

2
1

0+ + −






=
 

(5.29)

It should be mentioned at this point that another solution of (5.25) 
is possible which uses sin nθ in place of cos nθ in (5.28). When 
substituted into (5.25), it also results in (5.29), except that it only gives 
nontrivial solutions for n > 0 and misses the axisymmetric (n = 0) 
modes. It is not needed in the determination of the complete set of 
free vibration frequencies and mode shapes of circular membranes 
having uniform boundary conditions (i.e., boundary conditions not 
changing with θ), to which the present section is limited. For these 
problems, the cos nθ functions are sufficient.

Equation (5.29) is the well-known Bessel’s equation which we 
encountered previously in the longitudinal vibrations of tapered 
bars (Sec. 3.5). Its solution is

 W r A J kr B Y krn n n n n( ) ( ) ( )= +  (5.30)

where Jn and Yn are Bessel functions of the first and second kinds, 
respectively, of “order” n, and having the argument kr. The constants 
of integration are An and Bn.

From the properties of Bessel functions (see Appendix B), we 
know that the Yn(kr) are infinite at r = 0 for all n. Therefore, to enforce 
the regularity condition that the displacement is finite at r = 0, it is 
necessary to set Bn = 0. At the boundary, w(a, θ, t) = 0, which implies 
that Wn(a) = 0 or, from (5.30),

 Jn( )λ = 0  (5.31)

where λ = ka.
Equation (5.31) has an infinite set of roots, ka, which are 

eigenvalues, for each value of n. From (5.26), it is seen that these are 
the nondimensional frequency parameters:

 
λ ω ρ= a

h
T  

(5.32)

The first five roots (nondimensional frequencies) of (5.31) for n = 0, … , 
5 are listed in Table 5.2.
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Combining (5.28) and (5.30), the eigenfunctions describing the mode 
shapes are

 
W r J kr n J

r
a

n nn n( , ) ( )cos cos ( , , )θ θ λ θ= = 



 = 1 2 …

 
(5.33)

For n = 0, (5.31) has the roots λ = 2.4048, 5.5201, 8.6537, 11.7915, … 
as seen in the plot of J0(z) in Appendix B. These correspond to the 
axisymmetric modes (i.e., no variation of w with θ), and have 0, 1, 2, 3 
interior circles as node lines. The mode shapes are exactly shown by 
the plot of J0(z) in Appendix B, where zero values of J0(z) correspond 
to the locations of the membrane boundary and nodal circles. Thus, 
the first mode shape, along every radial line, resembles a half-cosine 
wave; however, it has an inflection point (point of curvature change) 
well before the boundary (z = 2.4048). The second mode shape has a 
nodal circle located at r/a = 2.4048/5.5201 = 0.4356. During its vibratory 
motion in this mode shape, the membrane displaces 2.48 times as 
much at its center than its maximum value in its outer portion. The 
third mode shape has nodal circles located at r/a = 2.4048/8.6537 = 
0.2779 and at r/a = 5.5201/8.6537 = 0.6379, with the amplitudes of the 
three half-waves of the mode shape decreasing from the center 
outwards. Similarly, the fourth mode shape has nodal circles at r/a = 
0.2039, 0.4681, and 0.7339.

For n > 0, the mode shapes have n circumferential waves in them, 
with n diametral node lines. The first five roots of (5.31), corresponding 
to the first five nondimensional frequency parameters, are listed in 
Table 5.2 for n = 0, … , 5 ([2], p. 409). Higher roots of (5.31) become 
separated by π (=3.1416) for every n.

Mode shapes along any radial line for n = 1 and n = 2 may be seen 
in the plots of J1(z) and J2(z) in Appendix B. Nodal patterns for the first 
nine frequencies of circular membranes are shown in Fig. 5.9. 

Table 5.2 Roots of Jn(λ) = 0 (Nondimensional Frequencies ω ρa T  /h   for Circular 
Membranes)

Number 
of root*

n (nodal diameters)

0 1 2 3 4 5

1 2.405 3.832 5.136 6.380 7.588 8.771
2 5.520 7.016 8.417 9.761 11.065 12.339
3 8.654 10.173 11.620 13.015 14.373 15.700
4 11.792 13.324 14.796 16.223 17.616 18.980
5 14.931 16.471 17.960 19.409 20.827 22.218

*Number of nodal circles plus one.
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5.4 Annular and Sectorial Membranes
An annular membrane is bounded by two concentric circles. A 
membrane having both its outer boundary (r = a) and inner boundary 
(r = b) fixed is shown in Fig. 5.10.

One could use the results obtained in Sec. 5.3 to find the 
frequencies for annular membranes with certain b/a ratios.  
For example, consider the second axisymmetric (n = 0) mode of a 
complete circular membrane. This mode has one interior nodal  
circle, as depicted in Fig. 5.9, and a frequency λ ω ρ= =a h T/ .5 520. 
Furthermore, as discussed in Sec. 5.3, the nodal circle is located at r/a 
= 0.436. Because the boundary condition of a fixed edge (w = 0) is 
duplicated along any node line of a membrane, λ = 5.520 is also the 
first axisymmetric frequency parameter of an annular membrane 
having b/a = 0.436. From the third axisymmetric mode of the complete 
membrane (see Fig. 5.9) one determines two additional results for 
annular membranes:

1. The fundamental frequency for b/a = 5.520/8.654 = 0.638.

2. The second axisymmetric mode frequency for b/a = 2.405/8.654 
= 0.278.

Figure 5.9 Nodal patterns and nondimensional frequencies ω ρa h T/  for the 
first nine modes of circular membranes.
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Both modes have the frequency parameter λ = 8.654. Similarly, from 
Fig. 5.9 one finds the lowest n = 1 frequency for an annular membrane 
having b/a = 3.832/7.016 = 0.546 to be λ = 7.016.

The procedure described above yields certain individual 
frequencies for annular membranes having limited values of b/a. A 
straightforward procedure exists for finding the complete frequency 
spectrum for arbitrary b/a. Returning to the exact solution of the 
equation of motion in polar coordinates, expressed by (5.24), (5.28), 
and (5.30), the Yn(kr) term in (5.30) may now be retained, for we no 
longer have concern about the behavior of Wn(r) at r = 0 or, for that 
matter, anywhere outside of the interval b ≤ r ≤ a. Applying the 
boundary conditions of zero displacement at both r = a and r = b 
yields

 

J ka Y ka
J kb Y kb

A
B

n n

n n

n

n

( ) ( )
( ) ( )



















 =











0
0

 
(5.34)

As usual, for a nontrivial solution, the determinant of the coefficient 
matrix of (5.34) is set equal to zero, resulting in the frequency 
equation

 
J Y

b
a

J
b
a

Yn n n n( ) ( )λ λ λ λ



 − 



 = 0

 
(5.35)

where again, λ= ka. For any given value of b/a, all frequencies of the 
annular membrane are obtainable from (5.35). The first three 
frequencies (corresponding to 0, 1, and 2 interior nodal circles) are 
listed in Table 5.3 (adapted from Ref. [2], p. 415) for the n = 0 
(axisymmetric) and n = 1 modes of annular membranes having 
various b/a ratios, especially for b/a < 0.5. It is interesting to note that, 
as b/a approaches zero, which corresponds to a point support, the 

a 

r 

b 

Figure 5.10 Annular membrane.
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frequency for n = 0 becomes the same as for the unsupported 
membrane. This is because membranes are incapable of transmitting 
transversely applied concentrated forces without violating the 
linearizing assumptions made in deriving the theory. This is true for 
any membrane and for any shape. For further discussion of this, see 
Ref. [3]. 

A sectorial membrane has the shape of a sector of a circle 
(Fig. 5.11), with a sector angle, α. Quite a few frequencies for such 
membranes are obtainable from the data for complete circular 
membranes previously given in Table 5.2, because radial node lines 
duplicate the boundary conditions of zero displacement on the sides 
of the corresponding sector. Thus, for example, studying the nodal 
patterns of Fig. 5.9, and using additional data from Table 5.2, one sees 
that the frequencies of the symmetric modes (symmetric about θ = 
α/2) of a semicircular membrane are, in order, λ ω ρ= a h T/  = 3.832, 
6.380, 7.016, 8.771, 9.761, … . Similarly, antisymmetric mode frequencies 
are λ = 5.136, 7.588, 8.417, … . In the same manner the fundamental 
frequencies for α = 90°, 60°, 45°, and 36° are observed to be λ = 5.136, 
6.380, 7.588, and 8.7771, respectively.

To obtain solutions for arbitrary sector angles, it is necessary to 
return to the equation of motion (5.25) and assume a displacement 
form.

 W r W r( , ) ( )sinθ νθν=   (5.36)

n b/a
Number of root

1 2 3

0 0.80
0.60
0.40
0.20
0.10
0.02
0.00

15.698
7.828
5.183
3.816
3.314
2.884
2.405

31.411
15.695
10.443

7.786
6.858
6.136
5.520

47.121
23.553
15.688
11.732
10.377

9.376
8.654

1 0.80
0.60
0.40
0.20
0.10
0.02
0.00

15.738
7.930
5.391
4.236
3.941
3.836
3.832

31.431
15.747
10.558

8.055
7.331
7.031
7.016

47.134
23.588
15.766
11.927
10.748
10.205
10.173

Table 5.3 Roots of Equation (5.35) (Nondimensional Frequencies ω ρa h T/  
for Annular Membranes).
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instead of (5.28) where ν, usually, is not an integer. Substituting (5.36) 
into (5.25) yields (5.29) again, but with n replaced by ν. The solution to 
this ordinary differential equation is

 W r A J kr B Y krν ν ν ν ν( ) ( ) ( )= +  (5.37)

Thus, the Bessel functions are now of non-integer order.
Consider first the boundary conditions along the radial edges. The 

condition W(r, 0) = 0 is clearly satisfied by (5.36), regardless of ν. Enfor-
cing the boundary condition along θ = α yields sin να = 0, whence

 
ν π

α
= =n

n( , , )1 2 …
 

 (5.38)

Applying next the regularity condition at r = 0 requires that Bν = 0. 
Finally, applying the condition W(a, θ) = 0 yields the frequency 
equation

 Jν λ( ) = 0  (5.39)

which is the same as (5.31), except that ν can be any real number, 
integer, or non-integer. For every sector angle, α, there are an infinite 
number of ν, given by (5.38). Symmetric modes result from n = 1, 3… 
antisymmetric modes from n = 2, 4… For every ν, there are an infinite 
number of nondimensional frequencies, λ.

Frequencies arising from the half-integer orders of v are given in 
Table 5.4. These are taken from Ref. [4], where zeros of (5.39) may be 
found for 1/2 < ν < 39/2. As discussed above, results for the inter-
mediate values of α = 180°, 90°, 60°, 45°, and 36°, corresponding  
to integer ν, may be taken from Table 5.2. The case of ν = 1/2, 
corresponding to α = 360° in Table 5.4, is an especially interesting 

Figure 5.11 Sectorial membrane.



 200 C h a p t e r  F i v e  M e m b r a n e  V i b r a t i o n s  201

one. In this case the boundaries are at θ = 0° and θ = 360°, which are 
the same radial line, and the problem of a complete circular mem-
brane supported along a single radial line is thereby represented. It  
is also interesting that in this case the roots are separated exactly by 
π, which indicates also that the nodal circles are uniformly spaced.

Finally, the solutions in polar coordinates are also applicable to 
annular sectorial membranes. Such configurations are bounded  
by two circle arcs (r = b, r = a) and two radial lines (θ = 0, θ = α). 
Considerable data for such shapes are available in Tables 5.2 and 5.3. 
For example, the fundamental frequency for a membrane with  
α = 60° (see n = 3 in Table 5.2) and b/a = 9.761/13.015 = 0.750 is λ = 
13.015. Frequencies for arbitrary α and b/a may be found from (5.35), 
replacing n by ν, where ν depends on α as given in (5.38).

5.5 Initial Conditions
The free vibration of a membrane begins with a set of initial conditions 
specifying the displacement and velocity at t = 0. The procedure for 
determining the subsequent motion is, in principle, the same as that 
followed for strings (Sec. 2.3) and beams (Sec. 4.6). That is, one 
expresses the displacement as a sum of the vibratory responses of the 
individual modes and determines the amplitudes of the modes, 
taking advantage of the orthogonality of the eigenfunctions. The 
only significant new feature for the membrane problem is that it is 
two-dimensional instead of one-dimensional.

Taking first the rectangular membrane, let the initial displacement 
and velocities be given functions f (x, y) and g (x, y), respectively, so that

 w x y f x y( , , ) ( , )0 =  (5.40a)

 

∂
∂

=w
t

x y g x y( , , ) ( , )0
 

(5.40b)

Number 
of root*

Sector angle, α (value of v)

360° 
(1/2)

120° 
(3/2)

72° 
(5/2)

51.43° 
(7/2)

40° 
(9/2)

32.73° 
(11/2)

1 3.142 4.493 5.763 6.988 8.183 9.356
2 6.283 7.725 9.095 10.418 11.705 12.967
3 9.425 10.904 12.323 13.698 15.040 16.355

*Number of nodal circles plus one. 

Table 5.4 Roots of Jv(λ) = 0 for Half-Integer Values of v (Nondimensional Frequencies 
ω ρa h T/  for Sectorial Membranes).
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From (5.21) and (5.22), the general motion of a freely vibrating 
membrane is

   
w x y t

m x n y
b

A t B t
nm

mn mn mn mn( , , ) sin sin ( sin cos )= +
=

∞

=

∞

∑∑ π π ω ω
a11  

(5.41)

Substituting (5.41) into the left-hand-sides of (5.40) gives
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m x n y
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(5.42a)
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(5.42b)

Multiplying both sides of (5.42) by sin(iπx/a)⋅sin(jπy/b), where i and 
j also are integers, and integrating over the area of the membrane,  
it is seen that
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(5.43)

Thus, the eigenfunctions of free vibration for the rectangular 
membrane are orthogonal over the membrane area. Using (5.43), 
then, result in the formulas for calculating the Amn and Bmn. In this 
case they are coefficients of double Fourier series:
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A

ab
g x y
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n y
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dxdymn
mn

ba
= ∫∫

4
00ω

π π
( , )sin sin

 
(5.44b)

The motion of a rectangular membrane given arbitrary initial 
displacement and velocity (consistent, of course, with the boundary 
constraints) is thus given by (5.41), where the Amn and Bmn are 
determined from (5.44).

For a circular membrane the initial conditions may be stated as 

 w r f r( , , ) ( , )θ θ0 =  (5.45a)
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∂
∂

=w
t

r g r( , , ) ( , )θ θ0
  

(5.45b)

In general, f(r, θ) and g(r, θ) are functions which are neither even nor 
odd with respect to θ. Therefore, in general, it is necessary to use both 
the cos nθ and the sin nθ solution forms for the eigenfunctions. That 
is, the general motion is expressed as
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nm

mn mn mn mn( , , ) cos ( sin cosθ λ θ ω ω= 



 +

=

∞

=

∞

∑∑
01

tt

J
r
a

n C t D tn mn mn mn mn mn
nm

)

sin ( sin cos )+ 



 +

=

∞

=

∞

∑∑ λ θ ω ω
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(5.46)

where the Amn, … , Dmn are constants to be determined, λmn is the mth 
eigenvalue of (5.31), and ωmn is the corresponding natural frequency. 
Considerable simplification of the general form (5.46) can take place 
in special cases. For example, if the membrane is released from rest 
from an initial displaced shape which is axisymmetric, then (5.46) 
simplifies to

 
w r t B J

r
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tmo o mn mo
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( , , ) cosθ λ ω= 





=

∞

∑
1  

 (5.47)

The eigenfunctions Jn(λmnr/a) cos nθ and Jn(λmnr/a) sin nθ are ortho-
gonal over the area of the membrane, and thus the Amn, … , Dmn of 
(5.46) may be calculated in a manner similar to that used earlier for 
the rectan gular membrane. However, before carrying out the 
procedure, it would be desirable to say something more about the 
orthogonality.

Equation (5.29) is a form of the more general differential equation

 

d
dz

d
dz

φ ψ φ µφ ψ1 2 3 0



 + + =( )

 
(5.48)

where ψ, φ1, φ2, and φ3 are arbitrary continuous functions of z (the first 
derivative of ψ must also be continuous), and µ is a constant. Let 
boundary conditions be applied at the ends of the interval a ≤ z ≤ b. In 
their most general forms, the boundary conditions may be written as

 
c a c

d
dz

a1 2 0ψ ψ
( ) ( )+ =

 
(5.49a)

 
c b c

d
dz

b3 4 0ψ ψ
( ) ( )+ =

 
(5.49b)
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where c1, … , c4 are constants. Equation (5.48) and the boundary 
conditions (5.49) comprise the famous Sturm–Liouville problem of 
applied mathematics. Solutions to it are an infinite set of eigenvalues, 
µm, and a corresponding set of eigenfunctions, ψm(z). It can be proven 
(cf. [5], p. 231) that the ψm are orthogonal with respect to the “weight 
function” φ3(z) over the interval a ≤ z ≤ b. That is,

 
ψ ψ φm ia

b
dz m i3 0= ≠∫ , if 

 
(5.50)

Returning to the circular membrane vibration problem, it is clear 
that if (5.29) is multiplied through by r, it is a special case of (5.48) 
with φ1 = r, φ2 = −n2/r, φ3 = r, z = r, and µ = k2. It can also be shown [5] 
that if the regularity condition at r = 0 replaces (5.49b), then the 
orthogonality stated by (5.50) is valid over the interval 0 ≤ z ≤ a. Thus, 
for the vibrating circular membrane
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and similarly for integrands involving sin nθ. Thus, substituting  
(5.46) into (5.45), multiplying through by Jj(λijr/a) cos jθ, integrating  
over the area (where the elemental area is rdr dθ), and using (5.51) and 
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2
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(5.52)

one obtains formulas for the coefficients Bmn and Amn as: 
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(except for n = 0, where π in the denominator is replaced by 2π),  
and similar formulas for Cmn and Dmn (replacing cos nθ by sin nθ). 
Evaluation of the integrals in (5.53) is formidable, typically requiring 
numerical integration.

Because of the orthogonality of the Bessel functions over the 
interval b ≤ r ≤ a, as stated in (5.50), it is clear that (5.53) may also be 
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applied to annular membranes simply by changing lower limits of 
the integrations on r, replacing 0 by b. Similar expressions may be 
used for sectorial membranes by changing limits of the integration 
on θ, and using the more general v in place of n.

5.6 Forced Vibrations
In the previous chapters, two methods were presented for the  
exact solution of steady-state, forced vibration problems: eigen-
function superposition and closed-form solution. Both methods 
are applicable to membranes. They will be summarized below  
for rectangular and circular membranes. Only viscous damping 
will be considered. The governing equation of motion is (5.7), 
generalized to

 
T w q h
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w
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+ ∂
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2
2
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(5.54)

where c is a viscous damping coefficient.
For a rectangular membrane, using the eigenfunction superposi-

tion method, the exciting pressure is first expressed in terms of 
modal components:
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The displacement response is also characterized by the response of 
the modes:
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Taking advantage of the orthogonality of the eigenfunctions, as in 
Sec. 5.5, the coefficients qmn are obtained
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(5.57)

Substituting (5.55) and (5.56) into (5.54), and equating coefficients of 
like terms in x and y, one obtains the doubly infinite set of equations 
of motion for the individual modes:

   ρ α βh c T q t m nmn mn m n mn mn′′ + ′ + + = =Φ Φ Φ( ) ( ) ( , , , , )2 2 1 2 3 …  (5.58)
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where αm = mπ/a, βn = nπ/b. Equation (5.58) is the same form as (2.82) 
(for strings), and its solution may be taken directly from the results 
of Sec. 2.9.

To find a closed form solution to the rectangular membrane 
problem, let us first reduce the complexity of the problem by assuming 
that there is no damping, and that the exciting pressure is sinusoidal 
in time. Then, (5.54) becomes

 
T w Q x y t h

w
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∇ + = ∂
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2
2

2( , )sinΩ ρ
 

 (5.59)

For more general, periodic forcing functions, the exciting pressure 
may be expressed by a Fourier series in time (see Sec. 2.9), for which 
(5.59) is representative of a single term of the series. Assuming a 
solution in the form

 w x y t W x y t( , , ) ( , )sin= Ω  (5.60)

(5.59) reduces to

 T w h W Q∇ + + =2 2 0ρ Ω  (5.61)

Assume further that Q(x,y) is expressible as a Fourier sine series in x, 
that is,
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where Q y
a

Q x y xdxm
a

m( ) ( , )sin= ∫
2

0
α  (5.63)

and αm = mπ/a. Similarly, take W in the form

 
W x y W y xm m

m

( , ) ( )sin=
=

∞

∑ α
1   

(5.64)

which satisfies the boundary conditions at x = 0, a exactly. Substituting 
(5.62) and (5.64) into (5.61), and equating coefficients of like terms in x,

 TW h T W Q y mm m m m′′ + − = − =( ) ( ) ( , , )ρ αΩ2 2 1 2 …  (5.65)

This has three forms of solution, depending on whether ρ αh T mΩ2 2−  
is positive, negative, or zero, that is, depending on the magnitude of 
the forcing frequency and on m. Applying the boundary conditions 
at y = 0, b determines the two constants of integration arising from 
(5.65). Further details are available in Ref. [6].
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If damping is to be considered in the closed form analysis, then 
(5.60) must be generalized to recognize the out-of-phase motion:

 w x y t W x y t W x y t( , , ) ( , )sin ( , )cos= −1 2Ω Ω  (5.66)

Substituting this into (5.54) with sinusoidal excitation results in

 T W h W c W Q x y∇ + − = −2
1

2
1 2ρ Ω Ω ( , )  (5.67a)

 T W h W c W∇ + + =2
2

2
2 1 0ρ Ω Ω  (5.67b)

Solving (5.67b) for W1 and substituting it into (5.67a) yields a fourth 
order partial differential equation in W2. Assuming further a sin amx 
variation for W1, W2, and Q, as in (5.62) and (5.64), yields a fourth-
order ordinary differential equation similar in form to (2.111). Solution 
of the problem is completed in the manner followed in Sec. 2.10 
subsequent to (2.111).

For a circular membrane similar procedures are followed, except 
that solutions are in polar coordinates and that Bessel functions are 
required. Thus, with the eigenfunction superposition method one 
expresses an arbitrary forcing pressure as

 

q r t q t J
r
a

n

q t J

mn n mn
nm

mn n

( , , ) ( ) cos

( )

( )

( )

θ λ θ= 





+

=

∞

=

∞

∑∑ 1

01

2 λλ θmn
nm

r
a

n





=

∞

=

∞

∑∑ sin
11  

(5.68)

and the displacement response in the same form, with unknown 
functions of time Φmn

( )1  and Φmn
( )2 . The coefficients qmn

( )1  and qmn
( )2  are found 

from quotients involving the integrals of Bessel functions, as in 
(5.53a). This yields uncoupled ordinary differential equations in Φmn

( )1  
and Φmn

( )2  in the form of (5.58).
The closed form solution procedure for a circular membrane will 

be demonstrated by an example below.

Example 5.1 Determine the displacement response of a circular membrane 
subjected to a uniform pressure which is sinusoidal in time:

q q t= 0 sin Ω  

Neglect damping. 

Solution
Uniform pressure can excite only the axisymmetric (n = 0) motions. Therefore, 
assume a solution as

w r t W r t( , ) ( )sin= Ω
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Substituting this and the exciting pressure into (5.54), with c = 0, gives
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where k2 = ρhΩ2/T. This is seen to be Bessel’s equation (5.29) for n = 0, with an 
added R.H.S. for which a particular solution must be found. Therefore, the 
complete solution is

W r A J kr B Y kr
q

k T
( ) ( ) ( )= + −0 0 0 0

0
2

Considering the regularity condition at r = 0, the constant B0 must be taken as 
zero. The boundary condition W(a) = 0 gives 

A
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0

2
0

=
( )

A closed form solution to the problem is therefore

w r t A J kr
q

k T
t( , ) ( ) sin= −



0 0

0
2 Ω

with A0 depending on ka, as shown above. Furthermore, since

ka a
h

T mo
mo= =







Ω Ωρ
ω

λ

where ωmo is the mth axisymmetric natural frequency, and λmo is the 
corresponding eigenvalue (2.4048, 5.5201, etc.), then as the exciting freq-
uency (Ω) approaches any natural frequency, ka approaches λmo, and J0(λmo) 
approa ches zero, as may be seen from (5.31). Thus, resonances occur at all  
the axisymmetric natural frequencies. 

Comparing the eigenfunction superposition (ES) and closed 
form (CF) methods for accomplishing the exact solutions of forced 
vibration problems for membranes, the following summary 
statements may be made:

1. For forcing pressures having general spatial distribution, the 
membrane problem, which is two-dimensional, requires 
summing a double series of displacement functions with the ES 
method, whereas the CF approach requires only a single series.

2. When damping is neglected, the ES procedure is easy to apply 
for the rectangle, but complicated for the circular case. The CF 
method is easy for both problems.
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3. When damping is included, the ES approach is only slightly 
more complicated, whereas the CF method becomes difficult.

Thus, both methods are useful, and each has classes of problems for 
which it is better suited than the other.

5.7 Energy Functionals; Rayleigh and Ritz Methods
As seen in the preceding chapters, the Rayleigh and Ritz methods are 
effective procedures for determining free vibration frequencies and 
mode shapes of structural elements having complications due to 
variations in axial tension, density, cross-sectional area, or elastic 
modulii. In such cases the differential equations of motion have 
variable coefficients and, in general, have no known exact solutions.

Considering the equation of motion (5.6) for a membrane, it was 
observed that Tx, Ty, Txy,  ρ, and h may each be functions of x and y. For 
such problems the Rayleigh and Ritz techniques may also be well 
suited. Moreover, for the most simple problems governed by (5.9), 
boundaries other than rectangular or circular may be encountered, 
which can also be dealt with by Rayleigh and Ritz methods. With 
these approaches the energy functionals are required.

The potential energy of a stretched membrane in a position 
displaced from its flat equilibrium position may be determined in a 
manner similar to that used for the string (see Sec. 2.11). That is, 
considering the displaced infinitesimal element shown in Fig. 5.2, the 
change in the potential energy of the element due to Tx is

 
d PE T dy

w
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2
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 (5.69)

which resembles that of the string (2.124), except that Tx is force/
length, which must be multiplied by the length (dy) along which it 
acts. Similarly, due to Ty,
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1
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 (5.70)

In addition, local changes in slope cause shear strains. If the 
membrane is also subjected to an initial shear stress τxy = Txy/h, which 
is sufficiently large to remain unchanged during the vibratory 
displacement, then the potential energy stored in the deformed 
element is τxy γxy dV, where γxy is the shear strain due to the vibratory 
displacement, and dV = hdxdy is the volume of the element.

Figure 5.12 shows an infinitesimal element which was rectan-
gular in shape before being displaced, with lengths dx and dy. In 
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general, the element undergoes a transverse displacement, w (not 
shown), slope changes ∂w/∂x and ∂w/∂y, and curvature changes 
(which yield higher order terms in the present analysis). Due to the 
slopes, the angle AOB = ψ originally 90°, is changed, with resulting 
shear strain, γxy.

Using unit vectors i, j, k in the x, y, z directions, respectively, and 
considering small slopes, the vectors OA and OB  taken along the 
edges of the deformed element are

 
OA dx i

w
x

dx k= +
∂
∂  

 
OB dx j

w
y

dy k= +
∂
∂  

(5.71)

The cosine of the angle between the two vectors is obtained from 
their dot product:
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(5.72)

where OA  and OB  are their magnitudes:
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(5.73)

Figure 5.12 Shear strain in a membrane element.
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For small slopes, (5.72) yields
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(5.74)

The shear strain in the element is tan (90 − ψ) which, for small values 
of 90 − ψ, can be replaced by sin (90 − ψ), which equals cos ψ. Thus, 
(5.74) becomes
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The potential energy in the element due to shear strain is 
therefore
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and the total potential energy in the displaced membrane is
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(5.77)

where the integration is taken over the area (A) of the membrane.
The kinetic energy of an element undergoing vibratory displace-

ment is
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where again, ρ is mass per unit volume. The kinetic energy of the 
complete vibrating membrane is therefore
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where, in general, ρ and h may vary with x and y.
The procedures followed in using the Rayleigh or Ritz methods 

for a vibrating membrane are the same as those for a string (see  
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Secs. 2.12 and 2.13). That is, one obtains maximum values of PE and 
KE during a vibratory cycle. Taking

 w x y t W x y t( , , ) ( , )sin( )= +ω φ  (5.80)
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The Rayleigh method requires assuming a reasonable represen-
tation for the mode shape desired, W(x,y), and substituting it into 
Rayleigh’s Quotient, (2.133), where KE KEmax max= ω2 * . The Ritz method 
involves assuming a set of trial (or admissible) functions to represent 
the mode shape,

 
W x y C x yi i

i

I

( , ) ( , )=
=
∑ φ

1  
 (5.83)

and employing the frequency minimizing equations (2.136).
The Rayleigh and Ritz methods may be applied to membranes of 

arbitrary boundary shape by assuming admissible functions as
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where G(x,y) is the equation of the boundary written in implicit form. 
For example, consider the triangular boundary determined by any 
three intersecting straight lines y = ak x + bk (k = 1, 2, 3) where ak and bk 
are arbitrary. Then,

 G x y y a x b y a x b y a x b( , ) ( )( )( )= − − − − − −1 1 2 2 3 3  (5.85)

For an elliptical boundary having semi-major and semi-minor axes  
a and b, respectively.
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2

2

2

2 1
 

(5.86)

For a membrane fixed along an outer triangular boundary and along 
an inner boundary, which is elliptical (or conversely), G(x,y) is a 
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product of the two functions given in (5.85) and (5.86). Using the 
Rayleigh method, a single term of (5.84) could be taken (e.g., i = j = 0 
for the fundamental mode). Typically, frequencies obtained by this 
simple approach will not be very accurate. However, if the Ritz 
method is used, and sufficiently large I and J are taken in (5.84), 
accurate frequencies are guaranteed, for the set of admissible 
functions used in (5.84) is complete.

Example 5.2 A membrane has boundaries consisting of the two straight lines 
x = a and y = 0, and the curve y/a = (x/a)n, as depicted in Fig. 5.13. It is subjected 
to a uniform tensile stress resultant T normal to all boundaries.

A.  By means of the Rayleigh method, derive a formula which one could 
use to obtain an approximate value of the fundamental frequency for a 
membrane having arbitrary values of a and n.

B.  Use the formula of Part A to calculate ω ρa h T/  for n = 0.1, 0.5, 1, 2, and 
10. Plot the membrane boundaries for each case. Do the frequencies 
seem reasonable for the various shapes? Make comparisons with known 
frequencies of other shapes, where possible, to verify that the results are 
reasonable.

Solution
Part A. Using nondimensional coordinates ξ = x/a, η = y/a, we choose

W(ξ,η) = η(ξ − 1)(η − ξn) 

Figure 5.13 A membrane with two sides straight and one curved.
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which satisfies W = 0 on all boundaries. The energy functionals are evaluated 
by (5.81) and (5.82) as
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The frequency squared is therefore obtained from (2.133) as
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Part B. Plots of the membrane shapes for n = 0.1, 0.5, 1, 2, and 10 are made in 
Fig. 5.14. For n = 1, the shape is a right triangle. For n = 10, the shape consists 
of two narrow, perpendicular lobes (shown shaded). For n = 0.5 and n = 2, the 
curved boundaries are parabolas. For n = 0.1, a nearly square shape results. The 
circle arc (x/a)2 +(y/a)2 = 1 is also shown for comparison.

Nondimensional frequencies calculated from the formula deri ved above are 
shown in Table 5.5 for n = 0, 0.2, and ∞, as well as the values in the problem 
statement. Exact results for n = 0 (square), n = 1 (right triangle), and a quarter 
circle sector (see dashed curve of Fig. 5.14) are also provided for comparison, 
taken from data presen ted earlier in this chapter. In the case of the right 
triangular shape, the Rayleigh solution is reasonably accurate (6.6 percent 
error). The frequency for the parabolic half-segment (n = 0.5) is also reasonable, 

Figure 5.14 Membrane shapes having various curves y/a = (x/a)n for one 
boundary.



 214 C h a p t e r  F i v e  M e m b r a n e  V i b r a t i o n s  215

falling between those of the quarter circle sector and the right triangle, as Fig. 
5.14 suggests it should. The result for n = 0.2 was added to Table 5.5 to show 
the singularity in the frequency formula in that case. For n = 0 the Rayleigh 
frequency should be an upper bound on the exact frequency, but is not, which 
indicates serious trouble. The trouble occurs because the first term in the result 
for PEmax shown above becomes negative for n < 0.2. The first term is the integral 
of (∂W/∂x)2 in the potential energy functional, and it should not be negative.

Thus, the frequency formula derived by the Rayleigh method appears to 
yield reasonable results for n > 0.5, but should definitely not be used for n in 
the vicinity of 0.2 or less than 0.2. This example shows clearly the importance 
of looking at the reasonableness of results obtained from any theoretical 
approach.

Example 5.3 A square membrane (dimensions a × a) is subjected to uniform 
tension Tx and Ty in the x and y directions, as shown by Fig. 5.15. In addition 
shear stress resultants Txy are applied to the four edges as shown. Simple plane 
elasticity tells us Tx, Ty, and Txy are constant throughout the membrane. The 
membrane is fixed along all four edges. 

In the case of hydrostatic tension (Ty = Tx), make a study of what happens 
to the free vibration frequencies and mode shapes as Txy is added and 
increased.

Solution
No exact solution for this problem is known if Txy is present. The Ritz method 
is used, with the assumed displacement functions. 

W x y C
m x

a
n y

bm

M

n

N

mn, sin sin( ) =
= =

∑ ∑
1 1

π π

In addition to satisfying the zero displacement boundary conditions exactly, 
they form a mathematically complete set. This guarantees that, in the limit, as 
M and N become large, the exact solution is approached.

n Shape description

ω ρa h T/

Rayleigh Exact

→ 0
0.1
0.2
–
0.5
1
2

10
→ ∞

Square 
Nearly square 
–
Quarter circle sector
Parabolic half-segment
Right triangle 
Parabolic spandrel
Two narrow lobes
No area

3.16
3.65
∞
–

6.20
7.48

10.17
34.17

∞

4.44
–
–
5.14
–
7.02
–
–
∞

Table 5.5 Frequencies of the Membranes of the Shape Shown in Fig. 5.13
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Using the Ritz minimizing equations (2.136) or (4.99), with PEmax and KEmax 
for the membrane given by (5.81) and (5.82), respectively, one obtains a set of M 
× N simultaneous, homogeneous equations in terms of the coefficient Cmn. For a 
nontrivial solution, the determinant of the coefficient matrix is set equal to zero. 
The roots of the determinants are M × N nondimensional frequencies.

Table 5.6 lists the first six nondimensional frequencies ω ρa Tx/  as Txy/Tx 
increases from 0 to 1. They were obtained using M = N = 8 in W(x,y), yielding a 
determinant of order 64. Comparisons with very precise solutions arising from 
using determinants of order M × N = 16 × 16 = 25 6 show that all frequencies 
in Table 5.6 are within 0.2 percent of their converged exact values. As Txy/Tx 
increases, increased numbers of terms in the series are required for accurate 
frequencies. For Txy = 0, only one term is needed for the exact solution. For 
example, the first nondimensional frequency is then 2π  = 4.443, as given by 
(5.20), and listed in Table 5.6. The table shows that the frequencies eventually 
all decrease as Txy increases. For Txy/Tx > 1, the membrane would be in 
compression along one plane, it would buckle, and any vibration results would 
be meaningless. In Table 5.6 the largest terms (mn) at the double sine series used 
in the solution are shown in parentheses. 

Figure 5.16 shows the two-dimensional contour plots (lines of constant 
displacement) for the various frequencies. Points of maximum and minimum 
displacements are identified by plus and minus signs. The first four mode 
shapes are shown for shear load ratios, Txy/Tx = 0, 0.2, 0.5, 0.85, and 1. Looking 
at the membrane shape and the edge loading (Fig. 5.15), one sees that both 
diagonals of the square are diagonals of the loading symmetry. Therefore, 
mode shapes are either symmetric or antisymmetric with respect to both 
diagonals. This is readily seen in the contour plots of Fig. 5.16. 

As the shear loading is increased, Fig 5.16 shows that the contour lines become 
increasingly skewed. In some cases node lines (w = 0) separate, as can be seen for 
the fourth mode as Txy/Tx changes from 0 to 0.2. For Txy/Tx = 0.01, the node lines 
of the fourth mode would seem to be the same as for Txy/Tx = 0. But they would 
not quite cross, instead having kinks very close to the membrane midpoint. 

For more results for this problem, and also for membranes loaded with 
linearly varying edge tensions, see Ref. [7]. 

Figure 5.15 Uniform shear (Txy) superimposed upon hydrostatic tension (Tx = Ty).



216

 
M

e
m

b
ra

ne V
ib

ratio
n

s 
217

Txy/Tx

Mode number

1 2 3 4 5 6

0.00 4.443 (11) 7.025 (12) 7.025 (21) 8.886 (22) 9.935 (13) 9.935 (31)
0.10 4.438 (11) 6.916 (12) 7.118 (21) 8.837 (22) 9.922 (13) 9.962 (31)
0.20 4.425 (11) 6.790 (12) 7.197 (21) 8.701 (22) 9.886 (13) 10.030 (31)
0.50 4.322 (11) 6.285 (12) 7.337 (21) 7.934 (22) 9.603 (13) 9.606 (23)
0.75 4.126 (11) 5.620 (12) 6.864 (22) 7.306 (21) 8.099 (23) 9.062 (31)
0.85 3.989 (11) 5.211 (12) 6.221 (22) 7.212 (34) 7.221 (21) 8.149 (44)
0.98 3.591 (11) 4.174 (23) 4.647 (11) 5.110 (45) 5.584 (55) 6.114 (56)
1.00 3.376 (11) 3.677 (34) 4.015 (11) 4.411 (21) 4.889 (11) 5.488 (12)

Table 5.6 Nondimensional Frequencies ω ρa Tx/  for Biaxial Membrane Tension with Added Shear
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Figure 5.16 Contour plots for Example 5.3.
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Problems
1 A rectangular membrane with aspect ratio (a/b) = 1.5 is subjected to 
uniform tension (T), and is fixed all around at its boundaries (Fig. 5.17). 

A. Determine the lowest three degenerate frequencies /ω ρa h T .

B. For each of the three frequencies found in Part A, plot the nodal patterns 
(w = 0) with mode amplitude ratios of 0.1, 0.5, 1, 2, and 10. (In Fig. 5.7, for 
example, one sees ratio of 1, 1.02, 2, and ∞ for C21/C12.)

2 A membrane is subjected to inplane stresses which may be expressed 
in terms of polar coordinate components. A differential element with stress 
resultant components Tr, Tθ, Trθ, and Tθr is shown below (Fig. 5.18). In general, 
the magnitudes of the components vary with r and θ, so that differential 
changes in them occur across the element (shown by plus signs). The equation 
of motion (5.6) was derived early in this chapter in rectangular coordinates, 
using rectangular stress resultants Tx, Ty, and Txy. Do the same in polar 
coordinates using the polar stress resultants. 

3 A rectangular membrane with aspect ratio a/b = 2, has uniform  
tension (T) stretching it along each of its four edges. The membrane is 

Figure 5.17 Problem 1.

Figure 5.18 Problem 2.
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subjected to a uniformly distributed transverse pressure acting sinusoidally 
with time

 q q t= 0 sin Ω  

where q0 and Ω are constants. There is no damping present. 

A. Determine the transverse displacement (w) as the membrane as a 
function of its coordinates (x, y) and time (t).

B. Determine the displacement w0(x, y) of the membrane when it is 
subjected to a static pressure w0.

C. At a point x/a = y/b = 1/4 on the membrane, make a plot of W/δ versus 
Ω/ω1, where W and δ are dynamic and static displacements of the point, 
and ω1 is the first natural frequency. 

D. Without making any further calculations, discuss how and why 
the plot of Part C would be different if one looked instead at the point  
x/a = y/b = 1/2.

4 Equations (5.81) and (5.82) are the energy functionals in rectangular 
coordinates, which are useful for solving membrane vibration problems by 
Rayleigh and Ritz methods. Derive the corresponding functionals PEmax and 

KEmax in polar coordinates (r, θ) in the case where Tx = Ty = T and Txy = 0.  
(Hint: One could use chain rule differentiation: ∂w/∂x = [(∂w/∂r) (∂r/∂x)]  
+ [(∂w/∂θ) (∂θ / ∂x)], etc.)

5 A. A symmetrical trapezoidal membrane shown (Fig. 5.19) is subjected  
to uniform tension in all directions. Use the Ritz method twice, each time with 
a two-term admissible function as in (5.84), to obtain approximate formulas 
for the fundamental frequencies, ω ρc h T/ . (Hint: choose the coordinate 
origin at the intersection A of the extended lines of the sides to simplify the 
algebra.)

Figure 5.19 Problem 5.
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B. Plot ω ρc h T/  versus c/a for both solutions on a single graph, with the 
area of the membrane remaining constant as c/a changes. Do the two curves 
cross each other? If so, explain why.

6 It is desired to create reasonably accurate fundamental frequencies (only) 
for a class of membranes having two-fold symmetry in their shapes, with their 
boundaries defined by ξn + ζn=1, where ξ = x/a and ζ = y/b. A representative 
shape for n = 2 (i.e., an ellipse) is shown in the sketch (Fig. 5.20). Assume that the 
classical membrane theory applies, that is, boundaries are fixed, with a uniform 
tension (T) applied, uniform thickness and mass density, small slopes, etc.

A. Plot the membrane shapes corresponding to all combinations of n = 1, 
2, 4 with a/b = 1, 2, 5 (that is 9 shapes).

B. Use the Rayleigh method with a single admissible function to obtain 
the crude approximations for the fundamental frequency parameters  
ω ρb h T/  for all combinations of the boundary shapes shown in Part A. 
(First do a general analysis for arbitrary n and a/b; then, substitute in the 
various n and a/b.)

C. Improve on the frequencies found in Part B by carrying out a Ritz 
analysis with three admissible functions.

D. Discuss the results of Part B and C. Did you find any interesting things? 
How close to the exact frequencies do you think the various frequencies 
are in Part C? How do they compare with known exact frequencies? 

Hints:
(1) In Part C, differentiating with respect to the coefficients (Cij) before 
carrying out the area integrations should reduce the algebraic labor 
involved. 

(2) Use a symbolic logic program (e.g., MAPLE®, MACSYMA®) to reduce 
your effort and eliminate mistakes. 

Figure 5.20 Problem 6.



CHAPTER 6
Plate Vibrations

From a geometric viewpoint, a plate is very much like a 
membrane. That is, like a membrane, a plate is a structural 
element that is relatively thin in one direction compared with 

the other two, and is flat. However, the plate has bending stiffness, 
whereas the membrane does not. Typically, the flexural (bending) 
stiffness arises because a plate is considerably thicker than a 
membrane relative to its other dimensions.

As seen in Chap. 5, the sole stiffness in transverse vibrations of 
membranes arises from the in-plane initial stresses. The basic 
stiffness of a plate is due to its resistance to bending, although 
additional stiffness may be due to in-plane initial stresses (see 
Sec. 6.8). Whereas the membrane is the two-dimensional (2D) gene-
ralization of the string (Chap. 2), the plate is the 2D generalization  
of the beam (Chap. 4).

Although a plate is typically thicker than a membrane, the ratio 
of its thickness to its average lateral dimensions is usually taken not 
to exceed 1/20 to represent its fundamental vibration mode reasonably 
accurately with classical thin plate theory. For thicker plates, or 
higher frequency modes, one needs to consider shear deformation 
(i.e., the shear flexibility, in addition to the bending flexibility) and 
rotary inertia effects (see Sec. 6.8).

As in the case of the membrane, our study will be limited to the 
transverse vibration modes, because the in-plane vibration modes 
have significantly higher frequencies (at least one order of magnitude) 
than those of transverse vibration. The in-plane vibration analysis of 
a plate is the same as that for a membrane, and the frequencies and 
the mode shapes do not depend on the initial in-plane stresses.

Plates are important structural elements. They may exist in many 
applications. In civil engineering, flat panels exist in various steel or 
concrete structures (e.g., floor slabs). They may be of various shapes 
(rectangular, circular, rhombic, triangular, trapezoidal, and others). 
Plates also occur in aerospace (e.g., aircraft, missile) and naval (e.g., 
ship, submarine) structures. In mechanical engineering, plates can 
be seen as rotor disks in brake systems, parts of various clutch and 
other components. They can also exist as flat panels in machine 
housings. Plates are also used as housings of many electrical and 
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electronic equipment. Compact discs (CDs) and similar devices 
(DVDs) are actually circular plates.

Although shells (to be studied in the next chapter) have, indeed, 
wider application in almost every engineering field, plates also 
present a reasonable introduction to the analysis of those complex 
structures. Plates give us the chance to study the influence of bending 
in two dimensions without having tangential stresses caused by 
transverse vibratory motion.

The equations of motion will first be derived in this chapter. 
Subsequently free vibration of rectangular, circular, annular, and 
sectorial plates will be studied using exact solutions. In addition, 
energy terms will be developed for use in Raleigh and Ritz analyses. 
Treatment of elliptical, triangular, and trapezoidal plates is then also 
made. Many other possible complexities in the analyses of plates will 
be introduced. Nonlinear vibrations of plates and vibrations of 
orthotropic and laminated composite plates will also be described as 
examples of these numerous complexities.

6.1 Equation of Motion for Transverse Vibrations
Figure 6.1 shows a plate of thickness h and arbitrary shape in its static 
equilibrium position. As a rather general representation it has one 
portion of its boundary clamped, another portion simply supported 
(i.e., hinged or knife-edge support), and a third portion completely 
free. In the top (plan) view, the simply supported edge is indicated by 
a dashed line parallel to and inside of the boundary. This is a 
conventional way of showing such an edge constraint. Rectangular 
coordinates are shown, where x and y are the in-plane coordinates 
and z is transverse. The origin of the coordinate system is at the mid-
plane of the plate, so that the top and bottom surfaces of the plate are 
at z = ±h/2 when it is in equilibrium.

In Fig. 6.1 a typical rectangular plate element is shown with  
in-plane dimensions dx × dy. Its transverse dimension is h, the plate 
thickness. Figure 6.2 is a three-dimensional sketch of the element in 
a typical, displaced position and deformed shape. Shown on the 
element, by vectors with single arrows, are transverse shearing forces 
(per unit length along an edge) Qx and Qy, and their incremental 
changes, acting along its edges, and a distributed pressure (per unit 
surface area) q which is applied to a lateral surface. Also shown, by 
vectors with double arrows, are bending moment resultants (Mx and 
My) and twisting moment resultants (Mxy and Myx), and their 
incremental changes, which have dimensions of moment per unit 
length along an edge. As in elementary beam theory, the shearing 
forces are the integrals over the plate thickness of transverse shear 
stresses (τxz and τyz), which may be assumed to vary parabolically 
across the plate thickness from zero at one face, to a maximum at the 
deformed mid-surface, to zero at the other face. The bending moments 
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are caused by bending stresses (σx and σy) varying linearly from 
tension at one face, to zero at the mid-surface, to compression at the 
other face, as seen in Fig. 6.2. Similarly, the twisting moments are  
due to shear stresses (τxy and τyx), also varying linearly as shown. 
From moment equilibrium about the z-axis for a typical 3D element 
(dx × dy × dz), τyx = τxy. Therefore Myx = Mxy everywhere.

The deformed middle surface of the plate is characterized in the 
same manner as that of a membrane surface, shown previously in 
Fig. 5.3. Its displacement in the z-direction is w. Assuming small 
slopes (∂w/∂x and ∂w/∂y) and utilizing Figs. 5.3 and 6.2, summing 
forces in the z-direction yields
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(6.1)

Figure 6.1 Plate of arbitrary shape and edge conditions.
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where ρ is mass density per unit volume. Cancelling terms in (6.1) 
and dividing through the equation by the area dxdy yields

 

∂
∂

∂
∂

∂
∂

Q
x

Q

y
q h

w
t

x y+ + = ρ
2

2
 

(6.2)

Summing moments about an axis parallel to y through the center 
of the element, 
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(6.3)

where the term on the R.H.S. is the rotary inertia of the plate element. 
For classical, thin plate theory, this is typically small and is neglected. 
Doing so, then setting Myx = Mxy, dropping the higher order term 
involving ∂Qx/∂x, and simplifying (6.3) results in
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(6.4)

Figure 6.2 Displaced and deformed plate element, with forces and moments acting 
on it.
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Similarly, summing moments about an axis parallel to x gives
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(6.5)

Let us now consider the kinematics of the plate deformation.  
The assumption of elementary (Euler–Bernoulli) beam theory that 
“plane cross-sections remain plane during deformation” is 
generalized to a thin plate to apply as follows:

Normals to the mid-surface of the undeformed plate remain straight 
and normal to the mid-surface, and unstretched in length, during 
deformation.

This simple deformation characterization is attributed to 
G. Kirchhoff, and is called the “Kirchhoff hypothesis.” One 
consequence of this assumption for a plate which is homogeneous 
through its thickness is that its mid-surface does not develop  
in-plane stresses σx, σy, and τxy during deformation. Components of 
the displacement in the x and y directions (u and v, respectively) are 
then related to the rotation components of the normal by
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That is, an in-plane component of displacement at a point is 
proportional to its distance away from the mid-surface, and the 
amount a normal from it to the mid-surface rotates (∂w/∂x or ∂w/∂y).

The in-plane strains caused by the u and v displacement 
components are
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where ex and ey are normal strains, and γxy is the engineering shear 
strain (different from the tensorial shear strain by a factor of two). 
Substituting (6.6) into (6.7) gives
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(6.8)

Equations (6.8) show that the normal strains are proportional to  
the linearized (small slope) curvatures ∂ 2w/∂x2 and ∂ 2w/∂y2 of the 
plate mid-surface, and that the shear strain is proportional to the 
twist ∂ 2w/∂x∂y. 
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For an isotropic plate material the strains are related to the 
stresses by

 
ex x yE
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where E is modulus of elasticity (Young’s modulus), ν is Poisson’s 
ratio, and G is the shear modulus, related to E and ν by G = E/2(1 + ν). 
Inverting (6.9) gives
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The bending moments are obtained by integrating the moments 
of the in-plane stresses over the plate thickness. That is,
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Substituting (6.8) and (6.10) into (6.11) and carrying out the integra-
tions yields

   
M Dx x y= − +( )κ νκ ,

 
M Dy y x= − +( )κ νκ ,

 
M Dxy xy= − −( )1 ν κ

 (6.12)
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are the linearized (small slope) curvatures and twist of the plate 
mid-surface, used once before in (6.8), and

 

D
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3
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 (6.14)

is the so-called “flexural rigidity” of the plate. If one were to use  
the moment of inertia of beam theory (per unit width), it would be 
Eh3/12. Because for an isotropic material, ν must fall between the 
limits 0 ≤ ν ≤ 0.5 (from energy and incompressibility considerations), 
the factor 1−ν2 in (6.14) is typically close to unity.
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At this point, all the needed parts of the classical plate theory are 
in hand, and they may be combined to obtain the desired form of the 
equation of motion. Substituting (6.4) and (6.5) into (6.2) gives
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Then, substituting (6.12) and (6.13) into (6.15), and assuming that D is 
constant (limiting us to homogeneous plates of constant thickness), 
yields
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This may be abbreviated as
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where ∇4 (del fourth) is the biharmonic differential operator,  
defined as
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and ∇2 (del squared) is the Laplacian operator, used previously for 
membranes in Chap. 5.

Before solving any plate vibration problems, let us also state the 
possible types of classical boundary conditions that may exist for the 
thin plate theory developed above. For boundaries which are parallel 
to the x-direction, the possible boundary conditions are

  either w = 0 or Vy = 0

and, either 
∂
∂
w
y

 = 0 or My = 0 (6.19)

Similarly, along edges parallel to the y-direction they are

  either w = 0 or Vx = 0 

and, either 
∂
∂
w
x

 = 0 or Mx = 0 (6.20)
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Let us consider the possible combinations of (6.19) along an edge 
x = constant. The ones which represent physical reality reasonably 
well are

clamped edge: w = 
∂
∂
w
y

 = 0 (6.21a)

simply supported edge: w = My = 0 (6.21b)

free edge: My = Vy = 0 (6.21c)

The fourth possible combination of (6.19) would be ∂w/∂y =  
Vy = 0, but this cannot be approached in physical problems for the 
same reasons described for beams [see (4.23) and its subsequent 
discussion].

The quantities Vy and Vx in (6.19), (6.20), and (6.21) are the so-
called Kelvin-Kirchhoff edge reactions. In mathematical terms, they 
are expressed as

 
V Q

M

yx x
xy= +

∂
∂  

 
V Q

M

xy y
xy= +

∂
∂  

(6.22)

Substituting (6.4), (6.5), (6.12), and (6.13) into (6.22), the latter become

 
V D

w
x

w
x yx = − + −( )









∂
∂

∂
∂ ∂

3

3

3

22 ν
 

(6.23a)

 
V D

w
y

w
x yy = − + −( )









∂
∂

∂
∂ ∂

3

3

3

22 ν
 

(6.23b)

Thus, they are a combination of the transverse shear force and the 
rate change of the twisting moment in the direction tangent to the 
edge. That Vx = 0 or Vy = 0 are the correct boundary conditions along 
free edges was explained by physical reasoning by Lord Kelvin. 
These were also shown by Kirchhoff to be the mathematically correct 
boundary conditions when derived by variational calculus. (For good 
explanations of both rationales, see the famous book by Timoshenko 
and Woinowsky-Krieger [1, pp. 84, 91].) That the internal shear forces 
Qx and Qy suddenly are replaced by Vx and Vy as one moves from 
within the plate to its edge is one of the anomalies of the classical 
thin plate theory.

Finally, it should be mentioned that the classical, thin plate theory 
gives a concentrated, transverse force R = 2Mxy at each rectangular 
corner of a plate ([1], p. 85). Thus, at the intersection of two free edges, 
the supplemental condition Mxy = 0 must be satisfied.
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6.2  Free Vibrations of Rectangular Plates;  
Exact Solutions

Assuming complete support per edge for rectangular plates, there 
exist 21 distinct cases which involve all possible combinations of 
classical boundary conditions (i.e., clamped, simply supported, or 
free) which are continuous along each edge. For the six cases having 
two opposite edges simply supported, exact solutions exist which 
are extensions of the approach used by Voigt [2] more than a century 
ago. For the remaining 15 cases, approximate methods must be 
used. Some approximate solutions are discussed later in this chapter 
(Sec. 6.6), after the Rayleigh and Ritz methods are taken up.

Consider a rectangular plate of lateral dimensions a × b, as shown 
in Fig. 6.3, having its edges x = 0 and x = a simply supported, whereas 
the other two edges (y = 0 and y = b) are each either clamped, simply 
supported, or free. For free, undamped vibrations, the governing 
equation of motion (6.17) reduces to

 
D w h

w
t

∇ + =4
2

2 0ρ ∂
∂  

(6.24)

Assuming the expected form of sinusoidal time response,

 
w x y t W x y t( , , ) ( , )sin( )= +ω φ

 (6.25)

(6.24) becomes

 
( )∇ − =4 4 0k W

  (6.26)

Figure 6.3 Rectangular plate with opposite edges simply supported.
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where k4 ≡ ρhω2/D. The differential operator (∇ 4 − k4) may be factored 
into (∇ 2n + k2)(∇ 2 − k2), whence the solution to (6.26) is the sum of the 
solutions arising from its two parts,

 
( )∇ + =2 2 0k W

 (6.27a)

 
( )∇ − =2 2 0k W

 (6.27b)

The simply supported boundary conditions w = Mx = 0 along x = 0 
and x = a are satisfied exactly if one chooses

 W x y Y y x( , ) ( )sin= α   (6.28)

where α = mπ/a and m = 1, 2, 3, . . . . Substituting (6.28) into (6.27)  
results in

 ′′ + − =Y k Y( )2 2 0α  (6.29a)

 ′′ − + =Y k Y( )2 2 0α  (6.29b)

If k2 > α2, then the solution of (6.29a) involves trigonometric 
functions; that of (6.29b) involves hyperbolic functions. Thus, a 
solution to (6.26) is

 

W x y C k y C k y

C k y C k y

( , ) ( sin cos

sinh cosh )

= − + −

+ + + +

1
2 2

2
2 2

3
2 2

4
2 2

α α

α α ssinαx  (6.30)

It may be noted that a solution to (6.24) cannot be achieved by the 
classical separation of variables approach used in the previous 
chapter [cf. (5.10)].

The free vibration problem is solved by substituting (6.30) into 
the appropriate two boundary conditions at y = 0 and at y = b. This 
yields four simultaneous, linear, algebraic equations in terms of the 
four unknowns C1, C2, C3, and C4 which are homogeneous (i.e., zero 
right-hand-sides). For a nontrivial solution one sets the fourth-order 
determinant of the coefficient matrix equal to zero, and solves for the 
eigenvalues, which may be taken as ka. These are related to the 
nondimensional frequencies by

 
λ ω ρ2 2 2= =( )ka a

h
D  

The mode shape corresponding to a particular free vibration 
frequency is obtained in the usual manner by substituting the value 
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of ka back into the four homogeneous equations, and solving any 
three of them for the amplitude ratios C2/C1, C3/C1, and C4/C1.

Example 6.1 Determine the frequencies and mode shapes of free vibration for 
a rectangular plate having all edges simply supported.

Solution
From (6.21b), the boundary conditions at y = 0 and b may be stated as

w x t Y

M x t
w

y
x t

w
x

x ty

( , , ) ( )

( , , ) ( , , ) ( , , )

0 0 0 0

0 0 0 0
2

2

2

2

= → =

= → + =∂
∂

∂
∂

ν 00 0 0

0 0

0
2

2

2

→ ′′ =

= → =

= → +

Y

w x b t Y b

M x b t
w

y
x b t

w
y

( )

( , , ) ( )

( , , ) ( , , )
∂
∂

∂ν
∂∂x

x b t Y b2 0 0( , , ) ( )= → ′′ =

It may be noted that if w = 0 along the edges y = 0 and b, this guarantees that 
all derivatives of w in the x-direction (∂w/∂x, ∂ 2w/∂x2, etc.) along those edges  
are zero. Substituting (6.30) into the first two boundary conditions results in  
C2 = C4 = 0. The last two become

sin sinh

sin sinh

φ φ

φ φ φ φ
1 2

1
2

1 2
2

2

1

3

0
0−



















 =











C
C

where φ 1
2 2 2≡ −( / )b a mλ π  and φ 2

2 2 2≡ +( / )b a mλ π . Setting the determinant 
of the coefficient matrix equal to zero, and then expanding it, yields

( )sin sinhφ φ φ φ1
2

2
2

1 2 0+ =i

The nontrivial roots of this equation are

sinφ1 = 0 → φ1 = nπ (n = 1, 2, … , ∞)

whence ω ρ πa
h

D
m

a
b

n2 2 2
2

2= + 

















 (m, n = 1, 2, 3, … , ∞)

Substituting φ1 = nπ into either of the two homogeneous equations in C1 and C3 
above gives C3 = 0. Thus, the eigenfunctions describing the mode shape are

W x y
m x

a
n y

bmn( , ) sin sin= π π

The mode shapes for these boundary conditions are seen to be exactly the same 
as those for a rectangular membrane [see (5.21)]. 

Example 6.2 Obtain the frequency equation for an SS–C–SS–F rectangular 
plate (i.e., two opposite sides simply supported, another one clamped, and  
one free).
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Solution
The boundary conditions (6.21a) and (6.21c), together with equations (6.12) and 
(6.23), yield

Y
Y

Y b Y b

Y b Y b

( )

( )

( ) ( )

( ) ( ) ( )

0 0

0 0

0

2 0

2

2

=
′ =

′′ − =

′′′ − − ′ =

ν

ν

α

α

Substituting (6.30) into these four boundary conditions yields a fourth-
order frequency determinant. Expanding the determinant and using some 
trigonometric identities results in

φ φ λ π φ φ λ π φ φ

π

1 2
4 4 4 2

1 2
4 4 4 2

1 2

2

1 1− −  + + − 

+

m v m v

m

( ) ( ) cos cosh

22
2

4 4 4 2
1 21 2 1 0

b
a

v m v



 − − −  =λ π φ φ( ) ( ) sin sinh

where φ1 and φ2 are defined in Example 6.1. The nondimensional frequency 
parameter λ ω ρ2 2= a h D/  is contained above not only in λ4, but also in φ1 
and φ2.

It is interesting to note from the two examples above that the 
nondimensional frequency parameter λ ω ρ2 2= a h D/  does not 
directly depend on the Poisson’s ratio (ν) of the plate material unless 
at least one of the plate edges is free. This observation may be 
extrapolated to any rectangular plate. However, while λ2 does not 
depend on ν for, say, a plate with all edges simply supported, the 
frequency does, for D = h3/12(1 − ν2) contains ν.

The displacement function W given by (6.30) is based on the 
assumption that k2 > α2. If k2 < α2, then, (6.29a) may be rewritten as

 ′′ − − =Y k Y( )α2 2 0  (6.31)

Because the parenthetical quantity is now positive, the solution to 
(6.31) is 

 Y A k y B k y= − + −sinh coshα α2 2 2 2
 (6.32)

Thus, in this case, the first two terms of (6.30) are replaced by those 
of (6.32). In solving a free vibration problem one should ordinarily 
employ both solution cases to obtain sets of eigenvalues for each 
case. Then one must verify that ka is appropriately either greater 
than or less than mπ for an eigenvalue to be valid. In Ref. [3], it is 
proved that proper eigenvalues for the case with k2 > α2 (ka > mπ) will 
exist, for all six rectangular plate problems having two opposite 
sides simply supported, but that the case k2 < α2 is only valid for the 



 232 C h a p t e r  S i x  P l a t e  V i b r a t i o n s  233

three problems having one or more free sides (SS–C–SS–F, SS–SS–
SS–F, SS–F–SS–F). For the SS–C–SS–F plate of Example 6.2, when ν = 
0.3, it was found that the case k2 < α2 applies for mb/a > 7.353.

Three of the six problems for plates having two opposite edges 
simply supported have two-fold symmetry. These are the SS–C–
SS–C, SS–SS–SS–SS, and SS–F–SS–F plates. For such situations the 
free vibration mode shapes will be either symmetric or antisymmetric 
with respect to (w.r.t.) not only the symmetry axis parallel to the 
y-coordinate (i.e., the line x = a/2 in Fig. 6.3), but also w.r.t. the other 
symmetry axis (y = b/2 in Fig. 6.3). As in all eigenvalue problems 
having symmetry, one may simplify the solution by taking advantage 
of the symmetry. Locating the x-coordinate along the symmetry axis, 
so that the two plate edges are at y = ± b/2, one may use the even part 
of the displacement function (6.30) to determine the symmetric mode 
frequencies and mode shapes, and the odd part of (6.30) for the 
antisymmetric ones. This is demonstrated in Example 6.3 for the 
SS–C–SS–C plate.

Example 6.3 For the SS–C–SS–C plate, determine the frequency equations 
which arise when symmetry of the modes in the y-direction is considered, 
and compare them with the equation arising from the coordinate axis of 
Fig. 6.3.

Solution
For the symmetric modes, locating the x-coordinate along the symmetry axis 
allows one to use (for k2 > α2) the even part of (6.30)

Y y C k y C k y( ) cos cosh= − + +2
2 2

4
2 2α α

Applying the boundary conditions Y(+b/2) = Y′(+b/2) = 0 yields a second-order 
frequency determinant. Expanding this gives

φ
φ

φ
φ

1
1

2
2

2 2
0tan tanh+ =

where φ1 and φ2 are as in Example 6.1. It is noted that the boundary conditions 
at y = −b/2 are also satisfied by the even displacement function. Similarly, 
using the odd part of the displacement function (6.30) with the two boundary 
conditions yields

φ φ φ φ
2

1
1

2

2 2
0tan tanh− =

for the antisymmetric modes. If one employs the coordinate system shown in 
Fig. 6.3 with boundary conditions Y(0) = Y′ (0) = Y(b) = Y′ (b) = 0 and expands 
the resulting fourth-order frequency determinant, the following eigenvalue 
equation is generated:

φ φ φ φ φ φ1 2 1 2
2 2

2

1 21 0(cos cosh ) sin sinh− − 



 =m

b
a

π
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This is clearly more complicated than either of the two eigenvalue equations 
for the symmetric or antisymmetric modes. Yet, this more complicated 
equation contains exactly the same eigenvalues as the two more simple 
equations. This can be shown by substituting trigonometric and hyperbolic 
function identities for angles 2(φ1/2) and 2(φ2/2) above. The resulting equation 
will be the product of the two more simple equations shown earlier.

There is no need to consider the case k2 < α2. As discussed earlier, no viable 
eigenvalues arise for this case with these boundary conditions. 

Table 6.1 lists the first three nondimensional frequencies of 
square plates for all six cases of plates with two opposite edges simply 
supported, for v = 0.3. These data are taken from Ref. [3], where one 
can find the first nine frequencies for all six cases with a/b = 0.4, 2/3, 
1, 1.5, and 2.5. Frequencies in Table 6.1 are listed in order, from the 
stiffest situation (SS–C–SS–C) to the most flexible one (SS–F–SS–F). 
Mode shapes are identified in the table by 11, 21, 12, and 13, which 
denote the numbers of half-waves in each direction. For example, the 
second mode for the SS–C–SS–F plate (denoted as the 12-mode) has 
one half-wave in the x-direction and two in the y-direction. For all six 
cases, of course, the half-waves in the x-direction are simple sine 
functions, so the node lines lying in the y-direction are all straight. 
However, as has been shown above, the half-waves in the y-directions 
are combinations of trigonometric and hyperbolic functions. Thus, 
the node lines lying in the x-directions are not straight (except for the 
SS–SS–SS–SS case, which entails only sine functions in the 
y-direction). Along the node lines x = a/m one finds not only that w = 
0, but also that the curvature ∂2w/∂x2 = 0. Therefore, these straight 
node lines duplicate simple support boundary conditions. Then, for 
example, the frequency of 54.7431 for the second mode of the SS–C–
SS–C square plate in Table 6.1 is also the fundamental frequency of 
an SS–C–SS–C rectangular plate with dimensions a/2 × b.

One finds in Table 6.1 that the first three modes of the SS–F–SS–F 
square plate all have only one half-wave in the x-direction. The  

Table 6.1 Nondimensional Frequencies ω ρa h D2 /  for Square Plates (a/b = 1) 
with Two Opposite Sides Simply Supported (ν = 0.3)

Edge conditions

Mode

1 2 3

SS–C–SS–C
SS–C–SS–SS
SS–SS–SS–SS
SS–C–SS–F
SS–SS–SS–F
SS–F–SS–F

28.9509 (11)
23.6463 (11)
19.7392 (11)
12.6874 (11)
11.6845 (11)

9.6314 (11)

54.7431 (21)
51.6743 (21)
49.3480 (21)
33.0651 (12)
27.7563 (12)
16.1348 (12)

69.3270 (12)
58.6464 (12)
49.3480 (12)
41.7019 (21)
41.1967 (21)
36.7256 (13)
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21 mode has the fourth frequency, with ω ρa h D2 38 9450/ .= .  
It is also interesting to compare the first three frequencies of the  
SS–F–SS–F plate with those obtained from beam theory, taking the 
beam as having a rectangular cross-section of width b and depth h, 
and having its ends simply supported. From the data for the  
SS–SS beam in Table 4.1, one obtains ω ρa Eh2 2 2 849/ .=  and 11.396 for 
the first two frequencies. From ω ρa h D2 9 6314/ .=  and 38.9450 for  

the SS–F–SS–F plate one obtains ω ρa Eh2 2 2 915/ .=  and 11.785 for  
ν = 0.3. The differences are due to the fact that the plate undergoes 
anticlastic bending (curvatures of opposite signs in the x and y 
directions), whereas the beam does not consider anticlastic curvature. 
In the plate, the vibratory curvatures cause transverse bending 
moment My. This adds to the stiffness, and results in the plate 
frequencies being slightly greater than those from beam theory. For 
ν = 0 the transverse curvature ∂2w/∂y2 and bending moment My both 
vanish for the plate, and the frequencies for the 11, 21, 31, … modes 
are identical to those of the SS–SS beam.

Degenerate free vibration modes (two different mode shapes 
having the same frequency) exist for plates as they do for membranes 
(see discussion in the last part of Sec. 5.2).

6.3 Circular Plates
Circular plates are most readily analyzed in polar coordinates (cf. 
Fig. 5.8). Although the plate equations were derived in rectangular 
coordinates in Sec. 6.1, they may be transformed into polar coordinates 
by using the relationships

 x = rcos θ, y = rsin θ, x2+y2 = r2 (6.33)

and chain rule differentiations such as

 

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

w
x

w
r

r
x

w
x

w
r r

w
= + = −

θ
θ θ θ

θ
cos sin

1

  
(6.34)

Carrying out such operations, one finds that the Laplacian operator 
∇ 2 in (6.18) is transformed to

 
∇ = + +2

2

2 2

2

2
1 1∂

∂
∂
∂

∂
∂r r r r θ  

(6.35)

as was given previously in (5.27). The slopes of the mid-surface 
displacement in radial and circumferential directions are ∂w/∂r and 
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(1/r) ∂w/∂θ, respectively, whereas the curvatures (κr and κθ) and twist 
(κrθ) are

 
κ r

w
r

=
∂
∂

2

2
,
 

κ
θθ = +1 1

2

2

2r
w
r r

w∂
∂

∂
∂

,
 

κ
θθr r r
w

=






∂
∂

∂
∂

1

  
(6.36)

If one takes a triangular plate element having faces normal to the 
x, y, and r directions (Fig. 6.4), sums moments (vectorially) in the 
direction of Mr, substitutes (6.12) and (6.13), and employs chain rule 
differentiation as in (6.34) there results expressions for Mr and Mrθ. 
Choosing another element with its face normal to the θ direction 
gives Mθ (and again Mrθ). These expressions are

   M Dr r= − +( )κ νκθ , M D rθ θκ νκ= − +( ), M D vr rθ θκ= − −( )1  (6.37)

Summing transverse shearing forces on the same two elements, and 
carrying out the transformations, yields

 
Q D

r
wr = − ∇

∂
∂

( )2 , Q D
r

wθ θ
= − ∇1 2∂

∂
( )

  
(6.38)

and the Kelvin–Kirchhoff edge reactions are

 
V Q

r
M

r r
r= + 1 ∂

∂
θ

θ
,
 

V Q
M

r
r

θ θ
θ= +

∂
∂  

(6.39)

Figure 6.4 Triangular plate element with bending and twisting moments in 
rectangular and polar coordinates (positive moments as shown).
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More background information on these relationships in polar 
coordinates is found in Refs. [1] and [4].

Consider now a solid circular plate of radius “a.” Let the origin of 
the polar coordinate system be at the center of the plate (Fig. 5.8 
applies to the circular plate, as well as to the membrane). Assuming 
the same sinusoidal response in time as in (6.25) for free vibrations, 
(6.26) and (6.27) are also valid in polar coordinates, except that now 
W = W(r, θ) and ∇2 is given by (6.35). Further, as for the circular 
membrane (see Sec. 5.1) it is assumed that

 W r W r nn( , ) ( )cosθ θ=   (6.40)

Substituting this into (6.27a) and (6.27b) yields

 

d W
dr r

dW
dr

n
r

k Wn n
n

2

2

2

2
21

0+ − −






=
 

(6.41a)

 

d W
dr r

dW
dr

n
r

k Wn n
n

2

2

2

2
21

0+ − +






=
 

(6.41b)

The solution to (6.41a) was already seen in membrane vibrations by 
(5.30), involving ordinary Bessel functions of the first and second 
kinds, of order n, and having real arguments kr. The solution to 
(6.27b) can be the same, except that the arguments of these Bessel 
functions are imaginary (ikr). Alternatively, this part of the solution 
may be expressed in terms of “modified” Bessel functions In(kr) 
and Kn(kr), where kr is real. These functions are described in 
Appendix B.

Thus the complete solution to the fourth-order differential 
equation (6.26) in polar coordinates is

  W r A J kr B Y kr C I kr D K kr nn n n n n n n n( , ) ( ) ( ) ( ) ( ) cosθ θ= + + +[ ]   
            (n = 0, 1, 2, …) (6.42)

where An, Bn, Cn, and Dn are constants of integration. 
For the solid circular plate with the coordinate origin within 

the plate, Bn must be zero because Yn(0) = −∞, as it was seen for the 
membrane. Similarly, Dn must be zero because Kn(0) = +∞, as seen 
in the plots shown in Appendix B. Therefore (6.42) reduces to

 W r A J kr C I kr nn n n n( , ) ( ) ( ) cosθ θ= +[ ]   (6.43)
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Suppose now the circular boundary is clamped. Then the boun-
dary conditions are

 w a t( , , )θ = 0 , 
∂
∂
w
r

a t( , , )θ = 0  
(6.44)

whence   Wn(a) = 0, Wn′ (a) = 0 (6.45)
Substituting (6.43) into (6.45) gives

 

J I
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n n

n n

n
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( ) ( )
( ) ( )
λ λ
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 =











0
0

 
(6.46)

where λ ω ρ2 2 2= =( ) /ka a h D, and where the primes in (6.46) indicate 
differentiation w.r.t. the argument of the function, in this case kr. 
Using the relationships

 

λ λ λ λ λ
λ λ λ λ λ

′ = −
′ = +

+

+

J nJ J
I nI I

n n n

n n n

( ) ( ) ( )

( ) ( ) ( )
1

1  (6.47)

from Appendix B, and expanding the frequency determinant from 
(6.46) gives

 J I I Jn n n n( ) ( ) ( ) ( )λ λ λ λ+ ++ =1 1 0  (6.48)

The roots (λ) of (6.48) are available from several sources (cf.  
[4]–[6]). Values of λ ω ρ2 2= a h D/  for modes having n nodal diameters 
and s interior nodal circles are presented in Table 6.2 for 0 ≤ n ≤5 and 
0 ≤ s ≤3. Additional frequencies (up to n = 14 and s = 9) are available 
in Ref. [4].

Table 6.2 Nondimensional Frequencies ω ρa h D2 /  for a Clamped Circular 
Plate

n
s

0 1 2 3

0
1
2
3
4
5

10.22
21.26
34.88
51.04
69.67
90.74

39.77
60.82
84.58

111.0
140.1
171.8

89.10
120.1
153.8
190.3
229.5
271.4

158.18
199.1
242.7
289.2
338.4
390.4
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The amplitude ratio Cn/An for a vibration mode is determined 
from either of the two equations in (6.46). Substituting back into (6.43) 
yields eigenfunctions describing the mode shapes as

 
W r J

r
a

J
I

I
r
amn n mn

n mn

n mn
n mn( , ) coθ λ

λ
λ

λ= 



 − ( )

( )














 ssnθ

 

         (m = 1, 2, … , ∞; n = 1, … , ∞) (6.49)

where λmn denotes the th eigenvalue from (6.48) for a given n. 
Locations of interior node circles (lines for which w = 0 during free 
vibration) for mode shapes are presented in Table 6.3, taken from 
Refs. [4] and [7], corresponding to the frequencies of Table 6.2. Nodal 
circles for plates do not duplicate simply supported conditions for, 
while w = 0 and ∂2w/∂θ2 = 0 along a nodal circle, ∂w/∂r and ∂2w/∂r2 are 
not zero there and, hence, Mr ≠ 0 there [see (6.36) and (6.37)].

Leissa and Narita [8] presented extensive frequency data for 
simply supported circular plates (frequencies for 0 ≤ n ≤ 10; 0 ≤ s ≤ 10 
and ν = 0, 0.1 … , 0.5). In that case, the boundary conditions are

 W(a, θ, t) = 0, Mr(a, θ, t) = 0 (6.50)

Substituting (6.43) into these, and using (6.47), yields the frequency 
equation
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(6.51)

where λ = ka, as before. Some of the data available [8] is summa-
rized in Table 6.4, where the effect of Poisson’s ratio is also seen.  
In this table the nondimensional frequency parameter ω ρa Eh2 2/  
= −λ ν2 212 1/( ) is given, which does not contain ν, so that the direct 
effect of ν on ω may be seen. The data shows that the effect of ν on ω 

n
S

1 2 3

0
1
2
3
4
5

0.373
.490
.559
.606
.641
.669

0.583, 0.255
.640, .350
.679, .414
.708, .462
.730, .501
.749, .532

0.688, 0.439, 0.191
.721, .497, .272
.746, .540, .330
.765, .574, .375
.781, .601, .412
.787, .618, .439

Table 6.3 Radii of Interior Nodal Circles (r/a) for a Clamped Circular Plate
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can be considerable for all modes. The greatest effect is on the 
fundamental frequency (n = 0, s = 0). In this case, if ν changes from 0 
to 0.5, the frequency increases by 35 percent. The increase of ω with v 
is primarily due to the increased circumferential stiffening with 
increased ν. Mode shapes are again given by (6.49).

Extensive data for completely free circular plates was published by 
Itao and Crandall [9], who gave the lowest 701 frequencies for ν = 0.33.

6.4 Annular and Sectorial Plates
Figure 5.10 describes an annular plate, as well as an annular 
membrane. However, each edge of the plate may have any of the 
three classical boundary conditions (clamped, simply supported, or 
free). This gives rise to nine distinct cases having all possible 
combinations of these three boundary conditions.

Exact solutions for the frequencies and mode shapes of annular 
plates may be found by taking the general solution (6.42) to the 
equation of motion in polar coordinates, applying two boundary 
conditions at each edge, and thereby generating four homogeneous, 
linear algebraic equations in An, Bn, Cn, and Dn. The eigenvalues ka 
are obtained from the fourth-order determinant of the homogeneous 
equation. Amplitude ratios Bn/An, Cn/An, and Dn/An are obtained by 
back-substitution of the eigenvalues in the usual manner.

As an example, consider the annular plate having both edges 
clamped. Applying the boundary conditions w = ∂w/∂r = 0 at r = a 
and r = b and finding the roots of the frequency determinant yields 
nondimensional frequencies ( ) /ka a h D2 2= ω ρ  as given in Table 6.5. 

n ν
S

0 1 2 3

0 0
0.3
0.5

1.283
1.493
1.738

8.476
8.994
9.982

21.31
22.44
24.79

39.84
41.86
46.18

1 0
0.3
0.5

3.897
4.206
4.714

13.90
14.67
16.23

29.57
31.10
34.33

50.95
53.50
59.00

2 0
0.3
0.5

7.287
7.751
8.615

20.14
21.22
23.44

38.67
40.64
44.84

62.90
66.03
72.80

3 0
0.3
0.5

11.43
12.09
13.39

27.20
28.61
31.59

48.60
51.04
56.30

75.68
79.43
87.56

Table 6.4 Nondimensional Frequencies ω ρa h D2 /  for Simply Supported 
Circular Plates with ν = 0, 0.3, 0.5



 240 C h a p t e r  S i x  P l a t e  V i b r a t i o n s  241

These results were obtained by Vogel and Skinner [10]. As b/a 
approaches unity, the frequencies approach those of an infinite strip 
of width (a – b) having both edges clamped. Results for all nine 
combinations of edge conditions are available in Ref. [4].

One interesting observation is that frequency determinants for 
three of the annular plate cases are the same as for three other cases. 
For example, the frequency determinant for the plate with outer edge 
(r = a) clamped and inner edge (r = b) free is the same as that for the 
plate with outer edge free and inner edge clamped. The radius ratio, 
b/a, appears in the determinant. For b/a < 1 results for the first case 
are found. For b/a > 1 the second case is described.

For sectorial plates, exact solutions for frequencies and mode 
shapes are available only when the radial edges are simply supported. 
The logic follows that employed earlier for the sectorial membrane 
(see Fig. 5.11). That is, one takes the solution to the equation of motion 
as (6.42), except using (in general) non-integer values µ in place of n, 
and sin µθ in place of cos nθ. Doing so satisfies simply supported 
edge conditions at θ = 0 and θ = α exactly if one chooses

 µ π
α

= n
 (n = 1, 2, 3, …) (6.52)

as was done for the membrane. The boundary condition w = 0 at  
θ = 0 and α is clearly then satisfied. The other boundary condition is
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(6.53)

at θ = 0 and α. Because w = 0 along the edges, then ∂w/∂r = ∂ 2w/∂r2 = 0. 
And it is clear that ∂ 2w/∂θ2 is also zero if µ is chosen as in (6.52).

s n
b/a

0.1 0.3 0.5 0.7 0.9

0 0
1
2
3

27.3
28.4
36.7
51.2

45.2
46.6
51.0
60.0

89.2
90.2
93.3
99.0

248
249
251
256

2237
2238
–
2243

1 0
1
2
3

75.3
78.6
90.5
112

125
127
134
145

246
248
253
259

686
686
689
694

6167
6167
–
6174

Table 6.5 Nondimensional Frequencies ω ρa h D2 /  for Annular Plates Having 
Both Edges Clamped
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For α  ≤ 180° the regularity conditions at r = 0 require that the 
coefficients Bμ and Dμ of the solution be discarded, as was done above 
for complete circular plates. Applying the boundary conditions at 
r = b yields frequency equation (6.48) for the sector with the clamped 
circular edge, and (6.51) for the simply supported circular edge,  
except that Bessel functions are now typically of non-integer order, μ, 
instead of n. The frequencies presented earlier in Tables 6.2 and 6.4 for 
circular plates may be regarded as special cases of sectorial plates, with 
n = 1, 2, 3, 4, 5 corresponding to α = 180°, 90°, 60°, 45°, 36°, respectively.

When α  ≤ 180° singularities (infinite bending and twisting 
moments) do exist at the sharp re-entrant corner of plate at r = 0. For 
such sectorial plates it is incorrect to discard Bμ and Dμ. Rather, a 
careful limiting process must be undertaken which yields zero 
displacement and slopes at r = 0, but allows infinite second derivatives 
of w there. This yields relationships between Bμ and Dμ, and both 
coefficients are retained [11].

Sectorial plates not having both radial edges simply supported 
have no exact solutions. Frequencies and mode shapes must be deter-
mined by an approximate procedure, such as the Ritz method (see  
Sec. 6.5). Where bending moment (and stress) singularities exist at the 
sharp corner at r = 0 during the vibratory motion, these singularities 
must be accounted for in order to obtain accurate results [12, 13].

As in the membrane vibration problem (Chap. 5), exact solutions 
for plates in polar coordinates are also applicable to annular sectorial 
plates. Such plates are bounded by two circle arcs (r = b, r = a) and two 
radial lines (θ = 0, θ = α), provided that the radial edges are simply 
supported. The solutions discussed above for annular plates are 
applicable, with non-integer μ in place of n, and sin μθ in place of cos 
nθ in (6.42). Applying two boundary conditions at r = b and a yields 
the frequency determinant. Thus, the frequencies shown in Table 6.5 
for n = 1, 2, 3 are also those of annular sectorial plates with α = 180°, 
90°, 60°, respectively.

6.5 Energy Functionals; Rayleigh and Ritz Methods
The potential energy of an infinitesimal volume dV = dxdydz of a 
vibrating body which is due to the strain energy of deformation is

 
d PE dxdydzx x y y xy xy( ) ( )= + +1

2
σ σ τ γe e

 
(6.54)

For a linearly elastic, isotropic material the stress–strain relations 
(6.10) may be inserted in (6.54) to give
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 242 C h a p t e r  S i x  P l a t e  V i b r a t i o n s  243

Substituting the strain–curvature equations (6.8) into (6.55), and 
integrating over the thickness yields for the complete plate,

 
PE D v dAx y x y xy

A

= + − − − { }∫
1
2

2 12 2( ) ( )κ κ κ κ κ
  

(6.56)

where κx, κy, and κxy, are the curvatures and twist of the plate mid-
surface, given by (6.13); A is the surface area of the plate (dA = dxdy); 
and D is as defined previously by (6.14). With D inside the integral in 
(6.56), plates having varying thickness or elastic modulus may be 
straightforwardly accommodated.

In polar coordinates the potential energy is found to be
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1
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(6.57)

where κr, κθ, and κrθ are curvature and twist components given by 
(6.36).

The translational kinetic energy of a three-dimensional plate 
element is
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Consistent with the thin plate theory of Sec. 6.1, where the rotary 
inertia was neglected, the kinetic energy of the element due to 
rotations will also be neglected. Integrating through the plate 
thickness, the kinetic energy of the plate is
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 (6.59)

where ρ and h may vary (i.e., be functions of x and y). 
The Rayleigh method may be employed as it was in previous 

chapters to obtain approximate free vibration frequencies. One 
assumes sinusoidal motion in time,

 w x y t W x y t( , , ) ( , )sin ( )= +ω φ  (6.60)

This yields maximum potential and kinetic energies, expressed in 
rectangular coordinates, during the vibratory motion as
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(6.61)
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(6.62)

Using the Rayleigh method, one assumes a trial function W(x,y) for 
the presumed free vibration mode, substitutes it into (6.61) and 
(6.62) (or the equivalent forms in polar coordinates), sets PEmax = 
KEmax, and solves for ω. How accurate the resulting estimate for ω 
is depends on how well one has chosen W(x,y). If W(x,y) should be 
the exact shape, then the exact value of ω results. If it is only 
approximate, then an approximate ω is determined. Because the 
approximate assumed shape imposes internal constraints on the 
deformation freedom of the plate, the approximate frequency is an 
upper bound to the exact value (Rayleigh’s Principle). (The reader 
is referred to additional discussions of the Rayleigh method in 
Chaps. 2, 3, 4, and 5.)

Example 6.4 Use the Rayleigh method to determine an approximate value for 
the fundamental frequency of a clamped circular plate of radius “a.”

Solution
The assumed mode shape must satisfy the geometric constraints at the 
boundaries. For this problem, they are

w a
w
r

a, ,θ θ( ) = ( ) =
∂
∂

0

One function that will do this is

W a r= −( )2 2 2

It is assumed that the fundamental mode shape is axisymmetric, i.e., it does not 
depend on θ. Moreover, if one plots this assumed shape, it does look reasonable 
for the first mode.

To demonstrate a point let us calculate PEmax as the sum of two parts. Using 
(6.36) in (6.57),
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Because the assumed W does not depend on θ, derivatives w.r.t. θ vanish in the 
above integrals. Substituting the assumed W, we find

I a1
664

3
= π , I2 = 0

whence PE a Dmax =
32
3

6π .

Using (6.62) in polar coordinates, and substituting the assumed W,
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Setting PEmax = KEmax gives ω2a2ρh/D = 320/3, or ω ρa h D2 10 33/ .= .  
Compa ring this with the exact value of 10.22 from Table 6.2, one finds that the 
approxi mate value of 10.33 is a rather close upper bound (1.1 percent error).

It is noted that I2 vanished. This is desirable, for we know that  
ω ρa h D2 /  should not depend on ν for this problem. More will be said about 
this later in this section.

A more simple function for W could have been chosen, which also satisfies 
both boundary conditions at r = a:

W = (a – r)2

However, this function causes moment singularities at r = 0 and is therefore 
unacceptable, that is,

1
2 1

r
W
r

a
r

∂
∂

= −





This gives infinite κθ at r = 0, according to (6.36), and infinite Mr and Mθ 
there, according to (6.37). Using this assumed displacement yields infinite  
PEmax, regardless of the amplitude of the motion. The corresponding frequency 
would be infinite. 

It has been seen in previous chapters that the Ritz method is a 
straightforward procedure for obtaining improved upper bounds for 
the natural frequencies of vibrating systems using an energy 
approach. As described in Chap. 2, Rayleigh employed the method of 
assuming a single function for a mode shape, setting the maximum 
potential and kinetic energies during free vibration equal to each 
other, and solving for a corresponding approximate frequency. 
Whether he was the first person to do this is questionable. But since 
it appeared in his classical, excellent book [14] in 1877, it is attributed 
to him.

Ritz presented his method [15] three decades later, with no 
mention of Rayleigh. The method is considerably different than that 
of Rayleigh, both in logic and in application. There has been a 
tendency in the literature to call the Ritz method the “Rayleigh–Ritz” 
method. Indeed, the first author followed this trend when writing 
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his own book on plate vibrations [4] more than four decades ago. 
However, he now believes that the two methods should be given 
their separate names, not only to recognize properly the very original 
thinking of Ritz, but also so that the Rayleigh method itself is not 
overlooked. This latter method is relatively simple, and therefore of 
considerable practical value.

As demonstrated earlier (see Secs. 2.13, 4.10, and 5.7), the Ritz 
method utilizes a series of admissible functions to represent the 
vibratory displacement of a two-dimensional continuous system. 
That is, W(x,y) in (6.60) is written as

 
W x y C x yi i

i

I

( , ) ( , )=
=
∑ φ

1  
(6.63)

where each of the φi satisfies at least the geometric boundary 
conditions (the generalized force boundary conditions need not be 
satisfied, although they can be). For a plate the geometric B.C. are 
those imposed on displacements and slopes. The others involve 
normal bending moment (Mn) and edge reaction force (Vn). If the set 
of admissible function is mathematically complete [i.e., capable of 
representing any arbitrary displaced shape consistent with the 
geometric boundary conditions as I → ∞ in (6.63)], then the Ritz 
procedure will converge monotonically to the exact frequencies as 
sufficient terms in (6.63) are taken. If not, then it will converge to 
frequencies which are upper bounds on the exact frequencies.

To use the Ritz method one formulates PEmax and KEmax in terms 
of Ci and ϕi of (6.63), and then minimizes the frequency w.r.t. Ci. That 
is, one lets the method determine Ci so as to obtain the best upper 
bounds for the frequencies. The frequency minimizing equations 
have been shown to be (see Sec. 2.13)

 
∂

∂C
PE KE

i
max max

*−( ) =ω2 0  (i = 1, 2, … , I) (6.64)

where KE*
max = KEmax/ω2 is the integral over the plate area (6.62) 

without the frequency. Equation (6.64) yields I homogeneous, linear 
equations in Ci. Setting the determinant of the coefficient matrix 
equal to zero yields upper bound approximations to I frequencies of 
the plate.

In carrying out the operations involved with (6.64) it is typically 
better to take the partial derivatives w.r.t. Ci before doing the 
integrations over the plate area required by (6.61) and (6.62). Doing so 
will reduce considerably the amount of algebra required as the 
number of admissible functions used (I) is increased.
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Computational labor with the Ritz method may also be redu-
ced considerably by recognizing that the second term of PEmax  
in (6.61), i.e.,
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vanishes when integrated over the area of either

1. A plate of arbitrary shape which is clamped along its 
boundary

or

2. A plate with straight edges which has w = 0 along its 
boundary (which includes the simply supported situation)

The first case was already observed in Example 6.4. The proofs of the 
two statements were made by Langhaar [16].

A well-known, simple, and straightforward procedure for 
generating sets of admissible functions which are mathematically 
complete has already been suggested for the membrane (Sec. 5.7). It 
may be generalized to the plate as follows. Choose W(x,y) as
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(6.65)

The function G(x,y) is the equation of the plate boundary in implicit 
form. The various terms in it are taken to the powers K = 0, 1, and 2 
for each segment of the plate boundary depending on whether it is 
free, simply supported, or clamped, respectively. For example, 
consider a rectangular plate having its edges x = 0 and x = a clamped, 
y = 0 simply supported, and y = b free, as depicted in Fig. 6.5. Then, 
G(x,y) = x2(x − a)2y. This procedure is applicable to plates of arbitrary 
shape.

6.6 Approximate Solutions for Rectangular Plates
In Sec. 6.2, exact solutions were presented for the free vibration 
frequencies and mode shapes for the six cases of rectangular plates 
having two opposite edges simply supported, and the other two 
either clamped, simply supported, or free. This leaves 15 distinct 
cases, for which approximate solutions may be obtained.

There are numerous approximate methods which may be 
employed to solve plate vibration problems. The Rayleigh and Ritz 
methods have been emphasized in this book because of their 
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historical significance, their relative ease in understanding in 
comparison with some of the other methods, their widespread 
usage in the published literature of free vibrations, and the 
capability of the Ritz method to obtain truly accurate frequencies 
and mode shapes. Some of the other approximate methods which 
have been used by plate vibration analysts include: Galerkin (which 
can be completely equivalent to the Ritz method), boundary 
collocation (also called “point matching”), generalized collocation, 
series (or superposition), and subdomain methods. Discussions 
and examples of applications of these methods are found in the 
book by Crandall [17] and in Ref. [18]. Other widely used methods 
include finite elements, finite differences, and boundary element 
methods.

Because of our understanding of the Ritz approach which has 
been developed and utilized in previous chapters here, it will now be 
used to obtain free vibration frequencies for the 15 remaining cases 
of rectangular plates having classical boundary conditions. The 
procedure to be followed is the one used by Ritz himself for the 
completely free plate [19], the only problem for which he published a 
solution using it.

Trial functions for the φi(x, y) in (6.63) are assumed which are the 
products of one-dimensional “beam functions.” That is, (6.63) is 
rewritten as

 
W x y A X x Y y

p

P

q

Q

pq p q,( ) = ( ) ( )
= =

∑ ∑
1 1  

(6.66)

where Xp and Yq are eigenfunctions of vibrating beams in the two 
directions (x and y) which satisfy the corresponding beam boundary 

Figure 6.5 A C–SS–C–F rectangular plate.
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conditions at the ends, and Apq are coefficients to be determined. For 
example, consider the C–SS–C–F rectangular plate shown in Fig. 6.5. 
In this case the Xp(x) would be the C–C beam eigenfunctions (4.30b), 
and the Yq(y) would be the F–SS beam eigenfunctions (4.33b) of 
Chap. 4, with a and b used in place of ℓ for lengths.

The beam functions have certain advantages over algebraic 
polynomials. Most importantly, one would think that approximating 
the 2D behavior of a plate by functions in both directions which 
represent 1D behaviors, and which satisfy all the boundary conditions 
for the 1D problems, would reasonably represent the plate from a 
physical viewpoint. That is, using a single term XmYn of (6.66) may be 
regarded as a Rayleigh approximation (which would result from 
using the Rayleigh method with it) and the additional terms of (6.66) 
are corrections which improve the solution. Another advantage of 
the method is that the orthogonality of the beam functions, as well as 
their second derivatives, over the intervals of the integration 
considerably reduces the labor involved.

The Ritz method using beam functions as in (6.66) was employed 
in Ref. [3] to obtain frequencies for all 15 of the cases not having exact 
solutions. Upper limits P = Q = 6 were taken in (6.66), yielding 36 
terms in each solution. Nondimensional frequencies were thus found 
as the roots of determinants of 36th order. In Ref. [3] the first nine 
frequencies thus obtained were presented for plates with a/b = 0.4, 
2/3, 1, 1.5, and 2.5 for ν = 0.3. One-term Rayleigh-type results were 
also given for comparison. A brief digest of these results is shown for 
square plates in Table 6.6, which is similar in form to Table 6.1. The 
plates are listed in order of decreasing fundamental frequencies, 
from all sides clamped to SS–SS–F–F. For the SS–F–F–F plate there is 
one zero frequency (rigid body rotation), which has been omitted. 
For the completely free case there are three zero frequencies (one 
translation, two rotations), which have also been omitted. 

It is interesting to note that the C–C–C–C plate (Table 6.6) and the 
SS–SS–SS–SS plate (Table 6.1) both have degenerate 21 and 12 modes. 
Indeed, the nodal patterns for those plates are the same as those for 
square membranes (Fig. 5.6a) and superposition of them can cause 
diagonal nodal lines as for the membrane. For the F–F–F–F plate the 
21 and 12 modes are rigid body rotations. However, the 31 and 13 
modes do not exist in simple forms for the F–F–F–F plate. Rather, the 
second and third modes are composed of sums and differences of 31 
and 13 terms, and have significantly different frequencies. Hence, 
they are not degenerate. The superimposed nodal patterns are 
essentially those of the 13 − 31 and 13 + 31 modes for the membrane, 
seen in Fig. 5.6b.

As a historical note it should be mentioned that the first 
significant work examining nodal patterns on rectangular plates of 
any kind was carried out experimentally by Chladni on free square 
plates and published in 1787 [20]. For experiments the completely 
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free plate is the easiest to deal with, for it requires no edge fixtures. 
One simply supports the plate by threads or by points underneath, 
locating them at anticipated node lines so as to not affect the desired 
mode. Chladni did this, and strew sand on the plate surface. Exciting 
the plate by some simple means, such as a violin bow, one observes 
that as the sand particles are given sufficient excitation they break 
contact with the plate surface and collect along nodal lines, thus 
identifying them. 

The addition of trial functions ϕi to the series of terms in (6.63) or 
(6.66) used with the Ritz method does not, in general, decrease all the 
previously found frequencies (i.e., yield improved upper bounds). As 
an example, consider the first two symmetric modes of the C–C–C–F 
square plate. If only a single term X1Y1 is used in (6.66), the Ritz 
method gives the result λ11

2  = 24.22, where λ ω ρ2 2= a h D/  as in (6.31). 
This would also be the result, although somewhat more easily 
obtained, if the Rayleigh method were used. If the single term X1Y2 
approximation to the second mode is used, the result is λ12

2  = 40.53.  
If one uses both terms together in (6.70), the Ritz method yields λ11

2  = 
24.07 and λ12

2  = 40.61. Thus, while the two-term solution improves the 
fundamental frequency, it worsens the second. Accurate values of  
λ11

2  and λ12
2  obtained from the 36-term solution are seen in Table 6.6 to 

be 24.02 and 40.04, respectively. This behavior is discussed in more 
detail in Ref. [3].

Table 6.6 Nondimensional Frequencies ω ρa h D2 /  for Square Plates  
(a/b = 1) Obtained by the Ritz Method (ν = 0.3)

Edge 
conditions

Mode

1 2 3

C–C–C–C
C–C–C–SS
C–C–SS–SS
C–C–C–F
C–SS–C–F
C–F–C–F
C–C–SS–F
C–SS–SS–F
C–F–SS–F
C–C–F–F
C–SS–F–F
C–F–F–F
SS–SS–F–F
SS–F–F–F
F–F–F–F

35.99 (11)
31.83 (11)
27.06 (11)
24.02 (11)
23.46 (11)
22.27 (11)
17.62 (11)
16.86 (11)
15.28 (11)

6.942 (11)
5.364 (11)
3.492 (11)
3.369 (11)
6.648 (12)

13.49 (22)

73.41 (21)
63.35 (12)
60.54 (21)
40.04 (12)
35.61 (12)
26.53 (12)
36.05 (12)
31.14 (12)
20.67 (12)
24.03 (21)
19.17 (12)

8.525 (12)
17.41 (12)
15.02 (21)
19.79 (13–31)

73.41 (12)
71.08 (21)
60.79 (12)
63.49 (21)
63.13 (21)
43.66 (13)
52.06 (21)
51.63 (21)
39.78 (13)
26.68 (12)
24.77 (21)
21.43 (21)
19.37 (21)
25.49 (22)
24.43 (13+31)
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The single term Rayleigh-type solutions supply reasonably 
accurate frequencies for some modes, but not for others. Table 6.7, 
taken from Ref. [3], lists the average percent differences between the 
frequencies from the 36-term Ritz solutions and the single term 
solutions for the first six modes of plates with a/b = 0.4, 2/3, 1, 1.5, and 
2.5 (i.e., 30 values of λ2 for each entry in Table 6.7), for ν = 0.3. Also 
given is the greatest percent difference found among the 30 values, 
with the corresponding a/b and mode shape identified. It is seen that 
for the three cases having no free edge, the average and maximum 
differences between the two solutions is quite small, being less than 
1 percent. The greatest differences occur for plates having two or 
more free edges. The worst case is the first torsional (12) frequency of 
the relatively slender (a/b = 2.5) cantilever plate (C–F–F–F), where the 
single term Rayleigh frequency is more than 24 percent too high. It 
should be noted that the maximum differences occur for the lower 
frequencies, most often for the second modes, as identified by the 
footnote to Table 6.7. In one case (C–SS–F–F) the maximum difference 
occurs for the fundamental mode. Simple formulas for free vibration 
frequencies of rectangular plates having any of the 21 possible 

Table 6.7 Average and Maximum Percent Differences in λ ω ρ2 2= a h D/  
between 1-  and 36-Term Solutions

Edge 
conditions

Average 
percent 
difference

Mode with maximum difference

a/b Mode
Percent 
difference

C–C–C–C
C–C–C–SS
C–C–C–F
C–C–SS–SS
C–C–SS–F
C–C–F–F
C–SS–C–F
C–SS–SS–F
C–SS–F–F
C–F–C–F
C–F–SS–F
C–F–F–F
SS–SS–F–F
SS–F–F–F
F–F–F–F

0.38
0.41
0.91
0.46
1.10
4.27
0.54
0.61
3.80
0.58
0.77
4.68
2.93
3.41
3.51

1
1.5
1
1
1
1
2.5
1
2.5
2.5
2.5
2.5
1
2.5
1

13–31
21*
22
21*
22
21*
22
12*
11†

12*
12*
12*
12*
12*
13–31*

0.64
0.55
1.76
0.76
1.98

10.24
1.17
1.25

14.77
1.55
1.98

24.36
7.80
9.27

13.06

*Second mode
†Fundamental mode
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combinations of simple edge conditions were presented by Warburton 
[21], obtained by the Rayleigh method using beam functions. 

The primary reason that the single term Rayleigh solutions with 
beam functions are not very good when free edges are involved is 
that, while the clamped and simply supported boundary conditions 
are the same for beams and plates, for free edges they are not. The 
free edge beam conditions corresponding to zero bending moment 
and zero shearing force at x = a, for example, are ∂2w/∂x2 = 0 and 
∂3w/∂x3 = 0 , respectively (see Sec. 4.3). These differ from the plate free 
edge conditions by the terms ν∂2w/∂y2 and (2 − ν)∂3w/∂x∂y2, respecti-
vely [see (6.12), (6.13), and (6.23a)]. Indeed, the beam functions impose 
unnecessary constraints on the free edges. Considering bending 
moment Mx to be zero along an edge x = a, for example, requires

 

∂
∂

∂
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(6.67)

for all values of y. If ∂2w/∂x2 = 0 is enforced by the beam functions, 
then (6.67) implies that ∂2w/∂y2 = 0 for all y, that is, the edge can have  
no curvature in the y-direction. It therefore must remain straight, 
which is unrealistic and imposes a significant, frequency-raising con-
straint along the free edge. The beam functions impose a similar undesir-
able constraint on the higher derivative term ∂3w/∂x∂y2 in (6.23a).

Displacement contour plots showing the mode shapes of 
completely free square plates are seen in Fig. 6.6. The plots show node 
lines (heavy lines) and other lines of constant displacement (light 
lines) for the first two modes of each of the four symmetry classes 
(SS, SA, AS, AA) of the modes. These plots show a limiting case of a 
shallow shell, where the Ritz method was used with algebraic 
polynomial displacement functions to solve the problem (see Sec. 
7.3). The constant displacement lines are for values of W/Wmax = 0 
(node lines), 0.2, 0.4, 0.6, 0.8, and 1. From such “contour maps,” one 
can see the mode shapes clearly and with more accuracy than from 
three-dimensional computer plots. It is interesting to observe that 
the degenerate SA and AS modes may be superimposed to obtain 
contour plots which have symmetry or antisymmetry about the two 
diagonals of the square, as do the other four contour plots shown (see 
Sec. 5.2 for discussion of degenerate mode superposition). For the six 
mode shapes of Fig. 6.6, the corresponding frequency parameters are 
ω ρa h D2 13 47/ .=  (AA-1), 19.60 (SS-1), 24.27 (SS-2), 34.80 (SA-1 and 
AS-1), 61.11 (SA-2 and AS-2), and 69.28 (AA-2). Sixteen polynomial 
admissible functions were used with each symmetry class of mode 
shape to obtain the frequencies, which have converged to four-digit 
exactitude. These values may be compared with the less accurate 
upper bounds shown in Table 6.6, obtained by using nine beam 
function products for each symmetry class.
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Accurate frequencies for most of the 15 cases of rectangular 
plates not having exact free vibration solutions are also available in 
the book by Gorman [22]. He used a superposition method (also 
called the “series method” by others) based on exact solutions to the 
differential equation of motion, with boundary conditions being 
approximated. Considerable additional frequency data for rectan-
gular plates may also be found in Ref. [4].

6.7  Other Free Vibration Problems for Plates According  
to Classical Plate Theory

In the previous sections of this chapter, plates which vibrate freely 
according to the classical equation of motion (6.24) have been studied 
for shapes having boundaries readily defined by rectangular and 
polar coordinates. Even so, the rectangular, circular, annular, and 
sectorial plates considered have been uncomplicated. For example, 
they could have had additional springs or masses attached, either at 
interior points or along the edges. Such problems can typically be 
handled straightforwardly by the Rayleigh or the Ritz methods. Or 
they could have had discontinuous boundary conditions, for example, 
a circular plate is clamped along one portion of its boundary and free 
along the remaining portion. The latter type of problem is more 
difficult to analyze, mainly because of the stress singularity at the 
boundary discontinuity.

But there are also innumerable other shapes of plates possible. Of 
particular practical importance are other shapes defined by straight 

Figure 6.6 Mode Shapes for the first two modes of each of the four symmetry 
classes (SS, SA, AS, AA) of a completely free square plate.
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line edges (parallelograms, trapezoids, other quadrilaterals, triangles, 
other polygonal shapes). Leissa’s 1969 monograph [4] summarized 
frequency and mode shape data taken from approximately 70 
publications which analyzed such problems. Hundreds of additional 
references of this type have appeared subsequently. There is also 
interest in other plate shapes having curvilinear boundaries (e.g., 
ellipses, segments of circles). Summarizing all the available data in 
an introductory textbook is out of the question. However, a few 
interesting cases will be looked at in this section.

An elliptical plate with semi-major and semi-minor axes a and b 
is depicted in Fig. 6.7. The equation of its boundary is

 

x
a

y
b

2

2

2

2 1+ =
 

(6.68)

An exact solution to the equation of motion (6.25) is achievable in 
elliptical coordinates (cf. [4], pp. 2–3). These coordinates are related to 
the rectangular xy-coordinates by

 

x c

y c

=
=

cosh cos

sinh sin

ξ η
ξ η  (6.69)

The lines ξ = constant are ellipses, and the lines η = constant are 
hyperbolas which are everywhere orthogonal to the ellipses. The 
exact solution to (6.25), where ∇ 4 is expressed in elliptical coordinates, 
is in terms of Mathieu functions (cf. [4], p. 3). However, applying the 
boundary conditions along the elliptical edge requires finding the 
roots of an infinite determinant to determine vibration frequencies. 

Figure 6.7 An elliptical plate.
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Successive truncation of the determinant yields frequencies to any 
desired degree of accuracy. This was the approach used by Shibaoka 
[23] to determine the fundamental frequencies for clamped elliptical 
plates. His results are shown in Table 6.8, with the special case of the 
circular plate (a/b = 1) added.

The Ritz method may be used straightforwardly to obtain 
accurate frequencies for elliptical plates. This was done by Leissa [24] 
for the simply supported case, using rectangular coordinates, for the 
fundamental mode. Using the approach suggested by (6.65) with 
nondimensional coordinates x x a= /  and y y b= / , a suitable trial 
function for the doubly symmetric fundamental mode is

 W x y x y C C x C y( , ) ( )( )= + − + +2 2
00 20

2
02

21  (6.70)

In constructing the double integrals over the plate area for PEmax and 
KEmax, given by (6.61) and (6.62) converted to x  and y  coordinates, 
the limits of integration are taken from 0 to 1 2− x  on y  and from 0 
to 1 on x . These integrals may be evaluated exactly. Employing the 
frequency minimizing equations (6.64) results in a third-order 
determinant (which is given in [24] for arbitrary a/b and ν). 
Fundamental frequencies from this determinant are seen in Table 6.9. 
The two higher frequencies obtained from the third-order 
determinant are inaccurate for the corresponding two axisymmetric 
modes, and are not presented. The special case of a/b = 1 may be 
compared with exact data for n = 0 and s = 0 in Table 6.4. For ν = 0 the 
three-term frequency of 4.447 is a close upper bound to the exact 
value of ω ρa h D2 4 444/ .= . For ν = 0.5 the corresponding data are 
5.219 and 5.213. As a/b → ∞, the nondimensional frequency ω ρb h D2 /  
approaches that of an infinite strip of width 2b having its parallel 
edges simply supported. The exact value in this case is π2/4 = 2.467, to 
four significant figures. Additional frequencies for clamped and 
simply supported elliptical plates were obtained by Young and 
Dickinson, using the Ritz method [25].

Table 6.10 lists frequency ratios for a free elliptical plate made  
of brass, as determined experimentally by Waller [26] for the  
aspect ratio a/b = 1.98. Figure 6.8 shows the corresponding nodal 

Table 6.8 Fundamental Frequencies for Clamped Elliptical Plates

a/b ω ρa h D2 /

1.00
1.25
2.00
3.00

10.2
8.38
6.88
6.32
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a/b
ν

0 0.25 0.50

1.0
1.1
1.2
1.4
1.7
2.0
2.5
3.0
5.0

10.0
20.0

4.447
4.078
3.823
3.512
3.286
3.172
3.061
2.987
2.833
2.747
2.724

4.865
4.454
4.157
3.773
3.463
3.292
3.128
3.027
2.846
2.750
2.725

5.219
4.772
4.442
3.990
3.617
3.399
3.189
3.066
2.858
2.754
2.726

Table 6.9 Fundamental Frequencies ω ρa h D2 /  for Simply Supported 
Elliptical Plates

s
n

0 1 2 3 4

0
1
2
3

–
–

4.25
10.6

–
1.77
6.57
14

1
3.27
9.43

–

2.58
5.68

12.6
–

4.7
8.29

–
–

Table 6.10 Experimentally Determined Relative Frequencies for a Free 
Elliptical Plate Having a/b = 1.98

Figure 6.8 Experimental nodal lines for a free elliptical plate with a/b = 1.98.
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patterns. The n and s designations are generalizations of the 
descriptors for circular plates.

Figure 6.9 shows the plan view of a trapezoidal plate. By varying 
the four dimensions a1, a, b, and c one may obtain trapezoids of 
arbitrary shape. For example, if c = b, the shape has a symmetry axis; 
and if c = 0, one has a right-angled trapezoid. Another special, very 
important, case is when a1 = 0. Then one has a triangular plate, for 
which arbitrary shapes may be obtained by varying a, b, and c. The 
free vibration frequencies and mode shapes of trapezoidal and 
triangular plates may be obtained straightforwardly by the Ritz 
method using trial functions in the form of (6.65). For completely free 
plates the analysis is simplified, for then G = 1 in (6.65). Jaber, Qatu, 
and Leissa [27, 28] made extensive studies of wide varieties of free 
triangular and trapezoidal plates by this approach.

Table 6.11 is a typical convergence study that one needs to carry 
out in order to be reasonably assured of achieving accurate 
frequencies. This is for a free, right triangular plate (a1 = c = 0), with 
a/b = 0.5, and ν = 0.3. The table is essentially a numerical experi-
mentation to determine how many algebraic polynomial terms are 
needed in (6.65) to obtain a desired accuracy, and whether more 
terms should be taken in one direction than the other. Thus, for 
example, the 4 × 9 solution uses four terms in the x-direction and 
nine terms in the y-direction [I = 3, J = 8 in (6.65)] and yields a 
frequency determinant of order 36. Two sets of data are shown in 

Figure 6.9 The plan view of a trapezoidal plate. 
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Table 6.11. In the first set, an equal number of terms is taken in both 
directions (I = J). In the second set, more terms are taken in the 
y-direction than in the x-direction. Underlined frequencies are the 
most accurate ones (i.e., lowest upper bounds) for each of the six 
modes. Taking determinants of order 8 × 8 = 64 or 6 × 11 = 66, 
frequencies are seen to converge to at least four significant figures, 
and perhaps five, for the first three modes, although it was found 
that no better than three figure accuracy was obtained for the sixth 
mode. All calculations were made using double precision (16 
significant figures). Using larger solutions (for example, 9 × 9) results 
in matrix “ill-conditioning,” preventing accurate numerical results. 
The ill-conditioning problem can be effectively eliminated by using 
orthogonal polynomials (Legendre polynomials, in this case) in place 
of the ordinary polynomials in (6.65). However, this increases 
greatly the problem complexity and computational time required. 
Table 6.11 also shows frequencies obtained by Kim and Dickinson 
[29] using a similar procedure for right triangular plates.

Figure 6.10, taken from Ref. [27], shows nodal patterns of the first 
five mode shapes for free right triangular (c/b = 0) plates, with a/b = 
0.5 and 1, for ν = 0.3. Corresponding nondimensional frequencies 
ωa2(ρh/D)1/2 are also given for each mode. For the isosceles triangle, 
one sees, as expected, that all modes are either symmetric or 
antisymmetric w.r.t. the diagonal symmetry axis present. Much more 
extensive frequencies and nodal patterns for triangular plates are 
available in Ref. [27]. Extensive, additional frequencies and nodal 
patterns for triangular plates were presented by Kim and Dickinson 
[30] for all combinations of simple edge conditions.

In analyzing polygonal plates by any method one should be 
aware of the bending stress singularities which may exist in sharp 
corners. They can affect the frequencies drastically, and need to be 
accounted for. An example is the parallelogram (or skew) plate ABCD 

Table 6.11 Convergence of ω ρa h D2 /  for an Isosceles Right Triangular Plate (ν = 0.3).

No. of 
Terms

Deter. 
size

Mode Number

1 2 3 4 5

6 × 6
4 × 9
7 × 7
5 × 10
8 × 8
6 × 11

36
36
49
50
64
66

6.4416
6.4289
6.4279
6.4279
6.4279
6.4278

15.001
15.015
14.968
14.979
14.958
14.959

17.556
17.332
17.449
17.300
17.289
17.288

28.944
28.979
28.717
28.709
28.659
28.674

32.993
32.232
30.995
30.773
30.864
30.762

Most Accurate
Ref. [29]

6.4278
6.429

14.958
15.00

17.288
17.33

28.659
28.94

30.762
32.23
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shown in Fig. 6.11 which has one edge clamped (AB) and the other 
three free. A stress singularly exists in the corner A for all α > 90°, the 
strength (importance) of the singularity increasing with α. Numerous 
researchers have attempted to obtain frequencies for such plates (a 
partial summary of their work is in [4], pp. 168–84), but reasonably 
accurate frequencies were found for only small skew angles (90° < α 
< 120°). A later study with the Ritz method [31] has shown for such 
problems that for larger skew angles (α  > 135°) a relatively large 
number (64) of trial functions in the form of algebraic polynomials 
alone, used in (6.65), does not typically yield accurate frequencies, 

Figure 6.10 Nodal patterns and frequencies ω ρa h D2 /  for free right 
triangular plates (c/b = 0, ν = 0.3).

Figure 6.11 Cantilevered parallelogram (or skew) plate with bending stress 
singularity at point A.
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but the addition of a few singular, corner functions in the polar 
coordinates (r, θ) to account for the stress singularities improves the 
convergence greatly.

The difficulty described above occurs when the angle α of the 
clamped-free corner exceeds 90°, no matter what the actual shape of 
the plate is. For example, the plate could be trapezoidal or triangular. 
Similar singularities exist for other intersecting edges: for α  > 90° 
with SS–SS edges; for α > 95° with SS–F edges; for α > 128° with C–SS 
edges; and for α > 180° with either C–C or F–F edges [32]. Thus, for 
example, if the parallelogram plate of Fig. 6.11 had all edges simply 
supported, stress singularities would result in corners A and C due 
to the vibratory motion, and proper singular functions would be 
required in an analysis to obtain accurate frequencies [33].

Many hundreds of research papers have been published which 
provide theoretical and/or experimental frequencies and mode 
shapes of plates which are described by (6.24) of classical theory. A 
large number of them are listed in Refs. [4, 34–36], which are 
reasonably comprehensible for the years preceding 1966, and the 
period 1973–1985.

6.8 Complicating Effects in Plate Vibrations
The analysis in this chapter has thus far been limited to plates which 
the equation of motion (6.24) may represent. However, plates may 
have other physical characteristics. A list of such characteristics is as 
follows:

 1. Variable mass density

 2. Variable material properties (E and ν)

 3. Variable thickness

 4. Anisotropic material

 5. Laminated composite material

 6. In-plane forces

 7. Effects of surrounding media

 8. Large amplitude (nonlinear) displacements

 9. Shear deformation

 10. Rotary inertia

These characteristics also exist for strings, bars, beams, and 
membranes and many of them have been discussed in the preceding 
chapters. For the plate they are typically more complicated, and these 
complications will be summarized briefly below, considering each 
effect by itself. Anisotropic and laminated composite plates will be 
discussed in Chap. 9. 
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Considerable variability in mass density can occur for some 
materials (e.g., rubber, Styrofoam), although usually not for metals. If 
the density (ρ) varies only with the in-plane coordinates (say x and y), 
then (6.24) still applies, with ρ = ρ(x,y). The equation then has a 
variable coefficient, for which an exact solution is probably intractable 
(although possible in some cases). However, the Ritz method deals 
with such problems straightforwardly.

Materials with variable mass density will usually have significant 
variability in their material properties, as well, especially in E. 
However, variable material properties can also result independently 
as, for example, in a metal plate which is heated non-uniformly to 
high temperatures. Variable E and/or ν causes the flexural rigidity 
D = Eh3/12(1−ν2) to vary, and (6.24) is not appropriate. Variable 
thickness also affects the problem through D, as well as through  
the inertia term of the equation of motion. In substituting (6.12) into 
(6.15), treating D as a function of x and y, an equation much more 
complicated than (6.24) results. But the Ritz method is not signifi-
cantly more complicated for such problems. Plates having variable 
density and/or material properties are called nonhomogeneous (or 
heterogeneous) plates.

A plate may be subjected to static, in-plane forces, in the same 
manner that a beam may have axial forces (see Sec. 4.11). For the plate 
subjected to static force resultants Tx = σxh, Ty = σyh, Txy = τxyh , the 
equation of motion (6.17) is generalized to (for free vibrations)
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The in-plane forces enter the equations of motion in the same manner 
as they did for the membrane (see Sec. 5.1) and, indeed, if the plate 
bending stiffness vanishes (D = 0) the membrane equation (5.6) 
results. In general Tx, Txy, and Ty are functions of x and y, and one 
must first solve a static, plane elasticity problem to determine those 
stress resultants throughout the plate. However, in such a case exact 
solutions of (6.71) are almost impossible. If Txy = 0, and Tx and Ty are 
constants, then exact solutions of the form described in Sec. 6.2 are 
possible for rectangular plates having two opposite sides simply 
supported. If the in-plane forces are compressive (negative) in any 
direction anywhere within the plate, then buckling will occur at 
values of the loading which are large enough to cause zero frequencies. 
Frequencies may also be decreased, leading to buckling, by 
nonuniform, in-plane tensile forces on the boundary [37, 38].

The theory developed above for plates (as well as those used 
earlier for strings, bars, beams, and membranes) assumed that the 
vibratory motions take place in a vacuum. Of course, vibration 
experiments can be (and have been) conducted in the laboratory in a 
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vacuum chamber. And important vibration problems do exist for 
structures in earth orbit, or in space, which are essentially in a 
vacuum. However, most practical vibratory situations take place in a 
surrounding medium, particularly air, and also water. In such cases 
the vibratory body has at least mass coupling with the medium. The 
theoretical problem involves solving two sets of equations of motion, 
one for the structural element, and the other for the surrounding 
medium (which may be infinite, or finite), and coupling them through 
the stresses at their interface. Indeed, in an early paper Lamb [39] did 
this for the first two modes of a clamped circular plate vibrating in 
an infinite expanse of water. He used the Rayleigh method, and 
assumed that the liquid was incompressible.

An interesting experimental and theoretical study was conducted 
by Lindholm et al. [40] on cantilever plates. Experimental frequencies 
were obtained for a variety of plates, both in air and water, and were 
compared with the theoretical values obtained by Young [41] and 
Barton [42] using the Ritz method with nine products of beam 
functions to approximate the modes. Some of their results are shown 
in Table 6.12. Others (for three additional modes, and for a/b = 3) are 
available in Ref. [4], as well as in Ref. [40]. All plates were made of 
1080 cold-rolled steel. The results shown are for plates ranging from 
being moderately thick (h/b = 0.1240) to quite thin (h/b = 0.0090). The 
differences between the theoretical frequencies and the experimental 
ones in air are typically small, and are partly due to the inability to 
obtain perfect clamping experimentally. However, as expected, all 
frequencies in water are much lower.

 “Large amplitude displacements” in a plate vibration problem 
refer to transverse displacements which are sufficiently large to cause 
significant stretching of the mid-surface during the motion. The 
phrase is somewhat misleading because the maximum displacement 
is typically much smaller than the in-plane dimensions of the plate. 
Indeed, it is usually on the order of the plate thickness. But such 
displacements cause significant stiffening of the system during 
transverse motion, which increases the free vibration frequencies. 
Strains of the mid-surface are

 
ex

u
x

w
x0

0
2

1
2

= +






∂
∂

∂
∂

,
 

ey
v
x

w
y0

0
2

1
2

= +






∂
∂

∂
∂  

,
 

          
γ xy

v
x

u
y

w
x

w
y0

0 0= + +
∂
∂

∂
∂

∂
∂

∂
∂  

(6.72)

With the introduction of the Airy stress function (φ) of plane elasticity, 
defined by
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Nodal patterns

Theory 
(vacuum)

Experiment Theory 
(vacuum)

Experiment Theory 
(vacuum)

Experiment

Air Water Air Water Air Water

0.1240
.0611
.0611
.0238
.0238
.0238
.0131
.0131
.0131
.0090
.0090
.0090

5
2
5
1
2
3
½
1
2
½
1
2

20.9
65.7
10.4
99.5
24.7
10.9
223
55.6
13.8
159
39.7

9.86

19.4
60.7
10.0
96.3
24.2
10.8
214
52.9
12.9
147
37.9

9.3

14.6
40.3

6.3
51.4
12.1
5.1
106
23.3

5.1
63.5
14.6
3.12

210
283
105
243
106
68.1
342
136
59.3
244
97.1
42.4

193
267
99.6
241
108
67.7
339
129
58.2
228
95.3
42.0

166
209
77.3
154
67.5
41.6
189
68.7
29.8
110
44.2
18.8

130
409
65.2
610
154
68.2
1397
341
85.9
998
243
61.4

123
377
62. 3
591
151
66.9
1339
326
80.8
920
236
57.8

96
257
40.1
355
80.0
33.3
739
158
34.4
452
102
21.1

Table 6.12 Frequencies (in Hertz) for C–F–F–F Rectangular Steel Plates in Vacuum, Air, and Water
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a compatibility equation arising from (6.72) yields
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The equation of motion is given by (6.71), except that the in-plane 
stress resultants (Tx, etc.) are now caused by the vibratory stretching. 
Using (6.73), (6.71) becomes
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(6.75)

Equations (6.74) and (6.75) were derived for statically loaded plates by 
von Kármán [43]. They are both nonlinear due to the coupling terms 
on their right-hand sides. The fourth-order plane elasticity 
compatibility equation is thereby coupled with the fourth-order plate 
equation of motion, yielding an eighth-order system of nonlinear 
partial differential equations to be solved. No useful exact solutions 
have been known to be found.

As an example of the results one finds in the literature, Yamaki [44] 
applied the Galerkin method to the von Kármán equations (6.74) and 
(6.75) to study the effect of large displacements on the fundamental 
frequencies of circular plates. Two types of simply supported (Case I) 
and clamped (Case II) boundary conditions were considered. One 
type (a) had no radial in-plane restraint (Tr = 0), and the other (b) had 
complete radial in-plane restraint (u0 = 0). The ratio of linear (small 
displacement) frequency to the nonlinear (large displacement) 
frequency is shown in Fig. 6.12 for varying ratio of maximum dis-
placement (at the plate center) to the plate thickness. One sees that for 
displacement ratios of unity, significant increases in frequency occur 
for all four combinations of edge conditions, which is a “hard spring” 
behavior. However, if the plates are constrained radially [Cases I(b) 
and II(b)], the stiffness is increased considerably more than if they are 
not, and the frequencies are also increased considerably more.

An excellent book by Chia [45] presents results for the large 
amplitude vibrations of plates and laminated composites, including 
unsymmetric laminates.

The effects of shear deformation and rotary inertia on plates are 
similar to those which were found for beams (Sec. 4.12). That is, both 
of these effects cause the natural frequencies to decrease, and they are 
typically significant for the fundamental frequencies of thicker plates 
(h/a > 0.1, where a is the average in-plane dimension), or for the higher 
frequencies of thin plates (h/a < 0.1). Shear deformation effects were 
introduced into static plate theory by Reissner [46]. Subsequently, 
Mindlin [47] developed a more simple theory, which also considered 
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dynamic effects, and this is the theory that is most often used. Instead 
of the normals to the mid-surface being required to remain normal, 
which results in (6.6), they are allowed to undergo independent 
rotations ψx and ψy in the x and y directions, respectively, yielding

 u = −zψx, v = −zψy (6.76)

Thus, deformation is defined by three variables—w, ψx, ψy—each of 
which is a function of two space variables (x and y) and time, instead 
of the single displacement variable (w) which prescribes thin plate 
theory. Equations (6.76) are substituted into (6.7), and rotary inertia 
terms of the type seen on the R. H. S. of (6.3) (with ∂w/∂x replaced by 
ψx) are retained in the two moment equations of motion. This 
ultimately yields a set of three second-order differential equations 
which are coupled in w, ψx, and ψy [see Ref. [4], Eq. (12.72)]. The beam 
has only two second order, coupled equations, (4.127a, b), which 
makes the system fourth order and requires two conditions at each 
boundary. However, the system of plate equations is sixth order, 
requiring three boundary conditions at each edge.

The complicating effects discussed in this section have received 
enormous attention from researchers. Many of these are examined in 
review articles directed to this topic, prepared by Leissa [48–50].
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Problems
1  A. Set up the frequency determinant for Example 6.2, expand it, and verify 

that the frequency equation given is correct.

B. Let ν = 0.3 and b/a = 2. Evaluate the first (i.e., lowest) four values of λ.

C. One of the lower vibration modes has a nodal pattern having a single 
node line which is almost straight and parallel to the x-axis. On a plan 
view of the plate, plot the contour lines W/Wmax = 0.2, 0.4, 0.6, 0.8, 1 for 
that mode, where Wmax is the value of W at the point having maximum 
vibratory displacement.
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2 For an SS–SS–SS–F rectangular plate having ν = 0.3, carry out an analysis 
to determine the range of mb/a for which the solution case k2 < α2 is valid.

3  A. Determine the free vibration eigenfunctions for SS–C–SS–C rectangular 
plates.

B. Prove that the eigenfunctions are orthogonal over the plate area. (You 
may want to try a procedure that is similar to that which was employed 
for beams in Sec. 4.5.)

4 A rectangular (a/b = 2) SS–C–SS–C plate is vibrating freely in its 
fundamental mode with a maximum displacement, δ.

A. Determine the bending and twisting stresses σx, σy, and τxy as functions 
of x, y, and t.

B. Locate the points where σx, σy, and τxy are maxima. Determine these 
maximum values.

5 Consider a plate of width “a” and infinite length having two parallel, 
straight edges, as shown (Fig. 6.13). Let the two edges be clamped. 

A. Determine its first three frequencies (ω ρa h D2 / ) of free vibration. 
Consider possible mode shapes W(x,y) which do vary with y, and ones 
that do not.

B. Compare the frequencies of Part A with those given for square plates in 
Tables 6.1 and 6.6. Are they consistent? Why or why not?

C. Compare the fundamental frequency of Part A with those for elliptical 
plates given in Table 6.8. Are they consistent? Why or why not?

Figure 6.13 Problem 5.
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6 A. Obtain the frequency equation for a free circular plate.

B. Let ν = 0.3. Find the three lowest frequencies. Make three-dimensional 
sketches carefully of the corresponding mode shapes (no further 
calculations needed).

7 An annular plate has its outer edge clamped (Fig. 6.14). The inner edge is 
attached to a rigid circular disk of radius b and mass M, as shown. Formulate 
the frequency determinants from which all the natural frequencies of the 
system could be found. Express all elements of the determinants in terms of 
Bessel functions (not their derivatives) and the nondimensional parameters 
λ ω ρ( / )= a h D2 , b/a and M/mp, where mp, is the mass of the annular plate 
without the rigid disk.

8 A square plate of dimensions a × a has two adjacent edges simply supported 
and the other two free. Its material has a Poisson’s ratio of 0.3.

A. Use the Rayleigh method with a displacement function expressed 
as a simple algebraic polynomial to find a first approximation to the 
fundamental natural frequency.

B. Add another polynomial term to the one used in Part A, and use the 
Ritz method to obtain a second approximation. (Ensure that the added 
polynomial term has the proper symmetry for the fundamental mode 
shape.)

C. Compare the two frequencies from above with that given in Table 6.6.

9 A circular plate has its boundary (r = a) completely free. However, it is 
supported transversely at its center by a spring of stiffness k. Let ν = 0.3.

A. Use the Ritz method with an assumed displacement containing two 
independent polynomial trial functions to obtain an approximation 
to the lowest frequency of axisymmetric, free vibration. Express 
the nondimensional frequency ω ρa h D2 /  in terms of a suitable 
nondimensional stiffness ratio (call it k*) containing k. (Give some 
considerable thought to your choice of W before beginning this.)

a 

h 

b 

c

Figure 6.14 Problem 7.
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B. Make a plot of ω ρa h D2 /  versus k* for 0 < k* < ∞. Use a logarithmic 
scale for the abscissa (k*) with sufficient range to show clearly what is 
happening as k* changes.

C. The limiting case as k* → ∞ is a rigid point support. Determine this 
value of ω ρa h D2 /  from your result of Part A. Call it Ω*. Determine the 
value of k* for which ω ρa h D2 /  = Ω*/2. Plot the mode shape of the plate 
corresponding to this frequency.

10 A rectangular plate of dimensions a and b has all four edges simply 
supported. It is subjected to uniform static stresses σx and σy, at its edges  
(τxy = 0).

A. Determine the free vibration frequency parameters (ω ρa h D2 / ) for the 
plate, as a function of σxha2/D and the ratios σy/σx and a/b.

B. Let σy/σx = −1. Make a plot of the buckling stresses (σxha2/D) for which 
the frequencies become zero, versus b/a over the range 0 ≤ b/a ≤ 4. Identify 
the critical (i.e., lowest) buckling stress values over this range (they vary 
with b/a).



CHAPTER 7
Shell Vibrations

Geometrically viewed, a shell is like a plate, except that it has 
curvature. Whereas a plate is flat, a shell is not. Nevertheless, 
like a plate it has one dimension, which we call its thickness 

(h), which is small compared to its other dimensions. The thickness 
need not be constant, but in many practical applications it is. And 
like a plate, deformation of a shell is characterized entirely by what 
happens at its midsurface and the normal to the midsurface. Thus, as 
in plate theory, shell theory represents the deformations of a three-
dimensional body by equations which are mathematically two-
dimensional. That is, only two independent space variables are 
needed to unequivocally define what is occurring at every point 
within the shell, instead of three.

For thin, isotropic plates, the in-plane natural frequencies are 
an order of magnitude higher than flexural frequencies. In addition, 
the differential equations of in-plane motion of isotropic plates are 
totally decoupled from those describing transverse motion. In other 
words, the membrane forces are decoupled from the bending and 
shear forces. This is not the same in a shell where curvature is 
present and the in-plane forces are coupled with the shear forces 
and bending and twisting moments. This leads to a set of equations 
for thin shells that have three displacement components as 
dependant variables: two in the tangential directions as well as the 
one in the transverse direction. The order of the resulting differential 
equations of motion is eight (instead of four for flat plates). The 
general shell equations can be specialized to those of plates (when 
curvature is set to zero) as well as those of membranes (when the 
flexural rigidity of the shell becomes very small). 

Shells are among the most widely used structural and/or machine 
components. Most of the structural surfaces one encounters in real 
applications (e.g., airplane wing, fuselage, automotive exterior 
structures, and stamped brackets) are typically made of curved 
surfaces with a relatively small thickness (i.e., shells). In biological 
engineering, the human skull and some of the bones in the skeleton 
are shells. Conduits, pipes, tubes, and similar devices are all shell 
components. In addition, if one is interested in higher frequency 
content of a simplified thin-walled beam (e.g., a shaft), a shell theory 
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will be needed. Frequently these high frequency modes in such 
structures are referred to as shell modes.

7.1 Introduction
Shells may have a great variety of curvatures. Examples include:

 1. Circular cylindrical

 2. Noncircular cylindrical

 3.  Conical

 4. Spherical

 5. Ellipsoidal (or spheroidal)

 6. Paraboloidal

 7.  Hyperboloidal

 8. Toroidal

 9. Hyperbolic paraboloidal

That is, the shells are described by their middle surfaces, which may 
have any of the shapes listed. And this list is far from complete. For 
example, those listed as 1 and 3–8 are all shells of revolution. Surfaces 
of revolution are obtained by rotating a line segment about a polar 
axis, with each point on the segment generating a circle arc. If the 
line is straight, a conical surface is generated (Fig. 7.1). If it is also 
parallel to the polar axis, the special case of a circular cylinder results. 
If the line is curved, then other surfaces of revolution ensue. A 
circular line segment generates a spherical shell, a hyperbola segment 
generates a hyperboloidal shell, and so on. If the line segment is 
closed, a toroidal shell is generated. Figure 7.2 shows this for an 
elliptic toroidal surface. Clearly, innumerable other curves exist, both 
open and closed, which may generate surfaces of revolution. And 
there are still other surfaces which are not surfaces of revolution, 
such as the noncircular cylinder, the skewed cone, and the hyperbolic 
paraboloid. (Noncircular cylinders are obtained by rotating a line 
segment, called the “generator,” which is straight and parallel to the 
polar axis, about the axis in a noncircular curve.)

Each of this great variety of possible shell curvatures has practical 
application. Circular cylinders are easily fabricated, and therefore 
widely used (e.g., tubes, ducts, cans, storage tanks, chimneys). 
Hyperboloidal shells are used for cooling towers. Other shells of 
revolution are used greatly for aircraft, missiles, spacecraft, and 
submarines. Hyperbolic paraboloidal shells are easily constructed, 
and are attractive, and are therefore used for some contemporary 
roofs of buildings. An enormous amount of research has taken place 
on shell vibrations. Reference [1] contains approximately 900 
publications that deal with the free vibrations of shells.
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In addition to having the added complexity of curvature, shells 
are more complicated than plates because their bending cannot, in 
general, be separated from their stretching. Thus, a “classical” 
bending theory of shells is governed by an eighth-order system of 
governing partial differential equations of motion, while the 

Figure 7.1 Conical surface generated by rotating the straight line segment AB 
about the polar axis O–O′.

Figure 7.2 Elliptical toroidal surface.
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corresponding plate bending theory is only of the fourth order. This 
added complexity enters into the problem not only by means of more 
complex equations of motion, but through the boundary conditions 
as well. The classical bending theory of plates requires only two 
conditions to be specified along an edge, while a corresponding thin 
shell theory requires four specified conditions.

To complicate matters still further, whereas all academicians will 
agree on the form of the classical, fourth-order equation of motion for 
a plate (6.17), such agreement does not exist in shell theory. Numerous 
different shell theories have been derived and used for thin shells. 
Some of these are specialized, but quite limited and generally 
inaccurate. For example, “membrane theory” has been derived which 
considers only the stretching stiffness of a shell, and “inextensional 
theory” is available which includes only the shell bending stiffness. 
Both theories yield fourth-order systems of equations, which are 
much easier to deal with than the eighth order, complete (bending 
plus stretching) theories. However, both specialized theories have 
only narrow ranges of valid application for vibration problems, and 
should only be used by those who understand their severe limitations 
and can apply them properly

Not only is shell theory considerably more complicated than that 
for plates, but the study of vibrations is also more complicated for 
shells. For example, it is found that shell frequencies are more closely 
spaced and less easily identified, both theoretically and experimen-
tally, than plate frequencies. Furthermore, the fundamental (lowest 
frequency) mode for a shell is generally not at all obvious, whereas 
for a plate it usually is. There are more parameters required to define 
the shell vibration problem. For example, consider a rectangular plate 
simply supported on all its edges. The complete frequency spectrum 
is determined by varying one parameter—the length-to-width ratio. 
For the cylindrically curved panel having the same edge conditions, 
however, three additional parameters can be independently varied—
the thickness-to-radius ratio, the length-to-radius ratio, and Poisson’s 
ratio (v).

This text will not attempt to present general theory for arbitrary 
thin shells. Readers who wish to learn more about such theory are 
referred to the excellent books by Kraus [2], Goldenveizer [3], 
Novozhilov [4], and Vlasov [5]. Various shell theories are derived and 
compared in the monograph by Leissa [1] (Chaps. 1 and 2, respectively). 
Flügge’s books [6, 7] are particularly useful for shells of revolution. 
Although, with the exception of Refs. [1] and [6], these books typically 
present only static theories for shells, the inertia terms are easily 
added to the static equilibrium equations to obtain dynamic equations 
of motion, applicable to vibrations.

In this chapter the vibrations of two important types of shells 
will be examined, the shallow shell of arbitrary (but constant) 
curvature, and the circular cylindrical shell. The shallow shell is 
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chosen because its theory is a clear generalization of that for the 
plate, which was considered in some detail in Chap. 6. Results will 
be shown only for free vibration frequencies and mode shapes. 
And none of the complicating effects mentioned for plates (see 
Sec. 6.8) will be considered here, although they certainly could be. 
That is, only constant thickness, isotropic, homogeneous, thin shells, 
vibrating in a vacuum, having no initial stress, will be analyzed.

7.2 Equations of Motion for Shallow Shells
The middle surface of a shallow shell of arbitrary curvature is 
depicted in Fig. 7.3. In terms of the rectangular coordinates shown 
there, its equation is

 
z

x
R

xy
R

y
Rx xy y

= + +
2 2

2 2
 

(7.1)

where Rx and Ry are radii of curvature in the x and y directions, 
respectively, as shown in Fig. 7.3, and Rxy is the corresponding 
coefficient describing the twist of the surface. This analysis will be 
limited to the case when Rx, Rxy, and Ry are constants; then (7.1) 
represents a quadratic surface. Figure 7.3 shows a shallow shell 
having boundaries which, when projected on the xy-plane (i.e., its 
planform), are rectangular. For analysis it is then usually convenient 
to choose the xy-coordinates to be parallel to the boundaries. 
However, if the x and y axes were rotated about the z-axis, it is 

Figure 7.3 Shallow shell with rectangular planform.
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possible to orient them so that Rxy = ∞ in (7.1). Then x and y are 
principal coordinates, and the new values of Rx and Ry are principal 
radii of curvature (taking on maximum and minimum values as 
second-order tensorial quantities, similar to stress and strain).

No precise definition of a “shallow” shell may be given in terms 
of its geometrical parameters. Rather, we will only say that a shell 
will be considered shallow if the theory presented here is reasonably 
accurate, for vibration analysis, when compared with deep shell 
theory. More will be said about this later. But, for the present, 
consider the shell segment shown in Fig. 7.4. It may be either circular 
cylindrical, with Rx = R, and Ry = Rxy = ∞ in (7.1), or spherical, with 
Rx = Ry = R and Rxy = ∞ in (7.1). Then its shallowness may be measured 
in various ways; for example, the included angle (γ), the span-to-
radius ratio (a/R), or the rise-to-span ratio (H/a). For vibration 
analysis we may usually consider the shallow shell theory to be 
applicable if γ is 60° or less.

Shallow shell theories were developed independently by 
Marguerre [8], Reissner [9], [10], and Vlasov [5]. A simplified derivation 
taken from Ref. [11], which is similar to that of Reissner, is presented 
below. It shows how the inplane bending and stretching effects of 
plate theory are combined in the shallow shell theory.

Consider an infinitesimal element of the shell. It will have stress 
resultants (forces per unit length) Tx, Ty, and Txy tangent to its 
midsurface called “membrane forces” acting along its edges, as were 
shown for the membrane in Fig. 5.2. However, for the membrane they 
were initially applied, static forces. For the shell they are caused by 
deformation in the present representation, and are zero when the 
shell is not being deformed. In summing forces on the element in  
the z-direction, Tx, Ty, and Txy, enter the equation as they did for the 
membrane in (5.1), except that the slope changes in traversing  
the element entail the initial curvatures (and twist), as well as the 

a 

R 

H 

Figure 7.4 Circular cylindrical or spherical shallow shell.
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curvature changes. Including the transverse shearing forces Qx and 
Qy, as they were in (6.2), the resulting equation of motion is
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(7.2)

Summing moments about axes parallel to the x and y coordinates 
yields the same Eqs. (6.4) and (6.5) as existed for the plate. Assuming 
the Kirchhoff hypothesis for the behavior of the normal to the shell 
midsurface as was done for thin plates (see Sec. 6.1), Eqs. (6.6)–(6.10) 
apply for the portion of the strain due to bending, and integrating 
the bending stresses through the shell thickness yields the same 
Eqs. (6.11)–(6.14) as for plates. Substituting (6.4), (6.5), (6.12), and (6.13) 
into (7.2) gives
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(7.3)

where D = Eh3/12(1−ν2) is the same flexural rigidity (6.14) used in 
plate analysis.

Equation (5.6) which was derived for the flat membrane may be 
regarded as a special case of (7.3) when the bending stiffness 
vanishes (D = 0), and when there is no initial curvature or twist (1/
Rx = 1/Ry = 1/Rxy = 0). Similarly, (6.17) for the plate is a special case 
of (7.3) when 1/Rx = 1/Ry = 1/Rxy = 0. If the plate had static, initial 
in-plane stressed resultants Tx, Ty, and Txy, acting, then (6.77) arises. 
If not, then further simplification to (6.17) results.

Equation (7.3) may be regarded as primarily representing the 
bending taking place in the shell. The stretching enters through the 
membrane forces Tx, Ty, and Txy, which are generated by deformation. 
If one sums forces in the x and y directions acting on a differential 
element, neglecting tangential inertia and tangential exciting forces, 
and considering the effects of the transverse shearing forces Qx, and 
Qy, to be small, (5.5) result. These are the classical equilibrium 
equations of plane elasticity. As in plane elasticity, it is convenient to 
introduce an Airy stress function, φ, defined by:
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Then (5.5) are identically satisfied. However, as in plane elasticity, 
one must ensure compatibility of the strains due to stretching (i.e., 
the “membrane strains”). The membrane strains are
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(7.5)

where u and v are displacement components tangent to the shell 
midsurface, and w is normal, as shown in Fig. 7.3. A compatibility 
equation may be obtained by eliminating the displacements u and v 
among (7.5). The result is
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When there is no curvature (1/Rx = l/Ry = 1/Rxy = 0), it is seen that 
(7.6) becomes the well-known St. Venant compatibility equation of 
plane elasticity (cf. [1] in Chap. 5, p. 29) Substituting the stress–
strain equations (6.10) into (7.6) as well as (7.4), we obtain:
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Finally, neglecting the curvature changes (e.g., ∂2w/∂2x) in comparison 
with the initial curvatures (e.g., 1/Rx), and substituting (7.4), the 
equation of motion (7.2) becomes
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Equations (7.7) and (7.8) show clearly how the two fourth 
differential equations of plate bending and plane elasticity are 
coupled through the existence of curvature. Thus the shell is 
represented by an eighth-order system of differential equations. And 
solving a vibration problem requires satisfying four boundary 
conditions along each edge.

Equations (7.7) and (7.8) account for the possibility of a normal 
component of exciting pressure (q). Thus, they may be used for forced 
vibration problems. However, they do not permit tangential excitation 
components or consider tangential inertia. To include these, one may 
sum forces in three directions to obtain more general equations of 
motion. For the case of coordinates of principal curvature, the 
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resulting equations written in terms of displacements in matrix form, 
are [12, 13].
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where px and py, are the tangential components of exciting force (per 
unit surface area) acting in planes parallel to the xz- and yz-planes, 
respectively, and the Lij are differential operators given by
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If one is using an energy approach (e.g., the Rayleigh or Ritz 
methods), the total potential energy is due to strain energy. In a 
deforming shell its PE = PEs + PEb, where PEs arises from midsurface 
stretching and PEb is due to bending (cf. [4]), where
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with ex, ey, and γxy, given by (7.5), and A is the area of the shell 
midsurface. The potential energy from bending is the same as (6.56) 
for a plate:
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where the curvature and twist components are those of (6.13). The 
last term in (7.11) would take the same form as that of (7.12) if the 
tensorial shear strain (exy = γxy/2) were used, instead of the engineering 
shear strain. The kinetic energy of the vibrating shell is
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It may be noted that the potential and kinetic energies given by 
(7.11)–(7.13) are written with E, h, ν, D, and ρ in the integrands. In 
these forms shells of variable thickness and/or nonhomogeneous 
material may be accommodated straightforwardly. In contrast, the 
equations of motion (7.7), (7.8), and (7.9) are for uniform thickness and 
homogeneous material.

7.3 Free Vibrations of Shallow Shells
Although (7.7), (7.8), and (7.9) are much more complicated than the 
plate equation, exact solutions for free vibrations are still possible. 
Moreover, the exact solutions can fit physically meaningful boundary 
conditions. For the shell these are “shear diaphragm” (also called 
“freely supported”) conditions. They are a generalization of the plate 
“simply supported” boundary conditions.

Consider first (7.7) and (7.8), where the tangential inertia was 
neglected, take l/Rxy = 0, and assume solutions for free vibrations

 w(x, y, t) = W(x, y) sin ωt 

 φ (x,y,t) = Φ(x,y) sin ωt (7.14)

Assuming that the shell has a rectangular planform with dimensions 
a × b, choose the origin of the x and y coordinates in one corner of the 
shell, so that its boundaries are x = 0, a and y = 0, b. Suppose that all 
four edges of the shell are supported by shear diaphragms. Then 
assume

 W x y W x ymn m n, sin sin( ) = α β  (7.15)
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where Wmn is an undetermined constant, αm = mπ/a, βn = nπ/b, and m 
and n are integers. This is the same function as for the normal 
displacement of a vibrating rectangular plate having all edges simply 
supported (see Example 6.1). A stress function Φ which would then 
be appropriate to satisfy (7.7) and (7.8) is

 Φ Φx y x ymn m n, sin sin( ) = α β  (7.16)

with Φmn a constant.
But before substituting these assumed solution forms into the 

governing equations, let us determine the boundary conditions 
that they yield. Consider, for example, the edges x = 0 and x = a. 
Clearly, W(0,y) = W(a,y) = 0. And using (6.12) and (6.13), it is seen that 
Mx(0,y) = Mx(a,y) = 0. Thus, the shell boundaries have no normal 
displacement, nor any normal bending moment, as did the 
corresponding simply supported plate. Now consider the other two 
boundary conditions along each edge. Substituting (7.16) into (7.14), 
and then into (7.4), shows that the membrane forces Tx and Ty are 
both zero at x = 0 and x = a, but that the membrane shearing force 
Txy is not zero. From the stress–strain equations (6.10) it follows then 
that ex = ey = 0 along the boundaries. Substituting ey and w into the 
second of (7.5) one finds that v = 0 along x = 0 and x = a. These four 
boundary conditions along an edge are the shear diaphragm 
conditions. To summarize, for the shallow shell having rectangular 
boundaries x = 0,a and y = 0,b supported by shear diaphragms the 
boundary conditions being satisfied are

 At x = 0 and x = a:  w = Mx = v = Tx = 0  (7.17a)

 At y = 0 and y = b:  w = My = u = Ty = 0  (7.17b)

Now let us examine the physical meaning of the shear diaphragm 
boundary conditions. Figure 7.5 shows a section taken through a 
shallow shell supported at x = 0 and a by shear diaphragms. The 
shear diaphragms may be regarded as thin, flat plates. Each plate is 
rigidly attached to the shell, normal to its boundary, and also rigidly 
held at its other end. Because the plate is thin, its transverse bending 
stiffness is small. Hence, the Tx and Mx it can cause at the shell 
boundary are small. But the plate is very stiff in its own plane. Hence, 
it prevents shell displacements at the boundary in this plane (w = v = 
0). Moreover, in the dynamic problem of shell vibration, the inertia 
effect of the plate is small because it contributes significant inertia 
only in the tangential (u) direction. It should be noted that if the shear 
diaphragms were in the z-direction, instead of normal to the shell, 
the boundary condition w = 0 would not apply. Instead, a linear 
combination of u and w would be zero.

The shear diaphragm boundary conditions can also be 
approximated by a piano hinge which constrains the v and w 
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displacement components at the shell boundary, but not u (i.e., a 
movable hinge). However, constraining a shell boundary between 
two knife-edges is different. If the knife-edges are compressed, then 
u = v = w = 0. If not, then Tx = Txy = w = 0. Both types of constraint 
cause free vibration frequencies which are significantly different 
than those of shear diaphragm supports.

Returning to the solution of the vibration problem, substituting 
(7.14), (7.15) and (7.16) into (7.7) and (7.8) yields
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For a nontrivial solution, setting the determinant of the coefficient 
matrix equal to zero permits one to obtain the free vibration 
frequencies from
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Converting (7.19) to nondimensional form gives
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Figure 7.5 A shallow shell supported by shear diaphragms.
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where Ωmn
2  is a nondimensional frequency parameter given by

 
Ωmn mn xR

E
= −ω ρ ν( )1 2

 (7.21)

It should be noted in (7.20) that Rx α = mπRx/a, which involves the 
shallowness ratio Rx/a, and then Rx β = nπRx/b = nπ(Rx/a)(b/a), which 
involves also the aspect ratio (b/a) of the shell planform. Because m 
and n take on all integer values of m and n, a doubly infinite set of 
free vibrations frequencies is given by (7.20).

If the frequencies are to be determined from (7.9), then 
displacement components may be assumed as

 u(x,y, t) = Umn cos αmx sin βny sin ωt 

 v(x,y, t) = Vmn sin αmx cos βny sin ωt (7.22)

 w(x,y, t) = Wmn sin αmx sin βny sin ωt 

Substituting these into (6.12), (6.13), (7.5), and (6.10) shows that the 
shear diaphragm boundary conditions (7.16) are exactly satisfied. 
Then substituting (7.22) into (7.9) yields for free vibrations:
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Setting the determinant of the coefficient matrix of (7.23) equal to 
zero yields a cubic equation in ωmn

2 , which has three roots for each set 
of m and n (see [13]) in contrast with the previous solution (7.20) 
arising from (7.18) which had only one root. The three roots will 
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typically consist of one value much smaller than the other two, 
corresponding to a mode shape which is predominantly (but not 
entirely) bending (small Umn/Wmn and Vmn/Wmn), and two higher 
values corresponding to mode shapes which are predominantly 
stretching. The mode shapes are determined for each value of ωmn 
the usual manner, by substituting ωmn back into (7.23) and solving for 
Umn/Wmn and Vmn/Wmn. Equations (7.18) and (7.20) yield only single 
frequency ωmn for each m and n because the tangential inertia terms 
were discarded.

In discussing nodal patterns and mode shapes of free vibration 
for shells, it is typical to describe them in terms of the normal (w) 
component of displacement because in the lower frequency modes 
this is usually the largest component. Thus, a “node line” is a line on 
the shell surface (more precisely, at its middle surface) where w is 
zero everywhere. However, along such lines u and v are typically 
not zero. They are merely small in comparison with the maximum 
values of w in the mode shape. The mode shapes arising from (7.22) 
and (7.23) may be called doubly symmetric for m and n both odd, 
and there are three additional symmetry classes in the mode 
shapes.

Table 7.1 lists nondimensional frequencies Ω for shallow shells 
with square planforms (a/b = 1), obtained from both (7.20) and (7.23). 
Three important types of shell curvature are considered: spherical 
(Rx/Ry = 1), circular cylindrical (Rx/Ry = 0), and hyperbolic parabo-
loidal (Rx/Ry = −1). These three curvatures are depicted in Fig. 7.6. 

Table 7.1 Nondimensional Frequencies Ω = −ω ρ νR Ex ( ) /1 2 , Including and 
Neglecting (Values in Parentheses) Tangential Inertia, for the Doubly Symmetric 
Modes of Shallow Shells with Square Planforms (a/b = 1) Having Shear Diaphragm 
Edge Supports; h/Rx = 0.001, a/Rx = 0.4, ν = 0.3

Rx /Ry M
n

1 3 5

 1 1 0.9481 (0.9546) 0.9691 (0.9704) 1.5098 (1.0604)
3 0.9691 (0.9704) 1.0056 (1.0064) 1.1294 (1.1298)
5 1.0579 (1.0604) 1.1294 (1.1298) 1.3045 (1.3049)

0 1 0.4746 (0.4783) 0.8756 (0.8768) 1.0274 (1.0275)
3 0.2018 (0.2020) 0.5743 (0.5747) 0.9264 (0.9266)
5 0.4643 (0.4644) 0.6558 (0.6560) 1.0098 (1.0101)

−1 1 0.0351 (0.0356) 0.7825 (0.7836) 0.9945 (0.9948)
3 0.7825 (0.7836) 0.3200 (0.3205) 0.7531 (0.7537)
5 0.9945 (0.9948) 0.7531 (0.7537) 0.8898 (0.8904)
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Results are shown for quite thin shells (h/Rx = 0.001), which are rather 
shallow (a/Rx = 0.4, corresponding to γ = 23.l° in Fig. 7.4), and a 
material similar to most commonly used metals (ν = 0.3). Data is 
given only for the doubly symmetric modes (m and n odd).

Most importantly, in Table 7.1 one notes that the lowest 
frequencies for shells with spherical curvature are much higher 
than those of the corresponding modes of circular cylindrical shells, 
and that the ones for hyperbolic paraboloids are typically lower 
than for either of the other two. For example, consider the mode 
having m = n = 1. Then ωs/ωc = 1.99 and ωs/ωh = 27.01, where the 
subscripts s, c, and h identify spherical, cylindrical, and hyperbolic 
paraboloidal curvatures. These frequency differences are due to the 
relative stiffnesses of the shells; the spherical shell (with the shear 
diaphragm boundary conditions) is stiffer than the other two, 
whereas the hyperbolic paraboloid is the most flexible. It is also 
interesting to note that the fundamental (i.e., lowest) frequency for 

(a) Spherical

(b) Circular Cylindrical

(c) Hyperbolic Paraboloidal

Figure 7.6 Spherical (Rx/Ry = 1), circular cylinder (Rx/Ry = 0), and hyperbolic 
paraboloidal (Rx/Ry = –1) shallow shells.
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the cylindrical shell is not for m = n = 1. Two frequency values are 
given in Table 7.1 for each m and n. The first one is the lowest root 
arising from (7.23), the second (in parentheses) is from (7.20), which 
neglects tangential inertia. It is seen that neglecting tangential 
inertia results in frequencies which are only slightly higher, the 
percent differences decreasing as the mode numbers (m and n) 
increase.

Table 7.1 also demonstrates how closely spaced the frequencies 
can be for a shell. Consider the spherical shell (Rx/Ry = 1). For the 
first four doubly symmetric modes shown in the table, the highest 
(1.0056) is only 6.1 percent higher than the lowest (0.9481). And there 
are five other modes not shown, corresponding to (m, n) = (1, 2),  
(2, 1), (2, 2), (2, 3), (3, 2), which have intermediate frequencies. Thus,  
the first nine frequencies fall within 6.1 percent of each other. Of 
course, several of the modes are degenerate (ωmn = ωnm). However,  
if the symmetry were altered in a very small way (say, by adding  
a very small point mass to the shell), the frequencies would  
change only slightly, and all nine modes would be distinct (i.e., no 
degeneracies).

Another extremely important characteristic of vibrating shells 
will now be demonstrated. Frequencies of shallow shells will be 
compared with those of plates having the same thickness and 
planform area. To make the distinction clear, let ωs be the shell 
frequency, and ωp be a plate frequency. From (7.19)
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The plate frequency is obtained as a limiting case of (7.24), as Rx and 
Ry approach infinity, giving
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This is the frequency which was found in the preceding chapter for 
the rectangular plate having all edges simply supported (see Example 
6.1). For any given mode (m, n) the ratio of the frequencies squared is 
obtained by dividing (7.24) by (7.25), resulting in
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One may regard the second term on the R.H.S. of (7.26) as a factor 
which changes the frequency if the plate is given curvature. This 
term is always positive (except for certain modes of shells having 
negative Rx/Ry, when it can be zero), indicating that the shell 
frequency is always greater than the corresponding plate frequency. 
The next question is: How much greater?

To reduce the number of parameters which may be varied in 
(7.26), let us take a shallow shell having a square planform boun-
dary (a = b), and consider only the mode shape having one half-
sine wave in each direction (m = n = 1). This is often the fundamental 
(lowest frequency) mode, but not always, as we have seen in 
Table 7.1. Setting a = b, and m = n = 1, and also choosing ν = 0.3, 
specifies (7.26) as 
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(7.27)

The frequency ratio is thus a function of three nondimensional 
parameters—thickness ratio (Rx/h), shallowness parameter (a/Rx) 
and curvature ratio (Rx/Ry).

For the hyperbolic paraboloidal curvature (Rx/Ry = −1), (7.27) gives 
ωs/ωp = 1. This result is surprising for it says that for such shells with 
shear diaphragm edge supports, fundamental frequencies are the same 
as those of plates with the same planform. However, this statement 
applies only to the very special configuration being discussed here. It 
is not valid for other edge conditions or other boundary shapes. Even 
more remarkably, if the tangential inertia is considered, the 
fundamental frequency of the hyperbolic paraboloid shell is slightly 
lower than that of the plate, as seen from the data in Table 7.1.

Variation of ωs/ωp, with the shallowness parameter as obtained 
from (7.27) is described in Table 7.2 for spherical (Rx/Ry = 1) shells. 
From (7.27) it is clear that cylindrical shells (Rx/Ry = 0) have 
frequency ratio values that are one-fourth of those in Table 7.2. All 
three forms of shallowness indicators described earlier in Sec. 7.2 
are shown in Table 7.2. The first one, a/Rx is that used in (7.27). The 
second one, γ, is the angle included by the circular arc, determined 
from γ = 2 arc sin (a/2Rx). The third one, H/a, is the rise of the shell 
(H) divided by its span. The geometric parameters a, Rx, γ, and H are 
shown in Fig. 7.4 which is drawn for the case a/Rx = 0.60, γ = 34.9°, 
and H/a = 0.076. This case is clearly a shallow shell, but less shallow 
than for the smaller a/Rx in Table 7.2.

Consider first the data in Table 7.2 for the shell of moderate 
thickness (h/Rx = 0.01). It is seen that for a/Rx = 1, the shell frequency 
is 16.77 times that of the corresponding plate. It is true that this 
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shell pushes the limits of validity for shallow shell theory, and that 
if tangential inertia were included the ratio would be slightly 
smaller. For the clearly shallow configuration with a/Rx = 0.60  
(Fig. 7.4), ωs/ωp = 6.11. The thin shells (h/Rx = 0.001) show an even 
greater contrast, having ωs/ωp on the order of 100 for the deeper 
cases. For the extremely shallow shell with a/Rx = 0.10, one computes 
H/h = (H/a)(a/Rx)(Rx/h) = (0.013)(0.1)(1000) = 1.3, that is, its rise is 
only 1.3 times its thickness. Nevertheless, its frequency is almost 
twice (1.95) that of the plate. Thus, one reaches the important 
conclusion that (at least for most curvatures) frequencies of shallow 
shells supported by shear diaphragms for modes with m = n = 1 are 
typically much higher than those of simply supported plates having 
the same planforms. This frequency increase is due to the much 
greater stiffness of a shell, especially with spherical curvature. For 
higher modes, the frequency ratio is typically less. Because the 
straight nodal lines duplicate the conditions which exist at shear diaphragm 
supports, m = n = 2, for example, corresponds to a square planform 
having a/Rx only half as large as that for m = n = 1.

As for rectangular plates, it is also possible to obtain exact 
solutions for the free vibration frequencies and mode shapes of 
shallow shells of rectangular planform, supported on two opposite 
edges by shear diaphragms, with arbitrary boundary conditions on 
the other two edges (e.g., clamped, immovable hinges, shear 
diaphragms, free). However, the procedure is a long and tedious one. 
If tangential inertia is neglected, then the solution forms (7.15) and 
(7.16) may be generalized to

 W(x,y) = Wm(y) sin αmx, φ(x,y) = φm(y) sin αmx (7.28)

Table 7.2 Ratio of Shell Frequency (ωs) to Plate Frequency (ωp) for  
Spherical Shallow Shells Having Square Boundaries Which Are Supported  
by Shear Diaphragms, Varying with Shallowness (a/Rx), for m = n = 1 and  
ν = 0.3

Shallowness indicators ωs/ωp for:

a/Rx γ (deg) H/a h/Rx = 0.01 h/Rx = 0.001

1.00 60.0 0.134 16.77 167.41
0.80 47.2 .104 10.76 107.15
0.60 34.9 .076 6.11 60.28
0.40 23.1 .051 2.86 26.80
0.20 11.5 .025 1.20 6.77
0.10 5.7 .013 1.01 1.95
0.05 2.9 .006 1.00 1.08
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where, as before, α = mπ/a (m = 1, 2, …). It may be shown that (7.28) 
satisfy the shear diaphragm B.C. at x = 0 and a exactly. Substituting 
(7.28) into (7.7) and (7.8) yields two fourth-order ordinary differential 
equations in Wm and Φm. Solving this eighth-order system of equations 
is rather complex, but it can be done exactly. This yields Wm and Φm 
with eight undetermined constants of integration. Then, in general, 
one applies four B.C. at each of the edges y = 0 and y = b to obtain an 
eighth-order frequency determinant. The eigenvalues of this 
determinant, corresponding to the nondimensional frequency 
parameters, may be found as accurately as desired.

If tangential inertia is included one may proceed similarly by 
assuming, in place of (7.22),

 u(x,y,t) = Um(y) cos αmx sinωt 

 v(x,y,t) = Vm(y) sin αmx sin ωt 

 w(x,y,t) = Wm(y) sin αmx sin ωt (7.29)

Substituting (7.29) into (7.9), another eighth-order system of ordi-
nary differential equations in U, V, and W, is generated. It also  
has an exact solution to which the eight remaining B.C. may be 
applied.

Other exact solutions may be found by interchanging sine and 
cosine in (7.15), (7.16), (7.22), (7.28), and (7.29). This yields boundary 
conditions which are antitheses of the shear diaphragm B.C. given by 
(7.17). For example, along x = 0 and x = a,
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w
x

T ux xy= ∂
∂

= = = 0
 

(7.30)

The resulting frequencies will be identical to those of shear 
diaphragm supports. But the conditions expressed by (7.30) are 
physically unrealizable, or even capable of being approximated 
reasonably.

For shallow shells not having at least two opposite edges 
supported by shear diaphragms, one may obtain accurate frequencies 
and mode shapes by various approximate methods (e.g., Ritz, finite 
elements, finite differences). Leissa and Narita [14] used the Ritz 
method to analyze completely free shallow shells of rectangular 
planform. Assuming sinusoidal motions in time for the displacement 
components in free vibrations,

 u = U(x,y) sin ωt, v = V(x,y) sin ωt, w = W(x,y) sin ωt (7.31)
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they may be chosen as algebraic polynomials having no constraints 
imposed by the boundaries:
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(7.32)

Using (7.32) in the energy equations (7.11)–(7.13), and writing the Ritz 
frequency minimizing equations similar to (6.64) for each of the 
coefficients Aij, Bkl, and Cmn, yields the frequency  determinant. It was 
shown in Ref. [14] that reasonably accurate, upper bound frequencies 
are obtained by choosing the upper limits I, J, … , N of the summations 
in (7.32) at 3, giving third-degree variations in both x and y for all three 
displacement components, and frequency determinants of order 48.

Table 7.3 displays nondimensional frequency parameters 
ω ρa h D2 /  for completely free shallow shells of square planform 
(a/b = 1), moderate thickness (a/h = 100) and ν = 0.3. Results are given 
for the first two nonzero frequencies of each symmetry class for 
three types of curvature (Rx/Ry = 0, 1, −1) and for three shallowness 
ratios (a/Rx = 0, 0.2, 0.5). The values for a/Rx = 0 (i.e., Rx → ∞) are those 
for a free square plate. Symmetry classes are identified as either 
symmetric (S) or antisymmetric (A) with respect to axes through the 
center of the shell, parallel to the x and y axes, respectively. It can be 
seen that the frequencies of the shallow shells are greater than those 
of the flat plate for all eight modes with one exception—the first 
doubly antisymmetric (AA-1) mode of the hyperbolic paraboloidal 
shell (Rx/Ry = −1). Because tangential inertia is included when 
retaining all three velocity components in the kinetic energy (7.13), 
this frequency is slightly less than that of the plate. Moreover, the 
fundamental mode is the AA-1 for each type of curvature and 
shallowness ratio, with very little difference in frequency from that 
of the plate (13.468). The second mode is doubly symmetric in each 
case. For this mode, the spherical curvature (Rx/Ry = 1) changes the 
frequency only slightly from that of the plate, whereas the hyperbolic 
paraboloid frequencies show the largest increases. This is in contrast 
with results shown earlier for the shells supported by shear 
diaphragms (Table 7.1) where the SS-1 frequencies were largest for 
the spherical curvature and smallest for the hyperbolic paraboloid. 
Thus, the stiffening influence of shell curvature depends strongly 
on the edge conditions and modes being considered.
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− 0 19.60 24.27 34.80 61.11 34.80 61.11 13.47 69.28
0 0.2

0.5
21.90
22.07

38.47
54.33

34.85
34.87

75.30
98.22

37.64
48.71

61.15
61.33

13.48
13.51

70.95
72.48

1 0.2
0.5

19.76
20.00

42.35
49.62

35.88
36.86

73.89
87.72

35.88
36.86

73.89
87.72

13.52
13.58

69.60
70.72

−1 0.2
0.5

24.74
25.70

52.57
64.26

36.96
38.92

77.06
103.77

36.96
38.92

77.06
103.77

13.46
13.42

77.65
79.40

Table 7.3 Frequency Parameters ω ρa h D2 /  of Completely Free Shallow Shells Having Square Planform  
(a/b = 1, a/h = 100, ν = 0.3)
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Figures 7.7, 7.8, and 7.9 are contour plots of normal displacement 
which describe the mode shapes corresponding to the frequencies 
for the cylindrical, spherical, and hyperbolic paraboloidal shallow 
shells, respectively, of Table 7.3 having moderate depth (a/Rx = 0.5), 
taken from Ref. [14]. They may be compared with the contour plots 
for the completely free square plate, shown previously in Fig. 6.6. As 
before, the contour lines are for values of W/Wmax = 0 (node lines), 0.2, 
0.4, 0.6, 0.8, and 1. One can imagine, for example, how the contour 
lines for the SS-1 and SS-2 modes for the cylindrical shell (Fig. 7.7) 
evolve from those of the plate as the curvature increases. The SA-1 
and AS-1 modes are similar in appearance to the degenerate modes 
for the plate, but the two shell frequencies are much different from 
each other, reflecting the differences in shell stiffness parallel to and 
perpendicular to the curvature. For Rx/Ry = 1 and −1 (Figs. 7.8 and 7.9) 
the SA-1 and AS-1 modes remain degenerate because the curvature 
has the same magnitude in both directions.

A similar procedure was followed [15] to obtain accurate 
frequencies and mode shape contour plots for shallow shells of 
rectangular planform fixed in the four corners. In that case the 
displacement functions (7.32) may still be used, along with 
supplementary conditions that U = V = W in each of the four corners, 
enforced by using Lagrange multipliers. Shallow shell theory was 
also used to make extensive studies of the free vibrations of stationary 
and rotating turbomachinery blades [16–18], with particular emphasis 
on the cantilevered shell. 

Extensions to laminated composite materials were also made 
[19,20]. Some early research on vibrations of shallow spherical 
shells having circular boundaries was carried out by Reissner and 
Johnson [21,22].

Figure 7.7 Mode shapes for completely free, circular cylindrical, shallow shells 
(Rx/Ry = 0, a/Rx = 0.5).
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7.4 Equations of Motion for Circular Cylindrical Shells
We turn now to the more general circular cylindrical shell which 
may be deep (say, γ > 90° in Fig. 7.4) and open, or it may be closed 
(γ = 360° in Fig. 7.4). Such shells have vast practical application, and 
yet the deep cylindrical shell theory is not as complicated as it is 
for other curvatures.

Figure 7.8 Mode shapes for completely free, spherical, shallow shells (Rx/Ry = 1, 
a/Rx = 0.5).

Figure 7.9 Mode shapes for completely free, hyperbolic paraboloidal, shallow 
shells (Rx/Ry = –1, a/Rx = 0.5).
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Following procedures similar to those of Sec. 7.2, taking an 
infinitesimal element of the cylindrical shell, summing forces and 
moments, involving the Kirchhoff hypothesis, using strain-
displacement and stress–strain equations, integrating the force 
resultants and moment resultants through the shell thickness, and 
finally combining all equations, one can obtain a set of three 
equations of motion. Various forms of equations may arise, 
depending on how certain terms are neglected in comparison with 
others, but proper equations of motion for thin, circular cylindrical 
shells will take the form (see Ref. 7.1, pp. 31–34):

 L[ ]{ } = { }ui 0  (7.33)

where {ui} is the vector of displacement components

 

u
u
v
w

i{ } =










  

(7.34)

the orthogonal displacement components u, v, and w being taken in 
the longitudinal, circumferential, and radial directions, respectively, 
as shown in Fig. 7.10, and L is a matrix differential operator. This 
operator may be written as the sum of operators

 L L L[ ] = [ ] + [ ]−D M MODk  (7.35)

ℓ

Figure 7.10 Closed circular cylindrical shell and coordinate system.
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where [LD−M] is the differential operator according to the theory 
developed by Donnell [23,24] and Mushtari [25,26], [LMOD] is a 
“modifying” operator which alters the Donnell–Mushtari operator to 
yield another shell theory, and k is the nondimensional thickness 
parameter defined as
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h
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2

212  
(7.36)

with h being the constant shell thickness, and R being the radius to 
the shell midsurface (Fig. 7.10).

The Donnell–Mushtari (D–M) operator is found to take  
the form
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 (7.37)

where s = x/R, and  ∇ 4 = ∇2 ∇2, where
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(7.38)

Setting Rx = R, and 1/Ry = 1/Rxy = 0 in the shallow shell equations of 
(7.9) and (7.10), it is seen that they are exactly the same as those of the 
D–M theory. Moreover, looking closely at the differential operator as 
it is presented in (7.9), it is clear that all terms in it arise from the 
membrane stiffness [terms multiplied by Eh/(1 − ν2)] except for the 
(h2/12) ∇4w term arising from ℒ33. This term results from the bending 
stiffness [note that Eh/(1 − ν2) times h2/12 is Eh3/12(1 − ν2) = D, the 
flexural rigidity].
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Modifying differential operators can take different forms, 
depending on the simplifying assumptions made in deriving the 
shell theory, as described above. However, it should be noted from 
(7.35) that they only represent differences in the bending stiffness of 
the cylindrical shell. They do not affect the stretching stiffness. One 
widely used cylindrical shell theory was derived by Arnold and 
Warburton [27,28]. Although derived in a different manner, the same 
equations for circular cylindrical shells arise from the theories of 
Goldenveizer [3] and Novozhilov [4]. The corresponding modifying 
operator is
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Another popular cylindrical shell theory results from indepen-
dent derivations by Flügge [6,7], and by Byrne [29], Lur’ye [30],  
and Biezeno and Grammell [31]. The modifying differential operator 
for it is
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It can be seen that the two modifying operators (7.39) and (7.40) are 
considerably different from each other. Seven other modifying 
operators derived by others for circular cylindrical shells may be 
found in Ref. [1, pp. 33–34]. And there are still others, derived by 
other researchers. An obvious question is: Can such differing 
equations represent the same problem properly? This will be partly 
answered in the next section.

7.5  Solution for Deep or Closed Circular  
Cylindrical Shells

Exact solutions for the free vibration frequencies of closed circular 
cylindrical shells are straightforwardly obtainable if the ends x = 0 
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and x = ℓ (Fig. 7.10) are both supported by shear diaphragms. The 
boundary conditions are those given earlier by (7.17a). These 
conditions are closely approximated in physical application by 
means of rigidly attaching a thin, flat, circular cover plate at each 
end of the shell.

The exact solutions are taken as

 u = A cos mx cos n  sin t 

 v = B sin mx sin n  sin t (7.41)

 w = C sin mx cos n  sin t 

where m = m /ℓ (m = 1, 2, …), and A, B, C are undetermined coeffi-
cients. These displacement functions satisfy the shear diaphragm 
boundary conditions at x = 0 and ℓ exactly. For the present, n is also 
taken in integer values (n = 0, 1, 2, …). These integer values are 
required for the periodicity of the displacements circumferentially, 
e.g., u(x, ) = u(x, + 2π).

Substituting, for example, the displacement components (7.41) 
into the D–M equations of motion, determined by (7.37) yields the 
following set of homogeneous equations in A, B, and C:

where = m R/ℓ. For a nontrivial solution one sets the determinant 
of the coefficient matrix of (7.42) equal to zero. Expanding this 
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determinant gives a cubic equation in the frequencies squared. In 
terms of the nondimensional frequency parameter

 Ω = −ω ρ ν
R

E
( )1 2

 (7.43)

this frequency equation from the D–M theory is

 Ω Ω Ω6
2

4
1

2
0 0− + − =K K K  (7.44)

where

   
K n k n2
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2
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= − + + + + + −
−

+





( ) ( ) ( )
( )
( )

( )ν ν λ λ λ
 

   
K k n0

2 4 2 2 41
2

1 1= − − + + ( ) ( ) ( )ν ν λ λ
 

(7.45)

and again λ = mπR/ℓ. Thus, for each m and n there are three free 
vibration frequencies, corresponding to the three roots of (7.44). Mode 
shapes are obtained by substituting each Ω, in turn, back into (7.42) to 
determine corresponding eigenvectors.

If another shell theory is used, the Ki are modified by adding 
terms k ∆Ki to each of (7.45). For example, for the Goldenveizer–
Novozhilov (also Arnold–Warburton) theory, the ∆Ki are [1]

   

∆

∆

K n

K n n n

2
2 2

1
2 2 4 2 2

2 1

2 1 2 1 2
1
2

3

= −( ) +

= −( ) + + −( ) − −( ) − +( )

ν λ

ν λ ν λ ν λ ν 44

0
4 2 2 4 2 4 2 2 4 61

2
1 4 1 4 2 4 8 2∆K n n n n n= −( ) −( ) + + − − − − ν ν λ λ ν λ λ( )

 (7.46)

Because the ∆Ki are each multiplied by k before adding them to  
the Ki, in (7.45), one might think that the difference is trivial.  
For example, if h/R = 1/500, k = 3.333 × 10−7. Even if h/R = 1/20, 
which is as thick a shell as one may typically use thin shell theory 
accurately, k = 2.083 × 10−4, which is still very small. Nevertheless, 
these small values of k can make significant differences in 
frequencies.
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A study was made in Ref. [1] comparing the frequencies 
obtained from 12 shell theories with an exact solution from three-
dimensional theory. This showed that the frequencies from the 
D–M theory are inaccurate for small circumferential wave numbers 
(n = 0, 1, 2, 3, 4), especially for thicker long shells in modes having 
small longitudinal wave numbers (ℓ/mR > 4). (More will be said 
about this later in this chapter.) Most of the shell theories, such as 
those determined by (7.39) or (7.40), agreed closely with three-
dimensional theory. However, others did not. Membrane theory, 
obtained by deleting all terms in (7.35) containing k, was shown to 
be highly unreliable.

A comprehensive vibration study of the circular cylindrical shell 
supported at both ends by shear diaphragms was made earlier by 
Forsberg [32–34] using the Donnell and Flügge theories. In Fig. 7.11, 
taken from Ref. [34], the frequency parameter Ω is plotted as a 
function of the length-to-radius ratio, ℓ/mR, for numbers of 
circumferential waves n varying between 0 and 28 for a relatively 
thin shell (R/h = 500) according to the accurate Flügge theory. It is 
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Figure 7.11 Variation of Ω with ℓ/mR and n (R/h = 500).
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obvious from Fig. 7.11 that, for any number of circumferential 
waves, the lowest frequency always occurs for m = l. But the 
fundamental frequency for the shell depends strongly on the 
length-to-radius ratio ℓ/R. For example, for R/h = 500 and ℓ/R = 2, 
Fig 7.11 shows that the fundamental frequency occurs for m = 1  
and n = 8. That is this mode shape involves eight circumferential 
waves. However, there are more than 90 modes, with values of m up 
to 6, and n up to 24, having frequencies less than that for the simple 
mode shape m = 1, n = 2 [34].

Some of the mode shapes obtained for various m and n are 
depicted in Fig. 7.12. The case n = 0 is for axisymmetric (shown) and 
torsional (not shown) modes. The case n = 1 is particularly interesting 
for it describes the shell bending overall as if it were a simply 
supported beam (with the shear diaphragms preserving the circular 
cross-section at both ends). Higher n correspond to other flexural 
modes. It is interesting to see in Fig. 7.11 that for the beam bending 
mode (n = 1) to be the fundamental shell frequency for this very thin 
shell (R/h = 500) requires an extremely long cylinder (ℓ/R > 70).

Figure 7.13 (from [34]) shows the fundamental frequencies Ω for 
various ℓ/R and R/h ratios. These are the envelopes of the complete 

Figure 7.12 Some mode shapes for circular cylindrical shells supported at 
both ends by shear diaphragms.
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frequency spectrum. For example, the envelope of Fig. 7.11 appears as 
a single curve (containing numerous cusps) in Fig. 7.13. One also sees 
how the Donnell–Mushtari theory deviates from the accurate Flügge 
theory for large ℓ/R, especially for the thicker shells.

Although the axisymmetric modes (n = 0) vibration frequencies 
are never among the lowest ones for a cylindrical shell (e.g., Fig. 7.11), 
they are worthy of special attention. Looking at the matrix differential 
operators for the various theories, (7.37), (7.39), and (7.40), it is seen 
that the second of the three equations of motion becomes uncoupled 
and yields a purely torsional mode shape [to obtain this case, one 
interchanges sin nθ and cos nθ in (7.41)]. This is seen clearly for the 
D–M theory by inserting n = 0 in (7.42). The other two modes are 
combinations of radial (w) and axial (u) displacements, uncoupled 
from the torsion (v). Figure 7.14 (from [35]) shows the frequencies for 
all three modes, for a broad range of R/h, using the Flügge theory. It 
is seen that the lowest frequency can correspond to either a radial or 
torsional mode, depending on ℓ/mR, but never an axial mode. In the 
vicinity of ℓ/mR = 3 there is strong coupling between the radial and 
axial modes. Away from this “veering” region these modes are 
essentially uncoupled.
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Figure 7.15 (from [35]) is an interesting set of curves showing 
how the frequency varies with n for different lengths of shells, for 
the case when R/h = 100. (Because Ω contains R, one considers R to 
be fixed and varies ℓ to obtain different length ratios. Then Ω is a 
measure of how ω varies.) Here one sees clearly and dramatically 
how, for a given shell length and a fixed m, the frequency varies 
with the circumferential wave number (n). For example, for ℓ/R = 10, 
the minimum frequency is seen to be at value of n slightly greater 
than 2. This is the fundamental frequency of the shell. For ℓ/R = 1 it 
is in the vicinity of n = 7.

In studying Fig. 7.15 one should wonder how smooth, 
continuous curves can be drawn for varying n, when n can only 
take on integer values for closed shells. And yet the Ω shown for 
non-integer n are correct eigenvalues of the cubic equation (7.44) 
in Ω2. The answer is that the roots of (7.44) for non-integer n are 
solutions for another class of problems—the open shell—for which 
the closed shell may be considered a special case. The open shell 
has two straight-line boundaries parallel to the shell generators, 

ℓ

Figure 7.14 Axisymmetric (n = 0) frequency parameters; Flügge theory, ν = 0.3.
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say θ = ±γ/2 or, θ = 0 and γ, in addition to the two cylindrical 
boundaries, x = 0 and ℓ. Thus Fig. 7.4 may represent a cross-section 
of the open shell, except that now the shell may be deep (unlimited 
γ). Indeed, γ  may even exceed 360°, which corresponds to a thin 
shell with overlapped longitudinal boundaries. 

In the case of the open shell, the analytical solution and numerical 
results discussed earlier in this section all apply to shell panels which 
have all four edges supported by shear diaphragms. Along the 
straight line edges the corresponding boundary conditions are

 w = Mθ = u = Tθ = 0 (7.47)

These are satisfied exactly along the edges θ = ±γ/2  by the 
displacement functions (7.41), provided that n = γ/π, where γ is in 
radians. For γ = 180°, 120°, 90°, 60°, … (i.e., π, 2π/3, π/2, π/3, … radians), 
one obtains the integer values of n (1, 2, 3, 4, …) for which we have 
already seen frequencies in Figs. 7.11–7.13 and 7.15. Frequencies for 
open shells with other R/h and ℓ/mR may be obtained by finding 
roots of the frequency equations (7.44)–(7.46) using n = γ/π as 
described. The complete frequency spectrum for the open shell 
requires one to use n = pγ/π, where p = 1, 2, 3, . . . describes the number 
of circumferential waves present.

ℓ

Figure 7.15 Variation of Ω with n; Flügge, R/h = 100, ν = 0.3.
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Understanding now that the closed cylindrical shell solutions are 
also applicable to open shells, the reason for the deviation of the D–M 
theory from the accurate Flügge theory in Fig. 7.13 becomes clear. It 
was shown earlier that the D−M theory corresponds to the shallow 
shell theory. Since the curves for n = 4 in Fig. 7.13 correspond to γ = 
45°, which is clearly a shallow shell (Fig. 7.4), one may expect the D–M 
theory to agree reasonably well with the Flügge theory for all R/h 
and ℓ/R. For n = 3 the agreement is worse. For n = 2 (γ = 90°) the 
disagreement is large for the longer shells.

Extensive frequency and mode shape data for cylindrical shells 
having their circular boundaries supported by shear diaphragms 
may be found in Ref. [1].

For cylindrical shells having conditions at their circular 
boundaries other than shear diaphragm supports a more general 
solution to the eighth-order system of differential equations may be 
found. The solutions (7.41) are generalized to

 u = Aeλs cos nθ cos ωt 

 v = Beλs sin nθ cos ωt 

 w = Ceλs cos nθ cos ωt (7.48)

where s = x/R. Substituting (7.48) into the D–M equations of motion, 
for example, as determined by (7.37), leads to the same set of equations 
of motion given by Eq. (7.42), except that λ2 is replaced by −λ2 in the 
diagonal elements, and λ is replaced by −λ in the first column of the 
coefficient matrix. For a nontrivial solution, the determinant of the 
coefficient matrix is set equal to zero, which results in an algebraic 
equation of the fourth degree in λ2:

 λ λ λ λ8
6

6
4

4
2

2
0 0+ + + + =g g g g  (7.49)

where the gi involve Ω2, as defined by (7.43), the thickness ratio 
parameter k = h2/12R2, and also ν and n.

An exact procedure is available in mathematics for finding roots 
for algebraic equations of degree as high as four (but no higher). One 
finds it in many handbooks (cf. [36], p. 9). However, the procedure is 
quite complicated. With a computer, it is simple matter to use a 
reliable root-finding program, which may follow an iterative logic. 
The roots typically take the forms

 λ λ λ λ λ= ± ± ± +1 2 3 4, , ( )i i  (7.50)

( )i = −1 . These may be used for solutions for u, v, w where the λ1 and 
λ2 generate exponential (or hyperbolic) and trigonometric functions 
of s, respectively, and λ3 + iλ4, give rise to products of exponential (or 
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hyperbolic) functions and trigonometric functions. For each root the 
ratios A/C and B/C may be found by returning to the original matrix 
equation in A, B, and C. The general solutions for u, v, and w are then 
expressible in terms of eight independent, real constants of 
integration, which is to be expected from an eighth-order system of 
differential equations. More details of these procedures may be 
found in Ref. [1, p. 84].

Having first solved one eigenvalue problem to determine the λ, 
A/C, and B/C for the solution forms (7.48), it is then necessary to solve 
another eigenvalue problem to determine the free vibration freq-
uencies (eigenvalues) and mode shapes (eigenfunctions). However, 
this is straightforward. Four boundary conditions are applied at each 
end of the shell. This yields, in general, eight homogeneous, simul-
taneous equations in terms of the unknown integration constants, 
which is the second eigenvalue problem. If the shell has a plane of 
symmetry parallel to its circular boundaries (say, both ends clamped, 
or both ends free), then if the solution forms use the hyperbolic 
functions rather than the exponential functions one may take 
advantage of the symmetry by placing the origin of the x-coordinate 
at the symmetry plane, separating the symmetric and antisymmetric 
vibration modes, and finding frequencies from fourth-order 
eigenvalue determinants, rather than eighth-order ones.

Figure 7.16, taken from Ref. [34], shows the characteristics of a 
shell clamped at both ends (u = v = w = ∂w/∂x = 0) vibrating in a mode 
shape having eight circumferential waves (n = 8) and a single 
longitudinal wave, which is one of its lowest frequency modes. The 
shell is thin (R/h = 500), and is as long as its diameter (ℓ/R = 2). 
Displacement components are normalized with respect to the 
maximum value of w (Wmax). It is seen that the tangential 
(circumferential) component is an order of magnitude smaller  
than w(Vmax/Wmax = −0.12), and that the longitudinal component  
is yet another order of magnitude smaller. Nondimensional values  
of axial force (Nx), axial moment (Mx), hoop (circumferential) force 
(Nθ), and hoop (circumferential) moment (Mθ) are also shown. What 
is particularly interesting about the latter three curves is the “edge 
effect” seen there. For the shell of Fig. 7.16 this is a zone of length 
approximately 0.1ℓ at each end, where the forces and moments change 
rapidly, before becoming smooth functions. This edge effect is not 
seen in rods, beams, membranes, and plates, but is common in 
shells.

The Ritz method may also be applied straightforwardly to solve 
free vibration problems for circular cylindrical shells. Accurate 
frequencies and mode shapes may be obtained relatively easily, but 
accurate modal forces and moments are more difficult to achieve, not 
only because they involve differentiating the displacement mode 
shapes, but because of the rapidly changing edge zone described 
above. 
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Extensive frequency and mode shape data for circular cylindrical 
shells with a variety of boundary conditions is available in Ref. [1]. 
This data is both theoretical and experimental, the theoretical results 
being obtained using exact and other approaches. 

Another comparison between shallow shell theory and deep 
shell theory for circular cylindrical shells (in addition to that made 
earlier in this section for shear diaphragm supports) is available for 
cantilevered, open shells [37]. In this case one circular edge is 
clamped, and the other three edges are free.
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Problems
1 Make a complete and thorough derivation of the necessary equations 
which result in (7.7) and (7.8). Explain carefully all the terms used and all 
steps taken.

2 Make a complete and thorough derivation of the necessary equations 
which result in (7.9) and (7.10). Explain carefully all the terms used and all 
steps taken.

3  A. Neglecting tangential inertia, (7.19) was derived. Determine comple
tely the corresponding eigenfunctions for the three displacement 
components.

B. One may also neglect tangential inertia by omitting two of the inertia 
terms in (7.9). Assuming solutions as in (7.21), determine whether or not  
the resulting frequencies are the same as given by (7.19). If not, try to 
explain why.
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4 A circular cylindrical shallow shell has all four edges supported by shear 
diaphragms. It has a rectangular planform (a/b = 2), is quite thin (h/Rx = 0.001) 
and has considerable depth (a/Rx = 0.8). Let ν = 0.3.

A. Including tangential inertia, calculate the first ten frequency  
parameters Ωmn mn E= −ω ρ ν( )/1 2 , listing them in order of ascending 
frequency.

B. For each of the ten modes of Part A, calculate the amplitude ratios  
Umn/Wmn and Vmn/Wmn.

C. Determine the two higher frequencies for the same m and n as the 
fundamental frequency, and calculate the amplitude ratio corresponding 
to it.

D. Sketch carefully the mode shape for the fundamental frequency.

5 It was shown in Sec. 7.3 that hyperbolic paraboloidal shallow shells having 
square planforms (a/b = 1) have fundamental frequencies the same as that 
for simply supported plates, if tangential inertia is neglected.  Investigate 
what happens if:

A. other modes are considered.

B. other planforms are considered.

6 Consider the axisymmetric (n = 0) free vibration modes of closed circular 
cylindrical shells supported at both ends by shear diaphragms:

A. Write down the displacement functions u, v, and w that yield all possible 
modes.

B. Obtain formulas which express the frequency parameters Ω in terms of 
ℓ/mR, k, and ν corresponding to the Flügge theory.

C. Let ν = 0.3, confirm the accuracy of the formulas of Part B by obtaining 
frequencies for ℓ/mR = 1, 3, and 10, and comparing them with Fig. 7.15.

D. Determine the amplitude ratios A/C and B/C of the displacements 
corresponding to all frequencies found in Part C. Compare those results 
with Fig. 7.15. Make complete sketches for mode shapes for ℓ/mR = 1.

7 A closed circular cylindrical shell has both ends supported by shear 
diaphragms.

A. Determine the frequency determinants for both Flügge theory and 
membrane theory.

B. Let ν = 0.3. On a single graph plot Ω versus ℓ/mR for both theories for 
modes having two circumferential waves (n = 2). Use the range 0.1 ≤ ℓ/mR 
≤ 10. Discuss the accuracy of the membrane theory for this mode.
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8 A circular cylindrical shell panel has all four edges supported by shear 
diaphragms. Its opening angle is γ (see Fig. 7.4), ℓ/R = 2, and R/h = 100. Let  
ν = 0.3 for the material.

A. Obtain the frequency determinant, according to the Flügge theory.

B. Plot curves on a single graph showing the nondimensional frequency 
Ω = −ω ρR v E( )/1 2  versus γ for 0 ≤ γ ≤ 360°. Plot sufficient curves so that 
at least the four lowest frequencies may be seen for each γ. Compare this 
graph carefully with the information available in Fig. 7.15.

C. Suppose γ = 360°. By means of a sketch show carefully what problem 
this corresponds to. How does it differ physically from an ordinary closed 
shell? Are the frequencies for γ = 360° the same as n = 0 for a closed shell? 
If so, why? If not, why not?



CHAPTER 8
Vibrations of  

Three-Dimensional 
Bodies

The vibrations studies in the preceding chapters involved 
modeling physical bodies mathematically as one-dimensional 
(strings, bars, beams) or two-dimensional (membranes, plates, 

shells). During the reading of these earlier chapters, one should 
logically wonder whether or not three-dimensional analyses could 
not have been carried out and, if so, why the lower dimensional 
approaches were really needed. The present chapter should answer 
both questions to a reasonable degree. 

Inasmuch as problems amenable to rectangular coordinates and 
their analysis are generally the least complicated, and best understood 
by most, these were the first ones treated in Chaps. 5, 6, and 7. 
Subsequently, configurations best suited to polar coordinates were 
taken up. In a similar way, in the present chapter the rectangular 
parallelepiped is first studied, using rectangular coordinates. Then 
bodies suitable to cylindrical coordinates are taken up. 

Three-dimensional equations of motion are therefore first derived 
in rectangular coordinates. Some exact solutions of them are seen to 
exist, but such solutions are shown to usually apply only to unrealistic 
boundary conditions on parallelepiped faces. Instead, the Ritz 
method, which has been applied extensively to 1D and 2D problems 
throughout the earlier chapters, is laid out here, and is used again to 
obtain reasonably accurate frequencies for some cantilevered 
rectangular parallelepipeds. 

In a similar way the 3D equations of motion in cylindrical 
coordinates are taken up, and solutions examined. For bodies of 
revolution (e.g., cylinders, cones, spheres) solutions which separate 
out the circumferential coordinate (θ) are available, thus, reducing 
the 3D problem to a set of significantly easier 2D problems. But even 
then, it is shown that limited solutions exist, which also satisfy the 
usual boundary conditions of interest. 
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Therefore, the Ritz method is again taken up, and used to find 
free vibration frequencies of solid and hollow cylinders which may 
have free or fixed surfaces. For some of the cylinders, the accurate 3D 
frequencies are compared with ones calculated by rod, beam, and 
plate theories. A brief mention of more general Ritz solutions for other 
bodies of revolution (cones, rings, spheres, hemispheres, paraboloids), 
both solid and hollow (e.g., shells) is also made. Finally, analysis of 
twisted and skewed, cantilevered parallelepipeds is described. 

All work in this chapter, unlike others, involves only free vibra-
tions with no damping. Generalizations to consider damping and/or 
exciting forces could be made, as were done in the early chapters. 

8.1 Equations of Motion in Rectangular Coordinates
As we have done in previous chapters, let us begin by considering 
the free body diagram of a typical 3D element taken from within a 
vibrating body. From this the equations of motion may be derived, 
expressed in terms of the internal force intensities (stresses).

A typical element of infinitesimal dimensions dx, dy, and dz is 
depicted in Fig. 8.1. Each face of the element has one component of 
normal stress (σ) and two components of shear stress (τ) acting on it. 
The positive senses of the stresses are those conventionally used in 
the theory of elasticity. That is, normal stresses are positive in 
tension, and positive shear stresses go in the positive x, y, and z 
directions on the positive faces (i.e., those having the largest 
coordinates of x, y, and z). The normal stresses in the x, y, and z 
directions are σx, σy, and σz, respectively. A typical shear stress τij is 
identified by its subscripts, where i indicates the face normal to the  

z 
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dz xy

xzxz
xz
x 

dx + 

x

z

zx

zy
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xy
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Figure 8.1 Three-dimensional element in rectangular coordinates, showing 
direction of positive stress components.
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i direction, and j denotes the direction of the stress vector. Figure 8.1 
shows the complete stress components acting on three of the six 
faces, with directions of positive stress as indicated. The stresses on 
the positive faces are incrementally different than those of the 
opposite (negative) faces in a typical situation, as shown by the 
changes in σx, τxz, and τxy in Fig. 8.1.

Let us also admit the possibility of body force components px, py, 
and pz (force/volume) acting, caused by electric, magnetic, gravita-
tional, or other fields. Then, summing forces in the x-direction yields
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(8.1)

Here the mass density (ρ) is per unit volume, and the components of 
displacement in the x, y and z directions are u, v, and w, respectively. 
Cancelling terms, and dividing through (8.1) by the volume dxdydz 
yields one equation of motion. Following this procedure for the y and 
z directions, as well, gives the other two. The resulting complete set is 
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(8.2)

Consider next the angular motions of the element of Fig. 8.1. Let 
the angular rotations (in radians) about the x, y, and z axes be θx, θy, 
and θz, respectively. Let us begin by summing moments about an axis 
parallel to y (call it y′) passing through the center of the element. The 
normal stresses have no moment about this axis. Of the various shear 
stress components acting on the six faces, only those involving τxz and 
τzx have moments. There is also the possibility of body couples mx, my, 
and mz (moment/volume) acting, caused by external fields. Then
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where dIy′ is the mass moment of inertia of the element about y′.  
It is 

 
dI

dx dz dx dz
dyy ’

( ) ( )= +








ρ

3 3

12 12  
(8.4)

Substituting (8.4) into (8.3) and dividing through the equation by 
the volume dxdydz, one sees that dIy′ is a higher order term. 
Discarding it, and the other two higher order terms, yields the 
moment equation of motion. Following this procedure, as well, for 
moments about axes parallel to the x and y directions yields the 
following set of equations:

 
− + + =τ τzy yz xm 0

 

 − + + =τ τxz zx ym 0  

 
− + + =τ τyx xy zm 0

 (8.5)

Significant body couples exist in only very special cases. 
Discarding them, (8.5) will become
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 (8.6)

Then, in the case of free vibrations, (8.2) may be written as 
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(8.7)

As we proceeded in other chapters, it now becomes necessary to 
relate the stresses in (8.7) to the displacements. This is accomplished 
by using the strain–displacement and stress–strain equations of 
classical 3D elasticity (cf. [1] pp. 5–10). Assuming small strains, they 
are related to the displacements by 
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where γxy, γyz, and γxz are the engineering (not tensorial) shear strains.
For an anisotropic material in its most general case the linear, 

stress–strain relationships involve 21 independent elastic coefficients, 
each of which must be given in order that the problem is completely 
defined (cf. [2] p. 10). For an orthotropic material in its most general 
case, the number reduces to nine ([2], p. 19). In both cases the equations 
of motion (8.7) in terms of displacements become exceedingly 
complicated. However, for an isotropic material there are only two 
independent coefficients, and the strains may be expressed in terms 
of the stresses by 
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where the shear modulus (G) is related to Young’s modulus (E) and 
Poisson’s ratio (ν) by

 
G
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(8.11)

The inverse relationships for (8.9) are 

 σ λx xe G= + 2 e  

 
σ λy ye G= + 2 e

 

 σ λz ze G= + 2 e  (8.12)

where e ≡ ex + ey + ez is the trace of the strain tensor, and λ is the Lamé 
parameter, 
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Substituting (8.12) and (8.13) into (8.7) and assuming that the material 
is homogeneous, so that the elastic coefficients are all constants, 
results in the following three equations of motion expressed in terms 
of the displacements:
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(8.14)

where ∇2 is now the three-dimensional Laplacian operator
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Thus, (8.14) are a set of sixth-order differential equations.
There are only three types of simple boundary conditions which 

may exist clearly on any surface of the body from a physical point of 
view: 

1. Fixed surfaces (all three displacements components are zero)

2. Sliding surfaces (zero normal displacement, both shear 
stresses are zero)

3. Free surfaces (all three stress components—one normal, two 
shear—are zero)

Other boundary conditions may exist from a mathematical point of 
view. They involve combinations of stresses and displacements on 
any face. But, physically, they are dubious, to say the least. Some of 
these will be seen in the next section. 

8.2 Exact Solutions in Rectangular Coordinates
One form of exact solution to (8.14) is 

 u x y z t A x y z t( , , , ) sin cos cos sin= α β γ ω  

 v x y z t B x y z t( , , , ) cos sin cos sin= α β γ ω  

 w x y z t C x y z t( , , , ) cos cos sin sin= α β γ ω  (8.15)
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If one chooses the origin of the coordinate system in one corner of a 
rectangular parallelepiped having dimensions a × b × c, as shown in 
Fig. 8.2, and also sets 

 
α π β π γ π= = =

a
,

m
b

,
n
c  

(8.16)

where ℓ, m, and n are integers, then (8.15) shows that the normal 
components of displacements are zero along the faces x = 0,a;  
y = 0,b; z = 0,c. Moreover, substituting (8.15) and (8.16) into (8.8) and 
(8.12) shows that both tangential (shear) stress components are 
also zero along these faces. Then, substituting (8.15) and (8.16) into 
the equations of motion (8.14) yields a third-order frequency 
determinant. Expanding it results in a cubic frequency equation 
in ω2, the squares of the free vibration frequencies. Thus for each 
set of ℓ, m, and n there are three frequencies. 

Let us examine the physical meanings of the boundary conditions 
described above. These conditions could be approximated by 
enclosing a block of elastic material by a much more rigid outer 
material, with well-lubricated contact surfaces between the two 
bodies. However, an initial compressive prestress would be required 
at all surfaces, so that they remain in contact at all times during the 
vibration. This would be more difficult to achieve. Thus, the solution 
given by (8.15) and (8.16) has little practical value. 

A second type of solution to (8.14) would interchange sine and 
cosine in (8.15) still using (8.16). This would correspond to a 
parallelepiped which now has all its faces restrained tangentially, 
but with no normal constraint (i.e., σn = 0). This situation is even more 
difficult to approximate physically than that for the previous type of 
solution.

z 

y 

x

c
 a 

b

Figure 8.2 A rectangular parallelepiped, with a coordinate system useful for 
the solution (8.15) and (8.16).
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A more general type of solution to (8.14) may be assumed in the 
form

 u x y z t U z x y t( , , , ) ( )sin cos sin= α β ω  

 v x y z t V z x y t( , , , ) ( )cos sin sin= α β ω  

 w x y z t W z x y t( , , , ) ( )cos cos sin= α β ω  (8.17)

Substituting (8.17) into the equations of motion (8.14) yields a set of 
three coupled, ordinary differential equations in U, V, and W. Each 
equation is of order two. Thus, the differential order of the set is six. 
Solving this set yields U, V, and W as functions of z, with each having 
two constants of integration. Applying three boundary conditions to 
the faces z = 0,c (see Fig. 8.2) results in a sixth-order determinant for 
the natural frequencies.

Following the laborious process described in the preceding 
paragraph, one can prescribe the faces z = 0,c to be both stress-free, 
and then regard the parallelepiped of Fig. 8.2 to be a “plate” of 
thickness c. Some analysts have followed this route, using the 
alternative form of (8.17) wherein sine and cosine are interchanged as 
described earlier in this section. They then claim that the resulting 
solution is a 3D free vibration solution for a rectangular plate. But the 
resulting displacements and stresses along the faces x = 0, a and  
y = 0,b do not duplicate realistic physical conditions for simply 
supported plates. 

8.3  Approximate Solutions for Rectangular 
Parallelepipeds

For rectangular parallelepipeds (Fig. 8.2) with faces which are either 
completely fixed or free, no solutions for free vibration frequencies 
and mode shapes are available which satisfy exactly both the 
equations of motion and the boundary conditions. The analyst should 
use an approximate method which, as refinement in the solution is 
pursued, would converge to the exact solution. 

One approach to the problem was set forth by Fromme and Leissa 
[3] in 1970. They used the “method of associated periodicity” to 
develop a solution procedure for the completely free parallelepiped. 
With this method, solution functions of the type given by (8.15) and 
(8.16) were used, with extra terms added to permit relaxation of the 
normal displacement constraints at the boundaries. However, 
computers available at that time were inadequate to permit obtaining 
accurate 3D frequencies, and numerical results were obtained  
for cases having one length infinite. This has the effect of reducing 
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the mathematical dimensionality of the problem to two. Later, 
Hutchinson and Zillmer [4] used a similar series (or superposition) 
method to treat the same problem, and obtained numerical results 
for parallelepipeds having all lengths finite.

The Ritz method may also be used in a straightforward manner 
to achieve accurate frequencies and mode shapes for rectangular 
parallelepipeds. As we have seen in previous chapters, this 
method involves the potential and kinetic energies of the vibrating 
body. 

The potential energy (PE) of a 3D elastic body undergoing free 
vibration with no active external forces being applied is its strain 
energy of deformation. This may be written in terms of its internal 
stresses and strains as 
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= + + + + +∫
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(8.18)

where the integral is taken over the volume (V) of the body. 
Substituting (8.10)–(8.13) into (8.18) generates this functional in terms 
of the three displacement components (u, v, w) and, in the case of an 
isotropic body, any two of the three elastic coefficients E, G, and ν. If 
the body is also homogeneous, then E, G, and ν are constants.

The kinetic energy is simply
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1
2

2 2 2ρ   
 

(8.19)

where, the dots indicate single derivatives in time. For a homogeneous 
body, the mass density (ρ) is a constant. 

For free vibrations one may choose

 u x y z t U x y z t( , , , ) ( , , )sin= ω  (8.20)

and similarly for v and w. This yields, for example, the maximum 
kinetic energy during a cycle of motion as 

 
KE U V W dxdydz

cba
max ( )= + +∫∫∫

ρω2
2 2 2

0002  
(8.21)

Similarly, one obtains PEmax as the integral of a quadratic form in  
the first derivatives of U, V, and W.

The functions U, V, and W must be admissible. That is, they must 
satisfy the geometric boundary conditions of the problem exactly. For 
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faces which are either fixed or free this may be accomplished by 
choosing
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(8.22)

In the above, the exponents e1, … ,e18 are either zero or one—zero 
if a face is free, and one if it is fixed. This guarantees that the 
conditions of zero displacement at a fixed face are satisfied. Moreover, 
these constraints on the polynomials are minimal, and the resulting 
sets of displacement functions are mathematically complete. That is, 
as the upper limits (I, J, … , R) of the summations are increased, the 
body is free to assume an arbitrary deformed shape, and the 
frequencies will approach the exact values monotonically from 
above. The polynomials (8.22) are substituted into PEmax – KEmax, and 
the quantity is minimized w.r.t. the coefficients Aijk, Bℓmn, and Cpqr to 
determine the eigenvalues (frequencies) and eigenfunctions in the 
usual manner (cf. Secs. 2.13 and 4.10).

This procedure was followed by Leissa and Zhang [5] to analyze 
the 3D vibrations of a cantilevered rectangular parallelepiped. Because 
of the two-fold symmetry present in this situation, the coordinate 
origin in Fig. 8.2 is moved to the center of the face x = 0, so that the 
xy- and xz-planes are planes of symmetry. Then e1 = e7 = e13 = 1 in 
(8.22), with all other ei = 0. There are four symmetry classes in the free 
vibration modes, which may be readily identified by the shape of the 
axial (U) displacement. Mode shapes are either symmetric (S) or 
antisymmetric (A) with respect to the xy- and xz-planes. The V and 
W components will then also have appropriate symmetries. The four 
symmetry classes of mode shapes may be described as

1. Doubly symmetric (SS) modes; e.g., axial extension

2. Symmetric–antisymmetric (SA) modes; e.g., bending about 
the y-axis

3. Antisymmetric–symmetric (AS) modes; e.g., bending about 
the z-axis

4. Doubly antisymmetric (AA) modes; e.g., torsion about the 
x-axis, with cross-sectional warping
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Taking advantage of the symmetry reduces the sizes of the eigen-
value determinants to be evaluated by a factor of four. The exponents 
i, j, … , r in (8.22) are chosen to reflect the symmetry. Whereas all 
powers of x are retained for all modes, the SS-modes, for example, 
take i, k, n, and q as even integers; and m and r as odd integers.

Table 8.1 is a convergence study for the frequencies of a cube  
(a = b = c) having ν = 0.3. Here the results for the nondimensional 
frequency parameter ωa(ρ/E)1/2 are arranged in increasing order of 
determinant size, and the first five frequencies are presented for each 
symmetry class. “Polynomial type” in the second column identifies 
the number of terms taken in the x, y, and z directions for all three 
displacement components. It is seen that convergence is monotonic 
from above as polynomial terms are added in the same direction. 
Table 8.1 also shows that it is generally desirable for this problem to 
take more terms in the x direction than in y or z. Thus, for examples, 
the 4 × 2 × 2 results are all better than those from the 2 × 4 × 4 
solutions, even though the latter require evaluation of determinants 
twice as large. Although computer storage limitations at the time of 
this work (1982) prohibited use of determinants of order greater than 
120, the frequencies for determinants of order (4 × 3 × 3) × 3 = 108 are 
seen to be reasonably well convergent. 

Numerical results were presented in Ref. [5] for the series of 
cantilevered rectangular parallelepipeds shown in Fig. 8.3, with 
Poisson's ratio of 0.3. Based on the convergence study described 
above, 4 × 3 × 3 solutions were used for all results, yielding 108 modal 
degrees of freedom for each symmetry class of modes. These results 
are interesting, and will be described below. 

The first five nondimensional frequencies ωa(ρ/E)1/2 for SS 
modes are listed in Table 8.2. The lowest frequency for each 
configuration is predominantly axial extension, and elementary 
rod theory (see Chap. 3) gives the classical result ωa(ρ/E)1/2 = π/2 = 
1.5708, independent of the ratios a/b and b/c. The second value, 
according to that theory, is 3π/2 = 4.7124. A modified one-
dimensional theory was suggested by Love (see [6], p. 428) which 
takes into account the lateral inertia of a rod undergoing axial 
extension, this inertia being caused by Poisson effects. However, 
comparing the two sets of 1D frequencies with the much more 
accurate 3D frequencies listed in Table 8.2 shows that the modified 
theory is only more accurate than the classical theory for the two 
very short configurations, D and E.

The first five SS mode shapes for the cube (configuration A) are 
partially described by the contour plots of Fig. 8.4. Here the vibratory 
displacements U, V, and W occurring at the free end face (x = a) are 
plotted, normalized w.r.t. the maximum displacement component, 
corresponding to the frequencies listed in Table 8.2. Contour lines are 
separated by increments of 0.1. Thus, the first mode, which is 
predominantly axial extension, has Umax occurring in the four free 
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Symmetry 
class

Polynomial 
type

Deter. 
size

Mode number

1 2 3 4 5

SS 4 × 2 × 2
6 × 2 × 2
3 × 3 × 3
2 × 4 × 4
4 × 3 × 3

48
72
81
96

108

1.6022
1.6005
1.6049
1.6483
1.6000

2.6492
2.6488
2.5866
2.6366
2.5812

2.9460
2.9421
2.9400
3.0623
2.9154

3.2553
3.2538
3.0595
3.1931
3.0541

3.3668
3.3642
3.2919
3.3360
3.2795

SA
and 
AS

4 × 2 × 2
6 × 2 × 2
3 × 3 × 3
2 × 4 × 4
4 × 3 × 3

48
72
81
96

108

0.67402
.67316
.67460
.69742
.67087

1.7766
1.7754
1.7994
1.8869
1.7695

2.8762
2.8721
2.7659
2.8010
2.7562

3.1486
3.1312
3.1582
3.4332
3.0797

3.4072
3.4034
3.3269
3.5205
3.2985

AA 4 × 2 × 2
6 × 2 × 2
3 × 3 × 3
2 × 4 × 4
4 × 3 × 3

48
72
81
96

108

0.91391
.91369
.91194
.92578
.90930

2.1933
2.1923
2.1830
2.2091
2.1801

2.7343
2.7231
2.7570
2.8106
2.7011

2.7751
2.7747
2.8010
3.1979
2.7480

4.0001
3.9734
3.9911
4.2501
3.9088

Table 8.1 Convergence Study for a Cantilevered Cube; Values of ωa(ρ/E)1/2, ν = 0.3
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Figure 8.3 Cantilevered parallelepiped configurations analyzed.

Configuration a/b b/c
Mode number

1 2 3 4 5

A 1 1 1.600
1.543*

2.581
…

2.915
…

3.054
…

3.280
…

B 2 1 1.594
1.564*

4.581 5.065 5.491
…

5.861
…

C 1 2 1.596
1.553*

2.797
…

3.199
…

4.361
…

4.746
…

D 1/2 1 1.467
1.466*

1.562
…

1.797
…

1.845
…

2.011
…

E 1/2 2 1.533
1.503*

1.684
…

2.034
…

2.815
…

2.895
…

Elementary 
rod theory

1.571 … … … …

*Modified one-dimensional theory.

Table 8.2 Frequency Parameters ωa(ρ/E)1/2 for SS Modes of Cantilevered 
Parallelepipeds, ν = 0.3
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corners, with contours of U/Umax  = 0.9 located inside of the corners. 
No other contour lines appear, so U/Umax > 0.8 for all other end 
points. No non-zero contour lines are seen for V and W for this mode, 
so Vmax/Umax and Wmax/U max are less than 0.1 everywhere. 

In the special case of the cube the SS symmetry class of U 
displacements divides further into two subclasses, which are either 
symmetric or antisymmetric with respect to the diagonals. Examples 
of the latter subclass are modes 2, 3, and 5 in Fig. 8.4. Mode 2 is 
comprised more strongly of transverse displacements V and W, with 
U/Vmax (or U/Wmax) only slightly exceeding 0.8. Mode 3 consists 
predominantly of diagonally antisymmetric axial warping at the 
free end; however, examination of other cross-sections show the v 
and w displacements becoming dominant with decreasing x. Mode 4 
is mainly a form of symmetric axial warping, with the corners 
moving in opposite directions than the center. The interior node lines 
separating the corners from the center portion are nearly straight. 
Mode 5 consists almost purely of V and W displacements.

While the contour plots of Fig. 8.4 require some thought in order 
to interpret them, they provide definitive information about the 
mode shapes. If further sets of plots were made for, say, x/a = 0.2, 0.4, 
0.6, and 0.8, the understanding would be complete. These plots are in 
contrast with 3D plots commonly made with computational packages, 
which may be pleasing at a first glance, but typically cannot describe 
completely what is happening, especially for the higher modes. 
Figure 8.4 also clearly illustrates that there are no nodal lines or nodal 
surfaces in 3D modes, except for symmetry axes (y = z = 0). That is, a 
nodal point must have all three of its displacement components zero, 
and this only occurs occasionally along symmetry axes (cf. modes 2, 
3, and 5 in Fig. 8.4).

Figure 8.4 Displacement contours on the end face of a cantilevered cube  
(SS modes).
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Nondimensional frequencies for the SA and AS modes of the 
cantilevered cube are given in Table 8.3. Comparison of frequencies 
for the first mode is made among elementary beam theory (Sec. 4.3), 
Timoshenko beam theory (Sec. 4.12), and the present 3D theory. The 
lowest frequency SA and AS modes for each configuration are 
predominantly bending about the y and z axes, respectively, with 
additional shear deformation, anticlastic bending, and cross-sectional 
warping present in the 3D modes.  A shear deformation coefficient  
k = 5/6 was used for the Timoshenko beam calculations. Table 8.3 
shows that the lowest elementary beam frequencies are significantly 
in error for configurations B and C (14.4 and 13.4 percent differences, 

Configu
ration a/b b/c

SA or 
AS

Mode number

1 2 3 4 5

A 1 1 Both 0.6709
0.6493a

1.1050b

1.770
1.733a

…

2.756
…
…

3.080
…
…

3.299
…
…

B 2 1 Both 0.4437
0.4321a

0.5075b

1.671
1.632a

…

3.724
3.407a

…

4.628
…
…

5.432
…
…

C 1 2 SA 0.4473
0.4321a

0.5075b

1.664
1.532a

…

2.278
…
…

3.394
…
…

3.782
3.407a

…
AS 0.6674

0.6493a

1.1050b

1.774
1.733a

…

3.068
…
…

4.258
…
…

4.773
…
…

D 1/2 1 Both 0.8300
0.7996a

2.0300b

1.532
…
…

1.765
…
…

1.879
…
…

2.319
…
…

E 1/2 2 SA

AS

0.6748
0.6493a

1.1050b

0.8271
0.8000a

2.2100b

1.354
…
…

1.691
1.654a

…

1.807
1.733a

…

2.313
…
…

2.312
…
…

2.827
…
…

2.798
…
…

2.938
…
…

a Thick beam theory, including shear deformation and rotary inertia.
b Elementary beam theory.

Table 8.3 Frequency Parameters ωa(ρ/E)1/2  for SA and AS Modes of Cantilevered 
Parallelepipeds, ν = 0.3
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respectively, from the 3D frequencies), and for the other configura-
tions the theory cannot be meaningfully applied. The Timoshenko 
beam frequencies are seen to be reasonably good approximations to 
the 3D frequencies (3.2, 2.6, 3.4, 2.7, 3.7, 2.7, 3.3 percent differences for 
the seven modes shown), irrespective of the very large “beam” depths 
in some cases (b/a or c/a = 2). Thus, the addition of shear deformation 
(and rotary inertia) effects appears to compensate well, even for very 
deep beams. The other effects (e.g., anticlastic bending, cross-
sectional warping, thickness-stretch) appear to be minor, at least for 
the first frequencies. The data of Table 8.3 also show that the 
Timoshenko beam theory tends to overcorrect the elementary beam 
theory; that is, it decreases the frequencies, but decreases them 
somewhat too much. This overcorrection has been observed in many 
other comparisons of beam theory with 3D theory. 

Table 8.4 gives the first five frequencies of doubly antisymmetric 
modes for each of the five configurations. The lowest frequency mode 
for each configuration is torsional, and a doubly antisymmetric U 
displacement results from cross-sectional warping. The third mode 
of the cube, and the second and fourth modes of configuration B, 
were also identified from modal displacement plots as being 

Configu
ration a/b b/c

Mode number

1 2 3 4 5

A 1 1 0.9093
0.9507a

0.6726b

2.180
…
…

2.701
2.927a

2.015b

2.748
…
…

3.909
…
…

B 2 1 0.9040
0.9213a

0.6716b

2.719
2.784a

2.015b

4.179
…
…

4.886
4.705a

3.358b

4.944
…
…

C 1 2 0.7883
0.8837a

0.5420b

2.220
…
…

3.439
…
…

3.797
…
…

4.467
…
…

D 1/2 1 0.9164
1.0174a

0.6716b

1.355
…
…

1.906
…
…

2.309
…
…

2.523
…
…

E 1/2 2 0.8213
1.0682a

0.5420b

1.731
…
…

2.142
…
…

2.619
…
…

2.839
…
…

a Modified one-dimensional torsion theory, including warping constraint.
b Elementary torsion theory.

Table 8.4 Frequency Parameters ωa(ρ/E)1/2 for AA Modes of Cantilevered 
Parallelepiped, s, ν = 0.3 
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predominantly torsional. Comparison values for torsional frequencies 
are given in Table 8.4 from two types of 1D analysis: (1) the classical 
torsion theory (Sec. 3.2) and (2) a modified theory which accounts for 
the warping constraint at the clamped boundary, presented by Leissa 
and Ewing [7]. It is seen that the elementary torsion theory gives 
highly inaccurate results for all the configurations. The frequencies 
from the improved theory are much closer to the 3D frequencies, 
which demonstrate the importance of considering torsional warping 
constraint when it exists (that is, for non-circular cross-sections), 
especially for short bars.

Plots of U, V, and W for the first five SA and AA modes of the 
cube (configuration A), similar to those shown in Fig. 8.4 for the SS 
modes, are also available in Ref. [5]. For the SA modes it was found 
that mode 2 is predominantly thickness-shear; mode 3 is bending in 
the transverse (y) direction, called “chordwise bending” in two-
dimensional plate analysis; and modes 4 and 5 are more complex. 
The AA modes consist mainly of warping (U) displacements for 
modes 2 and 4; whereas mode 5 is a complex one, with strong coupling 
among all the displacements. 

Taken altogether, Tables 8.2–8.4 also show the density of the 
eigenvalues from the 3D spectrum, as may be compared with 1D or 
2D analyses. For example, the data of these tables show that for the 
cube (configuration A) there are 12 frequencies falling in the range 
2.7 < ωa(ρ/E)1/2 < 3.3 (including both SA and AS modes, which are 
degenerate). But, of course, the various types of 1D and 2D analyses 
provide only approximate frequencies for restricted portions of the 
complete spectrum. 

The effect of varying Poisson’s ratio was also studied in Ref. [5]. 
Results are shown for the cantilevered cube in Table 8.5 for ν = 0, 0.3, 
and 0.5, which encompasses the complete range of possible ν for an 

Symmetry 
class ν

Mode number

1 2 3 4 5

SS 0
0.3
0.5

1.5708
1.6000
1.6887

2.856
2.581
2.421

2.856
2.915
2.764

3.295
3.054
3.153

3.295
3.280
3.274

SA
and
AS

0
0.3
0.5

0.6914
0.6709
0.7020

1.885
1.769
1.723

2.803
2.756
2.711

3.415
3.080
3.004

3.522
3.299
3.177

AA 0
0.3
0.5

1.0336
0.9093
0.8598

2.416
2.180
2.076

2.980
2.701
2.553

3.068
2.748
2.631

4.275
3.909
3.745

Table 8.5 Effect of Poisson’s Ratio on ωa(ρ/E)1/2 for a Cantilevered Cube  
(a/b = b/c = 1)
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isotropic material. The following conclusions about the frequencies 
may be reached:

1. Some are greatly affected by changes in ν, others are not.

2. Some are increased by increasing ν, others are decreased, 
and still others do not change monotonically.

3. Some become degenerate, at least for the SS modes, when  
ν = 0.

In trying to determine why frequencies change as they do with 
changing ν, one must realize that the Poisson effects change the 
inertia, as well as the stiffness and that the coupling between types 
of modes in the same symmetry class changes. 

Finally, it should be mentioned that the fixed boundary condition 
on one face (x = 0) of a cantilevered parallelepiped is rather idealized. It 
could be approached experimentally by bonding a parallelepiped of 
relatively small Young’s modulus (E) to a wall with large E (e.g., a 
wooden block attached to a steel wall). If the moduli are equal, or nearly 
so, the wall can only provide an elastic constraint, which causes much 
different frequencies, especially the lowest ones. Moreover, not only is 
the stiffness of the system affected by similar E, but also the inertia. 
That is, vibratory motion within the wall adds inertia to the system. 

8.4 Exact Solutions in Cylindrical Coordinates
For bodies of circular cylindrical shape it is convenient to solve the 
3D free vibration problem in terms of cylindrical coordinates r, θ, z, as 
shown in Fig. 8.5. In cylindrical coordinates the equations of motion 
(8.14) become ([8], p. 414):

 
L u L v L w

u
t11 12 13

2
2

2+ + = δ ∂
∂  

 
L u L v L w

v
t21 22 23

2
2

2+ + = δ ∂
∂  

 
L u L v L w

w
t31 32 33

2
2

2+ + = δ ∂
∂  

(8.23)

where u, v, and w now are the displacement components in the r, θ, 
and z directions, respectively, δ2 ≡ 2vρ/λ, and λ is defined by (8.13). 
The Lij differential operators are 

 
L

r r r r z11

2

2 2

2

2

2

21 2
1 1

2 1= − + +






+ −( ) ( )ν

θ
ν∂

∂
∂
∂

∂
∂

∂
∂  

(8.24a)
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L L

r z12 21

21= = ∂
∂ ∂θ  

(8.24b)

 
L

r z r z13

2 1= +∂
∂ ∂

∂
∂  

(8.24c)

 
L

r r r r z r22

2

2 2

2

2 2

2

21
1 1

2 1
1= − + − +







+ −( ) ( )ν ν

θ
∂
∂

∂
∂

∂
∂

∂
∂  

(8.24d)

 
L

r r r23

2

2
1

3 4
1= + −

∂
∂ ∂

∂
∂

( )
θ

ν
θ  

(8.24e)

 
L

r z31

2

= ∂
∂ ∂  

(8.24f)

 
L

r r r32

2

2
1

3 4
1= − −

∂
∂ ∂

∂
∂

( )
θ

ν
θ  

(8.24g)
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r r r r r z33

2

2 2 2

2

2

2

22 1
1 1

1 2
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+ − +







( ) ( )ν ν

θ
∂
∂

∂
∂

∂
∂

∂
∂  

(8.24h)

A solution to (8.23) will be sought in the following form: 

 u r z t U r z n t( , , , ) ( , )cos sinθ θ ω=  

Figure 8.5 Cylindrical coordinates.
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 v r z t V r z n t( , , , ) ( , )sin sinθ θ ω=  

 w r z t W r z n t( , , , ) ( , )cos sinθ θ ω=  (8.25)

where n = 0, 1, 2, … . This form guarantees the periodicity of each of 
the displacement components with θ; for example, u(r, θ + 2π, z, t) = 
u(r, θ, z, t). When n = 0 one obtains the axisymmetric modes, which 
involve only u and w (for example, longitudinal and/or radial 
extension). 

A complementary set of functions may also be used for (8.25), 
replacing cos nθ by sin nθ, and conversely. This gives the same vibratory 
mode shapes rotated by 90/n degrees in θ, and the same frequencies, 
except for n = 0. For n = 0 the complementary set yields the torsional 
modes which involve only v. Thus, for the circular cross-section there 
is no warping of the cross-section during torsional vibration (which 
may also be proven easily by geometrical symmetry arguments).

Because of the simplicity of the displacements for the torsional 
modes of circular cylindrical bars, meaningful exact solutions of the 
3D dynamic equations of elasticity are possible for these modes. 
Taking u = w = 0, and v as 

 v V r z t= ( , )sinω  (8.26)

Two of the three equations of motion in cylindrical coordinates (those 
obtained from summing forces in the radial and longitudinal 
directions) are satisfied exactly. The remaining one is 

 

∂
∂

∂
∂

∂
∂

∂
∂

2

2 2

2

2

2

2
1V

r r
V
r

V
r

V
z G

V
t

+ − + =
ρ

 
(8.27)

where G = E/2(1 + v) is the shear modulus of the material. Assuming

 V r z R r Z z( , ) ( ) ( )=  (8.28)

and substituting it into (8.27), the dependent variables in (8.28) are 
separated, giving 

 

d R
dr r

dR
dr r

R
2

2
2

2
1 1

0+ + −



 =β

 
(8.29a)

 

d Z
dz

Z
2

2
2 0+ =α

 
(8.29b)

where

 
β ρ ω α2 2 2= 



 −

G  
(8.30)
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Solving (8.29b) and applying free–free boundary conditions at the 
two ends: 

 
τθz G

v
z

z
L= ∂

∂
= = ±0

2
at

 
(8.31)

results in 

 

,
( )

α
π
π

L
m

m ,
=

−
2

2 1
for symmetric modes
for antisymmetric modes



  

(8.32)

where m = 0, 1, 2, … for symmetric modes and m = 1, 2, 3, … for 
antisymmetric modes. The corresponding mode shape functions are 

 
Z z

m z L
m z L

( )
cos / ,

sin( ) / ,
=

−
2

2 1
π
π

for symmetric modes
foor antisymmetric modes



  

(8.33)

The boundary conditions σz = τrz = 0 at the free ends are identically 
satisfied by the assumed displacements. 

Equation (8.29a) is Bessel’s equation with a solution

 R r AJ r BY r( ) = ( ) + ( )1 1β β  (8.34)

where J1 and Y1 are Bessel functions of order one of the first and 
second kinds, respectively, and A and B are arbitrary coefficients. 
Satisfying the regularity condition that v is finite at r = 0, it is 
determined that B = 0. Applying the free surface boundary 
condition

 
τ θr G

v
r

v
r

r R= ∂
∂

−





= =0 at
 

(8.35)

yields

 β β βR J R J r( ) ( ) = ( )0 12  (8.36)

The boundary conditions σr = τrz = 0 on the free cylindrical 
surface are exactly satisfied by the assumed displacements. Using 
(8.30) the nondimensional torsional frequencies are given by 

 
ω ρ β αR

G
R R= ( ) + ( )2 2

 
(8.37)

where α is given by (8.32) and (βR) are the roots of (8.36). These roots 
have been tabulated ([9], p. 414).
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A special case arises for the root βR = 0. In this case the differential 
equation (8.29a) reduces to an Euler form having the solution

 
R r C r

C
r

( ) = +1
2

 
(8.38)

Applying the regularity conditions at r = 0 requires that C2 = 0. Hence, 
for these mode shapes, v varies linearly with r, and as given by (8.33) 
in z. These are in agreement with the strength of materials 
assumptions made in deriving the elementary, 1D torsion theory 
found in Chap. 3. That is, the elementary, 1D torsional vibration 
solutions are a special case of the complete spectrum of the exact  
3D torsional modes and frequencies. With βR = 0, (8.37) yields 
ω ρ αR G R/ = , with α given by (8.32). The other modes have the 
tangential displacement (v) varying as J1(βr), with the core of the rod 
rotating in one direction, and one or more radial layers rotating in 
opposite directions during vibratory motion. These are higher 
frequency modes. 

When the rod has one end (z = 0) fixed and the other end (z = L) 
free, applying the boundary conditions at the ends yields 

 
α πL

m
m= −



 =( )2 1

2
1 2 3, , ,…

 
(8.39)

with a mode shape function

 Z z z( ) = sinα  (8.40)

Again, there are exact 3D solutions for the special case when  
βr = 0, agreeing with the 1D elementary theory, and more general 
solutions with frequencies given by (8.37) and mode shape function 
R(r) = J1(βr). It is also clear that fixed–free torsional frequencies of the 
rod of length L are the same as the antisymmetric mode frequencies 
of a free–free rod of length 2L. 

For a hollow cylinder having both inner and outer cylindrical 
surfaces free, the boundary conditions which must still be satisfied 
are τrθ = 0 at r = Ri and r = R0. In this case both terms of (8.34) are 
retained, and applying the two conditions yields a second-order 
frequency determinant

 J R Y K R Y R J K R2 0 2 0 2 0 2 0β β β β( ) ( ) = ( ) ( )  (8.41)

where K = Ri/R0.
Numerical results for the torsional frequencies of solid and 

hollow circular cylinders are givens in Secs. 8.5 and 8.6.
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Above in this section the solution to the equations of motion 
(8.23) has been presented thoroughly for n = 0 for the torsional modes 
only, where the longitudinal (u) and radial (w) displacement 
components vanish. The other n = 0 modes involve both u and w, 
coupled, where the circumferential displacement (v) vanishes. For 
these modes, substituting (8.25) into (8.23) yields two, second-order, 
partial differential equations coupled in u and w. Solutions to these 
equations may be found which apply straightforwardly to certain 
special boundary conditions.

For n ≠ 0, using (8.25) does not uncouple the equations of motion 
(8.23), and solutions become more difficult. Then, substituting (8.24) 
and (8.25) into (8.23), one obtains a set of three partial differential 
equations in the remaining two independent variables r and z. 
Solutions to them can be found which satisfy certain specialized and 
limited boundary conditions. But for problems of importance such 
as, for example, a completely free cylinder or a cylinder which is free 
except for being fixed at one end, any solution will involve infinite 
series of terms and infinite frequency determinants.

Nevertheless, the fact that solutions to (8.23) exist in the form of 
(8.25) establishes one important fact: Mathematically, (8.25) reduces 
the three dimensional problem to a set of two dimensional 
problems—one for each value of n. Physically, this means that the 
cylinder can have a separate set of free vibration modes for each 
Fourier component, n.

8.5 Approximate Solutions for Solid Cylinders
It was shown in the preceding section that, although exact solutions 
to the equation of motion expressed in cylindrical coordinates do 
exist, a complete set of physically meaningful boundary conditions 
cannot be satisfied, at least not with single-term solutions. 
Consequently, 3D frequencies for circular cylinders of finite length 
must be sought for by approximate methods. Among such methods 
which have been used successfully are: Ritz, series (or superposition) 
and finite elements. Accurate frequencies for cylinders are easier to 
obtain than those for parallelepipeds because of the periodicity of 
displacements in the circumferential (θ) direction. This permits the 
analyst to separate one coordinate out of the solution, leaving a 
problem which is mathematically only 2D for each circumferential 
wave number. 

Let us describe how the 3D frequencies and mode shapes of 
circular cylinders having either fixed or free boundaries may be 
determined by the Ritz method. Displacement components are again 
assumed as (8.25), where n = 0 provides both the axisymmetric and 
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torsional modes, as discussed in Sec. 8.4. The functions U, V, and W 
are taken as power series.

 
, ( , )U r z f r z A r z

I J

ij
i j( ) = ∑∑1

 

 
V r z f r z B r z

K L

kl
k l, ,( ) = ( )∑∑2

 

 
, ( , )W r z f r z C r z

P Q

pq
p q( ) = ∑∑3

 
(8.42)

where the fi depend on the geometric boundary conditions to be 
enforced. For example, in terms of the coordinates shown in Fig. 8.5:

1. f1 = f2 = f3 = 1 for all boundaries free

2. f1 = f2 = f3 = z for one end fixed, all other boundaries free 

3. f1 = f2 = f3 = z(z−L)(r−R) for all boundaries fixed, where  
r = R is the cylindrical surface, and z = 0,L are the ends of the 
cylinder 

Because the engineering strains are related to the cylindrical 
components of displacement by (cf. [1])
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(8.43)

and the stresses are linearly related to the strains, it is clear that care 
must be exercised in choosing the lower limits for i, k, and p in (8.42) 
so as to avoid unacceptable strain and stress singularities at r = 0, in 
the case of a solid cylinder. This is accomplished by taking:

1. For the axisymmetric modes (n = 0): i = 1, 2, 3, … and p = 0, 
1, 2, … .

2. For the torsional modes (n = 0): k = 1, 2, 3, … .

3. For the flexural modes (n = 1): i, k, p = 1, 2, 3, … and terms  
A00 + A01z and B00 + B01z added to U and V, respectively. These 
are rigid body translation and rotation terms needed for 
completeness of the functions for all boundary conditions.

4. For general modes (n  ≥ 2): i, k, p = 1, 2, 3, … .
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In the special case for n = 1, where the terms U = A00 + A01z and  
V = B00 + B01z are included, rigid body motions require that V = −U. 
Hence the singularities which they would otherwise cause in the 
strains eθ and γrθ in (8.43) are eliminated. 

Substituting (8.42), (8.43) and the stress-strain relations into  
Vmax − Tmax, and minimizing the frequency w.r.t. the coefficients Aij, 
Bkl, and Cpq (see Sec. 8.3), yields a frequency determinant for each 
circumferential wave number (n).

Extensive numerical results were presented by Leissa and So 
[10,11] for circular cylinders using the Ritz method as described 
above. Table 8.6 shows the convergence of nondimensional frequency 
parameters ω ρR G/  for representative modes (for n = 1) of a 
completely free cylinder having a length-to-diameter ratio, L/D = 1. 

TR TZ DET 1 2 3 4 5

2
2
2
2

2
4
6
8

12
24
36
48

2.20851
2.09061
2.09060
2.09060

3.00282
2.95247
2.95258
2.95224

3.81261
3.47701
3.47781
3.45998

4.84408
4.24351
4.24325
3.48509

6.11667
5.30966
5.28632
4.24327

3
3
3
3

2
4
6
8

18
36
54
72

2.09656
1.99716
1.99715
1.99715

2.94999
2.88066
2.88064
2.88064

3.75652
3.45393
3.45375
3.45375

4.79013
4.16805
4.16767
4.16760

5.40423
4.85705
4.85131
4.85069

4
4
4
4

2
4
6
8

24
48
72
96

2.09245
1.99390
1.99389
1.99389

2.86580
2.80175
2.80174
2.80174

3.67701
3.40084
3.40069
3.40069

4.74594
4.11744
4.11702
4.11702

5.31706
4.73661
4.73014
4.73010

5
5
5
5

2
4
6
8

30
60
90

120

2.09239
1.99381
1.99381
1.99381

2.85671
2.80162
2.80161
2.80161

3.67607
3.40047
3.40032
3.40032

4.74565
4.11715
4.11672
4.11672

5.27452
4.71564
4.70970
4.70970

6
6
6

2
4
6

36
72

108

2.09238
1.99381
1.99381

2.86561
2.80153
2.80152

3.67564
3.40029
3.40015

4.74559
4.11707
4.11664

5.27348
4.71444
4.70853

7
7
7

2
4
6

42
84

126

2.09238
1.99381
1.99380

2.86561
2.80153
2.80152

3.67563
3.40029
3.40015

4.74558
4.11707
4.11664

5.27317
4.71427
4.70840

8
8
8

2
4
6

48
96

144

2.09238
1.99381
1.99380

2.86561
2.80153
2.80152

3.67563
3.40028
3.40015

4.74558
4.11707
4.11664

5.27316
4.71425
4.70839

Table 8.6 Convergence of Frequencies ω ρR G/  for a Cylinder; the Five Lowest 
Modes with n = 1 Which Are Symmetric in z, with L/D = 1 and ν = 0.3, Where Boundary 
Conditions Are Free–Free and Rigid Body Mode Frequencies Are Excluded



 336 C h a p t e r  E i g h t  V i b r a t i o n s  o f  T h r e e - D i m e n s i o n a l  B o d i e s  337

For these boundary conditions there is a symmetry plane in the 
middle of the cylinder, the coordinate origin is located there, and  
the ends of the cylinder are at z = ±L/2. This permits one to separate 
modes which are symmetric w.r.t. the midplane from those that  
are antisymmetric, and reduces the size of frequency determinants 
needed by a factor of two. The data appearing in Table 8.6 is for 
symmetric modes. The symbols TR and TZ indicate the total number 
of polynomial terms used in the r or z directions, respectively, in the 
displacement functions (8.42), giving rise to determinant orders 
(DET) of 2 × TR × TZ to be evaluated for the eigenvalues. The higher 
values of TR and TZ were limited by numerical ill-conditioning 
which typically arises with the ordinary polynomials. The underlined 
data correspond to the lowest (i.e., closest upper bound) frequency 
obtained for that mode with the smallest determinant size needed. It 
is observed in Table 8.6 that the first two frequencies here converged 
to six significant figures, but the next three have lesser accuracy.

Similar convergence trends were seen for the antisymmetric 
modes of n = 1, and for both symmetry classes with n = 0 and 2 [10]. 
More slender rods (L/D = 5) were found to require more terms in z 
than in r. But determinant sizes requires to obtain the same degree of 
convergence as for L/D = 1 were approximately the same. 

Accurate (i.e., well converged) frequencies obtained by the 3D Ritz 
analysis are given in Table 8.7 for the axisymmetric (n = 0) modes of 
completely free rods having various L/D ratios (3, 5, 10, 20) and  
ν = 0.3. The lower frequency modes are predominantly longitudinal 
vibration. Therefore, in Table 8.7 comparison is made with 1D 
frequencies calculated by elementary rod theory (see Chap. 3) or 1DE, 
and also with the modified 1D theory (1DM) which accounts for 

L/D Theory 1 2 3 4 5

Modes symmetric in z
3 3D

1DE
%
1DM
%

0.8388
0.8443
(0.6)
0.8391
(0.0)

2.3264
2.5328
(8.9)
2.4029
(3.3)

2.9449
4.2214
(43.3)
3.6905
(25.3)

3.1815
5.9099
(85.8)
4.6656
(46.6)

3.6843
7.5985
(106.2)
5.3739
(45.9)

5 3D
1DE
%
1DM
%

0.5054
0.5066
(0.2)
0.5054
(0.0)

1.4846
1.5197
(2.4)
1.4902
(0.4)

2.3265
2.5328
(8.9)
2.4029
(3.3)

2.8831
3.5460
(23.0)
3.2135
(11.5)

2.9574
4.5591
(54.2)
3.9098
(32.2)

Table 8.7 Comparison of Frequencies ω ρR G/  from 3D (n = 0), 1D Elementary 
(1DE), and 1D Modified (1DM) Rod Theories for Completely Free Cylinders (ν = 0.3)
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L/D Theory 1 2 3 4 5
10 3D

1DE
%
1DM
%

0.2531
0.2533
(0.1)
0.2531
(0.0)

0.7559
0.7598
(0.5)
0.7561
(0.0)

1.2470
1.2664
(1.6)
1.2492
(0.2)

1.7143
1.7730
(3.4)
1.7266
(0.7)

2.1385
2.2796
(6.6)
2.1835
(2.1)

20 3D
1DE
%
1DM
%

0.1266
0.1266
(0.0)
0.1266
(0.0)

0.3794
0.3799
(0.1)
0.3795
(0.0)

0.6310
0.6332
(0.4)
0.6310
(0.0)

0.8802
0.8865
(0.7)
0.8805
(0.0)

1.1259
1.1398
(1.2)
1.1272
(0.1)

Modes antisymmetric in z
3 3D

1DE
%
1DM
%

1.6387
1.6886
(3.0)
1.6484
(0.6)

2.8112
3.3771
(20.1)
3.0862
(9.8)

2.9541
5.0657
(71.5)
4.2153
(42.7)

3.4977
6.7542
(93.1)
5.0490
(44.3)

3.6679
8.4428
(130.2)
5.6490
(54.0)

5 3D
1DE
%
1DM
%

1.0035
1.0131
(1.0)
1.0043
(0.1)

1.9332
2.0263
(4.8)
1.9579
(1.3)

2.6432
3.0394
(15.0)
2.8221
(6.8)

2.9451
4.0525
(37.6)
3.5760
(21.4)

3.1076
5.0657
(63.0)
4.2153
(35.6)

10 3D
1DE
%
1DM
%

0.5054
0.5066
(0.2)
0.5054
(0.0)

1.0035
1.0131
(1.0)
1.0043
(0.1)

1.4846
1.5197
(2.4)
1.4902
(0.4)

1.9333
2.0263
(4.8)
1.9579
(1.3)

2.3284
2.5328
(8.8)
2.4029
(3.2)

20 3D
1DE
%
1DM
%

0.2531
0.2533
(0.1)
0.2531
(0.0)

0.5054
0.5066
(0.2)
0.5054
(0.0)

0.7559
0.7598
(0.5)
0.7561
(0.0)

1.0035
1.0131
(1.0)
1.0043
(0.1)

1.2478
1.2664
(1.5)
1.2492
(0.1)

Values in parentheses indicate the percent differences between 1D and 3D results.

Table 8.7 Comparison of Frequencies ω ρR G/  from 3D (n = 0), 1D Elementary (1DE), 
and 1D Modified (1DM) Rod Theories for Completely Free Cylinders (ν = 0.3) (Continued)

l a ter a l displ a cements due to Poisson effects (see Sec. 8.3). Percents by 
which the 1D frequencies differ from the 3D frequencies a re a lso 
given, in p a rentheses, in the t a ble.

In T a ble 8.7, it is seen th a t the 3D a n a lysis a lw a ys yields frequen-
cies lower th a n those of the 1D a n a lysis. However, for the lower 
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frequencies of slender bars, the differences are negligible. For L/D = 3, 
the 1D elementary theory is seen to be reasonably accurate for only 
the fundamental frequency, where is the 1D modified theory is 
reasonably accurate for the first two frequencies (symmetric and 
antisymmetric modes). The tenth frequency (fifth antisymmetric 
mode) shows 1D values differing by 130.2 percent and 54 percent 
from the 3D value. Thus, while the modified 1D theory is significant 
improvement over the elementary 1D theory, it becomes highly 
inaccurate for the higher longitudinal frequencies, especially when 
the rod is relatively short. 

One must also realize that some of the 3D modes for n = 0 consist 
of a central core moving longitudinally in one direction while the 
outer part of the rod moves in the opposite direction. These are 
typically higher frequency modes, especially for larger L/D; but for 
L/D = 3, at least two of the frequencies listed in Table 8.7 correspond 
to such modes. Comparison with the 1D frequencies is therefore 
unrealistic for such modes.

Frequencies of fixed–free cylinders were also determined in Ref. [10]. 
For these boundary conditions there is no symmetry plane. The first 
five frequencies for ν = 0.3 and L/D = 3, 5, 10, 20 are given in Table 8.8. 
Again, comparisons are made with the two 1D theories. Interestingly, 
for this case the 1D theories are seen to yield frequencies which are 
slightly too low for the fundamental mode, but too high for the higher 
mode frequencies of the less slender (small L/D) configurations.

It is also interesting to compare the 3D frequencies of Table 8.8 
with those of the symmetric modes for the free–free cylinders in 
Table 8.7. The latter modes are similar to those of the fixed–free 
cylinder in that v = w = 0 at the symmetry plane. However, the radial 
displacement component (u) is not zero there. The 1D symmetric 
mode frequencies for the free–free cylinder are exactly twice those 
for the fixed–free one (because the former has a length L/2, while  
the latter is L). However, if one takes the five symmetric mode 
frequencies for L/D = 3 listed in Table 8.7, they are found to be only 
1.972, 1.846, 1.451, 1.205, and 1.2514 times those of Table 8.8. (The 
highest two frequencies may correspond to different types of modes.) 
Thus, the radial constraint at the completely fixed face is very 
significant, especially for short (small L/D) cylinders, and the higher 
frequencies. It was also found that convergence of the fixed–free 3D 
solutions was much slower than the free–free ones due to the stress 
singularities that exist in the fixed corner.

In applying the 3D Ritz method to the circular cylinder, all the 
torsional modes described in Sec. 8.4 were found to any degree of 
accuracy desired. Convergence studies similar to that of Table 8.6 
showed that, as expected, only one polynomial term in the radial 
direction is required (TR = 1) to obtain accurate frequencies for the 
modes of the elementary torsion type, although many more terms in 
r are needed for the other modes to represent R(r) = J1(βr). Similarly, 
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more polynomial terms in z are needed to represent the mode  
shape functions in z given by (8.33) or (8.37). However, convergence 
to six significant figures was easily achieved for the first five 
frequencies for arbitrary L/D and both types of end conditions. 

When n = 1 in (8.26) the lowest frequencies which arise corres-
pond to beam bending (flexural) modes. That is, the circular cylinder 
behaves in these modes as a beam of length L bending about its 
centerline. Elementary (Euler–Bernoulli) and improved (Timoshenko) 
1D beam theories were developed and applied in Chap. 4. It will  
now be interesting to compare the frequencies arising from these 
analytical models with accurate ones from the 3D theory.

Such comparisons are made in Table 8.9 for free–free beams, and 
in Table 8.10 for fixed–free (i.e., cantilever) beams, both tables taken 
from Ref. [10]. The corresponding frequency equations and resulting 
eigenvalues for the elementary theory are given in Chap. 4 (see Table 
4.1). Frequency equations for the Timoshenko beams are rather 
complicated. They are available in Ref. [12]. 

Table 8.8 Comparison of Frequencies ω ρR G/  from 3D (n = 0), 1D Elementary, and 
1D Modified Rod Theories for Fixed–Free Cylinders (ν = 0.3)

L/D Theory 1 2 3 4 5

3 3D
1DE
%
1DM
%

0.4254
0.4221
(−0.8)
0.4215
(−0.9)

1.2601
1.2664
(0.5)
1.2492
(−0.9)

2.0301
2.1107
(4.0)
2.0337
(0.2)

2.6407
2.9550
(11.9)
2.7542
(4.3)

2.9441
3.7993
(29.0)
3.3984
(15.4)

5 3D
1DE
%
1DM
%

0.2546
0.2533
(−0.5)
0.2531
(−0.6)

0.7606
0.7598
(−0.1)
0.7561
(−0.6)

1.2553
1.2664
(0.9)
1.2492
(−0.5)

1.7274
1.7730
(2.6)
1.7266
(0.0)

2.1629
2.2796
(5.4)
2.1835
(0.9)

10 3D
1DE
%
1DM
%

0.1270
0.1266
(−0.3)
0.1266
(−0.3)

0.3807
0.3799
(−0.2)
0.3795
(−0.3)

0.6332
0.6332
(0.0)
0.6310
(−0.3)

0.8834
0.8865
(0.3)
0.8805
(−0.3)

1.1306
1.1398
(0.8)
1.1272
(−0.3)

20 3D
1DE
%
1DM
%

0.06346
0.06332
(−0.2)
0.06332
(−0.2)

0.1903
0.1900
(−0.2)
0.1899
(−0.2)

0.3170
0.3166
(−0.1)
0.3163
(−0.2)

0.4435
0.4432
(−0.1)
0.4425
(−0.2)

0.5697
0.5699
(0.0)
0.5683
(−0.2)

Values in parentheses indicate the percent differences between 1D and 3D results.
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L/D Theory 1 2 3 4 5

Modes symmetric in z
3 3D

1DE
%
1DI
%

0.4049
0.5011
(23.7)
0.4037
(−0.3)

1.3779
2.7077
(96.5)
1.3674
(−0.8)

2.1250
6.6862
(214.6)
2.1509
(1.2)

2.5971
12.4330
(378.7)
2.6833
(3.3)

2.8058
19.9481
(611.0)
3.2696
(16.5)

5 3D
1DE
%
1DI
%

0.1646
0.1804
(9.6)
0.1643
(−0.1)

0.6818
0.9748
(43.0)
0.6771
(−0.7)

1.2889
2.4070
(86.8)
1.2762
(−1.0)

1.8404
4.4759
(143.2)
1.8338
(−0.4)

2.1146
7.1813
(239.6)
2.1533
(1.8)

10 3D
1DE
%
1DI
%

0.04397
0.04509
(2.6)
0.04395
(0.0)

0.2156
0.2437
(13.0)
0.2149
(−0.3)

0.4675
0.6018
(28.7)
0.4648
(−0.6)

0.7585
1.1190
(47.5)
0.7520
(−0.9)

1.0670
1.7953
(68.3)
1.0546
(−1.2)

20 3D
1DE
%
1DI
%

0.01120
0.01127
(0.7)
0.01120
(0.0)

0.05885
0.06092
(3.5)
0.05880
(−0.1)

0.1389
0.1504
(8.3)
0.1386
(−0.2)

0.2439
0.2797
(14.7)
0.2430
(−0.4)

0.3673
0.4488
(22.2)
0.3651
(−0.6)

Modes antisymmetric in z
3 3D

1DE
%
1DI
%

0.8735
1.3812
(58.1)
0.8674
(−0.7)

1.7670
4.4759
(153.3)
1.7680
(0.1)

2.1002
9.3386
(344.6)
2.1397
(1.9)

2.5561
15.9695
(524.8)
2.6699
(4.5)

2.8788
24.3687
(746.5)
3.2423
(12.6)

5 3D
1DE
%
1DI
%

0.3986
0.4972
(24.7)
0.3969
(−0.4)

0.9833
1.6113
(63.9)
0.9746
(−0.9)

1.5818
3.3619
(112.5)
1.5675
(−0.9)

1.9013
5.7490
(202.4)
1.9372
(1.9)

2.1149
8.7727
(314.8)
2.1363
(1.0)

10 3D
1DE
%
1DI
%

0.1162
0.1243
(7.0)
0.1160
(−0.2)

0.3346
0.4028
(20.4)
0.3332
(−0.4)

0.6099
0.8405
(37.8)
0.6054
(−0.7)

0.9110
1.4373
(57.8)
0.9022
(−1.0)

1.2228
2.1932
(79.4)
1.2078
(−1.2)

Table 8.9 Comparison of Frequencies ω ρR G/  from 3D (n = 1), 1D Elementary 
(Euler–Bernoulli, 1DE) Beam, and 1D Improved (Timoshenko, 1DI) Beam Theories for 
Completely Free Cylinders (ν = 0.3)
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L/D Theory 1 2 3 4 5

20 3D
1DE
%
1DI
%

0.03052
0.03108
(1.8)
0.03050
(−0.0)

0.09527
0.1007
(5.7)
0.09513
(−0.1)

0.1887
0.2101
(11.3)
0.1882
(−0.3)

0.3036
0.3593
(18.4)
0.3022
(−0.4)

0.4338
0.5483
(26.4)
0.4311
(−0.6)

Values in parentheses indicate the percent differences between 1D and 3D results.

Table 8.9 Comparison of Frequencies ω ρR G/  from 3D (n = 1), 1D Elementary 
(Euler–Bernoulli, 1DE) Beam, and 1D Improved (Timoshenko, 1DI) Beam Theories for 
Completely Free Cylinders (ν = 0.3) (Continued)

L/D Theory 1 2 3 4 5
3 3D

1DE
%
1DI
%

0.07517
0.07874
(4.8)
0.07425
(−1.2)

0.3643
0.4935
(35.4)
0.3606
(−1.0)

0.8186
1.3817
(68.8)
0.8095
(−1.1)

1.2961
2.7076
(108.9)
1.2800
(−1.2)

1.7729
4.4759
(152.5)
1.7550
(−1.0)

5 3D
1DE
%
1DI
%

0.02797
0.02835
(1.4)
0.02772
(−0.9)

0.1562
0.1776
(13.7)
0.1549
(−0.8)

0.3828
0.4974
(29.9)
0.3794
(−0.9)

0.6512
0.9747
(49.7)
0.6445
(−1.0)

0.9432
1.6113
(70.8)
0.9315
(−1.2)

10 3D
1DE
%
1DI
%

0.007089
0.007087
(0.0)
0.007047
(−0.6)

0.04300
0.04441
(3.3)
0.04275
(−0.6)

0.1149
0.1244
(8.2)
0.1142
(−0.6)

0.2121
0.2437
(14.9)
0.2106
(−0.7)

0.3288
0.4028
(22.5)
0.3256
(−1.0)

20 3D
1DE
%
1DI
%

0.001778
0.001772
(−0.4)
0.001769
(−0.5)

0.01105
0.01110
(0.5)
0.01099
(−0.5)

0.03054
0.03109
(1.8)
0.03038
(−0.5)

0.05876
0.06092
(3.7)
0.05844
(−0.6)

0.09527
0.1007
(5.7)
0.09442
(−0.9)

40 3D
1DE
%
1DI
%

0.0004449
0.0004429
(−0.4)
0.0004428
(−0.5)

0.002782
0.002776
(−0.2)
0.002769
(−0.5)

0.007764
0.007772
(0.1)
0.007726
(−0.5)

0.01514
0.01523
(0.6)
0.01507
(−0.5)

0.02498
0.02518
(0.8)
0.02475
(−0.9)

Values in parentheses indicate the percent differences between 1D and 3D results.

Table 8.10 Comparison of Frequencies ω ρR G/  from 3D (n = 1), 1D Elementary 
(Euler–Bernoulli, IDE) Beam, and 1D Improved (Timoshenko, IDI) Beam Theories, for 
Fixed–Free Cylinders (ν = 0.3)
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For free–free cylinders (Table 8.9) it is seen that Timoshenko theory 
is reasonably accurate in predicating the first five frequencies for 
each symmetry class (i.e., the first ten frequencies overall) for L/D ≥ 5.  
As expected, the elementary beam theory frequencies are signifi-
cantly in error for all modes when L/D = 10 (2.6 percent–79.4 percent 
errors from the first to the tenth frequencies). For the thickest confi-
guration considered (L/D = 3), the Timoshenko theory is reasonably 
accurate for only the first two frequencies of each symmetry class. It 
is also interesting to note that, while the elementary theory always 
gives frequencies which are too high because shear deformation and 
rotary inertia effects are ignored, the Timoshenko theory often over-
corrects, yielding frequencies which are somewhat too low.

Similar results are shown for fixed–free (cantilevered) cylinders  
in Table 8.10. Here, only the first five frequencies for each L/D are given 
(as compared with the first ten in Table 8.9). Although 3D frequen-
cies are listed with at least four significant figures, accuracy to only 
three figures can be guaranteed for all of the data in Table 8.10, because 
of the slower convergence obtained for the fixed–free conditions. 
Nevertheless, it is interesting to note that elementary 1D theory 
predicts the lower frequencies significantly better in the fixed–free 
condition than when both ends are free. Conversely, the Timoshenko 
theory is less accurate for fixed–free ends than for free–free ones.

To summarize the comparisons made above between frequencies 
from 1D theories and those from the accurate 3D theory, suppose one 
can accept frequencies which are accurate to within 1 percent of the 
correct values. Then one finds, for example, from the tabular data for 
a free–free rod, with a length-to-diameter ratio (L/D) of 5 that only 
the first two longitudinal mode frequencies are satisfactorily deter-
mined by elementary 1D theory, and that the improved theory gives 
only one more. None of the bending frequencies are acceptable from 
the 1D elementary theory, but the Timoshenko beam theory is much 
better, providing seven admissible frequencies. For the torsional 
modes, the 1D theory is exact (for circular cross-sections only) as 
long as the rotations of elements in a given cross-section are all in the 
same direction. Higher frequencies which involve counter-rotation 
within a cross-section are missed entirely. However, for L/D = 5, one 
finds that the first ten torsional frequencies are those of elementary 
theory. 

Frequencies from the 3D Ritz analysis presented above have been 
limited to n = 0 and 1, so that they be compared directly with the 
results from 1D analyses. Further 3D results will now be given to 
determine how the frequencies for other values of n relate. These 
data are taken from Ref. [11]. 

Tables 8.11 and 8.12 display the frequencies of completely free 
cylinders for modes which are symmetric and antisymmetric, 
respectively, w.r.t. their midplanes, for L/D = 1, 1.5, 2, 3, and 5, and for 
n = 0, 1, 2, 3. Poisson’s ratio is taken as 0.3. 
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Exactitude of all data in Tables 8.11 and 8.12 to the four significant 
figures shown has been verified by convergence studies. Underlined 
numerals 1, 2, … , 20 preceding frequency values are used to identify 
the first 20 frequencies, in order, of the complete spectrum (symmetric 
and antisymmetric modes) for each length-to-diameter ratio. 

It is interesting to note in studying Tables 8.11 and 8.12 together 
that the fundamental frequency corresponds to a symmetric bending 
mode (n = 1) for L/D = 2, 3, and 5, but for L/D = 1 and 1.5 it is an 
antisymmetric torsional mode. In spite of this, although the torsional 

Table 8.11 Frequencies ω ρR G/  for Symmetric Modes of Free–Free Cylinders with 
ν = 0.3

n Modes

L/D
1 1.5 2 3 5

0a 1
2
3
4
5

5
10
20

2.326
3.067
3.989
4.896
5.593

3
14

1.639
2.922
3.500
4.042
4.814

3
18
20

1.247
2.920
3.028
3.824
4.185

3
15

0.839
2.326
2.945
3.181
3.684

4
12

0.505
1.485
2.326
2.883
2.957

0t 1
2
3
4
5

12 3.142
5.136
6.020
6.283
8.115

5 2.094
4.189
5.136
5.546
6.283

5 1.571
3.142
4.712
5.136
5.370

5
10

1.047
2.094
3.142
4.200
5.136

5
10
16

0.628
1.257
1.885
2.520
3.335

1 1
2
3
4
5

3
8
16

1.994
2.802
3.400
4.117
4.708

2
9
13
20

1.176
2.533
2.888
3.341
3.732

1
6
15
16

0.774
2.091
2.780
2.827
3.158

1
6
12
20

0.405
1.378
2.125
2.597
2.806

1
6
11
15

0.165
0.682
1.289
1.850
2.136

2 1
2
3
4
5

6
7

2.338
2.488
4.070
4.457
5.135

7
8

2.163
2.350
3.361
4.073
4.362

7
11
17

2.118
2.348
2.858
3.602
4.078

13
17
18

2.128
2.348
2.437
2.990
3.411

2.131
2.324
2.348
2.436
2.736

3 1
2
3
4
5

15
18

3.336
3.631
4.948
5.802
6.074

18 3.245
3.618
4.202
4.906
5.557

3.248
3.615
3.835
4.524
4.865

3.253
3.612
3.634
3.945
4.397

3.253
3.597
3.614
3.636
3.789

a — axisymmetric, t — torsional.
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frequency ω ρ πR G/ . ( / )= =1 571 2  is the fundamental one for L/D = 1, 
the second torsional frequency of 3.142 (= π) does not appear until 
the 12th mode. For the more slender cylinders (e.g., L/D = 5), more 
flexural (n = 1) modes are included among the first 20, as expected. 
Whereas 3 of the first 20 frequencies for L/D = 1 are for n = 3, none 
are included for L/D ≥ 2. The lowest ranking of longitudinal modes 
(n = 0) in Tables 8.11 and 8.12 is seen to be the third frequencies for 
L/D = 1.5, 2, and 3.

It is seen in Tables 8.11 and 8.12 that for L/D = 1, the second mode 
is antisymmetric with n = 2. This corresponds to a plate-like mode. 

n Modes

L/D
1 1.5 2 3 5

0a 1
2
3
4
5

9
17

2.872
3.541
4.707
5.481
6.226

12
16

2.810
2.993
4.026
4.160
4.866

10
19

2.326
2.959
3.519
3.737
4.261

8 1.639
2.811
2.954
3.498
3.668

9
18

1.004
1.933
2.643
2.945
3.114

0t 1
2
3
4
5

1 1.571
4.712
5.370
6.970
7.854

1
17

1.047
3.142
5.236
5.241
6.020

2
12

0.785
2.356
3.927
5.195
5.498

2
7

0.524
1.571
2.618
3.665
4.738

2
7

13

0.314
0.942
1.571
2.199
2.843

1 1
2
3
4
5

4
11
19

2.151
3.081
3.964
4.577
4.969

4
10
15

1.774
2.590
2.956
3.686
4.147

4
8

14

1.431
2.127
2.727
3.160
3.402

4
9

11
19

0.873
1.767
2.100
2.556
2.879

3
8

14
17
19

0.399
0.983
1.582
1.901
2.116

2 1
2
3
4
5

2
14

1.978
3.192
4.038
4.704
5.397

6
11

2.107
2.693
3.407
4.079
4.661

9
13

2.146
2.436
3.177
3.512
4.092

14
16

2.135
2.334
2.680
3.146
3.367

20 2.131
2.334
2.355
2.565
2.946

3 1
2
3
4
5

13 3.190
4.139
4.826
5.789
6.440

19 3.260
3.734
4.410
4.889
5.511

3.257
3.631
4.170
4.402
4.936

3.252
3.604
3.748
4.181
4.296

3.253
3.599
3.612
3.696
3.925

a — axisymmetric, t — torsional.

Table 8.12 Frequencies in ω ρR G/  for Antisymmetric Modes of Free–Free 
Cylinders with ν = 0.3
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For L/D = 0.5, one finds that the first two modes are both for n = 2, the 
first being an antisymmetric mode (ω ρR G/ .= 1 591) and the second 
being a symmetric mode (ω ρR G/ .= 2 345). 

Extensions of Tables 8.11 and 8.12 for higher circumferential wave 
numbers (n = 4 – 9) are available in the dissertation by So [13]. These 
are higher frequency modes. 

The effect of Poisson’s ratio on the frequencies of free–free cylin-
ders is shown in considerable detail in Ref. [11] for L/D = 1. The freq-
uencies are found to decrease with increasing ν over the entire range  
0 ≤ ν ≤ 0.5 (except for the torsional frequencies, which are unaffected).

n Modes

L/D
1 1.5 2 3 5

0a 1
2
3
4
5

3
10

1.286
2.960
3.169
4.182
4.297

3
10

0.855
2.400
2.947
3.307
3.747

3
7

0.640
1.859
2.783
2.951
3.346

4
7

0.425
1.260
2.030
2.641
2.944

4
8

0.255
0.761
1.255
1.727
2.163

0t 1
2
3
4
5

2
6

0.785
2.356
3.927
5.195
5.498

2
5

0.524
1.571
2.618
3.666
4.725

2
5
9

0.393
1.178
1.963
2.749
3.544

2
5
9

0.262
0.785
1.309
1.833
2.363

3
6
9

0.157
0.471
0.785
1.100
1.418

1 1
2
3
4
5

1
4
8
9

0.506
1.444
2.588
2.854
3.346

1
4
6
8

0.264
0.930
1.904
2.290
2.772

1
4
6
8

0.159
0.650
1.383
1.928
2.368

1
3
6
8

10

0.075
0.364
0.819
1.296
1.774

1
2
5
7

10

0.028
0.156
0.383
0.652
0.945

2 1
2
3
4
5

5
7

2.162
2.518
3.449
3.760
4.347

7
9

2.137
2.381
2.765
3.229
3.652

10 2.132
2.350
2.503
2.847
3.292

2.131
2.341
2.356
2.475
2.702

2.132
2.326
2.331
2.346
2.378

3 1
2
3
4
5

3.258
3.698
4.289
4.651
5.350

3.253
3.629
3.814
4.190
4.544

3.253
3.614
3.674
3.878
4.168

3.253
3.609
3.610
3.663
3.786

3.260
3.597
3.600
3.613
3.619

a — axisymmetric, t — torsional.

Table 8.13 Frequencies in ω ρR G/  for Fixed–Free Cylinders with ν = 0.3
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Frequencies of fixed–free cylinders (i.e., all displacement 
components zero on one end) are given in Table 8.13 for ν = 0.3. 
Because of the stress singularities which occur in the corner of the 
fixed end, the Ritz solutions converge more slowly. Nevertheless, 
convergence studies [13] have demonstrated that the frequencies in 
Table 8.13 do represent the exact values to at least three significant 
figure accuracy. Again, the order of the modes for each L/D is 
indicated by underlined numerals preceding the frequency values, 
with the first ten being identified.

A comprehensive and excellent 3D study of the free vibrations of 
completely free cylinders was conducted by Hutchinson [14–16] using 
infinite series solutions of the equation of motion. He showed plots of 
ω ρR G0 /  versus L/D with ν = 0.344, for n = 0, 1, 2, and 3 over the 
range 0 < L/D ≤ 2. The plotted frequencies agreed closely with 
extensive experimental data presented earlier by McMahon [17]. 
Some amazingly accurate theoretical frequencies were also obtained 
by Pickett [18], using another method, in 1945 before electronic digital 
computers were available. 

8.6 Approximate Solutions for Hollow Cylinders
The Ritz method described in Sec. 8.5 may also be used 
straightforwardly to obtain accurate free vibrations frequencies of 
hollow circular cylinders. A representative hollow circular cylinder 
of inner diameter Di(= 2Ri), outer diameter D0(= 2R0), and length L is 
shown in Fig. 8.6. The most straightforward procedure is to choose 
the coordinate origin along the symmetry axis (r = 0), and assume 
displacement components as in (8.25) and (8.42). In this case no 
regularity conditions are required at the origin, and all the indices  
(i, … , q) in the summation of (8.50) not only can begin with zero, but 
must (to provide sets of functions which are mathematically 
complete).

Besides the global coordinate system above, one may also use a 
local coordinate system which has the same θ and z coordinates, but 
r = 0 is then at the middle of the cylinder wall; that is, the curvilinear 
surfaces are at r = ±H/2, where H = (D0 − Di)/2 is the wall thickness. 
This local coordinate system has certain computational advantages 
over the global system.

Both coordinate systems were used by So and Leissa [19] to obtain 
extensive, accurate frequencies for hollow cylinders. Table 8.14 is a 
representation of numerous convergence studies made by So [13], 
using both coordinate systems, for various geometrical parameters 
(L/D0, Di/D0 ) and the first few circumferential wave numbers (n).  
It was found that frequencies obtained using both coordinate  
systems were identical, thus establishing the completeness of the 
functions (8.42) in terms of the local coordinates. However, numerical 
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Figure 8.6 Hollow circular cylinder with displacement components and 
dimensions.

TR TZ DET 1 2 3 4 5

2
2
2
2

2
4
6
8

12
24
36
48

2.06394
1.92317
1.92312
1.92312

2.58242
2.50001
2.49992
2.49992

3.12189
3.09439
3.09438
3.09438

4.72849
4.05925
4.05779
4.05779

8.00733
4.83453
4.78566
4.78565

4
4
4
4

2
4
6
8

24
48
72
96

2.03605
1.89353
1.89345
1.89345

2.54974
2.41800
2.48088
2.48088

3.10594
3.07966
3.07964
3.07964

4.71112
4.03210
4.02915
4.02915

7.29447
4.57431
4.53028
4.53025

6
6
6
6
6

2
4
6
8
10

36
72
108
144
180

2.03586
1.89327
1.89320
1.89320
1.89320

2.54950
2.48076
2.48066
2.48066
2.48065

3.10571
3.07946
3.07944
3.07944
3.07944

4.71097
4.03134
4.02836
4.02835
4.02835

7.28659
4.56575
4.52259
4.52257
4.52257

8
8
8
8

2
4
6
8

48
96
144
192

2.03586
1.89327
1.89320
1.89320

2.54950
2.48076
2.48066
2.48065

3.10571
3.07946
3.07944
3.07944

4.71097
4.03133
4.02835
4.02835

7.28656
4.56554
4.52255
4.52253

Table 8.14 Convergence of Frequencies ω ρR G0 /  for the First Five Symmetric Modes 
of n = 1 for a Completely Free Hollow Cylinder with L/D0 = 1, Di/D0 = 0.5, and ν = 0.3
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ill-conditioning was found to be significantly less with the local 
coordinates.

Table 8.14 describes the convergence of the first five symmetric 
mode frequencies of a completely free, hollow cylinder (L/D0 = 1, 
Di/D0 = 0.5, ν = 0.3) for modes having n = 1. These modes are 
predominantly flexural or thickness-shear in character. For these 
modes, the order of determinant (DET) is related to TR and TZ by 3 
× TR × TZ, where again TR and TZ are the number of terms of (8.42) 
used in the r and z directions, respectively. The first five frequencies 
have converged to six significant figures by TR × TZ = 8 × 8 (or 
determinant size DET = 192).

Tables 8.15–8.17 (taken from [19]) present accurate values of the 
frequencies ω ρR G0 /  for the longitudinally symmetric (S) and 
antisymmetric (A) modes of completely free, hollow cylinders having 

Di/D0 0.1 0.5 0.9

n s S A S A S A

1
2
3
4

3.3188
8.1611

11.3529
11.5429

1.4331
4.4905
7.4321
9.6202

2.2335
9.9566

11.3428
12.2074

1.3882
8.3210
9.1270

14.1327

1.6979
5.9050

13.2223
20.2580

1.6481
12.6939
25.9346
27.1552

0t 1
2
3
4

5.1423
8.4574

11.7385
15.0444

7.8540
9.3877

11.5418
14.1237

6.8138
12.8555
15.7080
17.1222

7.8540
10.3978
15.0649
20.6016

15.7080
31.4159
31.4821
35.1832

7.8540
23.5618
32.4470
39.2699

1 1
2
3
4

2.7475
6.0311
6.8793

10.2331

2.7173
5.6433
7.6190
8.2382

2.8055
7.3717
9.8675

11.3864

1.9431
8.0388
8.5342
8.9449

2.3932
5.9533

13.1191
15.9063

1.6880
8.0835

12.7261
23.5117

2 1
2
3
4

2.2099
4.1485
6.8392
8.4934

0.8909
4.0638
7.0180
8.7818

0.9490
4.1774
8.6297
9.7212

0.6907
3.1233
8.3999
8.7928

0.1382
3.7708
6.0965

12.8965

0.2769
1.9152
8.7070

12.8223
3 1

2
3
4

3.5938
5.7879
8.7332

10.0785

1.8593
5.3505
8.1441
9.7189

2.2486
5.7173
9.4408

10.2698

1.6805
4.4498
8.8076
8.9864

0.3883
5.3064
6.3300

12.6858

0.8203
2.3822
9.5976

12.9815

Note: a — axisymmetric, t — torsional.

Table 8.15 Frequencies ω ρR G0 /  for Completely Free, Hollow Circular Cylinders 
Having L/D0  = 0.2 and ν = 0.3



 348 C h a p t e r  E i g h t  V i b r a t i o n s  o f  T h r e e - D i m e n s i o n a l  B o d i e s  349

length-to-outside-diameter ratios (L/D0) of 0.2, 1, and 5, respectively. 
The former configuration (Table 8.15) is a thick circular plate, whereas 
the latter (Table 8.17) is a thick circular tube. In each table, data is 
given for three diameter ratios (Di/D0 = 0.1, 0.5, 0.9) and four 
circumferential wave numbers (n = 0, 1, 2, 3). Poisson’s ratio is taken 
as 0.3. Two cases are shown for n = 0: axisymmetric and torsional 
modes. Exactitude of all data to at least four significant figures shown 
was verified by convergence studies. 

Based on these tables, the first 10 modes for each cylinder are 
identified in sequence in Table 8.18. In studying Table 8.18, one notes 
that, for example, the fundamental frequency for L/D0 = 1 corre-
sponds to an antisymmetric torsional mode for Di/D0 = 0.1, but for 
Di/D0 = 0.5 and 0.9 it is a symmetric mode of n = 2. For Di/D0 = 0.9, 
the configurations are circular cylindrical shells. It is generally 
known that for such shapes the higher circumferential wave num-

Di/D0 0.1 0.5 0.9

n s S A S A S A

0a 1
2
3
4

2.3167
3.0122
3.8609
4.8592

2.8291
3.5237
4.7566
5.4372

2.0425
2.3047
2.8930
4.3810

2.1513
3.0914
5.2855
5.6419

1.6466
1.7071
2.1679
2.7410

1.6906
1.8231
2.7816
4.6575

0t 1
2
3
4

3.1416
5.1424
6.0261
6.2832

1.5708
4.7124
5.3769
6.9750

3.1416
6.2832
6.8138
7.5032

1.5708
4.7124
6.9926
7.8540

3.1416
6.2832
9.4248

12.5664

1.5708
4.7124
7.8540

10.9956

1 1
2
3
4

1.9922
2.8110
3.3468
4.1065

2.1117
3.0755
3.9120
4.5739

1.8932
2.4807
3.0794
4.0284

1.6041
2.9311
3.2380
4.6748

1.4845
2.1573
2.1649
2.7668

1.2940
1.7692
2.6629
2.8037

2 1
2
3
4

2.2130
2.4456
4.0290
4.3618

1.9128
3.1381
4.0040
4.6540

0.9700
1.9351
3.2929
4.3187

1.0451
2.4981
3.4401
4.2654

0.1427
1.0898
2.1737
2.6689

0.1852
1.5868
1.9709
2.8791

3 1
2
3
4

3.3346
3.6254
4.9457
5.7999

3.1876
4.1351
4.8242
5.7877

2.2868
2.8033
4.1991
5.3248

2.3475
3.4771
4.2579
5.2834

0.3999
0.9644
2.2500
3.3062

0.4662
1.5825
2.8468
3.0486

Note: a — axisymmetric, t — torsional.

Table 8.16 Frequencies ω ρR G0 /  for Completely Free, Hollow Circular Cylinders 
Having L/D0 = 1 and ν = 0.3
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bers (n > 2) become more important in the frequency spectrum  
(cf. [8]). This is verified in Table 8.18. Conversely, for completely  
free annular plates it is known that the fundamental mode is in 
bending with n = 2 (cf. [20]). This is seen in Table 8.18 for L/D0 = 0.2 
and Di/D0 = 0.1 and 0.5.

For the longer cylinders (L/D0 = 1 and 5) which are also thick  
(Di/D0 = 0.1 and 0.5) it is seen in Table 8.18 that the antisymmetric 
torsional modes (n = 0t) are particularly important. For L/D0 = 1 and 
Di/D0 = 0.1, the fundamental frequency is in this mode. Table 8.16 
shows that this fundamental frequency is ω ρ πR G0 2 1 5708/ / ( . )= = . 
Interestingly, the second antisymmetric torsional frequency is  
3π/2(= 4.7124). Similarly, the first and fourth symmetric torsional 
frequencies are π and 2π. For all these modes the core of the cylinder 
rotates in the same direction as its outer elements. For the other 
torsional frequencies (e.g., ω ρR G0 5 1424 5 3769 6 026 6 950/ . , . , . , . )=  

Table 8.17 Frequencies ω ρR G0 /  for Completely Free, Hollow Circular Cylinders 
Having L/D0 = 5 and ν = 0.3.

Di/D0 0.1 0.5 0.9

n s S A S A S A

0a 1
2
3
4

0.5054
1.4838
2.3168
2.8444

1.0034
1.9301
2.6214
2.8963

0.5051
1.4621
2.0434
2.1781

0.9998
1.8329
2.1436
2.2101

0.5044
1.3949
1.6468
1.6844

0.9904
1.5885
1.6708
1.6924

0t 1
2
3
4

0.6283
1.2566
1.8850
2.5133

0.3142
0.9425
1.5708
2.1991

0.6283
1.2566
1.8850
2.5133

0.3142
0.9425
1.5708
2.1991

0.6283
1.2566
1.8850
2.5133

0.3142
0.9425
1.5708
2.1991

1 1
2
3
4

0.1651
0.6811
1.2835
1.8224

0.3990
0.9807
1.5718
1.8668

0.1776
0.6726
1.1842
1.5020

0.4096
0.9344
1.3469
1.5037

0.2018
0.6740
1.0469
1.2258

0.4344
0.8756
1.0874
1.2524

2 1
2
3
4

2.0599
2.2112
2.2216
2.3466

2.0596
2.2131
2.2529
2.4843

0.9804
1.0063
1.1441
1.4512

0.9831
1.0552
1.2777
1.6555

0.1439
0.1708
0.3824
0.6875

0.1458
0.2526
0.5330
0.8369

3 1
2
3
4

3.2503
3.5919
3.6081
3.6313

3.2503
3.5941
3.6062
3.6915

2.3007
2.3269
2.4072
2.5729

2.3016
2.3580
2.4780
2.6927

0.4032
0.4179
0.4935
0.6580

0.4055
0.4449
0.5655
0.7650

Note: a — axisymmetric, t — torsional.
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the core rotates in a direction opposite to that of the outer elements, 
with a nodal surface (of non moving points) occurring between 
them. 

The length-to-outside diameter ratio (L/D0) of 1 represents a 
typical 3D hollow cylinder. From Table 8.16, it is noted that as Di/D0 
becomes smaller (i.e., the cylinder becomes thicker), the frequencies 
not only increase on the whole, but becomes dense in a saturated 
manner. 

Three-dimensional vibration analyses of completely free, hollow 
circular cylinders were also conducted by several others. Particularly 
notable is the work of Hutchinson and El-Azhari [21,22], who used a 
series method to obtain extensive, reasonably accurate frequencies. 
Gladwell and Vijay [23] applied the finite element method. Singhal 
and Williams [24] obtained excellent experimental results. 

Hutchinson and El-Azhari [22] chose four geometrical shapes  
(L/D0, Di/D0) = (0.2, 0.1), (0.2, 0.5), (0.5, 0.1), and (0.5, 0.5), and compared 
their 3D series solutions with 2D frequencies from Mindlin’s thick 
plate theory. Tables 8.19 and 8.20 compare the frequencies for thick 
annular plates having L/D0 = 0.2 and 0.5, respectively, obtained by 
the Ritz method [19] and those presented in Ref. [22]. 

It is observed from Table 8.19 that most of the frequencies of 
Hutchinson and El-Azhari [22] agree well with the Ritz ones in an 
upper bound manner. However, there are some data which are too 
high or too low. The Ritz data presented are accurately converged to 
the exact values. The large disagreements are underlined. From 

L/
D0 Di/D0

Sequence

1 2 3 4 5 6 7 8 9 10

0.2 0.1
0.5
0.9

2,1
2,1
2,1

0a,1
2,1
2,1

3,1
0a,1
3,1

2,1
3,1
4,1

1,1
1,1
3,1

1,1
0a,1
5,1

4,1
3,1
4,1

0a,1
4,1
0a,1

3,1
1,1
1,1

5,1
2,2
0a,1

1 0.1
0.5
0.9

0t,1
2,1
2,1

2,1
2,1
2,1

1,1
0t,1
3,1

1,1
1,1
3,1

2,1
1,1
4,1

0a,1
2,2
4,1

2,2
0a,1
3,2

1,2
0a,1
2,2

0a,1
3,1
4,2

0,2

5 0.1
0.5
0.9

1,1
1,1
2,1

0t,1
0t,1
2,1

1,1
1,1
2,2

0a,1
0a,1
1,1

0t,1
0t,1
2,2

1,2
1,2
0t,1

0t,2
1,2
3,1

1,2
0t,2
3,1

0a,1
2,1
3,2

0t,2
2,1
1,1

Notes: a — axisymmetric, t — torsional.
Underlined numerals are for antisymmetric modes.

Table 8.18 Modes (n,s) Corresponding to the First 10 Frequencies for the Hollow 
Circular Cylinders of Tables 8.15–8.17 (ν = 0.3)
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Di/
D0 n Method

s

1 2 3 4

0.1 0 R
S
M

1.433
1.440
1.433

4.491
4.498
4.484

7.432
7.439
7.454

9.620
9.387
9.606

1 R
S
M

2.717
2.724
2.717

5.643
5.649
5.637

7.619
7.622
7.725

8.238
8.238
8.498

2 R
S
M

0.891
0.896
0.892

4.064
4.071
4.058

7.018
7.025
7.021

8.782
8.782
8.944

3 R
S
M

1.859
1.864
1.864

5.350
5.358
5.343

8.144
8.149
8.176

9.719
9.719
9.866

0.5 0 R
S
M

1.388
1.398
1.388

8.321
8.327
8.324

9.127
9.128
9.370

14.133
10.398
10.593

1 R
S
M

1.943
1.950
1.951

8.039
8.040
8.189

8.534
8.539
8.659

8.945
8.946
9.162

2 R
S
M

0.691
–
–

3.123
3.127
3.142

8.400
8.404
8.461

8.793
8.794
8.964

3 R
S
M

1.680
1.682
1.684

4.450
4.453
4.475

8.808
8.990
8.899

8.986
10.234

9.076

Table 8.19 Comparison of Frequencies ω ρR G0 /  for Completely Free, 
Hollow Cylinders with L/D0 = 0.2 and ν = 0.3 by the 3D Ritz Approach (R) [19], 
Hutchinson’s 3D Series (S) [22], and Mindlin’s 2D Plate Theory (M) [22]

Tables 8.19 and 8.20 it appears that, on the whole, the Mindlin thick 
plate theory gives reasonably accurate results, even for the very thick 
plates (L/D0 = 0.5), at least for the lower frequencies. 

8.7 Other Three-Dimensional Bodies
In Secs. 8.4–8.6 earlier in this chapter it was shown that the immensity 
of a 3D analysis of bodies having polar symmetry can be reduced 
greatly by assuming trigonometric functions of the polar angle (θ) 
for the three displacements components (u, v, w). This results in a set 
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of 2D problems, one for each Fourier component (n) of interest. But 
even with this simplification, physical problems having important 
boundary conditions, such as fixed or free, typically have no exact 
solutions. Approximate methods, such as that of Ritz must then be 
used to obtain accurate free vibration frequencies and corresponding 
mode shapes. But the size of eigenvalue (frequency) determinants 
needed are much smaller than what would be required without 
considering polar symmetry. 

In this manner accurate frequencies for solid and hollow cylin-
ders were calculated and presented earlier. In similar ways analysis 
of other bodies having polar symmetry may be undertaken. This 

Di/
D0 n Method

s

1 2 3 4

0.1 0 R
S
M

2.363
2.364
2.361

4.758
4.758
4.928

6.201
6.026
6.080

7.911
6.204
6.465

1 R
S
M

2.986
2.986
3.016

4.027
4.027
4.147

4.628
4.628
4.715

6.279
6.023
6.444

2 R
S
M

1.551
1.552
1.555

3.999
4.000
4.039

5.198
5.198
5.341

5.763
5.756
5.913

3 R
S
M

2.804
2.805
2.823

4.959
4.959
4.983

6.474
6.474
6.759

6.988
6.992
7.306

0.5 0 R
S
M

1.984
1.985
1.985

5.772
5.774
6.720

8.258
7.503
7.547

9.084
8.259

10.010
1 R

S
M

1.999
2.000
2.005

3.930
3.930
4.064

5.839
5.841
6.583

7.706
6.401
8.207

2 R
S
M

1.039
1.040
1.040

2.846
2.846
2.860

5.172
5.173
5.399

6.157
6.159
6.730

3 R
S
M

2.320
2.321
2.324

3.946
3.946
3.971

6.392
6.392
6.749

6.805
6.806
7.311

Table 8.20 Comparison of Frequencies ω ρR G0 /  for Completely Free, 
Hollow Cylinders with L/D0 = 0.5 and ν = 0.3 by the 3D Ritz Approach (R) [19], 
Hutchinson’s 3D Series (S) [22], and Mindlin’s 2D Plate Theory (M) [22]
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was done by Kang and Leissa, using the Ritz method, to publish the 
first known results from 3D analysis for a considerable variety of 
bodies of interest, some of which will now be described briefly. 
Extensive tables of accurate natural frequencies for each configuration 
are given in the published journal articles listed below. 

The thick conical shell [25] was examined utilizing the cross-
section and cylindrical coordinates (r, θ) depicted in Fig. 8.7. The 
energy functionals contained volume elements which were hollow 
cylinders of thickness dr. The resulting volume integrations are 
relatively simple for the cross-section in Fig. 8.7. But the edge at r = R 
is seen to be different from that usually associated with shells. 
Frequencies were given for moderately thick and thicker shells (h/R 
= 0.1, 0.3) and various cone angles (α). In a similar manner solid cones 
with and without an axial circular hole (Fig. 8.8) were treated [26]. For 
this situation it was convenient for integration to measure r from the 
hole boundary (Fig. 8.8). A solid cone was then achieved by having 
an extremely small (a/hb = 10−5) hole radius.

Three-dimensionally, a circular ring is a toroid. Various rings 
having isosceles trapezoidal cross-sections (Fig. 8.9) were examined 
[27] by means of a 3D Ritz analysis. Accurate frequencies were found 
for some interesting cross-sections (Fig. 8.10), which include the 
square as a special case. Isosceles triangular cross-sections were also 
treated by setting ht = 0 (Fig. 8.9). Circular rings with elliptical cross-
sections (Fig. 8.11) were analyzed, carrying out the r–z integrations 
over the cross-sectional areas; integration on θ is duplicated for  

Figure 8.7 A cross-section of a thick conical shell, and the cylindrical 
coordinate system (r, z, θ).
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all integrals, and could therefore be ignored [28]. Frequencies for  
circular cross-sections, an obvious special case, were also reported. 

In Ref. [29] a general, 3D method of analysis was presented for 
determining free vibration frequencies and mode shapes of hollow 
bodies of revolution (i.e., thick shells), not limited to straight-line 
generators or constant thickness. The middle surface of the shell may 
have an arbitrary curvature, and the wall thickness may vary 
arbitrarily. A meridian line of arbitrary shape that generates the shell 
midsurface when rotated is shown in Fig. 8.12. This generating curve 

z 
h(z) 

a hb 

D/2

L 

r

Figure 8.8 Right triangular cross-section of a circular cylindrical body of 
revolution with linearly varying wall thickness and coordinate system (r, θ, z).

S 

L 
ht 

hb 

Rit 

0

r 

y 

z

Figure 8.9 A circular ring with isosceles trapezoidal cross-section and the 
coordinate system (s, z, θ).
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may be prescribed either by a single equation r = r(z) or by a set of 
parametric equations, r = r(φ), z = z(φ). From these the two principal 
radii of curvature (ρ1 and ρ2, shown in Fig. 8.12) may be obtained. 
This was carried out for many shells of classical curvature [29]. 
Utilizing tensor analysis, the 3D strains were expressed in terms of 
the displacement components, and from these the energy functional 
needed for the Ritz method were derived [29].

The general 3D method described above was used to obtain 
extensive, accurate frequencies for several different types of thick 
shells of importance: spherical [30], hemispherical [31], paraboloidal 
[32,33], and hyperboloidal [34]. A typical hyperboloidal shell, which 
could simulate a cooling tower, is seen in Fig. 8.13.

Three-dimensional bodies which do not have rotational 
symmetry typically require very large frequency determinants for 

ht/hb = 1  

0 = 0°

0 = 45°

0 = 90°

ht/hb = 1  

ht/hb = 1  

ht/hb = 1/3  

ht/hb = 1/3  

ht/hb = 1/3  

ht/hb = 3  

ht/hb = 3  

ht/hb = 3 

Figure 8.10 Cross-sections of circular rings with hm/L = 1 and Rit/L = 3;  
hm = (ht + hb)/2.
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accurate (i.e., well-converged) results. The twisted, cantilevered 
parallelepiped (Fig. 8.14) was taken up by Leissa and Jacob [35] using 
the Ritz method. The three displacement components (u, v, w) were 

z1

R + a
r

z (axis of revolution) 

r

– (R + a) –(R – a) R – a

b

–b

–R R

z2

Figure 8.11 Cross-section of a thick, complete, circular ring having an 
elliptical cross-section, its planform and the circular cylindrical coordinate 
system (r, θ, z).

z 

ds dz r 
dr 

d

2

1

Figure 8.12 Meridian of middle surface of shell of revolution.
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assumed to be algebraic polynomials, as in Sec. 8.3 previously. But 
some of the symmetry present in regular parallelepipeds is lost, 
which causes larger frequency determinants to be needed. Accurate 
(i.e., well-converged) results required using one of the few 
supercomputers in existence of that time. 

–b

a–a
Ht

Hb

H

r

h
b

z

Figure 8.13 Hyperboloidal shell of revolution with cylindrical coordinate system 
(r, θ, z).

z 

a 

y 

γ
η

φo

φo

x, ξ

h

2 

2 
b 

b 

Figure 8.14 Coordinates and dimensions for  a twisted cantilevered 
parallelepiped.
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In a similar manner frequencies were found for the 3D skewed 
cantilever parallelepiped (Fig. 8.15), using algebraic polynomials in 
the x–y–z coordinates to represent the three displacement compo-
nents [36], and also using a supercomputer for the calculations. 
Determinant orders as large as 288 were required to obtained 
reasonably accurate (three digit) convergence for skew angles (α) as 
large as 45°. Calculations were also made using versions of a good, 
3D finite element computer program (MSC/NASTRAN®), requiring 
determinants as large as 2520. Moreover, reasonably accurate 
frequencies could thus be found for α not exceeding 30°. The strength 
of the stress singularities in the re-entrant corner (Fig. 8.15) increases 
as the skew angle (α) increases, which makes computational conver-
gence slower. 
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Problems
1  A. Substitute (8.17) into the equations of motion (8.14). Solve the resulting 

sixth order set of ordinary differential equations in U(z), which will 
contain six constants of integration.

B. Locate the coordinate origin so that the two faces of a rectangular 
parallelepiped are at z = ±c/2, and they are both completely free. Develop 
two determinants of third order, one for symmetric free vibration modes, 
and the other for antisymmetric ones in z of the body.

2 Derive the 3D equations of motion (8.23) and (8.24) in cylindrical 
coordinates. Follow the same logic that was used to arrive at Eqs. (8.14), except 
that all relationships used will now be in cylindrical coordinates. (Hint: The 
strain–displacement relationships are also derived in some theory of elasticity 
textbooks.)

3  A. Determine the characteristic (frequency) equations for the torsional 
modes of a solid circular cylinder having its cylindrical surface (r = R) 
fixed, and both ends (z = ±L/2) free.

B. Let L/2R = 1. Calculate the first six nondimensional frequencies /ω ρR G. 
Obtain the corresponding eigenfunctions.

C. Determine whether interior nodal surfaces (i.e., surfaces where u = v = 
w = 0) exist for any of the mode shapes corresponding to the frequencies 
found in Part B. If any exist, determine their locations. 

4 Determine solutions U(r,z) and W(r,z) to (8.23), using (8.25), for n = 0. 
Describe carefully at least two sets of boundary conditions to which these 
solutions can be applied. 

5 Assume that a three-dimensional body has material damping (Sec. 3.6). 
Derive a generalization of the equations of motion (8.14) which includes the 
material damping. 
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6 A solid circular cylinder has a radius R and a length L, and is completely 
free. Use the information and results available in earlier chapters to determine 
its first natural frequency for each of the following modes:

A. Axial extension

B. Torsion

C. Beam bending (elementary theory)

D. Beam bending (Timoshenko theory)

Compare these results with those of 3D theory in Tables 8.11 and 8.12. 



CHAPTER 9
Vibrations of Composite 

Continuous Systems

The use of composite materials as structural components in 
many engineering applications has been expanding rapidly in 
the past four decades. As a result, composite materials and 

structures constitute a considerable portion of today’s airplanes, 
missiles, submarines, and sport equipment. In addition, they are 
finding interesting applications in the areas of automotive engineer
ing, construction materials, biomedical equipment, and others. 

The first attribute of composite materials that has attracted 
engineers to use them in many applications was probably their 
lightweight. Lightweight structures and materials were considered 
closely by the aerospace and defense industries early on. In today’s 
engineering environments, lightweight structures are being 
considered closely in many fields because of their positive impacts 
on efficiency, noise and vibrations, as well as other attributes. In 
addition to offering lightweight, composite materials are achieving 
both high strength and high stiffness which made them competi
tive when compared with common metallic materials. Moreover, 
composite materials offer more parameters for designers to optimize 
or tailor their design to certain applications. They can also be 
friendly to specific environments like the ability to embed special 
layers or elements that achieve certain requirements including 
thermal or electric conductivity. Also, composites made of 
environmentalfriendly materials (e.g., biodegradable materials) 
are receiving particular attention for many interesting 
applications.

There are several types of composite materials. In general, com
posite materials are those materials made of more than one type of 
materials. Traditional examples of reinforced concrete, thermoplas
tics reinforced with short fibers, honeycomb composites, sandwich 
panels are all composite materials. Some of the most common types 
of composites are those made of layers, each of these layers is com
posed of long fibers embedded in a resin. Using various approaches 
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(e.g., mixture theory), each layer can be represented at a macroscale 
as an orthotropic material. These laminated composites are widely 
used in the aerospace industry and are receiving attention in other 
industries like automotive and medical equipment. These will be the 
focus of this chapter.

Advances in the manufacturing of composite materials and 
structures made them affordable for many engineering applications. 
These attributes of higher strength and stiffness to weight ratios as 
well as their affordability led to their extensive use. Laminated 
materials can exist in modern applications as beam, curved beam, 
plate, and shell components.

Vibration of composite structures has received considerable 
attention by researchers. A recent book on the subject [1] listed 
hundred of publications on the dynamics of composite shells alone. 

In this chapter, we will review some of the fundamental  
equations used for straight beams, curved beams, plates, and shells. 
In addition, we will present solutions for the vibration problem  
of these components with various boundary conditions. We will 
present exact solutions as well as numerical ones using mainly the 
Ritz method. The focus here will be on free vibration analysis. 

Unless stated otherwise, we will make the following 
assumptions:

 1. The fibers are parallel to the upper and lower surfaces of 
their layer within the shell, plate, or beam. 

 2. The fibers do not follow straight lines for shells or curved 
beams. Instead, the curvature of these fibers follow that of 
the shell (or curved beam) maintaining the same distance 
from the upper and lower surfaces.

 3. The angle between the fibers in one layer to those in another 
layer remains constant.

 4. The fibers are evenly distributed in each layer.

Structural elements can have various types of orthotropy 
depending on the fiber orientations. The fibers may follow rectan
gular orthotropy when one finds a rectangular coordinate system 
for each layer where the fibers in that layer are parallel to one 
coordinate and perpendicular to the other coordinates. Other types 
of orthotropy including circular or polar orthotropy exist either 
naturally (e.g., wood) or synthetically. In the latter, for each layer 
there exists a polar coordinate system where the fibers are either in 
the radial or tangential directions. This consideration will introduce 
a fundamental concern in the formulation of the problem which is 
no longer a function of the boundaries or the geometrical shape 
only. The material and its orthotropy must be considered in the 
formulation of the equations at a fundamental level. A challenge 
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will rise when a circular plates, for example, is made out of materials 
having rectangular orthotropy (or vice versa). The analyst then faces 
the challenge of whether to formulate the problem using rectan
gular or polar coordinates. Such problems are seldom treated 
analytically. 

It should be noted here that composite materials are generally 
more flexible in shear than metallic material. Thus, shear deformation 
can be a major contributor to the overall deformation of the structural 
element at hand. Its impact is noticed in elements that are thinner 
than those of metallic materials. Thus, shear deformation (and rotary 
inertia) will receive more attention in this chapter than previous 
chapters.

9.1  Differential Equation of a Laminated Body in 
Rectangular Coordinates

As typically done in mechanics and experienced in the previous 
chapters, we will first relate the external forces to internal stresses (or 
stress resultants) through force and moment equilibrium of a 
differential element. Second, the deformation at any point of the 
engineering body is related to engineering strains or “average” 
deformation. Once the state of stress and that of strain are determined 
independently, the constitutive (i.e., stress–strain) relations can be 
used to complete the set of equations needed to solve the problem. As 
will be seen, it is in the constitutive equations, that composites 
materials are significantly different from metallic or isotropic 
materials. 

In this section, we will cover the fundamental equations that 
govern the mechanics of elastic laminated bodies in rectangular 
coordinates. It is assumed here, unless stated otherwise, that the 
materials are perfectly elastic. The only displacement within the 
body treated here is related to its deformation. Furthermore, only 
small deformations (and rotations) are treated. The deformation of 
the body is broken into components u, v, and w parallel to the x, y, 
and z coordinates; respectively. The strain displacement relations can 
be written as 
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(9.1)

In order to derive stress–strain relations, consider a laminated 
composite thin structure constructed from very thin layers of 
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composite material laminae. The materials of each lamina consist of 
parallel, continuous fibers of one material (e.g., glass, boron, carbon, 
graphite) embedded in a matrix material (e.g., epoxy resin). The 
matrix material has the primary purpose of transferring shear stress 
between the fibers as needed. 

On a macroscopic level, each layer will be regarded as being 
homogeneous and orthotropic. However, the fibers of a typical layer 
may not be parallel to the coordinates in which the equations are 
expressed. This yields anisotropy at the macrolevel of the laminate. 
For an orthotropic layer, the stress–strain relations can be presented 
in terms of the layers fiber directions (or coordinates 1 and 2 in 
Fig. 9.1) in 3D as
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(9.2)

Notice that we described the fiber coordinates of the laminate as 
1 and 2, where direction 1 is parallel to the fibers and 2 is perpendicular 
to them. The material constants Qij are defined in terms of the 
material properties of the orthotropic laminate.
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Figure 9.1 Coordinate systems of fiber reinforced materials.



 366 C h a p t e r  N i n e  V i b r a t i o n s  o f  C o m p o s i t e  C o n t i n u o u s  S y s t e m s  367

 

Q E Q E

Q E Q G

11 11
23 32

22 22
31 13

33 33
12 21

44 23

1 1

1

= − = −

= − =

ν ν ν ν

ν ν
∆ ∆

∆

,

, , QQ G Q G

Q E E

Q E

55 13 66 12

12 11
21 31 23

22
12 32 13

13 11
3

= =

= + = +

=

,

ν ν ν ν ν ν

ν
∆ ∆

11 21 32
22

13 12 23

23 22
32 12 31

33
23 21 13

+ = +

= + = +

ν ν ν ν ν

ν ν ν ν ν ν
∆ ∆

∆ ∆

E

Q E E

∆∆ = − − − −1 212 21 23 32 31 13 21 32 13ν ν ν ν ν ν ν ν ν  

(9.3)

where E11, E22, and E33 are modulii of elasticity in the 1, 2 and 3 
directions respectively; G12, G23, and G13 are modulii of rigidity and 
νij (i,j = 1, 2, 3, i ≠ j) are Poisson’s ratios. It should be noted that the 
Poisson’s ratios are governed by the equation νij/Eii = νji/Ejj. There are 
only nine independent material properties for each layer. These are 
E11, E22, E33, G12, G23, G13, ν12, ν23, and ν13.

Consider the stress element shown in Fig. 9.1. The orientation of 
the fibers makes the angle θ with the rectangular coordinates x and 
y. The transformation of stresses (and strains) from the 1, 2 coordinates 
(Fig. 9.1) to the x and y coordinates can be performed by using the 
transformation matrix T. This matrix is
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(9.4)

where m = cos (θ) and n = sin (θ). Note that the inverse of the 
transformation matrix T can be found by replacing θ with –θ. The 
transformation from fiber coordinates 1 and 2 to global coordinates x 
and y can be done now as follows:
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The stress–strain relationship for a typical nth lamina (typically 
called monoclinic) becomes:
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where, as discussed earlier, σx, σy, and σz are normal stress compo
nents; σxz, σyz, and σxy  are shear stress components; ex, ey, and ez are 
normal strain components and γxz,  γyz, and γxy are the engineering 
shear strains. The positive directions of the stresses are shown in 
Fig. 9.1. The constants Qij are the elastic stiffness coefficients, which 
are found from 

 [ ] [ ] [ ][ ]Q T Q T= −1
 (9.7)

Performing the matrix multiplication in the above equation, the 
stiffness coefficients Qij  are
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The equations of motion can be derived directly from Newton’s 
second law, where the sum of forces is equal to the mass multiplied 
by the acceleration in each direction. This is done in Chap. 8 and (8.2) 
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offer the equilibrium equations. The free vibration equations for a 3D 
body are described earlier as well in (8.7).

The boundary terms have to be obtained by physical arguments. 
For the boundaries with z = constant, the boundary conditions that 
can be applied are
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where σ0z, σ0xz, and σ0yz are surface tractions and u°, v°, and w° are 
specified displacement functions at z = constant. Similarly for the 
boundaries x = constant and y = constant, a 3D element has six 
surfaces. With three equations describing boundary conditions at 
each surface, a total of 18 equations can be obtained.

It should be mentioned that the above equations are developed 
for singlelayered bodies. For multiple layered bodies (Fig. 9.2), the 
subject of this chapter, both displacements and stresses have to be 
continuous going from the layer k to the next layer k + 1 in a laminate 
having N number of layers. The following conditions should be met 
to insure that there are no free internal surfaces (i.e., delamination) 
between the layers.  
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  For k = 1, … , N − 1 (9.10)

The above equations will be used and specialized for various 
types of structural elements. In particular, we will focus on beams, 
curved beams, plates, and shells.

For thin bodies, where the normal strain ez is negligible, the stress–
strain equations for an element of material in the kth lamina may be 
written in the conventional form used for laminated plates [1] as:
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Note that in the above equations transverse shear stress relation 
with transverse shear strain is decoupled from the rest of the 
equations and can be written independently as a 2 × 2 matrix. Such 
matrix will involve the coefficients Q Q Q44 45 55, , and . If transverse 
shear strains are neglected, such equation will not be needed. 

Although the layers are orthotropic in their material coordinates, 
the above equations are the same as those of material with general 
anisotropy. This is a result of the lamination at an angle other than 0° 
or 90° with respect to the global (x,y) coordinates. In other words, the 
Q Q16 26 and  coefficients result from a coordinate transformation and 
arise only if the plate coordinates (x,y) are neither parallel nor 
perpendicular to the fibers. Correspondingly, if the plate coordinates 
are parallel or perpendicular to the fibers, then the terms Q Q16 26 and  
are zeros.

The stresses and stress couples over the thickness of the thin 
body (h) are integrated to obtain the force and moment resultants. 
Doing so results in equal inplane shear force resultants (i.e., Nxy = Nyx), 
and twisting moments (i.e., Mxy = Myx).

Substituting (9.1) and (9.11) into equations (6.11) for stress resul
tants and integrating stresses over the crosssection for force 
resultants, we obtain 

 

N
N
N

M
M
M

A A A B B B
A

x

y

xy

x

y

xy

− −





























=

11 12 16 11 12 16

112 22 26 12 22 26

16 26 66 16 26 66

11 12 1

A A B B B
A A A B B B

B B B
− − − − − − − − − − − − − −

66 11 12 16

12 22 26 12 22 26

16 26 66 16 26 66

D D D
B B B D D D
B B B D D D





























− −





























e

e

0

0

0

2

x

y

xy

x

y

xy

γ

κ
κ
κ

 

(9.12)

where Aij, Bij, and Dij are the stiffness coefficients arising from the 
piecewise integration over the thickness of the thin body:
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and where zk is the distance from the plate midsurface to the surface 
of the kth layer having the furthest zcoordinate (Fig. 9.2). The vector 
on the right side describes middle surface strains and curvature 
changes (6.13). Note here that the curvatures in (9.12) are defined as 
κx w x= −∂ ∂2 2/ , κy w y= −∂ ∂2 2/ , and κxy w x y= −∂ ∂ ∂2 / . 

In addition, the above equations are general for any laminate. 
More specialized equations can be obtained for special types of 
laminates. For example, for cross ply laminates made of 0° and 90° 
orientations, all the stiffness parameters A16, A26, B16, B26, D16, and D26 
are zeros. In addition, if the crossply laminate is symmetric about its 
middle surface, then, the rest of the Bij parameters will be zeros. If the 
plies (angle or crossplies) are symmetrically laminated, all the Bij 

vanish resulting in decoupling the inplane motion from transverse 
motion. This, as will be found later, will have major impact on the 
analysis performed. 

Example 9.1 A laminated thin body is made of graphite/epoxy material with 
material properties as E11 = 138 GPa, E21 = 8.96 GPa, G12 = 7.1 GPa, and ν12 = 0.30, 
(or E11/E21 = 15.4, G12/E21 = 0.79) and is constructed of 

A. Single Layer 0° ply
B. Symmetric crossply [0, 90]s laminate
C. Unsymmetric crossply [0, 0, 0, 90] laminate         
D. Symmetric [30, 60]s laminate 
E. Antisymmetric angleply [30, 60, −60, −30] 
F. Unsymmetric angleply laminate [30, 45, 60, 75]

Assume a thickness of one unit. Determine all the stiffness parameters Aij, 
Bij, and Dij for each of the laminates above. 

Solution
A. Consider the single layer 
We will assume ν32 = ν23 = ν31 = ν13 = 0. Using (9.3) one gets
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Figure 9.2 Nomenclature for stacking sequence.
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which yields (in a nondimensional form)

 Q E
E

E11 11 = = 
15.4 

 = 15.49  22
22∆

 Q
E

E22  =  = 1.006  22
22∆

 Q12 = 0.01959 E11 = 0.3018 E22 

 Q66 = G12 = 0.79 E22 

It should be noted here that E1 has been used to replace E11 and similarly for 
E2. Also, note that Q16 = Q26 = 0 for the single layer. The other parameters are 
irrelevant here.

Noting that for a 0° layer m = 1, and n = 0, and using (9.8), the [ ]Q  matrix as 
described in (9.11) for the single layer laminate can be calculated. 

From the [ ]Q  matrix and using (9.13) we can calculate the A matrix (in a 
nondimensional form) 
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Similarly, the D matrix is calculated (in a nondimensional form) 
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B. Symmetric crossply [0, 90]s laminate
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C. Unsymmetric crossply [0, 0, 0, 90] laminate

A /E hij 22 =
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D. Symmetric [30, 60]s 
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E. Antisymmetric angleply [30, 60, −60, −30]

A /E hij 22 =
















5 86079 2 68918
2 68918 5 86079 0

0 0 3 17742

. .

. .
.

0

BB /E hij 22
2 =

−
−

− −

















0 0
0 0

0.95630
0.61171

0.95630 0.61171 0

DD /E hij 22
3 =














0 71472 0 22410 0
0 22410 0 26208 0

0 0 0 26479

. .

. .
.




F. Unsymmetric angleply laminate [30, 45, 60, 75]

A /E hij 22 =
4.49173 2.49023 2.58135
2.49023 7.62775 3.27054
2.58135 33.27054 2.97846

0.86657 0.17408 0.4409

















=
− − −

B /E hij 22
2

44
0.17408 1.21473 0.16210
0.44094 0.16210 0.17408

−
− −

















Diij 22
3/E h =

0.42678 0.17022 0.20836
0.17022 0.65779 0.22272
0.208366 0.22272 0.21090
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General observations can be made from Example 9.1 that will impact 
the analysis performed on these composite structures. These are

 1. For symmetric crossply laminates (all Bij = 0, A16 = A26 =  
D16 = D26 = 0).

 2. For all crossply laminates (A16 = A26 = B16 = B26 = D16 =  
D26 = 0).

 3. For all symmetric laminates, the Bij terms are zeros.

 4. For antisymmetric angleply laminates (B11 = B12 = B22 =  
B66 = 0; A16 = A26 = D16 = D26 = 0).

 5. For the generally laminated body (asymmetric angleply), all 
stiffness matrices can be fully populated. 

9.2 Laminated Beams
A classical beam theory (CBT) will be developed here to treat thin 
beams. Applying the traditional assumptions for thin beams (normals 
to the beam midsurface remain straight and normal, both rotary 
inertial and shear deformation are neglected), strains and curvature 
changes at the middle surface are:
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(9.14)

where u0, and w0 are displacements in x and z directions, respectively.
e0 is middle surface strain and κ is the curvature change. Normal 
strain at any point would be

 e e= +0 zκ  (9.15)

Force and moment resultants are calculated by integrating 
stresses over the crosssectional area in a manner similar to (4.168), 
substituting the stress strain relations found earlier for a laminated 
body (9.11) and ignoring the strains in the y and z directions yields
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where 
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(9.17)

Note here that the above definitions are different from those used 
for general laminate analysis in the literature. The width in the above 
terms is included in the definitions of these terms, while it is 
customary to leave this term out in general laminate analysis (9.13). 
In addition, the above formulation does not account for any bending–
twisting coupling in the beam. Its applicability for angleply laminates 
should be tested.

Figure 9.3 shows a free body diagram of a differential beam 
element that can be used to derive the equations of motion. When 
this figure is compared with that of Fig. 4.2, it should be noted here 
that we included both bending and axial forces in the differential 
element for laminated composites. This is necessary because of the 
possible coupling that composites have between axial and bending 
deformations. Applying equilibrium equations in a manner similar 
to that done previously in Chap. 4 yields the equation of motion. The 
equations of motion for a laminated beam can be written as 
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(9.18a)

where
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(9.18b)

M + ( M/ x) dx 

N + ( N/ x) dx

V + ( V/ x) dx 

px 

pn 

V 

M 

N 

Figure 9.3 A differential element for a laminated beam.
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Note here that the second equation in (9.18a) resulted after 
substituting the summation of moments equation into that of the 
summation of forces in the vertical direction equation [as was 
done earlier in (4.170)]. Inserting the strain and curvature relations in 
the force and moment resultants equations and using those in the 
equations of motion one can express the equations of motion in terms 
of displacements as 
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(9.18c)

where
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For symmetrically laminated beams, all terms containing B11 
vanish. Note that even when the beam is symmetrically laminated, 
the coupling between inplane and transverse displacements (as was 
found earlier for isotropic beams) vanishes and the problem reduces 
to transverse vibration of a beam and a longitudinal vibration of 
a rod.

On each boundary, one must specify three conditions: 
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(9.18d)

Boundaries may also be elastically constrained, with the 
constraints being represented as translational and rotational springs 
at the beam edges. 

Simply supported boundary condition is considered here. The 
following condition is used for such boundaries

 w N Mx x0 0= = =    on x = −a/2, a/2 (9.19)
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The above equations would be satisfied if
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where α π
m

m
a

=  and a is the beam length and m is an odd number.

In a dynamic analysis, the external forces can be expanded in a 
Fourier series in x
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Substituting these equations in the equations of motion, we have 
the characteristic equation
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where

 C Am11
2

11= α  

 C Dm22
4

11= α  

 C C Bm21 12
3

11= = α  (9.23)

The nontrivial solution for natural frequencies in a free vibration 
analysis can be found by setting the determinant of the characteristic 
equation matrix to zero.

One should note here that if the laminate is symmetric, the B11 
term vanishes and the bending frequencies are totally decoupled 
from axial ones. This yields a frequency parameter equation similar 
to that of (4.24). As a result, the following formula for the natural 
frequencies (of a symmetrically laminated simply supported 
composite beam) can be applied:

 
ω π

n
n D

I h
= 





2
11

1  
(9.24)

where I1 is density as defined in (9.18b), ℓ is length, h is the thickness 
of the beam, and D11 is defined in (9.17). 
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As mentioned earlier, D11 does not quite capture all the couplings 
that exist in a laminate. That is why other formulations for D11 are 
proposed here. Vinson and Sierakowski [2] developed an equivalent 
flexural stiffness parameter for the laminate, which includes coupling. 
They proposed the following formula for equivalent modulus of 
elasticity of the each layer in the laminate

   

1 1 24

11 12

12

11

2 2

E E G Ex
k

k

k k k
k k= ( )

( ) + ( ) − ( )








 ( )cos

cos sin
θ ν θ θ(( ) + ( )

( )
sin4

22

θk

kE
 

(9.25)

An equivalent value for A11, B11, and D11 can then be  
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(9.26)

An alternative procedure proposes first finding the flexibility 
matrix [the inverse of the ABD matrix (9.12)]. We will call this the 
J matrix. It is derived for the whole laminate. An equivalent value to 
D11 can be calculated as [3]
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(9.27)

where J44 is the term in 4th row and 4th column of the inverse of the 
ABD matrix of the laminate (J matrix). Table 9.1 shows a comparison 
of the various stiffness parameters proposed in (9.12), and by Vinson 
and Sierakowski in (9.26). It is interesting to see that the Vinson–
Sierakowski expression and those of (9.12) yield close results for all 
crossply laminates (symmetric and asymmetric) but they are 
significantly different for angle ply laminates. 

The strain energy stored in a beam during elastic deformation is
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where V is the volume. Writing the strain energy functional for the 
kth lamina, and summing for n number of laminates yields 
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Substituting the strain–displacement and curvature–displace
ment equations 4.2 into 4.13 yields the strain energy functional in 
terms of the displacements
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It should be noted here that the coupling term B11 actually reduces 
the potential energy in the system, thus yielding lower natural 
frequencies when compared with symmetrically laminated beams. 
Using the distributed external force components px in the tangential 
direction, and pz in the normal direction, the work done by the 
external forces as the beam displaces is
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The kinetic energy for each lamina is
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(9.32)

Laminate

A11/E2bh B11/E2bh2 D11/E2bh3

A11 (A11)V-S B11 (B11)V-S D11 (D11)V-S

[0]4 15.4923 15.4018 0 0 1.2910 1.2835
[0/90]s 8.2491 8.2009 0 0 1.1401 1.1335
[02, 902] 8.2491 8.2009 1.8108 1.8002 0.6874 0.6834
[45]4 5.0678 1.7483 0 0 0.4223 0.1457
[302/602] 5.8632 2.1511 0.9054 0.2236 0.4886 0.1793

Table 9.1 A Comparison of Various Stiffness Parameters for Laminated Composite 
Beams with E1/E2 = 15.4, G12/E2 = 0.79, ν12 = 0.3 
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where ρ(k) is the lamina density per unit volume, and t is time. The 
kinetic energy of the entire beam is (neglecting rotary inertia 
terms):
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where I1 is the average mass density of the beam per unit length as 
defined in (9.18b). 

The above energy expressions can be used in an energybased 
analysis like finite element or Ritz analyses. 

9.3 Laminated Thick Beams
A shear deformation beam theory (SDBT) will be developed here to 
treat thick beams. It is well known that composite materials, in 
general, offer a stiffness that is more flexible in shear when compared 
with isotropic materials [1–3]. Also, composite beams used in general 
applications tend to be thicker than metallic ones (e.g., sandwich 
composites). For these reasons, it becomes necessary to include shear 
deformation in a reliable laminated beam theory. This was done 
earlier for isotropic beams (Sec. 4.12). 

Strains and curvature changes at the middle surface are [1,4]:
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where e0 is middle surface strain, γ is the shear strain at the neutral 
axis, and ψ is the rotation of a line element perpendicular to the 
original direction (see Sec. 4.12). 

Force and moment resultants as well as shear forces are calculated 
using 
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In order to find the shear force, it is assumed that the shear 
stresses are distributed parabolically across the crosssection in a 
manner similar to that for isotropic beams. In reality, there are 
discontinuities in shear stresses as one goes from one layer to the 
next. It is, however, found that the above assumption is accurate in 
assessing shear deformation. Implementing this assumption, the A55 
term above becomes [1, 2].
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where Q
k
55 is defined in (9.8). The equations of motion considering 

rotary inertia and shear deformation would then be [1,4]
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where 
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The term (I2) is of particular interest. It may be referred to as the 
coupling inertia and it only appears if the material density is not 
symmetric about the middle surface, which is rarely the case. This 
term does not exist for symmetrically laminated plates and even 
unsymmetrically laminated plates if the material used is the same, 
regardless of the fiber orientation.

Further mathematical manipulation enables one to express the 
equations of motion in terms of displacements. Multiplying the 
second equation in (9.37) of the equations of motion through by –1 
and substituting previous strain– and curvature–displacement 
equations (9.34) and relations (9.35) and (9.36) into (9.37), the equations 
of motion may be expressed in terms of the midsurface displacements 
and slope in matrix form (for free vibrations) as:
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where
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For symmetrically laminated beams, all terms containing B11 vanish 
causing coupling between extensional and bending deformation to 
disappear. 

Consider a simply supported beam where the following boundary 
conditions are used
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The above equations of motion as well as boundary conditions would 
be satisfied if
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where α πm m a= /  and m = 1 3, ,... and coordinates are at the center of 
the beam. Substituting these equations in the equations of motion we 
have the following equation for free vibration of simply supported 
thick laminated beams
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   where C Am11
2

11= −α  

 C Am22
2

55= −α  
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 C C Bm31 13
2

11= = −α  

 C C A m23 32 55= = α  

Previous formulation uses B11 which does not account for any 
coupling other than the bending–stretching coupling terms. Other 
couplings including bending–twisting, stretching–twisting as well 
as other stretching bending terms are not accounted for. To overcome 
this problem, equations in (9.26) are proposed. 

Tables 9.2 and 9.3 show results obtained using both the CBT and 
SDBT with various coefficients obtained directly from the ABD 
matrix (9.12) and those obtained using expressions (9.26). 

n 

CBT SDBT FEM

S11,(9.13) (S11)VS (S11)*, (9.13) (S11)VS 3D

0/0/0/0

1 1.575 1.571 1.501 1.497 1.492
2 6.302 6.283 5.318 5.307 5.250
3 14.179 14.137 10.270 10.254 10.08
4 25.206 25.133 15.615 15.597 15.25
5 39.385 39.270 21.040 21.022 20.49
0/90/90/0

1 1.480 1.476 1.418 1.414 1.415

2 5.922 5.905 5.082 5.071 5.046
3 13.324 13.285 9.927 9.910 9.80
4 23.688 23.618 15.225 15.206 14.96
5 37.012 36.904 20.644 20.624 20.21
0/0/90/90

1 0.746 0.744 0.738 0.736 0.735
2 2.979 2.970 2.857 2.849 2.813
3 6.683 6.664 6.114 6.099 5.936
4 11.831 11.797 10.212 10.190 9.775
5 18.387 18.333 14.880 14.852 14.067

(S11) VS refers to (A11) VS, (B11) VS, and (D11) VS.

Table 9.2 Natural Frequencies (ω πa I E I2
112/ /1 ) of Simply Supported Cross-

Ply Beams with Various Theories (a/h = 20, b/h = 2, Graphite/Epoxy, E11/E22 = 
15.4, G12/E22 = 0.79, ν12 = 0.3)
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In order to find which expressions deliver most accurate results, 
a procedure similar to that of Chap. 8 is developed. Instead of using 
the Ritz method, a finite element model is built using commercial 
software and 3D elements are used. Convergence studies are 
conducted for a typical problem to verify that the finite element 
results are converging. 

It is interesting to see that indeed, using the expressions A11, B11, 
and D11 as defined in (9.13) with a CBT will yield relatively accurate 
frequencies for the fundamental frequencies of all cross-ply laminates. 
For higher frequencies, a SDBT is needed and still the stiffness 
parameters obtained using (9.13) will yield relatively accurate results 
for crossply. For angleply laminates (Table 9.3), it is clear that 
expressions (9.13) are not accurate and expressions (9.26) are relatively 
accurate, although they seem to offer more flexibility (i.e., lower 
frequencies) that 3D finite element results. 

For angle ply laminates, it is clear that an expression similar to 
that of Vinson and Sierakowski (9.26) or the flexibility matrix (9.27) is 
needed with a CBT to be able to predict the lower frequency parameters 
and with a shear deformation beam theory to be able to provide 
accurate prediction for higher frequency parameters. It is interesting 

Table 9.3 Natural Frequencies (ω πa I E I2
112/ /1 ) of Simply Supported 

Beams with Various Theories (a/h = 20, b/h = 2, Graphite/Epoxy,  
E11/E22 = 15.4, G12/E22 = 0.79, ν12 = 0.3)

n
CBT SDBT FEM

S11 (S11)VS S11 (S11)VS 3D

45/45/45/45

1 0.9010 0.5292 0.8859 0.5257 0.5690
2 3.6042 2.1169 3.3792 2.0631 2.053
3 8.1094 4.7630 7.0920 4.5048 4.534
4 14.4167 8.4676 11.6064 7.7049 7.821
5 22.5261 13.2307 16.5932 11.5098 11.85
30/30/60/60

1 0.8186 0.5476 0.8075 0.5439 0.5958
2 3.2715 2.1894 3.1048 2.1327 2.165
3 7.3499 4.9227 6.5842 4.6513 4.770
4 13.0388 8.7430 10.8916 7.9437 8.132
5 20.3167 13.6434 15.7248 11.8466 12.15

(S11)VS refers to (A11)VS, (B11)VS, and (D11)VS.
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that for the fifth mode, where the length of the half sine wave to 
thickness ratio of 4, the SDBT yielded results that are relatively 
accurate when compared with those obtained with 3D finite 
elements. 

The strain energy stored in a beam during elastic deformation is
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Writing the strain energy functional for the kth lamina, and 
summing for n number of layers yields
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Substituting the strain displacement relations into the above 
energy expression yields the strain energy functional in terms of the 
slope and displacements
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A similar term to that of (9.31) can be developed for work done by 
external forces. Finding the kinetic energy for each layer and then 
summing for all layers yield 
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The above energy functionals can be used in energybased 
analyses similar to the Ritz method.  

9.4 Beams with Tubular Cross-Sections
Composite beams with tubular crosssections are receiving attention 
in engineering applications where weight reduction is a priority. 
They are currently being used in automotive applications as driveline 
shafts. Figure 9.4 shows a laminated beam with a tubular cross
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section. For such a beam with symmetric lamination, the following 
parameters are to be used 
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Table 9.4 lists natural frequencies obtained for a laminate that is 
mainly a crossply by various analyses. The results show that most of 
the models can predict the fundamental natural frequency for this 
beam. Also the Euler–Bernoulli beam theory used here is among the 
better models as compared with the experimental data provided in 
Ref. [5] and predicts the natural frequency with a 4.88 percent 
difference. It should be noted here that the model used by Iqbal and 
Qatu [9] considered only crossply laminates and the problem at 
hand has limited angle ply layers. 

It should also be noted here that the advanced models that use 
shell theory predicted the behavior fairly well. These models are also 
accurate for predicting high frequency modes (often referred to as 
shell modes) as described in Chap. 7 for isotropic shells. The results 
show, however, that the analyses presented here is accurate for 
bending modes of such beams. 

The effect of ply orientation on reduction of stiffness and 
consequently natural frequency is presented in Table 9.5. These 

w

r0

rN–1

rN

ri

y 

k = 1

k = N

Figure 9.4 A tubular cross-section of composite beam  made up of N-layer 
laminate.
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Table 9.4 Tubular Beam Fundamental Natural Frequencies (Hz) by Different Authors. 
Material is Boron/Epoxy (E11 = 211 GPa, E22 = 24 GPa, G12 = G13 = G23 = 6.9 GPa,  
ν = 0.36, Density = 1967 kg/m3), Length = 2470 mm, Mean Diameter = 126.9 mm, 
Thickness = 1.321 mm. (90, 45, −45, 0, 0, 0, 0, 0, 0, 90) Laminate (From Inner to 
Outer)

Author Method used Frequency (Hz)

Zinberg and 
Symonds [5,7]

Measured experimentally 100

Kim and Bert [6] Sanders shell theory 97.87
Donnell shallow shell theory 106.65

Bert and Kim [7] Bresse–Timoshenko beam theory 96.47
Chang et al. [8] Continuum based Timoshenko beam 96.03
Iqbal and Qatu [9] Finite element analysis 95.4

Euler–Bernoulli beam theory 102.47
Present study CBT  96.12

SDBT 94.71

Table 9.5 Effect of Lamination Angle on Fundamental Natural Frequencies of Tubular 
Graphite-Epoxy Beams. Graphite/Epoxy Materials, (E11 = 139 GPa, E22 = 11 GPa,  
G12 = G13 = 6.05 GPa, G23 = 3.78 GPa, ν = 0.313, density = 1478 Kg/m3)

Theory

Lamination angle

0 15 30 45 60 75 90

Sanders Shell [6] 92.12 72.75 50.13 39.77 35.33 33.67 33.28
Bernoulli-Euler [6] 107.08 89.88 71.15 52.85 38.20 31.42 30.22
Bresse-
Timoshenko [6]

101.20 86.82 69.95 52.38 37.97 32.90 30.05

Present FEM 
analysis 

100.28 68.80 45.51 35.90 31.96 30.57 30.27

Present CBT 
approach*

108.42 71.12 46.05 36.15 32.17 30.78 30.50

Present SDBT 
approach*

104.43 70.50 45.91 36.06 32.09 30.70 30.36

* (A11)VS, (B11)VS, and (D11)VS are used.

results are for the first natural frequency of a graphite epoxy tubular 
beam with the same geometry of the previous one from Ref. [6]. 
Results of the present CBT, SDBT, and FEM using shell elements are 
presented. 

Iqbal and Qatu [9] analyzed laminated composite shafts for 
automotive engineering applications when they have intermediate 
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supports. They considered single and multisegmented shafts with 
one and two supports in their analyses and studied their impacts on 
the natural frequencies. 

9.5 Laminated Thin Curved Beams
A classical beam theory (CBT) will be developed here to treat thin 
curved beams. A laminated curved beam (Fig. 9.5) is characterized 
by its middle surface, which is defined by the polar coordinate α 
(Figs. 9.5 and 4.24), where α = Rθ as defined in (4.165).

Middle surface strain and curvature change are the same as those 
developed earlier in Sec. 4.13 for isotropic beams and described in 
(4.166). The strain at an arbitrary point can be found from (4.167). 

Normal strain at an arbitrary point can be found from the 
equation e e= +( ) +( )0 1z z Rκ / /  as described in Ref. [1]. Note the 
presence of the (1 + z/R) term in the denominator of this equation. 
The term is negligible when the beam is thin [1]. Subsequently, the 
force and moment stress resultants for curved thin beams can be 
found from (9.16) and (9.17) found earlier for straight beams. 

 The equations of motion may be obtained by taking a differential 
element of a beam (Fig. 4.25) and requiring the sum of the external 
and internal forces in the α and z direction and the sum of the external 
and internal moments in the outofplane direction to be zero. The 
equations of motion are the same as those derived earlier for isotropic 
beams (4.169), except that the term (ρA) there should be replaced by I1 
defined earlier in this chapter (9.18b). Further mathematical 
manipulation in a free vibration analysis will yield
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(9.49)

Figure 9.5 Parameters used in a laminated curved beam.
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where

 

L A
B
R

D
R

L D
B
R

11 11

2

2
11

2

2
11
2

2

2

22 11

4

4
11

2

2

2

2

= + +

= − +

∂
∂α

∂
∂α

∂
∂α

∂
∂α

∂
∂α

AA
R

11
2

 

 
L L B

A
R

D
R

B
R

p12 21 11

3

3
11 11

3

3
11
2= = − + − +

∂
∂α

∂
∂α

∂
∂α

∂
∂α  

For symmetrically laminated beams, all terms containing B11 
vanish. Note that even when the curved beam is symmetrically 
laminated, there exist coupling between inplane and transverse 
displacements (as was found earlier for isotropic beams). 

Substituting the strain–displacement and curvature–
displacement equations for curved beams (4.166) into (9.29) yields 
the strain energy functional in terms of the midsurface displace
ments
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Finding the kinetic energy for each lamina and summing the 
energy expressions for each lamina together yields an energy 
expression similar to (9.33). 

Boundary conditions can be obtained through a variational 
formulation [1]. On each boundary, one must specify three 
conditions: 
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(9.51a)

Note that there is an additional term (M/R) in the first boundary 
condition. This term does not exist for straight beams. Boundaries 
may also be elastically constrained, with the constraints being 
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represented as translational and rotational springs at the beam edges. 
In such cases, the boundary conditions are generalized to
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(9.51b)

at the edge α = −a/2, where ku and kw are translational spring 
stiffnesses and kψ is the rotational spring stiffness. The signs of N, M, 
and Q in the above equations change at the edge α = a/2.

The simple support boundary conditions can take two forms for 
curved beams at one boundary, namely S1 and S2 (4.176a). Similarly 
for the free (4.176b) and clamped (4.176c) boundaries. 

The above equations constitute a complete and consistent set of 
equations for the analysis of laminated composite thin curved beams. 
It should be noted again here that the A11, B11, and D11 should be 
examined closely for angleply composites. Alternative expressions 
should be considered for beams that are not crossply as described in 
(9.26) and (9.27). 

Simply supported curved beams (with S1 boundary condition) 
will be studied in this section. For such beams, straightforward exact 
solution can be used (similar to that used in Chap. 4 for curved 
isotropic beams). 

The S1 boundary conditions are exactly satisfied at both ends (α = 
−a/2 and α = a/2) for thin beams by choosing displacement functions 
similar to those of (4.177). The external forces (important in static or 
dynamic analyses) can be expanded in a Fourier series in α as in (4.178), 
if a static analysis or a forced vibration analysis are needed. Substi
tuting these equations into (9.49) yields for free vibration analysis
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where
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The solution u0 = cos (αmα) sin (ωt); and w0 = sin (αmα) sin (ωt) is 
another solution for laminated curved beams having vertical hinge 
supports (i.e., u0 = ∂w0/∂α = Q = 0). This will yield a frequency 
determinant which is the same as that of simply supported beams, 
and consequently and interestingly, the same natural frequencies. 

Table 9.6 shows the first four natural frequencies obtained for 
simply supported deep thin beams. The nondimensional frequency 
parameter Ω = ω ρa E h2

1 11
212 /  ( / )= ωa I E I2

1 11 , where A is the cross
sectional area and I is the moment of inertia (bh3/12). Two orthotropy 
ratios and an unsymmetric (or asymmetric) laminate [0, 90] is used. 
It is observed there that the effect of curvature on the natural 
frequencies is the highest for the fundamental frequency and it is 
less for higher frequencies. 

Although exact solutions can be obtained for curved thin beams 
with other boundaries, they are mathematically complex and not 
attractive. The Ritz method will be used here in a general but simple 
form which can be used for arbitrary boundary conditions. This is 
done by using a procedure similar to that of Chap. 4 and summarized 
in equations (4.180) and (4.181). 

Table 9.7 shows results obtained using the Ritz method with 
algebraic polynomials. The table shows results obtained for the S2 
and C2 boundary conditions. Note here that the frequencies are 
much higher than those for the S1 case, due to the axial end constraints. 
Interestingly, this is the case even without curvature because of the 

Table 9.6 Exact Frequency Parameters Ω = ω ρa E h2
11

212 /  for Simply 
Supported (S1) [0°, 90°] Laminated Curved Thin Beams, ℓ /h = 100

R/ℓ

m
1 2 3 4

E11/E22 = 15

– 4.7037 18.810 42.320 75.222
10 4.6936 18.795 42.295 75.181
5 4.6707 18.767 42.255 75.131
2 4.5176 18.593 42.049 74.881
1 4.0115 18.030 41.431 74.188

E11/E22 = 40

– 4.0072 16.024 36.040 64.061
10 3.9938 16.011 36.017 64.021
5 3.9758 15.980 35.985 63.976
2 3.8432 15.831 35.805 63.757
1 3.4153 15.349 35.271 63.156
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Table 9.7 Curvature Effects on the Frequency Parameters Ω = ω ρa E h2
11

212 /  for Simply Supported 
[0°, 90°] Laminated Curved Thin Beam, ℓ /h = 100; E11 /E22 = 15

R/ℓ

m
1 2 3 4 1 2 3 4

S2 Boundary conditions C2 Boundary conditions

– 6.4291 18.807 44.533 75.166 10.661 29.386 57.601 95.567
100 7.9180 18.806 44.781 75.160 10.660 29.385 57.599 95.576
20 14.722 18.796 46.079 75.131 10.657 29.378 57.587 95.611
10 18.779 22.703 48.751 75.089 10.649 29.366 57.569 95.653
5 18.727 32.625 59.743 74.988 10.621 29.332 57.522 95.731
2 18.434 37.935 74.551 99.985 10.445 29.145 57.291 95.882
1 17.529 38.288 73.410 110.82 9.8882 28.562 56.616 95.789
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unsymmetric lamination and coupling between axial and transverse 
deformation. This was not observed for isotropic curved beams 
(Chap. 4). In addition, a slight increase in curvature in S2 boundaries 
results in significant change in the frequency parameters. The table 
also shows results for the completely clamped case (i.e., C2 boundary 
condition), where a similar observation is made. More results can be 
found in Ref. [1].

9.6 Laminated Thick Curved Beams
A shear deformation beam theory (SDBT) will be developed here to 
treat thick curved beams. Shear deformation and rotary inertia will 
be included in the derivation of a thick beam theory. The middle 
surface strain and curvature change are [1]: 
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where γ is the shear strain at the neutral axis, and ψ is rotation of a 
line element originally perpendicular to the longitudinal direction, 
about the outofplane direction. 

Normal strain at an arbitrary point can be found from
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The presence of the (1 + z/R) term in the denominator of the 
above equations should be handled with care. The term is not 
negligible when the beam is thick and is shown to have a significant 
impact [1]. Thus, it will be retained here for laminated thick beams. 
The force and moment resultants are the integrals of the stresses over 
the beam thickness (h):

 
N M Q b z dz

h

h
, , , ,

/

/[ ] = [ ]−∫ σ σ τ
2

2

 
(9.55)

where b is the width of the beam. For a laminated beam, with n 
number of layers, the above equations may be rewritten as:
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Substituting (9.53) and (9.54) into (9.55), and carrying out the 
integration over the thickness yields:
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where the (A11)t, (B11)t, (D11), and (A55)t are the stiffness coefficients 
arising from the integration. The integration is carried exactly [1], 
with the z/R term, and yields 
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(9.58)

Table 9.8 shows a comparison between the above terms (9.58) 
with those obtained earlier for thin beams (9.17). Equations (9.58) are 
accurate, and the comparison should give a hint on the limitation of 
the relations between the force and moment resultants and midsurface 
strains and curvature changes used in the thin curved beam theory. 
The difference becomes large for laminated composites with a high 
orthotropy ratio. This difference reaches or exceeds 7 percent for 
beams with orthotropy ratios of 15 and 40 and thickness ratio h/R of 
0.2, which is taken as the limit of thick beam theories. In general, the 
z/R term should be included to obtain accurate equations for thick 
curved beams. The table shows that the term is indeed negligible for 
laminated thin curved beams as was done earlier in this chapter and 
for thin isotropic curved beams as was done in Sec. 4.13.
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h/R

Approximate equations (9.17) Accurate equations (9.58)
A11/E2bR B11/E2bR2 D11/E2 bR3 (A11)t/E2bR (B11)t E2bR2 (D11)t/E2 bR3 

E1/E2  = 1  (i.e., single layer)
0.01 0.01 0 0.00000008 0.01000008 −0.00000008 0.00000008
0.05 0.05 0 0.00001042 0.05001004 −0.00001042 0.00001042
0.10 0.10 0 0.00008333 0.10008346 −0.00008346 0.00008346
0.20 0.20 0 0.00066667 0.20067070 −0.00067070 0.00067070
∆* −0.3% – −0.6%

E1 /E2  = 15
0.01 0.08 0.000175 0.00000067 0.07982566 0.00017434 0.00000066
0.05 0.40 0.004375 0.00008333 0.39570700 0.00429300 0.00008200
0.10 0.80 0.017500 0.00066667 0.78314576 0.01685424 0.00064576
0.20 1.60 0.070000 0.00533333 1.53501321 0.06498679 0.00501321
∆* 4.2% 7.7% 6.4%

E1 /E2  = 40

0.01 0.205 0.0004875 0.00000171 0.20451420 0.00048579 0.00000170
0.05 1.025 0.0121875 0.00021354 1.01302231 0.01197769 0.00020981
0.10 2.050 0.0487500 0.00170833 2.00289986 0.04710014 0.00164986
0.20 4.100 0.1950000 0.01366667 3.91776771 0.18223229 0.01276771
∆* 4.7% 7.0% 7.0%

*The percentage difference between Eqs. (9.17) and (9.58) for h/R = 0.2

Table 9.8 A Comparison between Approximate and Accurate Equations for the Coefficients A11, B11, and D11 of 
[0°, 90°] Curved Beams
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Considering rotary inertia terms, the equations of motion 
become [1]:
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(9.59)

where 
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and I1, I2, and I3 are defined in (9.38). Note here that the above inertia 
terms (I I1 2, , and I3)were obtained from similar considerations of the 
(1+z/R) in the numerator of the density integration equations [1]. 
Substituting previous constitutive and strain displacement equations 
into (9.59), the equations of motion (9.59) may be expressed in terms 
of the midsurface displacements and slope in matrix form, for a free 
vibration analysis, as:
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where
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Note here that the subscript (t) in (9.58) is dropped for convenience. 
For symmetrically laminated beams, all terms containing B11 vanish 
but, unlike thick straight beams, coupling between extensional and 
bending deformation remains. 

The strain energy stored in a beam during elastic deformation is
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Writing the strain energy functional for the kth lamina, and summing 
for n number of layers yields
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Substituting the strain– and curvature–displacement relations into 
the above energy expression yields the strain energy functional in 
terms of the slopes and displacements
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The work done by the external force components [pα in the 
tangential (polar) direction, and pn in the normal direction] can be 
done in a manner similar to that used earlier. The kinetic energy for 
the entire beam (including rotary inertia) is
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Integrating over z and summing for N number of layers yields
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One can get the consistent boundary conditions through a 
variational analysis [1]. On each boundary, one must specify three 
conditions:

 u = 0 or N = 0 

 w = 0 or Q = 0 

 ψ = 0 or M = 0 (9.66)

It is worth mentioning that for moderately thick curved beams, 
the term M/R in the first of the above equations drops. This is hard 
to find without the variational derivation. For elastically constrained 
boundaries, with the constraints being represented as translational 
and rotational springs at the beam edges, the boundary conditions 
are generalized to
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(9.67)

at the edge α = −a/2. The signs of N, M, and Q in the above equations 
change at the edge α = a/2.

Similar to thin curved beams, the simple support S1 boun
dary conditions for thick beams at α = −a/2 and α = a/2 are 
w N0 0= = =α ∂ψ ∂α/ . The solution of the equations of motion with 
these boundary condition follow the same pattern for straight beams 
(9.41) by replacing x in (9.41) with α. Substituting these solutions into 
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the equations of motion written in terms of displacement for 
moderately thick curved beams (9.60) yields 
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where
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and
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Again, (9.68) is actually valid for problems of forced vibrations. 
The static problem results when the frequency is set to zero, and the 
free vibration problem arises when the pressure terms are zeros. 
Similar to thin beams, if one assumes that u0m = cos (αm α), w0m = 
sin (αm α), and ψm = cos (αm α), then the problem of laminated curved 
beam having vertical hinge supports (i.e., u0 = ψ = Q = 0) is solved. 
This has little, if any, practical significance.

The analysis of closed rings can be performed by assuming  
u0 = sin (mθ), w0 = cos (mθ) in the proposed exact solutions. Similar 
treatment can be made for moderately thick rings by further  
assuming ψm = sin (mθ), which will yield a thirdorder determinant. 

Table 9.9 shows a comparison between the results obtained using 
classical and shear deformation curved beam equations. The same 
frequency parameter is used. The thickness ratio h/R is varied from 
0.01 to 0.2, which is taken as the limit of the moderately thick beam 
equations (to be proven when and if these equations are compared 
with those obtained by 3D theory of elasticity). The results show 
criteria for establishing the limit of the thin beam theory. The effect 
of shear deformation and rotary inertia increases for materials with 
higher orthotropy ratios. While the maximum difference (in the 
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Table 9.9 Exact Frequency Parameters Ω = ω ρa E h2
11

212 /  for simply supported [0°, 90°] laminated 
curved thin and moderately thick beams, a/R = 1.0, G12/E2 = G13/E3 = 0.5

h/R

CBT Shear deformation beam theory

m m
1 2 3 4 1 2 3 4

E1/E2  = 15

0.01 4.0116 18.031 41.432 74.190 4.0094 18.000 41.286 73.738
0.02 3.9960 17.949 41.227 73.786 3.9885 17.839 40.681 72.095
0.05 3.9471 17.690 40.526 72.278 3.9109 17.089 37.667 64.041
0.10 3.8656 17.212 39.083 68.854 3.7419 15.329 31.300 49.452
0.20 3.7015 16.118 35.403 59.676 3.3312 11.808 21.481 31.295
E1/E2  = 40

0.01 3.4145 15.349 35.270 63.157 3.4108 15.298 35.034 62.438
0.02 3.4014 15.274 35.081 62.778 3.3871 15.093 35.220 60.178
0.05 3.3559 15.034 34.424 61.355 3.2932 14.111 30.283 50.017
0.10 3.2809 14.591 33.077 58.157 3.0814 11.964 23.180 35.118
0.20 3.1315 13.592 29.743 49.981 2.5935  8.3979 14.446 20.425
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fourth frequency) between the frequencies obtained by thin beam 
equations and moderately thick beam equations is 5.2 percent for a 
thickness ratio of 0.05 and single layer beams, this difference is 12.9 
percent for [0°, 90°] crossply beams with an orthotropy ratio of 15 
and it is 22.7 percent for an orthotropy ratio of 40. This shows clearly 
that even for what has been considered thin beams where CBT is 
applicable for isotropic beams, a SDBT is needed when composites 
are treated. As a result, we will pay close attention to shear deformation 
and rotary inertia in the upcoming sections and include such 
treatment. The difference between both theories becomes large, even 
for the fundamental frequencies, when the thickness ratio exceed 
0.05, which is taken as the limit of the thin beam theory for 
fundamental frequencies. The difference between CBT and SDBT 
increases with higher thickness ratio and higher modes.

9.7 Laminated Thin Plates
An anisotropic material is one for which the material properties are 
different in different directions. For an anisotropic plate the 2D 
stress–strain equations of (6.10) are generalized, in matrix form, to
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(9.70)

thus, having six independent elastic coefficients (cij), instead of two (E 
and ν). This generalizes the D∇4w term in (6.16) and (6.24) to the form

 
D

w
x

D
w

x y
D

w
x y

D
w

x y
D

w
y1

4

4 2

4

3 3

4

2 2 4

4

3 5

4

4
∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂

+ + + +
 

(9.71)

Exact solutions of this generalization of (6.24) are not possible. 
However, the Ritz method may be applied straightforwardly.

An orthotropic material is a special case for which the elastic 
coefficients have principal directions, yielding c13 = c23 = 0 in (9.70), 
thereby eliminating the coupling between inplane normal and shear 
stresses and strains. The resulting orthotropic plate occurs often in 
practical applications (e.g., an ordinary, isotropic plate having many 
parallel stiffening beam elements attached to it). The resulting 
differential equation of motion has D2 = D4 = 0 in (9.71). With the odd 
orders of derivatives vanishing, exact solutions of the type found in 
Sec. 6.2 are straightforwardly achievable for rectangular plates 
having two opposite edges simply supported.

If the stacking sequence of the layers is symmetric about the plate 
midplane, the resulting equations are those of anisotropic (or 
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orthotropic) plate theory, as described above. However, if the stacking 
sequence produces a laminate which is unsymmetric about the plate 
midplane, then there is coupling between bending and midplane 
stretching during the vibratory motion [1,10]. The governing theory 
reflects this coupling, resulting in an eighthorder system of 
differential equations of motion, instead of the fourthorder equation 
one has for a symmetric laminate. As was found earlier for beams, 
the bendingstretching coupling may also reduce the natural 
frequencies of the plate considerably [11]. 

For laminated thin plates, where shear deformation and strains in 
the vertical direction are neglected, inplane strains include membrane 
components, and curvature changes which are the same as those 
(6.13). Strains at any point are 

 

e e

e e

x x x

y y y

xy xy xy

z
z

z

= +
= +

= +

0

0

0 2

κ
κ

γ γ κ
 (9.72)

where the subscript (0) refers to the middle surface. Midsurface 
strains are
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(9.73)

The midsurface curvature and twist changes are 
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(9.74)

where u0 and v0 are displacement components tangential to the 
middle surface in the x and y directions respectively; and w0 is the 
normal displacement. For thin plates, the stress–strain equations for 
an element of material in the kth lamina may be written in the 
conventional form used for laminated plates [1] as in (9.11).

Although the layers are orthotropic in their material coordinates, 
(9.11) are the same as those of material with general anisotropy (9.70). 
This is a result of the lamination at an angle other than 0° or 90° with 
respect to the global (x,y) coordinates. In other words, the Q16 and 
Q26  coefficients result from a coordinate transformation and arise 
only if the plate coordinates (x,y) are neither parallel nor perpendicular 
to the fibers. Correspondingly, if the plate coordinates are parallel or 
perpendicular to the fibers, then the terms Q16 and Q26 are zero.

The stresses over the plate thickness (h) are integrated to obtain the 
force and moment resultants. Doing so results in equal inplane shear 
force resultants (i.e., Nxy = Nyx), and twisting moments (i.e., Mxy = Myx). 



 402 C h a p t e r  N i n e  V i b r a t i o n s  o f  C o m p o s i t e  C o n t i n u o u s  S y s t e m s  403

Substituting (9.73) and (9.11) into Eqs. (6.11) and integrating stresses 
over the crosssection for force resultants, yields (9.12) and (9.13).

The equations of motion for laminated plates will include both 
inplane and outofplane forces. This can be achieved by combining 
the derivations made in Chap. 5 for membranes and those made in 
Chap. 6 for plates. The equations of motion for membranes (5.5), with 
inertia terms and inplane loading added, and those derived earlier 
for plates (6.15) may be written as:
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(9.75)

where ρ is the average mass density of the plate per unit area of the 
midsurface, as given by
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(9.76)

ρ(k) is the density of the lamina (k) per unit volume. Substituting Eqs. 
(9.73) and (9.74) into (9.12) and then into (9.75), and multiplying the last 
equation by −1, yields
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The Lij coefficients of the above equations are
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Note that the L13 and L23 terms are functions of the stiffness 
parameters Bij. These parameters have zero values if the plate is 
symmetrically laminated. This leads to decoupling the inplane 
vibration from the outofplane vibration. The outofplane vibration 
for a symmetrically laminated plate will then degenerate to L33 w0 + 
ρ ẅ0 = 0. In addition, if the plate is made of crossply lamination, the 
terms D16 and D26 become zero, which will reduce the equation to 
that of an orthotropic plate.

Strain energy functionals that are consistent with the above 
equations of motion can be written as [1]:
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(9.79)

Substituting the strain– and curvature–displacement equations into 
the above equation yields the strain energy in terms of the 
displacements. This may be expressed as the sum of three parts:

 PE PE PE PEs b bs= + +  (9.80)
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where PEs is the part due to stretching alone, PEb is the part due to 
bending alone, and PEbs is the part due to bending–stretching 
coupling,

The PEs is the part due to stretching alone:
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PEb is the part due to bending alone,
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and PEbs is the part due to bendingstretching coupling,
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For symmetrically laminated plates, Bij = 0 and, hence, PEbs = 0. 
This will result in the inplane deformation being decoupled from the 
outofplane one. If one is interested in outofplane (or transverse) 
vibration only, the term PEb will be the only term needed. These 
functionals can be used for approximate energy methods like the 
Ritz and finite element methods. Using the distributed external force 
components px and py in the tangential directions and pz in the normal 
direction, the work done by the external forces (W) can be found [1]. 
Therefore, the total potential energy of the plate in its deformed 
shape is Π = −PE W . The kinetic energy of the entire plate is then 
found to be (neglecting rotary inertia terms):
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Consider a thin rectangular plates with dimensions a and b, and 
thickness h. Plates with circular orthotropy are beyond the scope of 
this book, but may be found in the literature [1]. Rectangular cross
ply plates have the lamination angle for each layer making either a 0° 
or 90° with each of the boundaries. In other words, the fibers in each 
layer will be either parallel or perpendicular to each boundary. These 
plates may be symmetrically or unsymmetrically (i.e., asymmetrically) 
laminated about the middle surface. They are of particular interest as 
they do permit exact solutions for some boundary conditions. Such 
plates have

 A16 = A26 = B16 = B26 = D16 = D26 = 0 (9.83)

Thin rectangular plates with symmetric lamination may have four 
possible boundary conditions at each edge (similar to isotropic 
plates). Three of these boundary conditions are classical. These are 
simply supported, clamped, or free. The total possible combination 
of classical boundary conditions for such plates when they are 
isotropic is 21 as described in Chap. 6. Symmetrically laminated 
plates, although they have three possible classical boundaries per 
edge, will yield even higher numbers of combinations of boundaries 
for all edges. This is because of the reduced symmetry in laminated 
plates as compared with isotropic ones. Plates that are not 
symmetrically laminated will have 16 possible boundary conditions 
for each edge, with 12 of these being classical. This is because of the 
stretchingbending coupling that has to be considered for such plates 
and the inclusion of boundaries for inplane displacements.

The free boundaries, at x = constant, are 

 F1  Qx = Mx = u0 = v0 = 0 

 F2  Qx = Mx = Nx = v0 = 0 
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 F3  Qx = Mx = u0 = Nxy = 0 

 F4  Qx = Mx = Nx = Nxy = 0 (9.84a)

The simple support boundaries are

 S1  w = Mx = u0 = v0 = 0 

 S2  w = Mx = Nx = v0 = 0 

 S3  w = Mx = u0 = Nxy = 0 

 S4  w = Mx = Nx = Nxy = 0 (9.84b)

The clamped boundaries are

 C1  w = ψx = u0 = v0 = 0 

 C2  w = ψx = Nx = v0 = 0 

 C3  w = ψx = u0 = Nxy = 0 

 C4  w = ψx = Nx = Nxy = 0 (9.84c)

Among all the boundary combinations, only those that have two 
opposite edges simply supported permit having exact solutions (for 
homogeneous plates). When the solution procedure is extended to 
laminated composite plates, it is found that such exact solution can 
only be applied to two types of lamination sequences and boundary 
conditions:

 1. Crossply plates with S2 (w0 = Mx = Nx = v0 = 0; at x = 0, a; and 
w0 = My = u0 = Ny = 0 at y = 0 and b) opposite boundaries. 
These are plates where the lamination angle for each layer 
makes either a 0° or a 90° with each of the boundaries. In 
other words, the fibers in each layer can be either parallel or 
perpendicular to each boundary. These plates could be 
symmetrically laminated or unsymmetrically (i.e., 
asymmetrically) laminated about the middle surface. 
Figure 9.6 shows examples of such lamination sequence. Note 
that the lamination sequences made of layers having 45° and 
–45° angles (e.g., [45°, −45°]) or 30° and –60° or similar fiber 
angles for each lamina are not considered here as crossply 
because, although these plies make right angles with each 
other, they do not make right angle with the edges of the 
plate. Crossply plates can have exact solutions when the two 
simply supported opposite boundaries are of the S2 type (i.e., 
shear diaphragms).
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 2. Antisymmetrically laminated plates. These plates are 
constructed with laminates in which the fibers in each lamina 
above the middle surface making an angle θ with a coordinate 
is mirrorimaged with another one (of equal thickness) at 
exactly the same distance in the opposite z direction from the 
middle surface with fibers making negative the angle (i.e., 
–θ) with the same coordinate. Figure 9.7 shows examples of 
such lamination sequence. Antisymmetrically laminated 
plates can have exact solutions when the two opposite 
boundaries are of the S3 type (w0 = Mx = u0 = Nxy = 0  at x = 0 
and a, and w0 = My = u0 = Nxy = 0 at y = 0 and b).

Consider a plate with shear diaphragm (S2) boundaries on all four 
edges (described in more detail earlier in Chap. 7). The following solu
tion satisfies the boundary conditions and the equations of motion:
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(9.85)

   
where is the natural frequency.α π β π ωm n mn
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n
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Figure 9.6 Plates with cross-ply lamination sequence. 
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Also, the external forces can be expanded in a Fourier series [1]. 
Substituting (9.85) into (9.77), yields the following 
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(9.86)

where
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and where the pmn are the Fourier coefficients of the external forces. 
The above equations are reduced to static problems if the natural 
frequency is set to zero and to free vibrations if the external forces 
are set to zero. 

Figure 9.7 Plates with antisymmetric lamination sequence.
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The plate with antisymmetric angleply laminate (A16 = A26 =  
B11 = B12 = B22 = B66 = D16 = D26 = 0) having another type of simply 
supported boundary conditions (S3) on all four edges is known to 
have an exact solution as well [1].

Boundary conditions that are different from those considered 
above or lamination sequences different than those considered (cross
ply and antisymmetric angleply) have no exact solutions. 
Approximate methods must be used in order to obtain results. The 
widely used finite element methods have been used by many 
engineers and researchers in the field to solve practical problems and 
find the dynamic behavior of composite plates. When parametric 
studies and/or optimization methods are used to maximize 
frequencies, finite elements becomes an expensive tool. Instead, for 
simple geometries, like the flat plates considered here, the less 
computationally demanding Ritz analysis can be employed. 

The Ritz method with algebraic polynomial displacement 
functions is used here to solve the free vibration problem for 
laminated composite plates having various boundary conditions. 
Natural frequencies and mode shapes for plates having two adjacent 
free edges and the remaining edges simply supported, clamped, or 
free are presented. Convergence studies are made which demonstrate 
that accurate results (natural frequencies and mode shapes) can be 
obtained with this analysis. The effects of various parameters 
(material, fiber orientation, and boundary conditions) on the natural 
frequencies and mode shapes are studied.

For free vibrations of a plate having the rectangular planform, 
displacements are assumed as:

 u(x,y,t) = U(x,y) sin ωt 

 v(x,y,t) = V(x,y) sin ωt 

 w(x,y,t) = W(x,y) sin ωt (9.87)

Algebraic functions may be used as trial functions. The 
displacement trial functions, in terms of the nondimensional 
coordinates ξ and η, are taken as:
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where ξ = x/a and η = y/b. 
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The Ritz method requires satisfaction of geometric (forced) 
boundary conditions only. One can solve for many boundary 
conditions with the same analytical procedure by using a suitable 
selection of the value i0, j0, k0, l0, m0, and n0. Vibration problems for 
laminated plates having the boundary conditions XXFF, where X can 
be simply supported (S), clamped (C), or free (F) can be solved. One 
should keep in mind that for generally laminated plates there are 
four types of configurations for each of the simply supported, free, 
and clamped edge conditions. 

For solving the free vibration problem, the displacement functions 
are substituted into the energy functional Eqs. (9.79) in order to get 
an expression for the maximum strain energy (PEmax) and into (9.81) 
in order to get an expression for the maximum kinetic energy (KEmax). 
The Ritz method requires minimization of the functional (KEmax – 
PEmax) with respect to the coefficient αij, βkℓ, and γmn, which can be 
accomplished by setting:
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(9.89)

which yields a total of (I − i0 + 1) × (J − j0 + 1) + (K − k0 + 1) × (L − ℓ0 + 1) 
+ (M − m0 + 1) × (N − n0 + 1) simultaneous, linear, homogenous 
equations in an equal number of unknowns αij, βkl, and γmn. The 
determinant of the coefficient matrix is set equal to zero which will 
yield a set of eigenvalues. Substituting each eigenvalue back into 
(9.89) yields the corresponding eigenvector. The mode shape 
corresponding to each frequency can be determined by substituting 
the eigenvector back into the displacement functions.

For symmetrically laminated plates all of the stretching–bending 
coupling terms vanish (i.e., Bij = 0). This leads to decoupling the 
inplane displacements from the outofplane displacement. The 
possible combination of classical boundary conditions at x = 0 and at 
y = 0, which can be solved by the present method, reduces to 6 as was 
mentioned earlier. When the strain energy functionals are used to 
simulate boundary conditions at x = a and at y = b, then all possible 
boundary conditions can be treated. Only the last equations of the 
sets of Eqs. (9.85) and (9.86) are needed for the transverse vibrations 
of symmetrically laminated plates. This leads to a system of linear, 
homogenous equations of the order (M − m0 + 1) × (N − n0 + 1). 
Comparisons among results from the present Ritz analysis and other 
analytical and experimental ones are described in Ref. [1].
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Convergence studies are made for composite plates representative 
of those to be analyzed subsequently. These include symmetric 
laminates of three layers with stacking sequence [θ/–θ/θ]. The angle 
θ lies between the fibers and the projection of the xaxis on the plate. 
Filamentary composite materials of graphite/epoxy (G/E) are 
considered, 

Graphite/epoxy (G/E): E1 = 138. GPa, E2 = 8.96 GPa,  
 G12 = 7.1 GPa, ν12 = 0.30 (9.90)

A typical plate of square planform (a/b = 1) is used. Convergence 
studies of the lowest eight frequency parameters Ω = ω ρa E h2

1
2/  for 

graphite/epoxy plates having the six boundary conditions which 
will subsequently be analyzed can be found in Table 9.10. For each of 
the six boundary conditions, three solutions are presented. These 
solutions are obtained by using 36, 49, and 64 terms for the first, 

B.C.
Det. 
Size

Ω

1 2 3 4 5 6

FFFF 36 1.6262 2.0910 3.7748 5.1285 5.1924 7.4462
49 1.6203 2.0789 3.7177 5.0570 5.1460 7.2263
64 1.6202 2.0784 3.7115 5.0517 5.0707 7.0800
36 0.9171 2.5554 3.2899 4.5599 5.8347 7.7369

SFFF 49 0.9166 2.5371 3.2786 4.5284 5.7501 7.6644
64 0.9165 2.5363 3.2754 4.5181 5.6929 7.5070
36 0.6519 1.4392 3.1581 4.1996 5.6674 6.7157

CFFF 49 0.6513 1.4377 3.1253 4.1881 5.6427 6.6344
64 0.6507 1.4372 3.1228 4.1839 5.6111 6.5257
36 0.4671 1.8437 3.9371 4.6707 6.8341 8.2414

SSFF 49 0.4656 1.8248 3.9276 4.6559 6.7644 8.1051
64 0.4644 1.8424 3.9263 4.6541 6.7514 8.0780
36 1.0615 2.4227 5.0125 5.6484 7.9491 9.3699

CSFF 49 1.0606 2.4211 4.9812 5.6388 7.9011 9.1566
64 1.0600 2.4205 4.9791 5.6243 7.8767 9.0771
36 1.2913 3.0535 5.5559 6.2780 8.5898 10.367

CCFF 49 1.2912 3.0518 5.5534 6.2730 8.5715 10.241
64 1.2907 3.0495 5.5463 6.2691 8.5507 10.236

Table 9.10 Convergence of the Frequency Parameter Ω = ω ρa E h2
1

2/  for a 
Graphite/Epoxy Square (a/b = 1) Plate with [30°, −30°, 30°] Lamination Using 
Algebraic Polynomial Functions
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second, and third solution, respectively. Equal number of terms  
are taken in each of the inplane directions. Zero frequencies 
corresponding to rigid body modes are not reported.

Convergence is observed to be reasonably good for engineering 
applications. The maximum difference between the 49 and the  
64term solutions is less than 3 percent for all the cases. The completely 
free boundary condition delivered the slowest convergence. As 
geometric constraints are imposed on the boundaries, convergence 
seems to improve, and the fastest convergence is observed for the 
plate with two adjacent clamped edges (i.e., CCFF plates). The 
maximum difference in the natural frequencies between the 49 and 
64term solutions for CCFF boundary conditions is 0.14 percent for 
G/E materials. From these studies, it may be considered that the 64
term solution for plates presents satisfactory convergence for many 
engineering applications. Therefore, a 64term solution will be used 
in the subsequent analyses. 

Natural frequencies and contour plots of the mode shapes for 
different boundary conditions are given by Qatu [12] and reported 
here for two boundary conditions in Figs. 9.8 and 9.9. The aspect 
ratio (a/b) is chosen to be one indicating square plates. Threelayer 
[θ, –θ, θ] laminates are used. The lamination angle is varied from  
0° to 90° with an increment of 15°. For FFFF, SSFF, and CCFF square 
plates, geometric symmetry about the line ξ = η exists. This results 
in the frequencies for plates with the fiber angles θ = 60°, 75°, and 90° 
being the same as those with the fiber angles θ = 30°, 15°, and 0°, 
respectively.

1.4910

1.5234

1.6202

1.6894 2.2397 3.8250 4.6812 5.1973 7.2344

2.0784 3.7115 5.0517 5.0707 7.0800

1.7881 3.5251 4.7418 5.7179 6.8856

1.6461 3.4596 4.5393 6.4266 6.4713

θ = 0º

θ = 15º

θ = 30º

θ = 45º

Figure 9.8 Mode shapes and frequency parameters ω ρa E h2
1

2/  for 
completely free (FFFF), G/E [θ,–θ, θ] square plates.
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It is noticed that increasing the fiber angle θ from 0° to 45° 
increases the lowest two nondimensional frequencies for the FFFF 
plate. Similar observation is made for other plates with geometric 
symmetry about the ξ = η line (i.e., SSFF and CCFF plates) [12]. From 
the symmetry of the problems, increasing the fiber angle from 45° to 
90° decreases these frequencies. This shows that the maximum 
fundamental frequencies are obtained with a fiber angle of 45° for 
these boundary conditions. For that angle, the fibers are parallel (or 
perpendicular) to the line of geometric diagonal symmetry. Increasing 
the fiber angle from 0° to 45° increases the second lowest frequency 
by 37 percent for G/E material when the boundary conditions are 
completely free. Similar observations are true for the other two 
boundary conditions (i.e., SSFF and CCFF) as reported in Ref. [1]. 

For plates when the line of geometric symmetry is η = 0.5 (e.g., 
CFFF plates, Fig. 9.9) the behavior is different. For cantilever plates, it 
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1.3705 2.8443 3.4746 5.2594 6.8772

1.4372 3.1228 4.1839 5.6111 6.5257

1.3724 2.6393 5.3147 6.3757 6.8348

Figure 9.9 Mode shapes and frequency parameters ω ρa E h2
1

2/  for 
cantilevered (CFFF), G/E [θ, –θ, θ].
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is observed that increasing the fiber orientation angle from 0° to 90° 
decreases the fundamental frequency, which corresponds to the first 
bending mode. Increasing the fiber angle from 0° to 90° decreases the 
lowest natural frequency by 75 percent. For the second lowest 
frequency, which corresponds to the first twisting mode, the 
maximum natural frequency is obtained when the fiber angle is 30°. 

For the completely free boundary condition, one should note that 
four possible symmetry classes exist in the displacement functions 
chosen. For example, one can chose the coordinates at the center and 
then chose m = n = 0, 2, 4, . . . for the doubly symmetric (i.e., symmetric 
about both the ξ and η axes) modes. Similar choices can be made for 
the other three symmetry classes. These symmetry classes about the 
ξ and η axes (once chosen at the center) exist for the isotropic, 
orthotropic, and crossply plates only. This symmetry is lost for plates 
with angleply lamination, and one should keep all the terms in the 
polynomials. For the special case of diagonally orthotropic angleply 
laminates which are made of 45° angle layers, the symmetry classes 
exist about the diagonals (Fig. 9.8). The gradual change in contour 
lines with increasing θ is evident.

For plates with SFFF and CFFF (i.e., cantilever) boundaries, only 
two classes of symmetry are possible in the displacement functions 
(i.e., the displacement functions can be either symmetric or 
antisymmetric about the ξaxis, once located to pass through the 
center). Figure 9.9 gives the first six mode shapes for the cantilever 
case. For example, to obtain the symmetric modes one could choose 
n = 0, 2, 4, . . . . This symmetry/antisymmetry in the mode shapes can 
be seen for isotropic and crossply laminated plates. For angleply 
plates, the symmetry classes are lost, and one should keep all the 
terms in the analysis. One should keep in mind that one zero 
frequency exists for SFFF plates which corresponds to the rigid body 
mode (rotation about the η axis) [12]. 

More numerical results on laminated plates will be discussed in 
the section of laminated thin shallow shells. It is placed in that section 
to draw comparisons between such plates when they are flat and 
when they have curvature (i.e., become a shallow shell).

Plates with other geometries are discussed in the literature [1]. 
Natural frequencies for cantilevered laminated composite right 
triangular and trapezoidal plates and completely free triangular and 
trapezoidal plates were presented in detail [13,14].

9.8 Thick Plates
As discussed earlier in Sec. 6.8, thick plates are ones with a thickness 
smaller by approximately one order of magnitude when compared 
with other plate parameters, particularly, its vibration mode shape 
wavelength (thickness is smaller than 1/10th of the smallest of the 
wavelengths). Thick plate theories (also referred to as shear 
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deformation plate theories, or SDPT) require the inclusion of shear 
deformation and rotary inertia factors when compared with thin or 
classical plate theory (CPT). This section will present the set of 
equations that can be used for thick composite plates. The treatment 
that follows is an extension of Mindlin’s theory to laminated plates. 

In thick plate theories, the midplane plate displacements are 
expanded in terms of its thickness. Such an expansion can be of a 
first or a higher order. In the case of firstorder expansion, the theories 
are referred to as firstorder shear deformation theories. Thick plate 
theories still use the assumption of negligible stretching in the 
zdirection (i.e., ez = 0). This assumption is generally valid except 
within the vicinity of a highly concentrated force. The displacements 
are assumed as
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where u0, v0, and w0 are midsurface displacements of the plate and ψα 
and ψβ are midsurface rotations. The above equations are the basis of 
a typical firstorder SDPT and will constitute the only assumption 
made in this development when compared with the 3D theory of 
elasticity. The strains at any point in the plate can be found using:
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 (9.92)

and for vertical shear strains 
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Note that when the shear strains exy and eyx are equal, the engineering 
shear strain γxy (= exy + eyx) will be used. The midsurface strains are:
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(9.94)

and the curvature and twist changes are:
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(9.95) 

The subscript (0) will refer to the middle surface in the subsequent 
equations.

The force and moment resultants are obtained by integrating the 
stresses over the plate thickness. The normal and shear force 
resultants are found by integrating the stresses over the thickness. 
The bending and twisting moment resultants are found by integrating 
the stress couples over the thickness. Carrying out the integration 
over the thickness, from layer to layer, yields (9.12) and
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where 
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and Ki and Kj are shear correction factors to compensate for the 
nonconstant shear distribution over the crosssection.

The equations for motion can be derived for plates using Newton’s 
second law and a differential element of the plate or by using 
Hamilton’s principle from energy expressions [1]. The equations of 
motion are:

 

∂
∂

∂
∂

ψ

∂
∂

∂
∂

N
x

N

y
q I u I

N

y

N

x
q I v I

x yx
x x

y xy
y

+ + = +( )

+ + = +

1 0 2

1 0 2

 

 ψψ

∂
∂

∂
∂

∂
∂

∂
∂

y

x y
n

x yx
x x

Q
x

Q

y
q I w

M
x

M

y
Q m I u I

( )
+ + = ( )

+ − + = +

1 0

2 0 3



 ψψ

∂
∂

∂
∂

ψ

x

y xy
y y y

M

y

M

x
Q m I v I

( )

+ − + = +( )2 0 3 
 

(9.97)



 418 C h a p t e r  N i n e  V i b r a t i o n s  o f  C o m p o s i t e  C o n t i n u o u s  S y s t e m s  419

where the two dots represent the second derivative of these terms 
with respect to time, mx and my are body couples, and where the 
inertia terms are defined as 
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The boundary terms for the boundaries with x = constant are
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 Possible combination of boundary conditions at each edge is given in 
Table 9.11. 

Boundary type Conditions

Free Boundaries

F1 Qx = Mx = u = v = ψy = 0
F2 Qx = Mx = Nx = v = ψy = 0
F3 Qx = Mx = u = Nxy = ψ y= 0
F4 Qx = Mx = Nx = Nxy = ψy = 0
F5 Qx = Mx = u = v = Mxy = 0
F6 Qx = Mx = Nx = v = Mxy = 0
F7 Qx = Mx = u = Nxy = Mxy = 0
F8 Qx = Mx = Nx = Nxy = Mxy = 0
Simple Support Boundaries

S1 w = Mx = u = v = ψy = 0
S2 w = Mx = Nx = v = ψy = 0
S3 w = Mx = u = Nxy = ψy = 0
S4 w = Mx = Nx = Nxy = ψy = 0
S5 w = Mx = u = v = Mxy = 0
S6 w = Mx = Nx = v = Mxy = 0
S7 w = Mx = u = Nxy = Mxy = 0
S8 w = Mx = Nx = Nxy = Mxy = 0

Table 9.11 Combinations of Boundary Conditions for Thick Shells at Each 
Edge x = Constant [1] 
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Table 9.11 Combinations of Boundary Conditions for Thick Shells at Each 
Edge x = Constant [1] (Continued)

The equilibrium equations can be written in terms of 
displacements. These equations are proven useful when exact 
solutions are desired. The equations can be written as:

 L u M u qij i ij i+ =  (9.100)

The stiffness parameters Lij in (9.100) are
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Boundary type Conditions

Clamped Boundaries
C1 w = ψx = u = v = ψy = 0
C2 w = ψx = Nx = v = ψy= 0
C3 w = ψx = u = Nxy = ψy= 0
C4 w = ψx = Nx = Nxy = ψy= 0
C5 w = ψx = u = v = Mxy = 0
C6 w = ψx = Nx = v = Mxy = 0
C7 w = ψx = u = Nxy = Mxy = 0
C8 w = ψx = Nx = Nxy = Mxy = 0
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The mass parameters in Eq. (9.100) are
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 The displacement and loading vectors are
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The above equations describe a thick plate with general lamina
tion sequence. If the plate is symmetrically laminated, then all the 
Bij terms vanish. This will make L14 = L15 = L24 = L25 = 0. The inplane 
displacements (u0 and v0) will then be decoupled from the outof
plane displacement and shear deformation. This will reduce the 
equations and subsequent treatment significantly. Equations (9.100) 
will include a 3 × 3 differential operator, for a symmetrically lami
nated thick plate, instead of the above 5 × 5. The order of the whole 
system of differential equations reduces from 10 to 6. 

Energy functional can be derived easily from the above equations 
in a fashion similar to that done for thin plates. 

Plates that are not symmetrically laminated will have 16 possible 
boundary conditions for each edge, with 12 of these being classical. 
This is because of the stretching–bending coupling that has to be 
considered for such plates. Symmetrically laminated thick plates can 
have six possible classical boundary conditions at each edge. 
Unsymmetrically laminated plates can have up to 24 classical possible 
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boundary conditions at each edge (Table 9.11). The combinations of 
boundary conditions are higher for thick rectangular plates when 
compared with thin plates.

Of particular importance and ease of use is the problem with all 
edges being simply supported. 

Consider a plate that is made of a crossply laminate. The 
differential operators Lij in the equations of motion (9.100) and (9.101) 
become
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Consider a plate, with shear diaphragm (S2) boundaries on all 
four edges. That is, the following boundary conditions apply:

 Nx = w0 = v0 = Mx = ψy = 0 for the edges x = 0, a 

 Ny = w0 = u0 = My = ψx = 0 for the edges y = 0, b (9.105)

The following displacement and slope functions satisfy both the 
equations of motion and boundary conditions
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where αm = mπ/a, βn = nπ/b, and Umn, Vmn, Wmn, ψαmn, and ψβmn are 
arbitrary coefficients. 

Substituting the above equations into equations of motion  
and using a Fourier expansion for the loading functions yields  
[K]{∆} + (ωmn)2 [M] {∆} = −{F}, where [K], and [M] are the stiffness and 
mass symmetric 5 × 5 matrices, respectively; ωmn is the frequency 
with m number of half sine waves in the x direction and n number  
of half sine waves in the y direction; {F} is the forcing function, which 
only has sinusoidal terms; and {∆} = {Umn, Vmn, Wmn, ψxmn, ψymn}T

. The 
Kij coefficients are 
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If the forcing function {F} is assumed to be zero, the above 
equations can be used directly to find the natural frequencies of free 
vibration. Unless stated otherwise, the following natural frequency 
parameter is used in the subsequent analysis: 

 Ω = ω ρa E h2
2

2/  (9.108)

Table 9.12 shows the frequency parameter for crossply square 
plates with relatively high orthotropy ratio (E1/E2 = 15) using the 
classical plate theory (CPT) as well as a shear deformation plate 
theory (SDPT) presented earlier. Two lamination sequence values are 
considered [0°, 90°], and [0°, 90°, 90°, 0°]. Four thickness ratios (a/h) of 
100, 20, 10, and 5 are used. The differences between the predictions of 
SDPT and those of CPT are less than 1 percent for very thin plates 
with a thickness ratio (a/h) of 100. The difference reaches 3.2 percent 
for plates with thickness ratio of 20, 11.8 percent for plates with 
thickness ratio of 10, and 40 percent for plates with thickness ratios of 
5 (where the shear deformation plate theory is not proven to apply 
and must be compared with results obtained by the theory of 
elasticity). It does seem reasonable to assume that classical plate 
theory (CPT) applies only for plates having a thickness ratio of 20 or 
higher. This theory overpredicts the natural frequency as expected. 
It is also important to note that the nondimensional frequency 
parameter chosen here does not change with thickness for the 
predictions made using classical plate theory (CPT) for symmetrically 
laminated crossply plates. It does change slightly for asymmetrically 
laminated plates. Interestingly, the accuracy of CPT in predicting 
frequencies is higher for asymmetrically laminated plates than it is 
for symmetrically laminated ones.

Table 9.13 shows the frequency parameter for crossply square 
plates with relatively high orthotropy ratio (E1/E2 = 25) using shear 
deformation plate theory (SDPT) and classical plate theory (CPT). 

Table 9.12 Frequency Parameters Ω = ω ρa E h2
2

2/  for Shear Diaphragm 
Supported, Rectangular, Cross-Ply Plates (a/b = 1, E1/E2 = 15, G12/E2 = 0.5, 
G13/E2 = 0.5, G23/E2 = 0.5, ν12 = 0.25, K2 = 5/6) for Shear Deformation Plate 
Theory (SDPT) and Classical Plate Theory (CPT)

Lamination 
Theory

[0°, 90°] [0°, 90°, 90°, 0°]

SDPT CPT SDPT CPT

a/h = 100 8.56394 8.56847 12.26147 12.27733
a/h = 20 8.44807 8.55811 11.90100 12.27733
a/h = 10 8.11956 8.52569 10.97163 12.27733
a/h = 5 7.14661 8.39526 8.77840 12.27733
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Three lamination sequence values are considered  [0°, 90°], [0°, 90°, 0°], 
and [0°, 90°, 90°, 0°]. Two thickness ratios (a/h) of 100 and 10 are used. 
The results show that for the thin plate with a/h = 100, the difference 
between the two theories is minimal. Thus, the classical plate theory 
is certainly accurate. For a thick plate with a/h = 10, the difference 
between both theories reaches more than 20 percent, showing the 
lack of accuracy that the classical plate theory (CPT) has in predicting 
vibrations of thick plates. 

9.9 Laminated Shallow Shells
For very thin shells, the assumptions which are used in the previously 
described thin shell theory (Chap. 7) will be used here. Mainly, it is 
assumed that the shell is thin enough such that the ratio of the 
thickness compared to any of the shell’s radii of curvature or its 
width or length is negligible compared to unity, the normals to the 
middle surface remain straight and normal to the midsurface when 
the shell undergoes deformation, and no normal strain exists in the 
direction normal to the middle surface.

The first of the above assumptions assures that certain parameters 
in the shell equations (including the z/R term) as described for curved 
beams earlier can be neglected. The second of the above assumptions 
allows for neglecting shear deformation and rotary inertia. It also 
allows for making the inplane displacement to be linearly varying 
through the shell’s thickness. Consider thin laminated shallow shells 
with the projections of the fibers in each layer to the planform being 
straight. It simplifies the equations and the subsequent treatment of 
the problem considerably to represent the equations of such shells 
using the rectangular coordinates (i.e., planform coordinates). The 
inplane displacement can then be described in the same manner as 
plates. This is true even if the boundaries of such shells are not 
rectangular in shape.  

Consider now a shallow shell (as discussed in Chap. 7) with  
the radii of curvature Rx, Ry, and Rxy being constant (Fig. 7.3). 
Midsurface strains can then be written as in (7.5); noting that the 
displacement being midsurface displacement. It should be noted that 

Table 9.13 Frequency Parameter Ω = ω ρa E h2
2

2/  for Cross-Ply Plates (a/b = 1, 
E1/E2 = 25, G12/E2 = 0.5, G13/E2 = 0.5, G23/E2 = 0.2, ν12 = 0.25, k2 = 5/6) for Shear 
Deformation Plate Theory (SDPT) and Classical Plate Theory (CPT)

Lamination 
Theory

[0°, 90°] [0°, 90°, 0°] [0°, 90°, 90°, 0°]

SDPT CPT SDPT CPT SDPT CPT

a/h = 100 9.6873 9.6960  15.183 15.228 15.184 15.228
a/h = 10 8.9001 9.6436  12.163 15.228 12.226 15.228
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a term that appears in the denominator of strains of shells [e.g., 
e ex x x xz z R= + +( )/( / )0 1κ ] is negligible for shallow shells, thus 
yielding strain expressions similar to those for plates [1]. 

Curvature changes are described in (9.74). Employing shallow 
shell assumptions, the first two equations of motion for shallow 
shells are the same as those for plates (9.75). The third equation of 
motion is:
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(9.109)

where ρ is the average mass density (9.76). Note that the above 
equation is similar to that of (7.2). 

The midsurface stresses are determined using equations similar 
to 6.11 for plates, except that for shells we have an expression in the 
denominator [e.g., N z R dzh

h
α α βσ= +−∫ /

/ ( / )2
2 1 ] that becomes negligible  

for shallow shells [1] yielding the same expressions used for plates 
(9.12) and (9.13).

Further manipulation of the equations of motion, they can be 
written in terms of displacements as in (9.77), where the Lij coefficients 
for laminated thin shallow shells are
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For symmetrically laminated shells, all terms containing Bij 
vanish. 

The strain energy functional for a shallow shell can be written as 
in Eqs. (9.79). Substituting the strain– and curvature–displacement 
equations into (9.79) yields the strain energy in terms of the 
displacements. This may be expressed as the sum of three parts as 
described for plates in (9.80).

The PEs is the part due to stretching alone,
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PEb is the part due to bending alone,
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and PEbs is the part due to bending–stretching coupling,
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Note again that for symmetrically laminated shells, Bij = 0, and 
hence, Ubs = 0. 

Consider a shallow shell that is made of a crossply laminate, 
thus A16 = A26 = B16 = B26 = D16 = D26 = 0. Assuming the radius of  
twist to be infinity, (i.e., Rαβ = ∞), Eqs. (9.77) or (L u M u qij i ij i+ = ) for 
plates can be used for shallow shells with Lij parameters defined  
in (9.110).

Consider an open shell with shear diaphragm (S2) boundaries on 
all four edges. Equations (9.85) give a solution that satisfies the 
boundary conditions and the equations of motion exactly. Also, the 
external forces can be expanded in a Fourier series. Substitute the 
solution of Eqs. (9.85) in the reduced equations of motion [Eq. (9.77) 
after being specialized further for crossply laminates]; these 
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equations of motion can then be written as (9.86). The stiffness 
coefficients for laminated thin shallow shells are
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(9.114)

Again, free vibrations equation results when the loads are set to 
zero. Results for crossply laminated shallow shells will be described 
in the next section when thick shallow shells are treated. 

The Ritz method with algebraic polynomials can be used for 
laminated thin shallow shells in a manner similar to that used for 
plates as described in (9.88) and (9.89) with the energy functionals 
(9.111)–(9.113). 

Convergence studies are made for a series of composite plates 
and shallow shells representative of those to be analyzed 
subsequently. These include fourlayer symmetric laminates with 
stacking sequence [θ, −θ, −θ, θ]. The angle θ lies between the fibers 
and the projection of the xaxis on the shell. Filamentary composite 
materials of graphite/epoxy are considered. Other stacking sequence 
and materials are considered in Ref. [15]. Three types of shell 
curvatures were consi dered; these were spherical (Ry/Rx = +1), 
cylindrical (Ry/Rx = 0), and hyperbolic paraboloidal (Ry/Rx = −1). 
Figure 7.6 shows these types of curvatures. A moderate shallowness 
(a/R = 0.5) ratio is taken.

Table 9.14 shows a convergence study of the frequency parameter 
Ω = ω ρa E h2

1
2/  for completely free composite plates and shallow 

shells. Other convergence studies can be found in Ref. [15] for 
different materials. It is observed that the material with the smaller 
orthotropy (i.e., Eglass/epoxy) yields slightly faster convergence 
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Ry /Rx

Determinant 
Size

Ω = ω ρa E h2
1

2/

1 2 3 4 5 6 7 8 9 10

Plate 64 1.914 2.255 4.664 5.098 5.470 7.929 8.548 10.22 13.05 13.69
100 1.914 2.255 4.664 5.097 5.468 7.923 8.518 10.12 12.97 13.03
144 1.914 2.255 4.664 5.097 5.468 7.923 8.517 10.12 12.94  13.03
108 2.292 3.333 6.020 6.886 8.756 11.90 13.87 17.32 19.29  24.60

+1 147 2.284 3.325 5.886 6.796 8.421 11.34 13.21 15.71 18.05 21.32
192 2.283 3.323 5.871 6.781 8.394 11.11 12.81 15.32 17.12 20.70
108 2.221 5.204 5.641 7.863 8.238 13.42 13.80 14.60 16.12 18.64

0 147 2.217 5.134 5.575 7.717 8.018 12.91 13.32 14.28 15.38 17.63
192 2.216 5.124 5.568 7.682 7.991 12.55 12.98 14.00 14.93 17.19
108 2.122 4.961 4.975 8.940 9.655 14.82 15.68 16.98 20.19 20.50

−1 147 2.117 4.886 4.898 8.853 9.202 13.85 15.24 16.81 18.98 19.83
192 2.115 4.882 4.887 8.809 9.106 13.36 14.94 16.77 18.28 19.46

Table 9.14 Convergence of the Frequency Parameter for Graphite/Epoxy [30°, −30°, −30°, 30°] Plates and Shallow Shells on Square 
Planform, a/h = 100, a/Ry = 0.5
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than does that with the larger orthotropy ratio (i.e., graphite/epoxy) 
on the average [15]. The maximum difference between the 64term 
and the 144term solutions is about 5 percent for graphite/epoxy. For 
the remaining frequencies, convergence occurred for three significant 
figures only. From these studies, it was decided to choose 64 terms 
(i.e., M = N = 7) for subsequent solutions for plates. The maximum 
difference between the 147term solution and the 192term solution 
for spherical shells is 5.3 percent (for the tenth frequency); and that 
for cylindrical shells is 2.4 percent, while it is only 1.8 percent for 
hyperbolic paraboloidal shells. Unlike plates, convergence occurred 
for the first three significant figures for most of the fundamental 
frequencies with 192 terms. For the rest of the frequencies, convergence 
occurred for the first two significant figures only. From these studies, 
it was decided to use 192terms for laminated shallow shells (i.e.,  
I = J = K = L = M = N = 7). This is also consistent with using  
192/3 = 64 terms for laminated plates (where only w is needed). 

Table 9.15 gives the first eight nondimensional frequencies for 
fourlayer [θ, −θ, −θ, θ] angleply plates and shallow shells. The fiber 
angle varies between 0° and 45°. Because of the symmetry of the 
problem, frequencies for θ = 60°, 75°, and 90° are the same as those for 
θ = 30°, 15°, and 0°, respectively, when a/b = 1. It is found that the 
fundamental frequencies of shallow shells are virtually the same as 
these of the plate when θ = 0°. This is due to the fact that the 
fundamental mode shape in such cases has node lines along the two 
symmetry axes, requiring no significant stretching of the middle 
surface. However, the higher frequencies are all significantly affected 
by curvature. Increasing θ causes the fundamental frequency to 
increase for all the shell geometries used here. The maximum 
fundamental frequency is obtained at θ = 45° and for higher 
frequencies it can exist at any angle θ between 0° and 45°.

Maximum fundamental frequencies are obtained for spherical 
shells and minimum frequencies are found for plates and/or 
hyperbolic paraboloidal shells. For spherical shells, changing the 
angle from 0° to 45° increases the fundamental frequency by almost 
50 percent. 

Studies are made for symmetrically laminated crossply plates 
and shallow shells of square planform. [0°], [0°, 90°, 0°], and [90°, 0°, 90°] 
laminates are considered with graphite/epoxy material in Ref. [1]. 
Two shallowness ratios (a/R) were used for each type of shell. Table 9.16 
gives the fundamental nondimensional frequency para meters. 
Because of the symmetry of the problem, both laminates [0°, 90°, 0°] 
and [90°, 0°, 90°] give the same results, except for cylindrical shells. 
Increasing the curvature increases the fundamental frequencies for 
all shells except [90°, 0°, 90°] G/E circular cylindrical shells. For higher 
frequencies, increasing the curvature increases the frequencies.

Symmetrically laminated plates and shallow shells having a/b = 1 
are also studied. A singlelayer [45°] and an angleply laminate  
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Table 9.15 Effect of Varying θ on the Frequency Parameters Ω of Graphite/Epoxy Four Layer [θ, −θ, −θ, θ] Shallow 
Shells; a/b = 1, a/h = 100, a/Ry = 0.5

Ry/Rx θ (degrees)

Ω = ω ρa E h2
1

2/

1 2 3 4 5 6 7 8

Plate 0 1.491 1.646 3.459 4.538 6.424 6.471 7.132 8.854
15 1.653 1.843 3.904 4.773 5.902 7.217 7.237 9.185
30 1.914 2.255 4.664 5.097 5.468 7.923 8.517 10.135
45 2.233 2.275 4.655 5.043 5.934 9.183 9.423 10.204
0 1.509 3.961 4.233 6.781 7.652 8.553 9.974 14.683

+1 15 1.836 3.829 4.834 6.768 7.715 9.774 10.992 15.638
30 2.283 3.323 5.871 6.781 8.394 11.119 12.806 15.316
45 2.296 3.093 6.459 6.712 9.001 11.172 13.484 14.841
0 1.514 4.514 6.455 6.755 7.092 9.198 10.647 12.175

 0 15 1.805 4.959 6.070 7.126 7.258 10.748 11.517 13.224
30 2.216 5.124 5.568 7.682 7.991 12.551 12.982 13.997
45 2.243 4.007 5.586 8.129 8.578 10.409 11.706 15.364
0 1.507 4.235 4.541 7.056 8.956 9.062 11.758 13.358

−1 15 1.762 4.457 4.678 7.657 8.441 11.671 12.197 14.615
30 2.115 4.882 4.887 8.809 9.106 13.363 14.940 16.774
45 2.240 4.968 5.102 9.450 9.481 13.873 16.450 18.223



432
433

Laminate Rα/Rβ a/Rα 1 2 3 4 5 6 7 8

[0°] Plate 0 1.491 1.646 3.460 4.539 6.4276 6.471 7.132 9.009
+1 0.1 1.493 2.319 3.511 5.534 6.577 6.706 7.340 9.345

0.5 1.509 3.961 4.232 6.781 7.652 8.553 9.974 14.68
0 0.1 1.493 2.420 3.509 5.694 6.472 6.572 7.145 9.099

0.5 1.514 4.514 6.445 6.755 7.092 9.198 10.65 12.17
−1 0.1 1.493 2.398 3.505 5.732 6.565 6.753 7.208 9.038

0.5 1.507 4.235 4.541 7.056 8.956 9.062 11.76 13.36
[0°, 90°, 0°] Plate 0 1.504 2.040 3.682 5.622 6.361 7.042 7.245 9.070

+1 0.1 1.507 3.071 3.840 6.506 6.868 7.504 7.518 9.890
0.5 1.521 4.373 5.032 6.954 7.912 10.21 11.31 16.73

0 0.1 1.507 3.394 3.840 6.361 6.830 7.142 7.512 9.255
0.5 1.525 6.344 6.413 7.015 7.910 11.72 12.28 16.77

−1 0.1 1.506 3.245 3.823 6.826 7.042 7.275 7.501 9.086
0.5 1.518 4.814 5.140 7.042 9.217 11.041 12.97 18.05

[45°] Plate 0 1.378 2.215 3.120 4.565 4.777 6.086 7.938 7.960
+1 0.1 1.881 2.219 3.557 4.753 4.911 7.278 8.047 8.135

0.5 2.247 2.824 5.484 5.932 6.868 9.397 10.15 12.13



432
433

0 0.1 1.486 2.615 3.235 4.621 4.961 6.412 8.048 8.088
0.5 1.582 3.903 4.043 5.836 6.724 9.089 9.287 11.96

−1 0.1 1.378 3.121 3.541 4.580 5.352 6.097 8.096 8.388
0.5 1.376 3.119 4.754 6.216 8.701 9.354 12.65 12.68

[45°, −45°, 45°] Plate 0 1.689 2.240 3.825 4.681 5.197 7.234 8.697 8.786
+1 0.1 2.245 2.288 4.301 5.242 5.376 8.488 8.903 8.932

0.5 2.276 2.963 5.973 6.336 8.202 10.21 12.03 13.68
0 0.1 1.785 2.887 3.946 4.873 5.533 7.555 8.866 8.969

0.5 1.814 4.094 4.606 7.117 7.534 10.03 10.75 13.76
−1 0.1 1.690 3.827 4.270 4.708 5.916 7.242 9.129 9.345

0.5 1.691 3.843 5.001 7.314 9.591 10.67 14.85 17.97

Table 9.16 Frequency Parameters Ω = ω ρa E h2
1

2/  of Completely Free G/E Shallow Shells; a/b = 1, a/h = 100 
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[45°, −45°, 45°] are used. Two curvature ratios and three types of shells, 
as well as plates, are studied. It is important to notice that, because of 
the symmetry of the problem [45°, −45°, 45°] and [−45°, 45°, −45°] 
laminates give the same results for all the cases. Table 9.16 gives the 
fundamental nondimensional frequencies. Even more strongly than 
what was found for crossply laminates, the threelayer angleply 
laminates give higher frequencies than the singlelayer configurations 
in every case.

For the G/E material used, increasing the curvature increases the 
fundamental frequencies for spherical and cylindrical shells and 
decreases them slightly for hyperbolic paraboloidal shells when the 
singlelayer configurations are used. Increasing the curvature ratio is 
found to have larger effects on the singlelayer configuration than 
the multilayer one.

It is also observed that a slight curvature (a/R = 0.1, correspon
ding to an arc length of 5.7°) causes a large increase in the funda
mental frequency for the spherical shell. It is observed that the 45° 
angleply laminates give higher frequencies than crossply laminates 
for most of the results when the aspect ratio is 1. 

Figure 9.10 gives the first six mode shapes with various lamination 
angles for spherical shells. The aspect ratio (a/b) is taken as 1, and the 
thickness ratio (a/h) is taken as 100, the curvature ratio (a/R) is taken 
as 0.5, a threelayer laminate (θ, −θ, θ) is considered. For these shells, 
mode shapes for θ = 60°, 75°, and 90° are similar to those given for the 
θ = 30°, 15°, and 0°, respectively, and can be obtained easily by 
changing the coordinates.

For the completely free boundary condition, symmetry exists 
about the inplane axes for the isotropic and orthotropic (e.g., crossply) 
shells. This symmetry is lost for shells with angleply lamination. For 

Figure 9.10 Mode shapes and frequency parameters ω ρa E h2
1

2/  for 
completely free [θ,-θ,θ], G/E spherical shells, a/b = 1, a/h = 100, a/R = 0.5.
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the special case of diagonally orthotropic angleply laminates which 
are made of 45° angle layers, symmetry exists about the diagonals for 
spherical and hyperbolic paraboloidal shells only. The gradual change 
in contour lines with increasing θ is evident in the figures.

As the lamination angle increases, the order of the mode shapes 
may vary. There is a tendency for the nodal lines to go in the direction 
of the fibers (i.e., lamination angle). For spherical and hyperbolic 
paraboloidal shell [1] with diagonal orthotropy (i.e., θ = 45°), almost 
all the nodal lines are diagonal. Furthermore, it is observed that the 
crossing of the nodal lines for orthotropic materials (i.e., θ = 0° or 90°) 
is replaced by curve veering for angleply laminates for most of the 
mode shapes.

The mode shapes can also be used to explain the natural 
frequencies. For spherical shells, changing the angle from 0° to 45° 
gradually changes the first mode shape to one similar to the second 
mode shape which has a considerably larger natural frequency. That 
is why the first frequency parameter increases considerably as the 
lamination angle increases. Changing the lamination angle from 0° 
to 45° does the opposite for the second mode shape which becomes 
similar to the first mode shape. This explains why the second natural 
frequency decreases as the lamination angle increases.

A cantilevered doubly curved shallow shell is shown in Fig. 9.11. 
Convergence studies are made for a series of cantilevered plates and 
shallow shells representative of those to be analyzed subsequently 
[1]. Comparisons are made with results obtained experimentally and 
using finite element methods [1].

Studies are made for symmetrically laminated plates and shallow 
shells of square planform (a/b = 1) having either a single layer or four 
layers in an angleply stacking sequence. Results are presented for 
the strongly orthotropic graphite/epoxy (G/E) composites. Table 9.17 
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Figure 9.11 A doubly-curved cantilevered shallow shell.
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θ (degrees) 1 2 3 4 5 6 7 8

Plates

0 1.018 1.372 2.639 5.315 6.376 6.835 8.246 10.22
15 0.906 1.470 2.946 5.652 5.817 6.697 8.695 10.71
30 0.708 1.613 3.464 4.556 5.986 7.294 9.535 12.47
45 0.501 1.599 3.012 4.173 5.665 8.447 9.485 9.944
60 0.346 1.368 2.134 4.057 5.369 6.835 7.893 9.638
75 0.274 1.038 1.714 3.361 4.798 6.230 6.795 8.694
90 0.259 0.862 1.623 2.923 4.543 5.973 6.670 8.197
Spherical shells

0 1.547 1.888 4.420 6.650 8.223 9.257 15.18 18.24
15 1.664 1.967 4.800 6.637 8.414 10.42 16.30 17.03
30 1.606 2.044 5.189 6.352 8.646 11.86 15.14 16.60
45 1.349 1.986 4.723 6.112 8.654 11.54 13.95 16.16
60 1.161 1.673 4.349 5.456 7.820 10.71 12.48 15.52
75 1.052 1.273 3.989 4.659 7.254 8.952 10.52 14.60
90 0.991 1.076 3.517 4.369 7.197 7.769 9.534 13.16
Cylindrical shells

0 1.962 2.334 4.558 5.518 8.193 8.210 10.26 11.80
15 2.081 2.628 5.180 6.026 7.854 8.875 11.20 13.13
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30 2.066 2.931 5.084 7.091 7.890 9.508 13.74 14.89
45 1.866 2.606 4.847 7.334 7.761 10.95 14.28 14.75
60 1.552 2.014 5.041 6.395 7.416 12.30 12.53 13.53
75 1.208 1.674 4.442 6.193 6.838 9.914 10.59 12.03
90 1.027 1.555 3.899 5.973 6.825 8.482 9.701 10.70
Hyperbolic paraboloidal shells

0 1.473 1.512 5.693 6.956 10.09 10.83 15.93 16.50
15 1.273 1.881 5.348 7.697 10.86 11.95 16.84 17.63
30 1.209 2.146 5.179 8.248 11.35 13.87 17.64 18.41
45 1.150 2.092 4.983 7.988 11.01 15.15 16.63 18.17
60 1.038 1.747 4.497 7.019 9.893 13.73 14.24 15.34
75 0.947 1.311 3.914 5.931 8.561 10.68 12.26 13.23
90 0.973 1.023 3.578 5.340 8.141 8.845 11.28 12.41

Table 9.17 Effect of Varying θ on the Frequency Parameters Ω = ω ρa E h2
1

2/  of Graphite/Epoxy 
Four Layer [θ, −θ, −θ, θ ] Cantilevered Shallow Shells; a/b = 1, a/h = 100, b/Ry = 0.5
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presents the fundamental nondimensional frequency parameters  
for fourlayer angleply plates and shallow shells. Other materials 
and lamination sequences are considered [16]. The fiber orientation 
angle varies between 0° and 90° by an angle increment of 15°.

It is observed that increasing θ causes the fundamental fre
quency to decrease monotonically for the plates and for most of the  
shells considered. However, for spherical and cylindrical shells, the 
maximum fundamental frequency occurs in the vicinity of θ = 15°.

It is interesting to notice that the percent change in the 
fundamental frequency between the 0° angle and the 90° angle is 
considerably more for G/E than that for E/E materials [16]. It is also 
observed that changing the fiber angle has a much greater effect on 
plates than for shells. The least change in the frequency parameter 
with increasing θ occurs for hyperbolic paraboloidal shells. The effect 
of changing the angle on higher frequencies is less than that for the 
fundamental frequency. 

Further studies showed that increasing the curvature increases 
the frequencies considerably [16]. Its effect is maximum for cylindrical 
shells and minimum for hyperbolic paraboloidal shells. 

Figure 9.12 gives the first six mode shapes with various lamina
tion angles for cylindrical shells. Mode shapes for spherical and 
hyperbolic paraboloidal can be found in Ref. [1]. Unlike the completely 
free case, there is no diagonal symmetry here. The mode shapes for 
all the lamination angles of the three types of shells are considered.

For cantilevered crossply shells, two classes of symmetry are 
possible in the displacement functions. The displacements can be 
either symmetric or antisymmetric about the xaxis. For the flat plate 
and when θ = 0°, the first six mode shapes were, in order, the first 
spanwise bending mode (1B), the first torsional mode (1T), the first 
chordwise bending mode (1C), the second chordwise bending mode 
(2C), the second torsional mode (2T), and finally the second bending 
mode (2B) [1]. Unlike flat plates, for all the shells considered here, the 
first mode is the first torsional mode when θ = 0° or 90°. The shape of 
the mode for shells is not as clear as that for plates. For the lamination 
angle θ = 0°, the order of the mode shapes is

 a. For spherical shells    1T, 1B, 1C, 2T, 2B, 2C

 b. For cylindrical shells   1T, 1C, 1B, 2C, 2T, 3C

 c. For hyperbolic paraboloidal shells   1T, 1B, 1C, 2T, 2B, 2C

The order of the mode shapes changes for the 90° lamination 
angle, but the first mode shape remains the torsional one. More 
chordwise bending modes tend to exist for the 0° lamination angle 
than the 90° one. For lamination angles between 0° and 90°, the 
fundamental modes are combinations of the above modes. A gradual 
change in the mode shapes is observed as the lamination angle 
increases. In some cases, this gradual change in the mode shapes 
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results in a completely different one when the lamination angle 
becomes 90°.

Looking at these mode shapes more closely, one observes that for 
most of the mode shapes large displacements are observed in limited 
regions of the shell, such as at a corner, whereas most of the shell 
displaces very little. This is characteristic of thin shells, where one 
observes much more activity near the edges or corners of the shell.

An interesting phenomenon is observed for spherical shells with 
θ = 45° [17]. For these shells, the mode shapes can be approximately 
divided into two categories of symmetric and antisymmetric about 
the xaxis. 

A twisted plate (Fig. 9.13) is actually a shell. In one set of 
coordinates it is only twisted. But in other coordinates it has 
curvatures as well. The cantilevered twisted plate is a mechanical 
element of considerable technical significance. It has many 

Figure 9.12 Mode shapes and frequency parameters ω ρa E h2
1

2/  for 
cantilevered G/E cylindrical shells. a/b = 1, a/h = 100, a/R =  0.5.



 440 C h a p t e r  N i n e  V i b r a t i o n s  o f  C o m p o s i t e  C o n t i n u o u s  S y s t e m s  441

applications such as in turbomachinery, impeller, and fan blades. 
The vast majority treated blades as cantilevered beams. Such 
representation is inaccurate if higher frequencies are needed or the 
blade is short. A more accurate model can be made using shallow 
shell theory.

A twisted plate is characterized by its middle surface, which is 
defined by z = xy/Rxy. The constant Rxy identify the radius of twist. A 
typical twisted plate is shown in Fig 9.13. Natural frequencies and 
mode shapes of laminated cantilever plates having pretwist is 
presented in Ref. [18]. Laminated shallow shell theory and the Ritz 
method are used here. The effects of many parameters like twist 
angle, lamination angle, stacking sequence, and thickness and 
orthotropy ratios on the natural frequencies and mode shapes of 
twisted cantilevered composite plates is also studied [18]. 

A typical plate of moderate thickness (b/h = 100) and twist  
(φ = 30°) and square planform (a/b = 1) was used in Ref. [18]. 
Convergence studies were made of the lowest frequency parameters  
Ω = ω ρa E h2

1
2/  for graphite/epoxy. The maximum number of terms 

used is 192 by choosing 8 terms in both x and y directions for all the 
three components of displacements.

The maximum fundamental frequencies are observed when the 
fibers are perpendicular to the clamped edge (i.e., θ = 0°) in all cases. 
Frequencies and mode shapes were given in Fig. 9.9 for untwisted 
cantilevered plates. For the fundamental frequency, which 
corresponds to the first spanwise bending mode, increasing the fiber 
angle has a very large effect. The natural frequencies when θ = 90° 
are about one quarter of those when θ = 0° when G/E material is used 
for all twist angles. This difference is much less for E/E materials. For 

y

z 

a 

x

Figure 9.13 A twisted plate.
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higher frequencies, the maximum frequency parameters can be 
found at a fiber angle between 0° and 30° and occasionally at a fiber 
angle of 45°, with some exceptions for E/E materials. Although thin 
untwisted plate theory predicts the same transverse vibration 
frequency parameters Ω = ω ρa E h2

1
2/  when the thickness ratio is 

changed, new mode shapes can be introduced for some modes of the 
thicker plates, which correspond to inplane vibration modes and not 
transverse ones. This could not be seen if the inplane terms (i.e., U 
and V) are removed, which is normally done in vibration studies 
made for untwisted symmetrically laminated thin plates.

 Figures 9.14 shows the fundamental six frequency parameters 
and corresponding mode shapes for laminated twisted graphite/
epoxy square plates for an angle of twist of 45°. Other angles of twist 
are given in the literature [18]. 

Figure 9.14 Mode shapes and frequency parameters ω ρa E h2
1

2/  for 
graphite/epoxy cantilevered plates with a 450 twist angle.
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For twisted plates, unlike flat plates, the second mode is not the 
torsional mode. In fact, for φ = 30° and 45°, the second mode is the 
second bending mode; the first torsional mode is the third mode 
when θ = 0° and the fourth one when θ = 90°, being preceded by three 
bending modes. The number of symmetric modes such as 1B, 2B, 3B, 
1C and 2C when θ = 90° increases as the angle of twist increases. For 
φ = 0°, three of the first six mode shapes are symmetric, whereas for 
φ = 45°, five are symmetric.

For fiber angles between 0° and 90°, coupling between the modes 
exists, and the strength of the coupling increases both with increasing 
fiber angle and increasing twist angle. With large twist angle 
(Fig. 9.14), one observes many modes where large displacements 
occur only in limited regions of the plate, such as in a corner, whereas 
most of the plate displaces very little. This is characteristic of thin 
shells, and the twisted plate is in actuality a shell.

A doubly cantilevered shallow shell (i.e., two adjacent edges 
clamped and the others free) is shown in Fig. 9.15. A convergence 
study for moderately thin (b/h = 100) plates and shallow shells having 
square planform (a/b = 1) was performed [19]. The depth of the shell is 
taken at the limits of shallow shell theory (b/Ry = 0.5), which is found 
to yield slower convergence than for shallower shells. Results for the 
flat plate are shown for comparison. Three layer [θ, −θ, θ] laminates 
are considered in the analysis. A representative lamination angle of 
30° has been adopted in the convergence studies. Converging results 
are observed with a 49 terms used for laminated plates. Table 9.18 
presents the first eight nondimensional frequency parameters for 
threelayer plates and shallow shells of moderate curvature (b/Ry = 
0.5) for graphite/epoxy materials. The fiber orientation angle varies 
between 0° and 90° by an angle increment of 15°.
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Figure 9.15 A doubly cantilevered shallow shell.
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θ (degrees) 1 2 3 4 5 6 7 8

Spherical shells

0 3.015 4.875 8.933 9.932 14.75 18.90 20.41 23.00 
15 3.344 4.782 9.806 10.52 16.18 19.19 21.41 25.65
30 3.652 4.726 10.78 11.40 17.44 19.77 23.88 27.44
45 3.754 4.692 11.41 11.45 17.85 20.53 25.70 28.04
Cylindrical shells

0 2.162 5.091 7.247 8.171 9.938 11.72 12.84 15.07
15 2.490 5.603 8.002 8.894 11.00 12.93 13.85 15.72
30 2.709 6.209 8.472 10.02 13.31 14.37 16.28 17.94
45 2.787 6.358 8.738 11.54 13.59 16.24 19.39 20.77
60 2.774 5.870 8.698 11.93 14.32 16.08 21.74 21.74
75 2.564 5.519 8.116 10.23 15.64 15.76 18.13 22.15
90 2.248 5.098 7.735 9.229 14.68 15.22 18.14 21.36
Hyperbolic paraboloidal shells

0 1.551 5.970 10.38 11.90 15.23 15.81 19.41 20.73
15 1.976 7.273 11.49 13.94 15.57 17.92 18.95 21.51
30 2.229 8.050 13.20 15.15 16.56 18.56 20.86 22.85
45 2.306 8.316 14.87 16.26 17.12 18.70 21.54 21.66

Table 9.18 Effect of Varying θ on the Frequency Parameters Ω = ω ρa E h2
1

2/  of Graphite/Epoxy Three 
Layer [θ, −θ, θ] Doubly Cantilevered Shallow Shells; a/b = 1, b/h = 100, b/Ry = 0.5
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Natural frequencies for spherical and hyperbolic paraboloidal 
shells as well as those for plates are the same when the fiber angle θ 
is 60°, 75°, and 90° as those when it is 30°, 15°, and 0° respectively. This 
is due to the symmetry of the problem about the diagonal for the 
shallow shells of square planform studied here.

It is observed that increasing θ has its largest effect on the 
fundamental frequencies of hyperbolic paraboloidal shells for all the 
results. The effect of increasing the lamination angle from 0° to 45° is 
a 36 percent increase in fundamental frequencies for hyperbolic 
paraboloidal, 22 percent for cylindrical, 24 percent for spherical 
shells, compared with only 9.3 percent for plates. For deeper shallow 
shells (b/Ry = 0.5), it is observed that increasing the angle from 0° to 
45° causes the fundamental frequencies to increase by 24 percent, 29 
percent, and 48 percent for spherical, cylindrical and hyperbolic 
paraboloidal shells respectively. Vibration of cantilevered and 
completely free composite triangular and trapezoidal shallow shells 
has also been studies [20, 21]. 

9.10 Laminated Thick Shallow Shells
Thick shallow shells are shells with a thickness smaller by 
approximately one order of magnitude when compared with other 
shell parameters, like its vibration mode shape wavelength and/or 
radii of curvature. A thick shallow shell theory requires the 
inclusion of shear deformation and rotary inertia factors to be 
accurate. 

The midsurface strains for a shallow shell are:
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Transverse shear strains and curvature changes are similar to 
those for plates (9.94) and (9.95). 

The equations of motion for a laminated shallow shell are similar 
to those for a plate (9.97) with the exception for the third equation. 
For shallow shells, this equation is
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The equilibrium equations can be written in terms of 
displacements (L u M u qij i ij i+ = ) same as (9.101) where the Lij are listed 
below, and the Mij coefficients are given in Eqs. (9.102).
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Both symmetric and unsymmetric lamination sequences have 24 
possible classical boundary conditions at each edge, 8 for each of the 
classical boundary conditions (i.e., free, simply supported and 
clamped). 

Like crossply laminated plates, shallow shells that have two 
opposite edges simply supported can permit exact solutions. Similar 
to plates, the problem with all edges being simply supported S2 have 
a direct, relatively straightforward solution.

Consider again crossply laminates, with A16 = A26 = B16 = B26 = 
D16 = D26 = 0. An exact solution similar to (9.106) can be employed for 
thick shallow shells with shear diaphragm supports at x = 0 and a, 
and y = 0 and b (similar to plates). Substituting these into the equations 
of motion, using a Fourier expansion for the loading functions yields 
the equations [K]{∆}+(ωmn)2 [M] {∆} = −{F} similar to that of plates. For 
shallow shells, the Kij coefficients are
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The mass matrix is the same as that defined for plates. Table 9.19 
shows the frequency parameter Ω = ω ρa E h2

2
2/  for crossply 

hyperbolic paraboloidal shallow shells on square planform (a/b = 1) 
and with material properties representative of graphite/epoxy  
(E1/E2 = 15, G12/E2 = 0.5, G13/E2 = 0.5, G23/E2 = 0.5, ν12 = 0.25). A typical 
shear correction factor is used (K2 = 5/6). Results are presented by 
using a shear deformation shallow shell theory (SDSST) and classical 
shallow shell theory (CSST). Crossply laminates with both symmetric 
[0°, 90°, 90°, 0°] and unsymmetric [0°, 90°] and [90°, 0°] lamination 
sequences are used in the analysis. Curvature ratios are varied from 
a flat plate to that of the limit of shallow shell theory (a/R = 0.5). 
Tables 9.20 and 9.21 show similar results for both cylindrical and 
spherical shells, respectively.

The first observation made here is the difference between the 
shear deformation shell theory (SDSST) and the classical shell theory 
(CSST). Both theories gave results that agree to the third significant 
figure for a thickness ratio of 100. The difference between the two 
theories reaches 3 percent for hyperbolic paraboloidal shells, 2.5 
percent for cylindrical shells and 1.5 percent for spherical shells when 
a thickness ratio of 20 is used, indicating the validity of the classical 
theory for shells with this thickness ratio. When the thickness ratio 
of 10 is used, the difference between the two theories exceeds 10 
percent for the most part, showing the lack of accuracy of the classical 
theory in predicting frequencies for such moderately thick shallow 
shells.

The second important observation to be made is on the impact of 
unsymmetric lamination. Lower frequency parameters were 
obtained for unsymmetrically laminated crossply plates when 
compared with symmetrically laminated ones. The unsymmetric 
lamination decreases the frequencies significantly for almost all 
results presented here except the thin, moderately deep, spherical 
shells, where its impact is noticed to be minimal. This can be due to 
the high influence of membrane forces of these shells on the frequency 
parameter. Furthermore, the [0°, 90°] lamination gave slightly higher 
frequencies than the [90°, 0°] lamination. This is particularly true for 
thicker and deeper shells and more so for hyperbolic paraboloidal 
shells than cylindrical shells. The two lamination sequences showed 
no difference for spherical shells.
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Table 9.19 Frequency Parameter Ω = ω ρa E h2
2

2/  for Cross-Ply Hyperbolic Paraboloidal Shallow Shells 
(a/b = 1, E1/E2 = 15, G12/E2 = 0.5, G13/E2 = 0.5, G23/E2 = 0.5, ν12 = 0.25, K2 = 5/6) for Shear Deformation 
Shallow Shell Theory (SDSST) and Classical Shallow Shell Theory (CSST)

Lamination 
Theory

[0°, 90°, 90°,  0°] [0°, 90°] [90°, 0°]

a/R SDSST CSST SDSST CSST SDSST CSST

a/h = 100 0 12.2615 12.3773 8.56394 8.56847 8.56394 8.56847
0.1 12.2491 12.2649 8.55914 8.56847 8.55143 8.55594
0.2 12.2121 12.2279 8.53710 8.54161 8.52183 8.52632
0.5 11.9622 11.9776 8.37296 8.37737 8.33708 8.34143

a/h = 20 0 11.9010 12.2773 8.44807 8.55811 8.44807 8.55811
0.1 11.8890 12.2649 8.45815 8.56879 8.42109 8.53026
0.2 11.8530 12.2276 8.45115 8.56208 8.37769 8.48572
0.5 11.6104 11.9763 8.33038 8.44045 8.15772 8.26102

a/h = 10 0 10.9716 12.2773 8.11956 8.52569 8.11956 8.52569
0.1 10.9605 12.2647 8.14483 8.55570 8.07848 8.47898
0.2 10.9273 12.2269 8.15383 8.56844 8.02233 8.41638
0.5 10.7031 11.9722 8.08313 8.50237 7.77388 8.14496
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Table 9.20 Frequency Parameter Ω = ω ρa E h2
2

2/  for Cross-Ply Cylindrical Shallow Shells (a/b = 1, E1/E2 = 15, 
G12/E2 = 0.5, G13/E2 = 0.5, G23/E2 = 0.5, ν12 = 0.25, K2 = 5/6) for Shear Deformation Shallow Shell Theory (SDSST) 
and Classical Shallow Shell Theory (CSST)

Lamination 
Theory a/R

[0°, 90°, 90°, 0°] [0°, 90°] [90°, 0°]

SDSST CSST SDSST CSST SDSST CSST

a/h = 100 0 12.2615 12.3773 8.56394 8.56847 8.56394 8.56847
0.1 13.9561 13.9703 10.8575 10.8616 10.8526 10.8567
0.2 18.0992 18.1107 15.8445 15.8484 15.8303 15.8342 
0.5 35.1759 35.1838 28.2155 28.2471 27.7925 27.8270

a/h = 20 0 11.9010 12.2773 8.44807 8.55811 8.44807 8.55811
0.1 11.9700 12.3442 8.55769 8.66733 8.53889 8.64780
0.2 12.1740 12.5418 8.86048 8.96840 8.82171 8.92813
0.5 13.4883 13.8195 10.6898 10.7893 10.5752 10.6707

a/h = 10 0 10.9716 12.2773 8.11956 8.52569 8.11956 8.52569
0.1 10.9867 12.2897 8.15924 8.56701 8.12590 8.52847
0.2 11.0316 12.3270 8.24451 8.65203 8.17744 8.57455
0.5 11.3342 12.5784 8.75225 9.14960 8.57836 8.94972
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The third observation made here is on the influence of curvature. 
The influence of curvature is noticed to be the strongest for spherical 
shells and the weakest for hyperbolic paraboloidal shells. For the later 
shells, increasing the curvature is observed to reduce the frequency 
parameter slightly. For spherical shells, a slight curvature increase to 
a curvature ratio of a/R = 0.1 results in 50 percent increase in the 
frequency parameters associated with thin shells. Its impact is less for 
thicker shells. Additional detailed results can be found in Ref. [1].

9.11 Laminated Cylindrical Shells
Consider Fig. 7.10, the following equations represent the midsurface 
strains and curvature changes for a thin cylindrical shell:
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The β subscript is dropped because there is only one radius of 
curvature for cylindrical shells (R = Rβ).

Table 9.21 Frequency Parameter Ω = ω ρa E h2
2

2/  for Cross-Ply Spherical Shallow 
Shells (a/b = 1, E1/E2 = 15, G12/E2 = 0.5, G13/E2 = 0.5, G23/E2 = 0.5, ν12 = 0.25, K2 = 
5/6) for Shear Deformation Shallow Shell Theory (SDSST) and Classical Shallow Shell 
Theory (CSST)

Lamination a/R
[0°, 90°, 90°, 0°] [0°, 90°]

SDSST CSST SDSST CSST

a/h = 100 0 12.2615 12.3773 8.56394 8.56847
0.1 18.1175 18.1290 15.8534 15.8573
0.2 29.3005 29.3090 27.9620 27.9666
0.5 66.5695 66.5774 66.0054 66.0139

a/h = 20 0 11.9010 12.2773 8.44807 8.55811

0.1 12.1863 12.5545 8.84994 8.95725
0.2 13.0000 13.3466 9.95202 10.0534
0.5 17.5209 17.7854 15.4499 15.5392

a/h = 10 0 10.9716 12.2773 8.11956 8.52569
0.1 11.0428 12.3397 8.21896 8.62173
0.2 11.2522 12.5236 8.50843 8.90183
0.5 12.5718 13.6975 10.2492 10.5975



 450 C h a p t e r  N i n e  V i b r a t i o n s  o f  C o m p o s i t e  C o n t i n u o u s  S y s t e m s  451

Consider a laminated composite thin shell. Applying the 
Kirchhoff hypothesis of neglecting shear deformation, assuming that 
ez is negligible, as is customarily done in thin shell theory (or classical 
shell theory, CST), and integrating the stresses over the thickness of 
the shell yields Eqs. (9.12) and (9.13). Note that these equations are the 
same as those for laminated plates, which are valid for thin shells. 
Note also that the orthotropy of each layer is assumed to follow the 
coordinate system.

By taking a cylindrical differential element and applying 
equilibrium conditions on it (or through variational principles), the 
equations of motion for a cylindrical shells are:
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where pα, pβ and pn are pressure components. The above equations 
can be written in term of the coordinates (x, θ) as was done in Chap. 7 
for isotropic shells by substituting the following expression into 
them:

 α = x, β = Rθ 
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(9.121)

 Substituting (9.119) and (9.12) into Eqs. (9.120) yields the equations 
of motion in terms of displacement similar to (9.77). The Lij coefficients 
of these equations for a laminated thin cylindrical shells are:
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The strain energy functional for a cylindrical shell made of 
laminated composite can be written as in (9.81) where parts of the 
potential energy for a cylindrical shell are 
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Note that for symmetrically laminated shells, Bij = 0 and, hence,  
Ubs = 0. The kinetic energy of the entire cylindrical shell is expressed 
with the same equations used for plates (9.82).

Thin cylindrical shells can have up to 16 boundary conditions at 
each edge. Twelve of these are classical boundary conditions (i.e., 
free, simply supported, and clamped). This leads to numerous 
combinations of boundary conditions, particularly when the shells 
are open. Like shallow shells, only those open cylindrical shells that 
have two opposite edges simply supported can permit exact solutions 
(for crossply lamination). Interestingly, for closed shells, this 
constitutes all possible boundary conditions the shell may have. The 
problem with all edges being simply supported with shear diaphragm 
boundaries has a direct, relatively straightforward solution. 
Interestingly enough, closed shells with shear diaphragm boundaries 
at each of the opposing two edges permit the same exact solution. 
The reason is that conditions at the nodal lines of these shells simulate 
a shear diaphragm boundary. This can be mathematically proven 
with the obtained exact solution. 

Consider a cylindrical shell that is made of a crossply laminate, 
thus A16 = A26 = B16 = B26 = D16 = D26 = 0. The differential parameters 
in the equations of motion Lij become:
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Consider an open cylindrical shell with shear diaphragm (S2) 
boundaries on all four edges. The solution in (9.85) with x replaced by 
α and y by β satisfies the boundary conditions and the equations of 
motion exactly for open cylindrical shells. These equations can be 
used in analyzing closed shells by substituting b with πR. With β = 
Rθ; the above solution can be written in terms of θ for closed 
cylindrical shells as
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Note also that for such shells, at the nodal points, where θ = 0 and 
π/n (for each n), this solution yields the inplane displacement u0 
(which is tangential to the boundaries θ = 0 and π/n, i.e., β = 0, Rπ/n) 
and transverse displacement w0 to be zero. The other inplane 
displacement v0 normal to the boundaries θ = 0 and π/n (i.e., β = 0, 
Rπ/n) is not zero. These are the geometric constraints for shear 
diaphragm boundaries. The forces and moments at these nodal lines 
can be determined [1] showing that for higher modes, each segment 
of the shell containing double half sine waves can actually be treated 
as an independent shell with shear diaphragm boundary conditions 
vibrating at its fundamental frequency. As will be seen later, this is 
an important observation for treating closed cylindrical shells having 
arbitrary boundaries at α = 0 and a.

Substitute the general solution of open shells into the equations 
of motion in terms of displacement yields (9.86) with the following 
coefficients: 
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Many comparisons are made in the literature to show that the 
above equations are indeed accurate for thin laminated shells [1]. 
More complicated equations that can be obtained using the 
assumptions of Flügge or Sanders in shell theory. Figure 7.12 shows 
the sine waves and possible mode shapes along the circumferential 
direction of the shell.

The nondimensional frequency parameter Ω = ω ρR E/ 1  is used 
in all subsequent results. In the results obtained for laminated 
composite shells, the [0°, 90°] and [90°, 0°] lamination sequences are 
used in most of these results because they generally represent a shell 
with the maximum stretching–bending coupling effects (i.e., Bij terms 
are the highest).

Table 9.22 presents results for graphite/epoxy closed and open 
[0°, 90°] laminated shells. The material properties for graphite/epoxy 
are E1 = 20.02 × 106 psi, E2 = 1.3×106 psi, G12 = 1.03 × 106 psi, ν12 = 0.3. 
These are presented in (9.90) in SI units. Other studies are in Table 9.23 
which lists the natural frequencies for [90°, 0°], [0°, 90°]s, and [90°, 0°]s 
graphite/epoxy closed cylindrical shells. The thickness ratio of (R/h 
= 100) is used. Results obtained previously for [0°, 90°] shells are not 
repeated here but can be used from Table 9.22 for comparisons. 

The first important observation is that unsymmetric lamination 
does not always yield lower frequencies. For example, when a/mR > 
2.0, the unsymmetric lamination sequence [90°, 0°] yielded higher 
fundamental frequency than the symmetric lamination [0°, 90°]s. This 
is generally not the case for plates.

Shells with the outer fibers in the circumferential direction of  
the shell ([90°, 0°] and [90°, 0°]s) give higher frequencies when 
compared with shells having the outer fibers in the longitudinal 
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Table 9.22 Frequency Parameters for [0°, 90°] Graphite/Epoxy Closed Cylindrical Shells, R/h = 100 

a/mRβ

n
0 1 2 3 4 5 6 7 8 9 10

Closed cylindrical shells 

8 0.08907 0.04903 0.02140 0.01482 0.02075 0.03235 0.04723 0.06495 0.08543 0.10865 0.13460 
4 0.17815 0.11600 0.06212 0.03740 0.03013 0.03561 0.04846 0.06552 0.08578 0.10891 0.13483 
2 0.35629 0.23975 0.14556 0.09650 0.07025 0.05915 0.06070 0.07187 0.08936 0.11121 0.13651
1 0.71259 0.44205 0.29163 0.20869 0.15935 0.12928 0.11295 0.10837 0.11412 0.12826 0.14882 
0.5 0.73565 0.63822 0.49616 0.38973 0.31622 0.26575 0.23171 0.21047 0.20015 0.19960 0.20777
Open cylindrical shells (b/R = 2) 

8 0.08907 0.02984 0.01508 0.02864 0.05197 0.08227 0.11934 0.16314 0.21367 0.27093 0.33490
4 0.17815 0.08060 0.03544 0.03305 0.05293 0.08263 0.11958 0.16337 0.21390 0.27117 0.33515
2 0.35629 0.17846 0.09168 0.06095 0.06305 0.08650 0.12156 0.16474 0.21507 0.27227 0.33623
1 0.71259 0.34488 0.20014 0.13638 0.11052 0.11270 0.13631 0.17420 0.22209 0.27813 0.34152
0.5 0.73565 0.55382 0.37757 0.27836 0.22450 0.20102 0.20207 0.22342 0.26061 0.31001 0.36929
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Table 9.23 Lamination Effects on the Frequency Parameter for Graphite/Epoxy [0°, 90°] Closed Cylindrical Shells

a/mR
n

0 1 2 3 4 5 6 7 8 9 10

[90°, 0°]

8 0.08907 0.04925 0.02182 0.01553 0.02143 0.03298 0.04789 0.06570 0.08632 0.10971 0.13587
4 0.17815 0.11653 0.06276 0.03836 0.03147 0.03699 0.04975 0.06678 0.08707 0.11030 0.13637
2 0.35629 0.24079 0.14668 0.09770 0.07184 0.06126 0.06312 0.07433 0.09177 0.11359 0.13892
1 0.71259 0.44339 0.29322 0.21025 0.16105 0.13136 0.11560 0.11160 0.11777 0.13216 0.15284
0.5 0.73090 0.63573 0.49559 0.38999 0.31694 0.26689 0.23335 0.21273 0.20311 0.20327 0.21208
[0°, 90°]s

8 0.08907 0.04914 0.02155 0.01449 0.01923 0.02949 0.04285 0.05883 0.07732 0.09829 0.12174
4 0.17815 0.11627 0.06244 0.03765 0.02961 0.03354 0.04462 0.05980 0.07798 0.09882 0.12220
2 0.35629 0.24031 0.14621 0.09717 0.07079 0.05892 0.05880 0.06778 0.08289 0.10222 0.12483
1 0.71259 0.44316 0.29322 0.21064 0.16165 0.13173 0.11501 0.10915 0.11271 0.12405 0.14149
0.5 0.73919 0.64338 0.50396 0.40026 0.32947 0.28158 0.24969 0.22981 0.21966 0.21786 0.22343
[90°, 0°]s

8 0.08907 0.04914 0.02251 0.02341 0.04017 0.06422 0.09403 0.12935 0.17014 0.21638 0.26807
4 0.17815 0.11627 0.06276 0.04187 0.04602 0.06615 0.09483 0.12978 0.17043 0.21661 0.26827
 2 0.35629 0.24027 0.14626 0.09875 0.07888 0.08180 0.10211 0.13351 0.17262 0.21809 0.26940
1 0.71259 0.44270 0.29247 0.21022 0.16385 0.14166 0.14031 0.15694 0.18738 0.22800 0.27656
0.5 0.73296 0.63664 0.49550 0.38978 0.31790 0.27151 0.24589 0.23906 0.24950 0.27500 0.31295
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direction (i.e., [0°, 90°] and [0°, 90°]s). The effect of lamination sequence 
is observed to be less for higher frequencies and/or lower length  
ratio (a/mR). Also, lamination sequence effects are insignificant for 
frequencies with n < 2.

The orthotropy ratio has a considerable effect on all the frequencies 
[1]. Its effects on the fundamental frequency parameters are found to 
be higher for short shells (a/mR = 0.5) than longer ones. This is 
reversed when n = 0, where the orthotropy effects are found to be 
higher for longer shells (a/mR = 8) than shorter ones. The fundamental 
frequencies are observed to occur at a lower n value for lower 
orthotropy ratios. Similar studies of the effect of the orthotropy ratio 
on [90°, 0°] laminates yielded similar results. 

9.12 Vibrations of Other Laminated Shells
As was discussed in Chap. 7, shells can have several geometrical shapes 
or curvature. Among the mostly used ones are cylindrical (which may 
have circular or noncircular crosssections), spherical, and conical 
shells. All of these (except the cylindrical shell with a noncircular 
crosssection) can actually be characterized as shells of revolution. 

Laminated shells offer the same of the differential equations as 
other isotropic shells, but are far more complex. Reference [1] offers 
the list of the set of equations (strain–displacement, stress resultant, 
equilibrium, and boundary conditions) for many of the above shells 
including cylindrical, barrel, spherical, and conical shells. It offers 
these equations for both thin and thick shells where shear deformation 
and rotary inertia is included. 

Interestingly, exact solutions for crossply shells with shear 
diaphragm boundaries at the ends are possible. These exact solutions 
were used by many researchers for both thin shells [22] and thick 
shells [23].

It should be noted here that Eqs. (9.13) have been used in the 
literature for shells. This is proven inaccurate for laminated, deep 
thick shells. Alternative accurate equations are first developed by 
Qatu [24] and are available in Refs. [1,25]. These equations should be 
used for thick laminated shells.

Table 9.24 shows comparisons of the natural frequency parameters 
obtained using the accurate stress resultants as shown in Refs. 
[1,24,25] and those of plates (9.13) used for cylindrical open shells 
having shear diaphragm boundaries. Ye and Soldatos [26] used the 
3D theory of elasticity and obtained exact solutions for cylindrical 
shells without making the assumption of shallowness made by 
Bhimaraddi [27]. Firstorder shear deformation shell theories (SDST) 
were used by Librescu et al. [28] and Bhimaraddi [27], who also used 
higher order shear deformation shell theories (HSDT). 

Despite their added complexity, the results shown indicate that 
HSDST theories do not always yield better results than firstorder 
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SDST theories (when compared with the 3D theory of elasticity). In 
all SDST and HSDST theories of both Librescu et al. and Bhimaraddi, 
the results deviate from the 3D theory of elasticity as the shell 
becomes deeper. This indicates that the error in these theories may 
very well be due to the fact that they used (9.13) in the stiffness 
coefficients which are not accurate for deep thick shells. When 
accurate stiffness parameters were used [25] closer approximation to 
the 3D results when compared with the SDST theories of Librescu 
et al. [28] and Bhimaraddi [27].

Table 9.25 lists the natural frequencies for [0°, 90°] graphite/epoxy 
closed shell. The results show clearly that gross error can occur when 
using CST especially for thicker and shorter shells. One important 
observation is that thin shell theory predicted a fundamental 
frequency at n = 4 for the short shells with a thickness ratio of 20. 
Thick shell theory predicted the fundamental frequency to be 
associated with n = 5 for such shells. For shorter shells, the 
fundamental frequency tends to occur at higher n values. It is worth 
noting that the fundamental mode occurs at n = 2 for longer shells, at 
n = 3 for intermediate shells, and at n = 3 or 4 for shorter shells. 

In addition, Ref. [1] offers equations for energy functionals for 
various shell geometries (barrel, spherical, cylindrical, and conical) 
that can be readily used in a numerical approach like the Ritz or 
finite element methods. 

Several survey articles exist in the literature that focus on recent 
developments on shells. Shallow shells were reviewed in Ref. [29] 
and laminated shells were reviewed in Ref. [30] and most recently in 
Ref. [31].

Table 9.24 Nondimensional Frequency Parameters Ω = ω ρa E h2
2

2/  for [0°, 90°] 
Cylindrical Shells (E1/E2 = 25, G12/E2 = 0.5, G13/E2 = 0.5, G23/E2 = 0.2, ν12 = 0.3,  
k2 = 5/6, a/b = 1, a/h = 10)

R/a
Qatu [25]

Ye and 
Soldatos 

[26] Bhimaraddi [27] Librescu [28]

SDST 3D 3D SDST HSDST SDST HSDST

1 10.643 10.6973 10.409 10.748 10.919
2 9.4428 9.4951 9.3627 9.3653 9.5664
3 9.1755 9.1155 9.1442 9.0563 9.2642
4 9.0731 9.0613 8.9403 9.1506
5 9.0221 9.0616 9.0200 8.8840 9.0953 8.931 8.959

10 8.9446 8.9778 8.9564 8.8026 9.0150 8.897 8.933
20 8.9194 8.9477 8.9341 8.7779 8.9904 8.894 8.934
∞ 8.9001 8.9248 8.9179 8.7640 8.9761 8.900 8.944
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a/mR
n

0 1 2 3 4 5 6 7 8

Classical shell theory (CST)

8 0.08911 0.04810 0.04115 0.10098 0.19178 0.30881 0.45132 0.61884 0.81087
4 0.17822 0.11386 0.07120 0.10845 0.19525 0.31151 0.45383 0.62128 0.81324
2 0.35644 0.23644 0.15148 0.14888 0.21639 0.32633 0.46632 0.63268 0.82399
1 0.71288 0.44995 0.31809 0.28021 0.31421 0.40272 0.53077 0.69013 0.87686
0.5 0.92024 0.82358 0.72155 0.68285 0.69753 0.75633 0.85381 0.98615 1.15019
Shear deformation shell theory (SDST)

8 0.08907 0.04787 0.04057 0.09878 0.18492 0.29238 0.41839 0.56051 0.71644
4 0.17815 0.11364 0.07039 0.10592 0.18807 0.29474 0.42053 0.56254 0.71838
2 0.35629 0.23605 0.15033 0.14556 0.20804 0.30813 0.43137 0.57211 0.72715
1 0.71258 0.44696 0.31433 0.27329 0.30084 0.37807 0.48809 0.62072 0.77029
0.5 0.87845 0.78699 0.68362 0.63829 0.64250 0.68613 0.76206 0.86455 0.98873

Table 9.25 Comparisons among Shell Theories for [0°, 90°] Closed Cylindrical G/E Shells, R/h = 10
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Problems
1 Use (9.4) for the transformation matrix and perform the matrix 
multiplication in (9.7) to prove the coefficients in (9.8).

2 Consider a laminate made of graphite epoxy with material properties 
given in (9.90) with a total thickness h. Determine all laminate parameters 
Aij, Bij, and Dij

  for

A. A single layer laminate of [0]°, 

B. A cross-ply laminate of [0, 90, 0, 0]°

C. An angle-ply laminate of [30, 45, −45, −30]°

D. A symmetrical laminate  [30, 45, 45, 30]°

E. An asymmetric laminate [30, 30, 60, 60]°

3 For the previous problem, comment on the type of couplings that exist in 
each of the laminates that makes it different from those of isotropic materials. 
Compare your findings with those of Example 9.1.

4 Consider (9.22). Develop a closed form solution for the frequency 
parameters for laminated thin beams.

5 Consider a simply supported  laminated straight beam with length ℓ 
and width b (= ℓ/20). Consider two thickness ratios (h = b and h = 2b) and a 
cross-ply [0, 90] and angle ply [30, 60] laminate. For each of the four possible 
combinations of lamination and thickness ratio, find the following: 

A.  the natural frequency parameters using a 3D finite element model with 
any of the available commercial packages

B. the frequency parameters using expression (9.13) and (9.27) for the 
stiffness parameters using thin beam theory

C. the frequency parameters using expression (9.13) and (9.27) for the 
stiffness parameters using shear deformation beam theory

D. Comment on the accuracy of the frequency parameters obtained by 
using expressions (9.13) and (9.27) for each of the four cases.
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6  A. Prove the relations presented in (9.58) for curved thick beams. Use 
(9.54) in your proof. 

B. Expand (9.54) in a Taylor series and develop relations similar to (9.58) 
by considering the first two terms. Compare the results obtained in (9.58) 
with those obtained using the new formula.

7 Consider a laminated thin curved beam with simple support boundaries. 
The exact solution is presented in (9.52). Formulate a closed form solution for 
such beams using this formula. 

8 Exact solutions are possible for laminated curved beams. For Arbitrary 
boundary conditions, the displacements in the equations of motion can be 
assumed as 

u x t C e t w x t De ts s
0 0, sin , , sin( ) = ( ) =α αω ω

Substitute the above equations into the equations of motion.

A.  Determine the determinant that can yield the natural frequencies.

B. Discuss the possible roots for the characteristic equations. Are they 
real? Are they positive?

C. Generate a possible solution based on these roots.

9  A. Expand the denominator of (9.54) using a geometric series (or a Taylor 
series expansion). Keep two terms in the expansion series and neglect 
the rest of the terms. Substitute the stress–strain relations into (9.55) and 
develop approximate expressions for the stiffness parameters.

B. Compare the results with (9.58) and (9.17). 

C. Substitute the parameters found in Table 9.8 and obtain results for h/R 
of 0.05, 0.1, and 0.2. Compare these with those found in Table 9.8. Are the 
terms developed using Taylor series accurate?

10 Consider a symmetric cross-ply laminated thin plate with a rectangular 
planform of dimensions a and b having all edges with shear diaphragm 
boundary conditions. 

A. Develop a closed-form expression for the natural frequency parameters 
for each of the possible half sine combinations (m and n). 

B. Find the frequency parameters for such plates for aspect ratios of 1 
and 2. 

11 A rectangular plate with dimensions a and b is made of antisymmetric 
angle ply (A16 = A26 = B11 = B12 = B22 = B66 = D16 = D26 = 0) composites and has 
S3 type of boundary condition:

 w = u = Nxy = Mx = 0 for the edges x = 0, a 

 w = v = Nxy =  My = 0 for the edges y = 0, b 
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(Note the difference between the S3 boundaries and the shear diaphragm 
boundaries. The shear diaphragm boundaries allow motion in the inplane 
direction that is perpendicular to the boundary and prevents it in the inplane 
direction tangential to the boundary. The S3 has opposite treatment of the 
inplane displacement supports.)

A. Rewrite the equations of motion in terms of displacement for these 
composites.

B. Search for an exact solution (similar to (6.85)) and show that it satisfies 
the equations of motion and boundary conditions.

C. Develop the exact solutions similar to (6.86).

D. Find nondimensional frequency parameters for G/E materials for  
a/h = 100, 20, and 10.

12 Repeat the previous problem for a shallow cylindrical shell R = 2a. Find 
if an exact solution is possible. If so, compare the results obtained with those 
found in Problem 7.

13 Derive relations in (9.126) for cross-ply laminated cylindrical shells 
having shear diaphragm boundary conditions.
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APPENDIX A
Summary of One 

Degree-of-Freedom 
Vibrations (with 

Viscous Damping)

Equation of Motion

 mx cx kx F t + + = 0 sinΩ  

Free Undamped Vibration

 F c0 0= =  

 
x A t B t

k
m

= + =sin cos ,ω ω ω
 

Free Damped Vibrations

 F0 0=  

Overdamped: ζ ζω ζ ω ζ ω> = +( )− − − −1
2 21 1, ( ) ( )x e Ae Bet t t

467
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Critically damped: ζ ω= = +−1, ( )x e A Btt

Underdamped: ζ ζ ω ζ ωζω< = − + −





−1 1 12 2, sin cosx e A t B tt

 ζ ω= = =c
c

c km m
c

c, 2 2  

Forced Damped Vibration (Steady-State Part)

 
x A t B t C t

B
A

= − = − =sin cos sin( ), tanΩ Ω Ω φ φ
 

 

A B

st stδ
ω

δ
ζ ω

= − =1 22( / )
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( / )Ω
∆

Ω
∆  

 

C F
kst

stδ
δ

ω
ζ

ω
= = = − 
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1
1 20
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∆
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Excitation by Nonsinusoidal, But Periodic,  
Forcing Function

 
F t F n t F

z
F t n tdt

n
n n( ) = = ( )

=

∞

∑ ∫
1 0

sin , sinΩ Ω
τ

τ

 

 
τ π= =2

Ω
period of forcing function

 

 
x A n t B n t C n t

B
An

n n
n

n n n
n

n
= − = − =∑ ∑( sin cos ) sin( ), tanΩ Ω Ω φ φ
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Figure A.1 Amplitude ratio and phase angle for the motion of single degree-of-
freedom, forced vibration (viscous damping).
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APPENDIX B
Bessel Functions: 

Some Useful 
Information

Differential Equations and Their Solutions
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d y
dz
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Series Expansions
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where Γ is the gamma function (cf. [1], Chap. 6, and [2], Appendix I)
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For the complicated series expansions of Yν(z) and Kν(z), see Refs. [1] 
and [2].

Figure B.1 Jn(z) for n = 0, 1, 2 and zeros of J0(z).
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Figure B.2 Yn(z) for n = 0, 1, 2.

Figure B.3 In(z) for n = 0, 1, 2.

Recursion Formulas for Generating Higher Order Functions
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Figure B.4 Kn(z) for n = 0, 1, 2.

Figure B.5 Gamma function.
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Differentiation Formulas (see [4])
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APPENDIX C
Hyperbolic Functions: 

Some Useful Relations

 
cosh , sinh , tanh

sinh
cosh

x
e e

x
e e

x
x
x

x x x x

= + = − =
− −

2 2  

 
sech

cosh
, csch

sinh
, ctnh

tanh
x

x
x

x
x

x
= = =1 1 1

 

 cosh sinh2 2 1x x− =  

 sinh( ) sinh cosh cosh sinhx y x y x y± = ±i i  

 cosh( ) cosh cosh sinh sinhx y x y x y± = ±i i  

 
tanh( )

tanh tanh
tanh tanh

x y
x y

x y
± =

±
±1  

 
sinh

! ! !
( )x x

x x x
x= + + + + …

3 5 7

3 5 7
all

 

 
cosh

! ! !
( )x

x x x
x= + + + +…1

2 4 6

2 4 6

all
 

 
tanh ( / )x x

x
x x x x= − + − − −… <

3
5 7 9 2 2

3
2

15
17
315

62
2835

4π
 

 sinh( ) , cosh( ) , tanh( )0 0 0 1 0 0= = =  

477



 478 A p p e n d i x  C

 sinh( ) , cosh( ) , tanh( )∞ ∞ ∞ ∞ ∞= = = 1  

 

d
dx

x x
d

dx
x x(sinh ) cosh , (cosh ) sinhα α α α α α= =

 

 

d
dx

x xtanh sechα α α( ) = 2

 



Index



This page intentionally left blank 



Note: Page numbers followed by "f" indicate material in figures; by 
"t", in tables; by "p", in problems.

A
AA modes. See doubly 

antisymmetric (AA)  
modes

admissible functions. See also 
trial functions

for bars, 98
for membranes, 211–212
for plates, 246–247, 252
for strings, 60–64, 61f, 64f
for three-dimensional 

elements, 319
aerodynamic damping, 35
aluminum, 99p
angle-ply laminates

boundary conditions for, 374, 
410

stacking sequence in, 371
stiffness parameters for, 373, 

378, 384, 390
symmetry in, 415, 434–435

vibration frequencies of, 
384, 430–434

angular momentum, 
conservation of, 115

anisotropic material, 315, 366, 
370, 401–402

annular membranes, 196–198, 
197f, 198t, 204

annular plates, 240–241, 241t, 
350, 351, 352t, 353t

annular sectorial membranes, 
200

annular sectorial plates, 242
antisymmetric–symmetric (AS) 

modes
for 3D bodies, 322t, 325, 325t, 

327, 327t
definition of, 320
for plates, 252, 253f
for shells, 291t

area, cross-sectional
of bars, 78, 78f, 86–91, 97
of beams, 104, 106, 129, 137
mass density and, 1
natural frequency and, 5
stiffness and, 2
tension and, 67

area moments of inertia, 81, 106, 
136, 152

Arnold–Warburton theory, 296, 
298

AS modes. See antisymmetric–
symmetric (AS) modes

axial acceleration, 150
axial extension, 321, 323t

B
barrel shells, 459, 460
bars

about, 77–78
beams. See beams

481
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bars (Cont.)
Bessel functions for, 88–89, 91
boundary conditions for, 84, 

90
circular, 81, 82t, 84, 88–90, 88f
circular cylindrical, 330–332, 

336–338, 336t–337t, 339t, 
342

columns, 77, 146
continuous vs. discrete 

modeling of, 1–3, 2f
cross-sectional area of, 78, 78f
damping and, 86, 91–96
discontinuities in, 86, 87
with a dynamic end, 83
eigenfunction superposition 

method for, 84
elliptical, 82t, 84, 91
energy functionals for, 96–98
equations of motion for

damping and, 92
longitudinal, 78–79
torsional, 80–83, 326t, 327
variable cross-section,  

86–87
equilateral triangular, 82t
with fixed ends, 83–84
with fixed-free ends, 84–85, 

85f, 94–96, 94f, 96f, 332
forced vibration of, 78–79, 92
free body diagram of, 78, 79f, 

80, 80f
with free ends, 92–94, 96f,  

331–332
free vibration of, 79, 83–91, 96, 

98
with hanging end, 99p
hollow circular, 82t
hyperbolic functions for,  

94–95
kinetic energy of, 97–98
length of, 2f, 3, 78, 78f
loading in, 2, 3, 77
magnetic, 78
mass density of, 1
mathematical complexity of, 7, 

7t

modes for
classic approach to, 77,  

84–85
with fixed-free ends, 85f
Rayleigh and Ritz methods 

for, 96, 98
3D theory and, 321, 323t, 

329–332, 336–338,  
336t–337t, 339t, 342

natural frequencies of, 5–7, 6t, 
96

nonhomogeneous, 78, 97
potential energy of, 96–98
Rayleigh method for, 96, 98
rectangular, 82t, 84, 90
resonance of, 96
Ritz method for, 96, 98
shafts, 3, 77, 271–272, 385–388
square, 81, 82t
stiffness of, 2, 5, 83
strain of, 79, 96–97
stress of, 78, 79, 80, 81f, 97
surface traction on, 78
3D theories for, 321, 323t,  

329–332, 336–338,  
336t–337t, 339t, 342

traveling wave solution for, 84
twisting moment of, 80–81, 

81f, 92
vibration frequencies of

classic approach to, 77,  
83–85, 85f

Rayleigh and Ritz methods 
for, 96, 98

3D theory and, 321, 323t, 
329–332, 336–338,  
336t–337t, 339t, 342

wave equation for, 89
beams

about, 103–104
applications for, 103
axial forces on, 144–151, 375
bending moment, 105–106, 

105f, 116–117, 117f, 152–153, 
375

Bert–Kim theory on, 387t
Bessel functions for, 149, 150
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boundary conditions for
about, 108–120
equations of motion and, 7
forced vibration, 134
laminated, 376, 382
plates and, 252
shear deformation and, 154, 

156
Bresse–Timoshenko theory 

on, 387t
buckling of, 104, 146–148,  

150–151
with C ends

boundary conditions for, 
108, 134, 154, 170, 252

classic approach to, 114–115
closed-form solution for, 

134–135
curved, 170, 173, 174t
forced vibration of, 134f
modes for, 113t, 115f
vibration frequencies, 113t, 

189
cantilevered. See cantilevered 

beams
with C-F ends

classic approach to, 114
curved, 173
gravity and, 149–150, 149f
modes for, 113t, 115f, 119t
vibration frequencies, 113t

Chang’s theory on, 387t
circular, 153, 155t
closed-form solution for,  

131–135, 167
compressive force on, 145–147, 

149–151
continuous, 127–129, 127f
coordinate origin for, 111, 116, 

120, 129, 134
Cowper’s theory on, 154, 155t, 

158
with C-SS ends

axial forces on, 144–145, 145f
classic approach to, 104, 

104f, 114
modes for, 113t, 115f

triple supports and, 129
vibration frequencies, 113t

curvature of
bending moment and, 106, 

153
cantilevered, 139, 140f
curved, 167, 388, 393
laminated, 374, 380–381
potential energy and, 165

curved. See curved beams
damping of, 130–133, 167
description of, 103
discontinuous, 129, 129f
discrete model of, 3
d.o.f. of, 173, 173t
eigenfunction orthogonality 

in, 120–124
eigenfunction superposition 

method for, 130, 167
elliptical, 155t
energy functionals for, 

 135–139, 378–379
equations of motion for

axial forces and, 144–145
boundary conditions for, 7
classic approach to, 104–107
curved, 167–170
equilibrium, 125
forced vibration, 105–106, 

105f, 130, 130–135
free vibration of, 107,  

162–165
laminated, 375–378
with mass and springs at 

ends, 116–117
modes for, 162–165
rotary inertia and, 151–152, 

154
shear deformation and,  

151–154
with three supports, 127–129
vibration frequencies,  

162–165
Euler–Bernouli theory on, 105, 

106, 225, 339, 386
finite element model for,  

384–385



 484 I n d e x  I n d e x  485

beams (Cont.)
flexural rigidity of, 106, 145, 

377–378
free body diagram of, 105, 

105f, 116, 117f, 375, 375f
with free ends

boundary conditions for, 
109, 156, 170, 252

classic approach to, 111–115
curved, 170
modes for, 113t, 115f, 119t, 

339–342, 340t–341t
Rayleigh method for, 252
vibration frequencies,  

113t, 189, 339–342,  
340t–341t

frequency parameter for, 156
Frobenius method for, 149
gravity and, 149–150, 149f
hollow circular, 155t
hyperbolic functions for

buckling of, 148
classic approach to, 108, 

110–114
forced vibration, 133–135
low frequency vibration,  

163
with springs-free ends,  

119–120
with three supports, 128

“inertia loading” in, 139
initial conditions for, 123–126
Iqbla–Qatu theory on, 386, 

387t
Kim–Bert theory on, 387t
kinetic energy of, 135, 137–138, 

166, 169, 379–380
laminated, 161–162, 363, 364, 

374–401
length of, 104, 104f, 127–129, 127f
loading in, 3, 77
with mass and springs at 

ends, 116–117, 116f, 117f
mass density of, 129, 137, 150, 

381
mathematical complexity of, 7, 

7t

modes for
additional masses, springs, 

and, 118
boundaries and, 113t, 115f
cantilevered, 119t
classical approach to,  

109–116
curved, 172t
shear deformation and, 160f, 

162–165
3D theories for, 325,  

339–342, 340t–341t
with multiple supports, 129
neutral axis of, 135–136, 136f
node points, 115
periodic motion of, 131–132
Poisson’s ratio for, 155t
potential energy of, 135–137, 

149, 165–166, 378–379, 385
Rayleigh method for, 135,  

137–141, 140f, 149–151, 
165–166, 252

rectangular, 153, 155t, 158, 159t
rigid body motion of, 111–115
Ritz method for

about, 135, 141–144
axial forces, 149
cantilevered, 143t
curved, 173, 173t
shear deformation theory, 

165–166
rotary inertia of

additional masses, springs, 
and, 117

classic approach to, 151–162
curved, 174, 396–399
in equations of motion, 106
forced vibration, 151–167
free vibration of, 154
Huang’s work on, 165
laminated, 381–383
modes and, 161t, 325t
Rayleigh and Ritz methods 

for, 165–166
3D theory and, 326
vibration frequencies and, 

161t, 325t
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rotation angle of, 152
sandwich, 161–162, 363, 380
semicircular, 155t
separation of variables 

procedure for, 107–108, 
129

shear correction factor and, 
159t

shear correction factor for, 153, 
154, 155t, 158, 159t

shear deformation of
classic approach to, 151–162
curved, 174
with fixed-free ends, 152f
Huang’s work on, 165
laminated, 380–384
modes and, 161t, 325t
Rayleigh and Ritz methods 

for, 165–166
3D theory and, 325–326
vibration frequencies and, 

161t, 165, 325t
shearing force on, 105f,  

116–117, 117f, 128, 152–153
sinusoidal motion of, 131, 137, 

146, 150, 166, 172
slenderness ratio for, 156–157
slope of, 105, 153, 161
with springs-free ends,  

118–120, 118f, 120f, 122
with SS ends

axial forces on, 146
boundary conditions for, 

109, 156, 252, 376, 382
buckling of, 146–147
classic approach to, 110, 114, 

115
curved, 170, 173, 174t
and intermediate supports, 

127–129, 127f
laminated, 376, 377, 382, 

383t, 384t
modes for, 113t, 115f, 160f, 

172t
periodic motion of, 125
rotary inertia and, 156–161, 

161t, 382

shear correction factor and, 
159t

shear deformation of,  
156–161, 161t, 382

tensile force on, 147f
vibration frequencies of, 

113t, 159t, 160, 235, 377, 
382

with SS ends with springs, 118
with SS-F ends

classic approach to, 112–115
curved, 170–173, 172t
equations of motion for, 119
modes for, 113t, 115f
vibration frequencies, 113t

stiffness of, 156, 161–162, 378, 
379t, 380, 386

strain of, 135–137, 149, 152–153, 
165, 167–169, 380, 385

stress of, 105, 135–136, 136f, 380
tension on, 145–149, 148
thickness of, 158
with three supports, 127–129, 

127f
3D theories for, 325–326,  

338–342, 339–342,  
340t–341t

Timoshenko’s theory on, 151, 
158, 167, 325–326, 339–342, 
387t

vibration frequencies of
additional masses, springs, 

and, 116, 118–120
classic approach to, 109–116, 

113t, 325–326, 325t
closed-form solution for, 135
eigenfunction superposition 

method for, 130–131
initial conditions for, 123
laminated

calculation of, 377
CBT vs. SDBT vs. FEM, 

382, 383t, 384t
potential energy and, 379
shear deformation and, 

161
studies of, 386–387, 387t
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beams (Cont.)
membranes and, 189
orthogonality and, 122
sign errors and, 118
3D theories for, 325–326, 

339–342, 340t–341t
weight density for, 149–150
work function for, 169, 379
Zinberg–Symonds theory on, 

387t
bending moment

of beams, 105–106, 105f,  
116–117, 117f, 152–153,  
375

of plates
circular, 239
laminated, 417
rectangular, 222–228, 224f, 

235
sectorial, 241–242
triangular, 236, 236f

of shells, 271
Bert–Kim beam theory, 387t
Bessel functions

“argument” of, 194
for bars, 88–89, 91
for beams, 149, 150
for circular cylinders,  

330, 331
diagrams on, 472f, 473f, 474f
differential equations, 471
differentiation formulas, 475
for membranes, 194, 199,  

203–204, 206–207
“order” of, 88
for plates, 237, 242
recursion formulas, 473
series expansions, 471–472
for strings, 70–71, 150

boron, 161
brass plate, 255–257, 256t
Bresse–Timoshenko beam 

theory, 387t
buckling

of beams, 104, 146–148,  
150–151

Euler critical load, 146, 148f

of membranes, 215
natural frequencies and, 10
of plates, 261

C
cantilevered beams

blades as, 440
curvature of, 139, 140f
curved, 173
forced vibration of, 124–126, 

124f, 133–134, 133f
fundamental frequency of,  

119
Rayleigh method for, 138–141, 

140f
Ritz method for, 141–144, 143t
shape and movement of, 126f
shear deformation of, 152–154, 

152f
static equilibrium equation 

for, 139
3D theory and, 338–342, 341t
tip displacement of, 126f
vibration frequencies of, 116

cantilevered parallelepipeds
analysis of, 321, 323f
axial extension, 321
boundary conditions for, 328
configuration A. See cubes
coordinate origin for, 320
corners of, 359
modes for, 321–327, 323t, 325t, 

326t
Ritz method for, 357–359
skewed, 359f
stiffness of, 328
symmetry classes of, 320–327, 

323t, 325t, 326t
twisted, 358f
vibration frequencies of,  

320–327, 323t, 325t, 326t
cantilevered plates

environment and, 262
laminated, 414f, 435, 439–442, 

441f
parallelograms, 259f
Rayleigh method for, 251
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cantilevered shells
doubly curved shallow, 435, 

435f, 442, 442f, 443t
open, study of, 307
symmetry classes of, 438

Chang’s beam theory, 387t
characteristic equation, 33
circular bars, 81, 82t, 84, 88–90, 88f
circular beams, 153, 155t
circular cylinders

Bessel functions for, 330, 331
coordinates for, 329f
equations of motion for,  

328–330, 333
with fixed ends, 334
with fixed-free ends, 334,  

338–342, 339t, 341t, 345t, 
346

with free ends, 331–346, 335t, 
336t–337t, 340t–341t, 343t, 
344t

hollow. See hollow circular 
cylinders

Hutchinson’s study of, 346
McMahon’s study of, 346
modes for, 329–346
Pickett’s study of, 346
Poisson’s ratio and, 345
right triangular cross-section 

of, 354, 355f
Ritz method for, 333–339, 335t, 

336t–337t, 339t, 342, 346
shells. See circular cylindrical 

shells
strain of, 334
stress of, 334
vibration frequencies of,  

329–346
circular cylindrical bars,  

330–332, 336–338, 336t–337t, 
339t, 342

circular cylindrical shallow 
shells

contour plots of, 292, 292f, 438, 
439f

convergence studies of,  
428–430, 429t

curvature of, 430, 434, 438
diagram of, 285f
frequency ratio of, 287
modes for, 284t, 285, 434–438
with shear diaphragm edge 

support, 284t
with square planform,  

284–285, 429t
stiffness of, 285
symmetry class and, 291t
vibration frequencies of, 284t

curvature ratio, 285
inertia and, 284t
laminated

curvature ratio and, 447, 
449t

determinant size, 429t
fiber angle in, 431t,  

436t–437t, 443t
shear deformation vs. 

classic approach, 447, 
449t

stacking sequence in, 
432t–433t, 447, 449t

symmetry of, 447
thickness ratio of, 447, 449t
thin, 428–438
twisted plates, 444

symmetric class and, 291t
circular cylindrical shells

applications for, 272
Arnold–Warburton theory for, 

296, 298
axial wavelength parameter 

for, 299, 299f, 302f
boundary conditions for, 305, 

307, 454–455
cantilevered, open, 307
with clamped ends, 305, 306f
curvature of, 450
description of, 276
diagram of, 276f, 294f
displacement periodicity of, 

297
Donnell–Mushtari theory for, 

294–295, 297–299, 301, 
301f, 304
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circular cylindrical shells (Cont.)
equations of motion for,  

293–296, 451–452, 454–456
flexural rigidity of, 295
Forsberg’s work on, 299–300
free vibration of, 296–307
fundamental frequency of, 

300, 301f
Goldenveizer–Novozhilov 

theory for, 296, 298
hyperbolic functions for, 305
laminated, 450–460
length ratio of, 456, 457t, 458t, 

459
membrane theory for, 299
modes for, 297–301, 300f,  

304–307, 349, 455–456,  
460

nodal patterns for, 300f
orthotropy ratio of, 459
potential energy of, 452–454
Ritz method for, 305
shallow. See circular 

cylindrical shallow shells
with shear diaphragm edge 

support, 297, 299–300, 
299f, 301f, 454–455,  
459–460

stiffness of, 295–296
strain of, 450, 452
stress of, 451, 459
surface of revolution line for, 

272
thickness of, 295
tubes. See tubes
vibration frequencies of

axial wavelength parameter 
and, 299f, 302f

boundaries and, 304–307
circumferential waves and, 

303f
of closed/deep, 297–302, 

457t, 458t, 460, 461t
laminated, 455–460, 457t, 

458t, 460t, 461t
length to radius ratio and, 

301f

of open, 302–304, 307, 457t, 
459–460

orthotropy ratio and, 459, 
461t

shear deformation vs. 
classical approach, 
459–460, 461t

theories on, 459–460, 460t, 
461t

circular frequency, 17, 187
circular membranes, 193–196, 

193f, 195t, 196f, 201–203,  
206–207

circular orthotropy, 364
circular plates

about, 235–240
bending moment, 239
with C edges

environment and, 262
fundamental frequency of, 

255, 255t, 264
Rayleigh method for,  

244–245
vibration frequencies of, 

238, 238t, 239t
with C-free edges, 253
free vibration of, 237
fundamental frequency of, 

255, 255t, 264
Galerkin method for, 264
Lamb’s work on, 262
large displacements, 264
modes for, 237–239, 348t, 349
orthotropy of, 364, 365
Rayleigh method for,  

244–245
with SS edges, 239, 240t, 264
vibration frequencies of,  

238–240, 238t, 239t, 240t, 
348t, 349

von Kármán equations for, 
264

in water, 262
columns, 77, 146
complex modulus, 92
composite materials, 161–162, 

363–364
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compressive force
on bars, 77
on beams, 145–147, 149–151
on membranes, 182, 215
on plates, 223, 261
on shells, 282

concrete, 363
cones, 354
conical shells, 272, 273f, 459, 460
continuous systems

about, 1–5
composite, 363–365

Coulomb damping, 35–36
Cramer’s Rule, 32
critical damping coefficient,  

37–38, 47
cross-ply laminates

curvature ratio and, 447
equations of motion for, 371, 

374, 404, 421, 427
with free edges, 434
Iqbla–Qatu theory on, 386
orientation of, 371
orthotropy ratio of, 401, 423
with SS edges, 407
stacking sequence in, 447
stiffness of, 371, 378
symmetry classes of, 415
thickness ratio of, 401,  

423–424, 423t, 424t, 447
vibration frequencies of

beams, 383t, 384t, 386
plates, 423, 423t, 424t
shells, 427–434, 438, 446–447

Vinson–Sierakowski 
parameters for, 378

cubes
analysis of (A), 323f
anticlastic bending in, 325–326
contour plots of, 321–324, 324f
convergence study for, 321, 

322t
modes for, 321–327, 322t, 323t, 

325t, 326t, 327t
Poisson’s ratio for, 327–328, 

327t
shear deformation of, 325–326

symmetry classes of, 321–328, 
322t, 324f, 327t

vibration frequencies of,  
321–328, 322t, 323t, 325t, 
326t, 327t

curved beams
boundary conditions for, 170, 

170–173, 174t, 389–391, 
392t, 398

with C ends, 170, 173, 174t, 390, 
392t

with C-F ends, 173
curvature of, 167, 388, 393
differential-element diagram, 

168f
d.o.f. of, 173, 173t
equations of motion for,  

167–170, 388–390, 393–399, 
395t, 464p

forced vibration of, 168–171, 
390, 399

with free ends, 170, 390
free vibration of, 171
kinetic energy of, 169, 397–398
laminated, 388–401, 464p
modes for

bending, 172t
with C vs. SS ends, 174t
classic approach to, 172
d.o.f. of, 173t
laminated, 391t, 392t, 400t, 401

orthotropy ratio of, 394,  
399–401

parameter diagram, 167f, 388f
potential energy of, 389, 397
Ritz method for, 172–173,  

391–393, 392t
rotary inertia of, 174, 396–399
shear deformation of, 174, 

399–401, 400t
with SS ends

boundary conditions for, 
170

vs. clamped, 174t
laminated, 390–393, 391t, 

392t, 398–399, 400t
Ritz method for, 173
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curved beams (Cont.)
with SS-F ends, 170–173, 172t
strain of, 167–168, 388–389, 

393–397
stress of, 393–394
thickness ratio of, 394,  

399–401
with vertical hinges, 391, 399
vibration frequencies of

bending, 172t
with C vs. SS ends, 174t
classic approach to,  

171–172
d.o.f. of, 173t
laminated, 391–393, 391t, 

392t, 399–401, 400t
work function for, 169

cyclic frequency, 17
cylindrical shells

circular. See circular 
cylindrical shells

energy functionals for, 460
laminated, 459
noncircular, 272
vibration frequencies, theories 

on, 459–460, 460t
cylindrically-curved panel, 274

D
“damping factor,” 92. See also 

loss factor
degrees of freedom (d.o.f.)

of bars, 2f, 5–6, 5f
of beams, 173, 173t
of cantilevered rectangular 

parallelepipeds, 321
natural frequency and, 6, 6t
of string, 3

discrete model
of bars, 1–3, 2f, 5–7, 5f, 6t
of strings, 2–3, 3f

d.o.f. See degrees of freedom
Donnell shallow shell theory, 

387t
Donnell–Mushtari theory,  

294–295, 297–299, 301, 301f, 
304

doubly antisymmetric (AA) 
modes

for 3D bodies, 322t, 326, 326t, 
327, 327t

definition of, 320
for plates, 252, 253f
for shells, 290, 291t

doubly curved shallow shells, 
cantilevered, 435, 435f, 442, 
442f, 443t

doubly symmetric (SS) modes
for 3D bodies, 321, 321–324, 

322t, 323t, 324f, 327t, 328
definition of, 320
for plates, 252, 253f, 415
for shells, 290, 291t
for three-dimensional 

elements, 321
dry friction damping, 35–36

E
“effective mass” coefficient, 36
eigenvalues, 8
elementary rod theory, 321, 323t
ellipsoidal shells, 272
elliptical bars, 82t, 84, 91, 155t
elliptical beams, 155t
elliptical membranes, 211
elliptical plates, 254–255, 254f, 

255t, 256f, 256t
elliptical toroidal shells, 272, 

273f
epoxy resin, 161
equilateral triangular bars, 82t
Euler critical buckling load,  

146–147, 148f
Euler–Bernouli beam theory, 

105, 106, 225, 339, 386, 387t
Euler’s Constant, 472

F
fiber angle, laminated

in beams, 387t
coordinates for, 367, 370
modeling assumptions, 364
in plates

boundaries and, 406–408
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contour plots of, 413–415
convergence studies of,  

412–413, 428
coordinates, 402
vs. shells, 430–438, 431t, 436t
twisted, 440–444
vibration frequencies and, 

430
in shallow shells

contour plots of, 434, 434f, 
438–439, 439f, 441,  
441f

convergence studies of, 428
doubly cantilevered, 443t, 

444
vs. plates, 430–438, 431t, 

436t–437t
thin, 428–439

fundamental frequency
of cantilever beams, 119
compressive force and, 146
curvature and, 391, 430, 434
d.o.f. and, 6
fiber angle and, 414–415, 430, 

438, 440, 444
of membranes, 188–189, 196, 

198, 200
orthotropy ratio and, 459
of plates. See under plates, 

fundamental frequency 
of

of shells, 274, 460
of strings. See under strings, 

fundamental frequency 
of

symmetric lamination and, 
456

tensile force and, 146
thickness ratio and, 401

G
Galerkin method, 68, 248, 264
general shells, 4
Goldenveizer–Novozhilov 

theory, 296, 298
graphite, 161
gravity, 22–23, 26, 149–150, 149f

H
hollow circular bars, 82t
hollow circular beams, 155t
hollow circular cylinders

about, 346–352
boundary conditions for,  

332
convergence studies of,  

347t
coordinate origin for, 346
diagram of, 347f
Hutchinson and El-Azhari’s 

work on, 351
modes for, 351t
polar second moment of the 

area, 82t
Ritz method for, 346
series method for, 351
torsional stiffness coefficient, 

82t
vibration frequencies of, 348t, 

349t, 350t
hyperbolic functions

for bars, 94–95
for beams

buckling of, 148
classic approach to, 108, 

110–114
forced vibration, 133–135
low frequency vibration,  

163
with springs-free ends,  

119–120
with three supports, 128

for circular cylindrical shells, 
305

for plates, 230–234, 254
for strings, 16, 55–57
symmetry and, 108
useful relations, 477–478

hyperbolic paraboloidal shallow 
shells

contour plots of, 292, 293f
convergence studies of,  

428–430, 429t
curvature of, 434, 438
diagram of, 285f
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hyperbolic paraboloidal shallow 
shells (Cont.)

frequency ratio of, 287
modes for, 284t, 285, 290,  

434–438
with shear diaphragm edge 

support, 284t
with square planform,  

284–285, 429t
stiffness of, 285
symmetry class and, 291t
vibration frequencies of

curvature ratio, 285
inertia and, 284t
laminated

curvature ratio and,  
447–450, 448t

determinant size, 429t
fiber angle in, 431t, 437t, 

443t
shear deformation vs. 

classic approach, 447, 
448t

stacking sequence in, 
432t–433t, 447, 448t

symmetry of, 447
thickness ratio of, 447,  

448t
thin, 428–438
twisted plates, 444

symmetric class and, 290, 
291t

hyperbolic paraboloidal shells, 
272

hyperboloidal shells, 272,  
355–356, 358f

“hysteretic” damping, 36,  
91–96

I
Iqbla–Qatu beam theory,  

386–387, 387t
isosceles right triangular 

membranes, 192
isosceles right triangular plates, 

257–258, 258t
isotropic material, 415

K
Kelvin–Kirchhoff plate edge 

reactions, 228, 236
Kim–Bert beam theory, 387t

L
laminated beams, 161–162, 363, 

364, 374–401
laminated composites

angle-ply. See angle-ply 
laminates

applications for, 364
beams, 161–162, 363, 364,  

374–401
boundary conditions for, 369
coordinate system for, 366f
coupling inertia in, 381
cross ply. See cross-ply 

laminates
curvature of, 371
delamination in, 369
fiber angle in. See fiber angle, 

laminated
forces of, 370
modeling assumptions, 364
modulus of elasticity for, 378
orthotropy of, 364–365
plates, 264, 364–365, 369–371, 

401–444, 447
shear deformation of, 365
shells. See laminated shells
stacking sequence in. See 

stacking sequence, 
lamination

stiffness of, 161–162, 368, 371–
374

stress–strain relationship in, 
365–370

surface traction on, 369
twisting moments, 370

laminated plates, 264, 364–365, 
369–371, 401–444, 447

laminated shells
circular cylindrical shells, 

450–460
modeling assumptions, 364
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natural frequencies of, 386
shallow, 424–444
stiffness parameters for, 370, 

425, 451, 459–460
thick, 444–450

Leissa, Arthur W.
Vibration of Plates, xii
Vibration of Shells, xii

length
of bars, 2f, 3, 78, 78f
of beams, 104, 104f, 127–129, 

127f
mass density and, 1
natural frequency and, 5
stiffness and, 2, 17
of strings, 12, 12f, 17

loss factor, 92
Love’s theory, 321, 323t

M
mass

in equations of motion, 368
mass density and, 1
natural frequency and, 5

mass density
of bars, 1
of beams, 129, 137, 150, 381
of inhomogeneous material, 1
of membranes, 183, 185
of plates, 243, 261, 403
of strings. See under strings, 

mass density of
mass moments of inertia, 3, 80, 

117, 152, 313
material damping, 36, 91–96, 

130, 132
Mathieu functions, 254
membranes

about, 3–4
annular, 196–198, 197f, 198t, 204
annular sectorial, 200
applications for, 181
Bessel functions for, 194, 199, 

203–204, 206–207
buckling of, 215
circular, 193–196, 193f, 195t, 

196f, 201–203, 206–207

closed-form solution for,  
204–208

damping of, 204, 206, 208
definition of, 181
diagrams of, 4f
displacement of, 3–4, 183f
eigenfunction orthogonality 

and, 200–203
eigenfunction superposition 

method for, 204–208
elliptical, 211
energy functionals for,  

208–210
equations of motion for,  

182–186, 277–278
flexural rigidity of, 271
forced vibration of, 183–186, 

198, 204–208
fundamental frequency of, 

188–189, 196, 198, 200
initial conditions for, 200–204
kinetic energy of, 210–211
mass density of, 183, 185
mathematical complexity of, 

7–8, 7t
modes for

annular, 196–197
circular, 193–196, 206–207
degenerate, 190–192, 191f, 

192f
inflection points on, 195
rectangular, 188–192, 189t, 

204–206
sectorial, 198–199
square, 190–192, 191f, 216t, 

217f
natural frequency of, 207
nodal patterns for

circular, 195, 196f
degenerate modes, 191f, 192f
rectangular, 189–192, 190f
sectorial, 198
square, 190–192, 191f

phase angle of, 193
plates. See plates
potential energy of, 208,  

210–211
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membranes (Cont.)
pressure on, 183, 204–207
Rayleigh method for, 208,  

210–214, 214t
rectangular. See rectangular 

membranes
regularity condition for, 194, 

199, 203
Ritz method for, 208, 210–212, 

214–215, 216t
sectorial, 198–199, 199f, 204
separation of variables 

procedure for, 187
slope of, 184f, 208–210
square. See square membranes
stiffness of, 4, 182, 221
strain of, 208–210, 209f
stress of, 182–186, 182f, 208
Sturm–Liouville problem, 203
thickness of, 182f, 185
triangular, 192, 211, 214t
vibration frequencies of

annular, 196–198, 198t
annular sectorial, 200
circular, 193–196, 195t, 196f, 

206–207
degenerate modes and, 190, 

192
rectangular, 188–190, 189t, 

204–206
sectorial, 198–199, 200t
square, 190

wave equation for, 186
membrane shells, 4, 8
metals. See also specific types

equilibrium strain tolerance, 
69

loss factor for, 92
plates, heating of, 261
stress of, 69

Mindlin’s theory, 264–265,  
351–352, 352t, 353t, 416

modulus of elasticity. See also 
Young’s modulus

as complex quantity, 92
engineering shear strain and, 

226

flexural rigidity and, 261
for laminates, 378
material damping and, 92, 130
natural frequency and, 5
nonhomogeneous, 97, 106, 129, 

137
Poisson’s ratio and, 226, 367
shear modulus and, 226
stiffness and, 2
strain and, 226

modulus of rigidity, 367
MSC/NASTRAN, 359

N
natural frequency

of bars, 5–7, 6t, 96
buckling and, 10
damped, 37
d.o.f. and, 6, 6t
fundamental. See fundamental 

frequency
of strings, 17, 37, 41–42

noncircular cylindrical shells, 
272

O
orthotropic material

convergence studies of,  
428–430

coordinate system for,  
364–365

elastic coefficients for, 315, 401
fiber angle in, 370, 402, 415
stress-strain relationships in, 

366
symmetry in, 415, 434–435
overdamped, 37

P
paraboloidal shells, 272, 355–356
parallelogram plates, 258–260, 

259f
pendulums, 64, 66t
periodic motions, defined, 1
phase angle, 48, 50t, 52
plastic, 92
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plates
about, 221–222
Airy stress function for, 262
alternative methods for, 248
anisotropic, 401–402
annular, 240–241, 241t, 350, 

351, 352t, 353t
annular sectorial, 242
anticlastic bending in, 235
applications for, 221–222
beam analogy for, 223f
bending moment

circular, 239
laminated, 417
rectangular, 222–228, 224f, 

235
sectorial, 241–242
triangular, 236, 236f

Bessel functions for, 237, 242
boundary conditions for,  

227–228, 274, 406–411, 
418–422, 418t–419t

buckling of, 261
with C edges

annular, 240–241, 241t
boundary conditions for, 

228, 252
circular, 238, 238t, 239t,  

244–245, 255, 255t, 262
corners of, 260
degenerate modes with,  

249
drawing of, 222, 223f
elliptical, 255, 255t
laminated, 407, 419t
Rayleigh vs. Ritz, 251t
Ritz method for, 247, 249
sectorial, 242
square, 249, 250t

cantilevered. See cantilevered 
plates

with C–C–C–F edges, 250, 
250t, 251t

with C–C–C–SS edges, 250t, 
251t

with C–C–F–F edges, 250t, 
251t, 412t, 413–414

with C–C–SS–F edges, 250t, 
251t

with C–C–SS–SS edges, 250t, 
251t

with C–F–C–F edges, 250t, 
251t

with C–F–F–F edges
corners of, 259
environment and, 262, 263t
laminated, 412t, 414–415, 

414f
parallelogram, 259f
Rayleigh vs. Ritz, 251, 251t
square, 250t

with C-free edges, 241
with C–F–SS–F edges, 250t, 

251t
characteristics of, 260
Chia’s work on, 264
circular. See circular plates
contour plots of, 252, 253f, 413, 

413f, 414f, 441f
convergence studies of,  

428–430, 429t, 442
corners of, 228, 242, 258–260, 

439, 442
with C–SS–C–F edges, 248f, 

250t, 251t
with C–SS–F–F edges, 250t, 

251t, 412t
with C–SS–SS–F edges, 250t, 

251t
curvature of, 271, 402, 417
displacement of, 224f, 262, 402, 

416, 420
elliptical, 254–255, 254f, 255t, 

256f, 256t
energy functionals for,  

242–243
equations of motion for

annular, 240–241
classic approach to, 222–229, 

254
laminated, 401–404, 417–422
large amplitude 

displacement of,  
262–264
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plates (Cont.)
mass density variability, 261
in-plane forces, 261, 264
vs. shells, 274, 277
surrounding medium,  

261–262
flexural rigidity of, 226, 261
forced vibration of, 222–228, 

409
with free edges

boundary conditions for, 
228, 252

Chladni on, 249–250
corners of, 260
drawing of, 222, 223f
elliptical, 255–257, 256f, 256t
laminated, 406–407, 412t, 

413–415, 413f, 418t
Rayleigh method for, 252
Rayleigh vs. Ritz, 251t
rigid body motion of, 249
Ritz method for, 249
square, 249–250, 250t, 252, 

253f
trapezoidal, 257
triangular, 257–258, 259f

free vibration of
circular, 237
elliptical, 254
laminated, 409–411
rectangular, 229–235, 253
static, in-plane forces on,  

261
trapezoidal, 257
triangular, 257

fundamental frequency of
circular, 255, 255t, 264
elliptical, 255, 255t, 256t
Poisson’s ratio and, 240, 255, 

256t
rectangular, 234
rotary inertia and, 264
shear deformation and, 264
square, 249, 250t

Galerkin method for, 248, 264
Hutchinson and El-Azhari’s 

work on, 351, 352t, 353t

hyperbolic functions for,  
230–234, 254

Kelvin–Kirchhoff edge 
reactions, 228, 236

kinematics of, 225
kinetic energy of, 243, 406
Kirchhoff on, 225, 228
laminated, 264, 364–365,  

369–371, 401–444, 447
mass density of, 243, 261, 403
mathematical complexity of, 

7t, 8
Mathieu functions for, 254
Mindlin’s theory on, 264–265, 

351–352, 352t, 353t, 416
modes for

annular, 350
bending, 327, 438, 440, 442
circular, 237–239
degenerate, 235, 249, 252
elliptical, 255
free vibration of, 229–232
laminated, 412t, 413–415, 

440–442
Rayleigh vs. Ritz, 251t
sectorial, 241–242
square, 234–235, 234t,  

249–250, 250t, 252
torsional, 438, 442
trapezoidal, 257
triangular, 257–258, 258t
twisted, 440–442

moment singularities in, 245
natural frequency of, 264, 271, 

408–409
nonhomogeneous, 261
origin of coordinate system 

for, 222
orthotropic, 401–402
parallelogram, 258–260, 259f
potential energy of, 242–243, 

404–406
pressure on, 222, 224f
Rayleigh method for, 243–247, 

249–252, 262
rectangular. See rectangular 

plates



 496 I n d e x  I n d e x  497

Reissner’s work on, 264
rigid body motion of, 249, 413, 

415
Ritz method for

admissible functions for, 
246

anisotropic, 401
annular, 351, 352t, 353t
choice of, 247–248
corners of, 259
elliptical, 255
equations for, 246–247
frequencies and, 250
laminated, 410–411
mass density variability, 261
parallelogram, 259
Rayleigh method and,  

245–246
rectangular, 248–251
sectorial, 242
square, 250, 250t
trapezoidal, 257
triangular, 257

rotary inertia of, 221, 224,  
264–265, 416

sectorial, 241–242
shear deformation of, 221, 

264–265, 415–416, 420, 423, 
423t

with shear diaphragm edge 
support, 407–409, 422, 
423t

shearing force on
rectangular, 222–228, 224f
triangular, 236

Shibaoka approach to, 255
skew. See parallelogram plates
square plates. See square 

plates
with SS edges

annular sectorial, 242
boundary conditions for, 

228, 252
circular, 239, 240t
corners of, 260
degenerate modes with, 249
drawing of, 222, 223f

elliptical, 255, 256t
laminated, 406–410, 418t
rectangular, 228–234, 229f, 

274, 281, 286, 401,  
406–408

sectorial, 241–242
square, 234–235, 234t, 249

with SS–C–SS–C edges,  
233–234, 234t

with SS–C–SS–F edges,  
231–234, 234t

with SS–C–SS–SS edges, 234t
with SS–F–F–F edges, 249, 

250t, 251t, 412t, 415
with SS–F–SS–F edges,  

232–235, 234t
with SS–SS–F–F edges, 249, 

250t, 251t, 412t, 413–414
with SS–SS–SS–F edges, 232, 

234t
in static equilibrium position, 

222, 223f
steel, 261
stiffness of, 4, 221, 235, 404, 

419–420
strain of

classic approach to, 225–226
laminated, 369–371, 401–402, 

404, 416–417
large amplitude 

displacement, 262
Rayleigh and Ritz methods 

for, 242
stress of

Airy function, 262
classic approach to,  

222–226
at corners, 258–260
environment and, 262
laminated, 369–370, 401–403, 

417
in-plane forces, 261
from stretching, 264

superposition method for, 253
symmetry classes of, 252, 252f, 

415
tensile force on, 261



 498 I n d e x  I n d e x  499

plates (Cont.)
thickness of, 221, 243, 261, 265f, 

415
trapezoidal, 257, 257f, 260, 415
triangular. See triangular 

plates
twisted, 439–442, 440f, 441f
twisting moment

laminated, 402, 417
rectangular, 222–228, 224f
sectorial, 242
triangular, 236, 236f

vibration frequencies of
air and, 261, 263t
annular, 240–241, 241t, 351, 

352t, 353t
annular sectorial, 242
circular, 238–240, 238t, 239t, 

240t
elliptical, 255, 255t, 256t
free vibration of, 229–232, 

234–235
laminated, 401–402, 407–414, 

422–424, 428–444, 447
linear-to-nonlinear ratio, 

265f
natural frequency and, 271
Poisson’s ratio and, 232, 

239–240
Rayleigh vs. Ritz, 251t
rectangular, 251–253, 263t, 

274, 423t, 424t
rotary inertia and, 264
sectorial, 241–242
shear deformation and, 264
shell frequency and, 286–

287
shell/plate ratio, 288t
square, 234–235, 234t, 250, 

250t, 252–253
trapezoidal, 257
trial functions and, 250
triangular, 257–258, 258t, 

259f
twisted, 440–444
water and, 261, 263t

Voigt’s approach to, 229

von Kármán equations for, 
264

Yamaki’s research on, 264
Poisson effects, 321, 328
Poisson’s ratio

for beams, 155t
for cubes, 327–328, 327t
modulus of elasticity and, 226, 

367
for plates

bending moment and, 226
flexural rigidity and, 226, 

261
frequency and, 232, 239–240, 

255, 256t
limits for, 226–227
twisting moment and, 226

shear modulus and, 226, 315
polar orthotropy, 364
polar second moment of the 

area, 81, 82t

Q
Qatu, Mohamad S.

on cylindrical shells, 459, 460t
Vibration of Laminated Shells 

and Plates, xii

R
“Rayleigh beam,” 151
Rayleigh method

for bars, 96, 98
for beams, 135, 137–141, 140f, 

149–151, 165, 165–166
for cantilevers, 138–141, 140f
considerations for use of, 141, 

247–248
for membranes, 208, 210–214, 

214t
for plates, 243–247, 249–252, 

262
Ritz method and, 63, 144,  

245–246
for strings, 60–61, 64, 66t, 70

Rayleigh’s Quotient
for bars, 98
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for beams, 139, 150, 166
for membranes, 211
for strings, 60, 61

rectangular bars, 82t, 84, 90
rectangular beams, 153, 155t, 

158, 159t
rectangular membranes

energy functionals for,  
208–210

forced vibration of, 204–206
free vibration of, 186–192
initial conditions for, 200–201
nodal patterns for, 190f
tension on, 186f
vibration frequencies of, 189t

rectangular orthotropy, 364, 365
rectangular parallelepipeds, 

317–319, 317f
rectangular plates

admissible function for, 247
boundary conditions for, 227, 

406–411, 464–465p
with C edges, 228, 407
corners of, 228
with C–SS–C–F edges, 248f, 

249
forced vibration of, 222–225, 

224f
with free edges, 406–407
free vibration of, 229–235, 253, 

409–411
Gorman on, 253
laminated, 406–411, 408f, 409f, 

464–465p
nodal patterns for, 249
orthotropic, 401
Rayleigh method for, 249
Ritz method for, 247–253,  

410–411
with shear diaphragm edge 

support, 407–409, 465p
with SS edges, 228–233, 229f, 

274, 281, 286, 401, 406–410
with SS–C–SS–C edges,  

233–234, 234
with SS–C–SS–F edges,  

231–233

with SS–F–SS–F edges,  
232–233

with SS–SS–SS–F edges, 232
static, in-plane forces on, 261
superposition method for,  

253
vibration frequencies of,  

251–253, 263t, 274, 286, 
408, 410, 423, 423t, 424t

resonance, 46, 47, 96
resonance, torsional mode, xi
right triangular membranes, 

192, 214t
right triangular plates, 257–258, 

258t, 259f, 415
rigorously periodic motions, 1
rings, 354–355, 355f, 356f, 357f, 

399
Ritz method

for bars, 96, 98
for beams, 135, 141–144, 143t, 

149, 165–166, 173, 173t
for cantilevered 

parallelepipeds, 357–359
for cantilevers, 141–144, 143t
for circular cylinders, 333
considerations for use of, 144, 

247–248
d.o.f. and, 173t
for membranes, 208, 210–212, 

214–215, 216t
for plates. See under plates, 

Ritz method for
Rayleigh method and, 63, 144, 

245–246
for rectangular parallelepiped, 

319
for rings, 354
for shells, 289–290, 305
for strings, 62–66, 66t, 70

rods. See bars
rotary inertia

bars and, 158
of beams. See under beams, 

rotary inertia of
of plates, 221, 224, 264–265
of shallow shells, 444
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rotational momentum, 
conservation of, 115

rubber, 92, 261

S
SA modes. See symmetric–

antisymmetric (SA) modes
St. Venant formulation, 81, 278
Sanders shell theory, 387t
sandwich beams, 161–162, 363, 

380
sectorial membranes, 198–199, 

199f, 204
sectorial plates, 241–242
semicircular beams, 155t
shafts, 3, 77, 271–272, 385–388
shallow shells

Airy stress function for, 277
bending in, 277
boundary conditions for,  

281–282, 446
cantilevered doubly curved, 

435, 435f
with C–C–F–F edges, 442, 442f
circular cylindrical. See 

circular cylindrical 
shallow shells

contour plots of, 252, 292, 292f, 
434–435, 434f

convergence studies of,  
428–430, 429t, 442

curvature of
frequency and, 287–288
laminated, 425, 430–434, 

438, 447–450, 448t, 449t, 
450t

symmetric class and, 290
depth of, 442
displacement of, 425, 445–446
Donnell theory on, 387t
doubly curved, cantilevered, 

435, 435f, 442, 442f, 443t
energy functionals for,  

279–280, 426–427
equations of motion for,  

275–280, 295, 425–428, 
444–447

finite element methods for, 
435

flexural rigidity of, 277
with free edges, 289–290,  

428–434, 429t, 432t–433t, 
434f

free vibration of, 280–292, 428
hyperbolic paraboloidal. See 

hyperbolic paraboloidal 
shallow shells

included angle of, 276
kinetic energy of, 280
Kirchhoff’s hypothesis for, 277
knife-edge constraint, 282
laminated

cylindrical, 450–460
thick, 444–450
thin, 424–444

membrane forces on, 276–278
modeling assumptions, 424
modes for, 280–281, 283–292, 

284t, 292f, 293f, 430,  
434–439

nodal patterns for, 284
piano hinge constraint,  

281–282
potential energy of, 279–280, 

426–427
pressure on, 278–279
with rectangular planform, 

275, 275f, 288–292, 292
rise-to-span ratio of, 276
Ritz method for, 289–290, 428
rotary inertia of, 444
shallowness ratio for, 283,  

287–288, 288t, 290, 291t, 
428–430

shear correction factor for, 447
shear deformation of, 444, 447
with shear diaphragm edge 

support, 280–283, 282f, 
284t, 290, 427, 446

shearing forces on, 277, 281
span-to-radius ratio of, 276
spherical. See spherical 

shallow shell; spherical 
shallow shells
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with square planform,  
284–292, 291t, 292f, 293f, 
429t, 430, 435, 442–444

stiffness of, 428
strain of, 277–280, 424–426, 444
stress function for, 281
stress of, 277–278, 425
stretching in, 277–278
symmetry class of, 291t
tangential inertia with, 289–290
thick laminated, 444–450
thickness ratio of

frequency and, 287–288
laminated, 447, 448t, 449t, 

450t
shell/plate ratio, 288t
symmetric class and, 290

trapezoidal, 444
triangular, 444
vibration frequencies of

classic approach to, 280, 
283–290

inertia and, 284t
laminated

curvature ratio and,  
447–450, 448t, 449t, 
450t

determinant size, 429t
doubly cantilevered,  

442–444
fiber angle in, 431t,  

436t–437t, 443t
stacking sequence in,  

428–438, 432t–433t, 
442, 447, 448t, 449t, 
450t

symmetry of, 447
thickness ratio of, 447, 

448t, 449t, 450t
thin, 428–438

shell/plate ratio, 288t
symmetry class and, 291t

shear correction factor
for beams, 153, 154, 155t, 158, 

159t
for plates, 417
for shallow shells, 447

shear modulus, 81, 92, 226, 315
shells

applications for, 271, 272
bending moment, 271
boundary conditions for, 274
cantilevered. See cantilevered 

shells
circular cylindrical. See 

circular cylindrical shells
conical, 272, 273f, 459, 460
curvature of, 272
cylindrical, 459
definition of, 271
displacement of, 4
edge effect of, 305
ellipsoidal, 272
equations of motion for,  

273–274
Flügge’s theories on, 274, 296, 

299, 299f, 301, 301f, 302f, 
303f, 304

fundamental frequency of, 
274, 300, 302

general, 4
hyperbolic paraboloidal, 272
hyperboloidal, 272, 355–356, 

358f
“inextensional theory” for, 274
laminated. See laminated 

shells
mathematical complexity of, 

7t, 8
membrane, 4, 8
membrane theory for, 274, 299
modes for, 274, 386
natural frequencies of, 386
noncircular cylindrical, 272
nonhomogeneous, 355–356
paraboloidal, 272, 355–356
of revolution, 272, 357f, 459
Sanders theory on, 387t
shallow. See shallow shells
shear forces on, 271
spherical. See spherical shells
stiffness of, 4, 8, 274
thick conical, 354, 354f
toroidal, 272, 273f
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shells (Cont.)
twisting moment, 271
vibration frequencies of, 274

skew plates. See parallelogram 
plates

skewed cones, 272
slenderness ratio, 156–157
spherical shallow shells

contour plots of, 292, 293f, 
434–435, 434f

convergence studies of,  
428–430, 429t

curvature of, 434
description of, 276
diagram of, 276f, 285f
frequency ratio of, 287, 288t
laminated, 428
modes for, 284t, 285–286, 290, 

434–439, 434f
Reissner and Johnson’s work 

on, 292
with shear diaphragm edge 

support, 284t
with square planform,  

284–285, 429t
stiffness of, 285, 288
symmetry class and, 291t
vibration frequencies of

classic approach to,  
285–286

inertia and, 284t
laminated

curvature ratio and,  
447–450, 450t

determinant size, 429t
fiber angle in, 431t, 436t, 

443t
shear deformation vs. 

classic approach, 447, 
450t

stacking sequence in, 
432t–433t, 447, 450t

symmetry of, 447
thickness ratio of,  

447, 450t
thin, 428–438
twisted plates, 444

shell/plate ratio, 288t
symmetric class and, 290, 

291t
spherical shells

energy functionals for, 460
laminated, 459
nonhomogeneous, 355–356
shallow. See spherical shallow 

shells
surface of revolution line for, 

272
square bars, 81, 82t
square membranes

contour plot of, 217f
forced vibration of, 214–215, 

216t
free vibration of, 190–192
nodal patterns for, 191f, 249
Rayleigh method for, 214t
shear on hydrostatic tension, 

215f
square plates

contour plots of, 252–253, 253f, 
413, 413f, 414f

modes/vibration frequencies of
classic approach to, 234–235, 

234t
laminated, 412–414, 412t
Ritz method for, 249–250, 

250t
twisted, 440

SS modes. See doubly symmetric 
(SS) modes

stacking sequence
in shallow shells

doubly cantilevered, 442
vs. plates, 432t–433t
shear deformation vs. 

classical approach, 447, 
448t, 449t, 450t

vibration frequencies and, 
428–438

stacking sequence, lamination
nomenclature for, 317f
in plates

convergence studies of, 412
diagrams of, 408f, 409f
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shear deformation vs. 
classical approach,  
401–402, 423–424, 423t, 
424t

vs. shells, 430–438,  
432t–433t

solutions for, 407–408
twisted, 442

stiffness
of bars, 2, 5, 83
of beams, 156, 161–162, 378, 

379t, 380, 386
of cantilevered 

parallelepipeds, 328
of composite materials,  

363–364
of laminated composites,  

161–162, 368, 371–374, 378
length and, 2, 17
of membranes, 4, 182, 221
of plates, 4, 221, 235, 404,  

419–420
Poisson effects and, 328
of shells, 4, 8, 274, 285, 288, 

295–296, 428
of strings, 17
of three-dimensional 

elements, 328
strain

of bars, 79, 96–97
of beams

curved, 167–169, 388–389, 
393–397

energy functionals for,  
135–137

laminated, 380, 385
Rayleigh and Ritz methods 

for, 149, 165
in shear deformation,  

152–153
of circular cylinders, 334
equilibrium tolerance of 

metals, 69
of membranes, 208–210, 209f
of plates

classic approach to,  
225–226

laminated, 369–371, 401–402, 
404, 416–417

large amplitude 
displacement, 262

Rayleigh and Ritz methods 
for, 242

of shells, 277–280, 424–426, 
444, 450, 452

of strings, 67–69, 70t
of three-dimensional 

elements, 314–315, 319
stress

of bars, 78, 79, 80, 81f, 97
of beams, 105, 135–136, 136f, 

380, 393–394
of circular cylinders, 334
of membranes, 182–186, 182f, 

208
of metals, 69
of plates

Airy function, 262
classic approach to,  

222–226
at corners, 258–260
environment and, 262
laminated, 369–370, 401–403, 

417
in-plane forces, 261
from stretching, 264

of shells, 277–278, 425, 451, 459
of three-dimensional 

elements, 312–319, 312f
yield, 69

strings
about, 11
Bessel functions for, 70–71, 150
Bessel’s solutions for, 70–71, 

150
characteristic determinant for, 

33
characteristic equation for, 33
continuous vs. discrete 

modeling of, 2–3, 3f
coordinate diagram of, 12f
coordinate origin for, 12, 72p
coupled, large-slope analysis 

of, 68, 69, 70t
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strings (Cont.)
discontinuities in, 30–35, 30f, 

32f, 34t, 35f
displacement function for, 18
d.o.f. of, 3, 36, 467–468
Duffing equation of motion 

for, 68
eigenfunction orthogonality 

for, 19
energy functionals for, 57–59
equations of motion for, 12–14, 

36, 63, 66–69, 467
finite differences approach 

for, 68
with fixed ends

F body diagram of, 12–13, 
13f

forced vibration of, 39–57, 
47f, 48f, 49f

free body diagram of, 12–13, 
13f

free vibration of, 15–18, 18f, 
60

with fixed-free ends, 73p, 85, 
109

with fixed-mass and spring 
ends, 26–30, 26f, 27f, 29f

forced vibration of
amplitude ratio for, 469f
classic approach to, 13–14
closed-form solution for, 

48–57, 131–132
damping and, 38–57, 468, 

469f
diagram of, 39f
eigenfunction superposition 

method for, 38–48, 48f, 
125, 131, 133f, 134

energy in, 42
static equilibrium equation 

for, 45
free body diagram of

discontinuous segments, 31, 
32f

with fixed-mass and spring 
ends, 26–27, 27f

free vibration of

classic approach to, 15–18, 
66–68

damping and, 35–38,  
467–468

discontinuous segments, 
30–35

energy in, 57–60
gravity and, 22–23, 26
initial conditions and, 17–21, 

37
reflected wave solution for, 

26
traveling wave solution for, 

23–26, 25f
wave equation for, 14, 23–24

frequency equation for, 33
fundamental frequency of

accuracy of estimated, 69, 
70t

definition of, 17
discontinuous segments, 34
with fixed-mass and spring 

ends, 29
with a hanging end, 63–66, 

66t
Rayleigh’s approximation of, 

60–61, 64
Ritz’s approximation of,  

63–66
Galerkin method for, 68
with a hanging end, 58, 63–66, 

64f, 66t, 70–71, 150–151
hyperbolic functions for, 16, 

55–57
infinite power series for, 71
initial conditions for, 37
kinetic energy of, 42, 57–64
Kirchhoff’s equation for, 67, 69, 

70t
large amplitude displacement 

of, 66–69, 70t
length of, 12, 12f, 17
loading function for, 42, 56
mass density of

damping and, 36
discontinuous segments,  

30, 34
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with fixed ends, 13
kinetic energy and, 58–59
variable, 14, 59, 70–71
vibration frequency and, 17

mathematical complexity of, 7, 
7t

metallic, 69
natural frequency of, 17, 37, 

41–42
node points of, 18, 21, 34
periodic motion of

beams and, 125, 131
complementary vs. 

particular solution, 39
diagram of, 44f
Duffing equation of motion 

for, 68
eigenfunction superposition 

method for, 43–44, 125
forcing function for, 468
traveling wave solution for, 

24–25
viscous damping and, 74p

phase angle of, 41–43, 48, 50f, 
52, 57, 469f

plucked, 19–21, 20f, 21f
potential energy of, 42, 57–64
pressure on, 38–47, 73p, 74p
Rayleigh method for, 60–61, 

64, 66t, 70
reflected wave solution for, 26
resonance of, 41–42, 46–48
Ritz method for, 62–66, 66t, 70
separation of variables 

procedure for, 15–18,  
67–68

sinusoidal motion of, 40–57, 
47f, 48f, 49f, 131

slope of
classic approach to, 14,  

66–67
in discontinuous segments, 

31
energy and, 58
equations of motion for 

large, 68, 69, 70t
mode shape and, 18

in Rayleigh’s method, 61
in Ritz method, 66
tension and, 68

stiffness of, 17
strain of, 67–69, 70t
tensile force on, 2, 3f, 58, 67
tension on

average value of, 67
classic approach to, 9, 14, 

66–67
Duffing equation of motion 

for, 68
in equations of motion,  

12–14
with fixed-mass and spring 

ends, 26, 27f
with a hanging end, 63,  

70–71
Hooke’s Law and, 67
Kirchhoff on, 67
shape and, 2
slope and, 68
variability of, 12–13, 67
vibration frequencies and, 

17, 66
traveling wave solution for, 

23–26, 25f
vibration frequencies of, 17, 

189
wave equation for, 14, 23–24, 77

“structural” damping, 36, 91–96
Styrofoam, 261
surface traction forces, 78, 369
symmetric–antisymmetric (SA) 

modes
for 3D bodies, 322t, 325, 325t, 

327, 327t
definition of, 320
for plates, 252, 253f
for shells, 291t

T
Tacoma Narrows Bridge, xi
tensile force

on beams, 145–149
on membrane boundaries,  

3, 4f
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tensile force (Cont.)
on plate boundaries, 261
on strings, 2, 3f, 58, 67, 145
vibration frequencies and, 146

tension, on strings. See under 
strings, tension on

thermoplastics, 363
thick conical shells, 354, 354f
thin-walled circular tubes, 155t
thin-walled square tubes, 155t
three-dimensional elements

of anisotropic material, 315
boundary conditions for,  

316–320, 369
cantilevered parallelepipeds. 

See cantilevered 
parallelepipeds

circular cylinders. See circular 
cylinders

computer plots of, 324
cubes. See cubes
displacement of, 313–320
equations of motion for,  

312–317
with fixed faces, 320
forces of, 313
with free faces, 320
free vibration of, 314–321
of isotropic material, 315, 319
kinetic energy of, 319
Lamé parameter for, 315
modes for, 318–321, 322t, 323t
moments of, 313–314
nodal patterns for, 324
of orthotropic material, 315
potential energy of, 319
rectangular parallelepiped, 

317–319, 317f
Ritz method for, 336–338, 

336t–337t, 339t
strain of, 314–315, 319
stress of, 312–319, 312f
surfaces of, 369
symmetry classes of,  

320–327
vibration frequencies of,  

316–321

three-dimensional finite 
element program, 359

Timoshenko beam theory, 151, 
158, 167, 325–326, 339–342, 
387t

toroidal shells, 272, 273f
torsional mode resonance, xi
torsional stiffness coefficient, 81, 

82t, 91
translational momentum, 

conservation of, 115
trapezoidal plates, 257, 257f, 260, 

415
trapezoidal shallow shells, 444
trial functions. See also 

admissible functions
for beams, 138–141, 140f,  

150–151, 172
for plates, 244, 248, 250, 255, 

259, 410
selection of, 141, 144
vibration frequencies and, 250

triangular bars, equilateral, 82t
triangular membranes, 192, 211, 

214t
triangular plates

contour plots of, 259f
convergence studies of, 258t
corners of, 260
diagram of, 236f
equations of motion for, 236
laminated, 415
modes/vibration frequencies 

of, 257–258
right, 257–258, 258t, 259f, 415

triangular shallow shells, 444
tubes, 155t, 349, 350t
twisting moment

of bars, 80–81, 81f, 92
of laminated composites, 370
of plates

laminated, 402, 417
rectangular, 222–228, 224f
sectorial, 242
triangular, 236, 236f

Poisson’s ratio and, 226
of shells, 271
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V
vibration, defined, 1
viscous damping

of bars, 86, 91
of beams, 130–132, 167
of membranes, 204, 206, 208
of strings, 35–38, 44–47, 56–57, 

467
von Kármán equations, 264

W
walls, 328
weight

of composite materials, 363
of hanging bars, 99p

weight density, 149–150
weight function, 203
wood, 364

Y
yield stress, 69
Young’s modulus. See also 

modulus of elasticity
engineering shear strain and, 

226
flexural rigidity and, 106
Poisson’s ratio and, 226
shear modulus and, 226, 315
spring stiffness and, 2
of steel wire, 69
strain and, 226
string tension and, 67
uniaxial stress and, 79

Z
Zinberg–Symonds beam theory, 

387t
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