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Preface

This book covers analytical methods of vibration analysis of continuous structural
systems, including strings, bars, shafts, beams, circular rings and curved beams, mem-
branes, plates, and shells. The propagation of elastic waves in structures and solid
bodies is also introduced. The objectives of the book are (1) to make a methodical and
comprehensive presentation of the vibration of various types of structural elements,
(2) to present the exact analytical and approximate analytical methods of analysis, and
(3) to present the basic concepts in a simple manner with illustrative examples.

Continuous structural elements and systems are encountered in many branches
of engineering, such as aerospace, architectural, chemical, civil, ocean, and mechan-
ical engineering. The design of many structural and mechanical devices and systems
requires an accurate prediction of their vibration and dynamic performance characteris-
tics. The methods presented in the book can be used in these applications. The book is
intended to serve as a textbook for a dual-level or first graduate-level course on vibra-
tions or structural dynamics. More than enough material is included for a one-semester
course. The chapters are made as independent and self-contained as possible so that
a course can be taught by selecting appropriate chapters or through equivalent self-
study. A successful vibration analysis of continuous structural elements and systems
requires a knowledge of mechanics of materials, structural mechanics, ordinary and par-
tial differential equations, matrix methods, variational calculus, and integral equations.
Applications of these techniques are presented throughout. The selection, arrangement,
and presentation of the material has been made based on the lecture notes for a course
taught by the author. The contents of the book permit instructors to emphasize a vari-
ety of topics, such as basic mathematical approaches with simple applications, bars
and beams, beams and plates, or plates and shells. The book will also be useful as a
reference book for practicing engineers, designers, and vibration analysts involved in
the dynamic analysis and design of continuous systems.

Organization of the Book

The book is organized into 17 chapters and two appendixes. The basic concepts and
terminology used in vibration analysis are introduced in Chapter 1. The importance,
origin, and a brief history of vibration of continuous systems are presented. The dif-
ference between discrete and continuous systems, types of excitations, description of
harmonic functions, and basic definitions used in the theory of vibrations and rep-
resentation of periodic functions in terms of Fourier series and the Fourier integral
are discussed. Chapter 2 provides a brief review of the theory and techniques used
in the vibration analysis of discrete systems. Free and forced vibration of single- and
multidegree-of-freedom systems are outlined. The eigenvalue problem and its role in
the modal analysis used in the free and forced vibration analysis of discrete systems
are discussed.

XV



xvi

Preface

Various methods of formulating vibration problems associated with continuous
systems are presented in Chapters 3, 4, and 5. The equilibrium approach is presented
in Chapter 3. Use of Newton’s second law of motion and D’Alembert’s principle is
outlined, with application to different types of continuous elements. Use of the varia-
tional approach in deriving equations of motion and associated boundary conditions is
described in Chapter 4. The basic concepts of calculus of variations and their application
to extreme value problems are outlined. The variational methods of solid mechanics,
including the principles of minimum potential energy, minimum complementary energy,
stationary Reissner energy, and Hamilton’s principle, are presented. The use of Hamil-
ton’s principle in the formulation of continuous systems is illustrated with torsional
vibration of a shaft and transverse vibration of a thin beam. The integral equation
approach for the formulation of vibration problems is presented in Chapter 5. A brief
outline of integral equations and their classification, and the derivation of integral
equations, are given together with examples. The solution of integral equations using
iterative, Rayleigh—Ritz, Galerkin, collocation, and numerical integration methods is
also discussed in this chapter.

The common solution procedure based on eigenvalue and modal analyses for the
vibration analysis of continuous systems is outlined in Chapter 6. The orthogonality of
eigenfunctions and the role of the expansion theorem in modal analysis are discussed.
The forced vibration response of viscously damped systems are also considered in this
chapter. Chapter 7 covers the solution of problems of vibration of continuous systems
using integral transform methods. Both Laplace and Fourier transform techniques are
outlined together with illustrative applications.

The transverse vibration of strings is presented in Chapter 8. This problem finds
application in guy wires, electric transmission lines, ropes and belts used in machinery,
and the manufacture of thread. The governing equation is derived using equilibrium
and variational approaches. The traveling-wave solution and separation of variables
solution are outlined. The free and forced vibration of strings are considered in this
chapter. The longitudinal vibration of bars is the topic of Chapter 9. Equations of
motion based on simple theory are derived using the equilibrium approach as well as
Hamilton’s principle. The natural frequencies of vibration are determined for bars with
different end conditions. Free vibration response due to initial excitation and forced
vibration of bars are both presented, as is response using modal analysis. Free and forced
vibration of bars using Rayleigh and Bishop theories are also outlined in Chapter 9.
The torsional vibration of shafts plays an important role in mechanical transmission
of power in prime movers and other high-speed machinery. The torsional vibration
of uniform and nonuniform rods with both circular and noncircular cross sections is
described in Chapter 10. The equations of motion and free and forced vibration of shafts
with circular cross section are discussed using the elementary theory. The Saint-Venant
and Timoshenko—Gere theories are considered in deriving the equations of motion of
shafts with noncircular cross sections. Methods of determining the torsional rigidity of
noncircular shafts are presented using the Prandtl stress function and Prandtl membrane
analogy.

Chapter 11 deals with the transverse vibration of beams. Starting with the equation
of motion based on Euler—Bernoulli or thin beam theory, natural frequencies and
mode shapes of beams with different boundary conditions are determined. The free
vibration response due to initial conditions, forced vibration under fixed and moving
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loads, response under axial loading, rotating beams, continuous beams, and beams on
an elastic foundation are presented using the Euler—Bernoulli theory. The effects of
rotary inertia (Rayleigh theory) and rotary inertia and shear deformation (Timoshenko
theory) on the transverse vibration of beams are also considered. Finally, coupled bend-
ing—torsional vibration of beams is discussed toward the end of Chapter 11. In-plane
flexural and coupled twist-bending vibration of circular rings and curved beams is
considered in Chapter 12. The equations of motion and free vibration solutions are
presented first using a simple theory. Then the effects of rotary inertia and shear defor-
mation are considered. The vibration of rings is important in a study of the vibration
of ring-stiffened shells used in aerospace applications, gears, and stators of electrical
machines.

The transverse vibration of membranes is the topic of Chapter 13. Membranes
find application in drums and microphone condensers. The equation of motion of
membranes is derived using both the equilibrium and variational approaches. The free
and forced vibration of rectangular and circular membranes are both discussed in this
chapter. Chapter 14 covers the transverse vibration of plates. The equation of motion
and the free and forced vibration of both rectangular and circular plates are presented.
The vibration of plates subjected to in-plane forces, plates on elastic foundation, and
plates with variable thickness is also discussed. Finally, the effect of rotary inertia
and shear deformation on the vibration of plates is outlined according to Mindlin’s
theory. The vibration of shells is the topic of Chapter 15. First the theory of surfaces
is presented using shell coordinates. Then the strain—displacement relations according
to Love’s approximations, stress—strain, and force and moment resultants are given.
Then the equations of motion are derived from Hamilton’s principle. The equations of
motion of circular cylindrical shells and their natural frequencies are considered using
Donnel—Mushtari—Vlasov and Love’s theories. Finally, the effect of rotary inertia and
shear deformation on the vibration of shells is considered.

Wave propagation in elastic solids is considered in Chapter 16. The one-
dimensional wave equation and the traveling-wave solution are presented. The wave
motion in strings and wave propagation in a semi-infinite medium, along with reflection
and transmission of waves at fixed and free boundaries, are discussed. The differences
between compressional or P waves and shear or S waves are discussed. The flexural
waves in beams and the propagation of dilatational and distortional waves is considered
in an infinite elastic medium. Rayleigh or surface waves are also discussed. Finally,
Chapter 17 is devoted to the approximate analytical methods useful for vibration
analysis. The computational details of the Rayleigh, Rayleigh—Ritz, assumed modes,
weighted residual, Galerkin, collocation, subdomain collocation, and least squares meth-
ods are presented along with numerical examples. Appendix A presents the basic
equations of elasticity. Laplace and Fourier transform pairs associated with some simple
and commonly used functions are summarized in Appendix B.
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Introduction: Basic Concepts
and Terminology

1.1 CONCEPT OF VIBRATION

Any repetitive motion is called vibration or oscillation. The motion of a guitar string,
motion felt by passengers in an automobile traveling over a bumpy road, swaying of
tall buildings due to wind or earthquake, and motion of an airplane in turbulence are
typical examples of vibration. The theory of vibration deals with the study of oscillatory
motion of bodies and the associated forces. The oscillatory motion shown in Fig. 1.1(a)
is called harmonic motion and is denoted as

x(t) = X cos wt (1.1)

where X is called the amplitude of motion, w is the frequency of motion, and t is the time.
The motion shown in Fig. 1.1(b) is called periodic motion, and that shown in Fig. 1.1(c)
is called nonperiodic or transient motion. The motion indicated in Fig. 1.1(d) is random
or long-duration nonperiodic vibration.

The phenomenon of vibration involves an alternating interchange of potential
energy to kinetic energy and kinetic energy to potential energy. Hence, any vibrat-
ing system must have a component that stores potential energy and a component that
stores kinetic energy. The components storing potential and kinetic energies are called
a spring or elastic element and a mass or inertia element, respectively. The elastic
element stores potential energy and gives it up to the inertia element as kinetic energy,
and vice versa, in each cycle of motion. The repetitive motion associated with vibra-
tion can be explained through the motion of a mass on a smooth surface, as shown in
Fig. 1.2. The mass is connected to a linear spring and is assumed to be in equilibrium
or rest at position 1. Let the mass m be given an initial displacement to position 2
and released with zero velocity. At position 2, the spring is in a maximum elongated
condition, and hence the potential or strain energy of the spring is a maximum and
the kinetic energy of the mass will be zero since the initial velocity is assumed to be
zero. Because of the tendency of the spring to return to its unstretched condition, there
will be a force that causes the mass m to move to the left. The velocity of the mass
will gradually increase as it moves from position 2 to position 1. At position 1, the
potential energy of the spring is zero because the deformation of the spring is zero.
However, the kinetic energy and hence the velocity of the mass will be maximum at
position 1 because of conservation of energy (assuming no dissipation of energy due
to damping or friction). Since the velocity is maximum at position 1, the mass will
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Displacement (or force), x(7)
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Figure 1.1 Types of displacements (or forces): (a) periodic simple harmonic; (b) periodic,
nonharmonic; (c¢) nonperiodic, transient; (d) nonperiodic, random.
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Figure 1.1 (continued)
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Figure 1.2 Vibratory motion of a spring—mass system: (a) system in equilibrium (spring unde-
formed); (b) system in extreme right position (spring stretched); (c) system in extreme left
position (spring compressed).

continue to move to the left, but against the resisting force due to compression of
the spring. As the mass moves from position 1 to the left, its velocity will gradually
decrease until it reaches a value of zero at position 3. At position 3 the velocity and
hence the kinetic energy of the mass will be zero and the deflection (compression)
and hence the potential energy of the spring will be maximum. Again, because of the
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tendency of the spring to return to its uncompressed condition, there will be a force
that causes the mass m to move to the right from position 3. The velocity of the mass
will increase gradually as it moves from position 3 to position 1. At position 1, all
of the potential energy of the spring has been converted to the kinetic energy of the
mass, and hence the velocity of the mass will be maximum. Thus, the mass continues
to move to the right against increasing spring resistance until it reaches position 2 with
zero velocity. This completes one cycle of motion of the mass, and the process repeats;
thus, the mass will have oscillatory motion.

The initial excitation to a vibrating system can be in the form of initial displace-
ment and/or initial velocity of the mass element(s). This amounts to imparting potential
and/or kinetic energy to the system. The initial excitation sets the system into oscil-
latory motion, which can be called free vibration. During free vibration, there will
be exchange between potential and kinetic energies. If the system is conservative, the
sum of potential energy and kinetic energy will be a constant at any instant. Thus, the
system continues to vibrate forever, at least in theory. In practice, there will be some
damping or friction due to the surrounding medium (e.g., air), which will cause loss
of some energy during motion. This causes the total energy of the system to diminish
continuously until it reaches a value of zero, at which point the motion stops. If the
system is given only an initial excitation, the resulting oscillatory motion eventually
will come to rest for all practical systems, and hence the initial excitation is called
transient excitation and the resulting motion is called transient motion. If the vibration
of the system is to be maintained in a steady state, an external source must replace
continuously the energy dissipated due to damping.

1.2 IMPORTANCE OF VIBRATION

Any body having mass and elasticity is capable of oscillatory motion. In fact, most
human activities, including hearing, seeing, talking, walking, and breathing, also involve
oscillatory motion. Hearing involves vibration of the eardrum, seeing is associated with
the vibratory motion of light waves, talking requires oscillations of the laryng (tongue),
walking involves oscillatory motion of legs and hands, and breathing is based on the
periodic motion of lungs. In engineering, an understanding of the vibratory behavior of
mechanical and structural systems is important for the safe design, construction, and
operation of a variety of machines and structures.

The failure of most mechanical and structural elements and systems can be associ-
ated with vibration. For example, the blade and disk failures in steam and gas turbines
and structural failures in aircraft are usually associated with vibration and the resulting
fatigue. Vibration in machines leads to rapid wear of parts such as gears and bearings,
loosening of fasteners such as nuts and bolts, poor surface finish during metal cutting,
and excessive noise. Excessive vibration in machines causes not only the failure of
components and systems but also annoyance to humans. For example, imbalance in
diesel engines can cause ground waves powerful enough to create a nuisance in urban
areas. Supersonic aircraft create sonic booms that shatter doors and windows. Several
spectacular failures of bridges, buildings, and dams are associated with wind-induced
vibration, as well as oscillatory ground motion during earthquakes.
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In some engineering applications, vibrations serve a useful purpose. For example,
in vibratory conveyors, sieves, hoppers, compactors, dentist drills, electric toothbrushes,
washing machines, clocks, electric massaging units, pile drivers, vibratory testing
of materials, vibratory finishing processes, and materials processing operations such
as casting and forging, vibration is used to improve the efficiency and quality of
the process.

1.3 ORIGINS AND DEVELOPMENTS IN MECHANICS
AND VIBRATION

The earliest human interest in the study of vibration can be traced to the time when the
first musical instruments, probably whistles or drums, were discovered. Since that time,
people have applied ingenuity and critical investigation to study the phenomenon of
vibration and its relation to sound. Although certain very definite rules were observed
in the art of music, even in ancient times, they can hardly be called science. The ancient
Egyptians used advanced engineering concepts such as the use of dovetailed cramps
and dowels in the stone joints of major structures such as the pyramids during the third
and second millennia B.C.

As far back as 4000 B.c., music was highly developed and well appreciated in
China, India, Japan, and perhaps Egypt [1, 6]. Drawings of stringed instruments such
as harps appeared on the walls of Egyptian tombs as early as 3000 B.c. The British
Museum also has a nanga, a primitive stringed instrument from 155 B.c. The present
system of music is considered to have arisen in ancient Greece.

The scientific method of dealing with nature and the use of logical proofs for
abstract propositions began in the time of Thales of Miletos (640—546 B.C.), who
introduced the term electricity after discovering the electrical properties of yellow
amber. The first person to investigate the scientific basis of musical sounds is considered
to be the Greek mathematician and philosopher Pythagoras (582—507 B.c.). Pythagoras
established the Pythagorean school, the first institute of higher education and scientific
research. Pythagoras conducted experiments on vibrating strings using an apparatus
called the monochord. Pythagoras found that if two strings of identical properties but
different lengths are subject to the same tension, the shorter string produces a higher
note, and in particular, if the length of the shorter string is one-half that of the longer
string, the shorter string produces a note an octave above the other. The concept of
pitch was known by the time of Pythagoras; however, the relation between the pitch and
the frequency of a sounding string was not known at that time. Only in the sixteenth
century, around the time of Galileo, did the relation between pitch and frequency
become understood [2].

Daedalus is considered to have invented the pendulum in the middle of the second
millennium B.C. One initial application of the pendulum as a timing device was made
by Aristophanes (450—388 B.c.). Aristotle wrote a book on sound and music around
350 B.c. and documents his observations in statements such as “the voice is sweeter
than the sound of instruments” and “the sound of the flute is sweeter than that of the
lyre.” Aristotle recognized the vectorial character of forces and introduced the concept
of vectorial addition of forces. In addition, he studied the laws of motion, similar to
those of Newton. Aristoxenus, who was a musician and a student of Aristotle, wrote a
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three-volume book called Elements of Harmony. These books are considered the oldest
books available on the subject of music. Alexander of Afrodisias introduced the ideas
of potential and kinetic energies and the concept of conservation of energy. In about
300 B.c., in addition to his contributions to geometry, Euclid gave a brief description
of music in a treatise called Introduction to Harmonics. However, he did not discuss
the physical nature of sound in the book. Euclid was distinguished for his teaching
ability, and his greatest work, the Elements, has seen numerous editions and remains
one of the most influential books of mathematics of all time. Archimedes (287-212
B.C.) is called by some scholars the father of mathematical physics. He developed the
rules of statics. In his On Floating Bodies, Archimedes developed major rules of fluid
pressure on a variety of shapes and on buoyancy.

China experienced many deadly earthquakes in ancient times. Zhang Heng, a histo-
rian and astronomer of the second century A.D., invented the world’s first seismograph
to measure earthquakes in A.D. 132 [3]. This seismograph was a bronze vessel in the
form of a wine jar, with an arrangement consisting of pendulums surrounded by a
group of eight lever mechanisms pointing in eight directions. Eight dragon figures,
with a bronze ball in the mouth of each, were arranged outside the jar. An earthquake
in any direction would tilt the pendulum in that direction, which would cause the release
of the bronze ball in that direction. This instrument enabled monitoring personnel to
know the direction, time of occurrence, and perhaps, the magnitude of the earthquake.

The foundations of modern philosophy and science were laid during the sixteenth
century; in fact, the seventeenth century is called the century of genius by many.
Galileo (1564—1642) laid the foundations for modern experimental science through his
measurements on a simple pendulum and vibrating strings. During one of his trips to
the church in Pisa, the swinging movements of a lamp caught Galileo’s attention. He
measured the period of the pendulum movements of the lamp with his pulse and was
amazed to find that the time period was not influenced by the amplitude of swings.
Subsequently, Galileo conducted more experiments on the simple pendulum and pub-
lished his findings in Discourses Concerning Two New Sciences in 1638. In this work,
he discussed the relationship between the length and the frequency of vibration of a
simple pendulum, as well as the idea of sympathetic vibrations or resonance [4].

Although the writings of Galileo indicate that he understood the interdependence
of the parameters—length, tension, density and frequency of transverse vibration—of
a string, they did not offer an analytical treatment of the problem. Marinus Mersenne
(1588—1648), a mathematician and theologian from France, described the correct behav-
ior of the vibration of strings in 1636 in his book Harmonicorum Liber. For the first
time, by knowing (measuring) the frequency of vibration of a long string, Mersenne
was able to predict the frequency of vibration of a shorter string having the same den-
sity and tension. He is considered to be the first person to discover the laws of vibrating
strings. The truth was that Galileo was the first person to conduct experimental studies
on vibrating strings; however, publication of his work was prohibited until 1638, by
order of the Inquisitor of Rome. Although Galileo studied the pendulum extensively
and discussed the isochronism of the pendulum, Christian Huygens (1629-1695) was
the person who developed the pendulum clock, the first accurate device developed
for measuring time. He observed deviation from isochronism due to the nonlinear-
ity of the pendulum, and investigated various designs to improve the accuracy of the
pendulum clock.
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The works of Galileo contributed to a substantially increased level of experimen-
tal work among many scientists and paved the way to the establishment of several
professional organizations, such as the Academia Naturae in Naples in 1560, Academia
dei Lincei in Rome in 1606, Royal Society in London in 1662, the French Academy
of Sciences in 1766, and the Berlin Academy of Science in 1770.

The relation between the pitch and frequency of vibration of a taut string was
investigated further by Robert Hooke (1635—1703) and Joseph Sauveur (1653—-1716).
The phenomenon of mode shapes during the vibration of stretched strings, involving no
motion at certain points and violent motion at intermediate points, was observed inde-
pendently by Sauveur in France (1653—1716) and John Wallis in England (1616—1703).
Sauveur called points with no motion nodes and points with violent motion, loops. Also,
he observed that vibrations involving nodes and loops had higher frequencies than those
involving no nodes. After observing that the values of the higher frequencies were inte-
gral multiples of the frequency of simple vibration with no nodes, Sauveur termed the
frequency of simple vibration the fundamental frequency and the higher frequencies,
the harmonics. In addition, he found that the vibration of a stretched string can con-
tain several harmonics simultaneously. The phenomenon of beats was also observed
by Sauveur when two organ pipes, having slightly different pitches, were sounded
together. He also tried to compute the frequency of vibration of a taut string from the
measured sag of its middle point. Sauveur introduced the word acoustics for the first
time for the science of sound [7].

Isaac Newton (1642—1727) studied at Trinity College, Cambridge and later became
professor of mathematics at Cambridge and president of the Royal Society of London.
In 1687 he published the most admired scientific treatise of all time, Philosophia Natu-
ralis Principia Mathematica. Although the laws of motion were already known in one
form or other, the development of differential calculus by Newton and Leibnitz made
the laws applicable to a variety of problems in mechanics and physics. Leonhard Euler
(1707-1783) laid the groundwork for the calculus of variations. He popularized the
use of free-body diagrams in mechanics and introduced several notations, including
e=2.71828..., f(x),Y ,and i = \/—_1 In fact, many people believe that the current
techniques of formulating and solving mechanics problems are due more to Euler than
to any other person in the history of mechanics. Using the concept of inertia force,
Jean D’ Alembert (1717-1783) reduced the problem of dynamics to a problem in stat-
ics. Joseph Lagrange (1736—1813) developed the variational principles for deriving the
equations of motion and introduced the concept of generalized coordinates. He intro-
duced Lagrange equations as a powerful tool for formulating the equations of motion
for lumped-parameter systems. Charles Coulomb (1736—1806) studied the torsional
oscillations both theoretically and experimentally. In addition, he derived the relation
between electric force and charge.

Claude Louis Marie Henri Navier (1785-1836) presented a rigorous theory for
the bending of plates. In addition, he considered the vibration of solids and presented
the continuum theory of elasticity. In 1882, Augustin Louis Cauchy (1789—-1857) pre-
sented a formulation for the mathematical theory of continuum mechanics. William
Hamilton (1805-1865) extended the formulation of Lagrange for dynamics prob-
lems and presented a powerful method (Hamilton’s principle) for the derivation of
equations of motion of continuous systems. Heinrich Hertz (1857-1894) introduced the
terms holonomic and nonholonomic into dynamics around 1894. Jules Henri Poincaré
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(1854—-1912) made many contributions to pure and applied mathematics, particularly
to celestial mechanics and electrodynamics. His work on nonlinear vibrations in terms
of the classification of singular points of nonlinear autonomous systems is notable.

1.4 HISTORY OF VIBRATION OF CONTINUOUS SYSTEMS

The precise treatment of the vibration of continuous systems can be associated with
the discovery of the basic law of elasticity by Hooke, the second law of motion by
Newton, and the principles of differential calculus by Leibnitz. Newton’s second law
of motion is used routinely in modern books on vibrations to derive the equations of
motion of a vibrating body.

Strings A theoretical (dynamical) solution of the problem of the vibrating string was
found in 1713 by the English mathematician Brook Taylor (1685-1731), who also pre-
sented the famous Taylor theorem on infinite series. He applied the fluxion approach,
similar to the differential calculus approach developed by Newton and Newton’s sec-
ond law of motion, to an element of a continuous string and found the true value
of the first natural frequency of the string. This value was found to agree with the
experimental values observed by Galileo and Mersenne. The procedure adopted by
Taylor was perfected through the introduction of partial derivatives in the equations
of motion by Daniel Bernoulli, Jean D’Alembert, and Leonhard Euler. The fluxion
method proved too clumsy for use with more complex vibration analysis problems.
With the controversy between Newton and Leibnitz as to the origin of differential cal-
culus, patriotic Englishmen stuck to the cumbersome fluxions while other investigators
in Europe followed the simpler notation afforded by the approach of Leibnitz.

In 1747, D’ Alembert derived the partial differential equation, later referred to as the
wave equation, and found the wave travel solution. Although D’ Alembert was assisted
by Daniel Bernoulli and Leonhard Euler in this work, he did not give them credit. With
all three claiming credit for the work, the specific contribution of each has remained
controversial.

The possibility of a string vibrating with several of its harmonics present at the same
time (with displacement of any point at any instant being equal to the algebraic sum of
displacements for each harmonic) was observed by Bernoulli in 1747 and proved by
Euler in 1753. This was established through the dynamic equations of Daniel Bernoulli
in his memoir, published by the Berlin Academy in 1755. This characteristic was
referred to as the principle of the coexistence of small oscillations, which is the same as
the principle of superposition in today’s terminology. This principle proved to be very
valuable in the development of the theory of vibrations and led to the possibility of
expressing any arbitrary function (i.e., any initial shape of the string) using an infinite
series of sine and cosine terms. Because of this implication, D’ Alembert and Euler
doubted the validity of this principle. However, the validity of this type of expansion
was proved by Fourier (1768—1830) in his Analytical Theory of Heat in 1822.

It is clear that Bernoulli and Euler are to be credited as the originators of the
modal analysis procedure. They should also be considered the originators of the Fourier
expansion method. However, as with many discoveries in the history of science, the
persons credited with the achievement may not deserve it completely. It is often the
person who publishes at the right time who gets the credit.
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The analytical solution of the vibrating string was presented by Joseph Lagrange in
his memoir published by the Turin Academy in 1759. In his study, Lagrange assumed
that the string was made up of a finite number of equally spaced identical mass particles,
and he established the existence of a number of independent frequencies equal to the
number of mass particles. When the number of particles was allowed to be infinite,
the resulting frequencies were found to be the same as the harmonic frequencies of
the stretched string. The method of setting up the differential equation of motion of a
string (called the wave equation), presented in most modern books on vibration theory,
was developed by D’Alembert and described in his memoir published by the Berlin
Academy in 1750.

Bars Chladni in 1787, and Biot in 1816, conducted experiments on the longitudinal
vibration of rods. In 1824, Navier, presented an analytical equation and its solution for
the longitudinal vibration of rods.

Shafts Charles Coulomb did both theoretical and experimental studies in 1784 on the
torsional oscillations of a metal cylinder suspended by a wire [5]. By assuming that the
resulting torque of the twisted wire is proportional to the angle of twist, he derived an
equation of motion for the torsional vibration of a suspended cylinder. By integrating
the equation of motion, he found that the period of oscillation is independent of the
angle of twist. The derivation of the equation of motion for the torsional vibration
of a continuous shaft was attempted by Caughy in an approximate manner in 1827
and given correctly by Poisson in 1829. In fact, Saint-Venant deserves the credit for
deriving the torsional wave equation and finding its solution in 1849.

Beams The equation of motion for the transverse vibration of thin beams was derived
by Daniel Bernoulli in 1735, and the first solutions of the equation for various support
conditions were given by Euler in 1744. Their approach has become known as the
Euler—Bernoulli or thin beam theory. Rayleigh presented a beam theory by including
the effect of rotary inertia. In 1921, Stephen Timoshenko presented an improved theory
of beam vibration, which has become known as the Timoshenko or thick beam theory,
by considering the effects of rotary inertia and shear deformation.

Membranes 1In 1766, Euler, derived equations for the vibration of rectangular mem-
branes which were correct only for the uniform tension case. He considered the
rectangular membrane instead of the more obvious circular membrane in a drumhead,
because he pictured a rectangular membrane as a superposition of two sets of strings
laid in perpendicular directions. The correct equations for the vibration of rectangular
and circular membranes were derived by Poisson in 1828. Although a solution corre-
sponding to axisymmetric vibration of a circular membrane was given by Poisson, a
nonaxisymmetric solution was presented by Pagani in 1829.

Plates The vibration of plates was also being studied by several investigators at this
time. Based on the success achieved by Euler in studying the vibration of a rectangular
membrane as a superposition of strings, Euler’s student James Bernoulli, the grand-
nephew of the famous mathematician Daniel Bernoulli, attempted in 1788 to derive
an equation for the vibration of a rectangular plate as a gridwork of beams. However,
the resulting equation was not correct. As the torsional resistance of the plate was not
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considered in his equation of motion, only a resemblance, not the real agreement, was
noted between the theoretical and experimental results.

The method of placing sand on a vibrating plate to find its mode shapes and to
observe the various intricate modal patterns was developed by the German scientist
Chladni in 1802. In his experiments, Chladni distributed sand evenly on horizontal
plates. During vibration, he observed regular patterns of modes because of the accu-
mulation of sand along the nodal lines that had no vertical displacement. Napoléon
Bonaparte, who was a trained military engineer, was present when Chladni gave a
demonstration of his experiments on plates at the French Academy in 1809. Napoléon
was so impressed by Chladni’s demonstration that he gave a sum of 3000 francs to the
French Academy to be presented to the first person to give a satisfactory mathemati-
cal theory of the vibration of plates. When the competition was announced, only one
person, Sophie Germain, entered the contest by the closing date of October 1811 [8].
However, an error in the derivation of Germain’s differential equation was noted by
one of the judges, Lagrange. In fact, Lagrange derived the correct form of the differ-
ential equation of plates in 1811. When the academy opened the competition again,
with a new closing date of October 1813, Germain entered the competition again with
a correct form of the differential equation of plates. Since the judges were not satisfied,
due to the lack of physical justification of the assumptions she made in deriving the
equation, she was not awarded the prize. The academy opened the competition again
with a new closing date of October 1815. Again, Germain entered the contest. This
time she was awarded the prize, although the judges were not completely satisfied with
her theory. It was found later that her differential equation for the vibration of plates
was correct but the boundary conditions she presented were wrong. In fact, Kirchhoff,
in 1850, presented the correct boundary conditions for the vibration of plates as well
as the correct solution for a vibrating circular plate.

The great engineer and bridge designer Navier (1785-1836) can be considered
the originator of the modern theory of elasticity. He derived the correct differential
equation for rectangular plates with flexural resistance. He presented an exact method
that transforms the differential equation into an algebraic equation for the solution of
plate and other boundary value problems using trigonometric series. In 1829, Poisson
extended Navier’s method for the lateral vibration of circular plates.

Kirchhoff (1824—-1887) who included the effects of both bending and stretching in
his theory of plates published in his book Lectures on Mathematical Physics, is con-
sidered the founder of the extended plate theory. Kirchhoff’s book was translated into
French by Clebsch with numerous valuable comments by Saint-Venant. Love extended
Kirchhoff’s approach to thick plates. In 1915, Timoshenko presented a solution for
circular plates with large deflections. Foppl considered the nonlinear theory of plates
in 1907; however, the final form of the differential equation for the large deflection
of plates was developed by von Kdrman in 1910. A more rigorous plate theory that
considers the effects of transverse shear forces was presented by Reissner. A plate the-
ory that includes the effects of both rotatory inertia and transverse shear deformation,
similar to the Timoshenko beam theory, was presented by Mindlin in 1951.

Shells The derivation of an equation for the vibration of shells was attempted by
Sophie Germain, who in 1821 published a simplified equation, with errors, for the
vibration of a cylindrical shell. She assumed that the in-plane displacement of the
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neutral surface of a cylindrical shell was negligible. Her equation can be reduced to
the correct form for a rectangular plate but not for a ring. The correct equation for the
vibration of a ring had been given by Euler in 1766.

Aron, in 1874, derived the general shell equations in curvilinear coordinates, which
were shown to reduce to the plate equation when curvatures were set to zero. The
equations were complicated because no simplifying assumptions were made. Lord
Rayleigh proposed different simplifications for the vibration of shells in 1882 and
considered the neutral surface of the shell either extensional or inextensional. Love, in
1888, derived the equations for the vibration of shells by using simplifying assumptions
similar to those of beams and plates for both in-plane and transverse motions. Love’s
equations can be considered to be most general in unifying the theory of vibration
of continuous structures whose thickness is small compared to other dimensions. The
vibration of shells, with a consideration of rotatory inertia and shear deformation, was
presented by Soedel in 1982.

Approximate Methods Lord Rayleigh published his book on the theory of sound in
1877; it is still considered a classic on the subject of sound and vibration. Notable among
the many contributions of Rayleigh is the method of finding the fundamental frequency
of vibration of a conservative system by making use of the principle of conservation
of energy—now known as Rayleigh’s method. Ritz (1878—-1909) extended Rayleigh’s
method for finding approximate solutions of boundary value problems. The method,
which became known as the Rayleigh—Ritz method, can be considered to be a varia-
tional approach. Galerkin (1871-1945) developed a procedure that can be considered
a weighted residual method for the approximate solution of boundary value problems.

Until about 40 years ago, vibration analyses of even the most complex engineer-
ing systems were conducted using simple approximate analytical methods. Continuous
systems were modeled using only a few degrees of freedom. The advent of high-
speed digital computers in the 1950s permitted the use of more degrees of freedom
in modeling engineering systems for the purpose of vibration analysis. Simultaneous
development of the finite element method in the 1960s made it possible to consider
thousands of degrees of freedom to approximate practical problems in a wide spectrum
of areas, including machine design, structural design, vehicle dynamics, and engineering
mechanics. Notable contributions to the theory of the vibration of continuous systems
are summarized in Table 1.1.

1.5 DISCRETE AND CONTINUOUS SYSTEMS

The degrees of freedom of a system are defined by the minimum number of independent
coordinates necessary to describe the positions of all parts of the system at any instant
of time. For example, the spring—mass system shown in Fig. 1.2 is a single-degree-of-
freedom system since a single coordinate, x(z), is sufficient to describe the position of
the mass from its equilibrium position at any instant of time. Similarly, the simple pen-
dulum shown in Fig. 1.3 also denotes a single-degree-of-freedom system. The reason
is that the position of a simple pendulum during motion can be described by using a
single angular coordinate, 6. Although the position of a simple pendulum can be stated
in terms of the Cartesian coordinates x and y, the two coordinates x and y are not inde-
pendent; they are related to one another by the constraint x> 4+ y*> = [, where [ is the
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Table 1.1 Notable Contributions to the Theory of Vibration of Continuous Systems

Period Scientist Contribution

582-507 B.C. Pythagoras Established the first school of higher education
and scientific research. Conducted
experiments on vibrating strings. Invented
the monochord.

384-322 B.C. Aristotle Wrote a book on acoustics. Studied laws of

Third century

B.C. Afrodisias
325-265 B.C. Euclid
A.D.
1564-1642 Galileo Galilei

1642-1727 Isaac Newton
1653-1716 Joseph Sauveur
1685-1731 Brook Taylor
1700-1782 Daniel Bernoulli
1707-1783 Leonhard Euler
1717-1783 Jean D’ Alembert
1736-1813 Joseph Louis
Lagrange
1736-1806 Charles Coulomb
1756-1827 E. F. F. Chladni
1776-1831 Sophie Germain
1785-1836 Claude Louis
Marie Henri
Navier
1797-1872 Jean Marie
Duhamel
1805-1865 William

Hamilton

Alexander of

motion (similar to those of Newton).
Introduced vectorial addition of forces.

Kinetic and potential energies. Idea of
conservation of energy.

Prominent mathematician. Published a treatise
called Introduction to Harmonics.

Experiments on pendulum and vibration of
strings. Wrote the first treatise on modern
dynamics.

Laws of motion. Differential calculus.
Published the famous Principia
Mathematica.

Introduced the term acoustics. Investigated
harmonics in vibration.

Theoretical solution of vibrating strings.
Taylor’s theorem.

Principle of angular momentum. Principle of
superposition.

Principle of superposition. Beam theory.
Vibration of membranes. Introduced several
mathematical symbols.

Dynamic equilibrium of bodies in motion.
Inertia force. Wave equation.

Analytical solution of vibrating strings.
Lagrange’s equations. Variational calculus.
Introduced the term generalized coordinates.

Torsional vibration studies.

Experimental observation of mode shapes of
plates.

Vibration of plates.

Bending vibration of plates. Vibration of solids.
Originator of modern theory of elasticity.

Studied partial differential equations applied to
vibrating strings and vibration of air in
pipes. Duhamel’s integral.

Principle of least action. Hamilton’s principle.
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Table 1.1 (continued)

Period Scientist Contribution

1824-1887 Gustav Robert Presented extended theory of plates.

Kirchhoff Kirchhoff’s laws of electrical circuits.

1842-1919 John William Energy method. Effect of rotatory inertia. Shell

Strutt (Lord equations.
Rayleigh)

1874 H. Aron Shell equations in curvilinear coordinates.

1888 A. E. H. Love Classical theory of thin shells.

1871-1945 Boris Grigorevich Approximate solution of boundary value

Galerkin problems with application to elasticity and
vibration.

1878-1909 Walter Ritz Extended Rayleigh’s energy method for
approximate solution of boundary value
problems.

1956 Turner, Clough, Finite element method.

Martin, and
Topp

Figure 1.3 Simple pendulum.

constant length of the pendulum. Thus, the pendulum is a single-degree-of-freedom sys-
tem. The mass—spring—damper systems shown in Fig. 1.4(a) and (b) denote two- and
three-degree-of-freedom systems, respectively, since they have, two and three masses
that change their positions with time during vibration. Thus, a multidegree-of-freedom
system can be considered to be a system consisting of point masses separated by springs
and dampers. The parameters of the system are discrete sets of finite numbers. These
systems are also called lumped-parameter, discrete, or finite-dimensional systems.
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Figure 1.4 (a) Two- and (b) three-degree-of-freedom systems.

On the other hand, in a continuous system, the mass, elasticity (or flexibility), and
damping are distributed throughout the system. During vibration, each of the infinite
number of point masses moves relative to each other point mass in a continuous fash-
ion. These systems are also known as distributed, continuous, or infinite-dimensional
systems. A simple example of a continuous system is the cantilever beam shown in
Fig. 1.5. The beam has an infinite number of mass points, and hence an infinite num-
ber of coordinates are required to specify its deflected shape. The infinite number of
coordinates, in fact, define the elastic deflection curve of the beam. Thus, the cantilever
beam is considered to be a system with an infinite number of degrees of freedom. Most
mechanical and structural systems have members with continuous elasticity and mass
distribution and hence have infinite degrees of freedom.

The choice of modeling a given system as discrete or continuous depends on the
purpose of the analysis and the expected accuracy of the results. The motion of an n-
degree-of-freedom system is governed by a system of n coupled second-order ordinary
differential equations. For a continuous system, the governing equation of motion is
in the form of a partial differential equation. Since the solution of a set of ordinary
differential equations is simple, it is relatively easy to find the response of a discrete
system that is experiencing a specified excitation. On the other hand, solution of a
partial differential equation is more involved, and closed-form solutions are available
for only a few continuous systems that have a simple geometry and simple, boundary
conditions and excitations. However, the closed-form solutions that are available will
often provide insight into the behavior of more complex systems for which closed-form
solutions cannot be found.

For an n-degree-of-freedom system, there will be, at most, n distinct natural fre-
quencies of vibration with a mode shape corresponding to each natural frequency. A
continuous system, on the other hand, will have an infinite number of natural fre-
quencies, with one mode shape corresponding to each natural frequency. A continuous
system can be approximated as a discrete system, and its solution can be obtained
in a simpler manner. For example, the cantilever beam shown in Fig. 1.5(a) can be
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Figure 1.5 Modeling of a cantilever beam as (a) a continuous system, (b) a single-degree-of-
freedom system, and (c) a two-degree-of-freedom system.

approximated as a single degree of freedom by assuming the mass of the beam to
be a concentrated point mass located at the free end of the beam and the continuous
flexibility to be approximated as a simple linear spring as shown in Fig. 1.5(b). The
accuracy of approximation can be improved by using a two-degree-of-freedom model
as shown in Fig. 1.5(c), where the mass and flexibility of the beam are approximated
by two point masses and two linear springs.

1.6 VIBRATION PROBLEMS

Vibration problems may be classified into the following types [9]:
1. Undamped and damped vibration. If there is no loss or dissipation of energy
due to friction or other resistance during vibration of a system, the system is
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said to be undamped. If there is energy loss due to the presence of damping, the
system is called damped. Although system analysis is simpler when neglecting
damping, a consideration of damping becomes extremely important if the system
operates near resonance.

2. Free and forced vibration. If a system vibrates due to an initial disturbance
(with no external force applied after time zero), the system is said to undergo
free vibration. On the other hand, if the system vibrates due to the application
of an external force, the system is said to be under forced vibration.

3. Linear and nonlinear vibration. 1If all the basic components of a vibrating
system (i.e., the mass, the spring, and the damper) behave linearly, the resulting
vibration is called linear vibration. However, if any of the basic components of
a vibrating system behave nonlinearly, the resulting vibration is called nonlinear
vibration. The equation of motion governing linear vibration will be a linear
differential equation, whereas the equation governing nonlinear vibration will
be a nonlinear differential equation. Most vibratory systems behave nonlinearly
as the amplitudes of vibration increase to large values.

1.7 VIBRATION ANALYSIS

A vibratory system is a dynamic system for which the response (output) depends
on the excitations (inputs) and the characteristics of the system (e.g., mass, stiffness,
and damping) as indicated in Fig. 1.6. The excitation and response of the system are
both time dependent. Vibration analysis of a given system involves determination of
the response for the excitation specified. The analysis usually involves mathematical
modeling, derivation of the governing equations of motion, solution of the equations
of motion, and interpretation of the response results.

The purpose of mathematical modeling is to represent all the important charac-
teristics of a system for the purpose of deriving mathematical equations that govern
the behavior of the system. The mathematical model is usually selected to include
enough details to describe the system in terms of equations that are not too complex.
The mathematical model may be linear or nonlinear, depending on the nature of the
system characteristics. Although linear models permit quick solutions and are simple to
deal with, nonlinear models sometimes reveal certain important behavior of the system
which cannot be predicted using linear models. Thus, a great deal of engineering judg-
ment is required to develop a suitable mathematical model of a vibrating system. If the
mathematical model of the system is linear, the principle of superposition can be used.
This means that if the responses of the system under individual excitations fi(¢) and
f>(t) are denoted as x(¢) and x,(¢), respectively, the response of the system would be

Excitation, System Response,
b @ —> (mass, stiffness, — x(1)
(input) and damping) (output)

Figure 1.6 Input—output relationship of a vibratory system.
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x(t) = c1x1(t) + cax2(t) when subjected to the excitation f (1) = c1f1(t) + 2 f2(¢),
where ¢ and ¢, are constants.

Once the mathematical model is selected, the principles of dynamics are used
to derive the equations of motion of the vibrating system. For this, the free-body
diagrams of the masses, indicating all externally applied forces (excitations), reaction
forces, and inertia forces, can be used. Several approaches, such as D’Alembert’s
principle, Newton’s second law of motion, and Hamilton’s principle, can be used to
derive the equations of motion of the system. The equations of motion can be solved
using a variety of techniques to obtain analytical (closed-form) or numerical solutions,
depending on the complexity of the equations involved. The solution of the equations of
motion provides the displacement, velocity, and acceleration responses of the system.
The responses and the results of analysis need to be interpreted with a clear view of
the purpose of the analysis and the possible design implications.

1.8 EXCITATIONS

Several types of excitations or loads can act on a vibrating system. As stated earlier,
the excitation may be in the form of initial displacements and initial velocities that are
produced by imparting potential energy and kinetic energy to the system, respectively.
The response of the system due to initial excitations is called free vibration. For real-
life systems, the vibration caused by initial excitations diminishes to zero eventually
and the initial excitations are known as transient excitations.

In addition to the initial excitations, a vibrating system may be subjected to a
large variety of external forces. The origin of these forces may be environmental,
machine induced, vehicle induced, or blast induced. Typical examples of environmen-
tally induced dynamic forces include wind loads, wave loads, and earthquake loads.
Machine-induced loads are due primarily to imbalance in reciprocating and rotating
machines, engines, and turbines, and are usually periodic in nature. Vehicle-induced
loads are those induced on highway and railway bridges from speeding trucks and
trains crossing them. In some cases, dynamic forces are induced on bodies and equip-
ment located inside vehicles due to the motion of the vehicles. For example, sensitive
navigational equipment mounted inside the cockpit of an aircraft may be subjected
to dynamic loads induced by takeoff, landing, or in-flight turbulence. Blast-induced
loads include those generated by explosive devices during blast operations, accidental
chemical explosions, or terrorist bombings.

The nature of some of the dynamic loads originating from different sources is
shown in Fig. 1.1. In the case of rotating machines with imbalance, the induced loads
will be harmonic, as shown in Fig. 1.1(a). In other types of machines, the loads induced
due to the unbalance will be periodic, as shown in Fig. 1.1(). A blast load acting on a
vibrating structure is usually in the form of an overpressure, as shown in Fig. 1.1(c). The
blast overpressure will cause severe damage to structures located close to the explosion.
On the other hand, a large explosion due to underground detonation may even affect
structures located far away from the explosion. Earthquake-, wave-, and wind-, gust-,
or turbulence-, induced loads will be random in nature, as indicated in Fig. 1.1(d).

It can be seen that harmonic force is the simplest type of force to which a vibrating
system can be subjected. The harmonic force also plays a very important role in the
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study of vibrations. For example, any periodic force can be represented as an infinite
sum of harmonic forces using Fourier series. In addition, any nonperiodic force can be
represented (by considering its period to be approaching infinity) in terms of harmonic
forces using the Fourier integral. Because of their importance in vibration analysis, a
detailed discussion of harmonic functions is given in the following section.

1.9 HARMONIC FUNCTIONS

In most practical applications, harmonic time dependence is considered to be same as
sinusoidal vibration. For example, the harmonic variations of alternating current and
electromagnetic waves are represented by sinusoidal functions. As an application in
the area of mechanical systems, the motion of point S in the action of the Scotch yoke
mechanism shown in Fig. 1.7 is simple harmonic. In this system, a crank of radius
A rotates about point O. It can be seen that the amplitude is the maximum value of
x(t) from the zero value, either positively or negatively, so that A = max |x(¢)|. The
frequency is related to the period t, which is the time interval over which x(¢) repeats
such that x(r + 1) = x(¢).

The other end of the crank (P) slides in the slot of the rod that reciprocates in the
guide G. When the crank rotates at the angular velocity w, endpoint S of the slotted
link is displaced from its original position. The displacement of endpoint S in time ¢
is given by

x = Asinf = A sin wt (1.2)

and is shown graphically in Fig. 1.7. The velocity and acceleration of point S at time
t are given by

dx

— = wA cos wt (1.3)
dt
d*x 2 . )
— = —w A sin ot = —w x (1.4)
dt?

Equation (1.4) indicates that the acceleration of point § is directly proportional to the
displacement. Such motion, in which the acceleration is proportional to the displacement
and is directed toward the mean position, is called simple harmonic motion. According
to this definition, motion given by x = A cos wt will also be simple harmonic.

1.9.1 Representation of Harmonic Motion

Harmonic motion can be represented by means of a vector OP of magnitude A rotating
at a constant angular velocity w, as shown in Fig. 1.8. It can be observed that the
projection of the tip of the vector X = OP on the vertical axis is given by

y = A sin ot (1.5)
and its projection on the horizontal axis by

x = A cos wt (1.6)
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Figure 1.7 Simple harmonic motion produced by a Scotch yoke mechanism.

Equations (1.5) and (1.6) both represent simple harmonic motion. In the vectorial
method of representing harmonic motion, two equations, Eqgs. (1.5) and (1.6), are
required to describe the vertical and horizontal components. Harmonic motion can
be represented more conveniently using complex numbers. Any vector X can be rep-
resented as a complex number in the xy plane as

X=a+ib (1.7)
where i = +/—1 and a and b denote the x and y components of X respectively, and

can be considered as the real and imaginary parts of the vector X. The vector X can
also be expressed as

X = A(cos +i sin@) (1.8)
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Figure 1.8 Harmonic motion: projection of a rotating vector.
where
A= (@ +pH)'? (1.9)
denotes the modulus or magnitude of the vector X and
b
0 =tan"' — (1.10)
a
indicates the argument or the angle between the vector and the x axis. Noting that
cosf +isin@ = e’ (1.11)
Eq. (1.8) can be expressed as
X = A(cos +isin0) = Ae'? (1.12)

Thus, the rotating vector X of Fig. 1.8 can be written, using complex number repre-
sentation, as

X = Al (1.13)

where w denotes the circular frequency (rad/sec) of rotation of the vector X in
the counterclockwise direction. The harmonic motion given by Eq. (1.13) can be
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differentiated with respect to time as

dX d .. s

ar = E(Ae"" ) =iwAe' =iwX (1.14)
d’X d ‘ 4 .

—7 = E(iwAe””’) = —w’ A = —w’X (1.15)

Thus, if X denotes harmonic motion, the displacement, velocity, and acceleration can
be expressed as

x(r) = displacement = Re[Ae'®] = A cos wt (1.16)
x(t) = velocity = Re[iwAe'™] = —wA sinwr = wA cos(wt + 90°) (1.17)
#(1) = acceleration = Re[—w? A’ ] = —w? A coswt = w> A cos(wt + 180°) (1.18)

where Re denotes the real part, or alternatively as

x(t) = displacement = Im[Ae'] = A sinwt (1.19)
X(r) = velocity = Im[iwAe''] = wA cos wt = wA sin(wt + 90°) (1.20)
#(t) = acceleration = Im[—w?Ae'”'] = —w?Asinwt = w*A sin(wr + 180°) (1.21)

where Im denotes the imaginary part. Eqgs. (1.16)—(1.21) are shown as rotating vectors
in Fig. 1.9. It can be seen that the acceleration vector leads the velocity vector by 90°,
and the velocity vector leads the displacement vector by 90°.

1.9.2 Definitions and Terminology

Several definitions and terminology are used to describe harmonic motion and other
periodic functions. The motion of a vibrating body from its undisturbed or equilibrium
position to its extreme position in one direction, then to the equilibrium position, then

X, X, X
Im X, X, X
e A e .. X Pl
X=iXw © o N ,
/2
wt
5 =)
X=—Xw

Figure 1.9 Displacement (x), velocity (x), and acceleration (X) as rotating vectors.
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to its extreme position in the other direction, and then back to the equilibrium position
is called a cycle of vibration. One rotation or an angular displacement of 27 radians of
pin P in the Scotch yoke mechanism of Fig. 1.7 or the vector OP in Fig. 1.8 represents
a cycle.

The amplitude of vibration denotes the maximum displacement of a vibrating body
from its equilibrium position. The amplitude of vibration is shown as A in Figs. 1.7
and 1.8. The period of oscillation represents the time taken by the vibrating body to
complete one cycle of motion. The period of oscillation is also known as the time
period and is denoted by 7. In Fig. 1.8, the time period is equal to the time taken by

the vector OP to rotate through an angle of 27. This yields
2
=L (1.22)
®

where w is called the circular frequency. The frequency of oscillation or linear fre-
quency (or simply the frequency) indicates the number of cycles per unit time. The
frequency can be represented as

1 w

f=—=— (1.23)

T 2m
Note that w is called the circular frequency and is measured in radians per second,
whereas f is called the linear frequency and is measured in cycles per second (hertz). If
the sine wave is not zero at time zero (i.e., at the instant we start measuring time), as
shown in Fig. 1.10, it can be denoted as

y = Asin(wt + ¢) (1.24)

where wt + ¢ is called the phase of the motion and ¢ the phase angle or initial phase.
Next, consider two harmonic motions denoted by

y1 = Ajsinwt (1.25)
v = Ap sin(wt + ¢) (1.26)

¥
A sin (ot + @)

wt

|
§o

|

Figure 1.10 Significance of the phase angle ¢.
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Since the two vibratory motions given by Egs. (1.25) and (1.26) have the same fre-
quency o, they are said to be synchronous motions. Two synchronous oscillations can
have different amplitudes, and they can attain their maximum values at different times,
separated by the time ¢ = ¢/w, where ¢ is called the phase angle or phase difference.
If a system (a single-degree-of-freedom system), after an initial disturbance, is left to
vibrate on its own, the frequency with which it oscillates without external forces is
known as its natural frequency of vibration. A discrete system having n degrees of
freedom will have, in general, n distinct natural frequencies of vibration. A continuous
system will have an infinite number of natural frequencies of vibration.

As indicated earlier, several harmonic motions can be combined to find the resulting
motion. When two harmonic motions with frequencies close to one another are added
or subtracted, the resulting motion exhibits a phenomenon known as beats. To see the
phenomenon of beats, consider the difference of the motions given by

x1(t) = X sinwt = X sinwt (1.27)
X2(1) = X sinwyt = X sin(w — 6)t (1.28)
where § is a small quantity. The difference of the two motions can be denoted as
x(t) = x1(t) —x2(t) = X[sinwt — sin(w — §)1] (1.29)
Noting the relationship
A—B A+ B

sin A — sin B = 2sin cos (1.30)
2 2
the resulting motion x(¢) can be represented as
. ot 3
x(1) =2Xs1n5cos (w—i)t (1.31)

The graph of x(¢) given by Eq. (1.31) is shown in Fig. 1.11. It can be observed that
the motion, x(¢), denotes a cosine wave with frequency (w; + 0»)/2 = @ — §/2, which
is approximately equal to w, and with a slowly varying amplitude of

. W] — W) . ot
2X sin Tz‘ =2Xsin —

Whenever the amplitude reaches a maximum, it is called a beat. The frequency § at
which the amplitude builds up and dies down between O and 2X is known as the
beat frequency. The phenomenon of beats is often observed in machines, structures,
and electric power houses. For example, in machines and structures, the beating phe-
nomenon occurs when the forcing frequency is close to one of the natural frequencies
of the system.

Example 1.1 Find the difference of the following harmonic functions and plot the
resulting function for A = 3 and w = 40 rad/s: x| (1) = Asinwt, x,(t) = Asin0.95wt.

SOLUTION  The resulting function can be expressed as
x(t) = x1(t) — x(t) = Asinwt — Asin0.95wt
= 2Asin 0.025wt cos 0.975wt (E1.1.1)
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Figure 1.11 Beating phenomenon.

The plot of the function x(¢) is shown in Fig. 1.11. It can be seen that the function
exhibits the phenomenon of beats with a beat frequency of w;, = 1.00w — 0.950w =
0.05w = 2 rad/s.

1.10 PERIODIC FUNCTIONS AND FOURIER SERIES

Although harmonic motion is the simplest to handle, the motion of many vibratory sys-
tems is not harmonic. However, in many cases the vibrations are periodic, as indicated,
for example, in Fig. 1.1(b). Any periodic function of time can be represented as an
infinite sum of sine and cosine terms using Fourier series. The process of representing
a periodic function as a sum of harmonic functions (i.e., sine and cosine functions)
is called harmonic analysis. The use of Fourier series as a means of describing peri-
odic motion and/or periodic excitation is important in the study of vibration. Also, a
familiarity with Fourier series helps in understanding the significance of experimentally
determined frequency spectrums. If x(¢) is a periodic function with period 7, its Fourier
series representation is given by

a
x(t) = ?O + aj cos wt + a; cos 2wt + - - - + by sinwt + by sin2wt + - - -

o0
a
- 30 + 3 (ay cosnwt + b, sinnor) (1.32)
n=1
where w = 2/t is called the fundamental frequency and ag, aj, az, ..., by, by, ... are

constant coefficients. To determine the coefficients a, and b,, we multiply Eq. (1.32)
by cosnwt and sinnwt, respectively, and integrate over one period t = 27 /w: for
example, from O to 27 /w. This leads to

W 21 /w 2 T

ap = _/ x(t)dt = —/ x(r) dt (1.33)
T Jo T Jo
w 21 /w 2 T

a, = —/ x(t)cosnwt dt = —/ x(r) cos nwt dt (1.34)
T Jo T Jo

W 27w 2 [T
b, = —/ x(t) sinnowt dt = —/ x(r) sinnwt dt (1.35)
T Jo T Jo
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Equation (1.32) shows that any periodic function can be represented as a sum of
harmonic functions. Although the series in Eq. (1.32) is an infinite sum, we can approx-
imate most periodic functions with the help of only a first few harmonic functions.

Fourier series can also be represented by the sum of sine terms only or cosine
terms only. For example, any periodic function x(¢#) can be expressed using cosine
terms only as

x(t) =do+dicos(wt — ¢1) +drcosQat — ¢o) + - - - (1.36)
where
a

do = ?O (1.37)
dy = (a> + bH)'/? (1.38)

by
¢p =tan”' = (1.39)

ay

The Fourier series, Eq. (1.32), can also be represented in terms of complex numbers as

_ i [ 90 ibo
1) = -
) =0 (% 2)

ad a ib a ib
+Z|:ema)t (7’7 _ 7”) +e—mwt (7” + 7”>:| (140)
n=1

where by = 0. By defining the complex Fourier coefficients ¢, and c_, as

a, —ib,
n=— 1.41
¢ 5 (1.41)
Cpy= M (1.42)

2
Eq. (1.40) can be expressed as
oo
x(t)= Y cpe™ (1.43)
n=—00

The Fourier coefficients ¢, can be determined, using Eqs. (1.33)—(1.35), as

—ib 1 (7
Cp = Gn — 10 _ —/ x(t)(cosnwt — i sinnwt) dt
2 T Jo
1 [7 .
_! / X di (1.44)
T Jo

The harmonic functions a, cos nwt or b, sinnwt in Eq. (1.32) are called the harmonics
of order n of the periodic function x(¢). A harmonic of order n has a period t/n. These
harmonics can be plotted as vertical lines on a diagram of amplitude (a, and b, or d,
and ¢,,) versus frequency (nw), called the frequency spectrum or spectral diagram.
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Figure 1.12 Typical periodic function.

1.11 NONPERIODIC FUNCTIONS AND FOURIER INTEGRALS

As shown in Egs. (1.32), (1.36), and (1.43), any periodic function can be represented
by a Fourier series. If the period 7 of a periodic function increases indefinitely, the
function x(¢) becomes nonperiodic. In such a case, the Fourier integral representation

can be used as indicated below.

Let the typical periodic function shown in Fig. 1.12 be represented by a complex

Fourier series as

i 2
x(t) = Z cpe't, w="—

n=—oo

where

1 /2 )
cp = — / x(t)e " gy

T Joz2
Introducing the relations

nw=w,

2
m+Do—nw=w=—=Aw,
T

Egs. (1.45) and (1.46) can be expressed as

o0

1 . " ‘
x(t) = Z ;(Tcn)e“”’”z 3 Z (tep)e' ! Aw,

n=—0oo n=—0oo

/2 )
TC, = / x(t)e "t dt
—1/2

(1.45)

(1.46)

(1.47)

(1.48)

(1.49)

(1.50)
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As T — 00, we drop the subscript n on w, replace the summation by integration, and
write Egs. (1.49) and (1.50) as

J— , 1 [ ,
x(t) = lim —— Z (Tc,,)e’w”’Aa),,z—/ X(w)e'” dow  (1.51)
Ao 0 2w = 27 J_
00 .
X(w) = lim (tcn)=/ x(t)e i di (1.52)
Ao 50 —00

Equation (1.51) denotes the Fourier integral representation of x(¢#) and Eq. (1.52) is
called the Fourier transform of x(t). Together, Egs. (1.51) and (1.52) denote a Fourier
transform pair. If x(t) denotes excitation, the function X (w) can be considered as the
spectral density of excitation with X (o) dw denoting the contribution of the harmonics
in the frequency range w to w 4+ dw to the excitation x ().

Example 1.2 Consider the nonperiodic rectangular pulse load f(#), with magnitude
Jo and duration s, shown in Fig. 1.13(a). Determine its Fourier transform and plot the
amplitude spectrum for fy =200 Ib, s = 1 sec, and #) = 4 sec.

SOLUTION The load can be represented in the time domain as

fo, o<t <ty+s

f(t)={0, fo>1> 1o +s (E1.2.1)

The Fourier transform of f(¢) is given by, using Eq. (1.52),
00 ) fo+s )
F(w) = / fe ' dt = / foe ' dt
—00 )

— fO l_ (e—ia)(to+s) _ e—iwto)
w

= E{[sin w(ty + 5) — sin wty] + i[cos w(fy +5) —cos wtp]}  (E1.2.2)
1)
The amplitude spectrum is the modulus of F'(w):
|F(@)] = |F(@)F* ()| (E1.2.3)

where F*(w) is the complex conjugate of F(w):
F*(w) = ﬁ{[sin w(ty + s) — sin wtg]—i[cos(wty + s) — cos wip]} (E1.2.4)
w

By substituting Eqgs. (E1.2.2) and (E1.2.4) into Eq. (E1.2.3), we can obtain the ampli-
tude spectrum as

|F(w)| = |%(2 —2cosws)'/? (E1.2.5)
or
F@I _ 1o 5o (E1.2.6)
Jo 2]

The plot of Eq. (E1.2.6) is shown in Fig. 1.13(b).
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Figure 1.13 Fourier transform of a nonperiodic function: (a) rectangular pulse; (b) amplitude

spectrum.
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1.12 LITERATURE ON VIBRATION OF CONTINUOUS SYSTEMS

Several textbooks, monographs, handbooks, encyclopedia, vibration standards, books
dealing with computer programs for vibration analysis, vibration formulas, and spe-
cialized topics as well as journals and periodicals are available in the general area
of vibration of continuous systems. Among the large number of textbooks written
on the subject of vibrations, the books by Magrab [10], Fryba [11], Nowacki [12],
Meirovitch [13], and Clark [14] are devoted specifically to the vibration of continuous
systems. Monographs by Leissa on the vibration of plates and shells [15, 16] summa-
rize the results available in the literature on these topics. A handbook edited by Harris
and Piersol [17] gives a comprehensive survey of all aspects of vibration and shock. A
handbook on viscoelastic damping [18] describes the damping characteristics of poly-
meric materials, including rubber, adhesives, and plastics, in the context of design of
machines and structures. An encyclopedia edited by Braun et al. [19] presents the cur-
rent state of knowledge in areas covering all aspects of vibration along with references
for further reading.

Pretlove [20], gives some computer programs in BASIC for simple analyses, and
Rao [9] gives computer programs in Matlab, C++, and Fortran for the vibration analy-
sis of a variety of systems and problems. Reference [21] gives international standards
for acoustics, mechanical vibration, and shock. References [22—-24] basically provide
all the known formulas and solutions for a large variety of vibration problems, includ-
ing those related to beams, frames, and arches. Several books have been written on
the vibration of specific systems, such as spacecraft [25], flow-induced vibration [26],
dynamics and control [27], foundations [28], and gears [29]. The practical aspects of
vibration testing, measurement, and diagnostics of instruments, machinery, and struc-
tures are discussed in Refs. [30-32].

The most widely circulated journals that publish papers relating to vibrations are
the Journal of Sound and Vibration, ASME Journal of Vibration and Acoustics, ASME
Journal of Applied Mechanics, AIAA Journal, ASCE Journal of Engineering Mechanics,
Earthquake Engineering and Structural Dynamics, Computers and Structures, Interna-
tional Journal for Numerical Methods in Engineering, Journal of the Acoustical Society
of America, Bulletin of the Japan Society of Mechanical Engineers, Mechanical Systems
and Signal Processing, International Journal of Analytical and Experimental Modal
Analysis, JSME International Journal Series III, Vibration Control Engineering, Vehi-
cle System Dynamics, and Sound and Vibration. In addition, the Shock and Vibration
Digest, Noise and Vibration Worldwide, and Applied Mechanics Reviews are abstract
journals that publish brief discussions of recently published vibration papers.
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Figure 1.14 Two simple pendulums connected by a spring.

0

0 T

2T 3T

Figure 1.15 Sawtooth function.

PROBLEMS

1.1 Express the following function as a sum of sine
and cosine functions:

f(t) =5sin(10r — 2.5)
1.2 Consider the following harmonic functions:

x,() = 5sin20¢ and  x,() = 8 cos (20r T %)

Express the function x(¢) = x;(¢) + x2(¢) as (a) a cosine
function with a phase angle, and (b) a sine function with
a phase angle.

1.3 Find the difference of the harmonic functions
x1(t) = 65sin30f and x(¢) = 4cos (30t + 7 /4) (a) as a
sine function with a phase angle, and (b) as a cosine
function with a phase angle.

1.4 Find the sum of the harmonic functions x;(z) =
Scoswt and x,(t) = 10cos(wt + 1) using (a) trigono-
metric relations, (b) vectors, and (¢) complex numbers.

1.5 The angular motions of two simple pendulums
connected by a soft spring of stiffness k are described
by (Fig. 1.14)

01(t) = Acoswit cos wot, 6,(t) = A sinw;t sin wyt

where A is the amplitude of angular motion and w; and

w, are given by
wy = \/% + wy

Plot the functions 6;(¢) and 6,(¢) for 0 <r < 13.12 s
and discuss the resulting motions for the following data:
k=1N/m, m=0.1kg,/=1m, and g = 9.81 m/s2.

k[l
0 =—_ /-,
T 8m g

1.6 Find the Fourier cosine and sine series expansion
of the function shown in Fig. 1.15for A =2and T = 1.

1.7 Find the Fourier cosine and sine series representa-
tion of a series of half-wave rectified sine pulses shown
in Fig. 1.16 for A=m and T = 2.
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Figure 1.16 Half sine pulses.
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Figure 1.17 Triangular wave.

1.8 Find the complex Fourier series expansion of the
sawtooth function shown in Fig. 1.15.

1.9 Find the Fourier series expansion of the triangular
wave shown in Fig. 1.17.

1.10 Find the complex Fourier series representation of
the function f(t) = e %, - <t < 7.

1.11 Consider a transient load, f(¢), given by

NI

Find the Fourier transform of f(z).

1.12 The Fourier sine transform of a function f(z),
denoted by F;(w), is defined as

w>0

Fi(w) = /00 f(@)sinwt dt,
0

and the inverse of the transform F;(w) is defined by

2 o0
f@) = —/ Fi;(w)sinwt do, t>0
T Jo

Using these definitions, find the Fourier sine transform
of the function f(t) = e, a > 0.

1.13 Find the Fourier sine transform of the function
f(@)y=rte ", t>0.

1.14 Find the Fourier transform of the function

—at t Z 0

e,
f(t):{ 0, <0



Vibration of Discrete Systems:
Brief Review

2.1 VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM

The number of degrees of freedom of a vibrating system is defined by the minimum
number of displacement components required to describe the configuration of the sys-
tem during vibration. Each system shown in Fig. 2.1 denotes a single-degree-of-freedom
system. The essential features of a vibrating system include (1) a mass m, producing
an inertia force: mx; (2) a spring of stiffness k, producing a resisting force: kx; and
(3) a damping mechanism that dissipates the energy. If the equivalent viscous damping
coefficient is denoted as ¢, the damping force produced is cx.

2.1.1 Free Vibration

In the absence of damping, the equation of motion of a single-degree-of-freedom system
is given by

mx + kx = f(t) 2.1)

where f(¢) is the force acting on the mass and x(¢) is the displacement of the mass
m. The free vibration of the system, in the absence of the forcing function f(7), is
governed by the equation

mx +kx =0 (2.2)

The solution of Eq. (2.2) can be expressed as

x(t) = xgcoswyt + all sin wy,t (2.3)
Wy,

where w, is the natural frequency of the system, given by

k
Wy =] — (2.4)
m

xo = x(t = 0) is the initial displacement and xo = dx(t = 0)/dt is the initial velocity
of the system. Equation (2.3) can also be expressed as

x(t) = A cos(wpt — @) (2.5)
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Figure 2.1 Single-degree-of-freedom systems.

or
x(t) = A sin(wy,t + ¢g) (2.6)
where
.o 21/2
A= [xg + (ﬁ) ] @.7)
(O
¢ = tan~' 2 (2.8)
Xowy
o = tan~! 20 (2.9)
X0

The free vibration response of the system indicated by Eq. (2.5) is shown graphically

in Fig. 2.2.
The equation of motion for the vibration of a viscously damped system is given

by
mi + cx +kx = f(t) (2.10)
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Figure 2.2 Free vibration response.

By dividing throughout by m, Eq. (2.10) can be rewritten as
¥+ 2wk + wlx = F(1) (2.11)

where ¢ is the damping ratio, given by

C C

= = — (2.12)
2maw, Ce
where ¢, is known as the critical damping constant:
ce = 2mw, = 2NV km (2.13)
and
t
F@t) = A0 (2.14)
m

The system is considered to be underdamped, critically damped, and overdamped if the
value of the damping ratio is less than 1, equal to 1, and greater than 1, respectively.
The free vibration of a damped system is governed by the equation

¥+ 2Cwpk + @lx =0 (2.15)

The free vibration response of the system [i.e., the solution of Eq. (2.15)], with different
levels of damping can be expressed as follows:

1. Underdamped system (¢ < 1):

X0+ Cwyxp .
x(t) = e bent <x0 cos wyt + Xo 1 fwno sin a)dt) (2.16)
W4
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where xg = x(¢ = 0) is the initial displacement, xo = dx (¢ = 0)/dt is the initial
velocity, and wy is the frequency of the damped vibration given by

ws =1 -0, (2.17)
2. Critically damped system (¢ = 1):
x(t) = [x0 + (X0 + wyx0) t] e~ (2.18)
3. Overdamped system (¢ > 1):
x(t) = Crel=EHVE=Dont | 0, (-¢=V/E Dot (2.19)

where

~ X (E +VEP =1 +
20p4/C% — 1
c —xow, (& —/¢2 = 1) = Xo

) = 2.21)

2w,/ % — 1

The motions indicated by Egs. (2.16), (2.18), and (2.19) are shown graphically in
Fig. 2.3.

C (2.20)

2.1.2 Forced Vibration under Harmonic Force

For an undamped system subjected to the harmonic force f (1) = fycos wt, the equation
of motion is

mi + kx = fycos ot (2.22)

where fj is the magnitude and w is the frequency of the applied force. The steady-state
solution or the particular integral of Eq. (2.22) is given by

xp(t) = X coswt (2.23)

where
f 0 3 st

_ — 2.24
X ma? 1 — (w/wy)? 229

denotes the maximum amplitude of the steady-state response and

0
8yt = f? (2.25)
indicates the static deflection of the mass under the force fy. The ratio
X 1
I (2.26)

S 1— (@/wy)?

represents the ratio of the dynamic to static amplitude of motion and is called the ampli-
fication factor, magnification factor, or amplitude ratio. The variation of the amplitude
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Figure 2.3 Damped free vibration response: (a) underdamped vibration (¢ < 1); (b) over-
damped vibration (¢ > 1); (c) critically damped vibration (¢ = 1).
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Figure 2.4 Magnification factor of an undamped system.

ratio with frequency ratio is shown in Fig. 2.4. The total solution of Eq.(2.22), including
the homogeneous solution and the particular integral, is given by

x(t) = xo— Lz cos wy,t + 0 sin w,t + Lz cos wt (2.27)
k —mw wy, k—mow

At resonance, w/w, = 1, and the solution given by Eq. (2.27) can be expressed as

Sgrwpt

x(t) = xgcoswyt + all sin wyt + sin wy,t (2.28)

n

This solution can be seen to increase indefinitely, with time as shown in Fig. 2.5.
When a viscously damped system is subjected to the harmonic force f () = fycoswt,
the equation of motion becomes

mx + cx + kx = fycoswt (2.29)
The particular solution of Eq. (2.29) can be expressed as

x,(t) = X cos(wt — @) (2.30)
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x,(1)

Figure 2.5 Response when r = w/w, = 1 (effects of x¢ and x( not considered).

where X is the amplitude and ¢ is the phase angle, given by
f 0 8st

X = = 2.31
[k —mw?? + 2] 2~ [(1 = 7 + 22|12 23D
2er
o] o]
¢ = tan P tan 2 (2.32)
where
J
8y = ;0 (2.33)
denotes the static deflection under the force f,
r=2 (2.34)
wy
indicates the frequency ratio, and
c c c
=—=——=— (2.35)
¢ ¢ 2Vmk  2mwy,

represents the damping ratio. The variations of the amplitude ratio or magnification
factor
X 1
— = (2.36)
b VA=) 4@y

and the phase angle, ¢, given by Eq. (2.32), with the frequency ratio, r, are as shown
in Fig. 2.6.

The total solution of Eq. (2.29), including the homogeneous solution and the par-
ticular integral, in the case of an underdamped system can be expressed as

x(t) = Xoe ¢ cos(wgt — ¢o) + X cos(wt — @) (2.37)
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Figure 2.6 Damped harmonic response.

where wy is the frequency of damped vibration given by Eq. (2.17), X and ¢ are given
by Egs. (2.31) and (2.32), respectively, and X, and ¢y can be determined from the
initial conditions.

For example, if the initial conditions are given by x(t =0) = xo and dx(t =
0)/dt = xo, Eq. (2.37) yields

xo = Xocos ¢y + X cos ¢ (2.38)
X0 = —Cw, Xocos gy + wy Xo singy + wX sin ¢ (2.39)
The solution of Egs. (2.38) and (2.39) gives X, and ¢y.
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If the harmonic force acting on the system is denoted in complex form, the equation
of motion of the system becomes

mi + cx + kx = foe'® (2.40)
where i = +/—1. In this case, the particular solution of Eq. (2.40) can be expressed as
xp(t) = Xe'' (2.41)

where X is a complex constant given by

Jo
= 2.42
k—mw? +icw (2.42)
which can be rewritten in the form
kX—H(' ) = : (2.43)
fo_ lw_l—r2+i2§r '

where H (iw) is called the complex frequency response of the system. Equation (2.41)
can be rewritten as

Xp(t) = %H(z’wne“wf—‘f’) (2.44)

where |H (iw)| denotes the absolute value of H(iw):

Hiw) = || = 1 (2.45)
TR T A= e |
and ¢ indicates the phase angle:
- cw -1 Xr 6
¢ = tan m = tan m (24 )

2.1.3 Forced Vibration under General Force

For a general forcing function, f(¢), the solution of Eq. (2.11) can be found by taking
Laplace transforms of the various terms using the relations

L{x(1)] = X(s) (2.47)
L[x(1)] = sX(s) — x(0) (2.48)
L[%()] = s*%(s) — sx(0) — x(0) (2.49)
L[F(t)] = F(s) (2.50)

where X (s) and F(s) are the Laplace transforms of x(¢) and F (), respectively. Thus,
Eq. (2.11) becomes

[s%%(s) — sx(0) — x(0)] + 2¢ wy,[sx(s) — x(0)] + a)if(s) = F(s) (2.51)
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or
X(s) = %[f(s) + (5 + 2¢wn)xo + Xo] (2.52)
where xo = x(0) and x¢ = x(0), and
A=s>+ 2¢ wys + a)ﬁ =(s+ g“a)n)2 + a)fl (2.53)

By virtue of the inverse transforms

17 e St
L' [— = sin wgt (2.54)
A_ wq
L [s +A§w” — ¢S cos wyt (2.55)
Fs)| 1 [
Lt |:ﬁ = — F(t)e " Dsinw,(t — 1) dt (2.56)
A wq Jo
The solution can be expressed as
1
x(t) = / F(@h( —t)dt + g(t)xo + h(t)xo 2.57)
0
where
1 —Cwnpt o3
h(t) = —e ¢ sin wyt (2.58)
wq
g(t) = e tent <COS wgt + §n sin a)dt> (2.59)
w4

The first term in Eq. (2.57) is called the convolution integral or Duhamel’s integral,
and the second and third terms are called transients because of the presence of e~ *®n’,
which is a decaying function of time. Note that in Eq. (2.57), the condition for an
oscillatory solution is that ¢ < 1.

Example 2.1 Find the response of an underdamped spring—mass—damper system to
a unit impulse by assuming zero initial conditions.

SOLUTION  The equation of motion can be expressed as
mx + cx + kx = 6(t) (E2.1.1)

where &(¢) denotes the unit impulse. By taking the Laplace transform of both sides of
Eq. (E2.1.1) and using the initial conditions xo = X7 = 0, we obtain

(ms> + cs + k) x(s) = 1 (E2.1.2)
or

1 Um
ms2+cs+k  s2+20w,s + @?

X(s) = (E2.1.3)
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Since ¢ < 1, the inverse transform yields

1 1
x(t) = Le‘“’”’ sin (way/1 — £21) = ——e "' sinwyt (E2.1.4)
wp /1 — 2 mwq

2.2 VIBRATION OF MULTIDEGREE-OF-FREEDOM SYSTEMS

A typical n-degree-of-freedom system is shown in Fig. 2.7(a). For a multidegree-of-
freedom system, it is more convenient to use matrix notation to express the equations
of motion and describe the vibrational response. Let x; denote the displacement of
mass m; measured from its static equilibrium position; i = 1, 2, ..., n. The equations
of motion of the n-degree-of-freedom system shown in Fig. 2.7(a) can be derived from
the free-body diagrams of the masses shown in Fig. 2.7(b) and can be expressed in
matrix form as

[m]% + [c]X + [kIE = f (2.60)
where [m], [c], and [k] denote the mass, damping, and stiffness matrices, respectively:
rmy 0 O -+ O
0O my O --- O
mj=| 0 0 my -0 2.61)
L0 0 O my
[ci1+c  —o 0 e 0 0
—c o+ —Cc3 e 0 0
1= 0 —a ata - 00 (2.62)
L O 0 0 cee —Cp_l Gy
[k + ko —ky 0 e 0 0]
—ky  katks —kz - 0 0
[k] = 0 —k3 ks+ky - 0 0 (2.63)
. 0 0 0 Ry

The vectors X, X, and x indicate, respectively, the vectors of displacements, velocities,
and accelerations of the various masses, and f represents the vector of forces acting
on the masses:

X X X S
X2 X2 X2 g

s={4unl y=_Jtunl y_Jtil f=15 (2.64)
Xn -xn xn fn

where a dot over x; represents a time derivative of x;.



'sassewr oY) Jo sweISerp Apoq-991j (g) ‘wIsAs WOopaalj-Jo-2213op-u uy (») L' IS

(@
ity 1=ty =ty b Extu Wl Lyl
— — — — — —
(1=t =ty (S =)y (= £y (- ty
uy > ~ -w, [ u > < u > < » > < u > lxly
> -] . T T > < >
(T ="n% (x=ToPs (=% (x-% 'xto
Y =ty s g Y )
(»)
z
[OXO) "y [ONO) QOO mn OO & OO o
"y aA%Y L, e YW o, VYW VWA
F F -
A|_ 5 A|_ A|_ &) A|_ £ A|_ ©
up dty [l =ty breby £f <ty T2

44



2.2 Vibration of Multidegree-of-Freedom Systems 45

Note that the spring—mass—damper system shown in Fig. 2.7 is a particular case of
a general n-degree-of-freedom system. In their most general form, the mass, damping,
and stiffness matrices in Eq. (2.60) are fully populated and can be expressed as

fmy mp myz oo My,
my myp M3 - Moy
[m] = . (2.65)
LMy, M, m3, crr Mpy
fcit ci2 ci3 -+ Cin ]
Cla2 € €23 ~--- C2p
=] o 2.66)
LCln Coan C3p o Cpn
T ki kio ki o0 ki T
kio ko koz - ko
W= o @67
L k]n an k3n e knn .

Equation (2.60) denotes a system of n coupled second-order ordinary differential equa-
tions. These equations can be decoupled using a procedure called modal analysis,
which requires the natural frequencies and normal modes or natural modes of the
system. To determine the natural frequencies and normal modes, the eigenvalue problem
corresponding to the vibration of the undamped system is to be solved.

2.2.1 Eigenvalue Problem

The free vibration of the undamped system is governed by the equation

[m]% + [k]% = 0 (2.68)
The solution of Eq. (2.68) is assumed to be harmonic as
¥ = Xsin(wt + ¢) (2.69)
so that
X = —wX sin(wt + ¢) (2.70)

where X is the vector of amplitudes of X (), ¢ is the phase angle, and w is the frequency
of vibration. Substituting Eqs. (2.69) and (2.70) into Eq. (2.68), we obtain

[[k] — &*[m]]X =0 2.71)

Equation (2.71) represents a system of n algebraic homogeneous equations in unknown
coefficients X, X, ..., X,, (amplitudes of x, x2, ..., x,) with w? playing the role of
a parameter. For a nontrivial solution of the vector of coefficients X, the determinant
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of the coefficient matrix must be equal to zero:
I[k] — @?*[m]] =0 (2.72)

Equation (2.72) is a polynomial equation of nth degree in w” (w? is called the eigen-
value) and is called the characteristic equation or frequency equation.

The roots of the polynomial give the n eigenvalues, w%, w%, ey a);f The pos-
itive square roots of the eigenvalues yield the natural frequencies of the system,
w1, wy, ...,w,. The natural frequencies are usually arranged in increasing order of
magnitude, so that w; < wy < ... < w,. The lowest frequency w; is referred to as
the fundamental frequency. For each natural frequency w;, a corresponding nontrivial
vector X¥ can be obtained from Eq. (2.71):

[[k] — @2 [m]] XD =0 (2.73)

The vector X @ is called the eigenvector, characteristic vector, modal vector, or normal
mode corresponding to the natural frequency w;.

Of the n homogeneous equations represented by Eq. (2.73), any set of n —1
equations can be solved to express any n — 1 quantities out of X\, X\ ... x{
in terms of the remaining X @ Since Eq. (2.73) denotes a system of homogeneous
equations, if X is a solution of Eq. (2.73), then ¢; X¥) is also a solution, where ¢;
is an arbitrary constant. This indicates that the shape of a natural mode is unique, but
not its amplitude. Usually, a magnitude is assigned to the eigenvector X) to make
it unique using a process called normalization. A common normalization procedure,
called normalization with respect to the mass matrix, consists of setting

XO X =1, i=1,2,...,n (2.74)

where the superscript T denotes the transpose.

2.2.2  Orthogonality of Modal Vectors

The modal vectors possess an important property known as orthogonality with respect
to the mass matrix [m] as well as the stiffness matrix [k] of the system. To see this prop-
erty, consider two distinct eigenvalues a)i2 and a)i and the corresponding eigenvectors

X® and X). These solutions satisfy Eq. (2.71), so that
K1XD = w2 [m]XD (2.75)
[K1XYD = wi[m]XD (2.76)
Premultiplication of both sides of Eq. (2.75) by X" and Eq. (2.76) by X" leads to
XD KIXD = 2XD (] XD 2.77)
RO R 20 R0 29

Noting that the matrices [k] and [m] are symmetric, we transpose Eq. (2.78) and subtract
the result from Eq. (2.77), to obtain

(@} — o)XV [m]XD =0 (2.79)
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Since the eigenvalues are distinct, cul.z #* a)f and Eq. (2.79) leads to
XD mXD =0, i (2.80)
Substitution of Eq. (2.80) in Eq. (2.77) results in
XOKXD =0, i 2.81)

Equations (2.80) and (2.81) denote the orthogonality property of the eigenvectors with
respect to the mass and stiffness matrices, respectively. When j =i, Eqgs. (2.77) and
(2.78) become

RO = 2% (X0 282

If the eigenvectors are normalized according to Eq. (2.74), Eq. (2.82) gives

XOKXD = ? (2.83)
By considering all the eigenvectors, Eqgs. (2.74) and (2.83) can be written in matrix
form as
1 0
- 1
(X1 [m]X]=1[I]= . (2.84)
0 1
a)f 0
T 2 3
[XT'TIX] = [0]] = . (285)
0 w?

\yhere the nxn matrix [X], called the modal matrix, contains the eigenvectors X OR
X ..., X™ a5 columns:

[X]:[;}(U I i(n)] (2.86)

2.2.3 Free Vibration Analysis of an Undamped System Using Modal Analysis
The free vibration of an undamped n-degree-of-freedom system is governed by the
equations

[m]% + [k]X =0 (2.87)

The n coupled second-order homogeneous differential equations represented by
Eq. (2.87) can be uncoupled using modal analysis. In the analysis the solution, X(1), is
expressed as a superposition of the normal modes X, i =1,2,..., n:

0 =Y nX? = [X]i) (2.88)

i=1
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where [X] is the modal matrix, n;(z) are unknown functions of time, known as modal
coordinates (or generalized coordinates), and 7(t) is the vector of modal coordi-
nates:

n1(t)

n2(1)
n() = : (2.89)

Na(t)
Equation (2.88) represents the expansion theorem and is based on the fact that eigen-
vectors are orthogonal and form a basis in n-dimensional space. This implies that any
vector, such as ¥(¢), in n-dimensional space can be generated by a linear combination
of a set of linearly independent vectors, such as the eigenvectors X i = 1,2, ..., n.
Substitution of Eq. (2.88) into Eq. (2.87) gives
[m1[X17 + [KI[X]ii = 0 (2.90)
Premultiplication of Eq. (2.90) by [X]T leads to
(X1 [mIIX 10 + [XT7[KI[X 157 = 0 291
In view of Eqgs. (2.84) and (2.85), Eq. (2.91) reduces to
0+ [f]ii = 0 (2.92)

which denotes a set of n uncoupled second-order differential equations:

d*n; ()
dt?

+ @it =0, i=12,...,n (2.93)
If the initial conditions of the system are given by

X1,0

X2,0
It=0=X=1{ . (2.94)

Xn,0
X1,0

) . X2,0
=0 =xo=1 . (2.95)

Xn,0

the corresponding initial conditions on 7j(¢) can be determined as follows.
Premultiply Eq. (2.88) by [X 1%[m] and use Eq. (2.84) to obtain

n@t) = [X]"[m]x () (2.96)
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Thus,
1n1(0)
HON . _—
: =1(0) = [X] [mlxo (297
1 (0)
1 (0)
no) | . S
: =n(0) = [X] [m]xo (2.98)
1 (0)
The solution of Eq. (2.93) can be expressed as [see Eq. (2.3)]
n; (1) = n;(0) cos w;t + ﬁii?) sin w;t, i=1,2,...,n (2.99)

where 7;(0) and 71;(0) are given by Egs. (2.97) and (2.98) as
71 (0) = XV [m]% (2.100)
71 (0) = X" [m)ig (2.101)

Once 7;(t) are determined, the free vibration solution, X(¢), can be found using
Eq. (2.88).

Example 2.2  Find the free vibration response of the two-degree-of-freedom system
shown in Fig. 2.8 using modal analysis for the following data: m; = 2 kg, my =5 kg,
k1 = 10N/m, ky = 20N/m, k3 = 5N/m, x1(0) = 0.1 m, x»(0) = 0, x;(0) = 0, and x,(0)

=5 m/s.
}—> x,(D }—» Xp(1)
N

ky ky ks

(@)

}—» X1, X }—» X9, Xp

= =]

my my

kyx; ~—— — ky(x, — X)) k3

(b)

Figure 2.8 Two-degree-of-freedom system: (a) system in equilibrium; (b) free-body diagrams.
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SOLUTION  The equations of motion can be expressed as
mj 0 X1 ki + ko —ky x| _ 0
3 )l e
For free vibration, we assume harmonic motion as
x; (1) = X; cos(wt + ¢), i=1,2 (E2.2.2)

where X; is the amplitude of x;(f), w is the frequency, and ¢ is the phase angle.
Substitution of Eq. (E2.2.2) into Eq. (E2.2.1) leads to the eigenvalue problem

—a)zm] + ki + ko —ko X 0
[ —ky —w*my+ky+ ks | | X2 T |0 (E2.2.3)
Using the known data, Eq. (E2.2.3) can be written as
—2w? 430 —-20 x| _Jo
[ 20 50?425 } {Xz} = {o} (E2.24)

For a nontrivial solution of X; and X»,, the determinant of the coefficient matrix in
Eq. (E2.2.4) is set equal to zero to obtain the frequency equation:

—2w? +30 —20 —0
-20 —50> 425
or
ot —200° +35=0 (E2.2.5)

The roots of Eq. (E2.2.5) give the natural frequencies of vibration of the system as

w1 = 1.392028 rad/s, wy = 4.249971 rad/s (E2.2.6)

Substitution of @ = @ = 1.392028 in Eq. (E2.2.4) leads to X" = 1.306226X ", while

= wy = 4249971 in Eq. (E2.2.4) yields X\ = —0.306226X'>. Thus, the mode
shapes or eigenvectors of the system are given by

~ x{V 1
1 )]

X = {x%”} = { 1306226 }Xl (E2.2.7)
2
@)

> X 1 @

X = {X%”} = { ~0.306226 } X (£2:2.8)
2

where X" and X® are arbitrary constants. By normalizing the mode shapes with
1 1 y y g p
respect to the mass matrix, we can find the values of X }l) and X iz) as

ST o) (D32 2 01 =
XD m1x® = (xi)* 1 1-306226}[0 5”1.306226 =1
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or X{V =0.30815, and

@7 Y2 _ (y@)2 — 20 ! =
X mIX® = x)(1 0-306226}[0 5”-0.306226 =1

or X 52) = 0.63643. Thus, the modal matrix becomes

w-fE 5o [0 00e]
Using
X(@) = [X]n(t) (E2.2.10)
Eq. (E2.2.1) can be expressed in scalar form as
dz;;z(t) Fon(t) =0, i=12 (E2.2.11)
The initial conditions of 1;(¢#) can be determined using Egs. (2.100) and (2.101) as
7i(0) = XV [mlF0) or 7j(0) = [X]"[m]F(0) (E2.2.12)
i(0) = X0 [m1E©0) or 7j(0) = [X]"[mI¥(0) (E2.2.13)

0.30815 0.63643}

_ 1] _ [0.61630
n(0) = [0.402513 ~0.19489 ” 0 } = {1.27286} E22.14)
0.30815 0.63643}

0
. 0 10.06282
n(0) = [0.402513 —0.19489 “5} - {—4.87225 } E22.15)

The solution of Eq. (E2.2.11) is given by Eq. (2.99):
1i(0)

]

o
05
mo
05

ni(t) = 1:(0) cos wit + sinwt, i=1,2 (E2.2.16)

Using the initial conditions of Egs. (E2.2.14) and (E2.2.15), we find that

n1(t) = 0.061630 cos 1.392028¢ + 7.22889 sin 1.392028¢ (E2.2.17)
n2(t) = 0.127286 cos 4.249971t — 1.14642 sin 4.24997¢ (E2.2.18)

The displacements of the masses m; and mj, in meters, can be determined from
Eq. (E2.2.10) as

() = 0.30815 0.63643 0.061630 cos 1.392028¢ + 7.22889 sin 1.392028¢
() = 0.402513  —0.19489 0.127286 cos 4.249971t — 1.14642 sin 4.24997¢

0.018991 cos 1.392028¢ + 2.22758 sin 1.392028¢ + 0.081009 cos 4.24997¢
—0.72962 sin 4.24997¢

0.024807 cos 1.392028¢ + 2.909722 sin 1.392028¢ — 0.024807 cos 4.24997¢
+0.223426 sin 4.24997¢

(E2.2.19)
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2.2.4 Forced Vibration Analysis of an Undamped System Using Modal Analysis

The equations of motion can be expressed as
(mlx + [k]¥ = £(t) (2.102)

The eigenvalues a)l2 and the corresponding eigenvectors X @O j=1,2,...,n, of the
system are assumed to be known. The solution of Eq. (2.102) is assumed to be given
by a linear combination of the eigenvectors as

0 =Y nX? = [X]i() (2.103)
i=1

where 7; () denote modal coordinates and [ X] represents the modal matrix. Substituting
Eq. (2.103) into Eq. (2.102) and premultiplying the result by [X]T results in

(X1 tm]0X 17 + X1 TR = (X1 F (2.104)
Using Eqgs. (2.84) and (2.85), Eq. (2.104) can be written as
1+ [wli=0 (2.105)
where Q is called the vector of modal forces (or generalized forces) given by
0 = X1"f (1) (2.106)

The n uncoupled differential equations indicated by Eq. (2.105) can be expressed in
scalar form as

d> it
;772() Yot = Qi(n),  i=1,2.....n (2.107)
where
0:it)=XD"F@), i=1,2....n (2.108)

Each of the equations in (2.107) can be considered as the equation of motion of an
undamped single-degree-of-freedom system subjected to a forcing function. Hence, the
solution of Eq. (2.107) can be expressed, using n;(t), Q;(t), ni.0, and 1; o in place of
x(t), F(t), x9, and X(, respectively, and setting w; =w; and ¢ =0 in
Eqgs. (2.57)-(2.59), as

t
ni(t) = /o Qi(0)h(t —v)dt + g(t)nio + h(t)nio (2.109)
with
W) = L sinant (2.110)
w;
(1) = cos wit 2.111)

The initial values 7; o and 7; o can be determined from the known initial conditions X0
and X, using Egs. (2.97) and (2.98).
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2.2.5 Forced Vibration Analysis of a System with Proportional Damping

In proportional damping, the damping matrix [c] in Eq. (2.60) can be expressed as a
linear combination of the mass and stiffness matrices as

[c] = a[m] + Blk] (2.112)
where o and B are known constants. Substitution of Eq. (2.112) into Eq. (2.60) yields
[m]X + (a[m] + BIk))X + [k1X = f (2.113)

As indicated earlier, in modal analysis, the solution of Eq. (2.113) is assumed to be of
the form

X(1) = [X17(1) (2.114)

Substituting Eq. (2.114) into Eq. (2.113) and premultiplying the result by [X]" leads to

(X1 tm]UX17 + @IX T ImUX D7 + BIXTTKILX D) + (X IKIEX DG = (XTTF (2.115)
When Egs. (2.84) and (2.85) are used, Eq. (2.115) reduces to

0+ (@l + Blwi )i + []1i = O (2.116)
where
Q=[xI"f 2.117)
By defining
o+ B = 2gw;, i=1,2,....n (2.118)

where ¢; is called the modal viscous damping factor in the ith mode, Eq. (2.116) can
be rewritten in scalar form as

I0) dn;(1) .
T TAie— = o) =00, i=12,....n (2.119)

Each of the equations in (2.119) can be considered as the equation of motion of a vis-
cously damped single-degree-of-freedom system whose solution is given by Egs. (2.57)
—(2.59). Thus, the solution of Eq. (2.119) is given by

t
ni(t) = / Qi(Dh(t —v)dr + g)nio + h(®)nio (2.120)

0

where
L s
h(t) = e 5% sin wy;t (2.121)
Wi
it Giw; .
g(t) = e " | coswy;t + sin wy;t (2.122)
Wqi

and wy; is the ith frequency of damped vibration:

wai =/ 1 — o (2.123)
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2.2.6 Forced Vibration Analysis of a System with General Viscous Damping

The equations of motion of an n-degree-of-freedom system with arbitrary viscous damp-
ing can be expressed in the form of Eq. (2.60):

[m]x + [c]x + [kIX = f (2.124)

In this case, the modal matrix will not diagonalize the damping matrix, and an analytical
solution is not possible in the configuration space. However, it is possible to find an
analytical solution in the state space if Eq. (2.124) is expressed in state-space form.
For this, we add the identity X () = X(¢) to an equivalent form of Eq. (2.124) as

X(t) = ¥(r) (2.125)
X(0) = —[m] 7 [elX(0) — [m) T KIF (@) + [m] ' f (2.126)
By defining a 2n-dimensional state vector y(¢) as

3() = {ig;}

Egs. (2.125) and (2.126) can be expressed in state form as
() = [AIF () + [B1f (1) (2.128)

where the coefficient matrices [A] and [B], of order 2n x 2n and 2n x n, respectively,
are given by

(2.127)

_ (0] (1]
A= [—[m]‘l[k] —[M]_l[c]:| (2.129)
= [["[1(])]‘1} (2.130)

Modal Analysis in State Space For the modal analysis, first we consider the free
vibration problem with f = 0 so that Eq. (2.128) reduces to

¥(t) = [A]¥ (1) 2.131)

This equation denotes a set of 2n first-order ordinary differential equations with constant
coefficients. The solution of Eq. (2.131) is assumed to be of the form

F@) = Ye (2.132)

where Y is a constant vector and A is a constant scalar. By substituting Eq. (2.132)
into Eq. (2.131), we obtain, by canceling the term e*' on both sides,

[A]Y =AY (2.133)

Equation (2.133) can be seen to be a standard algebraic eigenvalue problem with a
nonsymmetric real matrix, [A]. The solution of Eq. (2.133) gives the eigenvalues
A; and the corresponding eigenvectors YO, i =1,2,...,2n. These eigenvalues and
eigenvectors can be real or complex. If A; is a complex eigenvalue, it can be shown
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that its complex conjugate (A;) will also be an eigenvalue. Also, the eigenvectors ¥®
=) —
and Y , corresponding to A; and X;, will also be complex conjugates to one another.

The eigenvectors y® corresponding to the eigenvalue problem, Eq. (2.133), are called
the right eigenvectors of the matrix [A]. The eigenvectors corresponding to the trans-
pose of the matrix are called the left eigenvectors of [A]. Thus, the left eigenvectors,
corresponding to the eigenvalues A;, are obtained by solving the eigenvalue problem

[A]'Z =aZ (2.134)

Since the determinants of the matrices [A] and [A]T are equal, the characteristic
equations corresponding to Egs. (2.133) and (2.134) will be identical:

[[A] = AL = [[A]" = ALIT =0 (2.135)

Thus, the eigenvalues of Egs. (2.133) and (2.134) will be identical. However,ﬁthe
eigenvectors of [A] agd [A]T will be different. To find the relationship between Y@,
i=1,2,...,2n and ZV), j=1,2,...,2n, the eigenvalue problems corresponding to
Y@ and ZU) are written as

[A]YD =3, YD and [A]"ZD) =5;Z0 (2.136)

or
ZO'A] =2, 20" (2.137)

Premultiplying the first of Eq. (2.136) by ZW" and postmultiplying Eq. (2.137) by
Y® we obtain
ZONAWYD =0,z YO (2.138)

ZONAY® = A 7Ny ® (2.139)
Subtracting Eq. (2.139) from Eq. (2.138) gives
(i — AJ)ZU)T;@) -0 (2.140)
Assuming that A; # A;, Eq. (2.140) yields
ZOTYO =0, i j=1,2,....2n (2.141)

which show that the ith right eigenvector of [A] is orthogonal to the jth left eigen-
vector of [A], provided that the corresponding eigenvalues A; and A; are distinct. By
substituting Eq. (2.141) into Eq. (2.138) or Eq. (2.139), we find that

ZONAI YD =0, i, j=1,2,...,2n (2.142)
By setting i = j in Eq. (2.138) or Eq. (2.139), we obtain
ZONAIYD = 4, Z0TYO =12, ..., 2n (2.143)
When the right and left eigenvectors of [A] are normalized as

7Oy — 1, i=1,2, ..., 2n (2.144)
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Eq. (2.143) gives
ZONAYD =, i=1,2, ..., 2n (2.145)
Equations (2.144) and (2.145) can be expressed in matrix form as
[Z1"Y] = 1] (2.146)
[ZTAIY] = [A:] (2.147)
where the matrices of right and left eigenvectors are defined as
[Y] = [f/(l) v ... )7(2’1)] (2.148)
(Z1=[z® z® ... ZO»)] (2.149)
and the diagonal matrix of eigenvalues is given by
Al 0
A2
] = . (2.150)
0 . A2n

In the modal analysis, the solution of the state equation, Eq. (2.128), is assumed to be
a linear combination of the right eigenvectors as

2n
¥ =Y Y = (Y1) (2.151)
i=1
where n;(t),i =1,2,...,2n, are modal coordinates and 7(¢) is the vector of modal
coordinates:
m()
- n(t)
n) = . (2.152)
772n(t)

Substituting Eq. (2.151) into Eq. (2.128) and premultiplying the result by [Z]T, we
obtain

(ZI"[Y 1) = [Z1"[A] [Y] () + [Z]7[B] f(r) (2.153)
In view of Eqgs. (2.146) and (2.147), Eq. (2.153) reduces to
i(6) = M1 7i(0) + O) (2.154)

which can be written in scalar form as

dn; (1)

ar = Ani(1) + Qi (1), i=1,2 ...,2n (2.155)
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where the vector of modal forces is given by
0 =121"[B] f() (2.156)
and the ith modal force by
0:(t) =2V [BIf(t), i=1,2, ..., 2n (2.157)

The solutions of the first-order ordinary differential equations, Eq. (2.155), can be
expressed as

t
ni (1) = / D0 () dt + €45 (0), i=1,2,...,2n (2.158)
0
which can be written in matrix form as
t
i) = / LMD O () dr + e*15(0) (2.159)
0

where 77(0) denotes the initial value of 7(¢). To determine 7(0), we premultiply Eq. (2.151)
by Z®" to obtain
295 = 29 [v1 5 (2.160)

In view of the orthogonality relations, Eq. (2.141), Eq. (2.160) gives

ni(t) = Z9 50, i=1,2,...,2n (2.161)
By setting + = 0 in Eq. (2.161), the initial value of n;(¢) can be found as

7:(0) = Z0'5(0), i=1,2, ..., 2 (2.162)
Finally, the solution of Eq. (2.128) can be expressed, using Eqgs. (2.151) and (2.159),
as

t
y(t) = / (Y110 O (1) dT + [Y]eP15(0) (2.163)
0

Example 2.3  Find the forced response of the viscously damped two-degree-of-
freedom system shown in Fig. 2.9 using modal analysis for the following data: m| =
2 kg, my =5kg, k; = 10 N/m, k, =20 N/m, k3 =5 N/m, ¢y =2 N-s/m,¢c; =3 N-
s/m, c3 = 1.0 N-s/m, fi(t) =0, fo(t) =5 N, and r > 0. Assume the initial conditions
to be zero.

SOLUTION  The equations of motion of the system are given by
[m]% + [c]X + [k)F = f (E2.3.1)

- mi 0 . 20
[m] = [ 0 mz} = [o 5} (E2.3.2)

[c] = [c‘ ta —o ]z [_53 _43] (E2.3.3)

—Cc o+

where
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Figure 2.9 Viscously damped two-degree-of-freedom system.

ki +k —k
[k]=|:l 2 2}

—ky

- {xl}
X = s
X2

where

ky + k3

30 =20
—-20 25

I
xX=1{.1, X=13. 1,
X2 X2

The equations of motion can be stated in state form as

¥ =[Aly + [BIf

[ [0
(A] = (0]
0 0
0 0
| -15 10 -
4 =5
) 0
[0] 0
[B]= [m]_l] e
- 0
X1
- JX2
Y=15

X2

1 0
0 1
5 3
2 2
3 4
5 75
0
0
0
1
3

(E2.3.4)

f= {f‘} (E2.3.5)

(E2.3.6)

(E2.3.7)

(E2.3.8)

(E2.3.9)
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The solution of the eigenvalue problem

[A]Y =AY
or
o oo | [B] [
Y, Y>
= A E2.3.10
—-15 10 =3 3 ||"s Y3 ( )
3 4 Y. Y.
is given by
A1 = —1.4607 + 3.9902i
Ay = —1.4607 — 3.9902i
. (E2.3.11)
A3 = —0.1893 + 1.3794i

Ay = —0.1893 — 1.3794i

[Y1=[r® 7O 7O y@)

—0.0754 — 0.2060i —0.0754 + 0.2060i —0.0543 — 0.3501i —0.0543 + 0.3501i

0.0258 + 0.0608;  0.0258 — 0.0608; —0.0630 — 0.4591i —0.0630 + 0.4591i
0.9321 0.9321 0.4932 — 0.0085i  0.4932 + 0.0085i

—0.2803 4+ 0.0142i —0.2803 — 0.0142; 0.6452 0.6452
(E2.3.12)

The solution of the eigenvalue problem

[A]"Z =AZ
or
0O 0 -—15 4 Z Zi
(]) 8 _lg _g Z — Z (E23.13)
o1 3 -3]l% “
gives A; as indicated in Eq. (E2.3.11) and Z as
[Z1=[ZM Z® ZO®) Z@&)]
0.7736 0.7736 0.2337 — 0.0382i 0.2337 + 0.0382i
—0.5911 + 0.0032i —0.5911 — 0.0032i 0.7775 0.7775

0.0642 — 0.1709i  0.0642 + 0.1709: 0.0156 — 0.1697i 0.0156 + 0.1697i

—0.0418 4+ 0.1309i —0.0418 —0.1309i 0.0607 — 0.5538i 0.0607 4 0.5538i
(E2.3.14)
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The vector of modal forces is given by

0 =Z1"[BIf (1)

0.7736 —0.5911 4+ 0.0032i 0.0642 — 0.1709i —0.0418 + 0.1309i
0.7736 —0.5911 — 0.0032i 0.0642 +0.1709i —0.0418 — 0.1309i
0.2337 — 0.0382i 0.7775 0.0156 — 0.1697i  0.0607 — 0.5538i
0.2337 4 0.0382i 0.7775 0.0156 4+ 0.1697i  0.0607 + 0.5538i
0 0 —0.0418 4 0.1309i
0 0 0 —0.0418 — 0.1309i
05 0 {5} 0.0607 — 0.5538i (E2.3.15)
0 02 0.0607 + 0.5538i

Since the initial values, xi(0), x2(0), x1(0), and x,(0), are zero, all n;(0) =0,i =
1,2, 3,4, from Eq. (2.162). Thus, the values of n;(¢) are given by

t
n,(t):/ 1D 04(1) d, i=1,2,3,4 (E2.3.16)
0

since Q;(7) is a constant (complex quantity), Eq. (E2.3.16) gives
0,

ni(t) = )\_(EM -, i=12.3,4 (E2.3.17)
i
Using the values of Q; and A; from Eqs. (E2.3.15) and (E2.3.11), n; (¢) can be expressed
as
n @) = (0.0323 — 0.0014i) [¢(~14607+3.99020)r _ 1]
1) = (0.0323 + 0.00147) [¢(~!4607=3.99020r _
e ( ; )[701893 1.3794i : (E2.3.18)
m(t) = (—0.4 4 0.0109;) [¢(0-1893+1.3794Dr _ 1]
774(f) — (_0.4 _ 0'01091-) [8(70.1893—1.37941')1 _ 1]
Finally, the state variables can be found from Eq. (2.151) as
y() = [Y1ii(1) (E2.3.19)
In view of Egs. (E2.3.12) and (E2.3.18), Eq. (E2.3.19) gives
yl(t) = 0.0456 [6(71.4607+3.9902i)t _ 1] m
) = 0.0623 6(71.460773.9902i)t -1 m
- [ —0.1893+1.3794i ] (E2.3.20)
y3(t) = —0.3342 [¢(~O1893 41379401 _ 1] m/s
y4(t) = —0.5343 [6(70.189371.3794i)t _ 1] m/s

2.3 RECENT CONTRIBUTIONS

Single-Degree-of-Freedom Systems Anderson and Ferri [5] investigated the prop-
erties of a single-degree-of-freedom system damped with generalized friction laws.
The system was studied first by using an exact time-domain method and then by
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using first-order harmonic balance. It was observed that the response amplitude can
be increased or decreased by the addition of amplitude-dependent friction. These
results suggest that in situations where viscous damping augmentation is difficult or
impractical, as in the case of space structures and turbomachinery bladed disks, bene-
ficial damping properties can be achieved through the redesign of frictional interfaces.
Bishop et al. [6] gave an elementary explanation of the Duhamel integral as well as
Fourier and Laplace transform techniques in linear vibration analysis. The authors
described three types of receptances and explained the relationships between them.

Multidegree-of-Freedom Systems The dynamic absorbers play a major role in reduc-
ing vibrations of machinery. Soom and Lee [7] studied the optimal parameter design of
linear and nonlinear dynamic vibration absorbers for damped primary systems. Shaw
et al. [8] showed that the presence of nonlinearities can introduce dangerous instabil-
ities, which in some cases may result in multiplication rather than reduction of the
vibration amplitudes. For systems involving a large number of degrees of freedom, the
size of the eigenvalue problem is often reduced using a model reduction or dynamic
condensation process to find an approximate solution rapidly. Guyan reduction is a
popular technique used for model reduction [9]. Lim and Xia [10] presented a tech-
nique for dynamic condensation based on iterated condensation. The quantification
of the extent of nonproportional viscous damping in discrete vibratory systems was
investigated by Prater and Singh [11]. Lauden and Akesson derived an exact complex
dynamic member stiffness matrix for a damped second-order Rayleigh—Timoshenko
beam vibrating in space [12].

The existence of classical real normal modes in damped linear vibrating systems
was investigated by Caughey and O’Kelly [13]. They showed that the necessary and
sufficient condition for a damped system governed by the equation of motion

[11X(t) + [AIX(2) + [BIX(t) = f(¢) (2.164)

to possess classical normal modes is that matrices [A] and [B] be commutative; that
is, [A][B] = [B][A]. The scope of this criterion was reexamined and an alternative
form of the condition was investigated by other researchers [14]. The settling time
of a system can be defined as the time for the envelope of the transient part of the
system response to move from its initial value to some fraction of the initial value.
An expression for the settling time of an underdamped linear multidegree-of-freedom
system was derived by Ross and Inman [15].

REFERENCES

. S. S. Rao, Mechanical Vibrations, 4th ed., Prentice Hall, Upper Saddle River, NJ, 2004.
. L. Meirovitch, Fundamentals of Vibrations, McGraw-Hill, New York, 2001.
. D.J. Inman, Engineering Vibration, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 2001.

. A. K. Chopra, Dynamics of Structures: Theory and Applications to Earthquake Engineering,
Prentice Hall, Englewood Cliffs, NJ, 1995.

5. J. R. Anderson and A. A. Ferri, Behavior of a single-degree-of-freedom system with a

generalized friction law, Journal of Sound and Vibration, Vol. 140, No. 2, pp. 287-304,

1990.

RO N



62  Vibration of Discrete Systems: Brief Review

6.

7.

10.

R. E. D. Bishop, A. G. Parkinson, and J. W. Pendered, Linear analysis of transient vibration,
Journal of Sound and Vibration, Vol. 9, No. 2, pp. 313-337, 1969.

A. Soom and M. Lee, Optimal design of linear and nonlinear vibration absorbers for damped
system, Journal of Vibrations, Acoustics, Stress and Reliability in Design, Vol. 105, No. 1,
pp. 112119, 1983.

J. Shah, S. W. Shah, and A. G. Haddow, On the response of the nonlinear vibration absorber,
Journal of Non-linear Mechanics, Vol. 24, pp. 281-293, 1989.

R. J. Guyan, Reduction of stiffness and mass matrices, AIAA Journal, Vol. 3, No. 2, p. 380,
1965.

R. Lim and Y. Xia, A new eigensolution of structures via dynamic condensation, Journal
of Sound and Vibration, Vol. 266, No. 1, pp. 93—106, 2003.

G. Prater and R. Singh, Quantification of the extent of non-proportional viscous damping in
discrete vibratory systems, Journal of Sound and Vibration, Vol. 104, No. 1, pp. 109-125,

R. Lauden and B. Akesson, Damped second-order Rayleigh—Timoshenko beam vibration
in space: an exact complex dynamic member stiffness matrix, International Journal for

. T. K. Caughey and M. E. J. O’Kelly, Classical normal modes in damped systems, Journal

A. S. Phani, On the necessary and sufficient conditions for the existence of classical normal
modes in damped linear dynamic systems, Journal of Sound and Vibration, Vol. 264, No.

11.
1986.
12.
Numerical Methods in Engineering, Vol. 19, No. 3, pp. 431-449, 1983.
13
of Applied Mechanics, Vol. 27, pp. 269-271, 1960.
14.
3, pp. 741-745, 2002.
15.

PROBLEMS

A. D. S. Ross and D. J. Inman, Settling time of underdamped linear lumped parameter
systems, Journal of Sound and Vibration, Vol. 140, No. 1, pp. 117-127, 1990.

2.1 A building frame with four identical columns that
have an effective stiffness of k and a rigid floor of
mass m is shown in Fig. 2.10. The natural period of
vibration of the frame in the horizontal direction is found
to be 0.45 s. When a heavy machine of mass 500 kg
is mounted (clamped) on the floor, its natural period
of vibration in the horizontal direction is found to be

EI

EI
7

7077

EI
EI

(a)

0.55 s. Determine the effective stiffness k& and mass m
of the building frame.

2.2 The propeller of a wind turbine with four blades is
shown in Fig. 2.11. The aluminum shaft AB on which
the blades are mounted is a uniform hollow shaft of outer
diameter 2 in., inner diameter 1 in., and length 10 in. If

S
B S
500 kg
El
m
JWLEI
7 /2

EI
EI

(b)

Figure 2.10



each blade has a mass moment of inertia of 0.5 lb-in.-
sec?, determine the natural frequency of vibration of the
blades about the y-axis. [Hint: The torsional stiffness k;
of a shaft of length / is given by k;, = Gly/l, where G
is the shear modulus (G = 3.8 x 10° psi for aluminum)
and /y is the polar moment of inertia of the cross section
of the shaft.]

|

|

|

|

|

|

|

|
il
T

Figure 2.11

2.3 What is the difference between the damped and
undamped natural frequencies and natural time periods
for a damping ratio of 0.5?

2.4 A spring—mass system with mass 1 kg is found
to vibrate with a natural frequency of 10 Hz. The same
system when immersed in an oil is observed to vibrate
with a natural frequency of 9 Hz. Find the damping
constant of the oil.

2.5 Find the response of an undamped spring—mass
system subjected to a constant force Fy applied during
0 <t < t using a Laplace transform approach. Assume
zero initial conditions.

2.6 A spring—mass system with mass 10 kg and stiff-
ness 20,000 N/m is subjected to the force shown in
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Fig. 2.12. Determine the response of the mass using the
convolution integral.

F(1)
50N
T = natural period
!
0 =z
5
Figure 2.12

2.7 Find the response of a spring—mass system sub-
jected to the force F (1) = Fye'® using the method of
Laplace transforms. Assume the initial conditions to be
Zero.

2.8 Consider a spring—mass system with m = 10 kg
and £k = 5000 N/m subjected to a harmonic force F (1) =
400 cos 10 N. Find the total system response with the
initial conditions xop = 0.1 m and xy = 5 m/s.

2.9 Consider a spring—mass—damper system with m =
10 kg, k = 5000 N/m, and ¢ = 200 N-s/m subjected to
a harmonic force F () = 400 cos 107 N. Find the steady-
state and total system response with the initial conditions
xo = 0.1 m and xo = 5 m/s.

2.10 A simplified model of an automobile and its sus-
pension system is shown in Fig. 2.13 with the following
data: mass m = 1000 kg, radius r of gyration about
the center of mass G = 1.0 m, spring constant of front
suspension ks = 20 kN/m, and spring constant of rear
suspension k, = 15 kN/m.

(a) Derive the equations of motion of an automobile
by considering the vertical displacement of the
center of mass y and rotation of the body about
the center of mass 6 as the generalized coordi-
nates.
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L=16m

Figure 2.13

(b) Determine the natural frequencies and mode
shapes of the automobile in bounce (up-and-
down motion) and pitch (angular motion)
modes.

2.11 Find the natural frequencies and the m-orthogonal
mode shapes of the system shown in Fig. 2.9(a) for the
following data: k; = kp = k3 =k and m; = my = m.

2.12 Determine the natural frequencies and the m-
orthogonal mode shapes of the system shown in
Fig. 2.14.

2.13 Find the free vibration response of the sys-
tem shown in Fig. 2.8(a) using modal analysis. The
data are as follows: m; =my =10kg, k =k, =

k3 = 500 N/m, x;(0) =0.05 m, x2(0) =0.10 m, and
x1(0) = %2(0) = 0.

2.14 Consider the following data for the two-degree-of-
freedom system shown in Fig. 2.9: m; =1 kg, m, =
2 kg, k; =500 N/m, k, = 100 N/m, k3 =300 N/m,
¢y =3 N-s/m, ¢; =1 N-s/m, and ¢3 =2 N-s/m.

(a) Derive the equations of motion.

(b) Discuss the nature of error involved if the off-
diagonal terms of the damping matrix are neglected
in the equations derived in part (a).

(¢) Find the responses of the masses resulting from the
initial conditions x1(0) = 5 mm, x,(0) = 0, x;(0) =
1 m/s, and x,(0) = 0.
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Figure 2.14

2.15 Determine the natural frequencies and m- my=m3=m, my=2m, ki =ks=k, and k=
orthogonal mode shapes of the three-degree-of-freedom k3 =2 k.

system shown in Fig. 2.15 for the following data: . L
2.16 Find the free vibration response of the sys-

tem described in Problem 2.14 using modal analysis

/
/
ky

my
my
x1(5)  F(0)
%"3 " . |-
m3
nmy
ky x3(1)
7 X0  FyD)

Figure 2.15 Figure 2.16
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Figure 2.17

with the following data: m =2 kg, k = 100 N/m,
x1(0) =0.1 m, and x,2(0) = x3(0) = x;(0) = x2(0) =
x3(0) = 0.

2.17 Consider the two-degree-of-freedom system shown
in Fig. 2.16 with the following data: m; = 10 kg, m, =
1 kg, k; = 100 N/m, ko, = 10 N/m, and dampers c¢; and
¢y corresponding to proportional damping with o =
0.1 and B = 0.2. Find the steady-state response of the
system.

2.18 A punch press mounted on a foundation as
shown in Fig. 2.17(a) has been modeled as a three-
degree-of-freedom system as indicated in Fig. 2.17(b).
The data are as follows: m; = 200 kg, m, = 2000 kg,
m3 = 5000 kg, k; =2 x 10° N/m, k; = 1 x 105 N/m,
and k3 =5 x 10> N/m. The damping constants cy,
¢y, and c¢3 correspond to modal damping ratios of
1 =0.02, & =0.04, and &3 = 0.06 in the first, sec-
ond, and third modes of the system, respectively.



Find the response of the system using modal analy-
sis when the tool base m; is subjected to an impact
force F;(t) = 5008(t) N.

2.19 A spring—mass—damper system with m = 0.05 Ib-
sec?/in., k = 50 Ib/in., and ¢ = 1 lb-sec/in., is subjected
to a harmonic force of magnitude 20 lb. Find the
resonant amplitude and the maximum amplitude of the
steady-state motion.
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2.20 A machine weighing 25 b is subjected to a har-
monic force of amplitude 10 Ib and frequency 10 Hz.
If the maximum displacement of the machine is to
be restricted to 1 in., determine the necessary spring
constant of the foundation for the machine. Assume
the damping constant of the foundation to be 0.5 lb-
sec/in.



Derivation of Equations:
Equilibrium Approach

3.1 INTRODUCTION

The equations of motion of a vibrating system can be derived by using the dynamic
equilibrium approach, variational method, or integral equation formulation. The
dynamic equilibrium approach is considered in this chapter. The variational and inte-
gral equation approaches are presented in Chapters 4 and 5, respectively. The dynamic
equilibrium approach can be implemented by using either Newton’s second law of
motion or D’Alembert’s principle.

3.2 NEWTON’S SECOND LAW OF MOTION

Newton’s second law of motion can be used conveniently to derive the equations of
motion of a system under the following conditions:

1. The system undergoes either pure translation or pure rotation.
2. The motion takes place in a single plane.

3. The forces acting on the system either have a constant orientation or are oriented
parallel to the direction along which the point of application moves.

If these conditions are not satisfied, application of Newton’s second law of motion
becomes complex, and other methods, such as the variational and integral equation
approaches, can be used more conveniently. Newton’s second law of motion can be
stated as follows: The rate of change of the linear momentum of a system is equal to
the net force acting on the system. Thus, if several forces f 1, F2, ... act on the system,
the resulting force acting on the system is given by ) . F; and Newton’s second law
of motion can be expressed as

- d R R
ZF,-:E(mv)zma (3.1)

where m is the constant mass, v is the linear velocity, a is the linear acceleration, and
mv is the linear momentum. Equation (3.1) can be extended to angular motion. For
the planar motion of a body, the angular momentum about the center of mass can be
expressed as /w, where [ is the constant mass moment of inertia of the body about an
axis perpendicular to the plane of motion and passing through the centroid (centroidal
axis) and o is the angular velocity of the body. Then Newton’s second law of motion
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states that the rate of change of angular momentum is equal to the net moment acting
about the centroidal axis of the body:

zi:M,» = %(lw) =Ilo=la (3.2)

where M, M;, ... denote the moments acting about the centroidal axis of the body
and w = dw/dt = «, the angular acceleration of the body.

3.3 D’ALEMBERT’S PRINCIPLE

D’ Alembert’s principle is just a restatement of Newton’s second law of motion. For the
linear motion of a mass, Newton’s second law of motion, Eq. (3.1), can be rewritten as

Y Fi—mi=0 (3.3)
i

Equation (3.3) can be considered as an equilibrium equation in which the sum of all
forces, including the force —ma is in equilibrium. The term —ma represents a fictitious
force called the inertia force or D’Alembert force. Equation (3.3) denotes D’ Alembert’s
principle, which can be stated in words as follows: The sum of all external forces,
including the inertia force, keeps the body in a state of dynamic equilibrium. Note
that the minus sign associated with the inertia force in Eq. (3.3) denotes that when
a = dv/dt > 0, the force acts in the negative direction. As can be seen from Egs. (3.1)
and (3.3), Newton’s second law of motion and D’Alembert’s principle are equivalent.
However, Newton’s second law of motion is more commonly used in deriving the
equations of motion of vibrating bodies and systems. The equations of motion of the
axial vibration of a bar, transverse vibration of a thin beam, and the transverse vibration
of a thin plate are derived using the equilibrium approach in the following sections.

3.4 EQUATION OF MOTION OF A BAR IN AXIAL VIBRATION

Consider an elastic bar of length / with varying cross-sectional area A(x), as shown in
Fig. 3.1. The axial forces acting on the cross sections of a small element of the bar of
length dx are given by P and P + d P with

ou

P=0cA=FA— (3.4)

ax
where o is the axial stress, E is Young’s modulus, u is the axial displacement, and
du/dx is the axial strain. If f(x,?) denotes the external force per unit length, the
resulting force acting on the bar element in the x direction is

(P+dP)—P+ fdx =dP + fdx
The application of Newton’s second law of motion gives
mass X acceleration = resultant force

or
3u
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Figure 3.1 Longitudinal vibration of a bar.

where p is the mass density of the bar. By using the relation d P = (0 P/dx)dx and
Eq. (3.4), the equation of motion for the forced longitudinal vibration of a nonuniform
bar, Eq. (3.5), can be expressed as

a

9 |:EA(x) ou(x,t)

0x

B = oA Y .t 3.6
r ]+f(x, ) = p(x) (x)m(x, ) (3.6)

For a uniform bar, Eq. (3.6) reduces to

2 92u

0u
EA@(X, 4+ flx, 1) = ,OAW(X, 1) (3.7)
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Equation (3.6) or (3.7) can be solved using the appropriate initial and boundary con-
ditions of the bar. For example, if the bar is subjected to a known initial displacement
uo(x) and initial velocity 1 (x) the initial conditions can be stated as

ulx,t =0) =up(x), 0<x<lI (3.8)
E;—L;(x,t=0) = up(x), 0<x<x<l 3.9)

If the bar is fixed at x = 0 and free at x = [, the boundary conditions can be stated as
follows. At the fixed end:

w0,0)=0, >0 (3.10)
At the free end:
9
axial force = AE—2(l,1) = 0
ox
or
3
Min=0. >0 G.11)
x

Other possible boundary conditions of the bar are discussed in Chapter 9.

3.5 EQUATION OF MOTION OF A BEAM IN TRANSVERSE
VIBRATION

A thin beam subjected to a transverse force is shown in Fig. 3.2(a). Consider the
free-body diagram of an element of a beam of length dx shown in Fig. 3.2(b), where
M(x,t) is the bending moment, V (x, t) is the shear force, and f(x, t) is the external
transverse force per unit length of the beam. Since the inertia force (mass of the element
times the acceleration) acting on the element of the beam is

92w

PA(x) dxﬁ(x, 1)

the force equation of motion in the z direction gives

92w

~(V+dV) + [0 dx +V = pAR) dx - (x.1) (3.12)

where p is the mass density and A(x) is the cross-sectional area of the beam. The
moment equilibrium equation about the y axis passing through point P in Fig. 3.2

leads to
d
(M+dM)—(V+dV)dx+f(x,t)dx7x—M:() (3.13)
Writing
A% oM
dV =—dx and dM = —dx
ax ax
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Figure 3.2 Transverse vibration of a thin beam.

and disregarding terms involving second powers in dx, Egs. (3.12) and (3.13) can be
written as

v %w
—a(x, )+ flx,t) = ,oA(x)W(x, 1) (3.14)

oM
ax

By using the relation V = dM /dx from Egs. (3.15), (3.14) becomes

82M( N+ fx, 1) = pA( )82w( 9] (3.16)
——(x, X, 1) = x)— (x, .
ox? P

From the elementary theory of bending of beams (also known as the Euler—Bernoulli
or thin beam theory), the relationship between bending moment and deflection can be
expressed as [1, 2]

92w

M(x,t) =EI(x)W(x,t) 3.17)

where E is Young’s modulus and /(x) is the moment of inertia of the beam cross
section about the y axis. Inserting Eq. (3.17) into Eq. (3.16), we obtain the equation
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of motion for the forced lateral vibration of a nonuniform beam:

2 2

9 92w 92w
Fye [El(x)m(x, t)} + pA(x)W(x, 1) = f(x,1) (3.18)

For a uniform beam, Eq. (3.18) reduces to

4 2

0" w 0w
Elw(x,t) +pAW(x’t) = f(x,1) (3.19)

Equation (3.19) can be solved using the proper initial and boundary conditions. For
example, if the beam is given an initial displacement wy(x) and an initial velocity
wo(x), the initial conditions can be expressed as

w(x,t =0) = wy(x), 0<x<l (3.20)
Jw .
W(x,t =0) = wo(x), 0<x<l 3.21)

If the beam is fixed at x = 0 and pinned at x = [, the deflection and slope will be zero
at x = 0 and the deflection and the bending moment will be zero at x = /. Hence, the
boundary conditions are given by

wx =0,7) =0, t>0 (3.22)
0
—w(x =0,1) =0, >0 (3.23)
0x
wkx=1,1r) =0, t>0 (3.24)
82
—w(X=l, 1) =0, >0 (3.25)
9x2

Other possible boundary conditions of the beam are given in Chapter 11.

EQUATION OF MOTION OF A PLATE IN TRANSVERSE
VIBRATION

The following assumptions are made in deriving the differential equation of motion of
a transversely vibrating plate:

1. The thickness & of the plate is small compared to its other dimensions.

2. The middle plane of the plate does not undergo in-plane deformation (i.e., the
middle plane is a neutral surface).

3. The transverse deflection w is small compared to the thickness of the plate.

4. The influence of transverse shear deformation is neglected (i.e., straight lines
normal to the middle surface before deformation remain straight and normal
after deformation).

5. The effect of rotary inertia is neglected.

The plate is referred to a system of orthogonal coordinates xyz. The middle plane

of the plate is assumed to coincide with the xy plane before deformation, and the
deflection of the middle surface is defined by w(x, y, #), as shown in Fig. 3.3(a).
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Figure 3.3 (a) Stresses in a plate; (b) forces and induced moment resultants in an element of
a plate.
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3.6.1 State of Stress

For thin plates subjected to bending forces (i.e., transverse loads and bending moments),
the direct stress in the z direction (o,;) is usually neglected. Thus, the nonzero stress
COMPpONENts are Oy, Oyy, Oxy, Oy, and oy;. As we are considering flexural (bend-
ing) deformations only, there will be no resulting force in the x and y directions;

that is,
h/2 h/2
/ oy dz =0, / oy,ydz =0 (3.26)
—h/2 —h)2

It can be noted that in beams, which can be considered as one-dimensional analogs of
plates, the shear stress o, will not be present. As in beam theory, the stresses oy, (and
oyy) and o, (and o0,;) are assumed to vary linearly and parabolically, respectively, over
the thickness of the plate, as indicated in Fig. 3.3(a). The shear stress oy, is assumed to
vary linearly over the thickness of the plate, as shown in Fig. 3.3(a). The stresses oy,
Oyy, Oxy, Oy, and o, are used in defining the following force and moment resultants

per unit length:
h/2
M, = / 0xx2dz
—h/2

h)2
M, = / oyyzdz
—h)2

/2
M., = / oxyzdz = My, since 0y = Oyy (3.27)
—h/2

/2
O, = / Ox;dz

—h/2

h/2
Qy Z/ 0y, dz

—h/2

These force and moment resultants are shown in Fig. 3.3(b).

3.6.2 Dynamic Equilibrium Equations

By considering an element of the plate, the differential equation of motion in terms
of force and moment resultants can be derived. For this we consider the bending
moments and shear forces to be functions of x, y, and ¢, so that if M, acts on one
side of the element, M, +dM, = M, + (0M,/dx)dx acts on the opposite side. The
resulting equations of motion can be written as follows.

Dynamic equilibrium of forces in the z direction:

00, 00y
0, + ox dx ) dy+|0y,+ Wdy dx+ fdxdy — Qydy — Qydx
= mass of element x acceleration in the z direction
2w
= phdxdy—
phaxdy 912
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or

90, 90, 3w
— 4+ — 4+ , v, 1) = ph— 3.28
™ oy Sy, 1) = ph—s (3.28)
where f(x,y,t) is the intensity of the external distributed load and p is the density of
the material of the plate.
Equilibrium of moments about the x axis:

00, oM, oM,y
Oy+—=dy|dxdy=\M,+—=dy | dx+ | M+ ~dx | dy
dy : dy ax

d
— Mydx — My, dy — fdx dy%

By neglecting terms involving products of small quantities, this equation can be writ-
ten as

oM, IM,,

Qy = -+

3.29
ay ax ( )

Equilibrium of moments about the y axis:

00, oM, oM.,
O, + Q dx ) dydx =M, + dx ) dy+ My, + X dy ) dx
ax ax dy

d
— Mydy — My, dx — fdx dy%

or

OMy | DMy

3.30
ax dy ( )

sz

3.6.3 Strain-Displacement Relations

To derive the strain—displacement relations, consider the bending deformation of a
small element (by neglecting shear deformation), as shown in Fig. 3.4. In the edge
view of the element (in the xz plane), PORS is the undeformed position and P'Q'R’S’
is the deformed position of the element. Due to the assumption that “normals to the
middle plane of the undeformed plate remain straight and normal to the middle plane
after deformation,” line AB will become A’B’ after deformation. Thus, points such as K
will have in-plane displacements u and v (parallel to the x and y axes), due to rotation
of the normal AB about the y and x axes, respectively. The in-plane displacements of
K can be expressed as (Fig. 3.4b and c)

ow
Uu=—z—
¢ ox
3
v= % (3.31)
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Figure 3.4 (a) Edge view of a plate; (b) deformation in the xz plane; (¢) deformation in the
yz plane.

The linear strain—displacement relations are given by

u v u ov

Exx = a, Eyy = 5, Exy = 5 a (332)

where ¢,, and ¢,, are normal strains parallel to the x and y axes, respectively, and &,
is the shear strain in the xy plane. Equations (3.31) and (3.32) yield

ou 9 ow 9%w
£ = = — P — e S —
T ax T ox “ox “ox?

3 9 9 92
£y = a_; -2 (_Z_w) - v (3.33)

ou N v 9 dw N 9 dw 5 02w
& = — _— = — —7— _— —7— = —
T8y 9x Ay ¢ ax ax ¢ ay Zaxay

Equations (3.31) show that the transverse displacement w(x, y, ) completely describes
the deformation state of the plate.




78 Derivation of Equations: Equilibrium Approach

3.6.4 Moment-Displacement Relations

We assume the plate to be in a state of plane stress. Thus, the stress—strain relations
can be expressed as

vE
S T
E vE
Oyy = m&‘yy + mé‘xx (334)
0yy = Géyy

where E is Young’s modulus, G is the shear modulus, and v is Poisson’s ratio. By sub-
stituting Eq. (3.33) into Eq. (3.34) and the resulting stress into the first three equations
of (3.27), we obtain, after integration,

M,=-D (82_11) + vaz—w>
0x2 dy?
M, =-D (32_“’ n Uaz_“’> (3.35)
0y? 0x2
My = My, = —(1 —v)D 0w
dxdy
where D, the flexural rigidity of the plate, is given by
D = E7h3 (3.36)
12(1 — v?)

The flexural rigidity D is analogous to the flexural stiffness of a beam (E7). In fact,
D = EI for a plate of unit width when v is taken as zero. The use of Egs. (3.35) in
Egs. (3.29) and (3.30) lead to the relations

0.=-D 9 (32w 9w
. ox \ ax2  9y?
a (3w  w

3.6.5 Equation of Motion in Terms of Displacement

By substituting Egs. (3.35) and (3.37) into Eqgs. (3.28)—(3.30), we notice that moment
equilibrium equations (3.29) and (3.30) are satisfied automatically, and Eq. (3.28) gives
the desired equation of motion as

D *w *w n *w n h82w £ 0 (3.38)
“ 4 PG A4 ., — X, ¥, .
axt | axtay? oyt ) TP Y

If f(x,y,t) =0, we obtain the free vibration equation as

D 9w 9w n 9w n h32w _0 (3.39)
axt T ax2ayr oyt ) TP e T '



3.6 Equation of Motion of a Plate in Transverse Vibration 79

Equations (3.38) and (3.39) can be written in a more general form:

82

DV*w + ph T2 = f (3.40)
at?

DV*w + phaz—w -0 (3.41)
at?

where V* = V2V?2, the biharmonic operator, is given by

94 94 94

VAR S LA
ox* + 0x29y2 + ay*

(3.42)

in Cartesian coordinates.

3.6.6 Initial and Boundary Conditions

As the equation of motion, Eq. (3.38) or (3.39), involves fourth-order partial derivatives
with respect to x and y, and second-order partial derivatives with respect to ¢, we need
to specify four conditions in terms of each of x and y (i.e., two conditions for any
edge) and two conditions in terms of ¢ (usually, in the form of initial conditions) to
find a unique solution of the problem. If the displacement and velocity of the plate at
t = 0 are specified as wo(x, y) and wg(x, y), the initial conditions can be expressed as

w(x,y,0) = wo(x,y) (3.43)
Jw .
E(x, ¥, 0) = wo(x, y) (3.44)

The general boundary conditions that are applicable for any type of geometry of the
plate can be stated as follows. Let n and s denote the coordinates in the directions
normal and tangential to the boundary. At a fixed edge, the deflection and the slope
along the normal direction must be zero:

w=0 (3.45)
ow
— =0 (3.46)
on

For a simply supported edge, the deflection and the bending moment acting on the
edge about the s direction must be zero; that is,

w=0 (3.47)
M,=0 (3.48)
where the expression for M, in terms of normal and tangential coordinates is given
by [5]
My =—D|V2w—(1—v (L% Pw (3.49)
= — w—((1=-v)|{=——4+— .
R on  0s?

where R denotes the radius of curvature of the edge. For example, if the edge with
y = b = constant of a rectangular plate is simply supported, Egs. (3.47) and (3.48)
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become
w(x, b) =0, 0<x<a (3.50)
iy = (T2 ) oy =0, 0<x< 3.51)
= — — 4+ v—](x,b) =0, <x<a .
y dy? 0x2

where the dimensions of the plate are assumed to be a and b parallel to the x and y
axes, respectively. The other possible boundary conditions of the plate are discussed
in Chapter 14.

3.7 ADDITIONAL CONTRIBUTIONS

In the equilibrium approach, the principles of equilibrium of forces and moments are
used by considering an element of the physical system. This gives the analyst a physical
feel of the problem. Hence, the approach has been used historically by many authors to
derive equations of motion. For example, Love [6] considered the free-body diagram of
a curved rod to derive coupled equations of motion for the vibration of a curved rod or
beam. Timoshenko and Woinowsky-Krieger derived equations of motion for the vibra-
tion of plates and cylindrical shells [7]. Static equilibrium equations of symmetrically
loaded shells of revolution have been derived using the equilibrium approach, and the
resulting equations have subsequently been specialized for spherical, conical, circular
cylindrical, toroidal, and ellipsoidal shells by Ugural [3] for determining the membrane
stresses. The approach was also used to derive equilibrium equations of axisymmet-
rically loaded circular cylindrical and general shells of revolution by including the
bending behavior.

In the equilibrium approach, the boundary conditions are developed by consider-
ing the physics of the problem. Although the equilibrium and variational approaches
can give the same equations of motion, the variational methods have the advantage
of yielding the exact form of the boundary conditions automatically. Historically, the
development of plate theory, in terms of the correct forms of the governing equation and
the boundary conditions, has been associated with the energy (or variational) approach.
Several investigators, including Bernoulli, Germain, Lagrange, Poisson, and Navier,
have attempted to present a satisfactory theory of plates but did not succeed com-
pletely. Later, Kirchhoff [8] derived the correct governing equations for plates using
minimization of the (potential) energy and pointed out that there exist only two bound-
ary conditions on a plate edge. Subsequently, Lord Kelvin and Tait [9] gave physical
insight to the boundary conditions given by Kirchhoff by converting twisting moments
along the edge of the plate into shearing forces. Thus, the edges are subject to only
two forces: shear and moment.
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PROBLEMS

3.1 The system shown in Fig. 3.5 consists of a cylinder
of mass My and radius R that rolls without slipping on a
horizontal surface. The cylinder is connected to a viscous
damper of damping constant ¢ and a spring of stiffness k.
A uniform bar of length / and mass M is pin-connected
to the center of the cylinder and is subjected to a force
F at the other end. Derive the equations of motion of
the two-degree-of-freedom system using the equilibrium
approach.

3.2 Consider a prismatic bar with one end (at x = 0)
connected to a spring of stiffness Ko and the other
end (at x = /) attached to a mass M, as shown in
Fig. 3.6. The bar has a length of /, cross-sectional area A,
mass density p, and modulus of elasticity E. Derive the
equation of motion for the axial vibration of the bar and
the boundary conditions using the equilibrium approach.

Figure 3.5
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3.3 A beam resting on an elastic foundation and sub-
jected to a distributed transverse force f(x, ) is shown
in Fig. 3.7(a). One end of the beam (at x = 0) is simply
supported and the other end (at x = /) carries a mass M.
The free-body diagram of the end mass M is shown in
Fig. 3.7(D).

(a) Derive the equation of motion of the beam using the
equilibrium approach.

(b) Find the boundary conditions of the beam.

3.4 Consider a differential element of a membrane
under uniform tension 7' in a polar coordinate system
as shown in Fig. 3.8. Derive the equation of motion
for the transverse vibration of a circular membrane of
radius R using the equilibrium approach. Assume that
the membrane has a mass of m per unit area.

3.5 Consider a differential element of a circular plate
subjected to the transverse distributed force f(r,0,1)
as shown in Fig. 3.9. Noting that Q; and M,; vanish



Figure 3.8

®
Figure 3.9

Problems

83



84  Derivation of Equations: Equilibrium Approach

due to the symmetry, derive an equation of motion for
the transverse vibration of a circular plate using the
equilibrium approach.

3.6 Consider a rectangular plate resting on an elastic
foundation with a foundation modulus k so that the

resisting force offered by the foundation to a transverse
deflection of the plate w is given by kw per unit area.
The plate is subjected to a transverse force f(x,y,1)
per unit area. Derive a differential equation of motion
governing the transverse vibration of the plate using the
equilibrium approach.



Derivation of Equations:
Variational Approach

4.1 INTRODUCTION

As stated earlier, vibration problems can be formulated using an equilibrium, a varia-
tional, or an integral equation approach. The variational approach is considered in this
chapter. In the variational approach, the conditions of extremization of a functional are
used to derive the equations of motion. The variational methods offer the following
advantages:

1. Forces that do no work, such as forces of constraint on masses, need not be
considered.

2. Accelerations of masses need not be considered; only velocities are needed.

3. Mathematical operations are to be performed on scalars, not on vectors, in
deriving the equations of motion.

Since the variational methods make use of the principles of calculus of variations,
the basic concepts of calculus of variations are presented. However, a brief review of
the calculus of a single variable is given first to indicate the similarity of the concepts.

4.2 CALCULUS OF A SINGLE VARIABLE

To understand the principles of calculus of variations, we start with the extremization
of a function of a single variable from elementary calculus [2]. For this, consider a
continuous and differentiable function of one variable, defined in the interval (xi,x7),
with extreme points at a, b, and ¢ as shown in Fig. 4.1. In this figure the point x =
a denotes a local minimum with f(a) < f(x) for all x in the neighborhood of a.
Similarly, the point x = b represents a local maximum with f(b) > f(x) for all x in
the neighborhood of b. The point x = ¢ indicates a stationary or inflection point with
f(c) < f(x) on one side and f(c) > f(x) on the other side of the neighborhood of c.
To establish the conditions of extreme values of the function f(x), consider a Taylor
series expansion of the function about an extreme point such as x = a:

B df 1 d%f
f(X)—f(a)JrE (x —a)+ iﬁa

a

1df 3
3de |, ST

4.1)

(x —a)* +
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Figure 4.1 Extreme values of a function of one variable.

which can be rewritten as
1 d? f

T3 (x —a)’ + - (4.2)

af
f@x) = fla)= I (x—a)+
X a

If x =a is a local minimum, the quantity on the right-hand side of Eq. (4.2) must
be positive for all values of x in the neighborhood of a. Since the value of x —a
can be positive, zero, or negative in the neighborhood of a, the necessary condition is
that d f/dx|, =0 and a sufficient condition is that d*f/dx?|, > 0 for f(a) to be a
local minimum. A similar procedure can be used to establish the conditions of local
maximum at x = b and stationary point at x = c¢. Conditions for the extreme values of
f(x) can be summarized as follows. Local minimum at x = a:

d d?
a7 =0, ar >0 (4.3)
dx |, dx?|,
Local maximum at x = b:
df d*f
—| =0, — 0 4.4
dx |, dx?|, = 9
Stationary point at x = c:
df d*f
—| =0, —| =0 4.5
dx |, dx?|, (45)

4.3 CALCULUS OF VARIATIONS

The calculus of variations deals with the determination of extreme (minima, maxima,
or stationary) values of functionals. A functional is defined as a function of one or more
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other functions. A simple problem in calculus of variations can be stated as follows.
Find the function ¢ (x) that satisfies the conditions

o(x1) = @1, d(x2) = ¢ (4.6)

and makes the integral functional
X2
12/ f(x7¢7¢x)dx (47)
X

stationary. Here x|, x2, ¢, and ¢, are given, x is the independent variable, ¢ is the
unknown function of x, ¢, = d¢(x)/dx, and f(x, ¢, ¢,) is a known function of x,
¢, and ¢,. To find the true solution ¢ (x) that extremizes the functional I, we consider
a family of trial functions ¢ (x) defined by

P (x) = ¢(x) +en(x) (4.8)
where ¢ is a parameter and 1 (x) is an arbitrary differentiable function with
n(x1) =n(x2) =0 4.9)

Thus, for any specified function 7 (x), there is a family of functions given by Eq. (4.8)
with each value of ¢ designating a member of that family. Equation (4.9) ensures that
the trial functions satisfy the end conditions specified:

Px1) = p(x1) = ¢y
P(x2) = ¢(x2) = ¢ (4.10)

Geometrically, the family of curves ¢ (x) = ¢(x) connect the points (x1,¢1) and (x2,¢2)
as shown in Fig. 4.2. The minimizing curve ¢ (x) is a member of the family for ¢ = 0.
The difference between the curves ¢ (x) and ¢(x) is given by en(x). Using ¢ and
¢, =d¢/dx for ¢ and ¢, = d¢/dx, respectively, in f(x, ¢, ¢.), the integral over
the trial curve can be expressed as

_ X2 o x2
1(8)=/ f(x,¢,¢x)dX=/ S, @ +en, ¢ +eng)dx (4.11)

where 7, = dn/dx. As in the case of the calculus of one variable, we expand the
functional 7(e) about ¢ = O:

_ _ dl 1 a1 )
e=0 ’ e=0
which can be rewritten as
_ - dr 1d*1 )
1(8)—I|8=0= % e+ 5@ e+ (413)
e=0 ’ e=0
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¢

¢2_ _________________________

é=(x) + en(x)

2 —

¢=0¢x)

Figure 4.2 Exact and trial solutions.

It can be observed that the necessary condition for the extremum of I is that

dl

e =10)=0 (4.14)

e=0

Using differentiation of an integral' and noting that both ¢ and ¢, are functions of &,

we obtain
— dI 2 (3f 3¢  Of ¢y /’“Z(af of )

ISZ—Z —_— e d - — —I|x d 415

P /XI (a¢8e+a¢x 88) x : 8¢Tl+a¢xn x  (415)

When ¢ is set equal to zero, (¢, ¢,) are replaced by (¢,¢,) and Eq. (4.15) reduces to

— dl Y2 7of af
1.(0) = —(0) = — dx =0 4.16
£(0) da() /x1 (a¢n+a¢xnx> x (4.16)
If
x2(e)
I:I(s):/ f(x,e)de (a)
then 4 4 o d © af
1 X2 X1 xale
I,;: E If(xZ,E)%*f(X],E)E+£I(€) de (b)

If x; and x; are constants, Eq. (b) reduces to

dl 2 9f
I ="" = 2
£ de /;1 de * ©
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Integrating the second term of the integral in Eq. (4.16) by parts, we obtain

e M [T A (], g
18(0)_3¢xnx1+fx1 |:8¢ e (a¢x>]ndx_0 (4.17)
In view of Eq. (4.9), Eq. (4.17) gives
— (" g 3 i af B
1.(0) = /x1 |:3¢ P (8¢x>:| ndx =0 (4.18)
Since Eq. (4.18) must hold for all , we have
af d (9df )

This equation, known as the Euler—Lagrange equation, is, in general, a second-order
differential equation. The solution of Eq. (4.19) gives the function ¢ (x) that makes the
integral [ stationary.

4.4 VARIATION OPERATOR

Equation (4.17) can also be derived using a variation operator §, defined as
8¢ = d(x) — p(x) (4.20)

where ¢ (x) is the true function of x that extremizes I, and ¢ (x) is another function of x
which is infinitesimally different from ¢ (x) at every point x in the interval x; < x < x3.
The variation of a function ¢ (x) denotes an infinitesimal change in the function at a
given value of x. The change is virtual and arbitrary. The variation differs from the
usual differentiation, which denotes a measure of the change in a function (such as ¢)
resulting from a specified change in an independent variable (such as x). In view of
Eq. (4.8), Eq. (4.20) can be represented as

8¢p(x) = p(x) — p(x) = en(x) 4.21)
where the parameter ¢ tends to zero. The variation operator has the following important
properties, which are useful in the extremization of the functional /.

1. Since the variation operator is defined to cause an infinitesimal change in the
function ¢ for a fixed value of x, we have

sx =0 (4.22)

and hence the independent variable x will not participate in the variation process.

2. The variation operator is commutative with respect to the operation of differ-
entiation. For this, consider the derivative of a variation:

d . _d _ dn)
5545_ dxsn(x) =¢ I (4.23)
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Next, consider the operation of the variation of a derivation, §(d¢/dx). Using
the definition of Eq. (4.21),

d¢ d¢ d¢ d dn(x)
i e —(¢ ¢) = —n()— I

Thus, Eqgs. (4.23) and (4.24) indicate that the operations of differentiation and
variation are commutative:

(4.24)

d do
_5¢ =5 (4.25)
dx

3. The variation operator is commutative with respect to the operation of integra-
tion. For this, consider the variation of an integral:

/ ¢(x)dx—/ ¢(x)dx—/ $(x) dx
/ [B(r) — $(x)] dx = / so(ydx  (4.26)

Equation (4.26) establishes that the operations of integration and variation are
commutative:

5 / xzq&(x)dx — / " 8¢ (x) dx 4.27)

For the extremization of the functional I of Eq. (4.7), we follow the procedure
used for the extremization of a function of a single variable and define the functional
I to be stationary if the first variation is zero:

81 =0 (4.28)

Using Eq. (4.7) and the commutative property of Eq. (4.27), Eq. (4.28) can be writ-
ten as

X2
81 = / §fdx =0 (4.29)
X]

where the variation of f is caused by the varying function ¢ (x):

8f = f(x, . hx) — f(x, b, ) = f(x.p+em b +em) — f(x. 0, ¢0)  (4.30)
The expansion of the function f(x, ¢ + en, ¢, + eny) about (x, ¢, ¢,) gives

U
O g ke g ten) = f(x 9. 90) + Foen+ g -ens

Since ¢ is assumed to be small, we neglect terms of higher order in ¢ in Eq. (4.31), so

that
_fofaf
o= (%”am )

NEE 4.31)
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Thus,

§I = xz(S dx = = (o of dx =0 4.32
_/XI f X—8/x1 (%n—i-a%nx) X = (4.32)

for all functions n(x). The second term in the integral, with ¢ in Eq. (4.32), can be
integrated by parts as

2 9f B 2 od [ of af |
/XI E)fﬁcmdx——/x1 775 <a¢x)dx+ n8¢x . (4.33)
Using Eq. (4.33) in (4.32), we obtain
S [mlof _d (b or | _
o= /Xl [8(}5 P (8%)} n(x)dx + nad)x . =0 (4.34)

Since the function n(x) is arbitrary, Eq. (4.34) will be satisfied for all possible values
of n(x) only if

%_i(af>=o (4.35)
3¢  dx \ g,
af | _
i 0 (4.36)

Equation (4.35) can be seen to be the Euler—Lagrange equation, and Eq. (4.36) denotes
the boundary conditions. Since the function ¢ (x) is specified or fixed at the endpoints,
as ¢(x1) = ¢1 and ¢ (x2) = ¢ [see Eq. (4.0)], n(x1) = n(x2) =0 [see Eq. (4.9)] and
hence no variation is permitted in ¢(x) at the endpoints. Thus, Eq. (4.36) will be
satisfied automatically.

4.5 FUNCTIONAL WITH HIGHER-ORDER DERIVATIVES

The extremization of functionals involving higher-order derivatives will be useful
in deriving the equations of motion of several continuous systems. To illustrate the
methodology, we consider the extremization of a functional (/) involving second deriva-
tives:

x2
1=/ S @, fx, Pxx)dx (4.37)

where ¢ = ¢(x), oy =d¢p/dx, and ¢y = d’¢/dx?. Let ¢(x) denote the true function
that extremizes the functional / and ¢(x) a tentative solution:

d(x) = ¢(x) + en(x) (4.38)
When Eq. (4.38) is used for ¢ in Eq. (4.37), we obtain

_ X2 .
7= / F BB B dx 4.39)
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By proceeding as in Section 4.3, the necessary condition for the extremum of 7 can be
expressed as
dI

| =Lo=0 (4.40)

e=0

where

Il d [~ - [ (of0¢ of 9p, Of 09,
%—%/M f(x’¢v¢xv¢xx)dx_/)q (@g‘f'@%‘f‘@?) dx

=/ 2(%n+in + i nxx) dx (4.41)

SRR TR T
By setting ¢ = 0, ¢ becomes ¢ and the condition of Eq. (4.40) becomes
2of af af >
—n+ +— dx =0 4.42
fxl (a¢" 0. D (442

The second and third terms of the integral in Eq. (4.42) can be integrated by parts as

2 9f 2.d (of of |
—nydx = — — ndx + n (4.43)
X1 a¢x X1 dx 8¢X a¢x X1
29 2 d a a 2
/ —fnxxdx:_/ _< f)nxdx+ fr]x
X 0xx X dx \ 0y 0xx X
24 () d (0 29 2
[ A A G o
X dx 0rx dx \ 0y, x 0rx X
(4.44)
Using Eqgs. (4.43) and (4.44), Eq. (4.42) can be written as
2[a d (0 d? a
[~ o) i (o) e
x Ld¢ dx \ 0o, dx* \ 0y
of | d ( af ) 2 af 2
+ nl - — nl + n =0 (4.45)
I |y, dx \3¢u ) |, x|,

If the function ¢ (x) and its first derivative ¢, (x) = d¢(x)/dx are specified or fixed
at the endpoints x; and x,, both n(x) and n,(x) = dn(x)/dx will be zero at x; and
X7, and hence each of the terms

af  d 8f>
[a¢x _5(8% ]”xl e

will be zero. Hence, the necessary condition for the extremization of the functional 7,
also known as the Euler—Lagrange equation, can be obtained from Eq. (4.45) as

af d [ df > (of \
%_E<a¢x>+@<a¢”)‘o (40

X2

X2 8f

X1
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Note that if the functional / involves derivatives of higher than second order, so that
X2 .
1= / f, 9,00, 0@, ¢V dx (4.47)
X1

where ¢ denotes the jth-order derivative of ¢,

P =

T d=Ll2 (4.48)

the corresponding Euler—Lagrange equation can be derived as

- _d af
2 : _1yn—J _ ) =
j 0( 1) Py (8 (n_j)> 0 (4.49)

4.6 FUNCTIONAL WITH SEVERAL DEPENDENT VARIABLES

In some applications, such as the vibration of a multidegree-of-freedom system, the
functional will contain a single independent variable (such as time) but several depen-
dent variables (such as the displacements of individual masses). To consider the extrem-
ization of such functionals, let

x2
I:/ f(xa¢lv¢27"'9¢na(¢l)xv(¢2))m'--s(¢n)x)dx (450)

where (¢;)x =d¢;/dx,i =1,2,...,n. To find the functions ¢;(x), $(x), ..., ¢, (x)
with specified end conditions, ¢;(x;) = ¢;; and ¢;(x2) = ¢;» that extremize the func-
tional I of Eq. (4.50), we assume a set of tentative differentiable functions

Ei (x) as

¢i(x)=¢i(x)+877i(x), l = 1,2,...,”[ (451)
where ¢ is a parameter and 7; (x) are arbitrary differentiable functions with
ni(x1) = ni(x2) =0 (4.52)

Using ¢; and (¢;), = d¢;/dx for ¢; and (¢;), = d¢;/dx in Eq. (4.50), we obtain
1€ = [ 0BT B @0 Gl G0y G5

By proceeding as in Section 4.3, the necessary condition for the extremum of 7 can be
expressed as
dl

| =Lo=0 (4.54)

e=0
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where
L UCAY
de x | 9¢, O¢ dp, 9  A(py). 0¢ (P, 0
2 af af af af }
= pp— ++T n+_— X+ nx d (455)
/xl [aqsl"' 0bn " 9@ TR

For e =0, ¢; = ¢; and (¢;), = (¢;)x, i = 1,2,...,n, and the necessary condition of
Eq. (4.54) becomes

=l af 8f af af }
9 RN e | dx =0 4.56
/xl [fw R Y T R TS WL (420
By using the relation
X2 af /Xz d ( 8f ) E)f X2
X d = - ' ld i = 17 27 . ’
/xl a0, " o dx N0 )" T 0. ", "
(4.57)

and noting that n; = 0 at x; and x, from Eq. (4.52), Eq. (4.56) can be expressed as

2 (Faf d [ of of  d [ of B
/Xl {[871_5(a<¢1>x>]"‘+”'+[a¢n _E<a<¢n>x)}””} dr=0

(4.58)

Since 71y(x), ..., n,(x) are arbitrary functions of x, we assume a particular 7n;(x)
to be arbitrary and all the remaining n;(x) =0 (j =1,2,...,i=1,i+1,...,n) so
that Eq. (4.58) leads to the necessary conditions, also known as the Euler—Lagrange

equations:

a d a

food (A N_o i t12..n (4.59)
d¢i  dx \9(di)«

Note that if the functional involves the second derivatives of the functions ¢; (x) as

I = / f(x, ¢17 ¢2a L) d’na (¢])Xa (¢2)X7 L) (¢n)xa (¢])x;m (¢2)xm KRN (d’n)xx)dx
l (4.60)

the Euler—Lagrange equations can be derived as
d* 3 d (9 3
_2< f >__( f >+ o i=1.2.....n (4.61)
dx” \ 9(¢i)xx dx \9(¢i)x d¢i

In general, if the functional I involves derivatives of higher than the second order, so
that

1—/ Fo g o0 e e e e ) dx
(4.62)
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where ¢i(j ) denotes the jth-order derivative of ¢;,

o) = d’ ;i (x)

. 4.63
; T (4.63)
the corresponding Euler—Lagrange equations can be derived as
" .
S d" a
Z(—l)"‘f A 7f =0, i=1,2,...,n (4.64)
‘ dxn—J 3¢~(n_j)
j=0 i

4.7 FUNCTIONAL WITH SEVERAL INDEPENDENT VARIABLES

Many problems involve extremization of a functional involving more than one inde-
pendent variable. Hence, we consider the extremization of a functional in the form of
a multiple integral:

1 =// fx, 9,2, 0,00, 0y, ¢.)dV (4.65)
\%4

where x, y, and z are the independent variables and ¢ is the dependent variable with
¢ =0¢x,y,2),¢; =0¢({ =x,y,z)/0di, and V is the volume or domain of integration
bounded by a surface S. We assume that the function ¢ (x, y, z) is specified on the
surface S. If ¢ (x, y, z) is the true function that extremizes the functional /, we consider
a trial function ¢(x, y, z) that differs infinitesimally from ¢ in volume V as

b, y,2) =d(x,y,2) +enlx, y,2) (4.66)
All the trial functions are assumed to attain the same value on the boundary S, so that
n(x,y,z2) =0 on S (4.67)
When ¢ is used for ¢ in Eq. (4.65), we obtain®
7 = / f(-xv yv <, ¢) + 8’7’ ¢x + Enxa ¢)’ + 877y7 ¢Z + 877z)dv (468)
14
The necessary condition for the extremum of I can be expressed as
dl _
— =1.,0)=0 (4.69)
de
£=

where

(L e ),
de v \d¢ de 3¢, ¢ ¢, de 3¢, ¢

af af of af
= |=n+—=n+—=ny+—=n.)dV 4.70
/v(a¢" TR 8¢zn) -

2For simplicity, the multiple integral is written as /V
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By setting ¢ = 0, ¢ becomes ¢ and the condition of Eq. (4.69) becomes

af  of of af )
Ny + — dV =0 4.71
/<¢+a¢x MGG 70

Applying Green’s theorem, Eq. (4.71) can be expressed as

G i )+ o) e

of of f _
—i—/;(ad)xx—i-@y—i—a@l)ndS_O (4.72)

where [, [,, and [, denote the cosines of the angle between the normal to the surface §
and the x, y, and z axes, respectively. Since n =0 on § according to Eq. (4.67),
and n(x,y,z) is arbitrary in V, the necessary condition for extremization or the

a(]’) d X 8¢’C 8¢) Z ad)z .

4.8 EXTREMIZATION OF A FUNCTIONAL WITH CONSTRAINTS

In some cases the extremization of a functional subject to a condition is desired. The
best known case, called the isoperimetric problem, involves finding the closed curve of
a given perimeter for which the enclosed area is a maximum. To demonstrate the pro-
cedure involved, consider the problem of finding a continuously differentiable function
¢ (x) that extremizes the functional

I = /X2 fx, ¢, ¢y)dx (4.74)

while making the functional
X2
J=/ g(x, ¢, px)dx (4.75)
X1

assume a prescribed value and with both ¢ (x;) = ¢; and ¢ (x2) = ¢, prescribed. If
¢ (x) denotes the true solution of the problem, we consider a two-parameter family of
trial solutions ¢(x) as

d(x) = P (x) + e1m (x) + £212(x) (4.76)

where &, and &, are parameters and 7;(x) and n,(x) are arbitrary differentiable
functions with

ni(x1) = n1(x2) = n2(x1) = n2(x2) =0 4.77)

Equation (4.77) ensures that d(x1) = d(x1) = ¢ and P(x2) = d(x2) = ¢». Note that
¢(x) cannot be expressed as merely a one-parameter family of functions because any
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change in the value of the single parameter, in general, will alter the value of J, whose
value must be maintained as prescribed.

We can use the method of Lagrange multipliers to solve the problem. When ¢ is
substituted for ¢ in Eqgs. (4.74) and (4.75), we obtain (g1, &2) and J (g1, £2). Hence,
we define a new function, L, as

X

L =1(ey,8)+1](e1, )= / ’ F(x,¢,¢,)dx (4.78)

X1

where A is an undetermined constant, called a Lagrange multiplier, and

F(x,9,¢,) = f(x, 0, ¢0,) +rg(x,d, b)) (4.79)

The necessary conditions for the extremum of L, which also correspond to the solution
of the original constrained problem, can be expressed as
oL 0L

= =0 4.80
e d&r ( )

e1=¢ep=0 e1=¢2=0

From Eqgs. (4.78) and (4.79), we obtain

aL 2 (9F 3¢  OF 3¢, 2 [9F oF ,
—_— = —_—— 4+ — dx = —_7]]+T(7]])x dx, J:1,2
88/ X1 a¢ 88! 8¢x 88! X1 8¢ 8¢x

(4.81)

where

dn;(x)
dx

(j)x = (4.82)

Setting &1 =&, =0, (¢, ¢,) will be replaced by (¢, ¢,), so that the conditions of
Eq. (4.80) become

oF 2ToF oF )
gj _— = /X1 [ﬁﬂj + @(nj)x} dx =0, j=12 (4.83)
Integrating the second term of the integral in Eq. (4.83) by parts leads to
“2IoF d (0F i
[ G- a @) |mam=o =1 e

Since the functions 7(x) and n,(x) are arbitrary, the necessary condition or
Euler—Lagrange equation can be expressed as

OF d ( IF )
— = =0 (4.85)
0¢  dx \ g,

Note: Solution of the second-order Euler—Lagrange equation (4.85) yields a function
¢ (x) with three unknown quantities: two constants of integration and one Lagrange
multiplier [see Eq. (4.79)]. For a given isoperimetric problem, the two end conditions
specified, ¢(x;) = ¢; and ¢ (x2) = ¢,, and the prescribed value of J can be used to
find the three unknown quantities. The following example illustrates the procedure.
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Example 4.1 Determine the shape of a perfectly flexible rope of uniform cross section
that hangs at rest in a vertical plane with its endpoints fixed. The length of the rope is
specified as /.

SOLUTION  Since the rope is to be in a static equilibrium position, the potential
energy of the system is to be minimized subject to the constraint stated on the length
of the rope. Let (x1, y;) and (x3, y») denote the fixed endpoints of the rope in the xy
(vertical) plane with x; < x; (see Fig. 4.3). If the mass of the rope per unit length is
denoted by p, the potential energy of an elemental length of the rope (ds) at (x, y) is
given by pds goy, where gy denotes the acceleration due to gravity. Thus, the total
potential energy to be minimized is givel} by

1 =/ pds goy (E4.1.1)
s=0
Using the relation (dx)? 4 (dy)?> = (ds)?, we obtain
dv\2
ds = |1+ (—y) dx (E4.1.2)
dx

Thus, the variational problem can be stated as follows: Determine the curve (function)
y(x) that passes through points (x;, y;) and (x3, y»), which minimizes

1= b dy)’
= pgo v 1+ Ir dx (E4.1.3)
X|

(x)

x Idxl

Figure 4.3
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with the constraint

l X2 X2 dy 2
J=/ ds:/ gde/ 1+<—) dx =1 (E4.1.4)
s=0 X1 X1 dx

where
dy 2
g=,/1+{—) dx (E4.1.5)
dx
The function, F, can be expressed as
F=f+)~g=,0goy\/1+y§+)»\/1+y§ (E4.1.6)

Noting that F is independent of x, the Euler—Lagrange equation can be expressed as
[Eq. (4.85) with y in place of ¢]

d y: N
ax [(pgoy +A) (\/T—y% -1+ yx):| =0 (E4.1.7)

The integration of Eq. (E4.1.7) with respect to x yields

2
(0goy + A) (\/% —/1+ y,%) = (E4.1.8)
Vi

where ¢ is a constant. Equation (E4.1.8) can be rearranged to obtain

1 2
avityr (E4.1.9)

2 2
i — (L +y) =
! pgoy + A

Squaring both sides of Eq. (E4.1.9) and rearranging yields
dy

dx =¢| (E4.1.10)
Jogoy +302 = &

or

e (E4.1.11)

X = C1

d
[ ——
\/(pgoy + 22 —ct

By using the transformation

Z=pgoy + A (E4.1.12)
Eq. (E4.1.11) can be written as
1 dz cl 1 2
x=— | ——+cp=——cosh™ — 4+, (E4.1.13)
P8go 2_ 2 Pr8&o C1
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Thus, the solution of the isoperimetric problem is given by

)\‘ —
Y) = = CL gy P8O T ) (E4.1.14)

pPgo P8O C1
This solution indicates that the shape of a hanging rope is a catenary with vertical axis.
The constants cj, ¢, and A can be determined by making the catenary pass through
the specified points (xi, y;) and (x,, y2) and using the constraint equation (E4.1.4).

4.9 BOUNDARY CONDITIONS

In all previous sections the necessary condition for the extremum of a given functional
was derived by assuming that the variation is zero on the boundary (at the endpoints
x1 and x; in the case of a single independent variable). This assumption is equivalent
to asserting a specific value of the function on the boundary and is not subject to
variation. However, there are many applications where the function to be varied is not
specified on the boundary, but other equally valid boundary conditions are imposed.
It is to be noted that investigation of the boundary conditions is an integral part of
the variational approach, and any alteration of the boundary conditions causes a cor-
responding change in the extremum value of the functional. If the function is not
specified on the boundary, the proper type of boundary conditions that can be imposed
will be supplied by the variational method. In fact, one of the attractive features of
the variational approach for complex problems is that it gives not only the govern-
ing differential equation(s) of motion, in the form of Euler—Lagrange equation(s), but
also the correct boundary conditions of the problem. Consider the extremization of the
functional

X2
1=/ Jx, &, ¢x, ) dx (4.86)
X

The necessary condition for the extremum of / can be expressed as [see Eq. (4.45)].

“2raf  d [ of d> [ of af

/xl [%_E(a¢x>+ﬁ<a¢”)}"‘i” 0y
af  d [ df 2
+[a¢x_%<a¢”)}”

=0 (4.87)
To satisfy Eq. (4.87) for any arbitrary function n(x) in x; < x < xp, we need to satisfy
all the following equations:

X2

X1

X1

af d [ of & (af\
a6 e (16.) * it () = 0 80

of %
o = 0 (4.89)

af d [ of w
o~ v (307, =0 @0

X1
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As seen earlier, Eq. (4.88) denotes the governing differential equation (Euler—Lagrange
equation), while Egs. (4.89) and (4.90) indicate the boundary conditions to be satisfied.
It is not necessary to specify the values of 1 and n, = dn/dx at x| and x, in order to
satisfy Eqgs. (4.89) and (4.90). We can satisfy these equations by specifying, alternately,
the following:

aof *2
=0 491
Tl @20
of d [ of \[*_
vo. " ix (a%) - 0 (4.92)

The conditions specified by Eqgs. (4.91) and (4.92) are called natural boundary con-
ditions because they come out naturally from the extremization process (if they are
satisfied, they are called free boundary conditions). The conditions

S¢l2=0 or nl?=0 (4.93)

X1

Speli2 =0 or 2= (4.94)
are called geometric or kinematic or forced boundary conditions. It can be seen that
Egs. (4.89) and (4.90) can be satisfied by any combination of natural and geometric
boundary conditions at each of the endpoints x; and x;:

a
specify value of ¢, (so that n, = 0) or specify 3 f

XX

=0 (4.95)

or

0 d a
specify value of ¢ (so that n = 0) or specify 8;: 0 <8¢f > =0 (4.96)
X X XX

The physical significance of the natural and geometric boundary conditions is discussed
for a beam deflection problem in the following example.

Example 4.2 A uniform elastic cantilever beam of length / is loaded uniformly as
shown in Fig. 4.4. Derive the governing differential equation and the proper boundary
conditions of the beam. Also find the deflection of the beam.

Load = p per unit length

L

[«
ANRRRARNANY

Figure 4.4
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SOLUTION The principle of minimum potential energy is applicable for elastic
bodies subject to static loads. This principle states that of all possible displacement
configurations a body can assume that satisfy compatibility and given displacement
boundary conditions, the configuration that satisfies the equilibrium conditions makes
the potential energy assume a minimum value. Hence, if U denotes the potential energy
of a body, U must be minimum for the true equilibrium state. Thus, §U must be zero.

The potential energy of a body is given by the strain energy minus the work done
by the external loads. In the present case, the strain energy due to the bending of the
beam (i) is given by

EI (! [d%u\*
T=— ) ax
2 0 dx2

where E is Young’s modulus, / is the moment of inertia of the cross section of the
beam about the neutral axis, and u(x) is the transverse displacement of the beam. The
work done by the external loads (W) is given by

!
W = / pudx
0
where p denotes distributed load (load per unit length) on the beam. Thus, the potential
energy functional becomes
!
El
U= / [z(u”)2 — pu:| dx (E4.2.1)
0

where a prime indicates differentiation with respect to x once. By comparing
Eq. (E4.2.1) with the general form in Eq. (4.86), we obtain

El
Fl,uu u”) = ?(u”)z — pu (E4.2.2)

Noting that

if

u P

A _ (E4.2.3)

du’

9

8f” = Elu’

u

the Euler—Lagrange equation or the differential equation of equilibrium of the beam
can be obtained from Eq. (4.46) as

ElW" —p=0 (E4.2.4)
The boundary conditions indicated in Eq. (4.45) take the form

Eld"sul}> = 0 (E4.2.5)

EN'su/|? = 0 (E4.2.6)
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From elementary strength of materials, we notice that Elu" is the shear force, EIu” is
the bending moment, u’ is the rotation or slope, and u is the transverse displacement.
Equation (E4.2.5) states that either the shear force or the variation of displacement
must be zero at each end. Similarly, Eq. (E4.2.6) states that either the bending moment
or the variation of slope must be zero at each end of the beam. In the present case, at
x = x1 = 0, the beam is fixed and hence u = u’ =0, and at x = x, = [, the beam is
free and hence Elu”” = Elu’" = 0. Thus, we have the geometric (displacement) boundary
conditions at the fixed end and free or natural boundary conditions at the free end of
the beam.

The deflection of the beam, u(x), can be found by solving Eq. (E4.2.4):

Elu"" = p = constant (E4.2.7)
Integrating this equation, we obtain
Elu" = px + c1 (E4.2.8)

where ¢ is a constant. Since Elu” = 0 at x = [, we can find that

cy = —pl (E4.2.9)
Elu" = px — pl (E4.2.10)
Integration of Eq. (E4.2.10) gives
2
EI/ = % _pxlte (E4.2.11)
where ¢, is a constant. As Elu” =0 at x =1,
12
¢y = p? (E4.2.12)
This gives
Elu' = g(x2 — 2l +12) (E4.2.13)
Integrating this again, we have
3
Eli = g (% — X+ x12> + o3 (E4.2.14)

where the constant ¢3 can be found by using the condition that u’ = 0 at x = 0. This
leads to ¢3 = 0 and

Ely =

(S RS]

x3
2 2
<? — x2 +xl ) (E4.2.15)

Integration of this equation gives

I EAE SN S W (E4.2.16)
"o\ 3 T )T -
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Since u = 0 at x = 0, we have ¢4 = 0, and the deflection of the beam is given by

(= L (B 2 (E4.2.17)
YT E\ 127 3 T 2 -

4.10 VARIATIONAL METHODS IN SOLID MECHANICS

Several variational methods can be used to derive the governing differential equations
of an elastic body. The principles of minimum potential energy, minimum complemen-
tary energy, and stationary Reissner energy can be used to formulate static problems.
The variational principle valid for dynamics of systems of particles, rigid bodies, or
deformable solids is called Hamilton’s principle. All these variational principles are
discussed in this section, with more emphasis placed on Hamilton’s principle.

4.10.1 Principle of Minimum Potential Energy
The potential energy of an elastic body (U) is defined as

U=m—Wp (4.97)

where 7 is the strain energy and Wp is the work done on the body by the external
forces (—Wp is also called the potential energy of the applied loads). The principle of
minimum potential energy can be stated as follows: Of all possible displacement states a
body can assume (u, v, and w for a three-dimensional body) that satisfy compatibility
and specified kinematic or displacement boundary conditions, the state that satisfies
the equilibrium equations makes the potential energy assume a minimum value. If the
potential energy is expressed in terms of the displacement components u, v, and w, the
principle of minimum potential energy gives, at the equilibrium state,

SUw, v, w) =déx(u,v,w) —sWp(u,v,w) =0 (4.98)

where the variation is to be taken with respect to the displacement in Eq. (4.98), while
the forces and stresses are assumed constant. The strain energy of a linear elastic body

is given by |
™= /ff g§gdv (4.99)
v

where ¢ is the strain vector, ¢ is the stress vector, V is the volume of the body, and
the superscript 7" denotes the transpose. By using the stress—strain relations

o =[D]g (4.100)
where [D] is the elasticity matrix, the strain energy can be expressed as

n:%fo/ET[D]gdv (4.101)
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Note that the initial strains are assumed to be absent in Eq. (4.101). If initial strains
are present, with the initial strain vector given by &, the strain energy of the body
becomes

7 =1L [[[EDIEAV — [[[ET[DIEydV (4.102)
14 Vv
The work done by the external forces can be expressed as

Wp =//f ($xu+$yv+$Zw)dv+// (ou+ D+ Dw)dS,  (4.103)
14

where §, is the surface of the body on which surface forces (tractions) are prescribed.
Denoting the known body force vector ¢, the prescribed surface force (traction) vector
@, and the displacement vector & as

() L (® ’
s=1a 1t o={a | ai=]w
az 6Z w

Eq. (4.103) can be written equivalently as

Wp _// 3 udV—i—//éTﬁdSz (4.104)

$2

Using Eqgs. (4.102) and (4.104), the potential energy of the body can be expressed as

Ut vow) = L [[[ETIDIG — 20)dV — [[[$ adV — [[® ddS;  (4.105)
\% |4

Thus, according to the principle of minimum potential energy,zthe displacement field
u(x,y,z) that minimizes U and satisfies all the boundary conditions is the one that
satisfies the equilibrium equations. In the principle of minimum potential energy, we
minimize the functional U, and the resulting equations denote the equilibrium equations
while the compatibility conditions are satisfied identically.

4.10.2 Principle of Minimum Complementary Energy

The complementary energy of an elastic body (U,) is defined as

U, = complementary strain energy in terms of stresses ()

— work done by the applied loads during stress changes (W p)

The principle of the minimum complementary energy can be stated as follows: Of
all possible stress states that satisfy the equilibrium equations and the stress boundary
conditions, the state that satisfies the compatibility conditions will make the comple-
mentary energy assume a minimum value. By expressing the complementary energy
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U, in terms of the stresses o;;, the principle of minimum complementary energy gives,
for compatibility,

U (0yx, Oyysvens Ozx) = 0T ((Oxx» Oyysvnns Ozx) — SWP(UXX5 Oyysvnens 0,x) =0
(4.106)

where the variation is taken with respect to the stress components in Eq. (4.106) while
the displacements are assumed constant. The complementary strain energy of a linear
elastic body can be expressed as

1
ﬁ:E///8T§dV (4.107)
\%4

In the presence of known initial strains £y, the complementary strain energy becomes
7T =13 [[[6T(Clo +2E)dV (4.108)
14
where the strain—stress relations are assumed to be of the form

& =[Clo (4.109)

The work done by the applied loads during stress change, also known as complementary
work, is given by

Wp = // (ol + Py U + ¢-W) dS) = // Tuds, (4.110)
S1 N

where S is the part of the surface of the body on which the values of displacements
are prescribed as

S
Il
<|

g <

Thus, the complementary energy of the body can be expressed, using Egs. (4.108) and
(4.110), as

Ue(Oexs Oyys -, 00) = L [[[G(C1G +280)dV — [[ $TudS, 4.111)
4 Si

In the principle of minimum complementary energy, the functional U, is minimized
and the resulting equations denote the compatibility equations, while the equilibrium
equations are satisfied identically.

4.10.3 Principle of Stationary Reissner Energy

In the principle of minimum potential energy, the potential energy U is expressed in
terms of displacements, and variations of u, v, and w are permitted. Similarly, in the
case of the principle of minimum complementary energy, the complementary energy U,
is expressed in terms of stresses, and variations of 0,,, 0y, ..., 07, are permitted. In
the present case, the Reissner energy U, is expressed in terms of both displacements and
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stresses, and variations with respect to both displacements and stresses are permitted.
The Reissner energy for a linearly elastic body is defined as

U, = / / (internal stresses x strains expressed in terms of displacements

— complementary strain energy in terms of stresses) dV

— work done by applied forces
ou v ow  ou .
= Gxxa—}—ayy@—i—---—i—azx aﬁ-g -7 dV
v

_// (axu—i_ayv—i_azw)d‘/—/ (Exu +6yv+6ZUJ)dSZ
\% S
/ [(u =)D, + (v —D)Py + (w — W)D.] dS;

=T = 5o
// (6'é—16"[Clo — @ ) dV — [[u"®dS, — [ —u)T®dS,
S Sy

4.112)

When the variation of U, is set equal to zero by considering variations in both dis-
placements and stresses, we obtain

sU. —Z&SO--—F &&wau” vt Yrsu) =0 (4.113)
T ooy v dw '

where the subscripts i and j are used to include all the components of stress
Oyxxs Oyys ..., 05. The first term on the right-hand side of Eq. (4.113) gives the
stress—displacement relations, and the second term gives the equilibrium equations and
boundary conditions. The principle of stationary Reissner energy can be stated in words
as follows: Of all possible stress and displacement states a body can have, the particular
set that makes the Reissner energy stationary gives the correct stress—displacement and
equilibrium equations, along with the boundary conditions.

4.10.4 Hamilton’s Principle

The variational principle that can be used for dynamic problems is called Hamilton’s
principle. According to this principle, variation of the functional is taken with respect
to time. The functional used in Hamilton’s principle, similar to U, U,, and U, is called
the Lagrangian (L) and is defined as

L =T — U = kinetic energy — potential energy 4.114)

Development of Hamilton’s principle for discrete as well as continuous systems is
presented in the following sections.
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Hamilton’s Principle for Discrete Systems Let a discrete system (system with a finite
number of degrees of freedom) be composed of n masses or particles. First, we consider
a single particle of mass m, at the position vector 7, subjected to a force f(¥). The
position of the particle, 7, at any time ¢ is given by Newton’s second law of motion:
LA "
m——s — f(F) =0 4.115
@ 4.115)

If the true path of the particle is 7(¢), we define a varied path as 7 + 87, where &7
denotes the variation of the path at any fixed time . We assume that the true path and
the varied path are same at two distinct times #; and 7,, so that

87(t)) = 87 (1) = 0 (4.116)

By taking the dot product of Eq. (4.115) with §7 and integrating with respect to time
from #; to t, yields

&%

15) o
— — f(A)|-8Fdt =0 4.117
/tl [m o f(r)} 7 (4.117)
The first term of the integral in Eq. (4.117) can be integrated by parts as

oA 2 di d(§7) dr .
/ m—2~8rdt=—/ m— - dt +m— - 6r
f dt f dt  dt dt

15}

(4.118)

n

In view of Eq. (4.116), the second term on the right side of Eq. (4.118) will be zero
and Eq. (4.117) becomes

olodi d o
/tl[ma-%(swr?(r)-a?]dr_o (4.119)

The kinetic energy of the particle (7) is given by

1 dr dr
_Lar, 4.120
2" ar (4.120)
and hence
di dF  dr dst
5T = m&l sl — 2200 (4.121)

dt dt dt dt

Using Eq. (4.121) in Eq. (4.119), the general form of Hamilton’s principle for a single
mass (particle) can be expressed as

/2(8T+f-87)dt =0 (4.122)

n
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Conservative Systems  For a conservative system, the sum of the potential and
kinetic energies is a constant, and the force f can be derived from the potential energy
U as

F=—vu (4.123)

where V denotes the gradient operator. Noting that

L U aU aU
VUbr = —déx+ —38y+ —¥8z=686U(x,y,2) (4.124)
ox ay az

Hamilton’s principle for a single mass in a conservative system is given by
[5)
81:5/ Ldt=0 (4.125)
|
where

L=T-U (4.126)

is called the Lagrangian function. Thus, Hamilton’s principle for a particle acted by a
conservative force can be stated as follows: Of all possible paths that the particle could
take from its position at time #; to its position at time #,, the true path will be the one
that extremizes the integral

[0}
1=/ Ldt (4.127)
|

Use of Generalized Coordinates If the position of the path at any time ¢, 7, is
expressed in terms of the generalized coordinates ¢, g2, and g3 (instead of x, y, and
7), the Lagrangian L can be expressed as

L = L(q1,92,93. 9142, q3) (4.128)

where ¢; = dgq;/dt (i =1, 2, 3) denotes the ith generalized velocity. Then the neces-
sary condition for the extremization of / can be written as

n o 0 2 TAL  d [OL
1 =6 L(q1,92:93. 91,42, q3) dt = E 20 " 71 \5a 8g;dt =0
5] 5] i—1

9g; a4qi
(4.129)

If ¢g; are linearly independent, with no constraints among ¢;, all d¢; are independent,
and hence Eq. (4.129) leads to

oL d (0L
———\|=—=]=0 i=1,2,3 (4.130)
dg; dt \9q;
Equations (4.130) denote the Euler—Lagrange equations that correspond to the extrem-
ization of I and are often called the Lagrange equations of motion.
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Nonconservative Systems  If the forces are not conservative, the general form of
Hamilton’s principle, given by Eq. (4.122), can be rewritten as

15 15
5/ T dt +/ SWoedt =0 4.131)
n n

where
SWae = fodF

denotes the virtual work done by the nonconservative force f . In this case, a functional
I does not exist for extremization. If the virtual work § W, is expressed in terms of
generalized coordinates (gq1,92,g3) and generalized forces (Q1,0,,03) as

3
§Wae = Y 0idg; (4.132)
i=1

where §¢; is the virtual generalized displacement, Eq. (4.131) can be expressed as
D \[0T d (0T
9T d (0T +Q}8q-a’t=0 (4.133)
/zl ; [3% di (361,-) 1
Thus, the Euler—Lagrange equations corresponding to Eq. (4.133) are given by
or d (8T

—.)+Qi=0, i=1,2,3 (4.134)
04gi

aq; dt

System of Masses  If a system of n mass particles or rigid bodies with masses m; and
position vectors 7; are considered, Hamilton’s principle can be expressed as follows.
For conservative forces,

[5)
8/ L(q1,q2, .- q1, 42, ...)dt =0 (4.135)

3|

which is a generalization of Eq. (4.125). For nonconservative forces,
1) 1)
8/ Tdt+/ SWyedt =0 (4.136)
1 t

which is a generalization of Eq. (4.131). The kinetic energy and the virtual work in
Eqgs. (4.135) and (4.136) are given by

1 dF dF;
T =— i——
DI

i=

(4.137)

n
SW(8Wae) = Y fi0F; (4.138)
i=1
As can be seen from Eqgs. (4.125) and (4.131), Hamilton’s principle reduces the prob-
lems of dynamics to the study of a scalar integral that does not depend on the
coordinates used. Note that Hamilton’s principle yields merely the equations of motion
of the system but not the solution of the dynamics problem.
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Hamilton’s Principle for Continuous Systems For a continuous system, the kinetic
energy of the body, T, can be expressed as

T=1[[pii idV (4.139)
|4

where p is the density of the material and il is the vector of velocity components at
any point in the body:
u

Thus, the Lagrangian can be written as

1 T - = =3
L = 3 ///(pﬂTﬁ — YD +2i"p)dV + // 0eds, (4.140)
v S

Hamilton’s principle can be stated in words as follows: Of all possible time histories
of displacement states that satisfy the compatibility equations and the constraints or the
kinematic boundary conditions and that also satisfy the conditions at initial and final
times #; and #,, the history corresponding to the actual solution makes the Lagrangian
functional a minimum. Hamilton’s principle can thus be expressed as

5]
5/ Ldt=0 (4.141)
3|

Generalized Hamilton’s Principle For an elastic body in motion, the equations of
dynamic equilibrium for an element of the body can be written, using Cartesian tensor
notation, as

821/{,'

o’
where p is the density of the material, ¢; is the body force per unit volume acting
along the x; direction, u; is the component of displacement along the x; direction, the
o;; denotes the stress tensor

0ij.j +¢i=p i=1,2,3 (4.142)

011 012 013 Oxx Oxy Oxz
ojj=1| 021 02 013 |=| o0y 0y 0y (4.143)
031 032 033 Oxz Oyz Oz
and
8(7,'1 30,‘2 80,'3
Oij,j = — (4144)

3)61 8)62 3)63

with x; =x,xx =y, x3=zand u; = u,up = v, uz = w.

The solid body is assumed to have a volume V with a bounding surface S. The
bounding surface S is assumed to be composed of two parts, S; and S,, where the
displacements u; are prescribed on S| and surface forces (tractions) are prescribed on
S,. Consider a set of virtual displacements du; of the vibrating body which vanishes
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over the boundary surface §;, where values of displacements are prescribed, but are

arbitrary over the rest of the boundary surface S, where surface tractions are prescribed.
The virtual work done by the body and surface forces is given by

// ¢i8uidV + // <I>i8u,-dS (4145)
Vv N

where ®; indicates the prescribed surface force along the direction u;. Although the
surface integral is expressed over S in Eq. (4.145), it needs to be integrated only over
S>, since Su; vanishes over the surface S;, where the boundary displacements are
prescribed. The surface forces ®; can be represented as

3
O =ojv; =Y oy, i=123 (4.146)
j=1

where v = {v; v, v3}T is the unit vector along the outward normal of the surface S
with v, vy, and v3 as its components along the x;, x,, and x3 directions, respectively.
By substituting Eq. (4.146), the second term on the right-hand side of Eq. (4.145) can

be written as
// a[j(Suivj ds (4147)
N

Using Gauss’s theorem [7], expression (4.147) can be rewritten in terms of the volume

integral as
// CD,‘(SM,‘dS = //oijéuivj ds = // (o,-j(Sui),jdV
N N 14
= ///oij,jéuidV—f—/// oij(Sui,jdV (4148)
14 Vv

Because of the symmetry of the stress tensor, the last term in Eq. (4.148) can be written
as

//f 0ijdu; ; dV = /// 0ij [3Guij +8u; )] dV = f// 0ij8e;;dV  (4.149)
14 14 14

where ¢;; denotes the strain tensor:

&1l €12 €13 Exx  Exy Exz
Eij = &1 €22 &3 = Exy Eyy  Eyz (4.150)
&31 €32 €33 Exz  Eyz &z

In view of the equations of dynamic equilibrium, Eq. (4.142), the first integral on the
right hand side of Eq. (4.148), can be expressed as

82ul~
/// oij,jéuidV = /// (,0 al‘z _¢i) 8u,dV (4151)
14 Vv
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Thus, the second term of expression (4.145) can be written as

0%u;
//CIDi(Su,-dS:///o,,Ss,JdV—i-///( o >8uidV (4.152)
s

This gives the variational equation of motion

///cmc%udv /// <¢l— >8u dV-i—[/CD,'SuidS (4.153)

This equation can be stated more concisely by introducing different levels of restric-
tions. If the body is perfectly elastic, Eq. (4.153) can be stated in terms of the strain
energy density g as

8///7rodv /// (¢, )514 dV+// ®;8u; dS (4.154)
N
82ul~
5/// (ﬂo—i-pﬁ&h) dV:// ¢>,~8u,~dV+// ®;6u; dS (4.155)
Vv 14 N

If the variations Su; are identified with the actual displacements (du;/dt)dt during a
small time interval df, Eq. (4.155) states that in an arbitrary time interval, the sum of
the energy of deformation and the kinetic energy increases by an amount that is equal
to the work done by the external forces during the same time interval.

Treating the virtual displacements du; as functions of time and space not identified
with the actual displacements, the variational equation of motion, Eq. (4.154), can be
integrated between two arbitrary instants of time #; and ¢, and we obtain

) 15) [§)
/ ///&mdwz:/ dt// ¢i8uidV+/ dt//CDi(SuidS
n v n n s
/ dt /// (Su, dv (4.156)

Denoting the last term in Eq. (4.156) as A, inverting the order of integration, and
integrating by parts leads to

au; 2 Qu; ddu; 0
/// Uu; (Suld‘/'b1 /// dV/ Ui ( Uu; + 3_'08ul> dt (4.157)
1

In most problems, the time rate of change of the density of the material, dp/dt, can
be neglected. Also, we consider du; to be zero at all points of the body at initial and
final times #; and ?,, so that

or

Su;(ty) = du;(tz) =0 (4.158)
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In view of Eq. (4.158), Eq. (4.157) can be rewritten as

n du; ASu; du; ou;
——f //fp“ Yiavdr = /f// " ”dth
: ot ot
U ow ou;
f /// i ou dt:—/ ST di (4.159)
2P 791 ot ;

ou; Bul
/// o (4.160)

is the kinetic energy of the vibrating body. Thus, Eq. (4.156) can be expressed as

15 15) 153
/ 8(m —T)dt = / /// ¢idu; dV dt +/ // D;6u; dSdt (4.161)
51 1 151
\4 S2

where 7 denotes the total strain energy of the solid body:

n://fnodV (4.162)
4

If the external forces acting on the body are such that the sum of the integrals on the
right-hand side of Eq. (4.161) denotes the variation of a single function W (known as
the potential energy of loading), we have

// ¢idu; dV + // D;6u; dS = —5W (4.163)
\%4 S2

Then Eq. (4.161) can be expressed as

where

15) 15
5/ Ldtz/ (r =T +W)dt =0 (4.164)
11 51

where
L=n-T+W (4.165)

is called the Lagrangian function and Eq. (4.164) is known as Hamilton’s principle.
Note that a negative sign is included, as indicated in Eq. (4.163), for the potential
energy of loading (W). Hamilton’s principle can be stated in words as follows: The
time integral of the Lagrangian function between the initial time #; and the final time
1 is an extremum for the actual displacements (motion) with respect to all admissible
virtual displacements that vanish throughout the entire time interval: first, at all points
of the body at the instants f; and #,, and second, over the surface S;, where the
displacements are prescribed.

Hamilton’s principle can be interpreted in another way by considering the dis-
placements u;(x, x2, x3, t), i = 1, 2, 3, to constitute a dynamic path in space. Then
Hamilton’s principle states: Among all admissible dynamic paths that satisfy the pre-
scribed geometric boundary conditions on S; at all times and the prescribed conditions
at two arbitrary instants of time #; and #, at every point of the body, the actual dynamic
path (solution) makes the Lagrangian function an extremum.
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4.11 APPLICATIONS OF HAMILTON’S PRINCIPLE
4.11.1 Equation of Motion for Torsional Vibration of a Shaft (Free Vibration)

Strain Energy To derive a general expression for the strain energy of a shaft, consider
the shaft to be of variable cross section under a torsional load as shown in Fig. 4.5. If
0 (x, t) denotes the angular displacement of the cross section at x, the angular displace-
ment of the cross section at x + dx can be denoted as 6(x,t) + [00(x,t)/0x]dx,
due to the distributed torsional load m,(x,t). The shear strain at a radial distance
r is given by y =r(96/0x). The corresponding shear stress can be represented as
T =Gy = Gr(d6/0x), where G is the shear modulus. The strain energy density g
can be represented as my = %ry = %Gr2 (90/0x)%. The total strain energy of the shaft
can be determined as

L 1 30\ > 1 (L 30\ 2
= dV = —Gr*(—=) dAdx == GJ|[=) dx 4.166
T ///”0 /0 //2 d (8x> * 2/0 (8x> x (4.166)
Vv A

where V is the volume, L is the length, A is the cross-sectional area, and J = I, polar
moment of inertia (for a uniform circular shaft) of the shaft.

Kinetic Energy The kinetic energy of a shaft with variable cross section can be

expressed as )
1 [t 00(x, 1)
T =~ I d 4.167
2/0 o(X)( o7 ) x ( )

where Io(x) = pl,(x) is the mass moment of inertia per unit length of the shaft and
p is the density. By using Eqgs. (4.166) and (4.167), Hamilton’s principle can be used
to obtain

0 LIy L 730\ 1 (L 30\ >
5/ (T—n)a’t:S/ —/ 10<—> a’x——/ GJ(—) dx|dt=0
t 0 2 0 81‘ 2 0 Bx
1
(4.168)

By carrying out the variation operation, the various terms in Eq. (4.168) can be rewrit-
ten, noting that § and d/0¢ as well as § and d/0x are commutative, as

plr ot a0\ Dok 9%
3/ —] Iy <—) dx dt:—/ / Io—— 380 dx dt (4.169)
2 2 0 Jat n Jo Jat

Figure 4.5 Torsional vibration of a shaft.
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assuming that 0 is prescribed at #; and #, so that §6 = 0 at #; and f,. Similarly,
ol (L 36\* f R Y 36
(S/ —/ GJ<—> dx a’t:/ GJ—680 —/ —(GJ—)(S@dx dt
n | 2Jo ox f ox | 0o Ox ox
(4.170)
Thus, Eq. (4.168) becomes

2 rtra 36 %0 96
— (G =) —lo—=|80dx — GJ_—&0
f o Lox ox at ax
Assuming that 80 = Qatx = 0and x = L, and §6 is arbitrary in 0 < x < L, Eq. (4.171)
requires that

5]

} dt =0 (4.171)

5}

0 00 320
T (eiZ) -1, =0, O0<x<L (4.172)
ax ax ot?
00
(GJ8—> 56 =0 at x=Oandx=L 4.173)
X

Equation (4.172) denotes the equation of motion of the shaft, and Eq. (4.173) indicates
the boundary conditions. The boundary conditions require that either GJ(30/9dx) = 0
(stress is zero) or 660 = 0 (6 is specified) at x =0 and x = L.

4.11.2 Transverse Vibration of a Thin Beam

Consider an element of a thin beam in bending as shown in Fig. 4.6. If w denotes the
deflection of the beam at any point x along the length of the beam, the slope of the
deflected centerline is given by dw/dx. Since a plane section of the beam remains plane
after deformation according to simple (thin) beam theory, the axial displacement of a
fiber located at a distance z from the neutral axis u due to the transverse displacement
w can be expressed as (point A moves to A”)

ow
U=—z7— (4.174)
ax
Thus, the axial strain can be expressed as
Ou & (4.175)
Ey = — = —7—— .
T ox ‘ 9x2
and the axial stress as
82
o, = Eg, = —Ez 2% (4.176)
ax2

The strain energy density of the beam element () is given by

TT) = —O0x&x = < L7 — 4.177
0 2 Xex 2 a 2
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Figure 4.6 Beam in bending.

and hence the strain energy of the beam (;r) can be expressed as

2 L 2 2
) 1 “w
T = modV = —E [dA(x)z7] dx = — Elx)| — ) dx
2 0 8x2
v

(4.178)
where I (x) denotes the area moment of inertia of the cross section of the beam at x:
I(x) = / / dA(x)z? (4.179)
A
The kinetic energy of the beam can be expressed as
1 (L dw(x, 1) Nn71?
T = m(x) dx (4.180)
2 0 ot

where m(x) = pA(x) is the mass per unit length of the beam and p is the density of
the beam. The virtual work of the applied distributed force, f(x,t), is given by

L
SW(t) = f S, H)éw(x,t)dx (4.181)
0
Noting that the order of integrations with respect to ¢ and x can be interchanged and

the operators § and d/dx or § and d/dt are commutative, the variations of w and T
can be written as

Ll 32
871—5// “EI dxdt //EI Ys dx di
9x2 ax2  \ ax2

/[2 P el Y ' /L " (e 52 g | (4.182)
= 5 O0/— - b e —ax .
" x> ox|, Jo ox 0x2 ) ox
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Loty (9 9
//—El—wé—wdxdt
0 Jo 0x 0x2 ox
nl g 92w L L g2 92w
=/ — | EI— ) w —/ — | EI—= ) Swdx | dt
q | 0x 9x2 o Jo ax2\Tox?
Eq. (4.182) becomes
ol 2w fow\|" 8 [ 8w
o :/ El— 8<—> (EI )(Sw
i 0x2 ax /o ax 0x2

L 82 82
El— | swdx | dt
+/0 ax2< axZ) v x}

Since

L

0

(4.183)

(4.184)

ST_S/ / —m(x)( w> dxdt = //m(x)—8<8t>dxdt

f2 29 ow
—/ —(m—>8wdt dx
f n Ot ot
Lrra g dw
—/ |:/ —<m—)8wdti|dx
0 n 0t ot

(4.185)

because dw is zero at t = #; and t = t,. Thus, Hamilton’s principle can be stated as

[0}
3/ (T—7m+W)dt=0
|

or

L

e L 2w 9w [ow
- m—-dwdx — EI—6 | —
i 0 at ox ax /o
L 82 82 L
—/ oy gl 5wdx+/ fowdt| dt =0
0 8)62 dx2 0

Equation (4.186) leads to the following equations:

92 32w 32w
ﬁ(E182>+m - f=0, O<x<L
92w ow L
EI 1) =0
ax2 \ox /|,
9 [ 2w k
— | El— | dw| =0
ox ax2 0

+ — 9 E182 )
w
X 0x2

(4.186)

(4.187)

(4.188)

(4.189)
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Equation (4.187) denotes the equation of motion for the transverse vibration of the
beam, and Eqs. (4.188) and (4.189) represent the boundary conditions. It can be seen
that Eq. (4.188) requires that either

92 9
EE2 —0 or 6(22)=0 atx=0andx=1L (4.190)
9x2 ax
while Eq. (4.189) requires that either
9 02w
—|El— ) =0 or sw=0 atx =0and x = L (4.191)
ox 0x2

Thus, Egs. (4.188) and (4.189) can be satisfied by the following common boundary
conditions:

1. Fixed or clamped end:
w = transverse deflection = 0, a_w = bending slope = 0 (4.192)
X

2. Pinned or hinged end:
2

w = transverse deflection = 0, EI a—uz) = bending moment = 0
X
(4.193)
3. Free end:
92w ) B 0w
El— = bending moment = 0, — | EI— | = shear force =0
9x2 X 0x2
(4.194)

4.12 RECENT CONTRIBUTIONS

Nagem et al. [11] observed that the Hamiltonian formulation of the damped oscillator
can be used to model dissipation in quantum mechanics, to analyze low-temperature
thermal fluctuations in RLC circuits, and to establish Pontryagin control theory for
damped systems. Sato examined the governing equations used for the vibration and
stability of a Timoshenko beam from the point of view of Hamilton’s principle [12]. He
derived the governing equations using an extended Hamilton’s principle by considering
the deviation of the external force following the deflection of the beam at its tip in
terms of the angle ¢ measured from the x axis (which is taken to be along the length
of the beam).

The variational finite difference method was presented for the vibration of sector
plates by Singh and Dev [13]. Conventional finite difference techniques are normally
applied to discretize the differential formulation either by approximating the field vari-
able directly or by replacing the differentials by appropriate difference quotients. In
general, the boundary conditions pose difficulties, particularly in problems with com-
plex geometric configurations. The difficulties of conventional finite difference analysis
can be overcome by using an integral-based finite difference approach in which the
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principle of virtual work or minimum potential energy is used. Reference [13] demon-
strates the application of the variational finite difference method to vibration problems.

Gladwell and Zimmermann [14] presented the variational formulations of the

equations governing the harmonic vibration of structural and acoustic systems. Two for-
mulations, one involving displacements only and the other involving forcelike quantities
only, were presented along with a discussion of the dual relationship. The principles
were applied to the vibration of membranes and plates, to coupled air-membrane and
air-plate vibrations, and to the vibration of isotropic elastic solid.
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4.1 Formulate the problem of finding a plane curve of
smallest arc length y(x) that connects points (x;, y;) and

(2, y2).
4.2 Solve the problem formulated in Problem 4.1 and

show that the shortest distance between points (xi, y1)
and (xp, y7) is a straight line.

4.3 A plane curve y(x) is used to connect points (xy, y;)
and (xp, y2) with x; < xp. The curve y(x) is rotated
about the x axis to generate a surface of revolution in
the range x; < x < x, (Fig. 4.7). Formulate the prob-
lem of finding the curve y(x) that corresponds to
minimum area of the surface of revolution in the xy
plane.



y(x)

(epyp)

4.4 Solve the problem formulated in Problem 4.3.

4.5 Given two points A = (x1, y1) and B = (x2, y2) in
the xy plane, consider an arc defined by y = y(x) > 0,
x] < x < xp, that passes through A and B whose rota-
tion about the x axis generates a surface of revolution.
Find the arc y = y(x) such that the area included in
X1 < x < xp is a minimum.

4.6 Consider the Lagrangian functional L, given by

LpA [ou\? UAE [ou)\?
szp— @ dx—f— L) ax
0o 2 at 0o 2 ax

I
+/fudx+Fu(l)
0

This functional corresponds to the axial vibration of a
bar where u(x, t) denotes the axial displacement.

(a) Find the first variation of the functional L with
Su(0,t) =du(x, ) =du(x, ) =0.

(b) Derive the Euler—Lagrange equations by setting the
coefficients of Su in (0, /) and at x =/ in the result
of part (a) to zero separately.

4.7 Consider a solid body of revolution obtained by
rotating a curve y = y(x) in the xy plane passing
through the origin (0,0), about the x axis as shown in
Fig. 4.8. When this body of revolution moves in the —x
direction at a velocity v in a fluid of density p, the nor-
mal pressure acting on an element of the surface of the

121

Problems

Figure 4.7

body is given by

p=2pv>sin’ 0 4.1
where 6 is the angle between the direction of the velocity
of the fluid and the tangent to the surface. The drag
force on the body, P, can be found by integrating the x
component of the force acting on the surface of a slice
of the body shown in Fig. 4.8(b)[9]:

L d 3
P=471,0v2/0 <£) ydx

Find the curve y = y(x) that minimizes the drag on the
body of revolution, given by Eq. (4.2), subject to the
condition that y(x) satisfies the end conditions y(x =
0)=0and y(x =L) = R.

4.2)

4.8 Consider the functional I(w) that arises in the
transverse bending of a thin rectangular plate resting on
an elastic foundation:

L) Dl/“ /* 32w 2_% 2w\’
w) = — — —
2 x=0Jy=0 8x2 8y2
32w 92 2w \°
v + kw?
axay

a b
xdxdy—/ / Jowdxdy
x=0Jy=0
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(@)

Figure 4.8 Solid body of revolution moving in a fluid.

where w(x, y) denotes the transverse deflection, D the
bending rigidity, v the Poisson ratio, k the foundation
modulus, and fy the transverse distributed load acting
on the plate with w = 0 on the boundary of the plate.

(a) Find the first variation of the functional /(w) with
respect to w.

(b) Derive the Euler—Lagrange equation corresponding
to the functional I (w).

(c) Identify the natural and forced boundary conditions
of the problem.

4.9 Consider the problem of minimizing the functional
I(y) given by

b
1(y)=/7 y(x)dx, ya =4, yb)=B8B

subject to the constraint

b 2
| dy
1 — ) =1
Derive the Euler—Lagrange equations of the problem

using Lagrange multipliers.

4.10 The transverse deflection of a membrane of area
A (in the xy plane), subjected to a distributed transverse

()

load f(x,y), gives rise to the functional

1 aw\2  [ow)>
I(w) = 5// [(5) +(E) —2fu):| dxdy
A

Derive the governing differential equation and the
boundary conditions by minimizing the functional 7 (w).

4.11 The potential energy of a thin beam, /(w), lying
along the x axis subjected to a distributed transverse
load f(x) per unit length, a bending moment M; and a
shear force V; at the end x = 0, and a bending moment
M and a shear force V, at the end x =/ is given by

1 /! d*w 2 !
1 = - ElI| — —
(w) ZA:O (dx2> dx /Xzofwdx
M dw M dw
1 dx x=0 ’ dx x=l

— Viwlx=o + Vaw|r=

where w(x) denotes the transverse deflection and EI
the bending stiffness of the beam. Derive the governing
differential equation and the boundary conditions of the
beam by minimizing the potential energy.



Derivation of Equations: Integral
Equation Approach

5.1 INTRODUCTION

In this chapter we describe the integral formulation of the equations of motion governing
the vibration of continuous systems. An integral equation is an equation in which the
unknown function appears under one or more signs of integration. The general form
of an integral equation is given by

b
/ K(t,8)¢E)dE +ao()¢(t) = f(1) (.1

where K (¢, £) is a known function of the variables ¢ and & and is called the kernal or
nucleus, ¢ (£) is an unknown function, ag(¢) and f () are known functions, and a and
b are known limits of integration. The function ¢ (#) which satisfies Eq. (5.1) is called
the solution of the integral Eq. (5.1). Physically, Eq. (5.1) relates the present value
of the function ¢ (¢) to the sum or integral of what had happened to all its previous
values, ¢ (£), from the previous state, a, to the present state, b. The first and second
terms on the left-hand side of Eq. (5.1) are called the regular and exceptional parts
of the equation, respectively, while the term on the right-hand side, f(¢), is called the
disturbance function. In some cases, the integral equation may contain the derivatives
of the unknown function ¢ (&) as

b
/ K (1, 8)¢ () d& + ap)p (1) + ar)¢ V(1) + -+ + a, ()™ (1) = f(1)  (5.2)

where a1 (1), ..., a,(t) are known functions of # and ¢ (¢) = d'¢p/dt',i =1,2,...,n.
Equation (5.2) is called an integrodifferential equation.

5.2 CLASSIFICATION OF INTEGRAL EQUATIONS

Integral equations can be classified in a variety of ways, as indicated below.

5.2.1 Classification Based on the Nonlinear Appearance of ¢ (¢)

If the unknown function ¢ () appears nonlinearly in the regular and/or exceptional parts,
the equation is said to be a nonlinear integral equation. For example, the equation
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b
Glo()] - / HIt, £, (€)1 dE = £(1) (5.3)

where G and/or H are nonlinear functions of ¢(t), is called a nonlinear integral
equation. On the other hand, if both G and H in Eq. (5.3) are linear in terms of ¢ (¢),
the equation is said to be a linear integral equation. Thus, Eq. (5.1) is called a linear
integral equation, while Eq. (5.2) is said to be a linear integrodifferential equation.

5.2.2 Classification Based on the Location of Unknown Function ¢ (¢)

Based on the location of the unknown function, the integral equations are said to be of
the first, second, or third kind. For example, if the unknown function appears under the
integral sign only, the equation is said to be of the first kind. If the unknown function
appears both under the integral sign and outside the integral, the equation is considered
to be of the second or third kind. In the second kind of integral equation, the unknown
function, appearing outside the integral sign, appears alone, whereas in the third kind,
it appears in the form of a product ay(¢)¢ (), where ay(¢) is a known function of z.
According to this classification, Eq. (5.1) is an integral equation of the third kind. The
corresponding equations of the second and first kinds can be expressed, respectively, as

b
¢(@) —)»/ K(t,8)p(E)de = f(1) (5.4)

and

b
/ K(1,.5)p)dE = f(1) (5.5)

If f(r) =0 in Eq. (5.4), we obtain

b
@) = )»/ K(t,.5)¢p (&) dg (5.6)

which is called a homogeneous integral equation. Note that the A in Egs. (5.4) and (5.6)
denotes a constant and can be incorporated into the kernel K (7, £). However, in many
applications, this constant represents a significant parameter that may assume several
values. Hence, it is included as a separate parameter in these equations.

5.2.3 Classification Based on the Limits of Integration

Based on the type of integral in the regular part, the integral equations are classified
as Fredholm- or Volterra-type equations. If the integral is over finite limits with fixed
endpoints (definite integral), the equation is said to be of Fredholm type. On the other
hand, if the integration limits are variable (indefinite integral), the integral equation is
said to be of Volterra type. It can be seen that in Egs. (5.1) to (5.6), the regular parts
involve definite integrals and hence they are considered to be of Fredholm type.

If K(t,&) =0 for & > ¢, the regular parts of Eqgs. (5.1) to (5.6) can be expressed
as indefinite integrals as

/ Kt )p(8) dE

a
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and hence the resulting equations will be of Volterra type Thus, Volterra-type integral
equations of the third, second, and first kind can be expressed, in sequence, as

/ K(t, )6 (€) dE + a1 (1) = £ (1) 5.7)
(1) - / K. 5)$E) dé = £(1) (5.8)
f K(t,8)¢ (&) dE = (1) (5.9)

Similar to Eq. (5.6), the Volterra-type homogeneous integral equation can be written as

¢>(t)=/ K(1,8)¢p (&) dE (5.10)

5.2.4 Classification Based on the Proper Nature of an Integral

If the regular part of the integral equation contains a singular integral, the equation is
called a singular integral equation. Otherwise, the equation is called a normal integral
equation. The singularity in the integral may be due to either an infinite range of inte-
gration or a nonintegrable or unbounded kernel which causes the integrand to become
infinite at some point in the range of integration. Thus, the following equations are
examples of singular integral equations:

/0 K(t.5)¢&)ds = f(1) (5.1

¢ (1) —k/ K(t,5)¢&)ds = f(1) (5.12)

5.3 DERIVATION OF INTEGRAL EQUATIONS
5.3.1 Direct Method

The direct method of deriving integral equations is illustrated through the following
example.

Example 5.1 Load Distribution on a String Consider the problem of finding the load
distribution on a tightly stretched string, which results in a specified deflection shape
of the string. Let a string of length L be under tension P. When a concentrated load F
is applied to the string at point &, the string will deflect as shown in Fig. 5.1. Let the
transverse displacement of the string at & due to F be §. Then the displacement w(x)
at any other point x can be expressed as
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Figure 5.1 Tightly stretched string subject to a force F.

For small displacements §, the conditions for the equilibrium of horizontal and vertical
forces can be written as

P cosf = Pcos¢ (E5.1.2)
F = Psinf + Psing
~ P(tan6 + tan ¢)

Ls
=P— (E5.1.3)
§(L—-§)
Equation (E5.1.3) can be solved for §, which upon substitution in Eq. (E5.1.3) results in
F
w(x) = Fg(x, &) (E5.1.4)
where g(x, &) is the impulse response function, also known as Green’s function,
given by
L —
%’ x < g
gx,§) = (E5.1.5)
§(L —x)
77 é 5 x
L

If the external load applied to the string is distributed with a magnitude of f(§) per
unit length, the transverse displacement of the string can be expressed as

1 L
wix) = ;/0 g (x. £) (&) dE (E5.1.6)

If the displacement variation w(x) is specified, Eq. (ES.1.6) becomes an integral equ-
ation of the first kind for the unknown force distribution f(x). For free vibration, the
force per unit length, due to inertia, is given by

92w(x,
flx, 1) = —p(x)% (E5.1.7)
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where p(x) is the mass density (mass per unit length) of the string at x. Using
Eq. (E5.1.7), Eq. (E5.1.6) can be written as

82
wix, 1) = ——/ g(x, &)p (&) 2D “’@ D g (ES.1.8)

When p(x) is known, Eq. (E5.1.8) denotes the governing integrodifferential equation
for the displacement w(x, t). Assuming a simple harmonic solution with frequency w,

w(x, ) = W(x) sin wt (E5.1.9)

where W(x) denotes the amplitude of displacement of the string at x, Eq. (E5.1.8)
becomes

w2 L
Wx) = 7/0 gx,&)pE)W(E)déE (E5.1.10)

which can be seen to be an integral equation of the second kind for W (x).

5.3.2 Derivation from the Differential Equation of Motion

The equation of motion for the free vibration of a string can be expressed as (see

Eq. (8.9)
92w 92w
2
—_— = 5.13
o2 T o (5-13)
where
, P
"= — (5.14)
P

p is the mass density of the string per unit length and P is the tension. If the string is
fixed at both ends, the boundary conditions are given by

w(0,71) =0
w(L,t) =0 (5.15)
If the string is given an initial displacement f(x) and initial velocity g(x), we have
w(x, 0) = f(x)
ow
— (x,0) =g(x) (5.16)
ot
Using the separation of variables technique, w(x, t) can be expressed as
wx,t) = Xx)T (1) (5.17)

where X is a function of x and T is a function of ¢. Using Eq. (5.17), Eq. (5.13) can
be rewritten as

d’T/di* C2d2X/ dx?

= = —ic? 5.18
T X c (5.18)
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where —Ac? is a constant. Equation (5.18) yields two ordinary differential equations:

d*t )

—7 +rT = 0 (5.19)
d*X
T3 tAX = 0 (5.20)

Since T (t) # 0, the boundary conditions can be expressed as

X©0)=0
X(L)=0 (5.21)
Integration of Eq. (5.20) gives
dX *
__=—%/1Xd§+q (5.22)
dx 0

where ¢ is a constant. Integration of Eq. (5.22) leads to

X X
X = —A/ dr]/ Xdé+cix+c (5.23)
0 0

where c; is a constant. Changing the order of integration, Eq. (5.23) can be rewritten as

X(x):—}»/ X(S)dé/ dn+cix +c
0 §

= —A/ x=8)XE)dE+cx+ (5.24)
0
The use of the boundary conditions, Eq. (5.21), results in
Cy) = 0
1 L
c = Z/ (L-8)X(§)ds (5.25)
0

The differential Eq. (5.13) can thus be expressed as an equivalent integral equation in
X(x) as

X L
X(JC)Jr)»/0 (X—S)X(S)dé—)»%/(; (L—-§)X(¢)ds =0 (5.26)

Introducing

L —
&E(L — x), 0<é<x (527)
x<§&<

Ku£)={ML_§% .

Eq. (5.26) can be rewritten as

L
X (x) :k/o K(x,8)X(&)dé& (5.28)
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This equation can be seen to be of the same form as Eq. (E5.1.10) (Volterra-type
homogeneous integral equation). Equation (5.28) can be solved using the procedure
outlined in the following example.
Example 5.2 Find the solution of Eq. (5.28).
SOLUTION We rewrite Eq. (5.28) as
X
X(x)+k/ x—8)X(E)dE —Xxxd =0 (E5.2.1)
0
where
1 L
d= z/ (L—-§)X(&)dE (E5.2.2)
0
Taking the Laplace transform of Eq. (E5.2.1), we obtain

_ 1_ 1
X(s) + A5 X(s) —A—d =0 (E5.2.3)
S S

where X (s) is the Laplace transform of X (x). Equation (E5.2.3) yields

X(s) rd (E5.2.4)
§) = —— 2.
24X
and the inverse transform of Eq. (ES5.2.4) gives
X (x) = vV/AdsinVax (E5.2.5)
Substitution of Eq. (E5.2.5) into Eq. (E5.2.2) gives
L
df (L —&)vasinVreds = dL (E5.2.6)
0
which can be satisfied when d = 0 or
L
/ (L —&)VisinVrede =L (E5.2.7)
0

Since d = 0 leads to the trivial solution X (x) = 0 and w(x, ) = 0, Eq. (E5.2.7) must
be satisfied. Equation (E5.2.7) yields

in VAL
p_SnvAL . (E5.2.8)
N

or

sinv/AL =0 (E5.2.9)
or

n2m?
A= —, n=12... (E5.2.10)



130  Derivation of Equations: Integral Equation Approach

Equations (E5.2.5) and (E5.2.10) lead to

. nNmTX
X(x) = asin =~ (E5.2.11)

where a is a constant.

5.4 GENERAL FORMULATION OF THE EIGENVALUE PROBLEM
5.4.1 One-Dimensional Systems

For a one-dimensional continuous system, the displacement w(x, ¢) can be expressed as

L
w(x,t)=/0 a(x,&)f(E.1)dg (5.29)

where a(x, &) is the flexibility influence function that satisfies the boundary conditions
of the system and f (£, ) is the distributed load at point & at time ¢. For a system
undergoing free vibration, the load represents the inertia force, so that

2
flx,t) = —m(x)% (5.30)

where m(x) is the mass per unit length. Assuming a harmonic motion of frequency w
during free vibration,

w(x,t) = W(x) cos wt (5.31)
Eq. (5.30) can be expressed as
f(x, 1) = @’*m(x)W(x) cos wt (5.32)

Substituting Egs. (5.31) and (5.32) into Eq. (5.29) results in

L
W(x) =w2/0 a(x,&)mE)W (&) d§ (5.33)

It can be seen that Eq. (5.33) is a homogeneous integral equation of the second kind
and represents the eigenvalue problem of the system in integral form.

Example 5.3 Free Transverse Vibration of a Membrane Consider a membrane of
area A whose equilibrium shape lies in the xy plane. Let the membrane be fixed at
its boundary, S, and subjected to a uniform tension P (force per unit length). Let
the transverse displacement of point Q(x, y) due to the transverse load f(&,n)d& dn
applied at the point R(&, n) be w(Q). By considering the equilibrium of a small element
of area dx dy of the membrane, the differential equation can be derived as

Pw  0Pw  f(x,y)

ax2 9y P

(E5.3.1)
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The Green’s function of the membrane, K (x, y; &, n), is given by [4]
1
K(Q,R)=K(x,y;§, 1) =log P h(Q, R) (ES.3.2)

where r denotes the distance between two points Q and R in the domain of the
membrane:

r=vx -2+ (y —n)? (E5.3.3)

and A(Q, R) is a harmonic function whose values on the boundary of the membrane,
S, are the same as those of log(1/r) so that K(Q, R) will be zero on S. For example, if
the membrane is circular with center at (0,0) and radius a, the variation of the function
K (Q, R) will be as shown in Fig. 5.2. Since the membrane is fixed along its boundary
S, the transverse displacement of point Q can be expressed as

1
w(Q) = 7P // K(Q,R)f(R)dA (E5.3.4)
7 P
A

K(Q. R)

Boundary, S

N

Figure 5.2 Variation of the Green’s function for a circular membrane. (From Ref. [4]).
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From this static relation, the free vibration relation can be obtained by substituting
—p(R)[3*w(R)/dt?] for f(R) in Eq. (E5.3.4) so that

! K(0. Do) Y (R dA E53.5
w(Q)__Zn—P// (9, R)p( )W( ) (E5.3.5)
A

Assuming harmonic motion with frequency w, we have
w(Q) = W(Q)e'™ (E5.3.6)

where W (Q) denotes the amplitude of vibration at point Q. Substitution of Eq. (E5.3.6)
in Eq. (E5.3.5) yields the relation

2
W(Q) = ;—P // K(Q. R)p(R)W(R)d A (E5.3.7)
A

5.4.2 General Continuous Systems

The general form of Eq. (5.33), valid for any continuous system, can be expressed as
Wi(x) = )»/ 8(x, E)mE)W(E)dV (&) (5.34)
14

where W(x) and W (&) denote the displacements at points x and &, respectively.
Depending on the dimensionality of the problem, points x and & may be defined by
one, two, or three spatial coordinates. The general flexibility influence function g(x, &),
also known as the Green’s function, is symmetric in x and &, [i.e., g(x, &) = g(&, x)]
for a self-adjoint problem.

Note that the kernel, g(x, £)m (&), in Eq. (5.34) is not symmetric unless m(§) is a
constant. However, the kernel can be made symmetric by noting the fact that m(§) > 0
and introducing the function ¢ (x):

¢(x) = ym(x)W(x) (5.35)
By multiplying both sides of Eq. (5.34) by +/m(x) and using Eq. (5.35), we obtain

p(x) = )»/V K(x,8)pE)dV(E) (5.36)
where the kernel
K(x,8) =ymx)m(§)g(x,§) = K(§,x) (5.37)

can be seen to be symmetric. An advantage of the transformation above is that a
symmetric kernel usually possesses an infinite number of eigenvalues, A, for which
Eq. (5.36) will have nonzero solutions. On the other hand, a nonsymmetric kernel
may or may not have eigenvalues [1]. For any specific eigenvalue A;, Eq. (5.36) has a
nontrivial solution ¢;(x), which is related to W;(x) by Eq. (5.35). The function W;(x)
represents the eigenfunction corresponding to the eigenvalue A; of the system.
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5.4.3 Orthogonality of Eigenfunctions

It can be shown that the eigenfunctions ¢, (x) are orthogonal in the usual sense, while
the functions W;(x) are orthogonal with respect to the functions m (x). For this, consider
Eq. (5.36), corresponding to two distinct eigenvalues A; and A ;:

¢i(x) =M/VK(x,E)¢i(§)dV(§) (5.38)
¢;(x) =?~1/VK(x,r§)¢j(§)dV(§) (5:39)

Multiply Eq. (5.38) by ¢;(x), integrate over the domain V, and use Eq. (5.39) to
obtain

/V¢i(x)¢j(x)dv(x) =)»i/V¢j(X) [/V K(x,é)dbi(%‘)dV(S)} dV(x)
=M/V¢i($) [/V K(S,X)dﬁj(%‘)dV(X)} dv(§)
Aj
= A—/ $i(§)¢;(E)dV(§) (5.40)
jJv
which yields
(i = 2j) /V $i(x)pj(x)dV(x) =0 (5.41)

Since A; and A; are distinct, A; # A;, Eq. (5.41) leads to the orthogonality relation

‘/th(x)(ﬁj(x)dV(x) =0, hi #FAj (5.42)

When Egq. (5.35) is used in Eq. (5.42), we obtain the orthogonality relation for the
eigenfunctions W;(x) as

o for A; # X
/Vm(x)W,»(x)Wj(x)dV(x) = {1 for iy = )\j‘ (5.43)

5.5 SOLUTION OF INTEGRAL EQUATIONS

Several methods, both exact and approximate methods, can be used to find the solu-
tions of integral equations [1,4—6]. The method of undetermined coefficients and the
Rayleigh—Ritz, Galerkin, collocation, and numerical integration methods are considered
in this section.
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5.51

Method of Undetermined Coefficients

In this method the unknown function is assumed to be in the form of a power series
of a finite number of terms. The assumed function is then substituted into the integral
equation and the regular part is integrated. This results in a set of simultaneous equations
in terms of the unknown coefficients. Solution of these simultaneous equations yields
the solution of the integral equation.

Example 5.4 Find the solution of the integral equation

1
2/ (I—-&+x5)¢E)dE =—x+1 (E5.4.1)
0

SOLUTION Assume the solution of ¢(x) in a power series of two terms as
¢(x) =c1+ crx (E5.4.2)

where ¢ and c¢; are constants to be determined. Substitute Eq. (E5.4.2) into Eq. (E5.4.1)
and carry out the integration to obtain

1
2/ (1 — & +xE)(c) + 26)dE = —x + 1 (E5.4.3)
0

Upon integration, Eq. (E5.4.3) becomes
(c1 + %cz) +x (c1 + %cz) =—x+1 (E5.4.4)
Equating similar terms on both sides of Eq. (E5.4.4), we obtain
c1 + %cz =1
cr+3e=-1 (E5.4.5)

Equations (E5.4.5) yield ¢y = —3 and ¢, = 3. Thus, the solution of the integral
Eq. (E5.4.1) is given by

$(x) = =3 +3x (E5.4.6)

5.5.2 Iterative Method

An iterative method similar to the matrix iteration method for the solution of a matrix
eigenvalue problem can be used for the solution of the integral Eq. (5.34). The iteration
method assumes that the eigenvalues are distinct and well separated such that A} < A, <
A3 ---. In addition, the iteration method is based on the expansion theorem related to
the eigenfunctions W;(x). Similar to the expansion theorem of the matrix eigenvalue
problem, the expansion theorem related to the integral formulation of the eigenvalue
problem can be stated as

o0

W) = e;Wi(x) (5.44)

i=1
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where the coefficients ¢; are determined as
ci = / mx)Wx)W;(x)dV(x) (5.45)
1%

Equation (5.44) indicates that any function W (x) that satisfies the boundary conditions
of the system can be represented as a linear combination of the eigenfunctions W;(x)
of the system.

First Eigenfunction The iteration method starts with the selection of a trial function

Wl(l) (x) as an approximation to the first eigenfunction or mode shape, W, (x). Substitut-

ing Wl(l)(x) for W(x) on the right-hand side of Eq. (5.34) and evaluating the integral,
the next (improved) approximation to the eigenfunction W;(x) can be obtained:

W (x) = fv g, e )mE W (E)dV (&) (5.46)

Using Eq. (5.44), Eq. (5.46) can be expressed as

Wi (x) =Zc,»/vgu,@m(@vv,-(s)dws)
i=1

oW
_Z » (5.47)

i=1

The definition of the eigenvalue problem, Eq. (5.34), yields
Wi(x) = )»i/ gx, E)m@E)Wi(§)dV (§) (5.48)
v

Using Wl(z) (x) as the trial function on the right-hand side of Eq. (5.48), we obtain the
new approximation, W1(3) (x), as

W (x) = /V g, EmE WP (E)dV (£)

= oW
-y ¢ kg(x) (5.49)
i=1 L

The continuation of the process leads to

2 oW, (x)
W) =Y ’An’_l . n=2.3,... (5.50)
i=1 i
Since the eigenvalues are assumed to satisfy the relation A; < A; - - -, the first term on

the right-hand side of Eq. (5.50) becomes large compared to the other terms and as
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n — oo, Eq. (5.50) yields

. (n—1) i ciWi(x)
nll)rgo W, (x) = k’f‘z (5.51)
w
lim W () = S0 (5.52)
n— 00 )”rll
Equations (5.51) and (5.52) yield the converged eigenvalue A; as
(n—1)
w
n— 00 Wl (x)
and the converged eigenvector can be taken as
Wix) = lim W™ (x) (5.54)
n—0o0

Higher Eigenfunctions To determine the second eigenfunction, the trial function
WZ(I)(x) used must be made completely free of the first eigenfunction, W (x). For this
we use any arbitrary trial function Wz(l)(x) to generate Wz(l)(x) as

WiV (x) = WiV (x) — a Wi (x) (5.55)

where a; is a constant that can be determined from the orthogonality condition of the
eigenfunctions:

/m(x)Wz(l)(x)Wl(x)dV(x)
\%4

:/ m(x)Wz(l)(x)Wl(x)dV(x)—al/ m)[W, ()PdV(x) =0  (5.56)
\%4 \%4

or

_ fy m@)Wy ()W (x)dV (x)

O T @M @AV () ©-7
When W) (x) is normalized according to Eq. (5.43),
/Vm(x)[Wl(x)]de(x) =1 (5.58)
Eq. (5.57) becomes
a :/Vm(x)Wz(l)(x)Wl(x)dV(x) (5.59)

Once a; is determined, we substitute Eq. (5.55) for W(x) on the right-hand side of
Eq. (5.34), evaluate the integral, and denote the result as W2(2) (x), the next (improved)
approximation to the true eigenfunction W;(x):

WP (x) = fv g, E)mE WS (E)dV (€) (5.60)
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For the next iteration, we generate Wz(z) (x) that is free of Wi(x) as
WP (x) = WP (x) — aa Wi (x) (5.61)
where a, can be found using an equation similar to Eq.(5.59) as

a = / m) WP ()W (x) dV (x) (5.62)
v

when W;(x) is normalized according to Eq. (5.43).
When the iterative process is continued, we obtain, as n — oo, the converged
result as

W(”*I)
A = lim 2(7)()6) (5.63)
n— 00 WZ” (x)
Wa(x) = lim Wi (x) (5.64)

To find the third eigenfunction of the system, we start with any arbitrary trial function
W3(l) (x) and generate the function W3(])(x) that is completely free of the first and second
eigenfunctions Wy (x) and W5(x) as

Wi () = Wi (x) — a Wi (x) — aa Wa(x) (5.65)

where the constants a; and a; can be found by making W3(1)(x) orthogonal to both
Wi(x) and W, (x). The procedure used in finding the second eigenfunction can be used
to find the converged solution for A3 and W3 (x). In fact, a similar process can be used
to find all other higher eigenvalues and eigenfunctions.

Example 5.5 Find the first eigenvalue and the corresponding eigenfunction of a tightly
stretched string under tension using the iterative method with the trial function

x(L —x)

Wl(l)(x) — B

SOLUTION Let the mass of the string be m per unit length and the tension in the
string be P. The Green’s function or the flexibility influence function, g(x, &), can be
derived by applying a unit load at point £ and finding the resulting deflection at point
x as shown in Fig. 5.3. For vertical force equilibrium, we have

plyp 2L (E5.5.1)
e Log 7
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Figure 5.3

which yields

a9 (B5.5.2)
PL

Thus, the Green’s function is given by

%, E>x
g(x,§) = a(L — x) (E5.5.3)
_ E<x
L-§
which can be expressed as
x(L-§)
“pL 0 7
gx,§) = (E5.5.4)
§(L —x)
—_—, E<x
PL
Using the trial function
L —
WO (x) = *L—x) (E5.5.5)

L2
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for Wi(x) on the right-hand side of Eq. (5.34), we obtain the new trial function
Wl(z) (x) as

L
W) = /E S Om@W ) dg

L

_ /g oG, EmE W E) dt + / (e, EmE W @) de

=0 =X
P EWL—x) §L—8)

m
c—o PL =

L _ _
+/ x(L—-§ EL-8) ,

§

(m)

E5.5.
_. PL R (E5.5.6)

Equation (E5.5.6) can be simplified as

m
12P L2

Using Eqgs. (E5.5.5) and (E5.5.7), we obtain

w?(x) = (L’x —2Lx> + x%) (E5.5.7)

, W@  12p x/L — x?/L?
ST —s - 2 (3 /13 474
W7 (x) mL* x/L (x°/L°) +x*/L

(E5.5.8)

or

0N —— (E5.5.9)

P
w & 3.4641,/m (E5.5.10)

This approximate solution can be seen to be quite good compared to the exact value
of the first natural frequency, w; = m/P/mL?2.

or

5.5.3 Rayleigh—Ritz Method

In the Rayleigh—Ritz method, also known as the assumed modes method, the solution
of the free vibration problem is approximated by a linear combination of n admissible
functions, u;(x), as

w(x, 1) = Y ui(x)n; (1) (5.66)
i=1

where 7;(t) are time-dependent generalized coordinates. The kinetic energy of the
system, 7'(t), can be expressed as

T(r) =21 [F meolbx, 01 dx
= 3 Ym0 (1) (5.67)
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where m(x) denotes the mass per unit length, a dot above a symbol represents a time
derivative, and

L
mij =mj = /X_OM(X)ui(X)uj(X)dx (5.68)

The potential energy of the system, U(¢), can be expressed in terms of the flexibility
influence function g(x, &) and the distributed load f(x, ) as

U =3 [ f0D [ fiy 80 §)f 6 dg | d (5.69)
Assuming that
fx,t) = *m(x)W(x, 1) (5.70)

for free vibration, Eq. (5.69) can be expressed as

4

L L
U = %/O m(x)W(x, 1) [/O g(x,é)m(S)W(S,t)dé} dx (5.71)
Substitution of Eq. (5.66) into (5.71) leads to

U = %5\2 Yo Zﬁzl kijni(t)n;(t) (5.72)

where
L L
kij = kji =/O m(x)u;(x) [/O g(x,é)m(é)uj(é)dé} dx (5.73)

and A denotes an approximation of w?. Equations (5.66), (5.67), and (5.72) essentially
approximate the continuous system by an n-degree-of-freedom system.
Lagrange’s equations for an n-degree-of-freedom conservative system are given by

d (8T T U
_<__>__+_=o, k=1,2,...,n (574)
dt \ 9ng ok O

where 7y, is the generalized displacement and 7); is the generalized velocity. Substitution
of Egs. (5.67) and (5.72) into (5.74) yields the following equations of motion:
n n
D midi + 1Y kami =0, k=1,2,....n (5.75)
i=1 i=1

For harmonic variation of n; (%),
il = — A (5.76)
and Eqgs. (5.75) lead to the matrix eigenvalue problem
MK17 = [m]ij (5.77)

where [k] = [k;;] and [m] = [m;;] are symmetric matrices and X = w?*. The problem
of Eq. (5.77) can be solved readily to find the eigenvalues A and the corresponding
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eigenvectors 7. The eigenfunctions of the continuous system can then be determined
using Eq. (5.66).

Example 5.6 Find the natural frequencies of a tightly stretched string under tension
using the Rayleigh—Ritz method.

SOLUTION Let the mass of the string be m per unit length and the tension in the
string be P. The Green’s function or flexibility influence function of the string can be
expressed as (see Example 5.1)

E(L —x)

Lp T E5.6.1
gx,8) =g¢,x) = (L — &) (E5.6.1)
MEZS) ey

LP

We assume a two-term solution for the deflection of the string as
w(x, 1) = wuy(x)n1 (1) + uz2(x)n2(r) (E5.6.2)

where the admissible functions u#(x) and u,(x) are chosen as

uy (x) = % (1 - %) (E5.6.3)
Uy (x) = 2—2 (1 _ %) (E5.6.4)

and 7n;(t) and n,(¢) are the time-dependent generalized coordinates to be determined.
The elements of the matrix [m] can be determined as

L

mij = / m(x)u; (x)u;(x)dx (E5.6.5)
x=0

Equation (E5.6.5) gives

L L 2 L3 L
2 m 2 X m m
mi=m [ dewar=75 [ 2 (1-7) ==
L

m [r 3 xX\2 mL* mL
mpp=my =m u1(Xuy(x)dx = — X (1 ——) dx = —— = —
=0 L3 ). L 60L3 60
L ) m (L 4 x\2 mL> mL
Moy =m uy(x)dx = —; X (1——) dx = — = —
=0 L* ). L 105L4 105

The elements of the matrix [k] can be found from

L L
kij = kji =/0 m(x)u;(x) [/0 g(x,é)m(%‘)uj(%‘)dé] dx (E5.6.6)
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In Eq. (E5.6.6) the inside integral for ki can be evaluated as follows:

L
/0 g(x, &)mE)ui(5) d§

TE(L - Ly -
o [ELNE (Y ey, [THLoDE (£,
0 LP L L x LP L L
m L, 1, L
= — |- — — E5.6.7
L?P ( 6" Tt Tt E5.6.7)
Thus, Eq. (E5.6.6) yields
L x  x? m L 1 L3
k — I - _ 3 _ 4 - d
i /0 m(L L2> L2P< o Tt Tt 12x> *
m? Lpx—x? 3 4 3
= L4P/0 7 (=2Lx 4+ x"+ L x)dx
17m*L3
= (E5.6.8)
5040P
Similarly, we can obtain from Eq.(E5.6.6)
L x> xX*\ m L xt L3
ki = ko1 = o) [P+ =+ x) d
12 =Rl /0 m<L2 L3>L2P( ot t 12x) *
3017
n (E5.6.9)

- P (10,080)
The inside integral in Eq. (E5.6.6) for k2 can be evaluated as

[ g(x, &)mEua(§) d&
L 2 3 L 2 3
EL—x) (€ ¢ x(L—§) (& ¢
g T(E‘E) 4 | T(L__E) :

2.4 5 5
_ LTP 5L°x —i—Z(I;x +2L°x (E5.6.10)
Thus, Eq. (E5.6.6) gives ky; as

L
kyy = /O m(x)uz(x)6OT4P (=5L%x* +3Lx° +2L°x)dx
3

2 L 2
n / (x 2 >(—5L2x4 +3Lx5 +2L%x) dx
0

T 60L*P [
230 1
=z (E5.6.11)
P 12,600
Thus, the eigenvalue problem can be expressed as
mL [14 7] 5 m?*L*)T170 85] 5
— X=—— X E5.6.12
420 [ 7 4] 50,400[ 85 44 (E56.12)
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or
14 7|5 <170 85| 3
1475 =i [0 ] 5 5613
where
- mL*\
A= (E5.6.14)
120P
A= o’ (E5.6.15)
is the eigenvalue and X is the eigenvector (mode shape). The solution of Eq. (E5.6.13)
is given by
X1 = 0.0824, Jo = 0.3333 (E5.6.16)
with
- - —0.4472
X — {1-0000} , X® = (E5.6.17)
0.0 0.8944

5.5.4 Galerkin’s Method

In the Galerkin method, the function ¢ is approximated by a linear combination of n
comparison functions, u;(x), as

n

G, 1) =Y u(x)mi (5.78)

i=1

where n; are coefficients (or generalized coordinates) to be determined. Consider the
eigenvalue problem of the continuous system in the integral form

w(x) = K/Vg(x,E)M(S)w(E)dV(E) (5.79)

where w(x) is the displacement at point x and g (x, &) is the symmetric Green’s function
or flexibility influence function. By introducing

¢(x) = vym(x)w(x) (5.80)
and multiplying both sides of Eq. (5.79) by +/m(x), we obtain

¢(x) =)»/‘/K(x,$)¢(§)dV(§) (5.81)

where K (x, &) denotes the symmetric kernel:

K(x,§) = g(x, §)y/m(x)ym(§) (5.82)
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When the approximate solution, Eq. (5.78), is substituted into Eq. (5.81), the equal-
ity will not hold; hence an error function, &(x), also known as the residual, can be
defined as

e(x) = ¢(x) —5»/‘/ K(x,£)¢&)dV(§) (5.83)

where A denotes an approximate value of A and V indicates the domain of the system.
To determine the coefficients 7, the weighted integral of the error function over the
domain of the system is set equal to zero. Using the functions u(x), us(x), ..., i, (x)
as the weighting functions, n equations can be derived:

/ e(X)ur(x)dV(x) =0, k=1,2,....n (5.84)
1%

Substituting Eq. (5.83) into (5.84), we obtain
n
> o / u (x)uj(x) dV (x)
i=1 v

=Y ni | m)| [ K &ui@)dVE) [ dVix) =0 (5.85)
i—=1 \% Vv

Defining
u;(x) =/mx)u; (x), i=1,2,...,n (5.86)
kix = ki = / u(x) [/ K(x, E)Mi(é)dV(é)] dv(x)
1% 1%

_ /V m ()i () [ /V g(x,é)m(é)ﬁi(é)dv(é‘)] v (587)
A / i (s () dV ()
\%

= / m(x)ig(x)i; (x)dV(x) (5.88)
1%

Eq. (5.85) can be expressed as
MK = [m]i} (5.89)

which can be seen to be similar to Eq. (5.77).

5.5.5 Collocation Method

Consider the eigenvalue problem of a continuous system in integral form:

w(X)=/Vg(x,$)m($)w($)dV($) (5.90)
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The solution of the free vibration problem is approximated by a linear combination of
n comparison functions, u;(x), as

n
wx) =Y () (5.91)
i=1
where 1, are coefficients or generalized coordinates to be determined. When Eq. (5.91)

is substituted into Eq. (5.90), the equality will not hold; hence an error function or
residual £(x) can be defined as

e(x) = w(x) — X/Vg(x, §)m(&)dV (&) (5.92)

By substituting Eq. (5.91) into (5.90), the error function can be expressed as
e(x) =wx) — Xf‘/g(x, Em@E)wE)dV(E)
=Y nmiuwi(x) =AY i /V g(x, E)mE)u;(§)dV (&) (5.93)
i=1 i=1

To determine the coefficients 7y, the error function is set equal to zero at n distinct
points. By setting the error, Eq. (5.93), equal to zero at the points xx(k = 1,2, ..., n),
we obtain

e(r) =0, k=1,2,...,n (5.94)

Equations (5.93) and (5.94) lead to the eigenvalue problem
n
D Omi =ik =0, k=12,....n (5.95)
i=1

which can be expressed in matrix form as
[m]7 = ALkl (5.96)
where the elements of the matrices [m] and [k] are given by
my; = ui(xr) (5.97)

ki =/Vg(Xk,§)rn(S)ui(§)dV($) (5.98)

It is to be noted that the matrices [m] and [k] are, in general, not symmetric. The
solution of the eigenvalue problem with nonsymmetric matrices [m] and [k] is more
complex than the one with symmetric matrices [3].
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5.5.6 Numerical Integration Method

In the numerical integration method, the regular part of the integral equation is decom-
posed into the form of a sum, and the equation is then reduced to a set of simultaneous
linear equations with the values of the unknown function at some points in the domain
of integration treated as the unknown quantities. The procedure is illustrated through
the following example.

Example 5.7 Find the solution of the integral equation

23 4
¢(x)+/ (1 4+ xE)p(E)dE = f(x) = x* —ﬂx—i-g (E5.7.1)

numerically and compare the result with the exact solution

d(x) =x>=2x+1 (E5.7.2)

SOLUTION We use the Gauss integration method for the numerical solution of
Eq. (E5.7.1).
In Gauss integration, the integral is evaluated by using the formula

f g0 dt = Zwlg(t, (E5.7.3)

where n is called the number of Gauss points, w; are called weights, and t; are the
specified values of 7 in the range of integration. For any specified n, the values of w;
and #; are chosen so that the formula will be exact for polynomials up to and including
degree 2n — 1. Since the range of integration in Eq. (E5.7.3) for x is —1 to +1, the
formula can be made applicable to a general range of integration using a transformation
of the variable. Thus, an integral of the form fab f(x)dx can be evaluated, using the
Gauss integration method, as

’ gl S w0 E5.7.4
Lf(x) x—T;‘wlf(xl) (E5.7.4)

where the coordinate transformation

b—a)t b
— (a)i (B5.7.5)
2
is used so that
b—a)t; b
_b-atitat (E5.7.6)

X =
2
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Using n = 4, the corresponding values of w; and #; are given by [2]

w; = wy = 0.34785 4845147454

(E5.7.7)
wy = w3 = 0.65214 51548 62546
t; = —0.861136311594053
tp = —0.339981043584856
(E5.7.8)
3 =—0n
1y = —1
The values of the variable x; given by Eq. (E5.7.6) fora =0 and b = 1 are
x; = 0.06943184
x = 0.33000946
x3 = 0.66999054 (E5.7.9)
x4 = 0.93056816

Treating the values of ¢ (x) at the Gaussian points x; as unknowns, Eq. (E5.7.1) can
be expressed as

¢ + w1 (1 + x;EDd1 + wa(l + x:6)¢2 + w3 (1 + X&) 3 + wa(l + x;4)P4]
=x}-Bx+%  i=1234 (E5.7.10)

where ¢; = ¢ (x;), x; = §&; are given by Eq. (E5.7.9), and w; are given by Eq.(E5.7.7).
The four linear equations indicated by Eq. (E5.7.10) are given by

1.17476588¢1 + 0.33354393¢, + 0.34124103¢5
+ 0.18516506¢4 = 1.27161527

0.17791265¢1 4 1.36158392¢, + 0.39816827¢3
+ 0.22733989¢4 = 1.12598062

0.18201829¢1 + 0.39816827¢, + 1.47244242¢5
+ 0.28236628¢4 = 1.14014649

0.18516506¢1 + 0.42620826¢, + 0.52936965¢;3
+ 1.32454112¢4 = 1.30749607

(E5.7.11)

The solution of Eq. (ES5.7.11) is given by ¢; = 0.8660, ¢, = 0.4489, ¢35 = 0.1089, and
¢4 = 0.0048, which can be seen to be same as the exact solution given by Eq. (E5.7.2)
with four-decimal-place accuracy.

5.6 RECENT CONTRIBUTIONS

Strings and Bars Laura and Gutierrez determined the fundamental frequency coeffi-
cient of vibrating systems using Rayleigh’s optimization concept when solving integral
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equations by means of the Ritz method [13]. The authors considered the transverse
vibration of a string of variable density, the longitudinal vibration of a rod with a
nonuniform cross section, and the transverse vibration of a beam with ends elastically
restrained against rotation as illustrative examples.

Beams An integral equation approach was used by many investigators for the solu-
tion of a vibrating beam [13]. In Ref. [9], Bergman and McFarland used Green’s
functions to study the free vibrations of an Euler—Bernoulli beam with homogeneous
boundary conditions, supported in its interior by arbitrarily located pin supports and
translational and rotational springs. A method of determining the dynamic response
of prismatic damped Euler—Bernoulli beams subjected to distributed and concentrated
loads using dynamic Green’s functions was presented by Abu-Hilal [8]. The method
gives exact solutions in closed form and can be used for single- and multispan beams,
single- and multiloaded beams, and statically determinate or indeterminate beams. The
responses of a statically indeterminate cantilevered beam and a cantilevered beam with
elastic support are considered as example problems. The use of Green’s functions
in the frequency analysis of Timoshenko beams with oscillators was considered by
Kukla [7].

Membranes Spence and Horgan [10] derived bounds on the natural frequencies of
composite circular membranes using an integral equation method. The membrane was
assumed to have a stepped radial density. Although such problems, involving discontin-
uous coefficients in the differential equation, can be treated using classical variational
methods, it was shown that an eigenvalue estimation technique based on an integral for-
mulation is more efficient. Gutierrez and Laura [11] analyzed the transverse vibrations
of composite membranes using the integral equation method and Rayleigh’s optimiza-
tion suggestion. Specifically, the fundamental frequency of vibration of membranes of
nonuniform density was determined.

Plates Bickford and Wu [12] considered the problem of finding upper and lower
bounds on the natural frequencies of free vibration of a circular plate with stepped
radial density. The problem, which involves discontinuous coefficients in the governing
differential equation, has been formatted with an integral equation by using a Green’s
function and the basic theory of linear integral equations.
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PROBLEMS

5.1 Classity the following integral equations:
@ @)+ f) (x+ 0Py dy =0

®) ¢(x) =1 [y &P dy = f(x)

© 20r.0) = fy G, ) [p() = () BE1] d,

0<x<lI

5.2 Classify the equation

$0) = x +/0 & — D) de

Show that the function ¢(x) = sinx is a solution of

Eq. (5.1).

10.

11.

12.

13.

149

Problems

. M. Abu-Hilal, Forced vibration of Euler—Bernoulli beams by means of dynamic Green

functions, Journal of Sound and Vibration, Vol. 267, No. 2, pp. 191-207, 2003.

. L. A. Bergman and D. M. McFarland, On the vibration of a point- supported linear dis-

tributed system, Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 110,
No. 4, pp. 485-492, 1988.

J. P. Spence and C. O. Horgan, Bounds on natural frequencies of composite circular mem-
branes: integral equation methods, Journal of Sound and Vibration, Vol. 87, pp. 71-81,
1983.

R. H. Gutierrez and P. A. A. Laura, Analysis of transverse vibrations of composite mem-
branes using the integral equation method and Rayleigh’s optimization suggestion, Journal
of Sound and Vibration, Vol. 147, No. 3, pp. 515-518, 1991.

W. B. Bickford and S. Y. Wu, Bounds on natural frequencies of composite circular plates:
integral equation methods, Journal of Sound and Vibration, Vol. 126, No. 1, pp. 19-36,
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and the function

@ (1) = cite’ + e’ (5.2)

Show that the function ¢(z) given by Eq. (5.2) is a
solution of Eq. (5.1).

5.5 Solve the equation

(5.1 |
¢ (x) — 6/ xE2p(E)dE =2¢" —x + 1
0

using the method of undetermined coefficients by assum-

5.3 Consider the integral equation

1
¢><x>=w2/ K 6p@E ds,  0<x<1 (.
0
where
_jxa =98, x <&
K(x,é‘)—{g(l_x), £<ax (5.2)

Determine the condition(s) under which the function
¢(x) = sinwx satisfies Eq. (5.1).

5.4 Consider the integral equation [1]

¢<r)—/

e —)p () =t 5.1

ing the solution ¢ (x) to be of the form
d(x) =2e" +cix+1

5.6 Consider the integral equation

1
$) =Af0 (1 + xE)(&) d

Solve this equation using the method of undetermined
coefficients by assuming the solution as

¢(x) =c1 +cx
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5.7 Find the solution of the equation

1
b= [ - erpE)de = x
0
by assuming a solution of the form
¢ (x) = c1 + c2x + c3x?

Use the method of undetermined coefficients.

5.8 Solve the integral equation

1
¢ (x) —/0 (x —E)p(E) dE = 4x +x°

using the method of undetermined coefficients. Assume
the solution ¢ (x) as

¢ (x) = c1 + cax + c3x?

Table 5.1 Data for Problem 5.10

5.9 Find the solution of the following equation using
a numerical method [1]:

N . t
¢(r)—1/0 (66(€) d = sint — ©

Compare your solution with the exact solution, ¢ (1) =
sint.

5.10 Find the solution of the following integral equation
(eigenvalue problem) using the Gaussian integration
method:

1
$() = A/O (x + E)(&) d

(a) with two Gaussian points; (b) with four Gaussian
points; and (¢) with six Gaussian points.

[Hint: The locations and weights corresponding to dif-
ferent number of Gauss points are given in Table 5.1.]:

Number of points, Locations, Weights,
n Xi wi

1 0.00000 00000 00000 2. 00000 00000 00000
2 +0.57735 02691 89626 1. 00000 00000 00000
3 +0.77459 66692 41483 0.55555 5555555555
0.00000 00000 00000 0.88888 88888 88889
4 +0.86113 6311594053 0.34785 48451 47454
+0.33998 10435 84856 0.65214 51548 62546
5 +0.90617 98459 38664 0.23692 6885056189
+0.5384693101 05683 0.47862 86704 99366
0.00000 00000 00000 0.56888 88888 88889
6 +0.9324695142 03152 0.171324492379170
+0.66120 93864 66265 0.36076 1573048139
+0.238619186083197 0.46791 3934572691

Source: Ref. [2].



Solution Procedure: Eigenvalue
and Modal Analysis Approach

6.1 INTRODUCTION

The equations of motion of many continuous systems are in the form of nonhomoge-
neous linear partial differential equations of order 2 or higher subject to boundary and
initial conditions. The boundary conditions may be homogeneous or nonhomogeneous.
The initial conditions are usually stated in terms of the values of the field variable and
its time derivative at time zero. The solution procedure basically involves two steps.
In the first step, the nonhomogeneous part of the equation of motion is neglected and
the homogeneous equation is solved using the separation-of-variables technique. This
leads to an eigenvalue problem whose solution yields an infinite set of eigenvalues
and the corresponding eigenfunctions. The eigenfunctions are orthogonal and form a
complete set in the sense that any function f(X) that satisfies the boundary condi-
tions of the problem can be represented by a linear combination of the eigenfunctions.
This property constitutes what is known as the expansion theorem. In the second step,
the solution of the nonhomogeneous equation is assumed to be a sum of the products
of the eigenfunctions and time-dependent generalized coordinates using the expansion
theorem. This process leads to a set of second-order ordinary differential equations in
terms of the generalized coordinates. These equations are solved using the initial con-
ditions of the problem. Once the generalized coordinates are known, complete solution
of the problem can be determined from the expansion theorem.

6.2 GENERAL PROBLEM

The equation of motion of an undamped continuous system is in the form of a partial
differential equation which can be expressed as

N
+LwX. D= fX.0+Y F0s(X—X)), XeV (61
j=1
where X is a typical point in the domain of the system (V), M (i) is the mass dis-
tribution, w(X, t) is the field variable or displacement of the system that depends on

the spatial yariables (f() and time (1), L[w()} ,1)] is the stiffness distribution of the
system, f(X,t) is the distributed force acting on the system, F;(¢) is the concentrated
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force acting at the point X=X ; of the system, s is the number of concentrated forces
acting on the system, and (X — X ) is the Dirac delta function, defined as

SX—-X) =0, X#X;

L (6.2)
/S(X—Xj)dV =1
14

Note that the vector X will be identical to x for one-dimensional systems, includes x
and y for two-dimensional systems, and consists of x, y, and z for three-dimensional
systems. In Eq. (6.1), L and M are linear homogeneous differential operators involving
derivatives with respect to the spatial variables X (but not with respect to time, ¢) up
to the orders 2p and 2¢, respectively, where p and ¢ are integers with p > ¢. For
example, for a two-dimensional problem in a Cartesian coordinate system, the operator
L can be expressed for p =1 as

L[w]:clw+cza—w+C3a—w+C482—w+C582—w+c6 0w (6.3)
dx ay dx2 dy? dxdy
and the linearity of L implies that
Llciwy + cowz] = ¢ Lwy] + c2 L[wz] (6.4)
where ¢y, ¢p, ..., cq are constants. In the case of the transverse vibration of a string

having a mass distribution of p(x) per unit length and subjected to a constant tension
P, the operators M and L are given by [see Eq. (8.8)]

M = p(x) (6.5)
82
L= P@ (6.6)

In the case of the torsional vibration of a shaft, the operators M and L are given by
[see Eq. (10.19)]

M = IH(x) (6.7)

0 0
L=—|Glp— 6.8
ox ( Pax) ©8)

where [y(x) is the mass polar moment of inertia of the shaft per unit length, G is the
shear modulus, and Ip(x) is the polar moment of inertia of the cross section of the
shaft. Similarly, in the case of the transverse vibration of a uniform plate in bending,
the operators M and L are given by [see Eq. (14.8)]

M = ph (6.9)

9* 9* o
L=D|—+4+2——+— 6.10
<8x4 * 9x20y2 + 8y4) (6.10)

where p is the density, 4 is the thickness, and D is the flexural rigidity of the plate.
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The governing differential equation (6.1) is subject to p boundary conditions at
every point of boundary S of domain V of the system. The boundary conditions can
be expressed as

Ailw] = ABw], i=12,....p (6.11)

where A; and B; are linear homogeneous differential operators involving derivatives
of w, with respect to the normal and tangential directions of the boundary, up to the
order 2p — 1, and A is a parameter known as the eigenvalue of the system. In some
problems, the boundary conditions do not involve the eigenvalue A, in which case Eq.
(6.11) reduces to

Ailwl =0, i=1,2....p 6.12)

We shall consider mostly boundary conditions of the type given by Eq. (6.12) in further
discussions. In the case of free vibration, f and all F; will be zero, and Eq. (6.1) reduces
to the homogeneous form

- 2w(X, 1)

M) —5 + Llw(X,1)] =0, XeV (6.13)

6.3 SOLUTION OF HOMOGENEOUS EQUATIONS:
SEPARATION-OF-VARIABLES TECHNIQUE

The separation-of-variables technique is applicable to the solution of homogeneous
second- and higher-order linear partial differential equations with constant coefficients
subject to homogeneous boundary conditions. The partial differential equations may
represent initial or boundary value problems. To illustrate the method of separation of
variables, we consider a homogeneous hyperbolic equation of the form

Zw(x, 1)

p(x) Y

+ Llw(x,1)] =0, xeG, t>0 (6.14)
where G denotes a bounded region such as [0, /], x is the spatial variable, ¢ is time,
p(x) is positive and independent of ¢, L is a linear differential operator, and w(x, 1)

is an unknown function to be determined. The homogeneous boundary conditions can
be stated as

Jw
Aqw(0, t)—i—B]a—(O, t)=20 (6.15)
X
ow
Azw(l,t)—f—Bza—(l,t) =0 (6.16)
X

The initial conditions for Eq. (6.14) can be expressed as
w(x,0) = f(x), xeG (6.17)

Jw
E(x, 0) = g(x), xeG (6.18)
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The separation-of-variables technique replaces the partial differential equation in two
parameters, x and ¢, Eq. (6.14), by two ordinary differential equations. The solution of
Eq. (6.14) is assumed to be a product of two functions, each depending on only one
of parameters x and ¢ as

w(x,t) = Wx)T () (6.19)

where W (x) is required to satisfy the boundary conditions, Egs. (6.15) and (6.16), and
T (t) is required to satisfy the initial conditions, Eqgs. (6.17) and (6.18). Substituting
Eq. (6.19) into Eq. (6.14) and dividing throughout by p(x)W (x)7T (¢) yields
T"(@t)  LIWX)]
T p (X)W (x)
where T”(t) = d?>T(t)/dt>. Since the left and right sides of Eq. (6.20) depend on
different variables, they cannot be functions of their respective variables. Thus, each

side of Eq. (6.20) must equal a constant. By denoting this constant by —A, we obtain
the following equations for W(x) and 7'(¢) (see Problem 6.1):

LIW(x)] = 2o (x)W(x) (6.21)
T"(t) + AT () =0 (6.22)

(6.20)

The ordinary differential equations (6.21) and (6.22) can be solved by satisfying the
boundary and initial conditions to find W(x) and T'(¢), respectively. Consequently,
w(x,t) = W(x)T (¢t) will satisfy both the boundary and initial conditions. Since both
the equation and the boundary conditions for W (x) are homogeneous, W (x) = 0 will
be a solution of the problem (called the trivial solution). However, we require nonzero
solutions for W(x) in the boundary value problem, and such solutions exist only for
certain values of the parameter A in Eq. (6.21). The problem of determining the nonzero
W(x) and the corresponding value of the parameter A is known as an eigenvalue
problem. Here XA is called an eigenvalue and W (x) is called an eigenfunction. The
eigenvalue problem is known as the Sturm—Liouville problem in the mathematical
literature and is discussed in the following section.

6.4 STURM-LIOUVILLE PROBLEM

The mathematical models for the vibration of some continuous systems are in the form
of a certain type of two-point boundary value problem known as the Sturm—Liouville
problem. The Sturm—Liouville problem is a one-dimensional eigenvalue problem whose
governing equation is of the general form

d dw

— [P(x)—] + [g(x) + Ar(x)]w(x) =0, a<x<b
dx dx

or
(pw) +(@+rHw=0, a<x<b (6.23)

with boundary conditions in the form
Ajw(a) + Biw'(a) =0 (6.24)
Ayw(b) + Bow'(b) =0 (6.25)
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where a prime denotes a derivative with respect to x, and p(x), g(x), and r(x) are
continuous functions defined in the closed interval a < x < b, with p(x) > 0, r(x) >
0 and A; >0, B; >0 with A; + B; > 0 for i =1, 2. The boundary conditions of
Egs. (6.24) and (6.25) are said to be homogeneous because a linear combination of
w(x) and w’'(x) at x = a and x = b are both equal to zero.

6.4.1 Classification of Sturm-Liouville Problems

Based on the nature of the boundary conditions and the behavior of p(x) at the bound-
aries, Sturm—Liouville problems can be classified as regular, periodic, or singular. The
problem defined by Egs. (6.23)—(6.25) is called a regular Sturm—Liouville problem.
Note that p(x) > 0 and is continuous in the interval a < x < b with constants A; and
B; not equal to zero simultaneously in the ith boundary condition, i = 1, 2 [Egs. (6.24)
and (6.25)]. In this case the problem involves finding constant values of A correspond-
ing to each of which a nontrivial solution w(x) can be found for Eq. (6.23) while
satisfying the boundary conditions of Eqs. (6.24) and (6.25).

If the function p(x) and the boundary conditions involving w(x) and w’(x) are
periodic over the interval @ < x < b, the problem is called a periodic Sturm—Liouville
problem. In this case, the problem involves finding constant values of A corresponding
to each of which a nontrivial solution can be found for Eq. (6.23) while satisfying the
periodic boundary conditions given by

pla) = p(b), w(a) = w(b), w'(a) = w'(b) (6.26)

If the functions p(x) or r(x) or both are zero at any one or both of the boundary
points a and b, the problem is called a singular Sturm—Liouville problem. In this case
the problem involves finding constant values of A corresponding to each of which a
nontrivial solution w(x) can be found to satisfy Eq. (6.23) and the boundary conditions
of Egs. (6.24) and (6.25). For example, if the singular point is located at either x = a
or x = b so that either p(a) =0 or p(b) =0, the boundary condition that is often
imposed at the singular point basically requires the solution w(x) to be bounded at that
point.

Note that Eq. (6.23) always has the solution w(x) = 0, called the trivial solution.
For nontrivial solutions (solutions that are not identically zero) that satisfy the specified
boundary conditions at x = a and x = b, the parameter A cannot be arbitrary. Thus,
the problem involves finding constant values of A for which nontrivial solutions exist
that satisfy the specified boundary conditions.

Each value of A for which a nontrivial solution can be found is called an eigenvalue
of the problem and the corresponding solution w(x) is called an eigenfunction of the
problem. Because the Sturm-Liouville problem is homogeneous, it follows that the
eigenfunctions are not unique. The eigenfunction corresponding to any eigenvalue can
be multiplied by any constant factor, and the resulting function remains an eigenfunction
to the same eigenvalue A.

Example 6.1 Regular Sturm—Liouville Problem Find the solution to the eigenvalue
problem

d*W (x)
dx?

+AW@) =0 (E6.1.1)
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with the boundary conditions
aw
W) ———(©0)=0 (E6.1.2)
dx

wQ@) + d—W(l) =0 (E6.1.3)
dx

SOLUTION Equation (E6.1.1) can be identified as a Sturm-Liouville problem,
Eq. (6.23), with p(x) = 1, g(x) = 0, and r(x) = 1. Theoretically, we can consider three
cases: A < 0,A =0, and A > 0.

When A < 0, we set A = —a? and write Eq. (E6.1.1) as

d>W (x) 5
—a*Wx)=0 (E6.1.4)
dx?
which has the general solution
W(x) = cre® + cre™** (E6.1.5)

The boundary conditions, Eqs. (E6.1.2) and (E6.1.3), become
ci(l—a)+c(14+a)=0 (E6.1.6)
co(l+a)e” +c(l —a)e =0 (E6.1.7)

It can be shown (see Problem 6.2) that for @ > 0, ¢y and ¢, do not have nonzero
solution; the only solution is the trivial solution, ¢; = 0 and ¢, = 0. Hence, the problem
has no negative eigenvalue.

When A = 0, Eq. (E6.1.1) reduces to

d?}/{gx) —0 (E6.1.8)
which has the general solution
W(x) =c1 + crx (E6.1.9)
The boundary conditions, Egs. (E6.1.2) and (E6.1.3), become
cir—c=0 (E6.1.10)
c1+2c0=0 (E6.1.11)

The only solution to Eqgs. (E6.1.10) and (E6.1.11) is the trivial solution ¢; = 0 and
¢y = 0. Hence, L = 0 is not an eigenvalue of the problem
When A > 0, we set A = > and write Eq. (E6.1.1) as

d*W(x)

o T >W(x) =0 (E6.1.12)

which has the general solution

W(x) = cjcosax + ¢ sinax (E6.1.13)
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The boundary conditions, Egs. (E6.1.2) and (E6.1.3), become
ci—acr =0 (E6.1.14)
cicosa + ¢y sina — cjasina + coocosa = 0 (E6.1.15)
The solution of Egs. (E6.1.14) and (E6.1.15) is given by
] =oac (E6.1.16)
ol(1 — a?)sine + 2 cosa] =0 (E6.1.17)

If ¢, is zero in Eq. (E6.1.17), ¢; will also be zero from Eq. (E6.1.16). This will be a
trivial solution. Hence, for a nontrivial solution, we should have

(1 —a?®)sina +2acosa =0 (E6.1.18)

Equation (E6.1.18) is a transcendental equation whose roots are given by

20{,‘

tangg = ———.  i=12.. (E6.1.19)

Equation (E6.1.19) can be solved numerically to find «;, hence the eigenvalues are
given by A; = aiz and the corresponding eigenfunctions are given by

W;(x) = co(a; cosajx + sina; x) (E6.1.20)

Example 6.2 Periodic Sturm—Liouville Problem Find the solution of the boundary
value problem
d*>W (x)
dx?

FAWGE) =0, O<x<l (E6.2.1)

subject to the boundary conditions
W) = W() (E6.2.2)

dw dw
—— O === (E6.2.3)

SOLUTION Equation (E6.2.1) can be identified as the Sturm—Liouville problem of
Eq. (6.23) with p(x) = 1, g(x) = 0, and r(x) = 1. We can consider three cases: . < 0,
A =0,and A > 0.

When A < 0, we set A = —a? and write Eq. (E6.2.1) as

d*W(x)

e W) =0 (E6.2.4)

which has the general solution

W(x) = cre™ + cpe™™ (E6.2.5)
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The boundary conditions, Egs. (E6.2.2) and (E6.2.3), become

cg(l—=e")+c(1—e % =0 (E6.2.6)
cra(l —e*) —cra(l —e™*) =0 (E6.2.7)
Equation (E6.2.6) gives
1 _ o
= —c;——° (E6.2.8)
l—e@

Substitution of Eq.(E6.2.8) in Eq. (E6.2.7) yields
2cia(l —e*) =0 (E6.2.9)

Since o > 0, Eq. (E6.2.9) gives ¢; = 0 and hence ¢, = 0 [from Eq. (E6.2.8)]. This is
a trivial solution and hence the problem has no negative eigenvalue.
When A = 0, Eq. (E6.2.1) reduces to

d*W (x)
=0 E6.2.10
e ( )
which has the general solution
W) =c1 +cx (E6.2.11)

The boundary conditions, Egs. (E6.2.2) and (E6.2.3), become

cor=c1+o (E6.2.12)
& = ¢ (E6.2.13)

Equations (E6.2.12) and (E6.2.13) imply that ¢, =0 and hence the solution,
Eq. (E6.2.11), reduces to

W(x) = ¢ (E6.2.14)

where c; is any nonzero constant. This shows that & = 0 is an eigenvalue of the problem
with the corresponding eigenfunction given by Eq. (E6.2.14).
When A > 0, we set A = o and write Eq. (E6.2.1) as

d*w
9 W =0 (E6.2.15)
dx
which has the general solution
W(x) = cj cosax + ¢ sinax (E6.2.16)

The boundary conditions, Egs. (E6.2.2) and (E6.2.3), become

c1 =c1cosa + ¢ sina (E6.2.17)

0 = —cjasina + cra cosa (E6.2.18)
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The solution of Egs. (E6.2.17) and (E6.2.18) yields

1—
C=Cl—— cose (E6.2.19)
sin o0
and .
sin o0
) =—-—Cc——— (E6.2.20)
1 —cosa
which imply that either ¢; = 0 or
cosa =1 (E6.2.21)

Equation (E6.2.21) implies that « is zero or an integer multiple of 27, so that
a, =+m - 27, m=0,1,2,... (E6.2.22)
Thus, the eigenvalues of the problem are given by
Am = a2 = 4m’n?, m=0,1,2,... (E6.2.23)
with the corresponding eigenfunctions given by Eq. (E6.2.16):
W, (x) = ¢y cos2mmx + ¢y sSin 2mmx, m=0,1,2,... (E6.2.24)

Example 6.3 Singular Sturm-Liouville Problem The free transverse vibration of a
circular membrane of radius a, clamped around the edge, is governed by the equation

r2d2W(r) n rdW(r)

-3 T @ —mHW) =0, 0=r=a (E6.3.1)
subject to the requirement of a bounded solution with the condition
W(a)=0 (E6.3.2)

where r denotes the radial direction, W(r) is the transverse displacement, w is the
natural frequency (w? is called the eigenvalue), and m is an integer [see Eq. (13.126)].
Find the solution of the problem.

SOLUTION Equation (E6.3.1) can be identified as Bessel’s differential equation
of order m with the parameter w. The equation can be rewritten in the form of a
Sturm—-Liouville equation:

d [ dW 5 5 m?
—\lr— )+ loTr"—— | W =0, 0<r<a (E6.3.3)
dr dr r

which can be compared to Eq. (6.23) with the notations p(x)=rg(x) =

—m?/r,r(x) =r?, and A = w*. It can be seen that Eq. (E6.3.3) denotes a singular
Sturm-Liouville problem because p(0) = 0. The solution of Eq. (E6.3.3) is given by

W(r) = BiJu(or) + ByYy(or) (E6.3.4)

where B and B, are constants and J, and Y,, are Bessel functions of the first and
second kind, respectively. The solution is required to be bounded, but W (r) approaches
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infinity at r = 0. Thus, B, must be set equal to zero to ensure a bounded solution. Thus,
Eq. (E6.3.4) reduces to

W(r) = ByJu(wr) (E6.3.5)
The use of the boundary condition of Eq. (E6.32) in Eq. (E6.3.5) yields
Jm(wa) =0 (E6.3.6)

Equation (E6.3.6) has infinite roots w;a,i = 1,2, .... Thus, the ith eigenvalue of the
membrane is given by A; = a)iz, and the corresponding eigenfunction by

Wi(r) = BlJm(a)ir) (E637)

where the constant B; can be selected arbitrarily.

6.4.2 Properties of Eigenvalues and Eigenfunctions
The fundamental properties of eigenvalues and eigenfunctions of Sturm—Liouville prob-

lems are given below.

1. Regular and periodic Sturm-Liouville problems have an infinite number of
distinct real eigenvalues A, A7, ... which can be arranged as

AM<A<---
The smallest eigenvalue A; is finite and the largest one is infinity:

lim A, = 00
n—0o0

2. A unique eigenfunction exists, except for an arbitrary multiplicative constant,
for each eigenvalue of a regular Sturm—Liouville problem.

3. The infinite sequence of eigenfunctions wi (x), wy(x), ... defined over the inter-
val a < x < b are said to be orthogonal with respect to a weighting function r(x) > 0 if

b
/ F(X)wp (Dw, (x)dx =0, m#n (6.27)

When m = n, Eq. (6.27) defines the norm of w, (x), denoted ||w, (x)]||, as

b
w, ()] =/ rx)w? (x)dx > 0 (6.28)

By normalizing the function w,, (x) as

Wi (X)

e m=1,2,... (6.29)
[wn, ()]

Wy (x) =
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we obtain the orthonormal functions w,,(x) with the properties
b
/ r(x)w,,(x)w,(x)dx =0, m#n (6.30)
a

b
/ X)W, (0w, (x)dx =1, m=n (6.31)

4. Expansion theorem. The orthogonality of the eigenfunctions wi(x), wa(x), ...
over the interval a < x < b with respect to a weighting function r(x) permits them to
be used to represent any function f (x) over the same interval as a linear combination
of w,,(x) as

oo
FO) =" enwn(x) = crwi (x) + cowp (x) + - - (6.32)
m=1
where ¢y, ¢, ... are constants known as coefficients of the expansion. Equation (6.32)

denotes the eigenfunction expansion of f(x) and is known as the expansion theorem.
To determine the coefficients ¢,,, we multiply Eq. (6.32) by r(x)w,(x) and integrate
the result with respect to x from a to b:

o0

b b
/ r(x) f () w, (x) dx = Z |:/ cmr(x)wm(x)w,,(x)a'xi| (6.33)

a m=1

When Egs. (6.27) and (6.28) are used, Eq. (6.33) reduces to

b b
f r(x) f(w, (x) dx = ¢, / () [wa ()P dx = ¢y lw, (07 (6.34)
Equation (6.34) gives the coefficients ¢, as
, s
LW @wwdx (6.35)
[|w, (X)[12

5. Orthogonality of eigenfunctions. If the functions p(x), g(x), r(x), and r(x) are
real valued and continuous with r(x) > 0 on the interval @ < x < b, the eigenfunctions
wy, (x) and w, (x) corresponding to different eigenvalues X,, and X,, respectively, are
orthogonal with respect to the weighting function r(x). This property can be proved as
follows.

Since the eigenfunctions satisfy the Sturm—Liouville equation (6.23), we have

(pw,) +(q + Apr)w, =0,  a<x<b (6.36)
(pw,)" + (g + pr)w, =0, a<x<b (6.37)

Multiply Eq. (6.36) by w,(x) and Eq. (6.37) by w,,(x) and subtract the resulting equat-
ions one from the other to obtain

(Am — )"n)rwmwn = Wpy (pw;/1)/ - wn(pw;/n)/ = (pw;/1win - pw;/nwn)/ (638)
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Integration of Eq. (6.38) with respect to x from a to b results in

b
Am — kn)/ rwy, (0w, () dx = [p(w],(D)w,, (x) — wy, (X)w, ()]

= p(O)[w, BYwy (b) — w,, (DYw, (b)]
— p@)w, (@wy (@) — w, (@w, (@] (6.39)

Based on whether p(x) is zero or not at x = a or x = b, we need to consider the
following cases:

(a) p(a) =0 and p(b) = 0: In this case, the expression on the right-hand side of
Eq. (6.39) is zero. Since A, and A, are distinct, we have

b
f r(xX)wy, (w,(x)dx =0, m#n (6.40)

Note that Eq. (6.40) is valid irrespective of the boundary conditions of
Egs. (6.24) and (6.25).

(b) p(b) =0 and p(a) # 0: In this case, the expression on the right-hand side of
Eq. (6.39) reduces to

—p@[w, (@wy,(a) — w, (@w,(a)] (6.41)

The boundary condition at x = a can be written as
Ajwy (@) + Byw,,(a) =0 (6.42)
Ajwy(a) + Biw)(a) =0 (6.43)

Multiply Eq. (6.42) by w, (a) and Eq. (6.43) by w,,(a) and subtract the result-
ing equations one from the other to obtain

Bi[w, (@)wy, (@) — w,, (@)w,(a)] =0 (6.44)

Assuming that B; # 0, the expression in brackets in Eq. (6.44) must be zero.
This means that the expression in (6.41) is zero. Hence, the orthogonality
condition given in Eq. (6.40) is valid. Note that if B; =0, then A; # 0 by
assumption, and a similar argument proves the orthogonality condition in
Eq. (6.40).

(¢) p(a) =0 and p(b) # 0: By using a procedure similar to that of case (b) with
the boundary condition of Eq. (6.25), the orthogonality condition in Eq. (6.40)
can be proved.

(d) p(a) #0 and p(b) # 0: In this case we need to use both the procedures of
cases (b) and (c) to establish the validity of Eq. (6.40).

(e) p(a) = p(b): In this case the right-hand side of Eq. (6.39) can be written as
pB)[w, (b)wy, (b) — wy, (b)w, (b) — w, (a)wy(a) + w,, (@w,(@)]  (6.45)

By using the boundary condition of Eq. (6.24) as before, we can prove that
the expression in brackets in Eq. (6.45) is zero. This proves the orthogonality
condition given in Eq. (6.40).
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6.5 GENERAL EIGENVALUE PROBLEM

The eigenvalue problem considered in Section 6.4, also known as the Sturm—Liouville
problem, is valid only for one-dimensional systems. A general eigenvalue problem
applicable to one-, two-, and three-dimensional systems is discussed in this section.

In the case of free vibration, f and all F; will be zero and Eq. (6.1) reduces to
the homogeneous form

- *w(X, 1)

M) — 5=+ Liw(X,1)] =0, XeV (6.46)

For the natural frequencies of vibration, we assume the displacement w(f( ,1) tobea
harmonic function as

w(X,t) = W(X)e'! (6.47)

where W()} ) denotes the mode shape (also called the eigenfunction or normal mode)
and o indicates the natural frequency of vibration. Using Eq. (6.47), Eq. (6.46) can be
represented as

LIW]=AM[W] (6.48)
where A = ? is also called the eigenvalue of the system. Equation (6.48), along
with the boundary conditions of Eq. (6.11) or (6.12), defines the eigenvalue prob-
lem of the system. The solution of the eigenvalue problem yields an infinite number of
eigenvalues A, A, ... and the corresponding eigenfunctions W (X), W»(X), .... The
eigenvalue problem is said to be homogeneous, and the amplitudes of the eigenfunc-
tions W;(X),i =1,2,..., are arbitrary. Thus, only the shapes of the eigenfunctions
can be determined uniquely.

6.5.1 Self-Adjoint Eigenvalue Problem

Before defining a problem known as the self-adjoint eigenvalue problem, two types of
functions, called admissible and comparison functions, are introduced. These functions
are used in certain approximate methods of solving the eigenvalue problem. As seen
in Chapter 4, the boundary conditions of Eq. (6.12) are composed of geometric (or
forced) and natural (or free) boundary conditions.

A function u(X) is said to be an admissible function if it is p times differentiable
over the domain V and satisfies only the geometric boundary conditions of the eigen-
value problem. Note that an admissible function does not satisfy the natural boundary
conditions as well as the governing differential equation of the eigenvalue problem.
A function u(X) is said to be a comparison function if it is 2p times differentiable
over the domain V and satisfies all the boundary conditions (both geometric and nat-
ural) of the eigenvalue problem. Note that a comparison function does not satisfy the
governing differential equation of the eigenvalue problem. On the other hand, the eigen-
Junctions W;(X),i = 1,2, ... satisfy the governing differential equation as well as all
the boundary conditions of the eigenvalue problem.
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Definition  The eigenvalue problem defined by Eqgs. (6.48) and (6.12) is said to be self-
adjoint if for any two arbitrary comparison functions u(X) and u,(X), the following
relations are valid:

/V ui (X)Llua(X)1dV = /V uy(X)LLuy (X)1dV (6.49)
/ ur (X)Muy(X)]1dV = / ur(X)M{uy (X)]1dV (6.50)
1% \%

Positive Definite Problem An eigenvalue problem, defined by Eqgs. (6.48) and (6.12),
is said to be positive definite if the operators L and M are both positive definite. The
operator L is considered positive if for any comparison function u(X), the following
relation is valid:

/ u(X)L[u(X)1dV >0 6.51)
\%4

The operator L is considered positive definite if the integral in Eq. (6.51) is zero only
when u#(X) is identically equal to zero. Similar definitions are valid for the operator
M. The eigenvalue problem is said to be semidefinite if the operator L is only positive
and the operator M is positive definite. It is to be noted that the eigenvalue problems
corresponding to most continuous systems considered in subsequent discussions are
self-adjoint, as implied by Egs. (6.49) and (6.50). In most cases, the operator M (X)
denotes the distributed mass of the system, and hence the positive definiteness of M (X)
is ensured.

If the system or the eigenvalue problem is positive definite, all the eigenvalues A;
will be positive. If the system is semidefinite, some A; will be zero. It can be seen that
these properties are similar to that of a discrete system.

Example 6.4 The free axial vibration of a uniform bar fixed at both the ends x = 0
and x = L is governed by the equation

3%u(x, 1) d%u(x, 1)
;o T =
ox ot
where E is Young’s modulus, A is the cross sectional, area, m is the mass per unit

length, and u(x, ) is the axial displacement of the bar. Show that the eigenvalue
problem, obtained with

EA 0 (E6.4.1)

u(x,t) = U(x)coswt (E6.4.2)

in Eq. (E6.4.1), is self-adjoint. Consider the following comparison functions:

Ui(x) = Cix(L —x),  Ux(x) = Cysin ”Tx (E6.4.3)

SOLUTION The eigenvalue problem corresponding to Eq. (E6.4.1) is given by

d*U (x)
dx?

EA = amU (x) (E6.4.4)
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where A = w? is the eigenvalue. Comparing Eq. (E6.4.4) with Eq. (6.48), we identify
the operators L and M as
82
L=FA—, M=m (E6.4.5)
9x?2

The eigenvalue problem will be self-adjoint if the following conditions hold true:

L L
f Uy (x)L[Ua(x)] dx = / U (x)L[U; (x)] dx (E6.4.6)
0 0
L

L
/ Uy (x)M[Us(x)] dx = / Us (x)M[U; (x)] dx (E6.4.7)
0 0

The boundary conditions of the bar can be expressed as
U =0, UL)=0 (E6.4.8)

The comparison functions given by Eq. (E6.4.3) can be seen to satisfy the boundary
conditions, Eq. (E6.4.8). Using U;(x) and U;(x), we find that

L . )
f Vi) LIt (0ldx = / Cix(L — X)EA d (Cz sin E) dx
0 0

L
4C,CLEAL
e (E6.4.9)
T
L L TX d2
/ Uy(x)L[U;(x)]dx =/ C; sin TEA—(Cle C1x )dx
0 0
4C,CLEAL
— e (E6.4.10)
T

It can be seen that Eq. (E6.4.6) is satisfied. Similarly, Eq. (E6.4.7) can also be shown
to be satisfied. Thus, the eigenvalue problem is self-adjoint.

6.5.2 Orthogonality of Eigenfunctions

The orthogonality property, proved for the Sturm—Liouville problem in Section 6.4.2,
can also be established for a general elgenvalue problem. For thls let A; and A ; denote
two distinct eigenvalues, with W; = W, (X ) and W; =W; (X ) indicating the corre-
sponding eigenfunctions. Then

LIW;]1 = A M[W;] (6.52)
LIW;] = x;M[W;] (6.53)

Multiply Eq. (6.52) by W; and Eq. (6.53) by W; and subtract the resulting equations
from each other:

WLIW;] — Wi LIW;] = 0 W; M[W;] — A, W; M[W,] (6.54)



166  Solution Procedure: Eigenvalue and Modal Analysis Approach

Integrate both sides of Eq. (6.54) over the domain V of the system to obtain
/;/(WjL[Wi] - WiLIW;)dV = /V()»,-WjM[Wi]) — A WiM[W;1dV (6.55)
If the eigenvalue problem is assumed to be self-adjoint, then
/‘/W,»L[W,-]dV = /v WiL[W;]dV (6.56)

and
/W,~M[W,~]dV=/ WiM[W;]dV (6.57)
1% 1%

In view of Egs. (6.56) and (6.57), Eq. (6.55) reduces to
i — Aj)/‘/ WiM[W;1dV =0 (6.58)
Since A; and A; are distinct, Eq. (6.58) yields
/V WiM[W;]1dV =0 for A; # A (6.59)
Equations (6.59) and (6.53) can be used to obtain
/VW,-L[Wj]dV =0 for A; # A (6.60)

Equations (6.59) and (6.60) are known as the generalized orthogonality conditions and
the eigenfunctions W;(X) and W;(X) are considered to be orthogonal in a generalized
sense. The eigenfunctions W;(X) can be normalized with respect to M[W;] by setting

/W,-()?)M[W,»()?)]dV:l, i=1,2,... 6.61)
\%

Equation (6.61) basically specifies the amplitude of the eigenfunction W,-()? ); without
this normalization, the amplitude o_f the function W;(X) remains arbitrary. If M[W;(X)]
denotes the mass distribution M (X), the orthogonality condition can be written as

/ MEX)Wi(X)Wi(X)dV =0 for &; # A, (6.62)
\%4

In this case, the functions \/M()?)Wi()?) and M()?)Wj()?) are considered to be
orthogonal in the usual sense.

6.5.3 Expansion Theorem

As in the case of the Sturm—Liouville problem, the eigenfunctions constitute a complete
set in the sense that any function f ()} ) that satisfies the homogeneous boundary condi-
tions of the problem can be represented by a linear combination of the eigenfunctions
Wm()z ) of the problem as

o0

m=1
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where the coefficients ¢, can be determined as in the case of Eq. (6.35) as
_ [ FEMIW, (X)1dV
W O

Equation (6.63), also known as the expansion theorem, plays an important role in
vibration analysis and is commonly used to find the forced vibration response of a
system by modal analysis.

m=1,2,... (6.64)

m

6.6 SOLUTION OF NONHOMOGENEOUS EQUATIONS

The equation of motion of a continuous system subjected to external forces leads to a
nonhomogeneous partial differential equation given by Eq. (6.1):

M(}?)% +LIwX, )] = f(X,0) + Z Fi)s(X —X;), XeV
j=1
(6.65)
subject to the boundary conditions indicated in Eq. (6.12):
AlwX,HD1=0, i=12,....p (6.66)
and initial conditions similar to those given by Eqs. (6.17) and (6.18):
w(X,0) = £(X) 6.67)
ow - -
E(X, 0) = g(X) (6.68)

To find the solution or response of the system, w()? , 1), we use a procedure known
as modal analysis. This procedure involves the following steps:

1. Solve the eigenvalue problem associated with Eqs. (6.65) and (6.66). The eigen-
value problem consists of the differential equation

LIWX)] = aM[WX)], XeV (6.69)
with the boundary conditions
AIWX)] =0, i=1,2....p (6.70)

where A = @? is the eigenvalue, W()?) is the eigenfunction, and ® is the natural

frequency of the system. The solution of Egs. (6.69) and (6.70) yields an infinite set
of eigenvalues A, Az, ... and the corresponding eigenfunctions, also known as mode
shapes, W1(X), W(X), . ... The eigenfunctions are orthogonal, so that

/ M X)Wy (X)W, (X) dV = Sy (6.71)
v
2. Normalize the eigenfunctions so that

/ W (X)LIW,(X)]dV = &2 8 (6.72)
\%4
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3. Express the forced response of the system [i.e., the solution of the problem in
Eqgs. (6.65)—(6.68)] using the expansion theorem as

w(X, 1) =Y WX () (6.73)

m=1

where the n,,(f) are known as the time-dependent generalized coordinates. In
Eq. (6.73), the eigenfunctions W,,(X) are known from steps 1 and 2, while the gener-
alized coordinates 7,,(t) are unknown and to be determined by satisfying the equation
of motion and the initial conditions of Egs. (6.67) and (6.68). To determine n,,(t), we
substitute Eq. (6.73) in Eq. (6.65) to obtain

N R - ad -
M) 7 [Z Win (X1 (r)} +1L {Z Win (X )1 (t)}

m=1 m=1
N
=X, 0+ ) Fi08X —X)) (6.74)
j=1
which can be rewritten as

D i (OME) Wi (X) + Y i (O LIW, (X)]

m=1 m=1
= fX.0+ ) Fjns(X — X)) (6.75)
j=1
where i, (t) = d*n,,(t)/dt*>. By multiplying Eq. (6.75) by W,,()?) and integrating the

result over the domain V, we obtain

> im(8) fv W (X)M (X)W, (X)dV

m=1

+) ) /V W (X)LIW,,(X)]dV

m=1
=/ W,,(}?)f()?,t)dVJrZ/ W,(X)Fj(1)s(X —X;)dV  (6.76)
14 =1 \%4

Using the property of Dirac delta function given by Eq. (6.2), the last term of Eq. (6.76)
can be simplified as

> Wa(X)Fj(0) (6.77)

j=1
In view of Egs. (6.71), (6.72), and (6.77), Eq. (6.76) can be rewritten as

i (£) + @2 (1) = O (1), m=1,2,... (6.78)
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where Q,,(¢) is called the mth generalized force, given by

QM0=AWWXVQJMV+XHm@pﬂm (6.79)

Jj=1

Equation (6.78) denotes an infinite set of uncoupled second-order ordinary differential
equations. A typical equation in (6.78) can be seen to be similar to the equation of a
single-degree-of-freedom system [see Eq. (2.107)]. The solution of Eq. (6.78) can be
expressed as [see Eq. (2.109)]

Nm(t) = L/ On(t)sinw,(t —1)dt
Wy Jo

. Sin wy, t
+ 1 (0) cos wy, t + 1, (0) , m=1,2, ... (6.80)

m

where 1,,(0) and 7,,(0) are the initial values of the generalized coordinate (generalized
displacement) n,,(¢) and the time derivative of the generalized coordinate (generalized
velocity) 1,,(t) = dn,,(t)/ dt. Using the initial conditions of Egs. (6.67) and (6.68),
the values of 7,,(0) and 7,,(0) can be determined as

M©=Ambm@m®mw
=/VM()?)Wm()?)f(}?)dV (6.81)

ﬁm(()):/vM(i)Wm(i)w(i,O)dv
=/VM()?)Wm()?)g(i()dV (6.82)

Finally, the solution of the problem (i.e., the forced response of the system) can be
found using Egs. (6.80) and (6.73).

6.7 FORCED RESPONSE OF VISCOUSLY DAMPED SYSTEMS

Consider the vibration of a viscously damped continuous system. We assume the damp-
ing force, F,, resisting the motion of the system to be proportional to the velocity and
opposite to the direction of the velocity, similar to the case of a discrete system:

- dw(X, 1) 9 -
Fu(X,t) = —C—— = ——Clw(X, 1)] (6.83)
at ot
where C is a linear homogeneous differential operator, similar to the operator L, com-
posed of derivatives with respect to the spatial coordinates X (but not with respect to
time ¢) of order up to 2p. Thus, the equation of motion of the viscously damped system
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can be expressed, similar to Eq. (6.65), as [3, 4]

M ZEED |G 4 Lin(E, ]
ot? ar Wi
=fX.0+Y Fns(X—X;), XeV (6.84)

j=1

subject to the homogeneous boundary conditions

Alw(X,01=0, i=1,2,...,p (6.85)

and the initial conditions - .
w(X,0) = f(X) (6.86)

w - -
E(X, 0) =g(X) (6.87)

For the undamped system, we find the eigenvalues 2,, and the corresponding eigen-
functions W,,(X) by solving the eigenvalue problem

LIWX)] = AMWX)], XeV (6.88)
subject to the boundary conditions
AW =0, i=1,2,....p (6.89)

The orthogonal eigenfunctions are assumed to be normalized according to Egs. (6.71)
and (6.72). As in the case of an undamped system, the damped response of the system is
assumed to be a sum of the products of eigenfunctions and time-dependent generalized
coordinates 7,,(t), using the expansion theorem, as

w(X, 1) =Y Wy (X (1) (6.90)

m=1

Substitution of Eq. (6.90) into Eq. (6.84) leads to

D i OME) W (X) + Y i (O CIWn (X1 + Y 0 () LW, (X)]
m=1

=fX.0+Y F0sX-X)), XeV (6.91)
j=1

By multiplying Eq. (6.91) by W, ()} ) and integrating the result over the domain of the
system V, and using Egs. (6.71) and (6.72), we obtain

iim (8 + Y Contin (1) + Op (1) = Qu(D),  m=1,2,...  (6.92)

n=1

where c;,,, known as the viscous damping coefficients, are given by

Con = / W (X)CIW,(X)]1dV (6.93)
\%4
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and Q,,(?), called the generalized forces, are given by

On(t) = /V Wi (X)f (X, 0)dV + Y W (X)) Fj (1) (6.94)

Jj=1

In many practical situations, the viscous damping operator C is not known. To simplify
the analysis, the operator C is assumed to be a linear combination of the operator L
and the mass function M:

C = OllL + OtzM (695)

where o and «, are constants. With this assumption, the viscous damping coefficients
can be expressed as

Conn = CnnBmn = 28 @ Smn (6.96)

where ¢, is called the damping ratio. Introducing Eq. (6.96) into Eq. (6.92), we obtain
a set of uncoupled second-order ordinary differential equations:

iim (1) + 28m@nin (1) + @11 (1) = O (0), m=12,... (6.97)

Equations (6.97) are similar to those of a viscously damped single-degree-of-freedom
system [see Eq. (2.119)]. The solution of Eq. (6.97) is given by [see Eq. (2.120)]

t
(1) = / On(@h(t —t)dt + g()Nnm(0) + h(t)7,(0) (6.98)
0
where
h(t) = ——e " “m" sin wgpt (6.99)
WDdm
—Cmwomt Z,-—mwm .
g(t) = e """ | cos wgmt + sin Wyt (6.100)
Wdm

and wy,, is the mth frequency of damped vibration given by

Oam = /1 — £2 o (6.101)

where the system is assumed to be underdamped. Once the n,,(f) are known, the
solution of the original equation (6.84) can be found from Eq. (6.90).

6.8 RECENT CONTRIBUTIONS

A discussion of the various methods of physical modeling and a brief survey of the
direct solution techniques for a class of linear vibration systems, including discrete as
well as distributed parameter systems, have been presented by Chen [5]. The discussion
of discrete systems includes close-coupled, far-coupled, and branched systems. The dis-
cussion of continuous systems includes one-dimensional problems of vibrating strings
and beams and two-dimensional problems of vibrating membranes and plates. Anderson
and Thomas discussed three methods for solving boundary value problems that have
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both time derivatives of the dependent variable and known time-dependent functions
in the boundary conditions [6]. In these methods, the time dependence is eliminated
from the boundary conditions by decomposing the solution into a quasistatic part and a
dynamic part. The boundary conditions containing the time derivatives of the dependent
variable are satisfied identically by imposing special requirements on the quasistatic
portion of the complete solution. The method is illustrated with a problem that deals
with the forced thickness—stretch vibrations of an elastic plate.

Anderson [7] investigated the forced vibrations of two elastic bodies having a
surface contact within the framework of the classical linear theory of elasticity. The
generalized orthogonality condition and a simple form of the generalized forces are
derived. The procedure is illustrated by considering the example of the forced thick-
ness—stretch vibration of a two-layer plate system.

As indicated earlier, the modal analysis, based on eigenfunction expansion, is a
commonly used technique for the transient analysis of continuous systems. However,
the conventional modal expansion is not directly applicable to non-self-adjoint systems
whose eigenfunctions are nonorthogonal. In Ref. [8], an exact closed-form solution
method was presented for transient analysis of general one-dimensional distributed
systems that have non-self-adjoint operators, and eigenvalue-dependent boundary con-
ditions are subject to arbitrary external, initial, and boundary disturbances. In this
reference, an eigenfunction series solution is derived through introduction of augmented
spatial operators and through application of the modal expansion theorem given in
Ref. [9]. The method is demonstrated by considering a cantilever beam with end mass,
viscous damper, and spring.

Structural intensity can be used to describe the transfer of vibration energy. The
spatial distribution of structural intensity within a structure offers information on energy
transmission paths and positions of sources and sinks of mechanical energy. Gavric
et al. [10] presented a method for the measurement of structural intensity using a normal
mode approach. The method is tested on an assembly of two plates.
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PROBLEMS

6.1 Prove that the left and right sides of Eq. (6.20)
must be equal to a negative constant.

6.2 Show that for « > 0, Egs. (E6.1.6) and (E6.1.7) do
not have a nonzero solution for ¢; and c;.

6.3 Convert the following differential equation to
Sturm-Liouville form, Eq. (6.23):

d*w dw
252 2
(= ﬁ_zx(l_x )E
+ A1 =x>) —n*lw=0

6.4 Find the eigenvalues and eigenfunctions of the
equation

d*w

— +Aw =0, w(0) =0, w@nr)=0

dx?

6.5 Determine whether the following functions are
orthogonal in the interval 0 < x < [:

Cimx .
Wi(x) = sin —, i=12

7 )
6.6 Determine whether the following differential
equation is self-adjoint:

PRI

d*w dw
2 2 2
X 7+x—x+(x —mIHw =0

6.7 Determine whether the following differential
equation is self-adjoint:
d*w dw
l—x)— —2x— — 2w =0
(1 =7 dx? o dx v

6.8 Consider the Sturm—Liouville equation
1
(xw/)’—l—(wzx——)w:O, 0<x<l1
X

Determine the bounded solution of the equation subject
to the condition w(1) = 0.

6.9 Consider the differential equation corresponding to
the transverse vibration of a string fixed at x = 0 and
x =1

d*W(x)
dx?

+a*W(x) =0, 0<x<lI

where o? = w?p/P, p is the mass per unit length and

P is the tension in the string. Determine whether each
of the following functions is an admissible, comparison,
or eigenfunction:

(a) W(x) =csin(mwx/l)
(b) W(x) =cx(x —1)
() Wx)=cx(2x —1)

6.10 The eigenvalue problem corresponding to the
transverse vibration of a uniform beam is given by

d*W (x)
dx*

EI = amW(x)

where EI is the bending stiffness, m is the mass per
unit length, W(x) is the transverse displacement (eigen-
function or mode shape), and A = w? is the eigenvalue.
Assuming the beam to be simply supported at both ends
x =0 and x = L, show that the problem is self-adjoint
by considering the following comparison functions:

. TTX 2 3 3
Wi(x) = C smT, Wr(x) = Cox(2Lx" — x” — L°)

6.11 A uniform shaft with torsional rigidity GJ is fixed
at x = 0 and carries a rigid disk of mass polar moment
of inertia Iy at x = L. State the boundary conditions of
the shaft in torsional vibration at x =0 and x = L and
establish that one of the boundary conditions depends
on the natural frequency of vibration of the shaft.



Solution Procedure: Integral
Transform Methods

7.1 INTRODUCTION

Integral transforms are considered to be operational methods or operational calcu-
lus methods that are developed for the efficient solution of differential and integral
equations. In these methods, the operations of differentiation and integration are sym-
bolized by algebraic operators. Oliver Heaviside (1850—1925) was the first person to
develop and use the operational methods for solution of the telegraph equation and
the second-order hyperbolic partial differential equations with constant coefficients in
1892 [1]. However, his operational methods were based mostly on intuition and lacked
mathematical rigor. Although subsequently, the operational methods have developed
into one of most useful mathematical methods, contemporary mathematicians hardly
recognized Heaviside’s work on operational methods, due to its lack of mathematical
rigor.

Subsequently, many mathematicians tried to interpret and justify Heaviside’s work.
For example, Bromwich and Wagner tried to justify Heaviside’s work on the basis of
contour integration [2, 3]. Carson attempted to derive the operational method using an
infinite integral of the Laplace type [4]. Van der Pol and other mathematicians tried
to derive the operational method by employing complex variable theory [5]. All these
attempts proved successful in establishing the mathematical validity of the operational
method in the early part of the twentieth century. As such, the modern concept of
the operational method has a rigorous mathematical foundation and is based on the
functional transformation provided by Laplace and Fourier integrals.

In general, if a function f(¢), defined in terms of the independent variable ¢, is
governed by a differential equation with certain initial or boundary conditions, the
integral transforms convert f(¢) into F(s) defined by

t
F(s) = /zf(t)K(s,t)a't (7.1)
n

where s is a parameter, K (s, ¢) is called the kernal of the transformation, and #; and
t, are the limits of integration. The transform is said to be finite if #; and #, are finite.
Equation (7.1) is called the integral transformation of f(t). It converts a differential
equation into an algebraic equation in terms of the new, transformed function F(s).
The initial or boundary conditions will be accounted for automatically in the process
of conversion to an algebraic equation. The resulting algebraic equation can be solved
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for F(s) without much difficulty. Once F(s) is known, the original function f(¢) can
be found by using the inverse integral transformation.

If a function f, defined in terms of two independent variables, is governed by a
partial differential equation, the integral transformation reduces the number of inde-
pendent variables by one. Thus, instead of a partial differential equation, we need to
solve only an ordinary differential equation, which is much simpler. A major task in
using the integral transform method involves carrying out the inverse transformation.
The transform and its inverse are called the transform pair. The most commonly used
integral transforms are the Fourier and Laplace transforms. The application of both
these transforms for the solution of vibration problems is considered in this chapter.

7.2 FOURIER TRANSFORMS

7.2.1 Fourier Series

In Section 1.10 we saw that the Fourier series expansion of a function f(¢) that is
periodic with period T and contains only a finite number of discontinuities is given by

oo
2nm, t . 2nmt
F0) =243 (aycos 720 4 by sin T (7.2)
2 n=1 t t

where the coefficients a, and b, are given by

/2
apg = — f@)dt
T J-z1)2
2 [T 2nmwt
a, = — f(t)cos dt, n=1,2,... (7.3)
T J-z)2
2 (72 2nrt
b, = — f(t)sin dt, n=1,2,....
TJ-z)2
Using the identities
27” i(2nz/r) 4 e*i(Znt/r) 27.” i(27rt/r) _ e*i(Znt/r)
cos — = , sin — = - (7.4)
T 2 T 2i
Eq. (7.2) can be expressed as
S i(n2mt/t) —i(n2nt/t) i(n2nt/t) _ ,—i(n2mwt/7)
ag e +e e e
H=—+ + b,
f ==+ [an 3 . 5 }
n=1
ib > a ib a ib
__ i(0)@rt/T) 0 in2nt/t [ Yn  Pn —in2mt/T [ Yn | tUn
e (G (3 5) e ()]

n=1

(7.5)



176  Solution Procedure: Integral Transform Methods

where by = 0. By defining the complex Fourier coefficients ¢, and c_, as

cy = ij”’ c, = ij” (7.6)
2 2
Eq. (7.5) can be expressed as

o0

f@y= )" cpe™r (1.7)

n=—0oo

where the Fourier coefficients ¢, can be determined using Eqgs. (7.3) as

a, —ib,
Cn = T
1 7/2 2t i | e .
= f® (cos neent i sin neer > dt = = f(t)e—m(zm/f) dt
¢ T T Jop2
(7.8)
Using Eq. (7.8), Eq. (7.7) can be written as
X©  gin2mt/t rT/2 ‘
f@) = Z f(t)e—m(Zm/r) dt (7.9)
n=—00 -7/2

7.2.2 Fourier Transforms

When the period of the periodic function f(¢) in Eq. (7.9) is extended to infin-
ity, the expansion will be applicable to nonperiodic functions as well. For this, let
w, =n- 27/t and Aw, =nwy— (n — Nwy =2n/t. As 7 — o0, Aw, — dw — 0
and the subscript n need not be used since the discrete value of w,, becomes continuous.
By using the relations nwy = w and dw = 27/t as T — oo, Eq. (7.9) becomes

o0 1. /2 )

f(t) — lim Z _eln(ZTL’t/T) f(t)efln(an/I) dt

r—>oon7_oo T )2

1 o0 . o0 .

= — e”“’t/ fe dtdw (7.10)

21 J —00
Equation (7.10), called the Fourier integral, is often expressed in the form of the
following Fourier transform pair:

F(w) =/OO f)e' di (7.11)
f@r) = 1 /oo F(w)e " dw (7.12)
27 J_ o

where F(w) is called the Fourier transform of f(t) and f(t) is called the inverse
Fourier transform of F(w). In Eq. (7.12), F(w) dw can be considered as the harmonic
contribution of the function f () in the frequency range  to @ + dw. This also denotes
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the limiting value of ¢, as T — o0, as indicated by Eq. (7.8). Thus, Eq. (7.12) denotes
an infinite sum of harmonic oscillations in which all frequencies from —oco to co are
represented.

Notes

1. By rewriting Eq. (7.10) as

1 o0 1 o0 A A
) = —/ |:—/ (t)e " dti| e“"dw (7.13)
f kY4 27 J-co LV27T J -0 f
the Fourier transform pair can be defined in a symmetric form as

1 o oot

F(w) = —/ (t)e ' dt (7.14)
LY 27 J-oo f

1 o° oot

) = —/ F(w)e'” dow (7.15)
f V2 J oo

It is also possible to define the Fourier transform pair as
1 ° ;
Flw)=— / f()e' dt (7.16)
V2 J-oo

f@t) = F(@e " dw (7.17)

1 oo

kY, 21 /—oo

2. The Fourier transform pair corresponding to an even function f(¢) can be
defined as follows:

oo
F(w) =/ f(t)coswt dt (7.18)
0
2 o0
f(@) = —/ F(w)coswtdw (7.19)
T Jo
The Fourier sine transform pair corresponding to an odd function f(¢) can be defined as
oo
F(w) = / f(®)sinwt dt (7.20)
0
2 oo
f@ = —/ F(w)sinwtdw (7.21)
T Jo

3. The Fourier transform pair is applicable only to functions f(¢) that satisfy
Dirichlet’s conditions in the range (—oo, 00). A function f(¢) is said to satisfy Dirich-
let’s conditions in the interval (a, b) if (a) f(¢) has only a finite number of maxima and
minima in (a, b) and (b) f(¢) has only a finite number of finite discontinuities with no
infinite discontinuity in (a, b). As an example, the function f(t) =t/(1 + t?) satisfies
Dirichlet’s conditions in the interval (—o0, 00), whereas the function f(¢#) = 1/(1 —1t)
does not satisfy Dirichlet’s conditions in any interval containing the point # = 1 because
f(¢) has an infinite discontinuity at t = 1.
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7.2.3

7.24

Fourier Transform of Derivatives of Functions

Let the Fourier transform of the jth derivative of the function f(r) be denoted as
FY(w). Then, by using the definition of Eq. (7.11),

‘ dJ d/! o .
F9(w) = f dJ; j(t) e dt = "”T{]@ —iwFY D (w) (7.22)
—00

—0Q

Assuming that the (j — 1)st derivative of f(¢) is zero as t — 00, Eq. (7.22) reduces to

FO) = —iw FY Y (w) (7.23)

Again assuming that all derivatives of order 1,2,...,j — 1 are zero as t — 400,
Eq. (7.23) yields

F9(w) = (—i w)! F(w) (7.24)

where F(w) is the complex Fourier transform of f(¢) given by Eq. (7.11).

Finite Sine and Cosine Fourier Transforms

The Fourier series expansion of a function f(¢) in the interval 0 < < 7 is given by
[using Eq. (1.32)]

f) == + Za,, cos nt (7.25)
where
a, = /Oﬂ f(t)cosntdt (7.26)
Using Eqgs. (7.25) and (7.26), the finite cosine Fourier transform pair is defined as
F(n) = /n f(t)cosntdt (7.27)
f@) = ﬂ + = Z F(n) cosnt (7.28)
n=1

A similar procedure can be used to define the finite sine Fourier transforms. Starting
with the Fourier sine series expansion of a function f(¢) defined in the interval 0 <
t < 7 [using Eq. (7.32)], we obtain

f) = Z by sinnt (7.29)

where

by = f ! f(t)sinnt dt (7.30)
0
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the finite sine Fourier transform pair is defined as

F(n) =/n f(¢) sinnt dt (7.31)
0
f@t) = % X:; F(n)sinnt (7.32)

When the independent variable ¢ is defined in the range (0,a) instead of (0,7), the finite
cosine transform is defined as

Fn) = /a f(t)cos&tdt (7.33)
0

where & is yet unspecified. Defining a new variable y as y =mt/a so that
dy = (/a)dt, Eq. (7.33) can be rewritten as

F(n) = ﬁ/ 7(y) cos (g—ya) dy (7.34)
T Jo T
where
— N ya
fm=1r (—n ) (7.35)

If éa/mr =n or &€ =nm/a, then
a —
—f = —F(O) + = Z F(n) cosny (7.36)

Returning to the original variable 7, we define the finite cosine transform pair as

F(n) = / [0 cosndet (1.37)

F
f@) = ﬂ + = ZF( )cos—t (7.38)

n=1

Similarly, the finite sine Fourier transform pair is defined as

F(n)=/af(t)sin”7mdt (7.39)
0

=23 Fnysin ™™ 7.40
f()—;é (n) sin — (7.40)

Example 7.1 Find the Fourier transform of the function

O<x<a

fx) = { g (E7.1.1)

X >a
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SOLUTION The Fourier transform of f(x), as defined by Eq. (7.14), is given by

F(w) = \/% /_ Z fx)e " dx

1 a ) a e*iwx a
= — ae 'Y dx =
«/E/O V2r < —iw )0
1 — —iwa
_ad—e™) (E7.12)

w21

Example 7.2 Find the Fourier transform of the function

fx) =cfikx) + 2 folx)

where ¢; and ¢, are constants.

SOLUTION  The Fourier transform of f(x) can be found using Eq. (7.14) as

F(w) = \/% [ N Fx)e % dx

«/021_71/00 fl(x)e_i“’x dx + sz_n/w fr(x)e " dx
=c1 Fi(w) + o Fh(w) (E7.2.1)

This shows that Fourier transform is a linear operation; that is, the Fourier transform
of a linear sum of a set of functions is equal to the linear sum of the Fourier transforms
of the individual functions.

Example 7.3 Find the Fourier transform of the function f(ax), where a is a positive
constant.

SOLUTION  The Fourier transform of f(ax) is given by [Eq. (7.14)]

J% /OO flax)e " dx (E7.3.1)

By introducing a new variable ¢ as t = ax so that dt = adx, the expression (E7.3.1)
can be rewritten as

1

a~/2m

oo
f fe i gy (E7.3.2)
—00
Thus, the Fourier transform of f(ax) is given by

1 w
_F (—) . a>0 (E7.3.3)
a a



7.3 Free Vibration of a Finite String 181

7.3 FREE VIBRATION OF A FINITE STRING

Consider a string of length / under tension P and fixed at the two endpoints x =0
and x = [. The equation of motion governing the transverse vibration of the string is
given by

Pwx, ) Pwlx,t
0wl ) (7.41)
0x2 012
By redefining the spatial coordinate x in terms of p as
X

Eq. (7.41) can be rewritten as
72c? Bzw(p, t) _ Bzw(p, t)
2 axr a2

We now take finite sine transform of Eq. (7.43). According to Eq. (7.31), we multiply
Eq. (7.43) by sin np and integrate with respect to p from O to x:

O<p=m (7.43)

2.2 T a2 T 92
Tc 0°w o°w
—_— ——sinnpdp = ——sinnpd 7.44
B fo op? pdp /0 a2 pdp (7.44)
where
T w(p,t) . dw | S
——5 —sinnpdp = | ——sinnp —nwcosnp —n wsinnpdp
0 ap ap 0 0

(7.45)

Since the string is fixed at p = 0 and p = m, the first term on the right-hand side of
Eq. (7.45) vanishes, so that

b4 32 1 b4
/ M sinnpdp = —n2/ wsinnpdp (7.46)
0 ap 0
Thus, Eq. (7.44) becomes
n2n2c2 /n ) J 82 b4 ) J (7 47)
— w sinn = — w sinn .
Za pdp=75 | pdp

Defining the finite Fourier sine transform of w(p, ) as [see Eq. (7.31)]

Wn,t) = / w(p,t)sinnpdp (7.48)
0

Eq. (7.47) can be expressed as an ordinary differential equation as

d*W(n, 1) n w2c?n?
dr? 2
The solution of Eq. (7.49) is given by

Wn,t) =0 (7.49)

Wn,t) = C‘]ei(ncn/l)l + ézefi(ncn/l)t
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or

cnt . mcent

T
W(n,t) = Cjcos + C sin

(7.50)

where the constants C 1 and C’z or Cy and C, can be determined from the known initial
conditions of the string.
Let the initial conditions of the string be given by

wx,t =0) = wy(x) (7.51)
9
a—’f(x,t = 0) = 1p(x) (7.52)

In terms of the finite Fourier sine transform W (n, r) defined by Eq. (7.48), Egs. (7.51)
and (7.52) can be expressed as

W(n,t =0) = Wy(n) (7.53)
aw .
—(n,t =0) = Wy(n) (7.54)
dt
where
Wo(n) = /n wo(p) sinnpdp (7.55)
0
or
T [! . nmwé
Wo(n) = 7 / wo (&) sin e dé& (7.56)
0
Wo(n) = /ﬂ wo(p) sinnp dp (7.57)
0
or
. x (1 . nmé
Wo(n) = 7/ wo(&) sin e d& (7.58)
0
Equations (7.53), (7.54), and (7.50) lead to
Cy = Wo(n) (7.59)
C, = Lwo(m (7.60)
nemw

Thus, the solution, Eq. (7.50), becomes

nmct nmct

[ .
W(n,t) = Wy(n) cos + —— Wp(n) sin (7.61)
nmwc

The inverse finite Fourier sine transform of W (n, t) is given by [see Eq. (7.32)]

w(p, 1) = %ZW(n,t) sinnp (7.62)

n=1
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Substituting Eq. (7.61) into (7.62), we obtain
, 20 1. .
sinnp + o Z ;Wo(n) sin

n=1

nmwct nmct

/

2 o0
w(p, 1) == > Wo(n) cos sinnp  (7.63)
n=1

Using Eqgs. (7.56) and (7.58), Eq. (7.63) can be expressed in terms of x and ¢ as

2 & nwx nwet [! nré
w(x,t) = 7 sinTcos ] / wo(f;‘)sianS
0

2 1 t !
+ X_:;singsinnrgc AwO(E)Sin$d§ (7.64)

7.4 FORCED VIBRATION OF A FINITE STRING

Consider a string of length / under tension P, fixed at the two endpoints x = 0 and
x =1, and subjected to a distributed transverse force f(x,t). The equation of motion
of the string is given by [see Eq. (8.7)]

Pw(x, 1) - 92w(x, 1)
P )= p—>" 7.65
T D = pm (7.65)
or
9w 2w
2
- 1) = — 7.66
Fos tfEn =g (7.66)
where
Flx 1
S, ) = ACIL) (7.67)
0
As in Section 7.3 we change the spatial variable x to p as
p= ? (7.68)
so that Eq. (7.66) can be written as
72 %w(p, t) Ip 1 32w
=7 —t)==— 7.69
12 ap? +f (n ) c? 912 (7.69)

By proceeding as in the case of free vibration (Section 7.3), Eq. (7.69) can be expressed
as an ordinary differential equation:

d*Wn,t) m*c*n?
+

_ 2
12 B Wn,t) =c“F(n,t) (7.70)
where
W(n,t):/ w(p,t)sinnpdp (7.71)
0

Fn,t)= / f (l;p’ t) sinnpdp (7.72)
0
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Assuming the initial conditions of the string to be zero, the steady-state solution of
Eq. (7.70) can be expressed as

l 13
Wn, 1) = ;—nf F(n, 7)sin m;—c(t —7)drt (1.73)
0

The inverse finite Fourier sine transform of W (n, t) is given by [see Eq. (7.32)]

2 oo
w(p,1) = ~ Z W, (n, t) sinnp

n=1
MZ sin / F(n,1)sin 25 — 1) dt (7.74)
—sinn n, —(t — .
P I
or
2cl ] ! . nme
wix, 1) =— Z F(n,7)sin——(t = 7)dr (7.75)
1 0

Example 7.4 Find the response of a string of length /, fixed at x = 0 and x =/, under
the action of the harmonic force f(x,t) = fo(x)e'®, where w is the forcing frequency.
Assume the initial displacement and velocity of the string to be zero.

SOLUTION  Since the force is harmonic, the response of the string is assumed to be
harmonic as

w(x, 1) = u(x)e' (E7.4.1)
and the equation of motion, Eq. (7.66), becomes

2d2u( )

— ot 2u(x) + fo(x) =0 (E7.4.2)

where

Folx) = fox)

(E7.4.3)

By introducing the new spatial variable p = mx/l [as defined in Eq. (7.42)],
Eq. (E7.4.2) can be written as

72c% d*u l
P 4w+ () =0 (E7.4.4)
12 dp? i

We now take the finite Fourier sine transform of Eq. (E7.4.4). According to
Eq. (7.31), we multiply Eq. (E7.4.4) by sin np and integrate with respect to p from 0
to 7:

w2 du .
; o p —— + ?u + fy sinnpdp =0 (E7.4.5)
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where
/” d’u . J (du , >
——sinnpdp = | — sinnp — nucosnp
o dp? dp

The first term on the right-hand side of Eq. (E7.4.6) will be zero because u(0) =
u(mw) = 0 (since the string is fixed at p =0 and p = &) and sin 0 = sinnw = 0. We
define the finite Fourier sine transforms of u(p) and fo(Ip/7) as U(n) and Fy(n):

T

T
- n2/ usinnpdp (E7.4.6)
0 0

b
Umn) = / u(p)sinnpdp (E7.4.7)
0
T lp .
Fo(n) = fol — |sinnpdp (E7.4.8)
0 s
The inverse finite Fourier sine transforms of Eqgs. (E7.4.7) and (E7.4.8) yield
2 o0
u(p) ==y U(m)sinnp (E7.4.9)
bid
n=1
! 2 =
o <£> = =3 Fy(m)sinnp (E7.4.10)
T T~
Thus, Eq. (E7.4.5) can be rewritten as
7262n?
U+’ Um) + Fo(n) =0
or
Un) = Folm) (E7.4.11)
(2c?n? /1) (1 — w?/w?)
where
, wic*n®
w, = B (E7.4.12)

denotes the natural frequency of the string. Finally, by taking the inverse finite Fourier
sine transform of Eq. (E7.4.9) using Eqs. (E7.4.9) and (E7.4.10), we obtain the steady-
state forced response of the string as

2eiot &, sin(nmx /1) fol foy)sin(nmy/l)ydy
Pl 72/ 12)(1 — 0*/w?)

n=1

(E7.4.13)

w(x,t) =

FREE VIBRATION OF A BEAM

Consider a uniform beam of length / simply supported at x = 0 and x = /. The equation
of motion governing the transverse vibration of the beam is given by [see Eq. (3.19)]
P*w 10w

S T =0 (7.76)
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where
, EI
cf == (7.77)
PA
The boundary conditions can be expressed as
wx,t) =0 atx =0,x =1 (7.78)
2w
(x,t)=0 atx =0,x =1 (7.79)

ax2

We take finite Fourier sine transform of Eq. (7.76). For this, we multiply Eq. (7.76) by
sin(nmx /1) and integrate with respect to x from O to /:

[ o4 [ o2
0 w nmwx 1 9w nmwx
——sin——dx + — ——sin——dx =0 7.80

/0 x4 ;T A /0 oz T (7.80)
Here

iz 93w nmwx
——— 3 Cos —— dx

l

SlHTd)C:wSHIT

P9%w . nmx Pw . nmx |
0 8x4

i
nw 92w nmwx

T e T

Pw . nmx
—— sin——
0x l

0 0

nt\2 (1 0%w  nmx
%ﬂ W sin T 4x (7.81)
1) ), ax2 I

In view of the boundary conditions of Eq. (7.79), Eq. (7.81) reduces, to

L4 . nmx nry\2 [ o%w . nmx
——sin—dx = — (—) ——sin ——dx (7.82)
o ox* l [ o 0x2 l

Again using integration by parts, the integral on the right-hand side of Eq. (7.82) can
be expressed as

U'82w  nmx Jw . nmx ! Unr ow nwx
/—sm—dx:—sm— — — —cos——dx
o 0x2 [ 0x I fy, Jo I ox l
Jw . nmwx ! nm nmwx ! nm\2 [! . nwXx
= —sin——| — —wcos— —(—) wsin — dx
ox l 0 l [ 0 l 0 l

2 1
=—(TQ /ummﬂgdx (7.83)
1)), /

in view of the boundary conditions of Eq. (7.78). Thus, Eq. (7.80) can be expressed as

nr\4 [! . nmx 1 92 ! . nmx
(—) wsin —dx + —— wsin —dx =0 (7.84)
l 0 l c2 91?2 0 l
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Defining the finite Fourier sine transform of w(x, ¢) as [see Eq. (7.39)]
! . nmwx
Wn,t) = w(x, 1) sdex (7.85)
0

Eq (7.84) reduces to the ordinary differential equation

AW, t) cEn*n?
+

o W =0 (7.86)

The solution of Eq. (7.86) can be expressed as

W(n, 1) = Ce /P | Cpeilenn®/ P (7.87)
or
2.2 2.2
W(n. 1) = C; cos C"lz { + Cysin C”l—zt (7.88)

Assuming the initial conditions of the beam as
wx,t =0) = wy(x) (7.89)

dw =)= 7.90
g(xﬁ— ) = wo(x) (7.90)

the finite Fourier sine transforms of Egs. (7.89) and (7.90) yield

Wn,t=0) = Won) (7.91)
AW .
— = 0) = Wo(w) (7.92)
where
[
Wo(n) = / wo(x) sin@dx (7.93)
0
[
Wo(n) = / o (x) sianxdx (7.94)
0

Using initial conditions of Egs. (7.93) and (7.94), Eq. (7.88) can be expressed as

2.2 2 2.2

cn l . . cn
W(n,t) = Wy(n) cos t + ——=Wp(n) sin
cn’m? 2

12

t (7.95)

Finally, the transverse displacement of the beam, w(x, t), can be determined by using
the finite inverse Fourier sine transform of Eq. (7.95) as

2 o0
w1 = > W0 sin@ (7.96)

n=1
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which can be rewritten, using Egs. (7.93) and (7.94), as

2 o 2.2 1
wix, 1) ==Y sin 2 cos ﬂz/ wo(g)sinﬁdg
£=0

1= 2
21 o0 1 2.2 !
Y Ssin T sin / o) sin 5 dg (7.97)
et f—n l [ £=0 [

7.6 LAPLACE TRANSFORMS

The Laplace transform technique is an operational method that can be used conveniently
for solving linear ordinary differential equations with constant coefficients. The method
can also be used for the solution of linear partial differential equations that govern the
response of continuous systems. Its advantage lies in the fact that differentiation of the
time function corresponds to multiplication of the transform by a complex variable s.
This reduces a differential equation in time ¢ to an algebraic equation in s. Thus,
the solution of the differential equation can be obtained by using either a Laplace
transform table or the partial fraction expansion method. An added advantage of the
Laplace transform method is that during the solution process, the initial conditions of
the differential equation are taken care of automatically, so that both the homogeneous
(complementary) solution and the particular solution can be obtained simultaneously.

The Laplace transformation of a time-dependent function, f(¢), denoted as F (s),
is defined as

LIf(O] = F(s) = /0 f)e ™" dt (7.98)

where L is an operational symbol denoting that the quantity upon which it operates is
to be transformed by the Laplace integral

oo
/ e ldt (7.99)
0

The inverse or reverse process of finding the function f(7) from the Laplace transform
F(s), known as the inverse Laplace transform, is donated as

c+ioco
L7 F)]=f@) = if F(s)e' ds, >0 (7.100)
L Je—ioo

Certain conditions are to be satisfied for the existence of the Laplace transform of the
function f(¢). One condition is that the absolute value of f(#) must be bounded as

lf@)]| < Ce' (7.101)

for some constants C and «. This means that if the values of the constants C and «
can be found such that

le™" f(1)| < Ce @™ (7.102)
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then

LI f()] = fooe—“f(z)dt < C/oo eI 4 = . (7.103)
0 0 o

Another condition is that the function f(#) must be piecewise continuous. This means
that in a given interval, the function f(¢) has a finite number of finite discontinuities
and no infinite discontinuity.

7.6.1 Properties of Laplace Transforms

Some of the important properties of Laplace transforms are indicated below.

1. Linearity property. If c; and c, are any constant and fi(#) and f>(t) are
functions of ¢ with Laplace transforms F)(s) and F,(s), respectively, then

Llci fi(0) + c2 ()] = ci LLAO] + 2 L[ f2(1)]
=1 Fi(s) + 2 Fr(s) (7.104)

The validity of Eq. (7.104) can be seen from the definition of the Laplace transform.
Because of this property, the operator L can be seen to be a linear operator.
2. First translation or shifting property. If L[ f(t)] = F(s) for s > 8, then

Lle" f(1)] = F(s —a) (7.105)

where s —a > f and a may be a real or complex number. To see the validity of
Eq. (7.105), we use the definition of the Laplace transform

oo o0
Lle" f(t)] = / e f(t)dt = / e 7D f(1)dt = F(s — a) (7.106)
0 0
Equation (7.105) shows that the effect of multiplying f(z) by ¢?' in the real domain is

to shift the transform of f(¢#) by an amount a in the s-domain.
3. Second translation or shifting property. If

LIf()]=F(s) and g(t) = { Ja-a, i>a
then
Llg()] = e “F(s) (7.107)

4. Laplace transformation of derivatives. If L[ f(t)] = F(s), then

P KO
L[f(t)]—L_ "

i| =sF(s)— f(0) (7.108)

To see the validity of Eq. (7.108), we use the definition of Laplace transform as
df@®)7] o df
L[ A0 :/ e AY) dt (7.109)
J 0

dt dt
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Integrating the right-hand side of Eq. (7.109) by parts, we obtain

eSEWE - /O (—=se™ ) f(t)dt = — f(0) + sF(s) (7.110)

The property of Eq. (7.108) can be extended to the nth derivative of f(¢) to obtain

d"fO _ 1 pmw

L [T} = L[]
= _f(n—l)(o) _ Sf("_2)(0) _ s2f(n—3)(0) L s(n—l)f(o) _ S(n)F(s)
(7.111)

where
_ A" (1)
(n—i) _

SU0) = i » (7.112)

5. Convolution theorem. Let the Laplace transforms of the functions f(¢) and
g(t) be given by F(s) and G(s), respectively. Then

LI(f *g) ()] = F(s) * G(s) (7.113)

where F x G is called the convolution or the faltung of F and G. Equation (7.113)
can be expressed equivalently as

L [/ f(o)gt — r)drj| =F(s)G(s) (7.114)
0

or conversely,

L—l[F(s)c;(s)]:/O f(D)gt —1)dt (7.115)

To prove the validity of Egs. (7.113) to (7.115), consider the definition of the Laplace
transform and the convolution operation as

LI(f*g)(n] = /OO e |:/ f(g@ - r)dr} dt (7.116)
0 0

From the region of integration shown in Fig. 7.1, the integral in Eq. (7.116) can be
rewritten, by interchanging the order of integration, as

LI(f*g)D)]= /o S [/ e gt —1) dt} dt (7.117)

By using the second property, the inner integral can be written as e *'G(s), so that
Eq. (7.117) can be expressed as

LI(f *g)(1)] =f0 G(s)e " f(r)dr = G(S)/O e T f(rydr
= G(s)F(s) (7.118)
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Figure 7.1 Region of integration in Eq. (7.116).

The converse result can be stated as

L7'F(s)G(s)] = /0 f(gt—1)dt

= f()xg(®) (7.119)

7.6.2 Partial Fraction Method

In the Laplace transform method, sometimes we need to find the inverse transformation
of the function

P
Fs) = 28 (7.120)
Q(s)
where P(s) and Q(s) are polynomials in s with the degree of P(s) less than that of
0O(s). Let the polynomial Q(s) be of order n with roots ay, az, as, ..., a,, so that
O(s) = (s —a)(s —ax)(s —az) -~ (s — an) (7.121)
First, let us consider the case in which all the n roots a;, ay, as, ..., a, are distinct, so
that Eq. (7.120) can be expressed as
P
Fisy= LW __a 2 48 4y (7.122)
OG) s—a s—a s—a3 s —ay

where ¢; are coefficients. The points ay, a, as, ..., a, are called simple poles of F(s).
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The poles denote points at which the function F'(s) becomes infinite. The coeffi-
cients ¢; in Eq. (7.122) can be found as

P
¢ = lim[(s — a)F(s)] = =) (7.123)
s—a;
where Q’(s) is the derivative of Q(s) with respect to s. Using the result
—1 1 ajt
L =% (7.124)
S —da;
the inverse transform of Eq. (7.122) can be found as
f(t) = L7[F(s)] = c1e™ + cpe™ + -+ + cpe™’ = Zc,-e”’
=) lim[(s = a)F(s)e"]
Py s—a;
P
Z ) s (7.125)
00 |,
Next, let us consider the case in which Q(s) has a multiple root of order k, so that
Q(s) = (s —a(s —a)(s —a3) - (s = ap—p) (7.126)
In this case, Eq. (7.120) can be expressed as
P(s) cl1 12 Clk
F(S) = = + e+ —
O(s) s—ar (s —ap)? (s —apk
c c Cn—
.. E (7.127)
S —dap S —as S —dy—k
Note that the coefficients ¢;; can be determined as
1 d ,
[(S_al) F(S)]lX—u19 ]:172337"'sk (7-128)

U= k= ) dsk

while the coefficients ¢;,i = 2,3,...,n — k, can be found as in Eq. (7.125). Since

—1 |: 1 j| tj_l apt
L - | = — e (7.129)
(s —ay)/ (G —n!

the inverse of Eq. (7.127) can be expressed as

2 k1
— LT at
f(f)—[C11+C1zt+C132! + +Clk(k 1),}6

+ 2™+ 36 4 cpe™ - 4 etk (7.130)
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7.6.3 Inverse Transformation

The inverse Laplace transformation, denoted as L~ YF (s)], is also defined by the com-
plex integration formula
1 a+ioo
L7YF$)] = f(t) = — e F(s)ds (7.131)
2 a—ioo

where « is a suitable real constant, in Eq. (7.131), the path of the integration is a line
parallel to the imaginary axis that crosses the real axis at Re s = o and extends from
—o00 to +oo. We assume that F'(s) is an analytic function of the complex variable s
in the right half-plane Re s > « and all the poles lie to the left of the line x = «. This
condition is usually satisfied for all physical problems possessing stability since the
poles to the right of the imaginary axis denote instability. The details of evaluation of
Eq. (7.131) depend on the nature of the singularities of F(s).

The path of the integration is the straight line L as shown in Fig. 7.2 in the complex
s plane, with equation s =« + iR, —00 < R < +00 and Re s = « is chosen so that
all the singularities of the integrand of Eq. (7.131) lie to the left of the line L. The
Cauchy-residue theorem is used to evaluate the contour integral as

/e”F(s)ds=/7€”F(s)ds+/e”F(s)ds
c L r

= 2i[sum of the residues of ¢*’ F(s) at the poles inside C]

(7.132)

Ims

o +iR

—
~I

Res

o — iR

Figure 7.2 Contour of integration.
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where R — oo and the integral over I' tends to zero in most cases. Thus, Eq. (7.131)

reduces to the form

a+iR
lim —/ e F(s)ds
R—00 2711 Jo—iR

= sum of the residues of e*' F(s) at the poles of F(s)

The following example illustrates the procedure of contour integration.

Example 7.5 Find the inverse Laplace transform of the function

F(s) = ——
) 52+ c?

SOLUTION The inverse transform is given by

1 o+ioo
f(t)zﬁfl T F(s)ds
a—ioo

a+ioco
1 a S
I ¢ 5 ads
270 Jy—ico sc+c

(7.133)

(E7.5.1)

(E7.5.2)

The integrand in Eq. (E7.5.2) has two simple poles at s = +ic, and residues at these

poles are given by

R, = residue of ¢*' F(s) at s = —ic
ses! |
— 1 . — —ict
s%lrilic(s +ic) 52 —+ c? 28

R, =residue of e*' F(s) at s = ic
se’!
= lim (s —ic) —— = —¢
s—>+ic( )S2 + 2 2

ict

Hence,

a+ioo

1 1 . )
f@) = %/ e"F(s)ds =R, + Ry, = E(e’“ +e " = cosct
oa—io0

7.7 FREE VIBRATION OF A STRING OF FINITE LENGTH

In this case the equation of motion is
,0w  *w
C — — — =
0x2 ot?
If the string is fixed at x = 0 and x = [/, the boundary conditions are
w(0,1) =0

w(l,t) =0

(E7.5.3)

(E7.5.4)

(E7.5.5)

(7.134)

(7.135)
(7.136)
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Let the initial conditions of the string be given by
w(x, 1 =0) =wy(x)
W kvt = 0) = @)
—(x,t =0) = wo(x
ot 0
Applying Laplace transforms to Eq. (7.134), we obtain

deW(x, s)

— W (x,s) + swo(x) + wo(x) =0
dx?

where
o0
W(x,s) =f w(x, e dt
0
Taking finite Fourier sine transform of Eq. (7.139), we obtain

(2 + 2 pIYW (s 5) = sWo(pn) + Wolpn)

where
. 1
W(pn,s) = / W(x,s)sin p,x dx
0
. 1
WO(pn):/ wo(x) sin pyx dx
0
N I
WO(pn) = / w()(x) sin PnX dx
0
with
nmw
Pn = T

Equation (7.141) gives

SWo(pn) +WO(Pn)
s2+ c2p?

W(pm S) -

Performing the inverse finite Fourier sine transform of Eq. (7.146) yields

2 & 0
W(x,s>=lZ on pn / [swo(€) + wo(§)] sin p, d§

2+ 2p?

(7.137)

(7.138)

(7.139)

(7.140)

(7.141)

(7.142)

(7.143)

(7.144)

(7.145)

(7.146)

(7.147)

Finally, by taking the inverse Laplace transform of W (x, s) in Eq. (7.147), we obtain

w(x,t) = % Z sin pnx|:cos cnlnt
n=1
1 : [
: /0 wo(€) sin pot d& + ST/ D /O o (£) sin pnsds} (7.148)
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7

0?1»— ————— > X —: g

| |
| ! |

Figure 7.3 Axial stress at the end of a bar.

Example 7.6 A uniform bar is fixed at x = 0 and subjected to an axial stress op at
x = [ as shown in Fig. 7.3. Assuming the bar to be at rest initially, determine the axial
vibration response of the bar.

SOLUTION The equation governing the longitudinal vibration of a bar is giving by
[see Eq. (9.15)]:

Cza2u(x, 2 d%u(x, 1)

E7.6.1
dx2 912 ( )
The boundary conditions are given by
u(,1)=0 (E7.6.2)
ou o
o =eln=7 (E7.6.3)
and the initial conditions by
u(x,0 =0 (E7.6.4)
ou
—x,00=0 (E7.6.5)
at
By taking Laplace transform of Eq. (E7.6.1) with respect to ¢, we obtain
9 d*U (x,
U@ s) — su@. 0) — x.0) = 2L (E7.6.6)
ot dx?

which in view of the initial conditions of Eqgs. (E7.6.4) and (E7.6.5), reduces to

d*U  s?
— = =U=0 E7.6.7
dx? 2 ( )
where
U(x,s) = Llu(x, )] (E7.6.8)

Noting that L(1) = 1/s, the Laplace transforms of Egs. (E7.6.2) and (E7.6.3) can be
written as

U@©,s) =0 (E7.6.9)
00

dU(l ) (E7.6.10)
R ’s e —— 0.
dx Es
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The solution of Eq. (E7.6.7) is given by

Ul(x, s) = ¢ cosh = + ¢, sinh = (E7.6.11)
c c
where the constants ¢; and ¢, can be found using Eqgs. (E7.6.9) and (E7.6.10) as
c1=0 (E7.6.12)
s sl 00 coy
—cosh— =— or = — E7.6.13
2 ¢ Es 2T ER cosh(sl/c) ( )

Thus, the solution, U (x, s), becomes
cop sinh(sx/c)
E s2cosh(sl/c)

By taking the inverse Laplace transform of Eq. (E7.6.14), we obtain the axial displace-
ment of the bar as [8]

Ux,s) = (E7.6.14)

o0

0 {H 81 5 (=1 . @n-Dmx Qn— e

2
n=1

ux. 1 = ¢ n—12 Ty 20

= } (E7.6.15)

FREE VIBRATION OF A BEAM OF FINITE LENGTH
The equation of motion for the transverse vibration of a beam is given by

P*wx,t)  *w(x,t
2 w(x, 1) w(x )=0

7.149
dx* 012 ( )
where
, EI
cC=— (7.150)
PA
For free vibration, w(x, ¢) is assumed to be harmonic with frequency w:
wx, 1) = wx)e'™ (7.151)
so that Eq. (7.149) reduces to an ordinary differential equation:
d*w(x) 4
— Brwx) =0 (7.152)
dx*
where
2 2
4 O w pA
= — = 7.153
p 2 El ( )
By taking Laplace transforms of Eq. (7.152), we obtain
s*W(s) — sPw(0) — s?w’ (0) — sw”(0) — w”(0) — B*W(s) =0 (7.154)
or
W(s) = [°w(0) + s*w'(0) + sw”(0) + w"(0)] (7.155)

54— g
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where w(0), w’(0), w”(0), and w”’(0) denote the deflection and its first, second, and

third derivative, respectively, at x = 0. By noting that

s 1

L~! m = E(cosh Bx 4+ cos Bx)
Y S N U .

L~! S =%(smhﬁx+smﬂx)
o s ]

L~} m 2;92 ——(cosh Bx — cos Bx)

-
L~! S g 2/33 ——(sinh fx — sin Bx)

the inverse Laplace transform of Eq.(7.155) gives

wkx) = 1(cosh Bx + cos Bx)w(0) + Lﬁ(sinh Bx + sin Bx)w’(0)

2,32 7 (cosh fx — cos fx)w”(0) + 5 ﬂ — (sinh fx — sin fx)w" (0)

7.9 FORCED VIBRATION OF A BEAM OF FINITE LENGTH
The governing equation is given by
*w(x, z) 92w

El=— =+ A——f(x 1)

(7.156)

(7.157)

(7.158)

(7.159)

(7.160)

(7.161)

where f(x,?) denotes the time-varying distributed force. Let the initial deflection
and velocity be given by wgy(x) and wq(x), respectively. The Laplace transform of

Eq. (7.161), with respect to ¢ with s as the subsidiary variable, yields

FWE) | PA Gy gy = 2 Lowg() + 0] + - Fx, )
dx EIS El Swo (X wo(x E] X, S
or
d*W(x,s) 4
T_ﬂ Wix,s) =G(x,s)
where
4__,oAs2
F= El

PA . 1
Gx,s) = E[SW()(X) + wo(x)] + EF(x, s)

(7.162)

(7.163)

(7.164)

(7.165)

Again, by taking Laplace transform of Eq. (7.163) with respect to x with p as the

subsidiary variable, we obtain
(p* = BHYW(p.5) =G(p.s)+ p’W(0.5)
+ pPW (0, 5) + pW (0, 5) + W, (0, 5)
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or
G(p.s)  p*W(,s)+ p*W.(0,s) + pW.(0,s) + W, (0, )
P4 _ /34 P4 _ /34

W(p,s) =
(7.166)

where W (0, s), W; 0, ), W:(O, s), and W;N(O, s) denote the Laplace transforms with
respect to 1 of w(x, ), (dw/dx)(x, 1), (3*w/dx>)(x, 1) and (Dw/dx>)(x,1) respec-
tively, at x = 0. Next, we perform the inverse Laplace transform of Eq. (7.166) with
respect to x. For this, we use Egs. (7.156)—(7.159) and express the inverse transform
of Eq. (7.166) as

1 X
Wx,s) = 2—/83/0 G(n, s)[sinh B(x —n) —sin B(x —n)]dn

+ %W(o, s)(cosh Bx + cos Bx) + %Wﬁc (0, 5)(sinh Bx + sin Bx)

+ z—ngﬁ(O, s)(cosh fx — cos fx) + %mWZ(O, 5)(sinh Bx — sin Bx)

(7.167)

Finally, we perform the inverse Laplace transform of Eq. (7.167) with respect to ¢ to
find the desired solution, w(x, #). The procedure is illustrated in the following example.

Example 7.7 A uniform beam of length [ is subjected to a concentrated harmonic force
fosinwt at x =&,0 < & < [. Assuming the end conditions of the beam to be simple

supports and the initial conditions to be zero, determine the response of the beam.

SOLUTION The boundary conditions of the beam can be expressed as

w(0,1) =0 (E7.7.1)
02w
W(O’ t)=0 (E7.7.2)
w(l, 1) =0 (E7.7.3)
9%w
W(l, t)=0 (E7.7.4)

Taking Laplace transforms, Eqs. (E7.7.1)—(E7.7.4) can be written as

W(0,s) =0 (E7.7.5)
W/(0,s) =0 (E7.7.6)
W(d,s)=0 (E7.7.7)
W/(l,s)=0 (E7.7.8)

The applied concentrated force can be expressed as

Fe, 1) = fod(x — EYa(t) = fosinwtd(x — £) (E7.7.9)
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The Laplace transform of Eq. (E7.7.9) gives

F(x,s) = fod(x —&)H(s) (E7.7.10)
where
H(s) = L[h(t)] = L[sinwt] = m (E7.7.11)
Since the initial conditions are zero,
wo(x) = wo(x) =0 (E7.7.12)
and hence Eq. (7.165) yields
F(x,s)  fo
= = — - H E . '1
G(x,s) £l E15(x §)H(s) (E7.7.13)

Using the boundary conditions at x = 0 [Egs. (E7.7.5) and (E7.7.6)] and Eq. (E7.7.13),
Eq. (7.167) can be expressed as

o

Wi(x,s) = ES(n—é‘)H(S)[sinhﬂ(x—n)—sinﬁ(x—n)]dn

283 Jo
+ ¢ sinh Bx + ¢y sin Bx (E7.7.14)
where
1 / 1 "
c) = ﬁWX(O, S) + 2—IB3WX (0, S) (E7715)
1 1
) = ﬁw);(O, s) — 2_,83W)£”(0’ ) (E7.7.16)

By differentiating W(x, s) given by Eq. (E7.7.14) with respect to x and using the
conditions of Egs. (E7.7.7) and (E7.7.8), we obtain

H I
Wity =0= 25550 [0 = tsinh pt = ) = sin it = w1
+ ¢y sinh Bl + ¢; sin B (E7.7.17)
" N f()H(S) ! _ . _ . _
Wold,s)=0= 289ET ), 8(n —&)[sinh B(l —n) +sin B(l —n)]dn
+ ¢y sinh Bl — ¢, sin B (E7.7.18)

The solution of Eqgs. (E7.7.17) and (E7.7.18) gives
_ foH(s) sinh B — &)
2B3E| sinh Bl

_ JfoH(s)sinB(l —§)
c = .
2B3E1 sin Bl

(E7.7.19)

cl =

(E7.7.20)
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Thus, Eq. (E7.7.18) becomes

H X
Wi, = 20 [0 = tsinh i — ) = sin s = mld
JoH (s) sinh B(I — &) sinh Bx sin Bl — sin B(I — &) sin Bx sinh Bl
- 2B3EI (sinh Bl sin Bl)
= %ISI) [sinh B(x — &) — sin f(x — £)18(x — &)
n sinh B(I — &) sinh Bx si.n Bl — .sin,B(l — &) sin Bx sinh Bl (E7.721)
sinh Bl sin Bl
which results in the solution
_ Josinort | . h 5
w(x, 1) = W{ [sin B(x — &) —sinh f(x —§)]6(x — &)
n sinh B(I — &) sinh Bx s%n Bl — .sin B(l — &) sin Bx sinh Bl } (E7.7.22)
sinh B[ sin Bl

The value of 8% can be obtained from Eq. (7.164), by substituting s = i as

B pAw?

4
B o (E7.7.23)

7.10 RECENT CONTRIBUTIONS

Fast Fourier Transforms The fast Fourier transform algorithm and the associated
programming considerations in the calculation of sine, cosine, and Laplace transforms
was presented by Cooley et al. [13]. The problem of establishing the correspondence
between discrete and continuous functions is described.

Beams Cobble and Fang [14] considered the finite transform solution of the damped
cantilever beam equation with distributed load, elastic support, and the wall edge elasti-
cally restrained against rotation. The solution is based on the properties of a Hermitian
operator and its orthogonal basis vectors.

Membranes The general solution of the vibrating annular membrane with arbitrary
loading, initial conditions, and time-dependent boundary conditions was given by
Sharp [15].

Hankel Transform The solution of the scalar wave equation of an annular membrane,
in which the motion is symmetrical about the origin, for arbitrary initial and boundary
conditions was given in Ref. [16]. The solution is obtained by using a finite Hankel
transform. An example is given to illustrate the procedure and the solution is compared
to the one given by the method of separation of variables.
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Plates A method of determining a finite integral transform that will remove the
presence of one of the independent variables in a fourth-order partial differential
equation is applied to the equation of motion of classical plate theory for complete
and annular circular plates subjected to various boundary conditions by Anderson [17].
The method is expected to be particularly useful for the solution of plate vibration
problems with time-dependent boundary conditions. Forced torsional vibration of thin,
elastic, spherical, and hemispherical shells subjected to either a free or a restrained
edge was considered by Anderson in Ref. [18].

z Transform Application of the z-transform method to the solution of the wave
equation was presented by Tsai et al. [19]. In the conventional method of solution
using the Laplace transformation, the conversion, directly from the s domain to the ¢
domain to find the time function, sometimes proves to be very difficult and yields a
solution in the form of an infinite series. However, if the s domain solution is first
transformed to the z domain and then converted to the time domain, the process of
inverse transformation is simplified and a closed-form solution may be obtained.
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PROBLEMS

7.1 Find the Fourier transforms of the following
functions:

(@ f(x)= leﬁ
®) f(x) =8(x —a)e <’

7.2 Find the Fourier cosine transforms of the following
functions:

@ flx)=e""

a, O<x<a

w)ﬂm={0 S

7.3 Find the Fourier sine transforms of the following
functions:

@ fx)=e

a, O<x<a
DNIOES PR

7.4 Find the Fourier cosine transforms of the following
functions:

sinx, 0<x<m

@ f@x)= 0, otherwise
1—x% 0<x<1
(b) fex) = 0, otherwise

7.5 Find the Fourier sine transforms of the following
functions:

sinx, 0<x<wm
@ fx)= { 0, otherwise

1-x%, 0<x<1
) fx) = { 0,  otherwise

7.6 Find the Laplace transforms of the following
functions:

@ f@) =t

(b) f(t)=e"

(¢) f(t) =sinat
(d) f(t) =cosat

7.7 Find the Laplace transforms of the
functions:

following

6, 0<r<?2
m)ﬂn={0’t>2

sint, O<t<m
(b)f(’):{o, T<t<2m

7.8 Find the Laplace transforms of the
functions:

following

_Jeos(t = /4, t >m/4
m)ﬂn—{ PR
(b) Heaviside’s unit step function:
fo=ve-—ay={r 1>
- a4) = 0, t<a

7.9 A single-degree-of-freedom spring—mass—damper
system is subjected to a displacement xo and velocity
Xo at time ¢ = 0. Determine the resulting motion of the
mass (m) using Laplace transforms. Assume the spring
and damping forces to be kx and cx, where k is the
spring constant and X = dx/dt is the velocity of the
mass.

7.10 Derive an expression for the response of a uniform
beam of length / fixed at both ends when subjected to
a concentrated force fy(t) at x =&,0 < & < [. Assume
the initial conditions of the beam to be zero. Use Fourier
transforms.

7.11 Find the response of a uniform beam of length /
fixed at both the ends when subjected to an impulse
G at x =£,0 <& <[. Assume that the beam is in
equilibrium before the impulse is applied. Use Fourier
transforms.
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7.12 Find the free transverse displacement of a semi-
infinite string using Fourier transforms. The governing
equation is
2 Pw  w
ax2  or?
and the initial conditions are

ow .
w(x, 0) = wo(x), E(x,o) = o

Assume that the string is fixed at x = 0 and stretched
along the positive x axis under tension P.

7.13 Consider a finite string of length / fixed at x =0
and x =/, subjected to tension P. Find the transverse
displacement of a string that is initially at rest and
subjected to an impulse F at point x =a,0 <a <!
using the Fourier transform method.

7.14 Find the steady-state transverse vibration response
of a string of length / fixed at both ends, subjected to
the force

f(x,t) = fosinQt
using the Fourier transform method.

7.15 Find the Laplace transforms of the following func-

tions:

0, t<0
@ f0) = {m’ o
() f() =€, ais real
(¢) f(t) =2¢ % sin3t

7.16 Find the solution of the following differential
equation using Laplace transforms:
dw

d*w
— +4— + 3w =sin2t
dx? + dx oW

with w(0) =1 and dw/dt(0) = —1.

7.17 The longitudinal vibration of a uniform bar of
length / is governed by the equation

20%u(x, 1) 0%ulx, 1)
C =
0x?2 ar?

where ¢> = E/p with E and p denoting Young’s modu-
lus and the mass density of the bar respectively. The bar
is fixed at x = 0 and free at x = [. Find the free vibration
response of the bar subject to the initial conditions

J
u(x, 0) = up(x), 3—”:<x, 0) = itg(x)

using Laplace transforms.

7.18 Find the longitudinal vibration response of a uni-
form bar fixed at x = 0 and subjected to an axial force
f() at x =1, using Laplace transforms. The equation
of motion is given in Problem 7.17.

7.19 A uniform bar fixed at x =0, is subjected to a
sudden displacement of magnitude u( at x = /. Find the
ensuing axial motion of the bar using Laplace trans-
forms. The governing equation of the bar is given in
Problem 7.17.

7.20 A taut string of length 1, fixed at x =0 and x = 1
is subjected to tension P. If the string is given an initial
displacement

2x, 0<x<0.5
wix, 0) = wolx) = {2(1 —x), 05<x<1
and released with zero velocity, determine the ensuing
motion of the string.



Transverse Vibration of Strings

8.1 INTRODUCTION

It is well known that most important musical instruments, including the violin and the
guitar, involve strings whose natural frequencies and mode shapes play a significant
role in their performance. The characteristics of many engineering systems, such as
guy wires, electric transmission lines, ropes and belts used in machinery, and thread
manufacture, can be derived from a study of the dynamics of taut strings. The free
and forced transverse vibration of strings is considered in this chapter. As will be seen
in subsequent chapters, the equation governing the transverse vibration of strings will
have the same form as the equations of motion of longitudinal vibration of bars and
torsional vibration of shafts.

8.2 EQUATION OF MOTION

8.2.1 Equilibrium Approach

Figure 8.1 shows a tightly stretched elastic string or cable of length / subjected to a
distributed transverse force f(x,#) per unit length. The string is assumed to be sup-
ported at the ends on elastic springs of stiffness k; and k. By assuming the transverse
displacement of the string w(x,?) to be small, Newton’s second law of motion can be
applied for the motion of an element of the string in the z direction as

net force acting on an element = inertia force acting on the element (8.1)

If P is the tension, p is the mass per unit length, and 6 is the angle made by the
deflected string with the x axis, Eq. (8.1) can be rewritten, for an element of length

dx, as
. . 9%w
(P+dP)sm(9+d@)—i—fdx—Psm@:pde (8.2)
Noting that
opP
dP = —dx (8.3)
0x
. ow
sinf ~ tanf = — (3.4)
0x
. dw 9w
sin(f 4+ df) ~tan(f + df) = — + —dx (8.5)
ox  0x2
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Figure 8.1 (a) Vibrating string; (b) differential element.

Eq. (8.2) can be expressed as

9 dw(x,1) B 92w(x,1)
E[P ™ }Jrf(x,t)—p(x)T (8.6)

If the string is uniform and the tension is constant, Eq. (8.6) takes the form

92w(x,1) 92w (x,1)
P——— ) =p———" 8.7
G T = p—s (8.7)
For free vibration, f(x,r) = 0 and Eq. (8.7) reduces to
%w(x,t %w(x,t
plwen _ 9w (8.8)

a2z P
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which can be rewritten as
,2w 9w 8.9)
CC—s = — .
9x2 ot2

p\ 12
c= (;> (8.10)

Equation (8.9) is called the one-dimensional wave equation.

where

8.2.2 Variational Approach

Strain Energy There are three sources of strain energy for the taut string shown in
Fig. 8.1. The first is due to the deformation of the string over 0 < x <[, where the
tension P (x) tries to restore the deflected string to the equilibrium position; the second
is due to the deformation of the spring at x = 0; and the third is due to the deformation
of the spring at x = [. The length of a differential element dx in the deformed position,
ds, can be expressed as

1/2

as = [@or+ (2ax) | =] 8“’21/2d~118w2d
s = | (dx) +(§ x) = +<a> Pt +§<a> X
8.11)

by assuming the slope of the deflected string, dw/dx, to be small. The strain energy
due to the deformations of the springs at x = 0 and x = is given by %klwz(O,t) and
%kz w?(l,1), and the strain energy associated with the deformation of the string is given
by the work done by the tensile force P(x) while moving through the distance ds—dx:

! 1! dw(x,)7?
/ P()Ids(x,t) — dx] = _/ P(x) [ W )} dx (8.12)
0 2 0 0x
Thus, the total strain energy, m, is given by
1! dw(x,n 7 1 1
= _/ Py | 22D e L 200 + Showtn (8.13)
2 0 ax 2 2
Kinetic Energy The kinetic energy of the string is given by
r=; /1 o [ 20T (8.14)
= — X X .
2), 7 o1

where p(x) is the mass of the string per unit length.

Work Done by External Forces The work done by the nonconservative distributed
load acting on the string, f(x,?), can be expressed as

/
W:/ FeDwx,) dx (8.15)
0
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Hamilton’s principle gives

1
S/Z(T—n—i—W)dt:O (8.16)
or i
s (P11 8w2d Ly awzd Lo
[ Lo G) axmg [ro(5) o=z
l
—%kzwz(l,t)—i—/ f(x,t)wdx} dt =0 (8.17)
0

The variations of the individual terms appearing in Eq. (8.17) can be carried out as
follows:

15 l
/5Tdt / dt/ (x)—8—dx—f dzf Iwdbw) g8
f 0 al at

using the interchangeability of the variation and differentiation processes.
Equation (8.18) can be evaluated by using integration by parts with respect to time:

l[ 2w d(Sw) ! ow .,
/ / t:| dx:/ {(p—8w|tf)
0 f az dt 0 ot
T2 (2 swmar |V ax g1
—ﬁuaﬂﬁﬁw}}x<”

Using the fact that Sw =0 at t = and # =1, and assuming p(x) to be constant,

Eq. (8.19) yields
%) th 1 82
]5sz=—/ (/ a—fawdx> di (8.20)
1 1

The second term of Eq. (8.16) can be written as

%) %) 1 ow 9
f (Sndt:/ [/ P(x) = 2 (8w) dx + kyw(0,5)8w(0,7)
t1 i 0 dx dx

+k2w(l,t)5w(l,t)] dt (8.21)

By using integration by parts with respect to x, Eq. (8.21) can be expressed as

f2 DT 9 Ly dw
/ (Sndt:/ [P—w5w|g—/ —( )(Swdx—i—k]w(O Nw(0.1)
1’ I ax 0 0x 0x

+k2w(l,t)8w(l,t)} dt (8.22)

The third term of Eq. (8.16) can be written as

t t l
/zawm — /2 [/ f(x,t)(Sw(x,t)dx] dt (8.23)
n n 0
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By inserting Egs. (8.20), (8.22), and (8.23) into Eq. (8.16) and collecting the terms, we
obtain

/tz /l w9 (0w + flowdx+ (P22 —kw)s
—p—+—(P— wdx — —kw | §w
y Lo U702 T U ax !

ow
- (PB_ +k2w> Swlx:/} dt =0 (8.24)
X

x=0

Since the variation §w over the interval 0 < x < [ is arbitrary, Eq. (8.24) can be sat-
isfied only when the individual terms of Eq. (8.24) are equal to zero:

9 dw 92w
—(p= =p—, 0 / 8.25
8x< 8x>+f Lo == (8.25)
Jw
(P——klw)éwzo, x=0 (8.26)
ox
Jw
<Pa—+k2w)8w=0, x=1 (8.27)
X

Equation (8.25) denotes the equation of motion while Egs. (8.26) and (8.27) represent
the boundary conditions. Equation (8.26) can be satisfied when w(0,7) = 0 or when
P[ow/dx](0,t) — kyw(0,¢) = 0. Since the displacement w cannot be zero for all time
at x = 0, Eq. (8.26) can only be satisfied by setting

0
P _kw=0 atx=0 (8.28)
0x
Similarly, Eq. (8.27) leads to the condition
ow
Pa— +khw=0 at x =1/ (8.29)
X

Thus, the differential equation of motion of the string is given by Eq. (8.25) and the
corresponding boundary conditions by Egs. (8.28) and (8.29).

8.3 INITIAL AND BOUNDARY CONDITIONS

The equation of motion, Eq. (8.6), or its special forms (8.7) and (8.8) or (8.9), is a
partial differential equation of order 2 in x as well as ¢. Thus, two boundary conditions
and two initial conditions are required to find the solution, w(x,?). If the string is given
an initial deflection wy(x) and an initial velocity wg(x), the initial conditions can be

stated as
w(x,t =0) = wy(x)
0
a—’f(x, t = 0) = 1(x) (8.30)

If the string is fixed at x = 0, the displacement is zero and hence the boundary condi-
tions will be

wx=0,)=0, >0 (8.31)
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If the string is connected to a pin that is free to move in a transverse direction, the

end will not be able to support any transverse force, and hence the boundary condition
will be

ow
P(x)—(x,t) =0 (8.32)
0x
If the axial force is constant and the end x = 0 is free, Eq. (8.32) becomes
ow
—(0,1) =0, t>0 (8.33)
ax

If the end x =0 of the string is connected to an elastic spring of stiffness &, the
boundary condition will be

= kw(x,t)
x=0

., t>0 (8.34)

ow
P(x) g(x,t)
x=0

Some of the possible boundary conditions of a string are summarized in Table 8.1.

8.4 FREE VIBRATION OF AN INFINITE STRING

Consider a string of infinite length. The free vibration equation of the string, Eq. (8.9),
is solved using three different approaches in this section.

8.4.1 Traveling-Wave Solution
The solution of the wave equation (8.9) can be expressed as
w(x,t) = Fi(x —ct) + F>(x + ct) (8.35)

where F| and F, are arbitrary functions of (x — c¢t) and (x + ct), respectively. The solu-
tion given by Eq. (8.35) is known as D’Alembert’s solution. The validity of Eq. (8.35)
can be established by differentiating Eq. (8.35) as

82w 1 "

W(x,t) =F(x—ct)+ Fy(x +ct) (8.36)
8211} 2 2

W(x,t) =cFi(x—ct)+c"Fy(x +ct) (8.37)

where a prime indicates a derivative with respect to the respective argument. By sub-
stituting Eqgs. (8.36) and (8.37) into Eq. (8.9), we find that Eq. (8.9) is satisfied. The
functions Fj(x — ct) and F,(x + ct) denote waves that propagate in the positive and
negative directions of the x axis, respectively, with a velocity c. The functions F; and
F, can be determined from the known initial conditions of the string. Using the initial
conditions of Eq. (8.30), Eq. (8.35) yields

Fi(x) + F2(x) = wo(x) (8.38)
—cF{(x) 4 cF5(x) = wo(x) (8.39)
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Table 8.1 Boundary Conditions of a String

Boundary conditions
Support conditions of the string to be satisfied

1. Both ends fixed

A
l
I P P w(0,t) =0
i w(l,t) =0
2. Both ends free
w(x,1)
Jw
g(o,t) =0
ow
a(l,t) =0

3. Both ends attached with masses

wi(x,1)
2

0°w Jw
—(0,1) = P—(0,1
m < (0,1) - (0.0

9w

a0 =P an
a2 " T ax

—m>y

4. Both ends attached with springs

w(x,1)

P

w
kiw(0,1) = P—(0,1)
0x

Jw
K, —kaw(l.r) = PS= (L)

ky
o = —— — X

5. Both ends attached with dampers

wi(x, 1)

B Jw Jw
P —(0,t) =P—(0,¢
l 10,0 7 (0.0

wan =p™an

- —e—(.t) =P—,

B Bk R
............................ — X
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where a prime in Eq. (8.39) denotes a derivative with respect to the respective argument
at t = 0 (i.e., with respect to x). By integrating Eq. (8.39) with respect to x, we obtain

1 X
—Fi(x)+ F2(x) = Z/ wo(xX)dx (8.40)
X0
where x( is a constant. Equations (8.38) and (8.40) can be solved to find Fj(x) and
F(x) as
1 | I
Fi(x) == [wy(x) — —/ wo(x) dx (8.41)
2 ¢ Jy,
1 | I
Fr(x) == wylx) + —/ wo(x) dx (8.42)
2 ¢ Jxy

By replacing x by x — ¢t and x + ct, respectively, in Egs. (8.41) and (8.42), we can
express the wave solution of the string, w(x,?), as

w(x,t) = Fi(x —ct) + F>(x + ct)

x—+ct
= l [wo(x —ct) +wo(x +ct) + — / wo(X) dfi| (8.43)
2 2¢ Jieer

The solution given by Eq. (8.43) can be rewritten as
w(x,1) = wq(x,1) + wy(x,1) (8.44)

where wy(x,t) represents a wave propagating due to a known initial displacement
wo(x) with zero initial velocity, and w,(x,t) indicates a wave moving due to the
initial velocity wq(x) with zero initial displacement. A typical wave traveling due to
initial displacement (introduced by pulling the string slightly in the transverse direction
with zero velocity) is shown in Fig. 8.2.

Ati=1,=0

Att=1,>1

Att=13>1,

Att=1,>1

Figure 8.2 Propagation of a wave caused by an initial displacement.
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8.4.2 Fourier Transform—-Based Solution

To find the free vibration response of an infinite string (—oo < x < oo) under the
initial conditions of Eq. (8.30), we take the Fourier transform of Eq. (8.9). For this, we
multiply Eq. (8.9) by ¢'** and integrate from x = —o0 to x = oo:

rax d.x —

/Oo 92w (x,1) 1 92 [ (1) d (8.45)
— ¢ —— w(x,t)e x )
oo 0x2 2ot J_o

Integration of the left-hand side of Eq. (8.45) by parts results in

/OO azw('x’t)eiaxdx — aweiax = _la/OO a_weiaxdx
e ) e

oo O0xX2 x

a e N o0 .
= W jiax — |:iawe’”x — (ia)2/ we'™ dx]
0x oo oo oo
0 e o0 .
= <_w — iaw) el - azf we' ™ dx (8.46)
ax oo —o0

Assuming that both w and dw/dx tend to zero as |x| — oo, the first term on the right-
hand side of Eq. (8.46) vanishes. Using Eq. (7.16), the Fourier transform of w(x,?) is

defined as
1 o0 .
Wia,t) = —/ w(x,t)e' " dx (8.47)
A/ 2 —00
and Eq. (8.45) can be rewritten in the form
1a*w

Note that the use of the Fourier transform reduced the partial differential equation (8.9)
into the ordinary differentiation equation (8.48). The solution of Eq. (8.48) can be
expressed as

W(a,t) = C1e'%" + Cre ¢! (8.49)

where the constants C; and C, can be evaluated using the initial conditions, Egs. (8.30).
By taking the Fourier transforms of the initial displacement [w = w(x)] and initial
velocity [dw/dt = wy(x)], we obtain

Wa,t=0)= J% /OO wo(x)e'™ dx = Wy(a) (8.50)
(a,t wo(x)e'™ dx = Wy(a) (8.51)

d P /00
dt T Vs
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The use of Egs. (8.50) and (8.51) in (8.49) leads to

Wo(a) = Cy 4+ C;
Wo(a) = iac(Cy — Ca)

whose solution gives

Wo 1
Ci=—+—W
: 2 2iac 0
Wo 1
Cr=— —
2 2 2iac 0

Thus, Eq. (8.49) can be expressed as

1 - . 1. - -
W(a,t) — 5vv(](a)(eluct +e*luct) + 2iac Wo(a)(elu{,l _ e*ll,l(,l)

By using the inverse Fourier transform of Eq. (8.47), we obtain

1 o :
w(x,t) = \/T_n/ Wa,t)e """ da
—00

which, in view of Eq. (8.56), becomes
1 1 > —ia(x—ct) —ia(x+ct)
w(x,t) = 2 F Wo(a)le +e lda
T J—00

+ i 1 /OO WO(a) [e—ia(x—ct) _ e—ia(x+ct)] da
2c |27 J-0o la

(8.52)
(8.53)

(8.54)

(8.55)

(8.56)

(8.57)

(8.58)

Note that the inverse Fourier transforms of Wy(a) and Wo(a), Egs. (8.50) and (8.51),

can be obtained as

1 o »
wo(x) = —/ Wola)e ' da
0 A/ 21 J-0 0

wo(§) = «/% f: Wo(a)e ™ da

so that
L ja(xFer)
wo(x Fct) = —/ Wo(a)e 'Y FD da
A 21 J-0

By integrating Eq. (8.60) with respect to & from x — cf to x + ct, we obtain

x—+ct 1 00 Wo(a) ' '
w ( )d — / : [e—ta(x—ct) _ e—ta(x+ct)] da
/x 0(§) d§ =

—ct

(8.59)

(8.60)

(8.61)

(8.62)
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When Egs. (8.61) and (8.62) are substituted into Eq. (8.58), we obtain
1 1 x—+ct
w(x,1) = E[W()(x +ct) + wo(x — c)] + 2—/ wo(§)d§ (8.63)

x—ct

which can be seen to be identical to Eq. (8.43).

8.4.3 Laplace Transform-Based Solution

The Laplace transforms of the terms in the governing equation (8.9) lead to

92w d*W(x, s)
Lo | =2 8.64
[8x2:| dx? (8.64)
L[ 2 e s) — swen o) — 2 0) (8.65)
a2 =5 X, S swi(x, a7 X, .
where
o0
W(x,s):/ e Mw(x,t)dt (8.66)
0

Using Eqgs. (8.64) and (8.65) along with the initial conditions of Eq. (8.30), Eq. (8.9)
can be expressed as

AW

—or =W = swox) — () (8.67)

Now, we take the Fourier transform of Eq. (8.67). For this, we multiply Eq. (8.67) by
e'P* and integrate with respect to x from —oo to 400, to obtain

d2 00 ) o0 )
c2/ e e”’x dx = / We'P*dx — s / wo(x)e’P dx — / wo(x)e'’’* dx
X _

o —00
(8.68)
The integral on the left-hand side of Eq. (8.68) can be evaluated by parts:
© PPW aw ©qw ..
— P dx = _ —_ipePrqg
/OO e x = dxe N /OO PR X
+o0
aw ) +oo )
= —¢P —ipWe'P* —p? We'P* dx (8.69)
dx oo . —00

Assuming that the deflection, W (x, s), and the slope, dW (x, s)/dx, tend to be zero as
x — %00, Eq. (8.69) reduces to

+o0 d2 +o00 .
/ P dx = —p? We'P* dx (8.70)

S dx? oo
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and hence Eq. (8.68) can be rewritten as

+00 ' +00 ' +00 ‘
(p* +5?) W(x,s)e'P* dx = s/ wo(x)e'P* dx + / wo(x)e'P* dx

—00 —00 —00
or
W(czp2 +52) =sWo+ W
or
— SWo+ W,
W = M
2p? + 52
where
_ 1 +oo ip J
W(p,s) = —/ W(x, s)e'’* dx
A/ 2w J -0
_ 1 +0oo .
Wolp) = —/ wo(x)eP* dx
A/ 21 —00
. 1 +oo .
Wo(p) = —/ wo(x)e'’’* dx
olp o e 0

Now we first take the inverse Fourier transform of W ( p,s) to obtain

1 /OO sWo(p) + WO(P)e,ipx
V2r Joso 2P+ s?

and next we take the inverse Laplace transform of W (x, s) to obtain

Wix,s) = dx

w(x,t) = L7 [W(x, s)]

Noting that

—1 N .
t [W] cospet
and

L~! ! L g t
———— | = —sinpc
c2p? + 52 pc p

Egs. (8.76) and (8.75) yield

— 1 — .
w(x,t) = |:W0(p) cos pct + Ewo(p) sin pct:| e iPx dp

7=l

where

1 © __ .
wo(x) = ﬁ /_Oo Wo(p)e " dp

1 oo . ,
wo(x) = E /oo Wo(p)e " dp

(8.71)

(8.72)

(8.73)

(8.74)

(8.75)

(8.76)

(8.77)

(8.78)

(8.79)

(8.80)

(8.81)
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From Egs. (8.80) and (8.81), we can write

1 L ‘
wo(x £ ct) = N / Wo(p)e PEED g p (8.82)
T J—o00o

whet 1 [P W) een s
iy (€) dE = / 0(P) | pmipt—ct) _ ity g (8.83)
/x N2 J 0o 1D

—ct

In addition, the following identities are valid:
1 . e
cos pct = E(e”’“ + e P (8.84)

| .
sin pct = z—i(e’p“ — e 1P (8.85)

Thus Eq. (8.79) can be rewritten as

1 1 x+-ct
w(x,t) = E[WO(X +ct) + wolx —ct)] + 2_(:/ wo(§)dé& (8.86)
X—ct

which can be seen to be the same as the solution given by Egs. (8.43) and (8.63).
Note that Fourier transforms were used in addition to Laplace transforms in the current
approach.

8.5 FREE VIBRATION OF A STRING OF FINITE LENGTH

The solution of the free vibration equation, Eq. (8.9), can be found using the method
of separation of variables. In this method, the solution is written as

w(x,t) = W(x)T (1) (8.87)

where W (x) is a function of x only and 7'(¢) is a function of ¢ only. By substituting
Eq. (8.87) into Eq. (8.9), we obtain
A d*W  1d°T
W dx> T dr?
Noting that the left-hand side of Eq. (8.88) depends only on x while the right-hand
side depends only on ¢, their common value must be a constant, a, and hence

(8.88)

A d*wW  1d*T

caw 1417 8.89
Wdxr  Tdr  ° (8.89)

Equation (8.89) can be written as two separate equations:

d*w a
o aW= 0 (8.90)
d*r

. —aT =0 (8.91)
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The constant a is usually negative' and hence, by setting @ = —w?, Egs. (8.90) and
(8.91) can be rewritten as
W o?
I + c_2W =0 (8.92)
a’r -,
el +o'T=0 (8.93)
The solution of Eqgs. (8.92) and (8.93) can be expressed as
W(x) = A cos % + Bsin ‘”C—x (8.94)
T(t) = Ccoswt + D sin wt (8.95)

where w is the frequency of vibration, the constants A and B can be evaluated from
the boundary conditions, and the constants C and D can be determined from the initial
conditions of the string.

8.5.1 Free Vibration of a String with Both Ends Fixed

If the string is fixed at both ends, the boundary conditions are given by
w(0,7) = w(l,t) =0, t>0 (8.96)
Equations (8.96) and (8.94) yield
W) =0 (8.97)
W) =0 (8.98)
The condition of Eq. (8.97) requires that

A=0 (8.99)
in Eq. (8.94). Using Egs. (8.98) and (8.99) in Eq. (8.94), we obtain
Bsinw—l =0 (8.100)
c

ITo show that a is usually a negative quantity, multiply Eq. (8.90) by W (x) and integrate with respect to x

from O to [/ to obtain

! d>W (x) a ',

W(x) 2 dx = - W<(x)dx (a)
0 X = Jo

Equation (a) indicates that the sign of a will be same as the sign of the integral on the left-hand side. The
left-hand side of Eq. (a) can be integrated by parts to obtain
! Tawx)1?
- dx (b)
0 0 dx

The first term on the right-hand side of Eq. (b) can be seen to be zero or negative for a string with any
combination of fixed end (W = 0), free end (d W /dx = 0), or elastically supported end (P dW /dx = —kW),
where k is the spring constant of the elastic support. Thus, the integral on the left-hand side of Eq. (a), and
hence the sign of a is negative.

dx =W
az ) dx

1 2
/ W(x)d W (x) dW (x)
0
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For a nontrivial solution, B cannot be zero and hence

[
sin = =0 (8.101)
c
Equation (8.101) is called the frequency or characteristic equation, and the values of @
that satisfy Eq. (8.101) are called the eigenvalues (or characteristic values or natural
Jfrequencies) of the string. The nth root of Eq. (8.101) is given by

wyl

—nr, n=12,... (8.102)
C

and hence the nth natural frequency of vibration of the string is given by
nemw

a)nzT, n=172,... (8.103)

The transverse displacement of the string, corresponding to w,, known as the nth mode
of vibration or nth harmonic or nth normal mode of the string is given by

. nmwXx nemt . ncmt
wy(x,t) = W,(x)T,(t) = sin - (C,, cos 5 + D, sin ] > (8.104)

In the nth mode, each point of the string vibrates with an amplitude proportional
to the value of W, at that point with a circular frequency w,. The first four modes
of vibration are shown in Fig. 8.3. The mode corresponding to n =1 is called the
Jfundamental mode, w is called the fundamental frequency, and
27 2

T =
wq C

(8.105)

is called the fundamental period. The points at which w, = 0 for ¢ > 0 are called
nodes. It can be seen that the fundamental mode has two nodes (at x = 0 and x = [),
the second mode has three nodes (at x = 0, x =1/2, and x = [), and so on.

The free vibration of the string, which satisfies the boundary conditions of
Egs. (8.97) and (8.98), can be found by superposing all the natural modes w, (x) as

o o0
nmwx ncmt ncmt
w(x,t) = an(x,t) = Zsin - (C,, cos 5 + D, sin

n=1 n=I

> (8.106)

This equation represents the general solution of Eq. (8.9) and includes all possible
vibrations of the string. The particular vibration that occurs is uniquely determined
by the initial conditions specified. The initial conditions provide unique values of the
constants C,, and D, in Eq. (8.106). For the initial conditions stated in Eq. (8.30),
Eq. (8.106) yields

ad . nmwx
Cysin —= = wo(x) (8.107)
n=1
o0
nci . nmx .
> — Dusin == = g (x) (8.108)
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wi(x,1)

Figure 8.3 Mode shapes of a string.

Noting that Egs. (8.107) and (8.108) denote Fourier sine series expansions of wg(x) and
wo(x) in the interval 0 < x <[, the values of C,, and D, can be determined by multi-
plying Eqgs. (8.107) and (8.108) by sin “* and integrating with respect to x from 0 to
[. This gives the constants C, and D,, as

2 1
C, = —/ wo(x) sin o dx (8.109)
) l
2 l
D, = —— [ ing(x) sin 225 dx (8.110)
nerw Jo [

Note that the solution given by Eq. (8.106) represents the method of mode superposition
since the response is expressed as a superposition of the normal modes. As indicated
earlier, the procedure is applicable in finding not only the free vibration response but
also the forced vibration response of any continuous system.

Example 8.1 Find the free vibration response of a fixed—fixed string whose middle
point is pulled out by a distance & and then let it go at time # = 0 as shown in Fig. 8.4.



8.5 Free Vibration of a String of Finite Length 221

Figure 8.4 Initial deflection of the string.

SOLUTION  The free vibration solution if the string is given by Eq. (8.106) with C,
and D, given by Egs. (8.109) and (8.110), respectively. In the present case, the initial
displacement can be represented as

2 hx [
T for 0 < x < E
wo(x) = 5 hl ; (ES.1.1)
—x for - <x <
l 2
and the initial velocity is zero:
wo(x) =0 (E8.1.2)

Equations (E8.1.2) and (8.106) yield
D, =0 (E8.1.3)
Thus, the free vibration response becomes
X ncmt

o
w(x,t) = ZC" sin nT cos ;

n=I

(E8.1.4)

The constant C,, can be evaluated using Eq. (8.109) as

2 l
Cn:—/ wo(x) sin Lo dx
1), I

2 2ohx  nmx ) . nmx
= - —sin——dx + —({ —x)sin——dx
) 0 l l 12 l [

8h
ﬁsinE forn=1,3,5,...
={ n°n 2 (E8.1.5)

0 forn=2,4,6, ...



222 Transverse Vibration of Strings

Noting the relation

sin L — (—)@=D2 21,35, ... (ES.1.6)
the free vibration response of the string can be expressed as
8h (. 7wx met 1 . 3mx 3rct
w(x,t) = — [ sin — cos — — — sin —— cos + - (E8.1.7)
w2 l l 9 [ l

The solution given by Eq. (E8.1.7), using different number of terms, is shown in

Fig. 8.5. The fast convergence of the series of Eq. (E8.1.7) can be seen from the
figure.

Figure 8.5

Example 8.2 A string of length [ fixed at both ends is struck at # = 0O such that the
initial displacement distribution is zero and the initial velocity distribution is given by
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Figure 8.6 Initial velocity of the string

(Fig. 8.6):
4(1_)6’ 0<x< £
l - T4
. da (1 l [
wolx) = — | - — - < < — E821
o) l<2 x), Lersl (ES2.1)
[
0, - <x<l
2
Find the resulting free vibration response of the string.
SOLUTION  Since the initial displacement of the string is zero,
wo(x) =0 (E8.2.2)
and hence Eq. (8.106) gives
C,=0 (E8.2.3)
Thus, the free vibration solution becomes
o0
w(.t) =Y Dysin 2 sin newt (E8.2.4)
’ n l l .
n=1
The constant D, can be evaluated using Eqgs. (8.110) and (ES8.2.1) as
2 L . nmwx
D, = — wo(x) sin —— dx
nerw Jo [
2 4 4ax  nmx 1244 (1 . nmx
= — —sin——dx + — | = —x)sin—dx
nci 0 [ l 1/4 l 2 l
8a (2 . N . nn) (ES.2.5)
= ——(2sin— —sin — 2.
m2n? 4 2
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Thus, the free vibration response of the string is given by

w(x,t) = Py —1) sinTsinT—f—Zsstm ]

N V241 . 3nx . 3met N2+1 . 57x | 5nct+ (ES.2.6)
sin — sin Sin L.
27 T I 125 T

8al |:(\/§ TX met 1 . 2wx . 2mct

It is to be noted that the modes involving n =4, 8, 12, ... are absent in Eq. (E8.2.6).
The solution given by Eq. (E8.2.6), using a different number of terms is shown in
Fig. 8.7. The fast convergence of the series of Eq. (E8.2.6) can be seen from the
figure.

First four terms

Figure 8.7

Example 8.3 Find the natural frequencies and mode shapes of a taut wire supported
at the ends by springs as shown in Fig. 8.8.
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Figure 8.8 Taut wire supported by springs at the two ends.

SOLUTION  The nth mode of vibration of the wire can be represented as

wy, (x,1) = W,(x)T, (1)

wpX . WX .
= (A,, cos + B, sin —) (Cp coswut + Dy, sin wyt). (E8.3.1)
c

C

At the two ends of the wire, the spring force must be in equilibrium with the z
component of the tensile force P in the wire. Thus, the boundary conditions can be
expressed as

0
Pa—w(o,o = kiw(0.1) (E$.3.2)
X

9
Pa—w(l,t) = —kow(,0) (E8.3.3)
X

Substituting Eq. (E8.3.1) into Eqgs. (E8.3.2) and (E8.3.3), we obtain

dw,(
P © =k W,(0) (E8.3.4)
dx
or
PB, 2" = k1A, (E8.3.5)
c
dw,(l
Pi() =~k W,0) (E8.3.6)
dx
or
An n . nl Bn n nl nl . nl
P (__a) sin @ + Znn cos @ ) = —kp (A,, cos i + B, sin @ ) (E8.3.7)
c c c c c c

Equations (E8.3.5) and (E8.3.7) can be rewritten as

Pw,
An(k1) — By =0 (E8.3.8)
c

W Pw, | wl . wyl  Pw, nl
A, (k2 cos Onf 1O sin @ ) + B, (k2 sin @ + @ cos @ ) =0 (E8.3.9)
c c c c c c
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For a nontrivial solution of the constants A, and B,,, the determinant of their coefficient
matrix must be zero:

.oyl Pw, wyl Pw, w,l  Pw, . w,l
ki | kp sin + cos + ko cos — sin =0
c c c c c

c c
(E8.3.10)
Defining
l
oy = 2 (E8.3.11)
c
/ 2
g, = % (E8.3.12)
ki
plw?
= —= (E8.3.13)
ky
the frequency equation, Eq. (E8.3.10), can be expressed as
o? 11
(1 e )tanan — (— + —) a, =0 (E8.3.14)
Bn¥n Bn  n
Using the relation
k
By = Ay = A, (E8.3.15)
Pw, Bn

From Eq. (E8.3.8), the modal function W,(x) can be written as

W,(x) = C, [ cos il + o sin Ont ) _ C, | cos il + o sin gnt (E8.3.16)
¢ Bn ¢ l Bn l

Notes

1. If k; and k; are both large, k| — oo and k; — oo and the frequency equation,
Eq. (E8.3.10), reduces to

sin 2L — o (E8.3.17)
C

Equation (E8.3.17) corresponds to the frequency equation of a wire with both
ends fixed.
2. If k; and k, are both small, 1/8, — 0 and 1/y, — 0 and Eq. (E8.3.14) gives
the frequencies as
nmwc

tana, =0 or «o,=nm or w, = e (E8.3.18)

and Eq. (E8.3.16) yields the modal functions as
Wy X
[

It can be observed that this solution corresponds to that of a wire with both
ends free.

W,(x) = C, cos (E8.3.19)
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3. If k; is large and k; is small, k; — oo and k; — 0, and Eq. (E8.3.10) yields

wyl oyl Q2n—Drm
cos—=0 or — = ——~

c c 2
or
2n — 1
w, = L DTC (E8.3.20)
21
and Eq. (E8.3.16) gives the modal functions as
W) = €, sin =~ = Ont (E8.3.21)

This solution corresponds to that of a wire which is fixed at x = 0 and free at
x =1

8.6 FORCED VIBRATION

The equation of motion governing the forced vibration of a uniform string subjected
to a distributed load f(x,?) per unit length is given by

82w(x,t) 82w(x 1)
o

I o =D 8.111)

Let the string be fixed at both ends so that the boundary conditions become
w(0,1) =0 (8.112)
w(l,t) =0 (8.113)

The solution of the homogeneous equation [with f(x,r) =0 in Eq. (8.111)], which
represents free vibration, can be expressed as [see Eq. (8.106)]

o0
1t
w,n) =Y sin @ (c” cos 2L l L 1 D, sin ”Cl” ) (8.114)
n=1

The solution of the nonhomogeneous equation [with f(x,7) in Eq. (8.111)], which also
satisfies the boundary conditions of Eqs. (8.112) and (8.113), can be assumed to be of
the form

w(x,t) = Z sin 20 () (8.115)

where 1, () denotes the generalized coordinates. By substituting Eq. (8.115) into
Eq. (8.111), we obtain

nn'x d nn(t) > ni
P Z a2 TF ; (7) sin "5, (1) = £ (x.1) (8.116)
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Multiplication of Eq. (8.116) by sin(nmx/[) and integration from O to /, along with
the use of the orthogonality of the functions sin(ix//), leads to

nn(t) n C27[2 . 2
a2 0= 700 (8.117)
where
i
Qn(t):/ f()@t)sin?dx (8.118)
0

The solution of Eq. (8.117), including the homogeneous solution and the particular
integral, can be expressed as

nerwt _ nemt 2 t Coner(t—1)
N, (t) = C, cos + D, sin + 0,(t)sin ———dt (8.119)
[ [ nerwp Jo l

Thus, in view of Eq. (8.115), the forced vibration response of the string is given by

o
nerwt nerwt nwx
w(x,t) = Z (C” cos ; + D, sin T) sin -

n=1

Z‘ J—
il Z " sin ”—” Qn(t) sinTETD 4 (8120
crr,o l
where the constants C,, and D,, are determined from the initial conditions of the string.

Example 8.4 Find the forced vibration response of a uniform taut string fixed at
both ends when a uniformly distributed force f per unit length is applied. Assume the
initial displacement and the initial velocity of the string to be zero.

SOLUTION  For a uniformly distributed force f(x,t) = fo, Eq. (8.118) gives

!
21
Q"(t):/ fosin X g =20 a5 (E8.4.1)
0 l nir
and hence
' r— 21 t ;
/Qn(f)sinwdtzﬁ/ gin =D
2fo 1 /0 _
= sinydy
N NwC Juger/l

2/2 t
- fo(l—cos"’”), n=1,3.5 .. (E842)

nm2c /
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Thus, the forced response of the string becomes [Eq. (8.120)]:

ad ncrwt . ncmt . nmwx
w(x,t):Z C, cos ; +D,,s1nT smT

n=1

412 fy > 1 niwx nemt
—sin— (1 — E8.4.3
+ Z . sin ( cos ; > ( )

c2a3p

Use of the initial conditions

w(x,0) =0 (E8.4.4)
dw(x, 0
w0 _ (E8.4.5)
ot
in Eq. (E8.4.3) yields
C, sin @ -0 (E8.4.6)
n=1
ad nci nmwx
Z TD” sin - = 0 (E8.4.7)

Equations (E8.4.6) and (E8.4.7) result in
C,=D,=0 (E8.4.8)

and hence the forced vibration response of the string is given by [see Eq. (E8.4.3)]:

Afy o~ 1 . nnx nerwt
w(x,t):m 72:5 EsmT(1—cos l > (E8.4.9)

Example 8.5 Find the steady-state forced vibration response of a fixed—fixed string
subjected to a concentrated force F(f) = Fy at x = xg.

SOLUTION  The applied force can be represented as
fx,t) = F(t)§(x — xo) (E8.5.1)

The steady-state forced vibration response of the string can be expressed, using
Eq. (8.120), as

2 &1 Conmx (! Coner(t —1)
w(x,t) = — —sin — 0,(t)sin ——drt (E8.5.2)
cp “=n [ Jo [

where Q, (¢) is given by Eq. (8.118):

! 1
0,(1) = / f(x,10) SiIIMTxdx :/ F(H)8(x — xo) Sin?dx
0 0

. nITXg
= F(t) sin

(E8.5.3)



230 Transverse Vibration of Strings
The function F'(t) = Fy can be denoted as
F(t) = FoH (1) (E8.5.4)
where H(t) is the Heaviside function, defined by

H() = 0 r=0 (E8.5.5)
1, t>0 o

Substitution of Eqs. (E8.5.4) and (E8.5.3) into (E8.5.2) results in

2Fp o1 . nnx [! . nmxg . nme(t —1)
wx,t) = — —sin — H(7) sin sin dt
cp “=n L Jy [ [
2Fyl <1 . NTXg . NTX nmct
= m Z 2 sin T sin - 1 —cos ; (E8.5.6)

Example 8.6 Find the steady-state response of a fixed—fixed string subjected to a
load moving at a constant velocity v given by

F()s(x —vt), O<vt<I

fx,0) = { 0. of = | (E8.6.1)

where F(t) is a suddenly applied force Fj.

SOLUTION  The steady-state response of the string is given by Eq. (8.120) as

2 A1 nrx [ nmwe(t — 1)
wx, ) =—Y —sin—— [ Q,(t)sin—————dr (E8.6.2)
crp “—n L Jy [
where O, (¢) is given by Eq. (8.118):
l
0,(1) = / e singdx (E8.6.3)
0

Using Eq. (E8.6.1), Q,(¢) can be evaluated as

1
t
0, (1) = / F(1)8(x — vi) sin g dx = F (1) sin 2~ (E8.6.4)
0
Thus, Eq. (E8.6.2) becomes
2 X1 ! ¢ t—
w.) = — 3 —sin 2~ [ F(r)sin = sin nel =0 4 (E8.65)
cp “=n L Jo [ l

Using

F(t) = FoH(1) (E8.6.6)
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Eq. (E8.6.5) can be evaluated as

2F, > 1 nmx ! . nmvt . nmwe(t — 1)
wx,t) = — —sin — H(7) sin sin dt
cTp n [ Jo l [
n=1
2F, > sin(nmx /1) nwv . niuc nwe . nwv
= — S5 PRI ( sm—t——sm—t)
cnpnzln(nnv/l —n?m2c2/1?) \ 1 l l l
(E8.6.7)

8.7 RECENT CONTRIBUTIONS

The D’ Alembert’s solution of Eq. (8.8), as given by Eq. (8.35), is obtained by assuming
that the increase in tension due to stretching is negligible. If this assumption is not made,

Eq. (8.9) becomes [4]
Pw |, 1, w\ ] w
27 _ —r = — 8.121
912 |:C + 2C1 <8x ) dx2 ( )

where

(8.122)

S|

with pg denoting the density of the string. Here ¢; denotes the speed of compressional
longitudinal wave through the string. An approximate solution of Eq. (8.121) was
presented by Bolwell [4]. The dynamics of cables, chains, taut inclined cables, and
hanging cables was considered by Triantafyllou [5, 6]. In particular, the problem of
linear transverse vibration of an elastic string hanging freely under its own weight
presents a paradox, in that a solution can be obtained only when the lower end is free.
An explanation of the paradox was given by Triantafyllou [6], who also showed that
the paradox can be removed by including bending stiffness using singular perturbations.

A mathematical model of the excitation of a vibrating system by a plucking action
was studied by Griffel [7]. The mechanism is of the type used in musical instru-
ments [8]. The effectiveness of the mechanism is computed over a range of the relevant
parameters. In Ref. [9], Simpson derived the equations of in-plane motion of an elastic
catenary translating uniformly between its end supports in an Eulerian frame of ref-
erence. The approximate analytical solution of these equations is given for a shallow
catenary in which the tension is dominated by the cable section modulus. Although the
mathematical description of a vibrating string is given by the wave equation, a quantum
model of information theory was used by Barrett to obtain a one-degree-of-freedom
mechanical system governed by a second-order differential equation [10].

The vibration of a sectionally uniform string from an initial state was considered
by Beddoe [11]. The problem was formulated in terms of reflections and transmissions
of progressive waves and solved using the Laplace transform method without incorpo-
rating the orthogonality relationships. The exact equations of motion of a string were
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formulated by Narasimha [12], and a systematic procedure was described for obtaining
approximations to the equations to any order, making only the assumption that the strain
in the material of the string is small. It was shown that the lowest-order equations in
the scheme, which were nonlinear, were used to describe the response of the string
near resonance.

Electrodischarge machining (EDM) is a noncontact process of electrically remov-
ing (cutting) material from conductive workpieces. In this process, a high potential
difference is generated between a wire and a workpiece by charging them positively
and negatively, respectively. The potential difference causes sparks between the wires
and the workpiece. By moving the wire forward and sideways, the contour desired can
be cut on the workpiece. In Ref. [13], Shahruz developed a mathematical model for
the transverse vibration of the moving wire used in the EDM process in the form of a
nonlinear partial differential equation. The equation was solved, and it was shown that
the transverse vibration of the wire is stable and decays to zero for wire axial speeds
below a critical value.

A comprehensive view of cable structures was presented by Irvine [14]. The natural
frequencies and mode shapes of cables with attached masses have been determined by
Sergev and Iwan [15]. The linear theory of free vibrations of a suspended cable has
been outlined by Irvine and Caughey [16]. Yu presented explicit vibration solutions of
a cable under complicated loads [17]. A theoretical and experimental analysis of free
and forced vibration of sagged cable/mass suspension has been presented by Cheng
and Perkins [18]. The linear dynamics of a translating string on an elastic foundation
was considered by Perkins [19].

REFERENCES

Ju—

. W. Nowacki, Dynamics of Elastic Systems, translated by H. Zorski, Wiley, New York, 1963.

2. N. W. McLachlan, Theory of Vibrations, Dover, New York, 1951.

. S. Timoshenko, D. H. Young, and W. Weaver, Jr., Vibration Problems in Engineering, 4th

ed., Wiley, New York, 1974.

4. J. E. Bolwell, The flexible string’s neglected term, Journal of Sound and Vibration, Vol.
206, No. 4, pp. 618-623, 1997.

5. M. S. Triantafyllou, Dynamics of cables and chains, Shock and Vibration Digest, Vol. 19,
pp- 3-5 1987.

6. M. S. Triantafyllou and G. S. Triantafyllou, The paradox of the hanging string: an expla-
nation using singular perturbations, Journal of Sound and Vibration, Vol. 148, No. 2, pp.
343-351, 1991.

7. D. H. Griffel, The dynamics of plucking, Journal of Sound and Vibration, Vol. 175, No. 3,
pp. 289-297, 1994.

8. N. H. Fletcher and T. D. Rossing, The Physics of Musical Instruments, Springer-Verlag,
New York, 1991.

9. A. Simpson, On the oscillatory motions of translating elastic cables, Journal of Sound and

Vibration, Vol. 20, No. 2, pp. 177-189, 1972.

10. T. W. Barrett, On vibrating strings and information theory, Journal of Sound and Vibration,
Vol. 20, No. 3, pp. 407-412, 1972.

w



233

Problems

. B. Beddoe, Vibration of a sectionally uniform string from an initial state, Journal of Sound
R. Narasimha, Non-linear vibration of an elastic string, Journal of Sound and Vibration,

S. M. Shahruz, Vibration of wires used in electro-discharge machining, Journal of Sound

S. S. Sergev and W. D. Iwan, The natural frequencies and mode shapes of cables with
H. M. Irvine and T. K. Caughey, The linear theory of free vibrations of a suspended cable,
P. Yu, Explicit vibration solutions of a cable under complicated loads, Journal of Applied

S.-P. Cheng and N. C. Perkins, Theoretical and experimental analysis of the forced response
of sagged cable/mass suspension, Journal of Applied Mechanics, Vol. 61, No. 4, pp.

11
and Vibration, Vol. 4, No. 2, pp. 215-223, 1966.
12.
Vol. 8, No. 1, pp. 134-146, 1968.
13.
and Vibration, Vol. 266, No. 5, pp. 1109-1116, 2003.
14. H. M. Irvine, Cable Structures, MIT Press, Cambridge, MA, 1981.
15.
attached masses, Journal of Energy Resources Technology, Vol. 103, pp. 237-242, 1981.
16.
Proceedings of the Royal Society, London, Vol. A-341, pp. 299-315, 1974.
17.
Mechanics, Vol. 64, No. 4, pp. 957-964, 1997.
18.
944-948, 1994.
19.

N. C. Perkins, Linear dynamics of a translating string on an elastic foundation, Journal of
Vibration and Acoustics, Vol. 112, No. 1, pp. 2-7, 1990.

PROBLEMS

8.1 Find the free vibration response of a fixed—fixed
string of length / which is given an initial displacement

. 2mx
wo(x) = hsin -

and initial velocity wo(x) = 0.

8.2 A steel wire of diameter 31—2 in. and length 3 ft
is fixed at both ends and is subjected to a tension of
200 1b. Find the first four natural frequencies and the
corresponding mode shapes of the wire.

8.3 Determine the stress that needs to be applied to the
wire of Problem 8.2 to reduce its fundamental natural
frequency of vibration by 50 % of the value found in
Problem 8.2.

8.4 A string of length / is fixed at x = 0 and subjected
to a transverse force f(t) = fpcoswt at x = [. Find the
resulting vibration of the string.

8.5 Find the forced vibration response of a fixed—fixed
string of length / that is subjected to the distributed
transverse force f(x,r) = F(x)e'*".

8.6 A uniform string of length / is fixed at both ends
and is subjected to the following initial conditions:

. . 2mx
w(x,0) = —ypsin —

. 2mx
w(x,O):xosmT, ]

8.7 Derive the boundary conditions corresponding to
support conditions 3, 4, and 5 of Table 8.1 from equi-
librium considerations.

8.8 The transverse vibration of a string of length / = 2
is governed by the equation

3w _ 3w

axr a2
The boundary and initial conditions of the string are
given by

w(0,t) =0, w(2,t) =0

ow
w(x,0) =0.1x(2 — x), E(X’O):O

Find the displacement of the string, w(x,?).

8.9 A semi-infinite string has one end at x = 0 and the
other end at x = oo. It is initially at rest on the x axis
and the end x = 0 is made to oscillate with a transverse
displacement of w(0,#) = ¢ sin Q. Find the transverse
displacement of the string, w(x,7).

8.10 Find the natural frequencies of transverse vibration
of a taut string of length / resting on linear springs
of stiffnesses k; and k, at the ends x =0 and x =/,
respectively. Assume the following data: P = 1000 N,
p = 0.1 kg/m, and k; = k, = 5000 N/m.



Longitudinal Vibration of Bars

9.1 INTRODUCTION

A straight elastic bar can undergo longitudinal, torsional, and lateral vibration. Among
these, the longitudinal vibration is the simplest to analyze. If x denotes the longitudinal
(centroidal) axis and y and z represent the principal directions of the cross section, the
longitudinal vibrations take place in the x direction, torsional vibrations occur about
the x axis, and lateral vibrations involve motion in either the xy plane or the xz plane.
These vibrations may be coupled in some cases. For example, if the cross section is
not symmetric about the y or z axis, the torsional and lateral vibrations are coupled.
If the bar is pretwisted along the x direction, the lateral vibrations in the xy and xz
planes are coupled. We consider first the longitudinal vibration of a bar using a simple
theory.

9.2 EQUATION OF MOTION USING SIMPLE THEORY

We consider a simple theory for the longitudinal vibration of bars based on the following
assumptions:

1. The cross sections of the bar originally plane remain plane during deformation.

2. The displacement components in the bar (except for the component parallel to
the bar’s longitudinal axis) are negligible.

These assumptions permit the specification of the displacement as a function of
the single space coordinate denoting location along the length of the bar. Although
lateral displacement components exist in any cross section, the second assumption can
be shown to be valid for vibrations involving wavelengths that are long compared
to the cross-sectional dimensions of the bar. We shall derive the equation of motion
using two different approaches: by applying Newton’s second law of motion and from
Hamilton’s principle.

9.2.1 Using Newton’s Second Law of Motion

For an elastic bar of length /, Young’s modulus E, and mass density p with varying
cross-sectional area A(x) as shown in Fig. 9.1(a), the equation of motion has been
derived, using Newton’s second law of motion, in Section 3.4 as

u(x, 1) o A 9%u(x, 1) ©.1
™ }+f(x, ) = p(x) (x)T 1)

9
[E(x)A(x)

ax
234
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Ho— X
Figure 9.1 Longitudinal vibration of a bar.
For a uniform bar, Eq. (9.1) reduces to
EAa2u(x,t) D Aazu(x,t) ©.2)
_— x’ = —_— .
ox2 P

9.2.2 Using Hamilton’s Principle

During longitudinal vibration, the cross section of the bar located at a distance x from
the origin undergoes an axial displacement of u while the cross section located at
a distance x + dx undergoes an axial displacement of u + du = u + (du/dx)dx, as
shown in Fig. 9.1(b). Since the deformation of the cross section in the y and z directions
(v and w) is assumed to be negligible, the displacement field can be expressed as

u=u(x,t), v=20, w=~0 9.3)

The strains in the cross section at x are given by

ou

Exx = —, Eyy = &, =0, Exy = Ey; =845, =10 9.4)
ax
Note that the displacements v and w, and the strains ¢, and ¢,,, will not be zero, due

to Poisson’s effect in a real bar; they are assumed to be zero in the simple theory. The
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stresses acting in the cross section at x, corresponding to the strains given by Eq. (9.4),
are

u
Oyy = Ea, oyy =0, =0, Oxy =0y, =05, =0 9.5)

The strain and kinetic energies of the bar can be found as

1! I A
T = E O'XXEXXA dx = 5 EA a dx (96)
0 0

1 [ au\>
T = - Al— ) d 9.7
Z/Op (Bt) x 0.7

The work done by the external force f(x,?) is given by

I
w =/ f(x,Hudx (9.8)
0
The generalized Hamilton’s principle can be stated as
n
8/ (T —7+W)dt=0 (9.9)
I

The substitution of Egs. (9.6)—(9.8) into Eq. (9.9) yields the equation of motion and
the associated boundary conditions as (see Problem 9.8)

O (Ea2") 1 f= PR (9.10)

ax " ax = PSR '
Ju !

EA sul =0 ©.11)
ax 0

Note that Eq. (9.11) will be satisfied for a free boundary where

3
oo = EAL — 0 9.12)
0x

or when the displacement is specified at the boundary with éu = 0; for a fixed end, the
boundary condition is

u=0 (9.13)

9.3 FREE VIBRATION SOLUTION AND NATURAL FREQUENCIES

The equation governing the free vibration of bars can be obtained by setting f = 0 in
Egs. (9.1) and (9.2). For nonuniform bars:

u(x, 1) 9%u(x, 1)
ax i|

0
— |:EA (x)
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For uniform bars:

9%u(x, 1) _ pAazu(x,t)

EA
ax2 ot?
or
9%u(x, 1) 9%u(x,t)
2 ) )
= 9.15
Y or2 ©-15)
where

E
c=|— (9.16)
0

The solution of Eq. (9.15) can be obtained using either the wave solution approach or
the method of separation of variables. The wave solution of Eq. (9.15) can be expressed,
as in the case of vibration of strings, as

u(x,t) = fi(x —ct) + foalx +ct) 9.17)

Although this solution [Eq. (9.17)] is useful in the study of certain impact and wave
propagation problems involving impulses of very short duration, it is not very useful
in the study of vibration problems. The method of separation of variables followed by
the eigenvalue and modal analyses is more useful in the study of vibrations.

9.3.1 Solution Using Separation of Variables

To develop the solution using the method of separation of variables, the solution of
Eq. (9.15) is written as

Ux,t) = UX)T @) (9.18)

where U and T depend on only x and ¢, respectively. Substitution of Eq. (9.18) into
Eq. (9.15) leads to

c2d*U  1d*T

—— == (9.19)

Udx? T dt?
Since the left-hand side of Eq. (9.19) depends only on x and the right-hand side depends
only on ¢, their common value must be a constant, which can be shown to be a negative
number (see Problem 9.7), denoted as —w?. Thus, Eq. (9.19) can be written as two
separate equations:

2 2
i) d(i S CUw =0 9.20)
2
4T +&’T@t) =0 (9.21)

dt?
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The solution of Egs. (9.20) and (9.21) can be represented as

Ux) = Acos 2% 4 Bsin 22 (9.22)
C C
T(t) = Ccoswt + D sin wt (9.23)

where o denotes the frequency of vibration, the function U(x) represents the normal
mode, the constants A and B can be evaluated from the boundary conditions, the
function 7'(¢) indicates harmonic motion, and the constants C and D can be determined
from the initial conditions of the bar. The complete solution of Eq. (9.15) becomes

wX . WX .
u(x, 1) = U)T () = (A cos 22 4 Bsin —) (Ccoswt + Dsinwt)  (9.24)
C C

The common boundary conditions of the bar are as follows. For the fixed end:

u=~0 (9.25)
For the free end:

ou

— =0 (9.26)

0x

Some possible boundary conditions of a bar are shown in Table 9.1. The application of
the boundary conditions in Eq. (9.22) leads to the frequency equation whose solution
yields the eigenvalues. The substitution of any specific eigenvalue in Eq. (9.22) gives
the corresponding eigenfunction.

If the axial displacement and the axial velocity of the bar are specified as u((x) and
uo(x), respectively, at time ¢ = 0, the initial conditions can be stated as

ux,t =0) =up(x) (9.27)
o et =0) =i 9.28
E(x,t— ) = 1to(x) (9.28)

The following examples illustrate the formulation of boundary conditions, the deter-
mination of natural frequencies for specified boundary conditions of the bar, and the
method of finding the free vibration solution of the bar in longitudinal vibration.

Example 9.1 The ends of a uniform bar are connected to masses, springs, and viscous
dampers as shown in Fig. 9.2(a). State the boundary conditions of the bar in axial
vibration.

SOLUTION If the axial displacement, velocity, and acceleration of the bar at x = 0
are assumed to be positive with values u(0, 1), du/d¢(0,¢), and 82u/8t2(0, 1),
respectively, the spring force kju(0, t), the damping force c;[du/0t](0, t), and the
inertia force m[3%u/dt>](0, t) act toward the left as shown in the free-body diagram
of Fig. 9.2(b). The boundary condition at x = 0 can be expressed as

[force (reaction) in bar at x = 0]
= (sum of spring, damper, and inertia forces at x = 0)
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kl k2 N
" " =
N c x=0 x=1 (%)
(a)
mliil - 3 mziil -~
x=0 AE—u ou x=1
X lx=0 ox ~— 2u|
x=

klul 0 x=1 /
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Figure 9.2 Bar with masses, springs, and dampers at ends.

or

AELN0.1) = ku(©. 1) + 1 240, 1) + 82”(o ) (E9.1.1)
ax b i lu 9 Cl at bl ml 8[2 9 . .

In a similar manner, the boundary condition at x =/ can be expressed as

AEYY 00 = —kou(l. 1) — 20 1) 0 A, 1) (E9.1.2)
—(/, —_ — u N — Ch—— s — MmMH>»—— ’ i
dx 2 ot 2 a1

Example 9.2 A uniform bar of length /, cross-sectional area A, density p, and Young’s
modulus E, is fixed at x = 0 and a rigid mass M is attached at x =/ [Fig. 9.3(a)].
Determine the natural frequencies and mode shapes of longitudinal vibration of the bar.

SOLUTION The solution for the free longitudinal vibration of a bar is given by
Eq. (9.24):

wX . wXx .
u(x, 1) = (A cos 2X 4 Bsin —) (C cos ot + D sinwr) (E9.2.1)
~ C - C

The boundary condition at the fixed end, x = 0, is given by

u(0,1) =0 (E9.2.2)
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%u
—> M — L)
or>

AE, p
/_ P (Lp)

AN
I

~

(a) )

Figure 9.3 Longitudinal vibration of a bar, fixed at x = 0 and mass attached at x = [: (a) bar
with end mass M; (b) free body diagram of mass M.

The boundary condition at x =/ can be expressed from the free-body diagram of the
mass shown in Fig. 9.3(b) as

9
reaction force = P(l,1) = Ao (l, 1) = AEa—u(l, )
X

. . 0%u
= —inertia force = —Mﬁ(l, t) (E9.2.3)
Equations (E9.2.2) and (E9.2.1) give
A=0 (E9.2.4)
and hence Eq. (E9.2.1) becomes
u(x, 1) = Bsin — (C cos wt + D sin o) (E9.2.5)
c
Equation (E9.2.5) gives
0
o Bg cos %(C coswt + D sin wt) (E9.2.6)
ax ~c c
3%u , . WX .
v = —Bw"sin T(C coswt + D sin wt) (E9.2.7)

Using Eqgs. (E9.2.6) and (E9.2.7), Eq. (E9.2.3) can be expressed as

® wl . 0., .l .
AE—Bcos —(Ccoswt + Dsinwt) = Mw” B sin — (C cos wt + D sin wt)
c~ c ~ c

or
wl AE
tan — = (E9.2.8)
c Mawc
By introducing the mass of the bar, m, as
m = pAl (E9.2.9)

Eq. (E9.2.8) can be rewritten as

atana = B (E9.2.10)
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where
wl
o=— (E9.2.11)
c
pAl m
= — = — E9.2.12
B o’ " ( )

Equation (E9.2.10) is the frequency equation in the form of a transcendental equation
which has an infinite number of roots. For the nth root, Eq. (E9.2.10) can be written
as

oy tana, = B, n=12,... (E9.2.13)
with
wyl o, C
o, = or w, = ] (E9.2.14)
c

The mode shapes corresponding to the natural frequency w, can be expressed as

n

L wpX
Uy(x) = Bpsin—=, n=12,... (E9.2.15)
C

The first 10 roots of Eq. (E9.2.13) for different values of the mass ratio § are given in
Table 9.2.

Table 9.2 Roots of Eq. (E9.2.13)

Value of «,, for:

n B=0 B =10 =1 B=1 B =1
0 1.4289 0.8603 0.3111 0.0998

3.1416 4.3058 3.4256 3.1731 3.1448

6.2832 7.2281 6.4373 6.2991 6.2848

9.4248 10.2003 9.5293 9.4354 9.4258

12.5664 13.2142 12.6453 12.5743 12.5672

15.7080 16.2594 15.7713 15.7143 15.7086

18.8496 19.3270 18.9024 18.8549 18.8501
21.9911 22.4108 22.0365 21.9957 21.9916
25.1327 25.5064 25.1724 25.1367 25.1331
28.2743 28.6106 28.3096 28.2779 28.2747

SO0 I WNB W~

—_—

Example 9.3 A uniform bar of length /, cross-sectional area A, density p, and Young’s
modulus E is free at x = 0 and attached to a spring of stiffness K at x = [, as shown
in Fig. 9.4(a). Determine the natural frequencies and the mode shapes of longitudinal
vibration of the bar.
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(a)
Ku(Lf)

P(L1)

(b)

Figure 9.4 Bar free at x = 0 and attached to a spring at x = /.

SOLUTION The solution for the free longitudinal vibration of a bar is given by
Eq. (9.24):

u(x, 1) = (A cos 22 4 Bsin ﬁ) (C cos wt + D sinwr) (£9.3.1)
- C - C
Since the end x = 0 is free, we have
9 3
AEZ0.0=0 or 0. =0 (£9.3.2)
dx 0x

Equations (E9.3.1) and (E9.3.2) yield

B=0 (E9.3.3)
Thus, Eq. (E9.3.1) reduces to
wx .
u(x, 1) = Acos —(C coswt + D sinwr) (E9.3.4)
c
The boundary condition at x =/ can be expressed as [Fig. 9.4(b)]
reaction force = —spring force
that is,
ou
AE—(,t) = —Ku(l,1t) (E9.3.5)
ax
Equations (E9.3.4) and (E9.3.5) lead to
wAE | ol ) wl .
—A sin — (C coswt + Dsinwt) = —K Acos — (C coswt + D sin wt)
~ c c ~ c
or
AE [
© ot (E9.3.6)
cK c
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Introducing the mass of the bar, m, as

m = pAl (E9.3.7)
Eq. (E9.3.6) can be rewritten as
acota = B (E9.3.8)
where
wl
oa=— (E9.3.9)
c
B = k (E9.3.10)
=% 3.
AE
k= — (E9.3.11)

/

denotes the stiffness of the bar. Equation (E9.3.8) denotes the frequency equation in
the form of a transcendental equation with an infinite number of roots. For the nth root,
Eq. (E9.3.8) can be expressed as

W cotay = By n=1,2,... (E9.3.12)
with
/
=2 or w,= “;C (E9.3.13)
C

The mode shape corresponding to the natural frequency w, can be expressed as

Wy X
Up(x) = Aycos ==, n=12... (E9.3.14)
C

The first 10 roots of Eq. (E9.3.12) for different values of the stiffness ratio f§ = k/K
are given in Table 9.3.

Table 9.3 Roots of Eq. (E9.3.12)

Value of «,, for:

n p=1 :3:% ﬂ:Tlo ﬂ_slo ﬂ:ul)o
1 3.145 1.435 1.505 1.555 1.565
2 4.495 3.145 3.145 3.145 3.145
3 6.285 4.665 4.695 4.705 4.715
4 7.725 6.285 6.285 6.285 6.285
5 9.425 7.825 7.845 7.855 7.855
6 10.905 9.425 9.425 9.425 9.425
7 12.565 10.975 10.985 10.995 10.995
8 14.065 12.565 12.565 12.565 12.565
9 15.705 14.125 14.135 14.135 14.135

10 17.225 15.705 15.705 15.705 15.705
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Example 9.4 Find the natural frequencies of vibration and the mode shapes of a bar
with free ends.

SOLUTION The boundary conditions of a free—free bar can be expressed as

Ju dU
—(0,t) = —(©0) =0, t>0 (E9.4.1)
0x dx
ou dU
—{,t)y=—(10) =0, t>0 (E9.4.2)
0x dx
In the solution
wx . wx
U(x) = Acos — + Bsin— (E9.4.3)
c c
dU w . WX w wx
—(x) =—A—sin— 4+ B—cos — (E9.4.4)
dx ~c c ~c c
use of the condition, Eq. (E9.4.1), gives
B=0 (E9.4.5)

The condition of Eq. (E9.4.2) leads to the frequency equation (noting that A cannot be
equal to zero for a nontrivial solution):
wl

sin— =0 (E9.4.6)
C

which yields

ol
— =nm, n=12,... (E9.4.7)
c

As different values of n give different frequencies of the various modes of vibration,

the nth frequency and the corresponding mode shape can be expressed as

w,,:mlT—c, n=1.2... (E9.4.8)
U,,(x):écos%:zﬁcosg, n=1.2, ... (E9.4.9)
C

The first three frequencies and the corresponding mode shapes, given by Eqgs. (E9.4.8)
and (E9.4.9), are shown in Table 9.4.

9.3.2 Orthogonality of Eigenfunctions

The differential equation governing the free longitudinal vibration of a prismatic bar,
Eq. (9.1) with f = 0, can be written in general form as

2

0u
L[u(x,t)]-l-MW(x,t) =0 (9.29)
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Table 9.4 First Three Mode Shapes of a Free—Free bar

Mode Natural frequency,
number, n wy Mode shape, U, (X)

U, (x)

where

02 02
L=—R— =—-FA—,
0x2 0x2
R = EA denotes the axial rigidity and p A indicates the mass per unit length of the bar.
For free vibration (with harmonic motion) in the ith natural mode, we can write

M = pA (9.30)

u;i(x,t) = U;(x)(C; cos w;t + D; sin w;t) 9.31)
Substituting Eq. (9.31) into Eq. (9.29), we obtain
RU! (x) + Mw?U;(x) = 0 (9.32)

where a prime denotes a derivative with respect to x. Equation (9.32) can be rewritten
as an eigenvalue problem

U/ (x) = 2 Ui (x) (9.33)

where U;(x) is the eigenfunction or normal function determined from the boundary
conditions and

Mo _ _ (ﬂ)z 9.34)

C
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is the eigenvalue with

—\/?— £ 9.35
== 9:35)

Let U;(x) and U (x) denote the eigenfunctions corresponding to the natural frequencies
w; and w;, respectively, so that

Ul = nUi (9.36)
U/ = x,U; (9.37)

Multiply Eq. (9.36) by U; and Eq. (9.37) by U; and integrate the resulting equations
from O to / to obtain

I I
/ Ul-”Uj dx Z)\,i/ Uin dx (938)
0 0
I I
/ UJ//U,' dx = )‘j / U,'Uj dx (939)
0 0
Integrate the left-hand sides of Egs. (9.38) and (9.39) by parts:
I I
UlU; b — f UlUjdx = A; / U;U; dx (9.40)
0 0
I I
UjUily — fo UlUdx = ,\jfo U;U;dx (9.41)

The first terms on the left-hand sides of Eqgs. (9.40) and (9.41) are zero if the end of
the bar is either fixed or free. Subtract Eq. (9.41) from (9.40) to obtain

1
()‘i _)‘j)/ Uindx =0 (942)
0

When the eigenvalues are distinct A; # A;, Eq. (9.42) gives the orthogonality principle
for normal functions:

l
f UilUjdx =0,  i#j (9.43)
0

In view of Eq. (9.43). Egs. (9.40) and (9.39) yield

l
/ UlUidx =0,  i#] (9.44)
0
[
f U/'U;dx =0, i#j (9.45)
0

Equations (9.43)—(9.45) indicate that the orthogonality is valid not only among the
eigenfunctions, but also among the derivatives of the eigenfunctions.
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Note The orthogonality relationships for a bar with a mass M attached at the end
x =1 [as in Fig. 9.3(a)] can be developed as follows. Rewrite Eq. (9.32) corresponding
to two distinct eigenvalues i and j as

RU! = —ma)l.zUi, RU}/ = —ma)?Uj (9.46)

l

with m = M = pA. To include the boundary condition at x =/ in the orthogonality
relation, we write the boundary condition for eigenvalues i and j as

RU/(l) = Mw}Ui(l),  RU(I) = MwjU;(0) (947)

Using a procedure similar to the one used in deriving Eq. (9.43), we obtain the orthog-
onality condition as (see Problem 9.21)

l
m/ UiUjdx + MU;(DU;(1) =0, i # j (9.48)
0

9.3.3 Free Vibration Response due to Initial Excitation

The response or displacement of the bar during longitudinal vibration can be expressed
in terms of the normal functions U;(x), using the expansion theorem, as

u(x, 1) =Y Ui (0) (9.49)

i=1

Substitution of Eq. (9.49) into Eq. (9.29) results in

Y [Rni(OU] (x) + Mij; (1) U; (x)] = 0 (9.50)

i=1
Multiplication of Eq. (9.50) by U, (x) and integration from 0 to / yields

ee]

1 1
Z [Rm(t)/ Ui'U; dx+Mi7'i/ U;U; dx} =0 (9.51)
0 0

i=1

In view of the orthogonality relationships, Egs. (9.43) and (9.45), Eq. (9.51) reduces
to

M;ij;i (t) + Rin; (t) =0, i=1,2,... (9.52)

where M; and R; denote the generalized mass and generalized stiffness (or rigidity),
respectively, in mode i:

1
M; =M / U? dx (9.53)
0

1 1
R =R / U'U;dx = —R / (U)*dx = o M; (9.54)
0 0
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If the eigenfunctions are normalized with respect to the mass distribution as
!
M; =M f Urdx =1 (9.55)
0

Eq. (9.54) gives R; = wi2 and Eq. (9.52) becomes
i) Folni() =0, i=1,2,... (9.56)

The solution of Eq. (9.56) is given by
7: (0)

wj

n; () = n;(0) cos w;t + sin w;t (9.57)

where 71; (0) = n;0 and 1;(0) = n;9 are the initial values of n; (¢) and 7; (¢), which can be
determined from the initial values of the displacement and velocity given by Eqgs. (9.27)
and (9.28). For this, first we express ug(x) and i (x) using Eq. (9.49) as

uo(x) =Y Ui(¥)mio (9.58)
i=1

o (x) = Y Ui (¥ (9.59)
i=1

Multiplication of Egs. (9.58) and (9.59) by U;(x) and integration from O to / result in

l & 1
/O uo()Uj(x)dx = Zmofo Ui(x)Uj(x)dx = njo (9.60)
i=1
l & 1
/0 uo(x)Uj(x)dx = Zf?io/o Ui()Uj(x)dx =njo 9.61)
i=1

in view of the orthogonality of the normal modes. Thus, the jth generalized coordinate
can be determined from Eq. (9.57). The total response of the bar can be expressed as
[Eq. (9.49)]

o o0 .

ulx,t) = Zui(x, 1) = Z U; (x) (Th‘o cos w;t + 1o sinw,-t) (9.62)

wj
i=1 i=1

Example 9.5 Find the free vibration response of a uniform bar with free ends due to
initial displacement and velocity.

SOLUTION The free vibratory motion of the free—free bar in the nth mode can be
expressed, using Eq. (9.24), as

niwx nimwc . nmc
(6. 1) = Up (0T, (1) = cos == (C,, cos =1 + D sin Tz) (E9.5.1)
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where C,, and D, are constants. By superposing the solutions given by Eq. (E9.5.1),
we can represent any longitudinal vibration of the bar in the form

(x. 1) icos nx (C cos C¢ 4 D, sin ””Cz) (E9.5.2)
ux, = - n - n - .
2% I I

where the constants C,, and D,, can be determined from the initial conditions specified.
If the initial displacement and initial velocity of the bar are specified as

9
uCr0) =up(),  T-(r.0) = tio(x) (E9.5.3)
then Eq. (E9.5.2) gives
o0
nmwTx
u(x. 0) = o(x) = Y €y cos - (£9.5.4)
n=1
o0
M) =i @ =3"2D, cos X (£9.5.5)
ar ) T OV T [ I "

n=1

To determine the constant C, in Eq. (E9.5.4), we multiply both sides of Eq. (E9.5.4)
by the mth mode shape, cos(mmx/l), and integrate from O to [:

! M x [ & nTx Mmx
up(x) cos dx = Z C,cos — cos ——dx (E9.5.6)
0 [ 0 = l l
Noting that
! 0, m#n
nwx M x
/ COS —— COs =11 (E9.5.7)
0 [ / . m=n
2
Eq. (E9.5.6) can be simplified to obtain
2 1
C, = 7 / ug(x) cos g dx (E9.5.8)
0
Using a similar procedure, the constant D, in Eq. (E9.5.5) can be determined as
2 1
Dy =—— | ig(x) cos 5 dx (E9.5.9)
nmwe Jo [

Example 9.6 Consider a free—free bar of uniform cross-sectional area. It is subjected
to an axial compressive force at each end. Find the free vibration response of the bar
when the forces are suddenly removed.

SOLUTION We assume that the middle of the bar remains stationary. The displace-
ment of the bar just before the forces are removed (one-half of the initial displacement
at each end) is given by

8()[
uyg =u(x,0) = o £0X (E9.6.1)
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and the initial velocity by

. u
g = E(X’ 0)=0 (E9.6.2)
where &) denotes the compressive strain at the ends at time ¢ = 0.
Using Eqgs. (E9.5.8) and (E9.5.9) and Egs. (E9.6.1) and (E9.6.2), the constants C,
and D, can be evaluated as

s_ol lcos niTx J (nm) 26 l /l nmwx cos nix J (nrm)
nmw Jo [ l 2 0 [ l l

0, niseven

4 (E9.6.3)
Aol s odd
n2m?

D, =0 (E9.6.4)

Thus, the general solution for the longitudinal vibration of the free—free bar can be
expressed as [see Eq. (E9.5.2)]

depl nd 1 nwx nmwex
0 > (E9.6.5)

ulx,t) = — — Cc0S —— COS
’ 2 n2 l
n=1,3,5,-

Example 9.7 A bar of uniform cross-sectional area A, length /, modulus of elasticity
E, and density p is fixed at both ends. It is subjected to an axial force Fy at the middle
[Fig. 9.5(a)] and is suddenly removed at r = 0. Find the resulting vibration of the bar.

(=]

A\ \\\f\ A
>
ALIANALANNNNNY
=

Fl
3EA

[ | l
| 2 | 2 |
(b)

Figure 9.5 (a) Bar subjected to axial force Fy at the middle; (b) initial displacement distribu-
tion, uy(x).
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SOLUTION The tensile strain induced in the left half of the bar is given by

Fo

- E9.7.1
® = 2EA (E9.7.1)

which is equal in magnitude to the compressive strain in the right half of the bar. Thus,
the initial displacement of the bar can be expressed as [see Fig. 9.5()]

&x = E, 0<x< !
2EA 2
u(x,0) = up(x) = (E9.7.2)
Fo(l —x) /
el —x) = ————, —<x<l
2EA 2
Since the initial velocity is zero, we have
ou .
E(x’ 0) = uo(x) =0, 0<x<lI (E9.7.3)

To find the general solution of the bar, we note the boundary conditions
u(0,1) =0, t>0 (E9.7.4)
u(l,t) =0, t>0 (E9.7.5)

The use of Eq. (E9.7.4) in Eq. (9.24) gives A = 0, and the use of Eq. (E9.7.5) gives
the frequency equation:

.ol . ol
Bsin— =0 or sin— =0 (E9.7.6)
c c

The natural frequencies are given by

wpl

=nm,n=1,2,...
or

W= ——,  n=1,2,... (E9.7.7)

and the corresponding mode shapes by

. nmTX
Up() = Bysin ==, n=12... (E9.7.8)

The general free vibration solution of the bar can be expressed using the mode super-
position approach as

o0

o0
. nmTX nmwct . nmct
u(x,t) = Zun(x, t) = Zsm - (Cn cos ] + D, sin ; > (E9.7.9)
n=1

n=1
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Using the initial velocity condition, Eq. (E9.7.3), in Eq. (E9.7.9) gives D, = 0. The
use of the initial displacement condition, Eq. (E9.7.2), in Eq. (E9.7.9) yields

ang/l/z Fox . nnxdx+g/l FO(l_x)sianx
0 12 EA l

sin dx
2EA l [

Fy [? /1/2 nTXx . NIXx J (mtx)
= — in
EAln2z? )y 1 ST I

sin —d

Fol 1 ! . nmx (nrrx)
l

Fy 12 /‘Z nTx . nn’xd(nnx>
- — sin
EAl I’l277.'2 12 [ [ [
2F) (—1)=D/2
of EDT it nis odd
=1 AEm n (E9.7.10)

0 if n is even

Thus, the free vibration solution of the bar becomes

2F o (=D D2 pmx nmet
u(x,t):AEnznzg:s ——— sin ——cos — (E9.7.11)

9.4 FORCED VIBRATION

The equation of motion for the longitudinal vibration of a prismatic bar subjected to a
distributed force f(x,t) per unit length can be expressed in a general form as

—Ru"(x,t) + Mii(x, 1) = f(x,1) (9.63)
or
—cu"(x, 1) +ii(x, 1) = f(x,1) (9.64)
where R and M are given by Eq. (9.30), ¢ by Eq. (9.35), and
f_f
=== 9.65
f M oA (9.65)

In modal analysis, the forced vibration response is assumed to be given by the sum of
products of normal modes and generalized coordinates as indicated by Eq. (9.49). By
substituting Eq. (9.49) in Eq. (9.64) for u(x, t), multiplying by U;(x), and integrating
from O to [, we obtain
00 1 l
> =i / U/ (0)U;(x) dx + iji / Ui (x)U;(x) dx]
0 0

i=1

1
=/ Ujx)f(x,1)dx (9.66)
0
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In view of the orthogonality relations, Egs. (9.43) and (9.45), Eq. (9.66) becomes (for
i=j)

1
ﬁi+w$ni=/ Ui(x) f (x, 1) dx 9.67)
0

Equation (9.67) represents a second-order ordinary differential equation for the gener-
alized coordinate 1,(¢). The solution of Eq. (9.67) can be obtained, using a Duhamel
integral, as

ni(t) = ! / U(x)/ f(x T)sinw;(t —t)dtdx (9.68)
wj

Thus, the total steady-state forced longitudinal vibration response of the bar is given
by (ignoring the effect of initial conditions)

TEHEDY U( )/ U(x)/ [ Osinw (t — 7)dtdx (9.69)
1

i=

Note If the bar is subjected to an axial concentrated force Fj, () at x = x,,, there is
no need for integration over the length of the bar, and Eq. (9.69) takes the form

sinw;(t — 1)dt (9.70)

Ui()Ui(x = xn) (" Fn ( )
ulx,t) =
Z] ”
Example 9.8 Consider a prismatic bar fixed at both ends. Find the steady-state
response of the bar if the following loads are applied suddenly at the same time (see
Fig. 9.6): a uniformly distributed longitudinal force of magnitude fy per unit length,
and an axial concentrated force Fy at the middle point of the bar, x =1/2.

fo per unit length
> > > > > > > > > —>

> X 0—>F0

ALRARANNANNAY

o
\\\\“T\\ A\

[ | s
|

2

(3]

Figure 9.6 Bar subjected to distributed and concentrated loads.

SOLUTION We can find the steady-state response of the bar by superposing the
responses due to the two loads. To find the response due to the uniformly distributed
load, we use

Jo
S, )= oA (E9.8.1)

in Eq. (9.69) to obtain

u(x,t) =
i=1

t
U(x)/ Ui (x )—/ sinw; (t — 1) dt dx (E9.8.2)
0
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where from the free vibration analysis [Eq. (E9.7.8)] we have

Cimx

Ui(x) = B; sin e
imc
W = —

/

and B; is a constant (i = 1,2, ...). When U, (x) is normalized as

1
/ U,-z(x)dx =1
0

or
] .
T
B?/ sin2!dx =1
0 l
we obtain
2
B =./-
l
and hence

2 . imx
U,’(X)Z TSIHT

Thus, Eq. (E9.8.2) becomes

(E9.8.3)

(E9.8.4)

(E9.8.5)

(E9.8.6)

(E9.8.7)

(E9.8.8)

) mrx nwx fo .
1) = .t —1)dtd
ulx,t) = Z lnnc /f 7osma)( t)dtdx

. 4fgl> 1 nmx 1 nmwct
= Z oA 3 sin ; — cos 7
n=1,3,5,...

(E9.8.9)

To find the response of the bar due to the concentrated load, we use F,,(t) = Fy in

Eq. (9.70), so that

i\/gsin(mrx/l)«/Z/lsin(nn/2)ﬁ
[ nmc/l PA

u(x,t)

n=1

2¢2pA n? [

2F 1 t
= > O sin X (—qyn-br2 (1 — cos m;c

n=1,3,5,...

t
/ sinw, (t —t)drt
0

) (E9.8.10)

Thus, the total response of the bar is given by the sum of the two responses given by

Eqgs. (E9.8.9) and (E9.8.10):

2 . NmTX nmwet\ [2f]  Fo
ulx,t) = m Z s1nT(1 — coS 7 >[—+_2

and  n
n=1,3,5,...

(_ 1)(7!—1)/2}

(E9.8.11)
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9.5 RESPONSE OF A BAR SUBJECTED TO LONGITUDINAL
SUPPORT MOTION

Let a prismatic bar be subjected to a support or base motion, u(t) = p(¢) in the axial
direction as shown in Fig. 9.7. The equation of motion for the longitudinal vibration
of the bar can be obtained as

2

9%u(x, 1) 9
pA——=— — EA—[u(x, 1) — up(t)] =0 9.71)
0x

ot?

By defining a new variable v(x, ¢) that denotes the displacement of any point in the
bar relative to the base as

v(x,t) =u(x,t) —up(t) (9.72)

we can write

u 9% N 9%p ©0.73)
arr a2 a2 '

Using Eqgs. (9.72) and (9.73), Eq. (9.71) can be rewritten as

012 9x2 T a2
A comparison of Eq. (9.74) with Eq. (9.10) shows that the term on the right-hand side
of Eq. (9.74) denotes equivalent distributed loading induced by the base motion. By
dividing Eq. (9.74) by pA, we obtain

2 2 2
d°v(x,t) —EAa v(x,t) _ AB p()

3% , 0% 3’p

— = —— 9.75
o2 “ a2 o ©7)
Since Eq. (9.75) is similar to Eq. (9.64), we can find the equation for the ith generalized
coordinate n;(¢) in Eq. (9.49) as

P, 3?p (! .
g o= | Uix)dx, i=12,... (9.76)

The solution of Eq. (9.76) can be expressed, using a Duhamel integral, as

1 1 t 82p )
ni(t) = ——/ Ui(x)dx/ —2(1) sinw;(t —1)dt 9.77)
w;i Jo o 0t

7z

0 /»— ————————————————————————— “+———— > X

> () =p()

I I
!
I I

Figure 9.7 Bar with support motion.
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The total solution for v(x,t) can be obtained by superposing all the normal-mode
responses as

> 1 l ' 2
v(x,t) = — Z Uix) ; Ui (x) dx/o 88 5 (v)sinw;(t — 1)dt (9.78)

o @i
Finally, the longitudinal vibrational motion of the bar can be found from Eq. (9.72) as

ulx,t) =upt) +vix,t) (9.79)

9.6 RAYLEIGH THEORY
9.6.1 Equation of Motion

In this theory, the inertia of the lateral motions by which the cross sections are extended
or contracted in their own planes is considered. But the contribution of shear stiffness to
the strain energy is neglected. An element in the cross section of the bar, located at the
coordinates y and z, undergoes the lateral displacements —vy(du/dx) and —vz(du/0x),
respectively, along the y and z directions, with v denoting Poisson’s ratio [2, 3, 6].
Thus, the displacement field is given by

du(x,t) du(x,t)

u=u(x,t), V= —vy , w=—vz (9.80)
0x 0x

The strain energy of the bar and the work done by the external forces are given by
Egs. (9.6) and (9.8), while the kinetic energy of the bar can be obtained as

L[ ) o (5 ()]
_ %/01 pA (%)2 dx + % /Ol dx /OApdA [(—W:jgt)z + <_”Zaajgt>2}

1! au\? 1! 32u
S Al—) dx+ = 2] d 9.81
2/0" (8t> x+2/0p” p<8x8t> * ©-81)

where I, is the polar moment of the inertia of the cross section, defined by

I, = fA(y2 +z5)dA (9.82)

The application of extended Hamilton’s principle gives

a/rzdz/l Loa(2m 2+1 o (2 : Lpa (22 2+f dx =0
— JE— — —_ = —_— u X =
L e 1277 2PV \oxar ) T 27 ox
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yielding the equation of motion and the boundary conditions as

O (h2r, 2 (a2 4 a2t g (9.84)
- — V _ — — —_— = .
ax PV e ) T ax \Phax ) TP
u 3u !
EA— 2l Sul =0 9.85
( ox TPV ”axaﬂ) “lo ©-85)

Note that Eq. (9.85) is satisfied if the bar is either fixed or free at the ends x = 0 and
x = [. At a fixed end, u = 0 and hence du = 0, while

g1y o 24 g (9.86)
—_— ‘) = .
ax PV oxan

at a free end.

9.6.2 Natural Frequencies and Mode Shapes

For the free axial vibration of a uniform bar, we set f = 0 and Eqgs. (9.84) and (9.85)

reduce to
o B g P (9.87)
v —_— = .
A PYEYS a2 PP%n
u 3u !
EA— 21, —— )su|l =0 9.88
( ox TPV p8x8t2> “lo ©-88)

The natural frequencies of the bar can be determined using a harmonic solution
u(x,t) = U(x)coswt (9.89)
Using Eq. (9.89), Eq. (9.87) can be expressed as

d*U
— + pAw’U =0 (9.90)

2, 2
— 1 EA
(—pv-I,0” + )dx

The solution of the second-order ordinary differential equation, Eq. (9.90) can be writ-
ten as

U(x) = Cjcos px + Cy sin px 9.91)

- pAe? (9.92)
P=\Ea_ pv21,w? '

and C;| and C, are constants to be determined from the boundary conditions of the bar.

where
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Bar with Both Ends Fixed For a bar fixed at both ends,
Ux=0=0 and Ux=1)=0
Equations (9.91) and (9.93) lead to
C;=0
sinpl =0
Equation (9.95) gives the frequencies of vibration:

pl =nm, n=1,2,...

or
n2m? E

2
= > =1,2
O T A2 ninzjAn) 2 "

The mode shape corresponding to the frequency w, is given by
U,(x) =sinnmx, n=1,2,...

It can be seen that the mode shapes [Eq. (9.97)] are identical

(9.93)

(9.94)
(9.95)

Y (9.96)

9.97)

to those given by the

simple theory, whereas the natural frequencies [Eq. (9.96)] are reduced by the factor

- Uzlpnzﬂz 1/2
Al?

compared to those given by the simple theory.

9.7 BISHOP’S THEORY
9.7.1 Equation of Motion

This theory considers the effect not only of the inertia of the lateral motions but also of

the shear stiffness [1, 3, 6]. The displacement field is given by
in the cross section can be obtained as

ou v u Jw

Exy = —, Eyy = — = —V—, &, = —
T ax Y By dx <8z

Eq. (9.80). The strains

u
V—
ax

El

. u n v 9%u . v n ow 0
= —_— — = —V —, = — —_— = ,
w dy  ox Yox? - dz  dy

ou n Jw 9%u
£ = —_— —_— = —V7——
“ dz  Ox “ox2

(9.98)
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The stresses induced in the cross section of the bar can be determined, using the
three-dimensional Hooke’s law, as

Orx I—v v v 0 0 0 Erx
Oyy v 1—v v 0 0 0 Eyy
0, E v v 1—v 0 0 0 ..
= _ 9.99
oo[TTrwa—2n| 0 0 0 52 0 0 [Je,[ @
oy 0 0 0 0 2 0 |]e:
Oz L 0 0 0o o0 o0 L2|lex
Substitution of Eq. (9.98) in Eq. (9.99) results in
3
Oxx E(;)_Z
Oyy
o ! 9.100
= 2 .
Oyxy —vagTZ ( )
Oy, 0
Ozx —VGZ%

The strain energy of the bar can be computed as

1
T = > // V(axxexx + 08y + 028 + OryExy + 028y + 0 8)dV
1! A au\ 2 9%u 9%u\ >
=—| d dA|E(— 0+0+v2Gy* | — 0+12G> (—
] [(8x)+ rosiar (24) vor o (14
1! du '\ 5 02u\’
= — EA| — Gl,| — d 9.101
2/0|: (8x> +v p(8x2> X ( )

The kinetic energy of the bar and the work done by the external forces are given by

Egs. (9.81) and (9.8), respectively. The extended Hamilton’s principle can be expressed
as

2

[5)
5/ (T —7 +W)dt =0 (9.102)
n

By substituting Egs. (9.81), (9.101), and (9.8) for T, w, and W, respectively, in
Eq. (9.102) and simplifying results in the following equation of motion and the asso-
ciated boundary conditions,

32 261 3%u d (204 3u 0 (g 0u N Aazu f
— (v — )= - — — — =
ax2 Pax2) T ax \U PP axarr ) T ax \Fhax ) TP

(9.103)
e 4 2or P20 (o PO (een P4 s (2] <o
— 4 - — — ) | du v — — | =
ox P axer T ax \ U a2 . rox2 ) \ax )|,
9.104)

it can be seen that if an end is rigidly fixed, # = du/dx = 0 and hence u = 6(du/dx) =
0 in Eq. (9.104).
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9.7.2 Natural Frequencies and Mode Shapes
For a uniform bar undergoing free vibration (f = 0), Egs. (9.103) and (9.104) can be

written as
26p B0y B g e P (9.105)
v —_— v —_— —_— _— = .
Paxt PV rexTa T Phaa TP
ou u du ! 0%u au\|
EA— +vpl,—— —v*GIl,— |$§ ’Gl,— )8 — )| =0 (9.106
( ox VP e Y ”ax3> “0+<” o )2 \ax )], =0 ©109)
The natural frequencies of the bar can be found using a harmonic solution:
u(x,t) = U(x) cos wt (9.107)
Substitution of Eq. (9.107) into (9.105) leads to
d*Uu d*U
szIpW + (pv*I,0* — EA)W — pA?*U =0 (9.108)
By assuming the solution of Eq. (9.108) as
U(x) = Ce?™ (9.109)
where C and p are constants, the auxiliary equation can be obtained as
V2GI,p* + (ov?I,0* — EA)p* — pAw® =0 (9.110)
Equation (9.110) is a quadratic equation in p> whose roots are given by
7= (EA — pv*1,0%) £ \/(EA — pv2],01)? + 402G, pAw? Catb  O.I1D)
202G,
where
EA — pv?1,0?
a = A= pyipe” (9.112)
212G,
EA — pv21,0%)2 + 402G, pAw?
po YEA=p2 L") + 402Gl pAw 9.113)

22Gl1,
Since b > a, the roots can be expressed as
pi=-pr=si=va+b, py=-pi=iss=ivb—a (9.114)
Thus, the general solution of Eq. (9.110) can be written as
U(x) = C1e"'" + Cre 1" + C3e™? + Cye (9.115)

where the constants C;, C,, C3, and C4 are to be determined from the boundary
conditions of the bar. Noting that sinh x = %(ex —e ), coshx = %(e" +e¥), sinx =
(1/2i) (e’ — e~*), and cosx = §(e'* + e~™), Eq. (9.115) can be rewritten as

U(x) = Cicoshsix + Cpsinhs;x + C3cossox + Cy sinsrx (9.116)

where Cy, C,, C3, and C4 are constants.
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Bar Fixed Loosely at Both Ends 1f the bar is fixed loosely at both ends, the axial
displacement and shear strain will be zero at each end, so that

U =0 (9.117)
uiy=0 (9.118)
%(0) =0 (9.119)
6;27(2](1) =0 (9.120)
Equations (9.116)—(9.120) lead to
Ci+C3=0 (9.121)
Ci coshsil + Cysinh syl + C3cos syl + Cysinsyl =0 (9.122)
Cis? —C353=0 (9.123)
Cys?coshsil 4 Cas?sinhsil — C3s3 cos syl — Cys3 sinsyl = 0 (9.124)
Equations (9.121) and (9.123) give
Ci=C3=0 (9.125)

and Egs. (9.122) and (9.124) reduce to
Cysinh syl + C4sinspl =0 (9.126)
Cas?sinhsil — Cys3 sinsyl = 0 (9.127)
The condition for a nontrivial solution of C, and C4 in Egs. (9.126) and (9.127) is

sinh s/ sinspl |
s?sinhsil —s3sinsal|

or
sinh s;/sin syl =0 (9.128)
Since sinh 51/ # 0 for nonzero values of 51/, Eq. (9.128) leads to the frequency equation
sinsal =0 (9.129)

The natural frequencies are given by
sol = nm, n=12,... (9.130)

Using Eqgs. (9.114), (9.112), and (9.113) in (9.130), we can express the natural fre-
quencies as (see Problem 9.6)

, n*n’E (A}El2 + UZGIpn2ﬂ2> ©.131)

" pl> \AEI> +Vv2EI,n’n?
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The mode shape corresponding to the frequency w, is given by
U,(x) =sinnmx, n=12,... (9.132)
It can be observed that the mode shapes [Eq. (9.132)] are identical to those given by

the simple theory, whereas the natural frequencies [Eq. (9.131)] are reduced by the
factor

AEP? +2G1nx?\ '
AEI> +v?EI,n?m?

compared to those given by the simple theory.

9.7.3 Forced Vibration Using Modal Analysis

The equation of motion of a prismatic bar in longitudinal vibration, Eq. (9.105), can
be expressed as

Mii+Lu = f (9.133)

where

82
M =pA — vzplp

— 9.134
912 ( )
a* 9?
L=vGl,— — El— 9.135
T 0x2 ¢ )
In modal analysis, the solution is expressed as the sum of natural modes as
o)
(e, t) =Yy Ui(x)ni(t) (9.136)
i=1
so that the equation of motion for the ith normal mode becomes
(MLU; )D1i (1) + (LU () Dni (1) = f (x, 1) (9.137)

By multiplying Eq. (9.137) by U;(x) and integrating from O to /, we obtain
! I !
/ (M[U;(x)DU j(x)n; (1) dx +/ (LIU; ()DUj(x)ni (1) dx = / fx, )U;j(x)dx
0 0 0
(9.138)
In view of the orthogonality relations among natural modes, Eq. (9.138) reduces to

M;n; + Kini = fi, i=12,... (9.139)
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where M; is the generalized mass, K; is the generalized stiffness, and f; is the gener-
alized force in the ith mode, given by

l

M; =/ (MIU;(x)DU; (x) dx (9.140)
0
I

K; :f (LIU; ()] U; (x) dx (9.141)
0
I

fi =f S, DU (x)dx (9.142)
0

The solution of Eq. (9.139) can be expressed, using a Duhamel integral, as

7i(0) . 1 ! . :
n;i(t) = nocosw;t + sin w;t + fi(t)sinw;(t — t)drt, i=1,2,...
o Miw; Jo
(9.143)
where w; is the ith natural frequency given by
K; :
w; = M i=1,2,... (9.144)

and 7;(0) and 71;(0) are the initial values of the generalized displacement n;(t) and
generalized velocity 7;(¢). If ug(x) = u(x, 0) and uo(x) = u(x, 0) are the initial values
specified for longitudinal displacement and velocity, we can express

uo(x) =y Ui(x)n; (0) (9.145)

i=1

uo(x) = Z Ui (x)1 (0) (9.146)
i=1
Multiplying Eqgs. (9.145) and (9.146) by M[U;(x)] and integrating from O to / results
in

I o0
/() uo(x)M[U;(x)] dx = Z/ n; (O U; (X)M[U;(x)] dx (9.147)
i=1 Y0

1 o l
/0 uo()M[U;(x)]dx = Z/O N (O)U;i ())M[U(x)]dx (9.148)
i=1

When the property of orthogonality of normal modes is used, Eqs. (9.147) and (9.148)
yield

/
7 (0) = i/ woMU; () 1dx,  i=1,2,... (9.149)
M; Jo

i

!
7 (0) = i/ HoOMIU; ()] dx,  i=1,2,... (9.150)
M; Jo

i



266 Longitudinal Vibration of Bars

Finally, the total axial motion (displacement) of the bar can be expressed as

- 7i(0) 1
u(x,t) = Z |:17i(0) cosw;t + la)i sin w;t + Mo
i=1

1
/ fi(r)sinw; (t — ‘L’)dl’j| Ui (x)
0
(9.151)
Example 9.9 Determine the steady-state response of a prismatic bar fixed loosely

at both ends when an axial force Fy is suddenly applied at the middle as shown in
Fig. 9.8.

Figure 9.8 Bar supported loosely at ends.

SOLUTION The natural frequencies and normal modes of the bar are given by
Eqgs. (9.131) and (9.132):

i272E AEI> +v*G1,i%m?
= UL (£9.9.1)
pl> AEI> +Vv2EI,i’n?

Ui(x) = sinimx (E9.9.2)

The generalized mass M; and the generalized stiffness K; in mode i can be determined
as

1 1 2
3
M; :/0 (M[U; (x)DU; (x) dx =/0 [(pA — vzplpﬁ) siniﬂx] sinimx dx
l
= (pA + 1;2,01,,1'2712)E (E9.9.3)
l 1 84 32
K; = / (LIU; (x)DHU; (x) dx =/ szIp— — El— | sinimx | sinimx dx
0 0 dx* 0x2
I
= (VGI,i'n* + 1511'2712)5 (E9.9.4)

The applied axial force can be represented as

fx,t) = FoH(t)$ (x — é) (E9.9.5)



9.8 Recent Contributions 267

where H (t) is the Heaviside unit step function and § is the Dirac delta function. The
generalized force in the ith normal mode can be computed as

£) U;(x)dx

! l
fi(®) =/ fx, Ui (x)dx = / FoH (1)é (x -
0 0 2

l il
= FoH(OU, (x = 5) — FoH(t) sin % (E9.9.6)
Thus, the steady-state solution of the ith generalized coordinate is given by the solution
of Eq. (9.139) as

1
M;w;

t
ni(t) = / fi(r)sinw;(t — t)dT, i=1,2,... (E9.9.7)
0

which can be written as

1 t Cinl .
ni(t) = FoH (1) sin - sinw; (t —t)dt
0

M,'a)i
Fosin(iml/2) (! Fosin(iml/2
= M/ H(t)sinw;(t —t)dt = %nz/)(l — cosw;t)
M,'a),' 0 Mia)l.
(E9.9.8)
Thus, the total steady-state response of the bar is given by
[e¢] .
Fysin(iml/2)

u(x,t) = ————— (1 — cos w;t E9.9.9
@.n=> T ) (E9.9.9)

i=1

9.8 RECENT CONTRIBUTIONS

Additional problems of longitudinal vibration, including the determination of the natural
frequencies of nonuniform bars, and free and forced vibration of uniform viscoelastic
and viscoelastically coated bars, are discussed in detail by Rao [3].

A comparative evaluation of the approximate solutions given by discretization
methods such as the finite element and finite difference methods for the free axial
vibration of uniform rods was made by Ramesh and Itku [14]. The solution of the
wave equation, which describes the axial free vibration of uniform rods in terms of
eigenvalues and eigenfunctions, was used as a basis for comparison of the approximate
solutions. It was observed that the frequencies given by the discretization methods were
influenced significantly and the mode shapes were relatively insensitive to the choice
of mass lumping scheme.

Kukla et al. [15] considered the problem of longitudinal vibration of two rods cou-
pled by many translational springs using the Green’s function method. The frequencies
of longitudinal vibration of a uniform rod with a tip mass or spring was considered by
Kohoutek [8]. Raj and Sujith [9] developed closed-form solutions for the free longitu-
dinal vibration of inhomogeneous rods. The longitudinal impulsive response analysis
of variable-cross-section bars was presented by Matsuda et al. [10].

Exact analytical solutions for the longitudinal vibration of bars with a nonuniform
cross section were presented by Li [11] and Kumar and Sujith [12].
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The solutions are found in terms of special functions such as the Bessel and

Neumann as well as trigonometric functions. Simple expressions are given to predict the
natural frequencies of nonuniform bars with various boundary conditions. The equation
of motion of a vibrating Timoshenko column is discussed by Kounadis in Ref. [13].
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9.1 Derive the frequency equation for the longitudinal
vibration of the bar shown in Fig. 9.9.

9.2 Derive the equation of motion for the longitudinal
vibration of a bar by including the damping force that
is proportional to the longitudinal velocity.

9.3 A uniform bar is fixed at one end and free at the
other end. Find the longitudinal vibration response of

the bar subject to the initial conditions u(x, 0) = Upx?
and u(x,0) = 0.

9.4 Consider a uniform bar fixed at one end and
carrying a mass M at the other end. Find the longi-
tudinal vibration response of the bar when its fixed
end is subjected to a harmonic axial motion as shown
in Fig. 9.10.
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Problems

——————— —> X M
A | |
| ! |
Figure 9.9

u(t) = Uy sin Qt
B S ——

/

/ /—A, E, 14

/»— ————————— —> X M

Figure 9.10

9.5 Specialize Eq. (E9.2.10) to the case where the mass
of the bar is negligible compared to the mass attached.
Solve the resulting equation to find the fundamental
frequency of vibration of the bar.

9.6 Derive Eq. (9.131).

9.7 Show that the expressions on either side of the
equality sign in Eq. (9.19) is equal to a negative quantity.

9.8 Derive Egs. (9.10) and (9.11) from Eq. (9.9).

9.9 Derive the frequency equation for the longitudinal
vibration of a uniform bar fixed at x = 0 and attached
to a mass M and spring of stiffness k at x =1 (case 5
of Table 9.1).

9.10 Derive the frequency equation for the longitudinal
vibration of a uniform bar free at x = 0 and attached to
a mass M at x = (case 7 of Table 9.1).

9.11 Derive Egs. (9.84) and (9.85) from Hamil-
ton’s principle.

9.12 Derive Egs. (9.103) and (9.104) from Hamil-
ton’s principle.

9.13 Consider a uniform free—free bar. If the ends x = 0
and x =/ are subjected to the displacements u(0, ) =
Ui and u(l, 1) = Upe'¥, determine the axial motion
of the bar, u(x,1),0 <x <I,t > 0.

9.14 A uniform bar fixed at x = 0 and free at x =1 is
subjected to a distributed axial force f(x, ) = x?sin2z.
Determine the resulting axial motion of the bar.

9.15 The ends of a uniform bar are connected to
two springs as shown in Fig. 9.11. Derive the fre-
quency equation corresponding to the axial vibration of
the bar.

N

Figure 9.11
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9.16 A uniform bar is fixed at x = 0 and is subjected to
a sudden axial force fy (shown in Fig. 9.12) at x = 1.
Find the ensuing axial motion of the bar at x = /.

9.17 A uniform bar of length [, cross-sectional area A,
Young’s modulus E, and mass density p strikes a spring
of stiffness k& with a velocity V as shown in Fig. 9.13.
Find the resulting axial motion of the bar, u(x,1),
measured from the instant the bar strikes the spring.

9.18 A uniform bar of length [, cross-sectional area A,
Young’s modulus E, and mass density p is fixed at
x = 0 and carries a mass M at x =[. The end x = is
subjected to an axial force F (1) = Fj sin 2t as shown in
Fig. 9.14. Determine the steady-state response, u(x,t),
of the bar.

S0

fo

9.19 Find the longitudinal vibration response of a uni-
form bar of length /, fixed at x = 0 and free at x =1,
when the end x = 0 is subjected to an axial harmonic
displacement, u;(¢) = ¢ sin wt where ¢ is a constant and
w is the frequency.

9.20 Find the steady state axial motion of a prismatic
bar of length [/, fixed at x =0, when an axial force
F(t) = Fy acts at the end x =/ using the Laplace
transform approach.

9.21 Derive the orthogonality relationships for a
bar, fixed at x =0, carrying a mass M at x =1.

Figure 9.12

Figure 9.13

F(t) = F sinQt
M | —

Figure 9.14
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Torsional Vibration of Shafts

10.1 INTRODUCTION

Many rotating shafts and axles used for power transmission experience torsional vibra-
tion, particularly when the prime mover is a reciprocating engine. The shafts used
in high-speed machinery, especially those carrying heavy wheels, are subjected to
dynamic torsional forces and vibration. A solid or hollow cylindrical rod of circular
section undergoes torsional displacement or twisting such that each transverse section
remains in its own plane when a torsional moment is applied. In this case the cross
sections of the rod do not experience any motion parallel to the axis of the rod. How-
ever, if the cross section of the rod is not circular, the effect of a twist will be more
involved. In this case the twist will be accompanied by a warping of normal cross
sections. The torsional vibrations of uniform and nonuniform rods with circular cross
section and rods with noncircular section are considered in this chapter. For noncir-
cular sections, the equations of motion are derived using both the Saint-Venant and
Timoshenko—Gere theories. The methods of determining the torsional rigidity of non-
circular rods is presented using the Prandtl stress function and the Prandtl membrane
analogy.

10.2 ELEMENTARY THEORY: EQUATION OF MOTION
10.2.1 Equilibrium Approach

Consider an element of a nonuniform circular shaft between two cross sections at
x and x + dx, as shown in Fig. 10.1(a). Let M,(x,t) denote the torque induced in
the shaft at x and time ¢ and M, (x,t) +dM,(x,t) the torque induced in the shaft at
X 4+ dx and at the same time ¢. If the angular displacement of the cross section at x
is denoted as 6(x, t), the angular displacement of the cross section at x 4+ dx can be
represented as 6(x, ) +d6(x, t). Let the external torque acting on the shaft per unit
length be denoted m,(x, t). The inertia torque acting on the element of the shaft is
given by Iodx(3%0/9t?), where I is the mass polar moment of inertia of the shaft per
unit length. Noting that dM; = (dM,/dx)dx and d6 = (060/dx)dx, Newton’s second
law of motion can be applied to the element of the shaft to obtain the equation of
motion as

M 920
M, + —Ldx ) — M, +m,dx = Iydx— (10.1)
ox o2
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From strength of materials, the relationship between the torque in the shaft and the
angular displacement is given by [1]
00
M, = Glpa (10.2)
where G is the shear modulus and I, = J is the polar moment of inertia of the
cross section of the shaft. Using Eq. (10.2), the equation of motion, Eq. (10.1), can
be expressed as

920 (x, 1)

9 30(x, 1)
Gl,——~ oy (10.3)

— 1) =1
9% 9% )+mt(x )=1Io

10.2.2 Variational Approach

The equation of motion of a nonuniform shaft, using the variational approach, has been
derived in Section 4.11.1. In this section the variational approach is used to derive the
equation of motion and the boundary conditions for a nonuniform shaft with torsional
springs (with stiffnesses k;; and k;») and masses (with mass moments of inertia /;o and
I»p) attached at each end as shown in Fig. 10.1.

The cross sections of the shaft are assumed to remain plane before and after angular
deformation. Since the cross section of the shaft at x undergoes an angular displacement

dx |<—

(@)

m(x,t) dx
M (x,t) 6»
[ AR . %
. M (x,t) + dM (x,1)
/] K
O(x,1)
0(x,1) + dO(x,t)

(b)

Figure 10.1 Torsional vibration of a nonuniform shaft.
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Figure 10.2 Rotation of a point in the cross section of a shaft.

0(x, t) about the center of twist, the shape of the cross section does not change. The
cross section simply rotates about the x axis. A typical point P rotates around the x
axis by a small angle 6 as shown in Fig. 10.2. The displacements of point P parallel
to the y and z axes are given by the projections of the displacement PP’ on oy and oz:

v(y, z) = OP' cosa — OPcos(a — 6)
= OP cosa — OPcosacost — OPsina sin @ (10.4)
w(y,z) = OP'sina — OPsin(a — 0)
= OP’'sina — OPsina cos® + OP cos a sin
Since 6 is small, we can write
sinfd ~ 0, cosf~1
OPcosa >~ OP'cosa =y
OPsina >~ OP'sina =z (10.5)
so that
v(y,z) = —z0, w(y,z) =y0 (10.6)

Thus, the displacement components of the shaft parallel to the three coordinate axes
can be expressed as

ulx,t)=0
v(x,t) =—z0(x,1)
w(x,t) =y0(x,1t) (10.7)
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The strains in the shaft are assumed to be

du v a6
€x}v=5+a=—za

ou Jdw a0
T T T o
Exx =Eyy =87, =&y, =0

and the corresponding stresses are given by

90

Oy = G2y
30

0y, =Gy—
0x

Oxy =0y =0, =0y, =0

The strain energy of the shaft and the torsional springs is given by

1
T = 5 (Oxx&xx + OyyEyy + 07287z + OxyExy + OxzExz + Oyzgyz) dv
\4

+ [5k16%(0, 1) + 3kn6*(L, 1)]

(10.8)

(10.9)

1! 0\ , - L
ZE/XZO // [G (£> O* +2%) |dA dx+[§k”9 (0.0) + 5 kiaf (1,1)}
A

1 a6

I 2
1 1
= — I J— + | = 2 2
2‘/0‘ G P <a > dx |:2k[19 (0, t)+ 2k[20 (l,t)]

where I, = f f (y* + z%)d A. The kinetic energy of the shaft can be expressed as
A
T_1/// du 2+ v 2+
—2J)) P e a1
v
+ lI aQ(Ot)2+11 80(! t)2
2\ 27\ ar

(5) )

1 (! 30\ > 1 30 2
= (=) 4 —Io [ =0, ¢
2/0'("’(&) ’”{2 ‘O(at( )> *

1
W:/ m,0 dx
0

(10.10)

36 2
(E(l’ z)) ] (10.11)

The work done by the external torque m,(x, t) can be represented as

(10.12)
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The application of the generalized Hamilton’s principle yields

5]
5/ (m =T —=W)dt =0
I

5/12 I/IGI 00 2a’ + 1k 6%(0 t)+1k 0%, 1)

: 2 ) P\ 5% X 2tl s 2t2 s
I/Z I 90 2d 11 8'9(0 ) 2+11 89(1 ) ’
2 ), P\ ) T o\ 220\ 5

l
—/ thdx} dt =0 (10.13)
0

or

The variations in Eq. (10.13) can be evaluated using integration by parts to obtain

N 30\ > ! 90\ 9(50
(S/ =Gl,| — dx:/ Gl,| — ( )dx
0 2 ax 0 ax ax

90 Ly 90
= Glpa—59|f) —/ e <G1p8—> 80 dx (10.14)
X 0 0x X

nry 1
5/ [—k,192(0, )+ —klzez(z,t)} dt
b L2 2

5]
= / [k16(0, )80(0, 1) + k201, )86, 1)] dt (10.15)
n
nlq1 ! 90\ >
5/ —/p[ (—) dx | dt
a|12Jo TP e
1 90 5] I t 820
= I, —80| | dx— 1,—80dt) d
[ (o 5] = [ ([ s ar) a
_ /'2 /l 1 2050 ax) ar (10.16)
B 1 0 P pat2 ! '
5/t2 11 a9(0 ) 2+11 89(1 r) ’ dt
: S0\ 5O S0\ 5

f 9260(0, t 9%20(l, t
= —/ [lloyae(o, ) + I ( )89(l,t)] dt (10.17)
|

ot? ot?

Note that integration by parts with respect to time, along with the fact that 66 =0
at t =t and t = fp, has been used in deriving Eqgs. (10.16) and (10.17). By using



276 Torsional Vibration of Shafts

Egs. (10.14)—(10.17) in Eq. (10.13), we obtain

f a6
/ {GI,, —450
i dx

2

l
+ k1108610
0

+ 1 0 959 +k2080) + I 82959

1
}dt
Lol 9 90 920
——(GI1,— I,— — 80dxt dt =0 (10.18
+/r1 {/o[ ax( ”ax>+p”ar2 m] x} 1019

By setting the two expressions under the braces in each term of Eq. (10.18) equal to
zero, we obtain the equation of motion for the torsional vibration of the shaft as
I 00 9 Gl 00 +m(x,1) (10.19)
_— = — — nme(x, .
Y92 " ax U Pox ’
where Ip = pl, is the mass moment of inertia of the shaft per unit length, and the
boundary conditions as

90 920
(-Glpa—i-k[]e—f—l]()ﬁ)ae:o atx:O

30 3%0

Glpa—i—ktz@—i—lzgﬁ 30 =0 atx =/ (10.20)
Each of the equations in (10.20) can be satisfied in two ways but will be satisfied only
one way for any specific end conditions of the shaft. The boundary conditions implied
by Eqgs. (10.20) are as follows. At x = 0, either 6 is specified (so that 66 = 0) or

(Gggg—hﬁ—4m2€>=o (10.21)
dx 02
At x = [, either 6 is specified (so that §6 = 0) or
(G5§€+hﬁ+4m§?>=0 (10.22)
ox 0t?

In the present case, the second conditions stated in each of Eqgs. (10.21) and (10.22)
are valid.

10.3 FREE VIBRATION OF UNIFORM SHAFTS
For a uniform shaft, Eq. (10.19) reduces to

02 020
Glpﬁ(x, t)+m(x,t)= Ioﬁ(x, 1) (10.23)
By setting m,(x, t) = 0, we obtain the free vibration equation
3%0 3%0
2 —
C @ x,t)—ﬁ(x,t) (1024)
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where
c= |— (10.25)
It can be observed that Eqgs. (10.23)—(10.25) are similar to the equations derived in

the cases of transverse vibration of a string and longitudinal vibration of a bar. For a
uniform shaft, /o = p/, and Eq. (10.25) takes the form

G
c= | = (10.26)
)
By assuming the solution as
O(x,t) =0x)T () (10.27)
Eq. (10.24) can be written as two separate equations:
d*e ?
@ Y o) =0 (10.28)
0x2 2
ar -,
o7 + o' T)=0 (10.29)

The solutions of Eqgs. (10.28) and (10.29) can be expressed as

O(x) = Acos 2= 4+ Bsin X (10.30)
C C
T(t) = C coswt + D sin wt (10.31)

where A, B, C, and D are constants. If w, denotes the nth frequency of vibration and
®,(0) the corresponding mode shape, the general free vibration solution of Eq. (10.24)
is given by

0, 1) =Y Ou(O) T, (1)

n=1
oo
wpX . wpX .
= Z <A” cos + B, sin ) (Cp cos wut + Dy, sin wy,t) (10.32)
c c
n=1

The constraints C,, and D,, can be evaluated from the initial conditions, and the con-
straints A, and B, can be determined (not the absolute values, only their relative
values) from the boundary conditions of the shaft. The initial conditions are usually
stated in terms of the initial angular displacement and angular velocity distributions of
the shaft.

10.3.1 Natural Frequencies of a Shaft with Both Ends Fixed

For a uniform circular shaft of length / fixed at both ends, the boundary conditions are
given by

0(0,1) =0 (10.33)
0(,1) =0 (10.34)
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The free vibration solution is given by Eq. (10.27):
wx . WX .
O(x,t) =0@O)T(t) = (A cos — + Bsin —) (C coswt + D sinwt) (10.35)
c c
Equations (10.33) and (10.35) yield
A=0 (10.36)
and the solution can be expressed as
. wx .
O(x,t) = sin —(C’ coswt + D’ sin wt) (10.37)
c

where C’ and D’ are new constants. The use of Eq. (10.34) in (10.37) gives the fre-
quency equation
[
sin 2l =0 (10.38)
c

The natural frequencies of vibration are given by the roots of Eq. (10.38) as

[
w—:nn, n=1,2,
c
or
nic
w"_T’ n=1,2,... (10.39)

The mode shape corresponding to the natural frequency w, can be expressed as

n

©,(x) = B,sin 2 n=1.2,... (10.40)
C

The free vibration solution of the fixed—fixed shaft is given by a linear combination of
its normal modes:
oo
0(x, 1) = Zsin@(c;, c0s Wyt + D, sin wyt) (10.41)

n=1

10.3.2 Natural Frequencies of a Shaft with Both Ends Free

Since the torque, M; = G1,(06/0dx), is zero at a free end, the boundary conditions of
a free—free shaft are given by

a6
a((), H=0 (10.42)

a0
—({,1)=0 (10.43)
ox

In view of Eq. (10.27), Egs. (10.42) and (10.43) can be expressed as

d—®(0) =0 (10.44)
dx

d—®(l) =0 (10.45)
dx
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Equation (10.30) gives

wx . wx
®(x) = Acos — + Bsin — (10.46)
c c
de Aw . wx Bw wx
(x) = ——sin— + —cos — (10.47)
dx c c c c

Equations (10.44) and (10.47) yield
B=0 (10.48)
and Egs. (10.45) and (10.47) result in

sin ™ =0 (10.49)
C

The roots of Eq. (10.49) are given by

G
o= T T 2, (10.50)
l I\ p
The nth normal mode is given by
wpX
®,(x) = A, cos —, n=12,... (10.51)
c

The free vibration solution of the shaft can be expressed as [see Eq. (10.32)]

o0 o0
0x.1) =Y 0,(0)T(1) = Y cos %(Cn coswyt + D, sin wy1) (10.52)

n=1 n=1

where the constants C,, and D, can be determined from the initial conditions of the
shaft.

10.3.3 Natural Frequencies of a Shaft Fixed at One End and Attached to a
Torsional Spring at the Other

For a uniform circular shaft fixed at x = 0 and attached to a torsional spring of stiffness
k, at x = as shown in Fig. 10.3, the boundary conditions are given by

00,1) =0 (10.53)

a6
M, 1) = Glpa(l, 1) =—k6(,1) (10.54)

04— — — — — —>X

L—

I ! |

Figure 10.3 Shaft fixed at x = 0 and a torsional spring attached at x = [.
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The free vibration solution of a shaft is given by Eq. (10.27):
0(x. 1) = OO)T (1) = (A cos 22 4 Bsin %) (Ccoswt + Dsinwt)  (10.55)
c c

The use of the boundary condition of Eq. (10.53) in Eq. (10.55) gives

A=0 (10.56)
and the solution can be expressed as
. WX — - .
0(x,t) = sin —(C coswt + D sin wt) (10.57)
c
The use of the boundary condition of Eq. (10.54) in Eq. (10.57) yields the frequency
equation
wGlI), wl ol
———c0Ss — = —k; sin — (10.58)
c c

Using Eq. (10.26), Eq. (10.58) can be rewritten as

atana = —B (10.59)
where
! 2ol
a= gl (10.60)
c k;

The roots of the frequency equation (10.60) give the natural frequencies of vibration
of the shaft as

anc
Wn == n=12,... (10.61)
and the corresponding mode shapes as
©,(x) = Bysin 25 p=1,2,... (10.62)
c

Finally, the free vibration solution of the shaft can be expressed as

> . WpXx .
O(x.1) =) sin ——(Cycoswnt + Dy sinw,) (10.63)

n=I

Several possible boundary conditions for the torsional vibration of a uniform shaft are
given in Table 10.1 along with the corresponding frequency equations and the mode
shapes.

Example 10.1 Determine the free torsional vibration solution of a uniform shaft car-
rying disks at both the ends as shown in Fig. 10.4.
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I L

| |
| ! |

Figure 10.4 Shaft with disks at both ends, under torsional vibration.

SOLUTION The boundary conditions, with the inertial torques exerted by the disks,
can be expressed as

GJaQ(O =1 829(0 1) (E10.1.1)
ax T et o
Gs% (1) =—1I ik (1) (E10.1.2)
ax T P o
Assuming the solution in the nth mode of vibration as
0,(x,1) = ©,(x)(C, cosw,t + D, sin w,t) (E10.1.3)
where
O (x) = A, cos 2 4 B, sin 2% (E10.1.4)
c c
the boundary conditions of Eqgs. (E10.1.1) and (E10.1.2) can be rewritten as
doe
GJ—(0) = —1,0>®,(0)
dx
or
Wy, 5
ijBn =—-NLw,A, (E10.1.5)
and
doe,
GJ - (1) = Lw?O,(0)
or

I I I I
GI <—A,, sin 22 4 B, cos w—) = L’ (A,, cos 25 + B, sin - ) (E10.1.6)
c c c C C

Equations (E10.1.5) and (E10.1.6) represent a system of two homogeneous algebraic
equations in the two unknown constants A, and B,, which can be rewritten in matrix
form as

Wy,
Lw? GJ—
l l 1 l
W, . o, o, o, .o
GJ—"sin —— + h? cos —  —GJ— cos —— + Lw? sin —
c c c c c c

Ao
'{Bn} _ {0} (E10.1.7)
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The determinant of the coefficient matrix in Eq. (E10.1.7) is set equal to zero for a
nontrivial solution of A, and B, to obtain the frequency equation as

2 GJ wyl 4 . wyl 2 Wy . Wyl a)g wpl
—Iw, — cos + I1 ho, sin — — G°J —5 sin —GJ—Ihcos— =0
c c c c c c
(E10.1.8)
Rearranging the terms, Eq.(E10.1.8) can be expressed as
o? 1 1
—1tana, =, | — + — (E10.1.9)
B1B2 B B
where
l
ay = (E10.1.10)
c
,O.ll ]()
=— = — E10.1.11
B 7 7 ( )
JI
pp=C (E10.1.12)
L I

Thus, the mode shapes or normal functions can be expressed, using Eq. (E10.1.5)
in (E10.1.3), as

O, (x) = A, (cos 25 — % gjp It (E10.1.13)
T

Thus, the complete free vibration solution of the shaft with disks is given by

o0
O(x.1) =Y 0,(x)(Cy cOs yt + D, sin wyt)

n=1

> oUpX Q. OpX .
=E (cos ; —ﬁ—sm ; )(gncoswnt—i—pnsmwnt) (E10.1.14)
1
n=1

where C, and D, denote new constants whose values can be determined from the
initial conditions specified.

Notes
1. If the mass moments of inertia of the disks /; and [, are large compared to the mass

moment of inertia of the shaft Iy, 8; and B, will be small and the frequency equation,
Eq. (E10.1.9), can be written as

aptana, ~ B + B (E10.1.15)

2. If the mass moments of inertia of the disks /; and I, are small compared to the mass
moment of inertia of the shaft Iy, B; and B, will be large and the frequency equation,
Eq. (E10.1.9), can be written as

tan o, ~0 (E10.1.16)
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x=0

Figure 10.5 Shaft attached to a heavy disk and a torsional spring at each end.
Example 10.2 Derive the frequency equation of a uniform shaft attached to a heavy
disk and a torsional spring at each end as shown in Fig. 10.5.

SOLUTION The free vibration of the shaft in the ith mode is given by
0;(x,1) = O;(x)(C; cosw;t + D; sin w;t) (E10.2.1)

where

©;(x) = A; cos ZX 4 B, sin 22 (E10.2.2)
C C

The boundary conditions, considering the resulting torques of the torsional springs and
the inertial torques of the heavy disks, can be stated as

30 326
Glp==(0.0) = [1=5(0,1) + k60, 1) (E10.2.3)
36 326
Using Eq. (E10.2.1), Egs. (E10.2.3) and (E10.2.4) can be expressed as
d®;(0) 2
GI, y = —1w;0,;0) + k;, 0;(0) (E10.2.5)
X
do;(l
GI, dl( ) = Izw,?@i () — ki, ®; (1) (E10.2.6)
X
Equation (E10.2.2) gives
a0 _ A o oix | Bioy o (E10.2.7)
dx c c c
In view of Egs. (E10.2.2) and (E10.2.7), Egs. (E10.2.5) and (E10.2.6) yield
Gl,w;
Ai(ha? — k) + B—L2 =0 (E10.2.8)

1

Sin

Gl,w; il il
A [ P®% in 2 + (Iza)l-2 — k) cos a)_:|
c c

GI,,a)i a)il 2 . a),-l
cos — + (hw; — k) sin =0 (E10.2.9)
c c

+ B; |:—
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For a nontrivial solution of A; and B;, the determinant of the coefficient matrix must
be equal to zero in Egs. (E10.2.8) and (E10.2.9). This gives the desired frequency
equation as

Glyw;
ki, Slp®i

Ila)z—
C

1

Glpoi . wl 2 w;l Glyo; w;l 2 . wil
—L=sin == + (ho; — ki) cos == ——L=cos =& + (Lw; — k;,) sin ==

c C C
(E10.2.10)

Example 10.3 Derive the orthogonality relationships for a shaft in torsional vibration.

SOLUTION

Case (i): Shaft with simple boundary conditions The eigenvalue problem of the
shaft, corresponding to two distinct natural frequencies of vibration w; and w;, can be
expressed as [from Eq. (10.28)]

2

O/ () + Lo;(x) =0 (E10.3.1)
C
2
w?

07 (x) + c—;@)j(x) =0 (E10.3.2)

where a prime denotes a derivative with respect to x. Multiply Eq. (E10.3.1) by ®;(x)
and Eq. (E10.3.2) by ©,(x) and integrate the resulting equations from O to / to obtain

1 w2 (!
/ 0/, dx + _;/ ©0,dx =0 (E10.3.3)
0 ¢ Jo ’
1 0)2 /
[ ejeiax+2 [o0;ar=0 (E10.3.4)
0 ¢ Jo
Integrating the left-hand sides of Eqgs. (E10.3.3) and (E10.3.4) by parts results in
! 2 ol
/ l oY @;j —
Q0| — | 00 di+—L | ©;0;dx=0 (E10.3.5)
i~7 10 0 1] c2 0
! 2 ol
06|l - [ 0ed + 2% [ ©,0,d=0 (E10.3.6)
A (R A rTa o 7 e o

If the ends of the shaft are either fixed (®; = ®; = 0) or free (©; = ®’j = 0), the
first terms of Eqgs. (E10.3.5) and (E10.3.6) will be zero. By subtracting the resulting
Equation (E10.3.6) from (E10.3.5), we obtain

[
(@] — wﬁ)f ©;0;dx =0 (E10.3.7)
0

For distinct eigenvalues, w; # w;, and Eq. (E10.3.7) gives the orthogonality relation
for normal modes of the shaft as

1
/ ©;0;dx =0,i#j (E10.3.8)
0
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In view of Eq. (E10.3.8), Egs. (E10.3.5) and (E10.3.3) give

I
/ ®;0)dx =0, i # ] (E10.3.9)
0

1
/0 O/0;dx =0, i#j (E10.3.10)

Equations (E10.3.8)—(E10.3.10) denote the desired orthogonality relationships for the
torsional vibration of a shaft.
Case (ii): Shaft with disks at both ends The eigenvalue problem of the shaft cor-
responding to two distinct natural frequencies of vibration can be expressed as [from
Eq. (10.28)]
G1,0](x) + w2 1pO;(x) =0 (E10.3.11)
Glp®;~’(x) + w?l()@j(x) =0 (E10.3.12)

Multiplying Eq. (E10.3.11) by ®,(x) and Eq. (E10.3.12) by ®; (x) and integrating over
the length of the shaft, we have

1 l
GI,,/ 0/0;dx = —Ioa)iz/ ©,0;dx (E10.3.13)
0 0

l 1
GI,,/ ®/0;dx = —10w§/ ©;0; dx (E10.3.14)
0 0

The disk located at x = 0 and x = [ must also be considered in developing the orthog-
onality relationship and hence the boundary conditions given by Egs. (E10.2.5) and
(E10.2.6) (without the torsional springs) are written for modes i and j as

GI1,0; = —1w;0;, (E10.3.15)
G1,0) = —1,w;0 (E10.3.16)
GI1,0; = Lw; O, (E10.3.17)
G1,0 = Lwe; (E10.3.18)
where
Q) d®"( 0) Q) d®"( ) (E10.3.19)
.= X = s .= X = .
‘0 dx H dx

Multiply Egs. (E10.3.15)—-(E10.3.19), respectively by ®;,, ©®;,, ®;, and ®,, to obtain

G1,0],0; = —1;0;0; (E10.3.20)
G1,0, 0, = —1,;0;,0 (E10.3.21)
GI1,0,0; = Lw;©,0; (E10.3.22)

GI1,0,0; = L;0,0 (E10.3.23)
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Add Egs. (E10.3.20) and (E10.3.21) to (E10.3.13) and subtract Eqgs. (E10.3.22) and
(E10.3.23) from (E10.3.14) to produce the combined relationships

GI, /Ol 0/0;dx + GI1,0] 0, + GI1,0/, 6
l
= —Iowffo 0,0, dx — 1w} 0,0, — ;0,0 (E10.3.24)
l
GIP/O ®/0;dx — GI,0] 0, —GI1,0/,0,

l
= —lpw? / 00 dx — Lw;©;0; — Lw;0;0; (E10.3.25)
0

Carrying out the integrations on the left-hand sides of Eqs. (E10.3.24) and (E10.3.25)
by parts, we obtain

1
G1,0,0; —Gl, /O ©;0dx +G1,0/, 6;
I
= —Iow,?/ 00 dx — [w; 0,0, — 00,0 (E10.3.26)
0

l
61,0, 0, - GI,,/O 0,0, dx — GI,0,0,

l
= —Iow; /O ©;0;dx — Lw;©;0; — Lw®; 6 (E10.3.27)
Subtract Egs. (E10.3.20) and (E10.3.21) from (E10.3.13) to obtain
l
GIp/O ®/®;dx — GI,0; 0, — GI,0/ 6,
l
= —Ioa)?/ 0,0, dx + 1w} 0,0, + [,w;0;,0, (E10.3.28)
0
Integration on the left-hand side of Eq. (E10.3.28) by parts results in
l
GI1,0,0; —GI,0] 0 — GI,,/O ®;0)dx — GI,0;] 0, — GI,0/ 0
1
= _10w,.2/0 00, dx + 1,0; 0,0, + [,070;,0), (E10.3.29)

Subtraction of Eq. (E10.3.29) from Eq. (E10.3.27) results in
261,(6},0,, ~ ©,0;)

1
= (0} — w§)10/0 ©;0;dx — I|(w] + ])0;y0, — L(w] + ©})0;, 0,
(E10.3.30)
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By using two times the result obtained by subtracting Eq. (E10.3.22) from (E10.3.20)
on the left-hand side of Eq. (E10.3.30), we obtain, after simplification,

l
(a)i2 — co?)(l()/ 0,0;dx+ 10,0, + 10;0;)=0 (E10.3.31)
0
For w; # w;, Eq. (E10.3.31) gives
1
Io/ @[@j dx + 11®,'0®j0 + I2®i1®j1 =0 (E10.3.32)
0

Addition of Egs. (E10.3.13) and (E10.3.20) and subtraction of Eq. (E10.3.22) from the
result yields

1
GI, (/ ®/0;dx + 6] 0 — ®;1®,~1)
0
1
= —w,?(lof ©,0;dx +1,0;0;, + 12®i,®,~1) (E10.3.33)
0
In view of Eq. (E10.3.32), Eq. (E10.3.33) gives
1
GI, (/0 ®/0;dx + 0} 0, — ®;1®,~1) =0 (E10.3.34)

Finally, the addition of Egs. (E10.3.26) and (E10.3.27) gives

1 1
—2611,/0 0,0 dx = —(w? + a)§> (10/0 ©;0;dx + 1,0,0, + 12®i,®j,>
(E10.3.35)

In view of Eq. (E10.3.32), Eq. (E10.3.35) reduces to
I
GIP/ @;@; dx =0 (E10.3.36)
0

Equations (E10.3.32), (E10.3.34) and (E10.3.36) denote the orthogonality relations for
torsional vibration of a uniform shaft with heavy disks at both ends.

104 FREE VIBRATION RESPONSE DUE TO INITIAL
CONDITIONS: MODAL ANALYSIS

The angular displacement of a shaft in torsional vibration can be expressed in terms of
normal modes ®;(x) using the expansion theorem, as

O(x,t) = Z O; (x)n; (1) (10.64)

i=1
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where 7; () is the ith generalized coordinate. Substituting Eq. (10.64) into Eq. (10.24),
we obtain

Y O mi(1) =Y ©;(x)ij; (1) (10.65)

i=1 i=1

where O/ (x) = d?©;(x)/dx? and ij;(t) = d*n;(t)/dt*>. Multiplication of Eq. (10.65)
by ®;(x) and integration from O to / yields

oo 1 oo o0
CZZ/ O/ (x)0;(x)dx ni(r) = Z/ ©: ()0, (x) dx ij; (1) (10.66)
i=1 70 i=1 70

In view of the orthogonality relationships, Eqgs. (E10.3.8) and (E10.3.10), Eq. (10.66)
reduces to

1 [ee)
c? / O/ (x)0; (x) dx 1;(t) = / O (x) dx ij; (1)
0 0

l 1
—w? ( / @%(x)dx> ni(t) = ( / @%(x)dx> i (1) (10.67)
0 0

Equation (10.67) yields

or

W)+ ol =0, i=12... (10.68)

The solution of Eq. (10.68) is given by

n:(t) = My cos i + L2 sin w;t (10.69)
w;i

where n;, = ;(t = 0) and 7;, = 1;(t = 0) denote the initial values of the generalized
coordinate n;(t) and the generalized velocity #; (), respectively.

Initial Conditions If the initial conditions of the shaft are given by

0(x,0) = 6p(x) (10.70)
36 .
—(x,0) =6p(x) (10.71)
ot
Eq. (10.64) gives
Oo(x) =y ©; (¥, (10.72)
i=1

Oo(x) =y ©; ()i, (10.73)
i=1
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By multiplying Egs. (10.72) and (10.73) by ©;(x) and integrating from 0 to [/, we
obtain

i 00 i
/ Oo(x)®;(x)dx = Zn,-of O;x)0;(x)dx = nj, j=12,... (10.74)
0 i=1 0
I 00 i
/ Oo(x)®;(x)dx = Zf;,-of O;(x)0;x)dx =nj, j=12,... (10.75)
0 P 0

in view of the orthogonality of normal modes [Eq. (E10.3.8)]. Using the initial values
of n;(t) and 7;(t), Egs. (10.74) and (10.75), the free vibration response of the shaft
can be determined from Egs. (10.69) and (10.64):

o0 .
O(x,1) = Z ®;(x) <m0 cosw;t + % sin a),-t) (10.76)
i=1 !

Example 10.4 Find the free vibration response of an unrestrained uniform shaft shown
in Fig. 10.6 when it is twisted by an equal and apposite angle ag at the two ends at
t = 0 and then released.

SOLUTION The initial displacement of the shaft can be expressed as
0(x., 0) = 6(x) = ap (2? _ 1) (E10.4.1)

which gives the angular deflections as —ag at x = 0 and ag at x = /. The initial velocity
can be assumed to be zero:

0(x,00=6,=0 (E10.4.2)

The natural frequencies and the mode shapes of the shaft are given by Egs. (10.50)
and (10.51):

i G
o= =12 (E10.4.3)
L'\ p
w; X .
®;(x) = A, cos , i=1,2,... (E10.4.4)
c
The mode shapes are normalized as
l l .
/ @2(x) dx = A / cos? XX gy = 1 (B10.4.5)
0 0 ¢

Figure 10.6 Unrestrained (free—free) shaft.
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which gives

A== (E10.4.6)

and hence

2 .
®;(x) = \Ecos 9r =12 (E10.4.7)
C

The initial values of the generalized displacement and generalized velocity can be
determined using Egs. (10.74) and (10.75) as:

i
Nio =/ Oy (x)O; (x) dx (E10.4.8)
0
! X 2 w; X 2l x w; X
— | a (2— - 1) 2 cos P dx = apy/ = (2— - 1) cos 2% dx (E10.4.9)
0 l l C l 0 l C
4./21
—@, i=1,3,5,...
_ 272 (E10.4.10)
0, i=2,4,6,...
l .
Niy = / Op(x)O; (x)dx =0 (E10.4.11)
0
Thus, the free vibration response of the shaft is given by Eq. (10.76)
8a > imx imct
f(x.)=——5 Y cos - cos —— (E10.4.12)

i=1,3,5,...

10.5 FORCED VIBRATION OF A UNIFORM SHAFT: MODAL
ANALYSIS
The equation of motion of a uniform shaft subjected to distributed external torque,
my(x, t), is given by Eq. (10.23):
3%0 %0
Glpm(x, 1) +m(x,t) = ]OW(X’ 1) (10.77)

The solution of Eq. (10.77) using modal analysis is expressed as

0(x, 1) =Y O, ()M (1) (10.78)

n=1

where ®,(x) is the nth normalized normal mode and 1,(¢) is the nth generalized
coordinate. The normal modes ®,,(x) are determined by solving the eigenvalue problem

/ d*@,(x)

Glpy— 55— + 1@, 0, () = 0 (10.79)
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by applying the boundary conditions of the shaft. By substituting Eq. (10.78) into
(10.77), we obtain

S GLOLN ) +mi(x. 1) = 3 Io@, ()i (1) (10.80)
n=1 n=1
where
1 dz@n(x) . dznn(l)
0,x) = BT M (t) = pre (10.81)

Using Eq. (10.79), Eq. (10.80) can be rewritten as

=Y oy ©,(x) i (1) + m(x, 1) = D Ig©, (x)iin (1) (10.82)

n=1 n=1

Multiplication of Eq. (10.82) by ®,,(x) and integration from O to / result in

o0 I
— Towopna(®) Y ©,(x)O, (x) dx + / m(x, 1), (x) dx
0

n=1
!
= Ioﬁn(t)/ On(x)O (x) dx (10.83)
0
In view of the orthogonality relationships, Eq. (E10.3.8), Eq. (10.83) reduces to

iin () + @20, (1) = Qu(2), n=12,... (10.84)

where the normal modes are assumed to satisfy the normalization condition
!
/ @i(x)dx: 1, n=172,... (10.85)
0

and Q,(t), called the generalized force in nth mode, is given by

1 /
0,(1) = I_/ m;(x, 1)O,(x) dx (10.86)
0Jo
The complete solution of Eq. (10.84) can be expressed as
1 t
Na(t) = A, cosw,t + B, sinw,t + — / O, (0)sinw,(t —t)dT (10.87)
Wn Jo

where the constants A, and B, can be determined from the initial conditions of the
shaft. Thus, the forced vibration response of the shaft [i.e., the solution of Eq. (10.77)],
is given by

o0
1 t
O(x, 1) = E [An cos w,t + B, sinwy,t + o / 0, (t)sinw, (t — r)dr] O, ((x)
n JO

n=1

(10.88)
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The steady-state response of the shaft, without considering the effect of initial condi-
tions, can be obtained from Eq. (10.88), as

ee]

t
o=y ®Z)(x) / 0, (¥)sinw, (t — 1) dt (10.89)
n 0

n=1

Note that if the shaft is unrestrained (free at both ends), the rigid-body displacement,
A(1), is to be added to the solution given by Eq. (10.89). If M, () denotes the torque
applied to the shaft, the rigid-body motion of the shaft, 6(¢), can be determined from
the relation

d*6(r)

I
074

= M,(t) (10.90)

where Iy = pll, denotes the mass moment of inertia of the shaft and d*0(t)/dr*
indicates the acceleration of rigid-body motion.

Example 10.5 Find the steady-state response of a shaft, free at both ends, when
subjected to a torque M, = apt, where ag is a constant at x = /.

SOLUTION The steady-state response of the shaft is given by Eq. (10.89):

ee]

t
EHEDY O () /0 0,(7) sinw, (t — 7)dt (E10.5.1)

,

n=1

where the generalized force Q,(¢) is given by Eq. (10.86):

!
0, = l/ m;(x,1)0,(x)dx (E10.5.2)
Iy Jo

Since the applied torque is concentrated at x =/, m,(x, t) can be represented as
m(x,t) = M;8(x — 1) = aptd(x — 1) (E10.5.3)

where § is the Dirac delta function. Thus,

l
0,(1) = l/ aotd(x — 1O, (x) dx = 20, () (E10.5.4)
Iy 0 Iy

For a free—free shaft, the natural frequencies and mode shapes are given by Egs. (10.50)

and (10.51):
G
= 2T 2, (E10.5.5)
l I\ p

wpX

=
IS
o
=

®,(x) = A, cos , n=12,... (E10.5.6)
c
When ©®, (x) is normalized as
1
/ @2 (x)dx =1 (E10.5.7)
0
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2
A, = \/;, n=12... (E10.5.8)

2
@n(x)z\/;cos?, n=12... (E10.5.9)

The integral in Eq. (E10.5.1) can be evaluated as

we obtain

t 2 t
/ O,(0)sinw,(t —t)dt = ?\/;cosnn / Tsinw,(t —1)drt (E10.5.10)
0 0 0

agn 2 1 .
= —cosnmw |t — — sinwyt (E10.5.11)
Iow, V [ wp

Thus, the steady-state response, given by Eq. (E10.5.1), becomes

o

1 /2 2 1
O(x,t) = E —\/jcos nrE (4o \/jcosnn (t — —sin a)nt) (E10.5.12)
= o l l Tyw, V 1 wp
ad 2ay nwx 1 .
= E ——cos — |t — — sinw,t?
Hyw? [ Wy

o0
2ay niwx 1 .
- > 0s —— (1 — — sinw,t (E10.5.13)

—c
n=13,... How; ! @n

Since the shaft is unrestrained, the rigid-body motion is to be added to Eq. (E10.5.13).
Using M; = apt in Eq. (10.90) and integrating it twice with respect to 7, we obtain
the rigid-body rotation of the shaft as

3

0t) = A (E10.5.14)

Thus, the complete torsional vibration response of the shaft becomes

ap 5 . 2ag 1 nix |
0(t) = —1t" + — —cos— [t — — sinw,t
( ) 6]() lIo Z a),% l ( [OM "
n=2.4,
> 1 nmwx 1
— Z — C0S —— (t - — sina),,t> (E10.5.15)
n=1,3,.. @n ! n

10.6 TORSIONAL VIBRATION OF NONCIRCULAR SHAFTS:
SAINT-VENANT’S THEORY

For a shaft or bar of noncircular cross section subjected to torsion, the cross sections
do not simply rotate with respect to one another as in the case of a circular shaft, but
they are deformed, too. The originally plane cross sections of the shaft do not remain
plane but warp out of their own planes after twisting as shown in Fig. 10.7. Thus, the
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(b)

Figure 10.7 Shaft with rectangular cross section under torsion: (a) before deformation; (b)
after deformation.

points in the cross section undergo an axial displacement. A function ¥ (y, z), known
as the warping function, is used to denote the axial displacement as

u= W(y,z)g—e (10.91)
X

where 06/0x denotes the rate of twist along the shaft, assumed to be a constant. The
other components of displacement in the shaft are given by

v=—z0(x,1) (10.92)
w = yO(x,1) (10.93)
The strains are given by
ad
Exx = % =0 (sincedf/dx is a constant)
v
Eyy = 5 =
Jw
Erz = a_z =0
ou n av oy a0 (10.94)
Ey=—+—=——-2])— .
Y9y ax ay ¢ ox
du  Jdw Iy n a0
& = — —_— = B R
9z ox 0z Y ox
v Jw

=—+—=—60+6=0
€yz 8z+8y +
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The corresponding stresses can be determined as

oy 96
Opx = 0Oyy =0; =0y: =0, 0y =G (@ - Z> P
) 96
=G (4 y) 2 (10.95)
0z dx

The strain energy of the shaft is given by

1
T = 3 (Oxxxx +0yyEyy + 076, + OxyExy + 0xz8x; +0,,8,)dV

\%4
1 Y 2 oy 21 700\?
ST/ (CERTER) (6
A

Defining the torsional rigidity (C) of its noncircular section of the shaft as

_ W (v,
C—K/G|:(ay z)—i—(az—ky)}dA (10.97)

the strain energy of the shaft can be expressed as

11 [00)\?
—— | c(Z) a 10.98
d 2/0 (8x> * (10.98)

Neglecting the inertia due to axial motion, the kinetic energy of the shaft can be
written as in Eq. (10.11). The work done by the applied torque is given by Eq. (10.12).
Hamilton’s principle can be written as

ool 1 B 2oy 2 36\ >
5 —-G||— - — dAY (—) dxd:
/tl /o //2 [(8y Z) +(3z +y> <3X) ’
A
%) 1 1 90 2 h I
—5/ /—,Olp — a’xdt—(S/ /m,edxdt=0 (10.99)
n 0 2 at n 0

The first integral of Eq. (10.99) can be evaluated as

n 1 1 aw 2 81// ) 90 )
5/” /of/EG[(@—Z> +(8—Z+y> (5) dAdxdt
A

_/’1 /O/f (ay—z)—i-(az-i-y) dx 0x &

A
" 90N T(0y  \ oGy (9 . ) Gy

+/t1 /O//G(a> [(@_Z> dy +(3_Z+y>3—z:| dAdxdt

A

(10.100)
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The first integral term on the right-hand side of Eq. (10.100) can be expressed as [see
Eq. (10.97)]

90 8(50) N 90 30
t= GC— )80 + GC—80|, | dt
f 0 ox ox ox

(10.101)

The second integral term on the right-hand side of Eq. (10.100) is set equal to zero
independently:

" 90\ (v AGY) | (Y a(Y)
/n /o//(;(%) [(E‘Z) dy +<8—Z+y> 8—z:| dydzdxdt =0
A
(10.102)

Integrating Eq. (10.102) by parts, we obtain

/UOIG< ) } //ay<_‘z>5‘/’dyd +/(%—z)lwds
// 9z <_+y>5"’dyd”/(%+y>lz5wé dt =0

(10.103)

where & is the bounding curve of the cross section and [, (/;) is the cosine of the angle
between the normal to the bounding curve and the y(z) direction. Equation (10.103)
yields the differential equation for the warping function i as

9? 3?
_1”+_¢ = V2 =0 (10.104)
dy? 972
and the boundary condition on ¥ as
d a
VoV () =0 (10.105)
ay 0z

Physically, Eq. (10.105) represents that the shear stress normal to the boundary must be
zero at every point on the boundary of the cross section of the shaft. When Eq. (10.101)
is combined with the second and third integrals of Eq. (10.99), it leads to the equation
of motion as

9%0(x,1) (Cae(x,r)

ax 0x

=5 =5 ) +my(x, 1) (10.106)

and the boundary conditions on 6 as

00
8—59|0 =0 (10.107)
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10.7 TORSIONAL VIBRATION OF NONCIRCULAR SHAFTS,
INCLUDING AXIAL INERTIA

Love included the inertia due to the axial motion caused by the warping of the cross
section in deriving the equation of motion of a shaft in torsional vibration [4, 10]. In
this case, the kinetic energy of the shaft is given by

S o[y v () e () anes

where
I = 1/1 // ov? (ﬁ>2 dAdx (10.109)
2 Jo dtdx
A
1 2
=y [on(5) ax (10.110)

Note that /; denotes the axial inertia term. The variation associated with /; in Hamil-
ton’s principle leads to

15 15
5/ 11d1=/ s dt
5] 5]
ol 926 9%(80
=/ /p(//lﬂsz> ( )a'xdt
n Jo ardx Jtox
A
SUdA | dxdt 10.111
// (am) /ww g ( )

Iy =/ YidA (10.112)
A

! 2 2
0°60
Iy = d 10.113
0 /0 p(8t3x> X ( )

the integrals in Eq. (10.111) can be evaluated to obtain

3/ Ldt = // @d a’t—i—/ 1/ VoY dAdt
! Y ‘”arax ax v
926 hog 926
80dxdr — — | p1,—— ) 86|. dt
/ /8x8t (’O‘”ata) * /,1 ot (p‘”atax) lo

+/ 19/ U dA dt (10.114)
n A

Denoting
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The first, second, and third terms on the right-hand side of Eq. (10.114) contribute to
the equation of motion, Eq. (10.106), the boundary conditions on 6, Eq. (10.107), and
to the differential equation for v, Eq. (10.104), respectively. The new equations are

given by

where

_+_

_ (% L (o8
“orox \"oxar ) T ax \Tax

3

I 970 86k =0
ax 012 0=

Iy

2 =0
+Ig1ﬂ

oY
—z)I — I, =0
y Z>y+(3z+y)z
L 730\?
Ig=/ G(—) dx
0 ax

10.8 TORSIONAL VIBRATION OF NONCIRCULAR SHAFTS:
TIMOSHENKO-GERE THEORY

(10.115)

(10.116)

(10.117)

(10.118)

(10.119)

In this theory also, the displacement components of a point in the cross section are

assumed to be [4, 11, 17]

a0

u= W(yv Z)a_(x7 t)
X
v=—2z0(x,1)

w = yO(x,t)

(10.120)

(10.121)
(10.122)

where 060 /0x is not assumed to be a constant. The components of strains can be obtained

as

du 320

a =1//(y,z)@
v
_5_
ow
=0

=
v du d a0
wrn (39w
()
dz  0x 0z

v Jw

=4 =—046=0

dz  ady

dx

(10.123)

(10.124)

(10.125)

(10.126)

(10.127)

(10.128)
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The component of stress are given by

o 1 —v v 0 0 0 7 .
a;”; v 1—v v 0 0 0 8;”;
0.z E v v 1 —v 0 0 0 €.
oo d+wd—=2v)| 0 0 o L2 o 0 Exy
Oyz 0 0 0 0 1_22” 0 Eyz
GZX | O 0 O O O 1;2\) ] sz
(10.129)
that is,
E(1 — 2 30
oy = LAV IO g, 070 (10.130)
(1 +v)(1 —2v) dx2 0x2
E 00
Oyy = 0. dd ~ (10.131)

T a+ud—2v)ax2

E 1—2v (3 36 9 36
Oy = L Y A A TR
A+nd—2v) 2 \oy ox 3y ox

oy =0 (10.133)
E 1—2v [0y 20 o 90

= Wi Z o6 (1) Y 0134

= U rnd—2m 2 (8z+y)8x (81+y)8x (10.134)

Note that the effect of Poisson’s ratio is neglected in Egs. (10.130) and (10.131). The
strain energy of the shaft can be determined as

1
T = 5 (Oyx&xx + OyyEyy + 072872 + OxyExy + OxEx; + O—yzgyz) dv
\%4

=1 +1 (10.135)

where

1! 320\’
I = 5/x=o//E(wﬁ> dAdx (10.136)
A
I —1 : G[(%— %]2+G[<%+ )%]2 dAdx (10.137)
2_§/x=0f/ dy Z) dx 0z V) ox o '
A

The variation of the integral I; can be evaluated as

R , (920’
S =6 | = Ev?(22) dAd
: 2/;1 /x—O// v (3x2) )
A
th I 829 2
Z/ f // Evéy (—2) dAdxdi
n x=0 A ax
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820 9%(86
// / Ey’— ( )dAd dt
x=0 ox
/tz /-l // 926 th pl 9260 82(59)
= Ewaw(—) dAdxdt—i—// EI dx dt
0 Jemol, ox> 0 Jemo Vox2 ax2

(10.138)

where

Iy =/ Y2 dA (10.139)
A

When the second term on the right-hand side of Eq. (10.138) is integrated by parts, we
obtain

n pl 829 2 153 329 90 i
81 = Evyé — | dAdxdt El,—6§ —
1 /t‘I /x—O// vov <3x2> ! +/,1 [ Y ox? <8x) ‘0
A

O (51,70 50! /1 " (g1 6 80dx|dt  (10.140)
X .
T oax U Va2 ot ), 32 \Flvae

The variation of the integral I, can be evaluated as indicated in Eqs. (10.100), (10.101)
and (10.103). The expressions for the kinetic energy and the work done by the applied
torque are given by Eqgs. (10.108) and (10.12), respectively, and hence their variations
can be evaluated as indicated earlier. The application of Hamilton’s principle leads to
the equation of motion for 6 (x, ):

PR i d (o090 +32 £ 0N _ -
Pirar " arax \"axar) " ox \Tax ) a2 \TVa2 ) T

(10.141)
and the boundary conditions
Cae +pl 00 9 El 0 86 ! =0 (10.142)
ox P arax ax \U TV ax2 0~ '
3%0 (30 |1
ElL,—é§|— =0 10.143
Vax2 <8x> ‘0 ( )

The differential equation for the warping function ¥y becomes

L 730\? 92 " L/ 3%\ L7920\
fe(5) dx<w+¥)+{/o"(axar) ax= 18 (5z) axfv =0

(10.144)

with the boundary condition on v given by

(%