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Preface

This book covers analytical methods of vibration analysis of continuous structural
systems, including strings, bars, shafts, beams, circular rings and curved beams, mem-
branes, plates, and shells. The propagation of elastic waves in structures and solid
bodies is also introduced. The objectives of the book are (1) to make a methodical and
comprehensive presentation of the vibration of various types of structural elements,
(2) to present the exact analytical and approximate analytical methods of analysis, and
(3) to present the basic concepts in a simple manner with illustrative examples.

Continuous structural elements and systems are encountered in many branches
of engineering, such as aerospace, architectural, chemical, civil, ocean, and mechan-
ical engineering. The design of many structural and mechanical devices and systems
requires an accurate prediction of their vibration and dynamic performance characteris-
tics. The methods presented in the book can be used in these applications. The book is
intended to serve as a textbook for a dual-level or first graduate-level course on vibra-
tions or structural dynamics. More than enough material is included for a one-semester
course. The chapters are made as independent and self-contained as possible so that
a course can be taught by selecting appropriate chapters or through equivalent self-
study. A successful vibration analysis of continuous structural elements and systems
requires a knowledge of mechanics of materials, structural mechanics, ordinary and par-
tial differential equations, matrix methods, variational calculus, and integral equations.
Applications of these techniques are presented throughout. The selection, arrangement,
and presentation of the material has been made based on the lecture notes for a course
taught by the author. The contents of the book permit instructors to emphasize a vari-
ety of topics, such as basic mathematical approaches with simple applications, bars
and beams, beams and plates, or plates and shells. The book will also be useful as a
reference book for practicing engineers, designers, and vibration analysts involved in
the dynamic analysis and design of continuous systems.

Organization of the Book

The book is organized into 17 chapters and two appendixes. The basic concepts and
terminology used in vibration analysis are introduced in Chapter 1. The importance,
origin, and a brief history of vibration of continuous systems are presented. The dif-
ference between discrete and continuous systems, types of excitations, description of
harmonic functions, and basic definitions used in the theory of vibrations and rep-
resentation of periodic functions in terms of Fourier series and the Fourier integral
are discussed. Chapter 2 provides a brief review of the theory and techniques used
in the vibration analysis of discrete systems. Free and forced vibration of single- and
multidegree-of-freedom systems are outlined. The eigenvalue problem and its role in
the modal analysis used in the free and forced vibration analysis of discrete systems
are discussed.

xv
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Various methods of formulating vibration problems associated with continuous
systems are presented in Chapters 3, 4, and 5. The equilibrium approach is presented
in Chapter 3. Use of Newton’s second law of motion and D’Alembert’s principle is
outlined, with application to different types of continuous elements. Use of the varia-
tional approach in deriving equations of motion and associated boundary conditions is
described in Chapter 4. The basic concepts of calculus of variations and their application
to extreme value problems are outlined. The variational methods of solid mechanics,
including the principles of minimum potential energy, minimum complementary energy,
stationary Reissner energy, and Hamilton’s principle, are presented. The use of Hamil-
ton’s principle in the formulation of continuous systems is illustrated with torsional
vibration of a shaft and transverse vibration of a thin beam. The integral equation
approach for the formulation of vibration problems is presented in Chapter 5. A brief
outline of integral equations and their classification, and the derivation of integral
equations, are given together with examples. The solution of integral equations using
iterative, Rayleigh–Ritz, Galerkin, collocation, and numerical integration methods is
also discussed in this chapter.

The common solution procedure based on eigenvalue and modal analyses for the
vibration analysis of continuous systems is outlined in Chapter 6. The orthogonality of
eigenfunctions and the role of the expansion theorem in modal analysis are discussed.
The forced vibration response of viscously damped systems are also considered in this
chapter. Chapter 7 covers the solution of problems of vibration of continuous systems
using integral transform methods. Both Laplace and Fourier transform techniques are
outlined together with illustrative applications.

The transverse vibration of strings is presented in Chapter 8. This problem finds
application in guy wires, electric transmission lines, ropes and belts used in machinery,
and the manufacture of thread. The governing equation is derived using equilibrium
and variational approaches. The traveling-wave solution and separation of variables
solution are outlined. The free and forced vibration of strings are considered in this
chapter. The longitudinal vibration of bars is the topic of Chapter 9. Equations of
motion based on simple theory are derived using the equilibrium approach as well as
Hamilton’s principle. The natural frequencies of vibration are determined for bars with
different end conditions. Free vibration response due to initial excitation and forced
vibration of bars are both presented, as is response using modal analysis. Free and forced
vibration of bars using Rayleigh and Bishop theories are also outlined in Chapter 9.
The torsional vibration of shafts plays an important role in mechanical transmission
of power in prime movers and other high-speed machinery. The torsional vibration
of uniform and nonuniform rods with both circular and noncircular cross sections is
described in Chapter 10. The equations of motion and free and forced vibration of shafts
with circular cross section are discussed using the elementary theory. The Saint-Venant
and Timoshenko–Gere theories are considered in deriving the equations of motion of
shafts with noncircular cross sections. Methods of determining the torsional rigidity of
noncircular shafts are presented using the Prandtl stress function and Prandtl membrane
analogy.

Chapter 11 deals with the transverse vibration of beams. Starting with the equation
of motion based on Euler–Bernoulli or thin beam theory, natural frequencies and
mode shapes of beams with different boundary conditions are determined. The free
vibration response due to initial conditions, forced vibration under fixed and moving
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loads, response under axial loading, rotating beams, continuous beams, and beams on
an elastic foundation are presented using the Euler–Bernoulli theory. The effects of
rotary inertia (Rayleigh theory) and rotary inertia and shear deformation (Timoshenko
theory) on the transverse vibration of beams are also considered. Finally, coupled bend-
ing–torsional vibration of beams is discussed toward the end of Chapter 11. In-plane
flexural and coupled twist-bending vibration of circular rings and curved beams is
considered in Chapter 12. The equations of motion and free vibration solutions are
presented first using a simple theory. Then the effects of rotary inertia and shear defor-
mation are considered. The vibration of rings is important in a study of the vibration
of ring-stiffened shells used in aerospace applications, gears, and stators of electrical
machines.

The transverse vibration of membranes is the topic of Chapter 13. Membranes
find application in drums and microphone condensers. The equation of motion of
membranes is derived using both the equilibrium and variational approaches. The free
and forced vibration of rectangular and circular membranes are both discussed in this
chapter. Chapter 14 covers the transverse vibration of plates. The equation of motion
and the free and forced vibration of both rectangular and circular plates are presented.
The vibration of plates subjected to in-plane forces, plates on elastic foundation, and
plates with variable thickness is also discussed. Finally, the effect of rotary inertia
and shear deformation on the vibration of plates is outlined according to Mindlin’s
theory. The vibration of shells is the topic of Chapter 15. First the theory of surfaces
is presented using shell coordinates. Then the strain–displacement relations according
to Love’s approximations, stress–strain, and force and moment resultants are given.
Then the equations of motion are derived from Hamilton’s principle. The equations of
motion of circular cylindrical shells and their natural frequencies are considered using
Donnel–Mushtari–Vlasov and Love’s theories. Finally, the effect of rotary inertia and
shear deformation on the vibration of shells is considered.

Wave propagation in elastic solids is considered in Chapter 16. The one-
dimensional wave equation and the traveling-wave solution are presented. The wave
motion in strings and wave propagation in a semi-infinite medium, along with reflection
and transmission of waves at fixed and free boundaries, are discussed. The differences
between compressional or P waves and shear or S waves are discussed. The flexural
waves in beams and the propagation of dilatational and distortional waves is considered
in an infinite elastic medium. Rayleigh or surface waves are also discussed. Finally,
Chapter 17 is devoted to the approximate analytical methods useful for vibration
analysis. The computational details of the Rayleigh, Rayleigh–Ritz, assumed modes,
weighted residual, Galerkin, collocation, subdomain collocation, and least squares meth-
ods are presented along with numerical examples. Appendix A presents the basic
equations of elasticity. Laplace and Fourier transform pairs associated with some simple
and commonly used functions are summarized in Appendix B.
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Symbols

a radius of a circular membrane or plate
a, b dimensions of a membrane or plate along the x

and y directions
A cross-sectional area; area of a plate; amplitude
A, B, C, D constants
c velocity of wave propagation; damping constant
c1, c2 damping constants of dampers
[c], [cij ] damping matrix
C torsional rigidity
C1, C2, C3, C4 constants
[d], [dij ] damping matrix
D flexural rigidity of a plate or shell; domain
E Young’s modulus
EA axial stiffness of a bar
EI bending stiffness of a beam
f linear frequency (Hz)
�f vector of forces
f0 uniform load; amplitude of force
f (t), F(t) force
f (x, t) external force per unit length
f (x, y, t) external transverse force per unit area on a

membrane or plate
F0 concentrated force
F(m, n, t) Fourier transform of f (x, y, t)

F (s) Laplace transform of f (t)

F (ω) Fourier transform of f (t)

Fj(t) concentrated force at point �Xj

G shear modulus
GJ torsional rigidity
h thickness of a plate or shell
H(t) Heaviside function
i

√−1
I area moment of inertia of cross section of a

beam; functional
I0 mass polar moment of inertia per unit length
Im, Km modified Bessel functions of order m of the first

and second kind
Ip, J polar moment of inertia of cross section

xix



xx Symbols

Jm, Ym Bessel functions of order m of the first and
second kind

k shear correction factor; spring stiffness
k1, k2 stiffnesses of springs
[k], [kij ] stiffness matrix
l length of a string, bar, shaft or beam
L Laplace transform operator; operator for

stiffness distribution; length of a beam;
Lagrangian

L−1 inverse Laplace transform operator
m mass
m1, m2 masses
[m], [mij] mass matrix
M mass; operator for mass distribution
Mx , My , Mxy moment resultants in a plate or shell
n number of degrees of freedom
Ni(t) generalized force corresponding to ηi(t)

Nx , Ny , Nxy in-plane force resultants in a plate or shell
P tension in a string; tension per unit length in a

membrane; axial force
Qn(t) generalized force corresponding to ηn(t)

Qx , Qy shear force resultants in a plate or shell
r , θ polar coordinates
R radius; Rayleigh’s quotient
s number of concentrated forces
S boundary
t time
T kinetic energy; function of time t

T ∗
max reference kinetic energy

u, v, w displacement components along the x, y, and z

directions
u(x, t) axial displacement
u0(x), u̇0(x) initial values of u(x, t) and u̇(x, t)

U potential energy
Un(x) nth mode of vibration or eigenfunction
v velocity
V domain; volume; shear force
w(x, t) transverse deflection of a string or beam
w(x, y, t) transverse deflection of a membrane or plate
w0(x), ẇ0(x) initial values of w(x, t) and ẇ(x, t)

w0(x, y),
ẇ0(x, y)

initial values of w(x, y, t) and ẇ(x, y, t)

W work done by external forces
W(m, n, t) Fourier transform of w(x, y, t)

Wi(x) ith normal mode shape of a string or beam
Wmn(x, y) mode shape of a membrane or plate
W0(a), Ẇ0(a) Fourier transforms of w0(x) and ẇ0(x)



Symbols xxi

W0(m, n),
Ẇ0(m, n)

Fourier transforms of w0(x, y) and ẇ0(x, y)

W(p, s) Laplace transform of W(x, s)

ẋ time derivative of x(t)

xi(t) displacement of ith mass
�x(t) vector of displacements
�X vector of amplitudes in �x(t)
�X(i) ith eigenvector
[X] modal matrix
α, β curvilinear coordinates
δ variation operator
δ(x − x0) Dirac delta function
δij Kronecker delta
ε, εxx axial strain in a bar or beam
εxx , εyy , εzz, εxy ,

εyz, εzx

components of strain

�ε vector of strains
ηi(t) ith modal or generalized coordinate
ηi(0) = ηi0 initial value of ηi(t)

�η(t) vector of modal or generalized coordinates
θ angular coordinate
λ, λi eigenvalue; ith eigenvalue
ν Poisson’s ratio
π strain energy
π0 strain energy density
πp potential energy
ρ mass density; mass per unit length of a string;

mass per unit area of a membrane
ρ, ρ(θ), ρ(x) radius of curvature of a curved beam
σ , σxx axial stress in a bar or beam
σxx , σyy , σzz,

σxy , σyz, σzx

components of stress

�σ vector of stresses
τ time period
φ, φ0 phase angle
ω frequency of vibration (rad/s); forcing frequency
ωn natural frequency; nth natural frequency
� forcing frequency

∇2 = ∂2

∂x2 + ∂2

∂y2 harmonic or Laplace operator
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Introduction: Basic Concepts
and Terminology

1.1 CONCEPT OF VIBRATION

Any repetitive motion is called vibration or oscillation. The motion of a guitar string,
motion felt by passengers in an automobile traveling over a bumpy road, swaying of
tall buildings due to wind or earthquake, and motion of an airplane in turbulence are
typical examples of vibration. The theory of vibration deals with the study of oscillatory
motion of bodies and the associated forces. The oscillatory motion shown in Fig. 1.1(a)

is called harmonic motion and is denoted as

x(t) = X cos ωt (1.1)

where X is called the amplitude of motion, ω is the frequency of motion, and t is the time.
The motion shown in Fig. 1.1(b) is called periodic motion, and that shown in Fig. 1.1(c)

is called nonperiodic or transient motion. The motion indicated in Fig. 1.1(d) is random
or long-duration nonperiodic vibration.

The phenomenon of vibration involves an alternating interchange of potential
energy to kinetic energy and kinetic energy to potential energy. Hence, any vibrat-
ing system must have a component that stores potential energy and a component that
stores kinetic energy. The components storing potential and kinetic energies are called
a spring or elastic element and a mass or inertia element, respectively. The elastic
element stores potential energy and gives it up to the inertia element as kinetic energy,
and vice versa, in each cycle of motion. The repetitive motion associated with vibra-
tion can be explained through the motion of a mass on a smooth surface, as shown in
Fig. 1.2. The mass is connected to a linear spring and is assumed to be in equilibrium
or rest at position 1. Let the mass m be given an initial displacement to position 2
and released with zero velocity. At position 2, the spring is in a maximum elongated
condition, and hence the potential or strain energy of the spring is a maximum and
the kinetic energy of the mass will be zero since the initial velocity is assumed to be
zero. Because of the tendency of the spring to return to its unstretched condition, there
will be a force that causes the mass m to move to the left. The velocity of the mass
will gradually increase as it moves from position 2 to position 1. At position 1, the
potential energy of the spring is zero because the deformation of the spring is zero.
However, the kinetic energy and hence the velocity of the mass will be maximum at
position 1 because of conservation of energy (assuming no dissipation of energy due
to damping or friction). Since the velocity is maximum at position 1, the mass will
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(c)

0 Time, t

Displacement (or force), x(t)
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0
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2pt = w

2pt = w

Period,

Time, t

Displacement (or force), x(t)

Displacement (or force), x(t)

(b)

0 Time, t

Figure 1.1 Types of displacements (or forces): (a) periodic simple harmonic; (b) periodic,
nonharmonic; (c) nonperiodic, transient; (d ) nonperiodic, random.
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Displacement (or force), x(t)

(d)

0 Time, t

Figure 1.1 (continued )

(a)

m
k

Position 1 (equilibrium)

x(t)

m
k

Position 2
(extreme right)

(b)

m
k

(c)

Position 3
(extreme left)

Figure 1.2 Vibratory motion of a spring–mass system: (a) system in equilibrium (spring unde-
formed); (b) system in extreme right position (spring stretched); (c) system in extreme left
position (spring compressed).

continue to move to the left, but against the resisting force due to compression of
the spring. As the mass moves from position 1 to the left, its velocity will gradually
decrease until it reaches a value of zero at position 3. At position 3 the velocity and
hence the kinetic energy of the mass will be zero and the deflection (compression)
and hence the potential energy of the spring will be maximum. Again, because of the
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tendency of the spring to return to its uncompressed condition, there will be a force
that causes the mass m to move to the right from position 3. The velocity of the mass
will increase gradually as it moves from position 3 to position 1. At position 1, all
of the potential energy of the spring has been converted to the kinetic energy of the
mass, and hence the velocity of the mass will be maximum. Thus, the mass continues
to move to the right against increasing spring resistance until it reaches position 2 with
zero velocity. This completes one cycle of motion of the mass, and the process repeats;
thus, the mass will have oscillatory motion.

The initial excitation to a vibrating system can be in the form of initial displace-
ment and/or initial velocity of the mass element(s). This amounts to imparting potential
and/or kinetic energy to the system. The initial excitation sets the system into oscil-
latory motion, which can be called free vibration. During free vibration, there will
be exchange between potential and kinetic energies. If the system is conservative, the
sum of potential energy and kinetic energy will be a constant at any instant. Thus, the
system continues to vibrate forever, at least in theory. In practice, there will be some
damping or friction due to the surrounding medium (e.g., air), which will cause loss
of some energy during motion. This causes the total energy of the system to diminish
continuously until it reaches a value of zero, at which point the motion stops. If the
system is given only an initial excitation, the resulting oscillatory motion eventually
will come to rest for all practical systems, and hence the initial excitation is called
transient excitation and the resulting motion is called transient motion. If the vibration
of the system is to be maintained in a steady state, an external source must replace
continuously the energy dissipated due to damping.

1.2 IMPORTANCE OF VIBRATION

Any body having mass and elasticity is capable of oscillatory motion. In fact, most
human activities, including hearing, seeing, talking, walking, and breathing, also involve
oscillatory motion. Hearing involves vibration of the eardrum, seeing is associated with
the vibratory motion of light waves, talking requires oscillations of the laryng (tongue),
walking involves oscillatory motion of legs and hands, and breathing is based on the
periodic motion of lungs. In engineering, an understanding of the vibratory behavior of
mechanical and structural systems is important for the safe design, construction, and
operation of a variety of machines and structures.

The failure of most mechanical and structural elements and systems can be associ-
ated with vibration. For example, the blade and disk failures in steam and gas turbines
and structural failures in aircraft are usually associated with vibration and the resulting
fatigue. Vibration in machines leads to rapid wear of parts such as gears and bearings,
loosening of fasteners such as nuts and bolts, poor surface finish during metal cutting,
and excessive noise. Excessive vibration in machines causes not only the failure of
components and systems but also annoyance to humans. For example, imbalance in
diesel engines can cause ground waves powerful enough to create a nuisance in urban
areas. Supersonic aircraft create sonic booms that shatter doors and windows. Several
spectacular failures of bridges, buildings, and dams are associated with wind-induced
vibration, as well as oscillatory ground motion during earthquakes.
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In some engineering applications, vibrations serve a useful purpose. For example,
in vibratory conveyors, sieves, hoppers, compactors, dentist drills, electric toothbrushes,
washing machines, clocks, electric massaging units, pile drivers, vibratory testing
of materials, vibratory finishing processes, and materials processing operations such
as casting and forging, vibration is used to improve the efficiency and quality of
the process.

1.3 ORIGINS AND DEVELOPMENTS IN MECHANICS
AND VIBRATION

The earliest human interest in the study of vibration can be traced to the time when the
first musical instruments, probably whistles or drums, were discovered. Since that time,
people have applied ingenuity and critical investigation to study the phenomenon of
vibration and its relation to sound. Although certain very definite rules were observed
in the art of music, even in ancient times, they can hardly be called science. The ancient
Egyptians used advanced engineering concepts such as the use of dovetailed cramps
and dowels in the stone joints of major structures such as the pyramids during the third
and second millennia b.c.

As far back as 4000 b.c., music was highly developed and well appreciated in
China, India, Japan, and perhaps Egypt [1, 6]. Drawings of stringed instruments such
as harps appeared on the walls of Egyptian tombs as early as 3000 b.c. The British
Museum also has a nanga, a primitive stringed instrument from 155 b.c. The present
system of music is considered to have arisen in ancient Greece.

The scientific method of dealing with nature and the use of logical proofs for
abstract propositions began in the time of Thales of Miletos (640–546 b.c.), who
introduced the term electricity after discovering the electrical properties of yellow
amber. The first person to investigate the scientific basis of musical sounds is considered
to be the Greek mathematician and philosopher Pythagoras (582–507 b.c.). Pythagoras
established the Pythagorean school, the first institute of higher education and scientific
research. Pythagoras conducted experiments on vibrating strings using an apparatus
called the monochord. Pythagoras found that if two strings of identical properties but
different lengths are subject to the same tension, the shorter string produces a higher
note, and in particular, if the length of the shorter string is one-half that of the longer
string, the shorter string produces a note an octave above the other. The concept of
pitch was known by the time of Pythagoras; however, the relation between the pitch and
the frequency of a sounding string was not known at that time. Only in the sixteenth
century, around the time of Galileo, did the relation between pitch and frequency
become understood [2].

Daedalus is considered to have invented the pendulum in the middle of the second
millennium b.c. One initial application of the pendulum as a timing device was made
by Aristophanes (450–388 b.c.). Aristotle wrote a book on sound and music around
350 b.c. and documents his observations in statements such as “the voice is sweeter
than the sound of instruments” and “the sound of the flute is sweeter than that of the
lyre.” Aristotle recognized the vectorial character of forces and introduced the concept
of vectorial addition of forces. In addition, he studied the laws of motion, similar to
those of Newton. Aristoxenus, who was a musician and a student of Aristotle, wrote a
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three-volume book called Elements of Harmony. These books are considered the oldest
books available on the subject of music. Alexander of Afrodisias introduced the ideas
of potential and kinetic energies and the concept of conservation of energy. In about
300 b.c., in addition to his contributions to geometry, Euclid gave a brief description
of music in a treatise called Introduction to Harmonics. However, he did not discuss
the physical nature of sound in the book. Euclid was distinguished for his teaching
ability, and his greatest work, the Elements, has seen numerous editions and remains
one of the most influential books of mathematics of all time. Archimedes (287–212
b.c.) is called by some scholars the father of mathematical physics. He developed the
rules of statics. In his On Floating Bodies, Archimedes developed major rules of fluid
pressure on a variety of shapes and on buoyancy.

China experienced many deadly earthquakes in ancient times. Zhang Heng, a histo-
rian and astronomer of the second century a.d., invented the world’s first seismograph
to measure earthquakes in a.d. 132 [3]. This seismograph was a bronze vessel in the
form of a wine jar, with an arrangement consisting of pendulums surrounded by a
group of eight lever mechanisms pointing in eight directions. Eight dragon figures,
with a bronze ball in the mouth of each, were arranged outside the jar. An earthquake
in any direction would tilt the pendulum in that direction, which would cause the release
of the bronze ball in that direction. This instrument enabled monitoring personnel to
know the direction, time of occurrence, and perhaps, the magnitude of the earthquake.

The foundations of modern philosophy and science were laid during the sixteenth
century; in fact, the seventeenth century is called the century of genius by many.
Galileo (1564–1642) laid the foundations for modern experimental science through his
measurements on a simple pendulum and vibrating strings. During one of his trips to
the church in Pisa, the swinging movements of a lamp caught Galileo’s attention. He
measured the period of the pendulum movements of the lamp with his pulse and was
amazed to find that the time period was not influenced by the amplitude of swings.
Subsequently, Galileo conducted more experiments on the simple pendulum and pub-
lished his findings in Discourses Concerning Two New Sciences in 1638. In this work,
he discussed the relationship between the length and the frequency of vibration of a
simple pendulum, as well as the idea of sympathetic vibrations or resonance [4].

Although the writings of Galileo indicate that he understood the interdependence
of the parameters—length, tension, density and frequency of transverse vibration—of
a string, they did not offer an analytical treatment of the problem. Marinus Mersenne
(1588–1648), a mathematician and theologian from France, described the correct behav-
ior of the vibration of strings in 1636 in his book Harmonicorum Liber. For the first
time, by knowing (measuring) the frequency of vibration of a long string, Mersenne
was able to predict the frequency of vibration of a shorter string having the same den-
sity and tension. He is considered to be the first person to discover the laws of vibrating
strings. The truth was that Galileo was the first person to conduct experimental studies
on vibrating strings; however, publication of his work was prohibited until 1638, by
order of the Inquisitor of Rome. Although Galileo studied the pendulum extensively
and discussed the isochronism of the pendulum, Christian Huygens (1629–1695) was
the person who developed the pendulum clock, the first accurate device developed
for measuring time. He observed deviation from isochronism due to the nonlinear-
ity of the pendulum, and investigated various designs to improve the accuracy of the
pendulum clock.
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The works of Galileo contributed to a substantially increased level of experimen-
tal work among many scientists and paved the way to the establishment of several
professional organizations, such as the Academia Naturae in Naples in 1560, Academia
dei Lincei in Rome in 1606, Royal Society in London in 1662, the French Academy
of Sciences in 1766, and the Berlin Academy of Science in 1770.

The relation between the pitch and frequency of vibration of a taut string was
investigated further by Robert Hooke (1635–1703) and Joseph Sauveur (1653–1716).
The phenomenon of mode shapes during the vibration of stretched strings, involving no
motion at certain points and violent motion at intermediate points, was observed inde-
pendently by Sauveur in France (1653–1716) and John Wallis in England (1616–1703).
Sauveur called points with no motion nodes and points with violent motion, loops. Also,
he observed that vibrations involving nodes and loops had higher frequencies than those
involving no nodes. After observing that the values of the higher frequencies were inte-
gral multiples of the frequency of simple vibration with no nodes, Sauveur termed the
frequency of simple vibration the fundamental frequency and the higher frequencies,
the harmonics. In addition, he found that the vibration of a stretched string can con-
tain several harmonics simultaneously. The phenomenon of beats was also observed
by Sauveur when two organ pipes, having slightly different pitches, were sounded
together. He also tried to compute the frequency of vibration of a taut string from the
measured sag of its middle point. Sauveur introduced the word acoustics for the first
time for the science of sound [7].

Isaac Newton (1642–1727) studied at Trinity College, Cambridge and later became
professor of mathematics at Cambridge and president of the Royal Society of London.
In 1687 he published the most admired scientific treatise of all time, Philosophia Natu-
ralis Principia Mathematica. Although the laws of motion were already known in one
form or other, the development of differential calculus by Newton and Leibnitz made
the laws applicable to a variety of problems in mechanics and physics. Leonhard Euler
(1707–1783) laid the groundwork for the calculus of variations. He popularized the
use of free-body diagrams in mechanics and introduced several notations, including
e = 2.71828 . . ., f (x),

∑
, and i = √−1. In fact, many people believe that the current

techniques of formulating and solving mechanics problems are due more to Euler than
to any other person in the history of mechanics. Using the concept of inertia force,
Jean D’Alembert (1717–1783) reduced the problem of dynamics to a problem in stat-
ics. Joseph Lagrange (1736–1813) developed the variational principles for deriving the
equations of motion and introduced the concept of generalized coordinates. He intro-
duced Lagrange equations as a powerful tool for formulating the equations of motion
for lumped-parameter systems. Charles Coulomb (1736–1806) studied the torsional
oscillations both theoretically and experimentally. In addition, he derived the relation
between electric force and charge.

Claude Louis Marie Henri Navier (1785–1836) presented a rigorous theory for
the bending of plates. In addition, he considered the vibration of solids and presented
the continuum theory of elasticity. In 1882, Augustin Louis Cauchy (1789–1857) pre-
sented a formulation for the mathematical theory of continuum mechanics. William
Hamilton (1805–1865) extended the formulation of Lagrange for dynamics prob-
lems and presented a powerful method (Hamilton’s principle) for the derivation of
equations of motion of continuous systems. Heinrich Hertz (1857–1894) introduced the
terms holonomic and nonholonomic into dynamics around 1894. Jules Henri Poincaré
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(1854–1912) made many contributions to pure and applied mathematics, particularly
to celestial mechanics and electrodynamics. His work on nonlinear vibrations in terms
of the classification of singular points of nonlinear autonomous systems is notable.

1.4 HISTORY OF VIBRATION OF CONTINUOUS SYSTEMS

The precise treatment of the vibration of continuous systems can be associated with
the discovery of the basic law of elasticity by Hooke, the second law of motion by
Newton, and the principles of differential calculus by Leibnitz. Newton’s second law
of motion is used routinely in modern books on vibrations to derive the equations of
motion of a vibrating body.

Strings A theoretical (dynamical) solution of the problem of the vibrating string was
found in 1713 by the English mathematician Brook Taylor (1685–1731), who also pre-
sented the famous Taylor theorem on infinite series. He applied the fluxion approach,
similar to the differential calculus approach developed by Newton and Newton’s sec-
ond law of motion, to an element of a continuous string and found the true value
of the first natural frequency of the string. This value was found to agree with the
experimental values observed by Galileo and Mersenne. The procedure adopted by
Taylor was perfected through the introduction of partial derivatives in the equations
of motion by Daniel Bernoulli, Jean D’Alembert, and Leonhard Euler. The fluxion
method proved too clumsy for use with more complex vibration analysis problems.
With the controversy between Newton and Leibnitz as to the origin of differential cal-
culus, patriotic Englishmen stuck to the cumbersome fluxions while other investigators
in Europe followed the simpler notation afforded by the approach of Leibnitz.

In 1747, D’Alembert derived the partial differential equation, later referred to as the
wave equation, and found the wave travel solution. Although D’Alembert was assisted
by Daniel Bernoulli and Leonhard Euler in this work, he did not give them credit. With
all three claiming credit for the work, the specific contribution of each has remained
controversial.

The possibility of a string vibrating with several of its harmonics present at the same
time (with displacement of any point at any instant being equal to the algebraic sum of
displacements for each harmonic) was observed by Bernoulli in 1747 and proved by
Euler in 1753. This was established through the dynamic equations of Daniel Bernoulli
in his memoir, published by the Berlin Academy in 1755. This characteristic was
referred to as the principle of the coexistence of small oscillations, which is the same as
the principle of superposition in today’s terminology. This principle proved to be very
valuable in the development of the theory of vibrations and led to the possibility of
expressing any arbitrary function (i.e., any initial shape of the string) using an infinite
series of sine and cosine terms. Because of this implication, D’Alembert and Euler
doubted the validity of this principle. However, the validity of this type of expansion
was proved by Fourier (1768–1830) in his Analytical Theory of Heat in 1822.

It is clear that Bernoulli and Euler are to be credited as the originators of the
modal analysis procedure. They should also be considered the originators of the Fourier
expansion method. However, as with many discoveries in the history of science, the
persons credited with the achievement may not deserve it completely. It is often the
person who publishes at the right time who gets the credit.
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The analytical solution of the vibrating string was presented by Joseph Lagrange in
his memoir published by the Turin Academy in 1759. In his study, Lagrange assumed
that the string was made up of a finite number of equally spaced identical mass particles,
and he established the existence of a number of independent frequencies equal to the
number of mass particles. When the number of particles was allowed to be infinite,
the resulting frequencies were found to be the same as the harmonic frequencies of
the stretched string. The method of setting up the differential equation of motion of a
string (called the wave equation), presented in most modern books on vibration theory,
was developed by D’Alembert and described in his memoir published by the Berlin
Academy in 1750.

Bars Chladni in 1787, and Biot in 1816, conducted experiments on the longitudinal
vibration of rods. In 1824, Navier, presented an analytical equation and its solution for
the longitudinal vibration of rods.

Shafts Charles Coulomb did both theoretical and experimental studies in 1784 on the
torsional oscillations of a metal cylinder suspended by a wire [5]. By assuming that the
resulting torque of the twisted wire is proportional to the angle of twist, he derived an
equation of motion for the torsional vibration of a suspended cylinder. By integrating
the equation of motion, he found that the period of oscillation is independent of the
angle of twist. The derivation of the equation of motion for the torsional vibration
of a continuous shaft was attempted by Caughy in an approximate manner in 1827
and given correctly by Poisson in 1829. In fact, Saint-Venant deserves the credit for
deriving the torsional wave equation and finding its solution in 1849.

Beams The equation of motion for the transverse vibration of thin beams was derived
by Daniel Bernoulli in 1735, and the first solutions of the equation for various support
conditions were given by Euler in 1744. Their approach has become known as the
Euler–Bernoulli or thin beam theory. Rayleigh presented a beam theory by including
the effect of rotary inertia. In 1921, Stephen Timoshenko presented an improved theory
of beam vibration, which has become known as the Timoshenko or thick beam theory,
by considering the effects of rotary inertia and shear deformation.

Membranes In 1766, Euler, derived equations for the vibration of rectangular mem-
branes which were correct only for the uniform tension case. He considered the
rectangular membrane instead of the more obvious circular membrane in a drumhead,
because he pictured a rectangular membrane as a superposition of two sets of strings
laid in perpendicular directions. The correct equations for the vibration of rectangular
and circular membranes were derived by Poisson in 1828. Although a solution corre-
sponding to axisymmetric vibration of a circular membrane was given by Poisson, a
nonaxisymmetric solution was presented by Pagani in 1829.

Plates The vibration of plates was also being studied by several investigators at this
time. Based on the success achieved by Euler in studying the vibration of a rectangular
membrane as a superposition of strings, Euler’s student James Bernoulli, the grand-
nephew of the famous mathematician Daniel Bernoulli, attempted in 1788 to derive
an equation for the vibration of a rectangular plate as a gridwork of beams. However,
the resulting equation was not correct. As the torsional resistance of the plate was not
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considered in his equation of motion, only a resemblance, not the real agreement, was
noted between the theoretical and experimental results.

The method of placing sand on a vibrating plate to find its mode shapes and to
observe the various intricate modal patterns was developed by the German scientist
Chladni in 1802. In his experiments, Chladni distributed sand evenly on horizontal
plates. During vibration, he observed regular patterns of modes because of the accu-
mulation of sand along the nodal lines that had no vertical displacement. Napoléon
Bonaparte, who was a trained military engineer, was present when Chladni gave a
demonstration of his experiments on plates at the French Academy in 1809. Napoléon
was so impressed by Chladni’s demonstration that he gave a sum of 3000 francs to the
French Academy to be presented to the first person to give a satisfactory mathemati-
cal theory of the vibration of plates. When the competition was announced, only one
person, Sophie Germain, entered the contest by the closing date of October 1811 [8].
However, an error in the derivation of Germain’s differential equation was noted by
one of the judges, Lagrange. In fact, Lagrange derived the correct form of the differ-
ential equation of plates in 1811. When the academy opened the competition again,
with a new closing date of October 1813, Germain entered the competition again with
a correct form of the differential equation of plates. Since the judges were not satisfied,
due to the lack of physical justification of the assumptions she made in deriving the
equation, she was not awarded the prize. The academy opened the competition again
with a new closing date of October 1815. Again, Germain entered the contest. This
time she was awarded the prize, although the judges were not completely satisfied with
her theory. It was found later that her differential equation for the vibration of plates
was correct but the boundary conditions she presented were wrong. In fact, Kirchhoff,
in 1850, presented the correct boundary conditions for the vibration of plates as well
as the correct solution for a vibrating circular plate.

The great engineer and bridge designer Navier (1785–1836) can be considered
the originator of the modern theory of elasticity. He derived the correct differential
equation for rectangular plates with flexural resistance. He presented an exact method
that transforms the differential equation into an algebraic equation for the solution of
plate and other boundary value problems using trigonometric series. In 1829, Poisson
extended Navier’s method for the lateral vibration of circular plates.

Kirchhoff (1824–1887) who included the effects of both bending and stretching in
his theory of plates published in his book Lectures on Mathematical Physics, is con-
sidered the founder of the extended plate theory. Kirchhoff’s book was translated into
French by Clebsch with numerous valuable comments by Saint-Venant. Love extended
Kirchhoff’s approach to thick plates. In 1915, Timoshenko presented a solution for
circular plates with large deflections. Foppl considered the nonlinear theory of plates
in 1907; however, the final form of the differential equation for the large deflection
of plates was developed by von Kármán in 1910. A more rigorous plate theory that
considers the effects of transverse shear forces was presented by Reissner. A plate the-
ory that includes the effects of both rotatory inertia and transverse shear deformation,
similar to the Timoshenko beam theory, was presented by Mindlin in 1951.

Shells The derivation of an equation for the vibration of shells was attempted by
Sophie Germain, who in 1821 published a simplified equation, with errors, for the
vibration of a cylindrical shell. She assumed that the in-plane displacement of the
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neutral surface of a cylindrical shell was negligible. Her equation can be reduced to
the correct form for a rectangular plate but not for a ring. The correct equation for the
vibration of a ring had been given by Euler in 1766.

Aron, in 1874, derived the general shell equations in curvilinear coordinates, which
were shown to reduce to the plate equation when curvatures were set to zero. The
equations were complicated because no simplifying assumptions were made. Lord
Rayleigh proposed different simplifications for the vibration of shells in 1882 and
considered the neutral surface of the shell either extensional or inextensional. Love, in
1888, derived the equations for the vibration of shells by using simplifying assumptions
similar to those of beams and plates for both in-plane and transverse motions. Love’s
equations can be considered to be most general in unifying the theory of vibration
of continuous structures whose thickness is small compared to other dimensions. The
vibration of shells, with a consideration of rotatory inertia and shear deformation, was
presented by Soedel in 1982.

Approximate Methods Lord Rayleigh published his book on the theory of sound in
1877; it is still considered a classic on the subject of sound and vibration. Notable among
the many contributions of Rayleigh is the method of finding the fundamental frequency
of vibration of a conservative system by making use of the principle of conservation
of energy—now known as Rayleigh’s method. Ritz (1878–1909) extended Rayleigh’s
method for finding approximate solutions of boundary value problems. The method,
which became known as the Rayleigh –Ritz method, can be considered to be a varia-
tional approach. Galerkin (1871–1945) developed a procedure that can be considered
a weighted residual method for the approximate solution of boundary value problems.

Until about 40 years ago, vibration analyses of even the most complex engineer-
ing systems were conducted using simple approximate analytical methods. Continuous
systems were modeled using only a few degrees of freedom. The advent of high-
speed digital computers in the 1950s permitted the use of more degrees of freedom
in modeling engineering systems for the purpose of vibration analysis. Simultaneous
development of the finite element method in the 1960s made it possible to consider
thousands of degrees of freedom to approximate practical problems in a wide spectrum
of areas, including machine design, structural design, vehicle dynamics, and engineering
mechanics. Notable contributions to the theory of the vibration of continuous systems
are summarized in Table 1.1.

1.5 DISCRETE AND CONTINUOUS SYSTEMS

The degrees of freedom of a system are defined by the minimum number of independent
coordinates necessary to describe the positions of all parts of the system at any instant
of time. For example, the spring–mass system shown in Fig. 1.2 is a single-degree-of-
freedom system since a single coordinate, x(t), is sufficient to describe the position of
the mass from its equilibrium position at any instant of time. Similarly, the simple pen-
dulum shown in Fig. 1.3 also denotes a single-degree-of-freedom system. The reason
is that the position of a simple pendulum during motion can be described by using a
single angular coordinate, θ . Although the position of a simple pendulum can be stated
in terms of the Cartesian coordinates x and y, the two coordinates x and y are not inde-
pendent; they are related to one another by the constraint x2 + y2 = l2, where l is the
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Table 1.1 Notable Contributions to the Theory of Vibration of Continuous Systems

Period Scientist Contribution

582–507 b.c. Pythagoras Established the first school of higher education
and scientific research. Conducted
experiments on vibrating strings. Invented
the monochord.

384–322 b.c. Aristotle Wrote a book on acoustics. Studied laws of
motion (similar to those of Newton).
Introduced vectorial addition of forces.

Third century
b.c.

Alexander of
Afrodisias

Kinetic and potential energies. Idea of
conservation of energy.

325–265 b.c. Euclid Prominent mathematician. Published a treatise
called Introduction to Harmonics.

a.d.

1564–1642 Galileo Galilei Experiments on pendulum and vibration of
strings. Wrote the first treatise on modern
dynamics.

1642–1727 Isaac Newton Laws of motion. Differential calculus.
Published the famous Principia
Mathematica.

1653–1716 Joseph Sauveur Introduced the term acoustics. Investigated
harmonics in vibration.

1685–1731 Brook Taylor Theoretical solution of vibrating strings.
Taylor’s theorem.

1700–1782 Daniel Bernoulli Principle of angular momentum. Principle of
superposition.

1707–1783 Leonhard Euler Principle of superposition. Beam theory.
Vibration of membranes. Introduced several
mathematical symbols.

1717–1783 Jean D’Alembert Dynamic equilibrium of bodies in motion.
Inertia force. Wave equation.

1736–1813 Joseph Louis
Lagrange

Analytical solution of vibrating strings.
Lagrange’s equations. Variational calculus.
Introduced the term generalized coordinates.

1736–1806 Charles Coulomb Torsional vibration studies.

1756–1827 E. F. F. Chladni Experimental observation of mode shapes of
plates.

1776–1831 Sophie Germain Vibration of plates.

1785–1836 Claude Louis
Marie Henri
Navier

Bending vibration of plates. Vibration of solids.
Originator of modern theory of elasticity.

1797–1872 Jean Marie
Duhamel

Studied partial differential equations applied to
vibrating strings and vibration of air in
pipes. Duhamel’s integral.

1805–1865 William
Hamilton

Principle of least action. Hamilton’s principle.
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Table 1.1 (continued )

Period Scientist Contribution

1824–1887 Gustav Robert
Kirchhoff

Presented extended theory of plates.
Kirchhoff’s laws of electrical circuits.

1842–1919 John William
Strutt (Lord
Rayleigh)

Energy method. Effect of rotatory inertia. Shell
equations.

1874 H. Aron Shell equations in curvilinear coordinates.

1888 A. E. H. Love Classical theory of thin shells.

1871–1945 Boris Grigorevich
Galerkin

Approximate solution of boundary value
problems with application to elasticity and
vibration.

1878–1909 Walter Ritz Extended Rayleigh’s energy method for
approximate solution of boundary value
problems.

1956 Turner, Clough,
Martin, and
Topp

Finite element method.

x

y

Datum

O

l

q

Figure 1.3 Simple pendulum.

constant length of the pendulum. Thus, the pendulum is a single-degree-of-freedom sys-
tem. The mass–spring–damper systems shown in Fig. 1.4(a) and (b) denote two- and
three-degree-of-freedom systems, respectively, since they have, two and three masses
that change their positions with time during vibration. Thus, a multidegree-of-freedom
system can be considered to be a system consisting of point masses separated by springs
and dampers. The parameters of the system are discrete sets of finite numbers. These
systems are also called lumped-parameter, discrete, or finite-dimensional systems.
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Figure 1.4 (a) Two- and (b) three-degree-of-freedom systems.

On the other hand, in a continuous system, the mass, elasticity (or flexibility), and
damping are distributed throughout the system. During vibration, each of the infinite
number of point masses moves relative to each other point mass in a continuous fash-
ion. These systems are also known as distributed, continuous, or infinite-dimensional
systems. A simple example of a continuous system is the cantilever beam shown in
Fig. 1.5. The beam has an infinite number of mass points, and hence an infinite num-
ber of coordinates are required to specify its deflected shape. The infinite number of
coordinates, in fact, define the elastic deflection curve of the beam. Thus, the cantilever
beam is considered to be a system with an infinite number of degrees of freedom. Most
mechanical and structural systems have members with continuous elasticity and mass
distribution and hence have infinite degrees of freedom.

The choice of modeling a given system as discrete or continuous depends on the
purpose of the analysis and the expected accuracy of the results. The motion of an n-
degree-of-freedom system is governed by a system of n coupled second-order ordinary
differential equations. For a continuous system, the governing equation of motion is
in the form of a partial differential equation. Since the solution of a set of ordinary
differential equations is simple, it is relatively easy to find the response of a discrete
system that is experiencing a specified excitation. On the other hand, solution of a
partial differential equation is more involved, and closed-form solutions are available
for only a few continuous systems that have a simple geometry and simple, boundary
conditions and excitations. However, the closed-form solutions that are available will
often provide insight into the behavior of more complex systems for which closed-form
solutions cannot be found.

For an n-degree-of-freedom system, there will be, at most, n distinct natural fre-
quencies of vibration with a mode shape corresponding to each natural frequency. A
continuous system, on the other hand, will have an infinite number of natural fre-
quencies, with one mode shape corresponding to each natural frequency. A continuous
system can be approximated as a discrete system, and its solution can be obtained
in a simpler manner. For example, the cantilever beam shown in Fig. 1.5(a) can be
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Figure 1.5 Modeling of a cantilever beam as (a) a continuous system, (b) a single-degree-of-
freedom system, and (c) a two-degree-of-freedom system.

approximated as a single degree of freedom by assuming the mass of the beam to
be a concentrated point mass located at the free end of the beam and the continuous
flexibility to be approximated as a simple linear spring as shown in Fig. 1.5(b). The
accuracy of approximation can be improved by using a two-degree-of-freedom model
as shown in Fig. 1.5(c), where the mass and flexibility of the beam are approximated
by two point masses and two linear springs.

1.6 VIBRATION PROBLEMS

Vibration problems may be classified into the following types [9]:
1. Undamped and damped vibration . If there is no loss or dissipation of energy

due to friction or other resistance during vibration of a system, the system is
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said to be undamped. If there is energy loss due to the presence of damping, the
system is called damped. Although system analysis is simpler when neglecting
damping, a consideration of damping becomes extremely important if the system
operates near resonance.

2. Free and forced vibration. If a system vibrates due to an initial disturbance
(with no external force applied after time zero), the system is said to undergo
free vibration. On the other hand, if the system vibrates due to the application
of an external force, the system is said to be under forced vibration.

3. Linear and nonlinear vibration . If all the basic components of a vibrating
system (i.e., the mass, the spring, and the damper) behave linearly, the resulting
vibration is called linear vibration. However, if any of the basic components of
a vibrating system behave nonlinearly, the resulting vibration is called nonlinear
vibration. The equation of motion governing linear vibration will be a linear
differential equation, whereas the equation governing nonlinear vibration will
be a nonlinear differential equation. Most vibratory systems behave nonlinearly
as the amplitudes of vibration increase to large values.

1.7 VIBRATION ANALYSIS

A vibratory system is a dynamic system for which the response (output) depends
on the excitations (inputs) and the characteristics of the system (e.g., mass, stiffness,
and damping) as indicated in Fig. 1.6. The excitation and response of the system are
both time dependent. Vibration analysis of a given system involves determination of
the response for the excitation specified. The analysis usually involves mathematical
modeling, derivation of the governing equations of motion, solution of the equations
of motion, and interpretation of the response results.

The purpose of mathematical modeling is to represent all the important charac-
teristics of a system for the purpose of deriving mathematical equations that govern
the behavior of the system. The mathematical model is usually selected to include
enough details to describe the system in terms of equations that are not too complex.
The mathematical model may be linear or nonlinear, depending on the nature of the
system characteristics. Although linear models permit quick solutions and are simple to
deal with, nonlinear models sometimes reveal certain important behavior of the system
which cannot be predicted using linear models. Thus, a great deal of engineering judg-
ment is required to develop a suitable mathematical model of a vibrating system. If the
mathematical model of the system is linear, the principle of superposition can be used.
This means that if the responses of the system under individual excitations f1(t) and
f2(t) are denoted as x1(t) and x2(t), respectively, the response of the system would be

Excitation,
f (t)
(input)

Response,
x(t)

(output)

System
(mass, stiffness,
and damping)

Figure 1.6 Input–output relationship of a vibratory system.
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x(t) = c1x1(t) + c2x2(t) when subjected to the excitation f (t) = c1f1(t) + c2f2(t),
where c1 and c2 are constants.

Once the mathematical model is selected, the principles of dynamics are used
to derive the equations of motion of the vibrating system. For this, the free-body
diagrams of the masses, indicating all externally applied forces (excitations), reaction
forces, and inertia forces, can be used. Several approaches, such as D’Alembert’s
principle, Newton’s second law of motion, and Hamilton’s principle, can be used to
derive the equations of motion of the system. The equations of motion can be solved
using a variety of techniques to obtain analytical (closed-form) or numerical solutions,
depending on the complexity of the equations involved. The solution of the equations of
motion provides the displacement, velocity, and acceleration responses of the system.
The responses and the results of analysis need to be interpreted with a clear view of
the purpose of the analysis and the possible design implications.

1.8 EXCITATIONS

Several types of excitations or loads can act on a vibrating system. As stated earlier,
the excitation may be in the form of initial displacements and initial velocities that are
produced by imparting potential energy and kinetic energy to the system, respectively.
The response of the system due to initial excitations is called free vibration. For real-
life systems, the vibration caused by initial excitations diminishes to zero eventually
and the initial excitations are known as transient excitations.

In addition to the initial excitations, a vibrating system may be subjected to a
large variety of external forces. The origin of these forces may be environmental,
machine induced, vehicle induced, or blast induced. Typical examples of environmen-
tally induced dynamic forces include wind loads, wave loads, and earthquake loads.
Machine-induced loads are due primarily to imbalance in reciprocating and rotating
machines, engines, and turbines, and are usually periodic in nature. Vehicle-induced
loads are those induced on highway and railway bridges from speeding trucks and
trains crossing them. In some cases, dynamic forces are induced on bodies and equip-
ment located inside vehicles due to the motion of the vehicles. For example, sensitive
navigational equipment mounted inside the cockpit of an aircraft may be subjected
to dynamic loads induced by takeoff, landing, or in-flight turbulence. Blast-induced
loads include those generated by explosive devices during blast operations, accidental
chemical explosions, or terrorist bombings.

The nature of some of the dynamic loads originating from different sources is
shown in Fig. 1.1. In the case of rotating machines with imbalance, the induced loads
will be harmonic, as shown in Fig. 1.1(a). In other types of machines, the loads induced
due to the unbalance will be periodic, as shown in Fig. 1.1(b). A blast load acting on a
vibrating structure is usually in the form of an overpressure, as shown in Fig. 1.1(c). The
blast overpressure will cause severe damage to structures located close to the explosion.
On the other hand, a large explosion due to underground detonation may even affect
structures located far away from the explosion. Earthquake-, wave-, and wind-, gust-,
or turbulence-, induced loads will be random in nature, as indicated in Fig. 1.1(d ).

It can be seen that harmonic force is the simplest type of force to which a vibrating
system can be subjected. The harmonic force also plays a very important role in the
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study of vibrations. For example, any periodic force can be represented as an infinite
sum of harmonic forces using Fourier series. In addition, any nonperiodic force can be
represented (by considering its period to be approaching infinity) in terms of harmonic
forces using the Fourier integral. Because of their importance in vibration analysis, a
detailed discussion of harmonic functions is given in the following section.

1.9 HARMONIC FUNCTIONS

In most practical applications, harmonic time dependence is considered to be same as
sinusoidal vibration. For example, the harmonic variations of alternating current and
electromagnetic waves are represented by sinusoidal functions. As an application in
the area of mechanical systems, the motion of point S in the action of the Scotch yoke
mechanism shown in Fig. 1.7 is simple harmonic. In this system, a crank of radius
A rotates about point O. It can be seen that the amplitude is the maximum value of
x(t) from the zero value, either positively or negatively, so that A = max |x(t)|. The
frequency is related to the period τ , which is the time interval over which x(t) repeats
such that x(t + τ) = x(t).

The other end of the crank (P ) slides in the slot of the rod that reciprocates in the
guide G. When the crank rotates at the angular velocity ω, endpoint S of the slotted
link is displaced from its original position. The displacement of endpoint S in time t

is given by

x = A sin θ = A sin ωt (1.2)

and is shown graphically in Fig. 1.7. The velocity and acceleration of point S at time
t are given by

dx

d t
= ωA cos ωt (1.3)

d2x

d t2
= −ω2A sin ωt = −ω2 x (1.4)

Equation (1.4) indicates that the acceleration of point S is directly proportional to the
displacement. Such motion, in which the acceleration is proportional to the displacement
and is directed toward the mean position, is called simple harmonic motion. According
to this definition, motion given by x = A cos ωt will also be simple harmonic.

1.9.1 Representation of Harmonic Motion

Harmonic motion can be represented by means of a vector �OP of magnitude A rotating
at a constant angular velocity ω, as shown in Fig. 1.8. It can be observed that the
projection of the tip of the vector �X = �OP on the vertical axis is given by

y = A sin ωt (1.5)

and its projection on the horizontal axis by

x = A cos ωt (1.6)
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Figure 1.7 Simple harmonic motion produced by a Scotch yoke mechanism.

Equations (1.5) and (1.6) both represent simple harmonic motion. In the vectorial
method of representing harmonic motion, two equations, Eqs. (1.5) and (1.6), are
required to describe the vertical and horizontal components. Harmonic motion can
be represented more conveniently using complex numbers. Any vector �X can be rep-
resented as a complex number in the xy plane as

�X = a + ib (1.7)

where i = √−1 and a and b denote the x and y components of �X, respectively, and
can be considered as the real and imaginary parts of the vector �X. The vector �X can
also be expressed as

�X = A(cos θ + i sin θ) (1.8)
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Figure 1.8 Harmonic motion: projection of a rotating vector.

where

A = (a2 + b2)1/2 (1.9)

denotes the modulus or magnitude of the vector �X and

θ = tan−1 b

a
(1.10)

indicates the argument or the angle between the vector and the x axis. Noting that

cos θ + i sin θ = eiθ (1.11)

Eq. (1.8) can be expressed as

�X = A(cos θ + i sin θ) = Aeiθ (1.12)

Thus, the rotating vector �X of Fig. 1.8 can be written, using complex number repre-
sentation, as

�X = Aeiωt (1.13)

where ω denotes the circular frequency (rad/sec) of rotation of the vector �X in
the counterclockwise direction. The harmonic motion given by Eq. (1.13) can be
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differentiated with respect to time as

d �X
d t

= d

d t
(Aeiωt ) = iωAeiωt = iω �X (1.14)

d2 �X
dt2

= d

d t
(iωAeiωt ) = −ω2Aeiωt = −ω2 �X (1.15)

Thus, if �X denotes harmonic motion, the displacement, velocity, and acceleration can
be expressed as

x(t) = displacement = Re[Aeiωt ] = A cos ωt (1.16)

ẋ(t) = velocity = Re[iωAeiωt ] = −ωA sin ωt = ωA cos(ωt + 90◦
) (1.17)

ẍ(t) = acceleration = Re[−ω2Aeiωt ] = −ω2A cos ωt = ω2A cos(ωt + 180◦
) (1.18)

where Re denotes the real part, or alternatively as

x(t) = displacement = Im[Aeiωt ] = A sin ωt (1.19)

ẋ(t) = velocity = Im[iωAeiωt ] = ωA cos ωt = ωA sin(ωt + 90◦
) (1.20)

ẍ(t) = acceleration = Im[−ω2Aeiωt ] = −ω2A sin ωt = ω2A sin(ωt + 180◦
) (1.21)

where Im denotes the imaginary part. Eqs. (1.16)–(1.21) are shown as rotating vectors
in Fig. 1.9. It can be seen that the acceleration vector leads the velocity vector by 90◦,
and the velocity vector leads the displacement vector by 90◦.

1.9.2 Definitions and Terminology

Several definitions and terminology are used to describe harmonic motion and other
periodic functions. The motion of a vibrating body from its undisturbed or equilibrium
position to its extreme position in one direction, then to the equilibrium position, then
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Figure 1.9 Displacement (x), velocity (ẋ), and acceleration (ẍ) as rotating vectors.
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to its extreme position in the other direction, and then back to the equilibrium position
is called a cycle of vibration. One rotation or an angular displacement of 2π radians of
pin P in the Scotch yoke mechanism of Fig. 1.7 or the vector �OP in Fig. 1.8 represents
a cycle.

The amplitude of vibration denotes the maximum displacement of a vibrating body
from its equilibrium position. The amplitude of vibration is shown as A in Figs. 1.7
and 1.8. The period of oscillation represents the time taken by the vibrating body to
complete one cycle of motion. The period of oscillation is also known as the time
period and is denoted by τ . In Fig. 1.8, the time period is equal to the time taken by
the vector �OP to rotate through an angle of 2π . This yields

τ = 2π

ω
(1.22)

where ω is called the circular frequency. The frequency of oscillation or linear fre-
quency (or simply the frequency) indicates the number of cycles per unit time. The
frequency can be represented as

f = 1

τ
= ω

2π
(1.23)

Note that ω is called the circular frequency and is measured in radians per second,
whereas f is called the linear frequency and is measured in cycles per second (hertz). If
the sine wave is not zero at time zero (i.e., at the instant we start measuring time), as
shown in Fig. 1.10, it can be denoted as

y = A sin(ωt + φ) (1.24)

where ωt + φ is called the phase of the motion and φ the phase angle or initial phase.
Next, consider two harmonic motions denoted by

y1 = A1 sin ωt (1.25)

y2 = A2 sin(ωt + φ) (1.26)

wt
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A

A

y(t)

A sin (wt + f)

t = 0
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O
wt

Figure 1.10 Significance of the phase angle φ.
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Since the two vibratory motions given by Eqs. (1.25) and (1.26) have the same fre-
quency ω, they are said to be synchronous motions. Two synchronous oscillations can
have different amplitudes, and they can attain their maximum values at different times,
separated by the time t = φ/ω, where φ is called the phase angle or phase difference.
If a system (a single-degree-of-freedom system), after an initial disturbance, is left to
vibrate on its own, the frequency with which it oscillates without external forces is
known as its natural frequency of vibration. A discrete system having n degrees of
freedom will have, in general, n distinct natural frequencies of vibration. A continuous
system will have an infinite number of natural frequencies of vibration.

As indicated earlier, several harmonic motions can be combined to find the resulting
motion. When two harmonic motions with frequencies close to one another are added
or subtracted, the resulting motion exhibits a phenomenon known as beats. To see the
phenomenon of beats, consider the difference of the motions given by

x1(t) = X sin ω1t ≡ X sin ωt (1.27)

x2(t) = X sin ω2t ≡ X sin(ω − δ)t (1.28)

where δ is a small quantity. The difference of the two motions can be denoted as

x(t) = x1(t) − x2(t) = X[sin ωt − sin(ω − δ)t] (1.29)

Noting the relationship

sin A − sin B = 2 sin
A − B

2
cos

A + B

2
(1.30)

the resulting motion x(t) can be represented as

x(t) = 2X sin
δt

2
cos

(
ω − δ

2

)
t (1.31)

The graph of x(t) given by Eq. (1.31) is shown in Fig. 1.11. It can be observed that
the motion, x(t), denotes a cosine wave with frequency (ω1 + ω2)/2 = ω − δ/2, which
is approximately equal to ω, and with a slowly varying amplitude of

2X sin
ω1 − ω2

2
t = 2X sin

δt

2

Whenever the amplitude reaches a maximum, it is called a beat. The frequency δ at
which the amplitude builds up and dies down between 0 and 2X is known as the
beat frequency. The phenomenon of beats is often observed in machines, structures,
and electric power houses. For example, in machines and structures, the beating phe-
nomenon occurs when the forcing frequency is close to one of the natural frequencies
of the system.

Example 1.1 Find the difference of the following harmonic functions and plot the
resulting function for A = 3 and ω = 40 rad/s: x1(t) = A sin ωt , x2(t) = A sin 0.95ωt .

SOLUTION The resulting function can be expressed as

x(t) = x1(t) − x2(t) = A sin ωt − A sin 0.95ωt

= 2A sin 0.025ωt cos 0.975ωt (E1.1.1)
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Figure 1.11 Beating phenomenon.

The plot of the function x(t) is shown in Fig. 1.11. It can be seen that the function
exhibits the phenomenon of beats with a beat frequency of ωb = 1.00ω − 0.95ω =
0.05ω = 2 rad/s.

1.10 PERIODIC FUNCTIONS AND FOURIER SERIES

Although harmonic motion is the simplest to handle, the motion of many vibratory sys-
tems is not harmonic. However, in many cases the vibrations are periodic, as indicated,
for example, in Fig. 1.1(b). Any periodic function of time can be represented as an
infinite sum of sine and cosine terms using Fourier series. The process of representing
a periodic function as a sum of harmonic functions (i.e., sine and cosine functions)
is called harmonic analysis. The use of Fourier series as a means of describing peri-
odic motion and/or periodic excitation is important in the study of vibration. Also, a
familiarity with Fourier series helps in understanding the significance of experimentally
determined frequency spectrums. If x(t) is a periodic function with period τ , its Fourier
series representation is given by

x(t) = a0

2
+ a1 cos ωt + a2 cos 2ωt + · · · + b1 sin ωt + b2 sin 2ωt + · · ·

= a0

2
+

∞∑
n=1

(an cos nωt + bn sin nωt) (1.32)

where ω = 2π/τ is called the fundamental frequency and a0, a1, a2, . . . , b1, b2, . . . are
constant coefficients. To determine the coefficients an and bn, we multiply Eq. (1.32)
by cos nωt and sin nωt , respectively, and integrate over one period τ = 2π/ω: for
example, from 0 to 2π/ω. This leads to

a0 = ω

π

∫ 2π/ω

0
x(t) d t = 2

τ

∫ τ

0
x(t) d t (1.33)

an = ω

π

∫ 2π/ω

0
x(t) cos nωt d t = 2

τ

∫ τ

0
x(t) cos nωt d t (1.34)

bn = ω

π

∫ 2π/ω

0
x(t) sin nωt d t = 2

τ

∫ τ

0
x(t) sin nωt d t (1.35)
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Equation (1.32) shows that any periodic function can be represented as a sum of
harmonic functions. Although the series in Eq. (1.32) is an infinite sum, we can approx-
imate most periodic functions with the help of only a first few harmonic functions.

Fourier series can also be represented by the sum of sine terms only or cosine
terms only. For example, any periodic function x(t) can be expressed using cosine
terms only as

x(t) = d0 + d1 cos(ωt − φ1) + d2 cos(2ωt − φ2) + · · · (1.36)

where

d0 = a0

2
(1.37)

dn = (a2
n + b2

n)
1/2 (1.38)

φn = tan−1 bn

an

(1.39)

The Fourier series, Eq. (1.32), can also be represented in terms of complex numbers as

x(t) = ei(0)ωt

(
a0

2
− ib0

2

)

+
∞∑

n=1

[
einωt

(
an

2
− ibn

2

)
+ e−inωt

(
an

2
+ ibn

2

)]
(1.40)

where b0 = 0. By defining the complex Fourier coefficients cn and c−n as

cn = an − ibn

2
(1.41)

c−n = an + ibn

2
(1.42)

Eq. (1.40) can be expressed as

x(t) =
∞∑

n=−∞
cne

inωt (1.43)

The Fourier coefficients cn can be determined, using Eqs. (1.33)–(1.35), as

cn = an − ibn

2
= 1

τ

∫ τ

0
x(t)(cos nωt − i sin nωt) d t

= 1

τ

∫ τ

0
x(t)e−inωt d t (1.44)

The harmonic functions an cos nωt or bn sin nωt in Eq. (1.32) are called the harmonics
of order n of the periodic function x(t). A harmonic of order n has a period τ/n. These
harmonics can be plotted as vertical lines on a diagram of amplitude (an and bn or dn

and φn) versus frequency (nω), called the frequency spectrum or spectral diagram.
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Figure 1.12 Typical periodic function.

1.11 NONPERIODIC FUNCTIONS AND FOURIER INTEGRALS

As shown in Eqs. (1.32), (1.36), and (1.43), any periodic function can be represented
by a Fourier series. If the period τ of a periodic function increases indefinitely, the
function x(t) becomes nonperiodic. In such a case, the Fourier integral representation
can be used as indicated below.

Let the typical periodic function shown in Fig. 1.12 be represented by a complex
Fourier series as

x(t) =
∞∑

n=−∞
cne

inωt , ω = 2π

τ
(1.45)

where

cn = 1

τ

∫ τ/2

−τ/2
x(t)e−inωt d t (1.46)

Introducing the relations

nω = ωn (1.47)

(n + 1)ω − nω = ω = 2 π

τ
= �ωn (1.48)

Eqs. (1.45) and (1.46) can be expressed as

x(t) =
∞∑

n=−∞

1

τ
(τcn)e

iωnt = 1

2 π

∞∑
n=−∞

(τcn)e
iωnt�ωn (1.49)

τ cn =
∫ τ/2

−τ/2
x(t)e−iωnt d t (1.50)
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As τ → ∞, we drop the subscript n on ω, replace the summation by integration, and
write Eqs. (1.49) and (1.50) as

x(t) = lim
τ→∞

�ωn→0

1

2 π

∞∑
n=−∞

(τcn)e
iωnt�ωn = 1

2 π

∫ ∞

−∞
X(ω)eiωt dω (1.51)

X(ω) = lim
τ→∞

�ωn→0

(τcn) =
∫ ∞

−∞
x(t)e−iωt d t (1.52)

Equation (1.51) denotes the Fourier integral representation of x(t) and Eq. (1.52) is
called the Fourier transform of x(t). Together, Eqs. (1.51) and (1.52) denote a Fourier
transform pair. If x(t) denotes excitation, the function X(ω) can be considered as the
spectral density of excitation with X(ω) dω denoting the contribution of the harmonics
in the frequency range ω to ω + dω to the excitation x(t).

Example 1.2 Consider the nonperiodic rectangular pulse load f (t), with magnitude
f0 and duration s, shown in Fig. 1.13(a). Determine its Fourier transform and plot the
amplitude spectrum for f0 = 200 lb, s = 1 sec, and t0 = 4 sec.

SOLUTION The load can be represented in the time domain as

f (t) =
{
f0, t0 < t < t0 + s

0, t0 > t > t0 + s
(E1.2.1)

The Fourier transform of f (t) is given by, using Eq. (1.52),

F(ω) =
∫ ∞

−∞
f (t)e−iωt d t =

∫ t0+s

t0

f0e
−iωt d t

= f0
i

ω
(e−iω(t0+s) − e−iωt0)

= f0

ω
{[sin ω(t0 + s) − sin ωt0] + i[cos ω(t0 + s) − cos ωt0]} (E1.2.2)

The amplitude spectrum is the modulus of F(ω):

|F(ω)| = |F(ω)F ∗(ω)|1/2 (E1.2.3)

where F ∗(ω) is the complex conjugate of F(ω):

F ∗(ω) = f0

ω
{[sin ω(t0 + s) − sin ωt0]−i[cos(ωt0 + s) − cos ωt0]} (E1.2.4)

By substituting Eqs. (E1.2.2) and (E1.2.4) into Eq. (E1.2.3), we can obtain the ampli-
tude spectrum as

|F(ω)| = f0

|ω| (2 − 2 cos ωs)1/2 (E1.2.5)

or
|F(ω)|

f0
= 1

|ω| (2 − 2 cos ω)1/2 (E1.2.6)

The plot of Eq. (E1.2.6) is shown in Fig. 1.13(b).
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Figure 1.13 Fourier transform of a nonperiodic function: (a) rectangular pulse; (b) amplitude
spectrum.
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1.12 LITERATURE ON VIBRATION OF CONTINUOUS SYSTEMS

Several textbooks, monographs, handbooks, encyclopedia, vibration standards, books
dealing with computer programs for vibration analysis, vibration formulas, and spe-
cialized topics as well as journals and periodicals are available in the general area
of vibration of continuous systems. Among the large number of textbooks written
on the subject of vibrations, the books by Magrab [10], Fryba [11], Nowacki [12],
Meirovitch [13], and Clark [14] are devoted specifically to the vibration of continuous
systems. Monographs by Leissa on the vibration of plates and shells [15, 16] summa-
rize the results available in the literature on these topics. A handbook edited by Harris
and Piersol [17] gives a comprehensive survey of all aspects of vibration and shock. A
handbook on viscoelastic damping [18] describes the damping characteristics of poly-
meric materials, including rubber, adhesives, and plastics, in the context of design of
machines and structures. An encyclopedia edited by Braun et al. [19] presents the cur-
rent state of knowledge in areas covering all aspects of vibration along with references
for further reading.

Pretlove [20], gives some computer programs in BASIC for simple analyses, and
Rao [9] gives computer programs in Matlab, C++, and Fortran for the vibration analy-
sis of a variety of systems and problems. Reference [21] gives international standards
for acoustics, mechanical vibration, and shock. References [22–24] basically provide
all the known formulas and solutions for a large variety of vibration problems, includ-
ing those related to beams, frames, and arches. Several books have been written on
the vibration of specific systems, such as spacecraft [25], flow-induced vibration [26],
dynamics and control [27], foundations [28], and gears [29]. The practical aspects of
vibration testing, measurement, and diagnostics of instruments, machinery, and struc-
tures are discussed in Refs. [30–32].

The most widely circulated journals that publish papers relating to vibrations are
the Journal of Sound and Vibration, ASME Journal of Vibration and Acoustics, ASME
Journal of Applied Mechanics, AIAA Journal, ASCE Journal of Engineering Mechanics,
Earthquake Engineering and Structural Dynamics, Computers and Structures, Interna-
tional Journal for Numerical Methods in Engineering, Journal of the Acoustical Society
of America, Bulletin of the Japan Society of Mechanical Engineers, Mechanical Systems
and Signal Processing, International Journal of Analytical and Experimental Modal
Analysis, JSME International Journal Series III, Vibration Control Engineering, Vehi-
cle System Dynamics, and Sound and Vibration. In addition, the Shock and Vibration
Digest, Noise and Vibration Worldwide, and Applied Mechanics Reviews are abstract
journals that publish brief discussions of recently published vibration papers.
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Figure 1.14 Two simple pendulums connected by a spring.
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Figure 1.15 Sawtooth function.

PROBLEMS
1.1 Express the following function as a sum of sine
and cosine functions:

f (t) = 5 sin(10t − 2.5)

1.2 Consider the following harmonic functions:

x1(t) = 5 sin 20t and x2(t) = 8 cos
(

20t + π

3

)

Express the function x(t) = x1(t) + x2(t) as (a) a cosine
function with a phase angle, and (b) a sine function with
a phase angle.

1.3 Find the difference of the harmonic functions
x1(t) = 6 sin 30t and x2(t) = 4 cos (30t + π/4) (a) as a
sine function with a phase angle, and (b) as a cosine
function with a phase angle.

1.4 Find the sum of the harmonic functions x1(t) =
5 cos ωt and x2(t) = 10 cos(ωt + 1) using (a) trigono-
metric relations, (b) vectors, and (c) complex numbers.

1.5 The angular motions of two simple pendulums
connected by a soft spring of stiffness k are described
by (Fig. 1.14)

θ1(t) = A cos ω1t cos ω2t, θ2(t) = A sin ω1t sin ω2t

where A is the amplitude of angular motion and ω1 and
ω2 are given by

ω1 = k

8 m

√
l

g
, ω2 =

√
g

l
+ ω1

Plot the functions θ1(t) and θ2(t) for 0 ≤ t ≤ 13.12 s
and discuss the resulting motions for the following data:
k = 1 N/m, m = 0.1 kg, l = 1 m, and g = 9.81 m/s2.

1.6 Find the Fourier cosine and sine series expansion
of the function shown in Fig. 1.15 for A = 2 and T = 1.

1.7 Find the Fourier cosine and sine series representa-
tion of a series of half-wave rectified sine pulses shown
in Fig. 1.16 for A = π and T = 2.
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Figure 1.17 Triangular wave.

1.8 Find the complex Fourier series expansion of the
sawtooth function shown in Fig. 1.15.

1.9 Find the Fourier series expansion of the triangular
wave shown in Fig. 1.17.

1.10 Find the complex Fourier series representation of
the function f (t) = e−2t , −π < t < π .

1.11 Consider a transient load, f (t), given by

f (t) =
{

0, t < 0
e−t , t ≥ 0

Find the Fourier transform of f (t).

1.12 The Fourier sine transform of a function f (t),
denoted by Fs(ω), is defined as

Fs(ω) =
∫ ∞

0
f (t) sin ωt d t, ω > 0

and the inverse of the transform Fs(ω) is defined by

f (t) = 2

π

∫ ∞

0
Fs(ω) sin ωt dω, t > 0

Using these definitions, find the Fourier sine transform
of the function f (t) = e−at , a > 0.

1.13 Find the Fourier sine transform of the function
f (t) = te−t , t ≥ 0.

1.14 Find the Fourier transform of the function

f (t) =
{
e−at , t ≥ 0

0, t < 0
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Vibration of Discrete Systems:
Brief Review

2.1 VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM

The number of degrees of freedom of a vibrating system is defined by the minimum
number of displacement components required to describe the configuration of the sys-
tem during vibration. Each system shown in Fig. 2.1 denotes a single-degree-of-freedom
system. The essential features of a vibrating system include (1) a mass m, producing
an inertia force: mẍ; (2) a spring of stiffness k, producing a resisting force: kx; and
(3) a damping mechanism that dissipates the energy. If the equivalent viscous damping
coefficient is denoted as c, the damping force produced is cẋ.

2.1.1 Free Vibration

In the absence of damping, the equation of motion of a single-degree-of-freedom system
is given by

mẍ + kx = f (t) (2.1)

where f (t) is the force acting on the mass and x(t) is the displacement of the mass
m. The free vibration of the system, in the absence of the forcing function f (t), is
governed by the equation

mẍ + kx = 0 (2.2)

The solution of Eq. (2.2) can be expressed as

x(t) = x0 cos ωnt + ẋ0

ωn

sin ωnt (2.3)

where ωn is the natural frequency of the system, given by

ωn =
√

k

m
(2.4)

x0 = x(t = 0) is the initial displacement and ẋ0 = dx(t = 0)/dt is the initial velocity
of the system. Equation (2.3) can also be expressed as

x(t) = A cos(ωnt − φ) (2.5)
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Figure 2.1 Single-degree-of-freedom systems.

or

x(t) = A sin(ωnt + φ0) (2.6)

where

A =
[
x2

0 +
(

ẋ0

ωn

)2
]1/2

(2.7)

φ = tan−1 ẋ0

x0ωn

(2.8)

φ0 = tan−1 x0ωn

ẋ0
(2.9)

The free vibration response of the system indicated by Eq. (2.5) is shown graphically
in Fig. 2.2.

The equation of motion for the vibration of a viscously damped system is given
by

mẍ + cẋ + kx = f (t) (2.10)
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Figure 2.2 Free vibration response.

By dividing throughout by m, Eq. (2.10) can be rewritten as

ẍ + 2ζωnẋ + ω2
nx = F(t) (2.11)

where ζ is the damping ratio, given by

ζ = c

2mωn

= c

cc

(2.12)

where cc is known as the critical damping constant:

cc = 2mωn = 2
√

km (2.13)

and

F(t) = f (t)

m
(2.14)

The system is considered to be underdamped, critically damped, and overdamped if the
value of the damping ratio is less than 1, equal to 1, and greater than 1, respectively.
The free vibration of a damped system is governed by the equation

ẍ + 2ζωnẋ + ω2
nx = 0 (2.15)

The free vibration response of the system [i.e., the solution of Eq. (2.15)], with different
levels of damping can be expressed as follows:

1. Underdamped system (ζ < 1):

x(t) = e−ζωnt

(
x0 cos ωdt + ẋ0 + ζωnx0

ωd

sin ωdt

)
(2.16)
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where x0 = x(t = 0) is the initial displacement, ẋ0 = dx(t = 0)/dt is the initial
velocity, and ωd is the frequency of the damped vibration given by

ωd =
√

1 − ζ 2ωn (2.17)

2. Critically damped system (ζ = 1):

x(t) = [x0 + (ẋ0 + ωnx0) t] e−ωnt (2.18)

3. Overdamped system (ζ > 1):

x(t) = C1e
(−ζ+

√
ζ 2−1)ωnt + C2e

(−ζ−
√

ζ 2−1)ωnt (2.19)

where

C1 = x0ωn(ζ +
√

ζ 2 − 1) + ẋ0

2ωn

√
ζ 2 − 1

(2.20)

C2 = −x0ωn(ζ −
√

ζ 2 − 1) − ẋ0

2ωn

√
ζ 2 − 1

(2.21)

The motions indicated by Eqs. (2.16), (2.18), and (2.19) are shown graphically in
Fig. 2.3.

2.1.2 Forced Vibration under Harmonic Force

For an undamped system subjected to the harmonic force f (t) = f0 cos ωt , the equation
of motion is

mẍ + kx = f0 cos ωt (2.22)

where f0 is the magnitude and ω is the frequency of the applied force. The steady-state
solution or the particular integral of Eq. (2.22) is given by

xp(t) = X cos ωt (2.23)

where

X = f0

k − mω2
= δst

1 − (ω/ωn)
2

(2.24)

denotes the maximum amplitude of the steady-state response and

δst = f0

k
(2.25)

indicates the static deflection of the mass under the force f0. The ratio

X

δst
= 1

1 − (ω/ωn)
2

(2.26)

represents the ratio of the dynamic to static amplitude of motion and is called the ampli-
fication factor, magnification factor, or amplitude ratio. The variation of the amplitude
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Figure 2.3 Damped free vibration response: (a) underdamped vibration (ζ < 1); (b) over-
damped vibration (ζ > 1); (c) critically damped vibration (ζ = 1).
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Figure 2.4 Magnification factor of an undamped system.

ratio with frequency ratio is shown in Fig. 2.4. The total solution of Eq.(2.22), including
the homogeneous solution and the particular integral, is given by

x(t) =
(

x0 − f0

k − mω2

)
cos ωnt + ẋ0

ωn

sin ωnt + f0

k − mω2
cos ωt (2.27)

At resonance, ω/ωn = 1, and the solution given by Eq. (2.27) can be expressed as

x(t) = x0 cos ωnt + ẋ0

ωn

sin ωnt + δstωnt

2
sin ωnt (2.28)

This solution can be seen to increase indefinitely, with time as shown in Fig. 2.5.
When a viscously damped system is subjected to the harmonic force f (t) = f0 cos ωt ,
the equation of motion becomes

mẍ + cẋ + kx = f0 cos ωt (2.29)

The particular solution of Eq. (2.29) can be expressed as

xp(t) = X cos(ωt − φ) (2.30)
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Figure 2.5 Response when r = ω/ωn = 1 (effects of x0 and ẋ0 not considered).

where X is the amplitude and φ is the phase angle, given by

X = f0

[(k − mω2)2 + c2ω2]1/2
= δst

[(1 − r2)2 + (2ζ r)2]1/2
(2.31)

φ = tan−1 cω

k − mω2
= tan−1 2ζ r

1 − r2
(2.32)

where

δst = f0

k
(2.33)

denotes the static deflection under the force f0,

r = ω

ωn

(2.34)

indicates the frequency ratio, and

ζ = c

cc

= c

2
√

mk
= c

2mωn

(2.35)

represents the damping ratio. The variations of the amplitude ratio or magnification
factor

X

δst
= 1√

(1 − r2)2 + (2ζ r)2
(2.36)

and the phase angle, φ, given by Eq. (2.32), with the frequency ratio, r , are as shown
in Fig. 2.6.

The total solution of Eq. (2.29), including the homogeneous solution and the par-
ticular integral, in the case of an underdamped system can be expressed as

x(t) = X0e
−ζωnt cos(ωd t − φ0) + X cos(ωt − φ) (2.37)
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Figure 2.6 Damped harmonic response.

where ωd is the frequency of damped vibration given by Eq. (2.17), X and φ are given
by Eqs. (2.31) and (2.32), respectively, and X0 and φ0 can be determined from the
initial conditions.

For example, if the initial conditions are given by x(t = 0) = x0 and dx(t =
0)/dt = ẋ0, Eq. (2.37) yields

x0 = X0 cos φ0 + X cos φ (2.38)

ẋ0 = −ζωnX0 cos φ0 + ωdX0 sin φ0 + ωX sin φ (2.39)

The solution of Eqs. (2.38) and (2.39) gives X0 and φ0.
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If the harmonic force acting on the system is denoted in complex form, the equation
of motion of the system becomes

mẍ + cẋ + kx = f0e
iωt (2.40)

where i = √−1. In this case, the particular solution of Eq. (2.40) can be expressed as

xp(t) = Xeiωt (2.41)

where X is a complex constant given by

X = f0

k − mω2 + icω
(2.42)

which can be rewritten in the form

kX

f0
= H(iω) ≡ 1

1 − r2 + i2ζ r
(2.43)

where H(iω) is called the complex frequency response of the system. Equation (2.41)
can be rewritten as

xp(t) = f0

k
|H(iω)|ei(ωt−φ) (2.44)

where |H(iω)| denotes the absolute value of H(iω):

|H(iω)| =
∣∣∣∣kX

f0

∣∣∣∣ = 1

[(1 − r2)2 + (2ζ r)2]1/2
(2.45)

and φ indicates the phase angle:

φ = tan−1 cω

k − mω2
= tan−1 2ζ r

1 − r2
(2.46)

2.1.3 Forced Vibration under General Force

For a general forcing function, f (t), the solution of Eq. (2.11) can be found by taking
Laplace transforms of the various terms using the relations

L[x(t)] = x(s) (2.47)

L[ẋ(t)] = sx(s) − x(0) (2.48)

L[ ¨̇x(t)] = s2x(s) − sx(0) − ẋ(0) (2.49)

L[F(t)] = F(s) (2.50)

where X(s) and F(s) are the Laplace transforms of x(t) and F(t), respectively. Thus,
Eq. (2.11) becomes

[s2x(s) − sx(0) − ẋ(0)] + 2ζωn[sx(s) − x(0)] + ω2
nx(s) = F(s) (2.51)
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or

x(s) = 1

�
[F(s) + (s + 2ζωn)x0 + ẋ0] (2.52)

where x0 = x(0) and ẋ0 = ẋ(0), and

� = s2 + 2ζωns + ω2
n = (s + ζωn)

2 + ω2
d (2.53)

By virtue of the inverse transforms

L−1
[

1

�

]
= e−ζωnt

ωd

sin ωdt (2.54)

L−1
[
s + ζωn

�

]
= e−ζωnt cos ωdt (2.55)

L−1

[
F(s)

�

]
= 1

ωd

∫ t

0
F(τ)e−ζωn(t−τ) sin ωd(t − τ) dτ (2.56)

The solution can be expressed as

x(t) =
∫ t

0
F(τ)h(t − τ) dτ + g(t)x0 + h(t)ẋ0 (2.57)

where

h(t) = 1

ωd

e−ζωnt sin ωdt (2.58)

g(t) = e−ζωnt

(
cos ωdt + ζ ωn

ωd

sin ωdt

)
(2.59)

The first term in Eq. (2.57) is called the convolution integral or Duhamel’s integral,
and the second and third terms are called transients because of the presence of e−ζωnt ,
which is a decaying function of time. Note that in Eq. (2.57), the condition for an
oscillatory solution is that ζ < 1.

Example 2.1 Find the response of an underdamped spring–mass–damper system to
a unit impulse by assuming zero initial conditions.

SOLUTION The equation of motion can be expressed as

mẍ + cẋ + kx = δ(t) (E2.1.1)

where δ(t) denotes the unit impulse. By taking the Laplace transform of both sides of
Eq. (E2.1.1) and using the initial conditions x0 = ẋ0 = 0, we obtain

(ms2 + cs + k) x(s) = 1 (E2.1.2)

or

x(s) = 1

ms2 + cs + k
= 1/m

s2 + 2ζωns + ω2
n

(E2.1.3)
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Since ζ < 1, the inverse transform yields

x(t) = 1/m

ωn

√
1 − ζ 2

e−ζωnt sin
(
ωn

√
1 − ζ 2t

) = 1

mωd

e−ζωnt sin ωdt (E2.1.4)

2.2 VIBRATION OF MULTIDEGREE-OF-FREEDOM SYSTEMS

A typical n-degree-of-freedom system is shown in Fig. 2.7(a). For a multidegree-of-
freedom system, it is more convenient to use matrix notation to express the equations
of motion and describe the vibrational response. Let xi denote the displacement of
mass mi measured from its static equilibrium position; i = 1, 2, . . . , n. The equations
of motion of the n-degree-of-freedom system shown in Fig. 2.7(a) can be derived from
the free-body diagrams of the masses shown in Fig. 2.7(b) and can be expressed in
matrix form as

[m] �̈x + [c] �̇x + [k]�x = �f (2.60)

where [m], [c], and [k] denote the mass, damping, and stiffness matrices, respectively:

[m] =




m1 0 0 · · · 0
0 m2 0 · · · 0
0 0 m3 · · · 0
...

. . .

0 0 0 · · · mn


 (2.61)

[c] =




c1 + c2 −c2 0 · · · 0 0
−c2 c2 + c3 −c3 · · · 0 0

0 −c3 c3 + c4 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · −cn−1 cn




(2.62)

[k] =




k1 + k2 −k2 0 · · · 0 0
−k2 k2 + k3 −k3 · · · 0 0

0 −k3 k3 + k4 · · · 0 0
...

...
...

...
...

0 0 0 · · · −kn−1 kn




(2.63)

The vectors �x, �̇x, and �̈x indicate, respectively, the vectors of displacements, velocities,
and accelerations of the various masses, and �f represents the vector of forces acting
on the masses:

�x =




x1

x2

x3
...

xn




, �̇x =




ẋ1

ẋ2

ẋ3
...

ẋn




, �̈x =




ẍ1

ẍ2

ẍ3
...

ẍn




, �f =




f1

f2

f3
...

fn




(2.64)

where a dot over xi represents a time derivative of xi .
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Note that the spring–mass–damper system shown in Fig. 2.7 is a particular case of
a general n-degree-of-freedom system. In their most general form, the mass, damping,
and stiffness matrices in Eq. (2.60) are fully populated and can be expressed as

[m] =




m11 m12 m13 · · · m1n

m12 m22 m23 · · · m2n

·
·

m1n m2n m3n · · · mnn


 (2.65)

[c] =




c11 c12 c13 · · · c1n

c12 c22 c23 · · · c2n

· · · · ·
· · · · ·
· · · · ·

c1n c2n c3n · · · cnn


 (2.66)

[k] =




k11 k12 k13 · · · k1n

k12 k22 k23 · · · k2n

· · · · ·
· · · · ·
· · · · ·

k1n k2n k3n · · · knn


 (2.67)

Equation (2.60) denotes a system of n coupled second-order ordinary differential equa-
tions. These equations can be decoupled using a procedure called modal analysis,
which requires the natural frequencies and normal modes or natural modes of the
system. To determine the natural frequencies and normal modes, the eigenvalue problem
corresponding to the vibration of the undamped system is to be solved.

2.2.1 Eigenvalue Problem

The free vibration of the undamped system is governed by the equation

[m] �̈x + [k]�x = �0 (2.68)

The solution of Eq. (2.68) is assumed to be harmonic as

�x = �X sin(ωt + φ) (2.69)

so that

�̈x = −ω2 �X sin(ωt + φ) (2.70)

where �X is the vector of amplitudes of �x(t), φ is the phase angle, and ω is the frequency
of vibration. Substituting Eqs. (2.69) and (2.70) into Eq. (2.68), we obtain

[[k] − ω2[m]] �X = �0 (2.71)

Equation (2.71) represents a system of n algebraic homogeneous equations in unknown
coefficients X1, X2, . . . , Xn (amplitudes of x1, x2, . . . , xn) with ω2 playing the role of
a parameter. For a nontrivial solution of the vector of coefficients �X, the determinant
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of the coefficient matrix must be equal to zero:

|[k] − ω2[m]| = 0 (2.72)

Equation (2.72) is a polynomial equation of nth degree in ω2 (ω2 is called the eigen-
value) and is called the characteristic equation or frequency equation.

The roots of the polynomial give the n eigenvalues, ω2
1, ω

2
2, . . . , ω

2
n. The pos-

itive square roots of the eigenvalues yield the natural frequencies of the system,
ω1, ω2, . . . , ωn. The natural frequencies are usually arranged in increasing order of
magnitude, so that ω1 ≤ ω2 ≤ . . . ≤ ωn. The lowest frequency ω1 is referred to as
the fundamental frequency. For each natural frequency ωi , a corresponding nontrivial
vector �X(i) can be obtained from Eq. (2.71):

[[k] − ω2
i [m]] �X(i) = �0 (2.73)

The vector �X(i) is called the eigenvector, characteristic vector, modal vector, or normal
mode corresponding to the natural frequency ωi .

Of the n homogeneous equations represented by Eq. (2.73), any set of n − 1
equations can be solved to express any n − 1 quantities out of X

(i)
1 , X

(i)
2 , . . . , X

(i)
n

in terms of the remaining X(i). Since Eq. (2.73) denotes a system of homogeneous
equations, if �X(i) is a solution of Eq. (2.73), then ci

�X(i) is also a solution, where ci

is an arbitrary constant. This indicates that the shape of a natural mode is unique, but
not its amplitude. Usually, a magnitude is assigned to the eigenvector �X(i) to make
it unique using a process called normalization. A common normalization procedure,
called normalization with respect to the mass matrix, consists of setting

�X(i)T
[m] �X(i) = 1, i = 1, 2, . . . , n (2.74)

where the superscript T denotes the transpose.

2.2.2 Orthogonality of Modal Vectors

The modal vectors possess an important property known as orthogonality with respect
to the mass matrix [m] as well as the stiffness matrix [k] of the system. To see this prop-
erty, consider two distinct eigenvalues ω2

i and ω2
j and the corresponding eigenvectors

�X(i) and �X(j). These solutions satisfy Eq. (2.71), so that

[k] �X(i) = ω2
i [m] �X(i) (2.75)

[k] �X(j) = ω2
j [m] �X(j) (2.76)

Premultiplication of both sides of Eq. (2.75) by �X(j)T
and Eq. (2.76) by �X(i)T

leads to

�X(j)T
[k] �X(i) = ω2

i
�X(j)T

[m] �X(i) (2.77)

�X(i)T
[k] �X(j) = ω2

j
�X(i)T

[m] �X(j) (2.78)

Noting that the matrices [k] and [m] are symmetric, we transpose Eq. (2.78) and subtract
the result from Eq. (2.77), to obtain

(ω2
i − ω2

j )
�X(j)T

[m] �X(i) = 0 (2.79)
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Since the eigenvalues are distinct, ω2
i �= ω2

j and Eq. (2.79) leads to

�X(j)T
[m] �X(i) = 0, i �= j (2.80)

Substitution of Eq. (2.80) in Eq. (2.77) results in

�X(j)T
[k] �X(i) = 0, i �= j (2.81)

Equations (2.80) and (2.81) denote the orthogonality property of the eigenvectors with
respect to the mass and stiffness matrices, respectively. When j = i, Eqs. (2.77) and
(2.78) become

�X(i)T
[k] �X(i) = ω2

i
�X(i)T

[m] �X(i) (2.82)

If the eigenvectors are normalized according to Eq. (2.74), Eq. (2.82) gives

�X(i)T
[k] �X(i) = ω2

i (2.83)

By considering all the eigenvectors, Eqs. (2.74) and (2.83) can be written in matrix
form as

[X]T[m][X] = [I ] =




1 0
1

. . .

0 1


 (2.84)

[X]T[k][X] = [ω2
i ] =




ω2
1 0

ω2
2

. . .

0 ω2
n


 (2.85)

where the n × n matrix [X], called the modal matrix, contains the eigenvectors �X(1),
�X(2), . . . , �X(n) as columns:

[X] =
[

�X(1) �X(2) · · · �X(n)
]

(2.86)

2.2.3 Free Vibration Analysis of an Undamped System Using Modal Analysis

The free vibration of an undamped n-degree-of-freedom system is governed by the
equations

[m] �̈x + [k]�x = �0 (2.87)

The n coupled second-order homogeneous differential equations represented by
Eq. (2.87) can be uncoupled using modal analysis. In the analysis the solution, �x(t), is
expressed as a superposition of the normal modes �X(i), i = 1, 2, . . . , n:

�x(t) =
n∑

i=1

ηi(t) �X(i) = [X]�η(t) (2.88)
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where [X] is the modal matrix, ηi(t) are unknown functions of time, known as modal
coordinates (or generalized coordinates), and �η(t) is the vector of modal coordi-
nates:

�η(t) =




η1(t)

η2(t)
...

ηn(t)




(2.89)

Equation (2.88) represents the expansion theorem and is based on the fact that eigen-
vectors are orthogonal and form a basis in n-dimensional space. This implies that any
vector, such as �x(t), in n-dimensional space can be generated by a linear combination
of a set of linearly independent vectors, such as the eigenvectors �X(i), i = 1, 2, . . . , n.
Substitution of Eq. (2.88) into Eq. (2.87) gives

[m][X] �̈η + [k][X]�η = �0 (2.90)

Premultiplication of Eq. (2.90) by [X]T leads to

[X]T[m][X] �̈η + [X]T[k][X]�η = �0 (2.91)

In view of Eqs. (2.84) and (2.85), Eq. (2.91) reduces to

�̈η + [ω2
i ]�η = �0 (2.92)

which denotes a set of n uncoupled second-order differential equations:

d2ηi(t)

dt2
+ ω2

i ηi(t) = 0, i = 1, 2, . . . , n (2.93)

If the initial conditions of the system are given by

�x(t = 0) = �x0 =




x1,0

x2,0
...

xn,0




(2.94)

�̇x(t = 0) = �̇x0 =




ẋ1,0

ẋ2,0
...

ẋn,0




(2.95)

the corresponding initial conditions on �η(t) can be determined as follows.
Premultiply Eq. (2.88) by [X]T[m] and use Eq. (2.84) to obtain

�η(t) = [X]T[m]�x(t) (2.96)
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Thus, 


η1(0)

η2(0)
...

ηn(0)




= �η(0) = [X]T[m]�x0 (2.97)




η̇1(0)

η̇2(0)
...

η̇n(0)




= �̇η(0) = [X]T[m] �̇x0 (2.98)

The solution of Eq. (2.93) can be expressed as [see Eq. (2.3)]

ηi(t) = ηi(0) cos ωit + η̇i (0)

ωi

sin ωit, i = 1, 2, . . . , n (2.99)

where ηi(0) and η̇i(0) are given by Eqs. (2.97) and (2.98) as

ηi(0) = �X(i)T
[m]�x0 (2.100)

η̇i(0) = �X(i)T
[m] �̇x0 (2.101)

Once ηi(t) are determined, the free vibration solution, �x(t), can be found using
Eq. (2.88).

Example 2.2 Find the free vibration response of the two-degree-of-freedom system
shown in Fig. 2.8 using modal analysis for the following data: m1 = 2 kg, m2 = 5 kg,
k1 = 10N/m, k2 = 20N/m, k3 = 5N/m, x1(0) = 0.1 m, x2(0) = 0, ẋ1(0) = 0, and ẋ2(0)

= 5 m/s.

k1 k2 k3

x1(t) x2(t)

m1 m2

(a)

x1, x1

k1x1 k2(x2 – x1)

x2, x2

k3x2
m1 m2

(b)

.. ..

Figure 2.8 Two-degree-of-freedom system: (a) system in equilibrium; (b) free-body diagrams.
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SOLUTION The equations of motion can be expressed as[
m1 0
0 m2

]{
ẍ1

ẍ2

}
+
[

k1 + k2 −k2

−k2 k2 + k3

]{
x1

x2

}
=
{

0
0

}
(E2.2.1)

For free vibration, we assume harmonic motion as

xi(t) = Xi cos(ωt + φ), i = 1, 2 (E2.2.2)

where Xi is the amplitude of xi(t), ω is the frequency, and φ is the phase angle.
Substitution of Eq. (E2.2.2) into Eq. (E2.2.1) leads to the eigenvalue problem[ −ω2m1 + k1 + k2 −k2

−k2 −ω2m2 + k2 + k3

]{
X1

X2

}
=
{

0
0

}
(E2.2.3)

Using the known data, Eq. (E2.2.3) can be written as[ −2ω2 + 30 −20
−20 −5ω2 + 25

]{
X1

X2

}
=
{

0
0

}
(E2.2.4)

For a nontrivial solution of X1 and X2, the determinant of the coefficient matrix in
Eq. (E2.2.4) is set equal to zero to obtain the frequency equation:∣∣∣∣ −2ω2 + 30 −20

−20 −5ω2 + 25

∣∣∣∣ = 0

or

ω4 − 20ω2 + 35 = 0 (E2.2.5)

The roots of Eq. (E2.2.5) give the natural frequencies of vibration of the system as

ω1 = 1.392028 rad/s, ω2 = 4.249971 rad/s (E2.2.6)

Substitution of ω = ω1 = 1.392028 in Eq. (E2.2.4) leads to X
(1)
2 = 1.306226X

(1)
1 , while

ω = ω2 = 4.249971 in Eq. (E2.2.4) yields X
(2)
2 = −0.306226X

(2)
1 . Thus, the mode

shapes or eigenvectors of the system are given by

�X(1) =
{

X
(1)
1

X
(1)
2

}
=
{

1
1.306226

}
X

(1)
1 (E2.2.7)

�X(2) =
{

X
(2)
1

X
(2)
2

}
=
{

1
−0.306226

}
X

(2)
1 (E2.2.8)

where X
(1)
1 and X

(2)
1 are arbitrary constants. By normalizing the mode shapes with

respect to the mass matrix, we can find the values of X
(1)
1 and X

(2)
1 as

�X(1)T
[m] �X(1) = (X

(1)
1 )2{ 1 1.306226 }

[
2 0
0 5

]{
1
1.306226

}
= 1
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or X
(1)
1 = 0.30815, and

�X(2)T
[m] �X(2) = (X

(2)
1 )2{ 1 −0.306226 }

[
2 0
0 5

]{
1

−0.306226

}
= 1

or X
(2)
1 = 0.63643. Thus, the modal matrix becomes

[X] = [ �X(1) �X(2)
] =

[
0.30815 0.63643
0.402513 −0.19489

]
(E2.2.9)

Using

�x(t) = [X]�η(t) (E2.2.10)

Eq. (E2.2.1) can be expressed in scalar form as

d2ηi(t)

dt2
+ ω2

i ηi(t) = 0, i = 1, 2 (E2.2.11)

The initial conditions of ηi(t) can be determined using Eqs. (2.100) and (2.101) as

ηi(0) = �X(i)T
[m]�x(0) or �η(0) = [X]T[m]�x(0) (E2.2.12)

η̇i(0) = �X(i)T
[m] �̇x(0) or �̇η(0) = [X]T[m] �̇x(0) (E2.2.13)

�η(0) =
[

0.30815 0.63643
0.402513 −0.19489

]T [
2 0
0 5

]{
0.1
0

}
=
{

0.61630
1.27286

}
(E2.2.14)

�̇η(0) =
[

0.30815 0.63643
0.402513 −0.19489

]T [
2 0
0 5

]{
0
5

}
=
{

10.06282
−4.87225

}
(E2.2.15)

The solution of Eq. (E2.2.11) is given by Eq. (2.99):

ηi(t) = ηi(0) cos ωit + η̇i(0)

ωi

sin ωit, i = 1, 2 (E2.2.16)

Using the initial conditions of Eqs. (E2.2.14) and (E2.2.15), we find that

η1(t) = 0.061630 cos 1.392028t + 7.22889 sin 1.392028t (E2.2.17)

η2(t) = 0.127286 cos 4.249971t − 1.14642 sin 4.24997t (E2.2.18)

The displacements of the masses m1 and m2, in meters, can be determined from
Eq. (E2.2.10) as

�x(t) =
[

0.30815 0.63643
0.402513 −0.19489

]{
0.061630 cos 1.392028t + 7.22889 sin 1.392028t

0.127286 cos 4.249971t − 1.14642 sin 4.24997t

}

=




0.018991 cos 1.392028t + 2.22758 sin 1.392028t + 0.081009 cos 4.24997t

− 0.72962 sin 4.24997t

0.024807 cos 1.392028t + 2.909722 sin 1.392028t − 0.024807 cos 4.24997t

+ 0.223426 sin 4.24997t




(E2.2.19)
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2.2.4 Forced Vibration Analysis of an Undamped System Using Modal Analysis

The equations of motion can be expressed as

[m] �̈x + [k]�x = �f (t) (2.102)

The eigenvalues ω2
i and the corresponding eigenvectors �X(i), i = 1, 2, . . . , n, of the

system are assumed to be known. The solution of Eq. (2.102) is assumed to be given
by a linear combination of the eigenvectors as

�x(t) =
n∑

i=1

ηi(t) �X(i) = [X]�η(t) (2.103)

where ηi(t) denote modal coordinates and [X] represents the modal matrix. Substituting
Eq. (2.103) into Eq. (2.102) and premultiplying the result by [X]T results in

[X]T[m][X] �̈η + [X]T[k][X]�η = [X]T �f (2.104)

Using Eqs. (2.84) and (2.85), Eq. (2.104) can be written as

�̈η + [ω2
i ]�η = �Q (2.105)

where �Q is called the vector of modal forces (or generalized forces) given by

�Q(t) = [X]T �f (t) (2.106)

The n uncoupled differential equations indicated by Eq. (2.105) can be expressed in
scalar form as

d2ηi(t)

dt2
+ ω2

i ηi(t) = Qi(t), i = 1, 2, . . . , n (2.107)

where

Qi(t) = �X(i)T �f (t), i = 1, 2, . . . , n (2.108)

Each of the equations in (2.107) can be considered as the equation of motion of an
undamped single-degree-of-freedom system subjected to a forcing function. Hence, the
solution of Eq. (2.107) can be expressed, using ηi(t), Qi(t), ηi,0, and η̇i,0 in place of
x(t), F(t), x0, and ẋ0, respectively, and setting ωd = ωi and ζ = 0 in
Eqs. (2.57)–(2.59), as

ηi(t) =
∫ t

0
Qi(τ)h(t − τ) dτ + g(t)ηi,0 + h(t)η̇i,0 (2.109)

with

h(t) = 1

ωi

sin ωit (2.110)

g(t) = cos ωit (2.111)

The initial values ηi,0 and η̇i,0 can be determined from the known initial conditions �x0

and �̇x0, using Eqs. (2.97) and (2.98).
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2.2.5 Forced Vibration Analysis of a System with Proportional Damping

In proportional damping, the damping matrix [c] in Eq. (2.60) can be expressed as a
linear combination of the mass and stiffness matrices as

[c] = α[m] + β[k] (2.112)

where α and β are known constants. Substitution of Eq. (2.112) into Eq. (2.60) yields

[m] �̈x + (α[m] + β[k]) �̇x + [k]�x = �f (2.113)

As indicated earlier, in modal analysis, the solution of Eq. (2.113) is assumed to be of
the form

�x(t) = [X]�η(t) (2.114)

Substituting Eq. (2.114) into Eq. (2.113) and premultiplying the result by [X]T leads to

[X]T[m][X] �̈η + (α[X]T[m][X] �̇η + β[X]T[k][X] �̇η) + [X]T[k][X]�η = [X]T �f (2.115)

When Eqs. (2.84) and (2.85) are used, Eq. (2.115) reduces to

�̈η + (α[I ] + β[ω2
i ]) �̇η + [ω2

i ]�η = �Q (2.116)

where

�Q = [X]T �f (2.117)

By defining

α + βω2
i = 2ζiωi, i = 1, 2, . . . , n (2.118)

where ζi is called the modal viscous damping factor in the ith mode, Eq. (2.116) can
be rewritten in scalar form as

d2ηi(t)

dt2
+ 2ζiωi

dηi(t)

d t
+ ω2

i ηi(t) = Qi(t), i = 1, 2, . . . , n (2.119)

Each of the equations in (2.119) can be considered as the equation of motion of a vis-
cously damped single-degree-of-freedom system whose solution is given by Eqs. (2.57)
–(2.59). Thus, the solution of Eq. (2.119) is given by

ηi(t) =
∫ t

0
Qi(τ)h(t − τ) dτ + g(t)ηi,0 + h(t)η̇i,0 (2.120)

where

h(t) = 1

ωdi

e−ζiωi t sin ωdit (2.121)

g(t) = e−ζiωi t

(
cos ωdi t + ζiωi

ωdi

sin ωdit

)
(2.122)

and ωdi is the ith frequency of damped vibration:

ωdi =
√

1 − ζ 2
i ωi (2.123)
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2.2.6 Forced Vibration Analysis of a System with General Viscous Damping

The equations of motion of an n-degree-of-freedom system with arbitrary viscous damp-
ing can be expressed in the form of Eq. (2.60):

[m] �̈x + [c] �̇x + [k]�x = �f (2.124)

In this case, the modal matrix will not diagonalize the damping matrix, and an analytical
solution is not possible in the configuration space. However, it is possible to find an
analytical solution in the state space if Eq. (2.124) is expressed in state-space form.
For this, we add the identity �̇x(t) = �̇x(t) to an equivalent form of Eq. (2.124) as

�̇x(t) = �̇x(t) (2.125)

�̈x(t) = −[m]−1[c] �̇x(t) − [m]−1[k]�x(t) + [m]−1 �f (2.126)

By defining a 2n-dimensional state vector �y(t) as

�y(t) =
{�x(t)

�̇x(t)

}
(2.127)

Eqs. (2.125) and (2.126) can be expressed in state form as

�̇y(t) = [A]�y(t) + [B] �f (t) (2.128)

where the coefficient matrices [A] and [B], of order 2n × 2n and 2n × n, respectively,
are given by

[A] =
[

[0] [I ]
−[m]−1[k] −[m]−1[c]

]
(2.129)

[B] =
[

[0]
[m]−1

]
(2.130)

Modal Analysis in State Space For the modal analysis, first we consider the free
vibration problem with �f = �0 so that Eq. (2.128) reduces to

�̇y(t) = [A]�y(t) (2.131)

This equation denotes a set of 2n first-order ordinary differential equations with constant
coefficients. The solution of Eq. (2.131) is assumed to be of the form

�y(t) = �Yeλt (2.132)

where �Y is a constant vector and λ is a constant scalar. By substituting Eq. (2.132)
into Eq. (2.131), we obtain, by canceling the term eλt on both sides,

[A] �Y = λ �Y (2.133)

Equation (2.133) can be seen to be a standard algebraic eigenvalue problem with a
nonsymmetric real matrix, [A]. The solution of Eq. (2.133) gives the eigenvalues
λi and the corresponding eigenvectors �Y (i), i = 1, 2, . . . , 2n. These eigenvalues and
eigenvectors can be real or complex. If λi is a complex eigenvalue, it can be shown
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that its complex conjugate (λi) will also be an eigenvalue. Also, the eigenvectors �Y (i)

and �Y
(i)

, corresponding to λi and λi , will also be complex conjugates to one another.
The eigenvectors �Y (i) corresponding to the eigenvalue problem, Eq. (2.133), are called
the right eigenvectors of the matrix [A]. The eigenvectors corresponding to the trans-
pose of the matrix are called the left eigenvectors of [A]. Thus, the left eigenvectors,
corresponding to the eigenvalues λi , are obtained by solving the eigenvalue problem

[A]T �Z = λ �Z (2.134)

Since the determinants of the matrices [A] and [A]T are equal, the characteristic
equations corresponding to Eqs. (2.133) and (2.134) will be identical:

|[A] − λ[I ]| ≡ |[A]T − λ[I ]| = 0 (2.135)

Thus, the eigenvalues of Eqs. (2.133) and (2.134) will be identical. However, the
eigenvectors of [A] and [A]T will be different. To find the relationship between �Y (i),
i = 1, 2, . . . , 2n and �Z(j), j = 1, 2, . . . , 2n, the eigenvalue problems corresponding to
�Y (i) and �Z(j) are written as

[A] �Y (i) = λi
�Y (i) and [A]T �Z(j) = λj

�Z(j) (2.136)

or
�Z(j)T

[A] = λj
�Z(j)T

(2.137)

Premultiplying the first of Eq. (2.136) by �Z(j)T
and postmultiplying Eq. (2.137) by

�Y (i), we obtain
�Z(j)T

[A] �Y (i) = λi
�Z(j)T �Y (i) (2.138)

�Z(j)T
[A] �Y (i) = λj

�Z(j)T �Y (i) (2.139)

Subtracting Eq. (2.139) from Eq. (2.138) gives

(λi − λj ) �Z(j)T �Y (i) = 0 (2.140)

Assuming that λi �= λj , Eq. (2.140) yields

�Z(j)T �Y (i) = 0, i, j = 1, 2, . . . , 2n (2.141)

which show that the ith right eigenvector of [A] is orthogonal to the j th left eigen-
vector of [A], provided that the corresponding eigenvalues λi and λj are distinct. By
substituting Eq. (2.141) into Eq. (2.138) or Eq. (2.139), we find that

�Z(j)T
[A] �Y (i) = 0, i, j = 1, 2, . . . , 2n (2.142)

By setting i = j in Eq. (2.138) or Eq. (2.139), we obtain

�Z(i)T
[A] �Y (i) = λi

�Z(i)T �Y (i), i = 1, 2, . . . , 2n (2.143)

When the right and left eigenvectors of [A] are normalized as

�Z(i)T �Y (i) = 1, i = 1, 2, . . . , 2n (2.144)
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Eq. (2.143) gives

�Z(i)T
[A] �Y (i) = λi, i = 1, 2, . . . , 2n (2.145)

Equations (2.144) and (2.145) can be expressed in matrix form as

[Z]T[Y ] = [I ] (2.146)

[Z]T[A][Y ] = [λi] (2.147)

where the matrices of right and left eigenvectors are defined as

[Y ] ≡ [ �Y (1) �Y (2) · · · �Y (2n)
]

(2.148)

[Z] ≡ [ �Z(1) �Z(2) · · · �Z(2n)
]

(2.149)

and the diagonal matrix of eigenvalues is given by

[λi] =




λ1 0
λ2

. . .

0 λ2n


 (2.150)

In the modal analysis, the solution of the state equation, Eq. (2.128), is assumed to be
a linear combination of the right eigenvectors as

�y(t) =
2n∑
i=1

ηi(t) �Y (i) = [Y ] �η(t) (2.151)

where ηi(t), i = 1, 2, . . . , 2n, are modal coordinates and �η(t) is the vector of modal
coordinates:

�η(t) =




η1(t)

η2(t)
...

η2n(t)




(2.152)

Substituting Eq. (2.151) into Eq. (2.128) and premultiplying the result by [Z]T, we
obtain

[Z]T[Y ] �̇η(t) = [Z]T[A] [Y ] �η(t) + [Z]T[B] �f (t) (2.153)

In view of Eqs. (2.146) and (2.147), Eq. (2.153) reduces to

�̇η(t) = [λi] �η(t) + �Q(t) (2.154)

which can be written in scalar form as

dηi(t)

d t
= λiηi(t) + Qi(t), i = 1, 2, . . . , 2n (2.155)
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where the vector of modal forces is given by

�Q(t) = [Z]T[B] �f (t) (2.156)

and the ith modal force by

Qi(t) = �Z(i)T
[B] �f (t), i = 1, 2, . . . , 2n (2.157)

The solutions of the first-order ordinary differential equations, Eq. (2.155), can be
expressed as

ηi(t) =
∫ t

0
eλi(t−τ)Qi(τ ) dτ + eλi tηi(0), i = 1, 2, . . . , 2n (2.158)

which can be written in matrix form as

�η(t) =
∫ t

0
e[λi ](t−τ) �Q(τ) dτ + e[λi ]t �η(0) (2.159)

where �η(0) denotes the initial value of �η(t). To determine �η(0), we premultiply Eq. (2.151)
by �Z(i)T

to obtain

�Z(i)T �y(t) = �Z(i)T
[Y ] �η(t) (2.160)

In view of the orthogonality relations, Eq. (2.141), Eq. (2.160) gives

ηi(t) = �Z(i)T �y(t), i = 1, 2, . . . , 2n (2.161)

By setting t = 0 in Eq. (2.161), the initial value of ηi(t) can be found as

ηi(0) = �Z(i)T �y(0), i = 1, 2, . . . , 2n (2.162)

Finally, the solution of Eq. (2.128) can be expressed, using Eqs. (2.151) and (2.159),
as

�y(t) =
∫ t

0
[Y ]e[λi ](t−τ) �Q(τ) dτ + [Y ]e[λi ]t �η(0) (2.163)

Example 2.3 Find the forced response of the viscously damped two-degree-of-
freedom system shown in Fig. 2.9 using modal analysis for the following data: m1 =
2 kg, m2 = 5 kg, k1 = 10 N/m, k2 = 20 N/m, k3 = 5 N/m, c1 = 2 N · s/m, c2 = 3 N ·
s/m, c3 = 1.0 N · s/m, f1(t) = 0, f2(t) = 5 N, and t ≥ 0. Assume the initial conditions
to be zero.

SOLUTION The equations of motion of the system are given by

[m] �̈x + [c] �̇x + [k]�x = �f (E2.3.1)

where

[m] =
[
m1 0
0 m2

]
=
[

2 0
0 5

]
(E2.3.2)

[c] =
[
c1 + c2 −c2

−c2 c2 + c3

]
=
[

5 −3
−3 4

]
(E2.3.3)
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c1 c2 c3

k1 k2 k3

F2(t)

x2(t)

F1(t)

x1(t)

m1 m2

Figure 2.9 Viscously damped two-degree-of-freedom system.

[k] =
[
k1 + k2 −k2

−k2 k2 + k3

]
=
[

30 −20

−20 25

]
(E2.3.4)

�x =
{
x1

x2

}
, �̇x =

{
ẋ1

ẋ2

}
, �̈x =

{
ẍ1

ẍ2

}
, �f =

{
f1

f2

}
(E2.3.5)

The equations of motion can be stated in state form as

�̇y = [A]�y + [B] �f (E2.3.6)

where

[A] =
[

[0] [I ]

−[m]−1[k] −[m]−1[c]

]

=




0 0 1 0

0 0 0 1

−15 10 − 5
2

3
2

4 −5 3
5 − 4

5


 (E2.3.7)

[B] =
[

[0]

[m]−1

]
=




0 0
0 0
1
2 0

0 1
5


 (E2.3.8)

�y =




x1

x2

ẋ1

ẋ2


 (E2.3.9)
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The solution of the eigenvalue problem

[A] �Y = λ �Y
or 


0 0 1 0
0 0 0 1

−15 10 − 5
2

3
2

4 −5 3
5 − 4

5






Y1

Y2

Y3

Y4


 = λ




Y1

Y2

Y3

Y4


 (E2.3.10)

is given by

λ1 = −1.4607 + 3.9902i

λ2 = −1.4607 − 3.9902i

λ3 = −0.1893 + 1.3794i

λ4 = −0.1893 − 1.3794i

(E2.3.11)

[Y ] ≡ [ �Y (1) �Y (2) �Y (3) �Y (4)
]

=




−0.0754 − 0.2060i −0.0754 + 0.2060i −0.0543 − 0.3501i −0.0543 + 0.3501i

0.0258 + 0.0608i 0.0258 − 0.0608i −0.0630 − 0.4591i −0.0630 + 0.4591i

0.9321 0.9321 0.4932 − 0.0085i 0.4932 + 0.0085i

−0.2803 + 0.0142i −0.2803 − 0.0142i 0.6452 0.6452




(E2.3.12)

The solution of the eigenvalue problem

[A]T �Z = λ �Z
or 


0 0 −15 4

0 0 10 −5

1 0 − 5
2

3
5

0 1 3
2 − 4

5






Z1

Z2

Z3

Z4


 = λ




Z1

Z2

Z3

Z4


 (E2.3.13)

gives λi as indicated in Eq. (E2.3.11) and �Z(i) as

[Z] ≡ [ �Z(1) �Z(2) �Z(3) �Z(4)]

=




0.7736 0.7736 0.2337 − 0.0382i 0.2337 + 0.0382i

−0.5911 + 0.0032i −0.5911 − 0.0032i 0.7775 0.7775

0.0642 − 0.1709i 0.0642 + 0.1709i 0.0156 − 0.1697i 0.0156 + 0.1697i

−0.0418 + 0.1309i −0.0418 − 0.1309i 0.0607 − 0.5538i 0.0607 + 0.5538i




(E2.3.14)
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The vector of modal forces is given by

�Q(t) = [Z]T[B] �f (t)

=




0.7736 −0.5911 + 0.0032i 0.0642 − 0.1709i −0.0418 + 0.1309i

0.7736 −0.5911 − 0.0032i 0.0642 + 0.1709i −0.0418 − 0.1309i

0.2337 − 0.0382i 0.7775 0.0156 − 0.1697i 0.0607 − 0.5538i

0.2337 + 0.0382i 0.7775 0.0156 + 0.1697i 0.0607 + 0.5538i




·




0 0
0 0

0.5 0
0 0.2



{

0
5

}
=




−0.0418 + 0.1309i

−0.0418 − 0.1309i

0.0607 − 0.5538i

0.0607 + 0.5538i


 (E2.3.15)

Since the initial values, x1(0), x2(0), ẋ1(0), and ẋ2(0), are zero, all ηi(0) = 0, i =
1, 2, 3, 4, from Eq. (2.162). Thus, the values of ηi(t) are given by

ηi(t) =
∫ t

0
eλi(t−τ)Qi(τ ) dτ, i = 1, 2, 3, 4 (E2.3.16)

since Qi(τ) is a constant (complex quantity), Eq. (E2.3.16) gives

ηi(t) = Qi

λi

(eλi t − 1), i = 1, 2, 3, 4 (E2.3.17)

Using the values of Qi and λi from Eqs. (E2.3.15) and (E2.3.11), ηi(t) can be expressed
as

η1(t) = (0.0323 − 0.0014i) [e(−1.4607+3.9902i)t − 1]

η2(t) = (0.0323 + 0.0014i) [e(−1.4607−3.9902i)t − 1]

η3(t) = (−0.4 + 0.0109i) [e(−0.1893+1.3794i)t − 1]

η4(t) = (−0.4 − 0.0109i) [e(−0.1893−1.3794i)t − 1]

(E2.3.18)

Finally, the state variables can be found from Eq. (2.151) as

�y(t) = [Y ]�η(t) (E2.3.19)

In view of Eqs. (E2.3.12) and (E2.3.18), Eq. (E2.3.19) gives

y1(t) = 0.0456
[
e(−1.4607+3.9902i)t − 1

]
m

y2(t) = 0.0623
[
e(−1.4607−3.9902i)t − 1

]
m

y3(t) = −0.3342
[
e(−0.1893+1.3794i)t − 1

]
m/s

y4(t) = −0.5343
[
e(−0.1893−1.3794i)t − 1

]
m/s

(E2.3.20)

2.3 RECENT CONTRIBUTIONS

Single-Degree-of-Freedom Systems Anderson and Ferri [5] investigated the prop-
erties of a single-degree-of-freedom system damped with generalized friction laws.
The system was studied first by using an exact time-domain method and then by
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using first-order harmonic balance. It was observed that the response amplitude can
be increased or decreased by the addition of amplitude-dependent friction. These
results suggest that in situations where viscous damping augmentation is difficult or
impractical, as in the case of space structures and turbomachinery bladed disks, bene-
ficial damping properties can be achieved through the redesign of frictional interfaces.
Bishop et al. [6] gave an elementary explanation of the Duhamel integral as well as
Fourier and Laplace transform techniques in linear vibration analysis. The authors
described three types of receptances and explained the relationships between them.

Multidegree-of-Freedom Systems The dynamic absorbers play a major role in reduc-
ing vibrations of machinery. Soom and Lee [7] studied the optimal parameter design of
linear and nonlinear dynamic vibration absorbers for damped primary systems. Shaw
et al. [8] showed that the presence of nonlinearities can introduce dangerous instabil-
ities, which in some cases may result in multiplication rather than reduction of the
vibration amplitudes. For systems involving a large number of degrees of freedom, the
size of the eigenvalue problem is often reduced using a model reduction or dynamic
condensation process to find an approximate solution rapidly. Guyan reduction is a
popular technique used for model reduction [9]. Lim and Xia [10] presented a tech-
nique for dynamic condensation based on iterated condensation. The quantification
of the extent of nonproportional viscous damping in discrete vibratory systems was
investigated by Prater and Singh [11]. Lauden and Akesson derived an exact complex
dynamic member stiffness matrix for a damped second-order Rayleigh–Timoshenko
beam vibrating in space [12].

The existence of classical real normal modes in damped linear vibrating systems
was investigated by Caughey and O’Kelly [13]. They showed that the necessary and
sufficient condition for a damped system governed by the equation of motion

[I ] �̈x(t) + [A] �̇x(t) + [B]�x(t) = �f (t) (2.164)

to possess classical normal modes is that matrices [A] and [B] be commutative; that
is, [A][B] = [B][A]. The scope of this criterion was reexamined and an alternative
form of the condition was investigated by other researchers [14]. The settling time
of a system can be defined as the time for the envelope of the transient part of the
system response to move from its initial value to some fraction of the initial value.
An expression for the settling time of an underdamped linear multidegree-of-freedom
system was derived by Ross and Inman [15].
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PROBLEMS
2.1 A building frame with four identical columns that
have an effective stiffness of k and a rigid floor of
mass m is shown in Fig. 2.10. The natural period of
vibration of the frame in the horizontal direction is found
to be 0.45 s. When a heavy machine of mass 500 kg
is mounted (clamped) on the floor, its natural period
of vibration in the horizontal direction is found to be

0.55 s. Determine the effective stiffness k and mass m

of the building frame.

2.2 The propeller of a wind turbine with four blades is
shown in Fig. 2.11. The aluminum shaft AB on which
the blades are mounted is a uniform hollow shaft of outer
diameter 2 in., inner diameter 1 in., and length 10 in. If

EI

EI
EI

m

EI

(a) (b)

EI

500 kg

EI
EI

m

EI

Figure 2.10
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each blade has a mass moment of inertia of 0.5 lb-in.-
sec2, determine the natural frequency of vibration of the
blades about the y-axis. [Hint : The torsional stiffness kt

of a shaft of length l is given by kt = GI0/l, where G

is the shear modulus (G = 3.8 × 106 psi for aluminum)
and I0 is the polar moment of inertia of the cross section
of the shaft.]

••
A

yB

10 in.

Figure 2.11

2.3 What is the difference between the damped and
undamped natural frequencies and natural time periods
for a damping ratio of 0.5?

2.4 A spring–mass system with mass 1 kg is found
to vibrate with a natural frequency of 10 Hz. The same
system when immersed in an oil is observed to vibrate
with a natural frequency of 9 Hz. Find the damping
constant of the oil.

2.5 Find the response of an undamped spring–mass
system subjected to a constant force F0 applied during
0 ≤ t ≤ τ using a Laplace transform approach. Assume
zero initial conditions.

2.6 A spring–mass system with mass 10 kg and stiff-
ness 20,000 N/m is subjected to the force shown in

Fig. 2.12. Determine the response of the mass using the
convolution integral.

F(t)

t = natural period

50 N

0
t

t

5

Figure 2.12

2.7 Find the response of a spring–mass system sub-
jected to the force F(t) = F0e

iωt using the method of
Laplace transforms. Assume the initial conditions to be
zero.

2.8 Consider a spring–mass system with m = 10 kg
and k = 5000 N/m subjected to a harmonic force F(t) =
400 cos 10t N. Find the total system response with the
initial conditions x0 = 0.1 m and ẋ0 = 5 m/s.

2.9 Consider a spring–mass–damper system with m =
10 kg, k = 5000 N/m, and c = 200 N·s/m subjected to
a harmonic force F(t) = 400 cos 10t N. Find the steady-
state and total system response with the initial conditions
x0 = 0.1 m and ẋ0 = 5 m/s.

2.10 A simplified model of an automobile and its sus-
pension system is shown in Fig. 2.13 with the following
data: mass m = 1000 kg, radius r of gyration about
the center of mass G = 1.0 m, spring constant of front
suspension kf = 20 kN/m, and spring constant of rear
suspension kr = 15 kN/m.

(a) Derive the equations of motion of an automobile
by considering the vertical displacement of the
center of mass y and rotation of the body about
the center of mass θ as the generalized coordi-
nates.
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l2 = 1.6 ml1 = 1.2 m

G BA

(a)

y

l2

kr

kf

l1

G
B

A

θ

(b)

Figure 2.13

(b) Determine the natural frequencies and mode
shapes of the automobile in bounce (up-and-
down motion) and pitch (angular motion)
modes.

2.11 Find the natural frequencies and the m-orthogonal
mode shapes of the system shown in Fig. 2.9(a) for the
following data: k1 = k2 = k3 = k and m1 = m2 = m.

2.12 Determine the natural frequencies and the m-
orthogonal mode shapes of the system shown in
Fig. 2.14.

2.13 Find the free vibration response of the sys-
tem shown in Fig. 2.8(a) using modal analysis. The
data are as follows: m1 = m2 = 10 kg, k1 = k2 =

k3 = 500 N/m, x1(0) = 0.05 m, x2(0) = 0.10 m, and
ẋ1(0) = ẋ2(0) = 0.

2.14 Consider the following data for the two-degree-of-
freedom system shown in Fig. 2.9: m1 = 1 kg, m2 =
2 kg, k1 = 500 N/m, k2 = 100 N/m, k3 = 300 N/m,
c1 = 3 N·s/m, c2 = 1 N·s/m, and c3 = 2 N·s/m.

(a) Derive the equations of motion.

(b) Discuss the nature of error involved if the off-
diagonal terms of the damping matrix are neglected
in the equations derived in part (a).

(c) Find the responses of the masses resulting from the
initial conditions x1(0) = 5 mm, x2(0) = 0, ẋ1(0) =
1 m/s, and ẋ2(0) = 0.
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l

a

l

2m
m

q1
q2

k

Figure 2.14

2.15 Determine the natural frequencies and m-
orthogonal mode shapes of the three-degree-of-freedom
system shown in Fig. 2.15 for the following data:

x1(t)

x2(t)

x3(t)

k1

k2

k3

k4

m1

m2

m3

Figure 2.15

m1 = m3 = m, m2 = 2 m, k1 = k4 = k, and k2 =
k3 = 2 k.

2.16 Find the free vibration response of the sys-
tem described in Problem 2.14 using modal analysis

c1k1

F1(t)x1(t)

F2(t)x2(t)

m1

m2

c2k2

Figure 2.16
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Tool (punch)

Tool base (mass m1)

Platform (mass m2)

Machine (mass m3)

Isolation pad (k1, c1)

Rubber mounting (k2, c2)

Foundation (k3, c3)

(a)

k1 c1

c2k2

x2(t)

x1(t)

F1(t)

m1

m3

m2

k3 c3

x3(t)

(b)

Figure 2.17

with the following data: m = 2 kg, k = 100 N/m,
x1(0) = 0.1 m, and x2(0) = x3(0) = ẋ1(0) = ẋ2(0) =
ẋ3(0) = 0.

2.17 Consider the two-degree-of-freedom system shown
in Fig. 2.16 with the following data: m1 = 10 kg, m2 =
1 kg, k1 = 100 N/m, k2 = 10 N/m, and dampers c1 and
c2 corresponding to proportional damping with α =
0.1 and β = 0.2. Find the steady-state response of the
system.

2.18 A punch press mounted on a foundation as
shown in Fig. 2.17(a) has been modeled as a three-
degree-of-freedom system as indicated in Fig. 2.17(b).
The data are as follows: m1 = 200 kg, m2 = 2000 kg,
m3 = 5000 kg, k1 = 2 × 105 N/m, k2 = 1 × 105 N/m,
and k3 = 5 × 105 N/m. The damping constants c1,
c2, and c3 correspond to modal damping ratios of
ζ1 = 0.02, ζ2 = 0.04, and ζ3 = 0.06 in the first, sec-
ond, and third modes of the system, respectively.
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Find the response of the system using modal analy-
sis when the tool base m1 is subjected to an impact
force F1(t) = 500δ(t) N.

2.19 A spring–mass–damper system with m = 0.05 lb-
sec2/in., k = 50 lb/in., and c = 1 lb-sec/in., is subjected
to a harmonic force of magnitude 20 lb. Find the
resonant amplitude and the maximum amplitude of the
steady-state motion.

2.20 A machine weighing 25 lb is subjected to a har-
monic force of amplitude 10 lb and frequency 10 Hz.
If the maximum displacement of the machine is to
be restricted to 1 in., determine the necessary spring
constant of the foundation for the machine. Assume
the damping constant of the foundation to be 0.5 lb-
sec/in.
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Derivation of Equations:
Equilibrium Approach

3.1 INTRODUCTION

The equations of motion of a vibrating system can be derived by using the dynamic
equilibrium approach, variational method, or integral equation formulation. The
dynamic equilibrium approach is considered in this chapter. The variational and inte-
gral equation approaches are presented in Chapters 4 and 5, respectively. The dynamic
equilibrium approach can be implemented by using either Newton’s second law of
motion or D’Alembert’s principle.

3.2 NEWTON’S SECOND LAW OF MOTION

Newton’s second law of motion can be used conveniently to derive the equations of
motion of a system under the following conditions:

1. The system undergoes either pure translation or pure rotation.
2. The motion takes place in a single plane.
3. The forces acting on the system either have a constant orientation or are oriented

parallel to the direction along which the point of application moves.

If these conditions are not satisfied, application of Newton’s second law of motion
becomes complex, and other methods, such as the variational and integral equation
approaches, can be used more conveniently. Newton’s second law of motion can be
stated as follows: The rate of change of the linear momentum of a system is equal to
the net force acting on the system. Thus, if several forces �F1, �F2, . . . act on the system,
the resulting force acting on the system is given by

∑
i

�Fi and Newton’s second law
of motion can be expressed as

∑
i

�Fi = d

d t
(m�v) = m�a (3.1)

where m is the constant mass, �v is the linear velocity, �a is the linear acceleration, and
m�v is the linear momentum. Equation (3.1) can be extended to angular motion. For
the planar motion of a body, the angular momentum about the center of mass can be
expressed as Iω, where I is the constant mass moment of inertia of the body about an
axis perpendicular to the plane of motion and passing through the centroid (centroidal
axis) and ω is the angular velocity of the body. Then Newton’s second law of motion
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states that the rate of change of angular momentum is equal to the net moment acting
about the centroidal axis of the body:

∑
i

Mi = d

d t
(Iω) = I ω̇ = Iα (3.2)

where M1, M2, . . . denote the moments acting about the centroidal axis of the body
and ω̇ = dω/dt = α, the angular acceleration of the body.

3.3 D’ALEMBERT’S PRINCIPLE
D’Alembert’s principle is just a restatement of Newton’s second law of motion. For the
linear motion of a mass, Newton’s second law of motion, Eq. (3.1), can be rewritten as∑

i

�Fi − m�a = �0 (3.3)

Equation (3.3) can be considered as an equilibrium equation in which the sum of all
forces, including the force −m�a is in equilibrium. The term −m�a represents a fictitious
force called the inertia force or D’Alembert force. Equation (3.3) denotes D’Alembert’s
principle, which can be stated in words as follows: The sum of all external forces,
including the inertia force, keeps the body in a state of dynamic equilibrium. Note
that the minus sign associated with the inertia force in Eq. (3.3) denotes that when
�a = d �v/d t > 0, the force acts in the negative direction. As can be seen from Eqs. (3.1)
and (3.3), Newton’s second law of motion and D’Alembert’s principle are equivalent.
However, Newton’s second law of motion is more commonly used in deriving the
equations of motion of vibrating bodies and systems. The equations of motion of the
axial vibration of a bar, transverse vibration of a thin beam, and the transverse vibration
of a thin plate are derived using the equilibrium approach in the following sections.

3.4 EQUATION OF MOTION OF A BAR IN AXIAL VIBRATION
Consider an elastic bar of length l with varying cross-sectional area A(x), as shown in
Fig. 3.1. The axial forces acting on the cross sections of a small element of the bar of
length dx are given by P and P + dP with

P = σA = EA
∂u

∂x
(3.4)

where σ is the axial stress, E is Young’s modulus, u is the axial displacement, and
∂u/∂x is the axial strain. If f (x, t) denotes the external force per unit length, the
resulting force acting on the bar element in the x direction is

(P + dP ) − P + f dx = dP + f dx

The application of Newton’s second law of motion gives

mass × acceleration = resultant force

or

ρA dx
∂2u

∂t2
= dP + f dx (3.5)
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x

b

a

z

c

f(x, t)

x, u

d

dx

 l

(a)

0

dx

P + dP

Equilibrium position

Displaced position

a

b

P

u

u + du

fdx

c
c′

d ′d

a′

b′

(b)

Figure 3.1 Longitudinal vibration of a bar.

where ρ is the mass density of the bar. By using the relation dP = (∂P /∂x) dx and
Eq. (3.4), the equation of motion for the forced longitudinal vibration of a nonuniform
bar, Eq. (3.5), can be expressed as

∂

∂x

[
EA(x)

∂u(x, t)

∂x

]
+ f (x, t) = ρ(x)A(x)

∂2u

∂t2
(x, t) (3.6)

For a uniform bar, Eq. (3.6) reduces to

EA
∂2u

∂x2
(x, t) + f (x, t) = ρA

∂2u

∂t2
(x, t) (3.7)
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Equation (3.6) or (3.7) can be solved using the appropriate initial and boundary con-
ditions of the bar. For example, if the bar is subjected to a known initial displacement
u0(x) and initial velocity u̇0(x) the initial conditions can be stated as

u(x, t = 0) = u0(x), 0 ≤ x ≤ l (3.8)

∂u

∂t
(x, t = 0) = u̇0(x), 0 ≤ x ≤ l (3.9)

If the bar is fixed at x = 0 and free at x = l, the boundary conditions can be stated as
follows. At the fixed end:

u(0, t) = 0, t > 0 (3.10)

At the free end:

axial force = AE
∂u

∂x
(l, t) = 0

or

∂u

∂x
(l, t) = 0, t > 0 (3.11)

Other possible boundary conditions of the bar are discussed in Chapter 9.

3.5 EQUATION OF MOTION OF A BEAM IN TRANSVERSE
VIBRATION

A thin beam subjected to a transverse force is shown in Fig. 3.2(a). Consider the
free-body diagram of an element of a beam of length dx shown in Fig. 3.2(b), where
M(x, t) is the bending moment, V (x, t) is the shear force, and f (x, t) is the external
transverse force per unit length of the beam. Since the inertia force (mass of the element
times the acceleration) acting on the element of the beam is

ρA(x) dx
∂2w

∂t2
(x, t)

the force equation of motion in the z direction gives

−(V + dV ) + f (x, t) dx + V = ρA(x) dx
∂2w

∂t2
(x, t) (3.12)

where ρ is the mass density and A(x) is the cross-sectional area of the beam. The
moment equilibrium equation about the y axis passing through point P in Fig. 3.2
leads to

(M + dM) − (V + dV ) dx + f (x, t) dx
dx

2
− M = 0 (3.13)

Writing

dV = ∂V

∂x
dx and dM = ∂M

∂x
dx
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l

(a)

(b)

z, w

0

f (x, t)

dx

x

dx

w(x, t)

f(x, t)

V

x

M

V + dV

M + dM

P

rA dx ∂2w
∂t2

Figure 3.2 Transverse vibration of a thin beam.

and disregarding terms involving second powers in dx, Eqs. (3.12) and (3.13) can be
written as

−∂V

∂x
(x, t) + f (x, t) = ρA(x)

∂2w

∂t2
(x, t) (3.14)

∂M

∂x
(x, t) − V (x, t) = 0 (3.15)

By using the relation V = ∂M/∂x from Eqs. (3.15), (3.14) becomes

−∂2M

∂x2
(x, t) + f (x, t) = ρA(x)

∂2w

∂t2
(x, t) (3.16)

From the elementary theory of bending of beams (also known as the Euler–Bernoulli
or thin beam theory), the relationship between bending moment and deflection can be
expressed as [1, 2]

M(x, t) = EI(x)
∂2w

∂x2
(x, t) (3.17)

where E is Young’s modulus and I (x) is the moment of inertia of the beam cross
section about the y axis. Inserting Eq. (3.17) into Eq. (3.16), we obtain the equation
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of motion for the forced lateral vibration of a nonuniform beam:

∂2

∂x2

[
EI(x)

∂2w

∂x2
(x, t)

]
+ ρA(x)

∂2w

∂t2
(x, t) = f (x, t) (3.18)

For a uniform beam, Eq. (3.18) reduces to

EI
∂4w

∂x4
(x, t) + ρA

∂2w

∂t2
(x, t) = f (x, t) (3.19)

Equation (3.19) can be solved using the proper initial and boundary conditions. For
example, if the beam is given an initial displacement w0(x) and an initial velocity
ẇ0(x), the initial conditions can be expressed as

w(x, t = 0) = w0(x), 0 ≤ x ≤ l (3.20)

∂w

∂t
(x, t = 0) = ẇ0(x), 0 ≤ x ≤ l (3.21)

If the beam is fixed at x = 0 and pinned at x = l, the deflection and slope will be zero
at x = 0 and the deflection and the bending moment will be zero at x = l. Hence, the
boundary conditions are given by

w(x = 0, t) = 0, t > 0 (3.22)

∂w

∂x
(x = 0, t) = 0, t > 0 (3.23)

w(x = l, t) = 0, t > 0 (3.24)

∂2w

∂x2
(x = l, t) = 0, t > 0 (3.25)

Other possible boundary conditions of the beam are given in Chapter 11.

3.6 EQUATION OF MOTION OF A PLATE IN TRANSVERSE
VIBRATION

The following assumptions are made in deriving the differential equation of motion of
a transversely vibrating plate:

1. The thickness h of the plate is small compared to its other dimensions.
2. The middle plane of the plate does not undergo in-plane deformation (i.e., the

middle plane is a neutral surface).
3. The transverse deflection w is small compared to the thickness of the plate.
4. The influence of transverse shear deformation is neglected (i.e., straight lines

normal to the middle surface before deformation remain straight and normal
after deformation).

5. The effect of rotary inertia is neglected.

The plate is referred to a system of orthogonal coordinates xyz. The middle plane
of the plate is assumed to coincide with the xy plane before deformation, and the
deflection of the middle surface is defined by w(x, y, t), as shown in Fig. 3.3(a).



74 Derivation of Equations: Equilibrium Approach

(a)

h
dy

sxy

syx

syy

syz

sxx

sxz

dx

z, w

f (x, y, t)

O x

y

(b)

dx

dy

z

O

f

x

y

Qy dy+
∂Qy

∂y

Qx dx+
∂Qx

∂x

Mx dx+
∂Mx

∂x

My dy+
∂My

∂y

Mxy dx+
∂Mxy

∂x

Myx dy+
∂Myx

∂y

Mx

Mxy

Myx

My

Qx

Qy

Figure 3.3 (a) Stresses in a plate; (b) forces and induced moment resultants in an element of
a plate.
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3.6.1 State of Stress

For thin plates subjected to bending forces (i.e., transverse loads and bending moments),
the direct stress in the z direction (σzz) is usually neglected. Thus, the nonzero stress
components are σxx , σyy , σxy , σyz, and σxz. As we are considering flexural (bend-
ing) deformations only, there will be no resulting force in the x and y directions;
that is, ∫ h/2

−h/2
σxx dz = 0,

∫ h/2

−h/2
σyy dz = 0 (3.26)

It can be noted that in beams, which can be considered as one-dimensional analogs of
plates, the shear stress σxy will not be present. As in beam theory, the stresses σxx (and
σyy) and σxz (and σyz) are assumed to vary linearly and parabolically, respectively, over
the thickness of the plate, as indicated in Fig. 3.3(a). The shear stress σxy is assumed to
vary linearly over the thickness of the plate, as shown in Fig. 3.3(a). The stresses σxx ,
σyy , σxy , σyz, and σxz are used in defining the following force and moment resultants
per unit length:

Mx =
∫ h/2

−h/2
σxxz dz

My =
∫ h/2

−h/2
σyyz dz

Mxy =
∫ h/2

−h/2
σxyz dz = Myx since σyx = σxy (3.27)

Qx =
∫ h/2

−h/2
σxz dz

Qy =
∫ h/2

−h/2
σyz dz

These force and moment resultants are shown in Fig. 3.3(b).

3.6.2 Dynamic Equilibrium Equations

By considering an element of the plate, the differential equation of motion in terms
of force and moment resultants can be derived. For this we consider the bending
moments and shear forces to be functions of x, y, and t , so that if Mx acts on one
side of the element, Mx + dMx = Mx + (∂Mx/∂x)dx acts on the opposite side. The
resulting equations of motion can be written as follows.

Dynamic equilibrium of forces in the z direction:(
Qx + ∂Qx

∂x
dx

)
dy +

(
Qy + ∂Qy

∂y
dy

)
dx + f dx dy − Qx dy − Qy dx

= mass of element × acceleration in the z direction

= ρh dx dy
∂2w

∂t2
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or

∂Qx

∂x
+ ∂Qy

∂y
+ f (x, y, t) = ρh

∂2w

∂t2
(3.28)

where f (x,y,t) is the intensity of the external distributed load and ρ is the density of
the material of the plate.

Equilibrium of moments about the x axis:
(

Qy + ∂Qy

∂y
dy

)
dx dy =

(
My + ∂My

∂y
dy

)
dx +

(
Mxy + ∂Mxy

∂x
dx

)
dy

−My dx − Mxy dy − f dx dy
dy

2

By neglecting terms involving products of small quantities, this equation can be writ-
ten as

Qy = ∂My

∂y
+ ∂Mxy

∂x
(3.29)

Equilibrium of moments about the y axis:
(

Qx + ∂Qx

∂x
dx

)
dy dx =

(
Mx + ∂Mx

∂x
dx

)
dy +

(
Myx + ∂Myx

∂y
dy

)
dx

−Mx dy − Myx dx − f dx dy
dx

2

or

Qx = ∂Mx

∂x
+ ∂Mxy

∂y
(3.30)

3.6.3 Strain–Displacement Relations

To derive the strain–displacement relations, consider the bending deformation of a
small element (by neglecting shear deformation), as shown in Fig. 3.4. In the edge
view of the element (in the xz plane), PQRS is the undeformed position and P ′Q′R′S′
is the deformed position of the element. Due to the assumption that “normals to the
middle plane of the undeformed plate remain straight and normal to the middle plane
after deformation,” line AB will become A′B ′ after deformation. Thus, points such as K

will have in-plane displacements u and v (parallel to the x and y axes), due to rotation
of the normal AB about the y and x axes, respectively. The in-plane displacements of
K can be expressed as (Fig. 3.4b and c)

u = −z
∂w

∂x

v = −z
∂w

∂y
(3.31)
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Figure 3.4 (a) Edge view of a plate; (b) deformation in the xz plane; (c) deformation in the
yz plane.

The linear strain–displacement relations are given by

εxx = ∂u

∂x
, εyy = ∂v

∂y
, εxy = ∂u

∂y
+ ∂v

∂x
(3.32)

where εxx and εyy are normal strains parallel to the x and y axes, respectively, and εxy

is the shear strain in the xy plane. Equations (3.31) and (3.32) yield

εxx = ∂u

∂x
= ∂

∂x

(
−z

∂w

∂x

)
= −z

∂2w

∂x2

εyy = ∂v

∂y
= ∂

∂y

(
−z

∂w

∂y

)
= −z

∂2w

∂y2
(3.33)

εxy = ∂u

∂y
+ ∂v

∂x
= ∂

∂y

(
−z

∂w

∂x

)
+ ∂

∂x

(
−z

∂w

∂y

)
= −2z

∂2w

∂x∂y

Equations (3.31) show that the transverse displacement w(x, y, t) completely describes
the deformation state of the plate.
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3.6.4 Moment–Displacement Relations

We assume the plate to be in a state of plane stress. Thus, the stress–strain relations
can be expressed as

σxx = E

1 − ν2
εxx + νE

1 − ν2
εyy

σyy = E

1 − ν2
εyy + νE

1 − ν2
εxx (3.34)

σxy = Gεxy

where E is Young’s modulus, G is the shear modulus, and ν is Poisson’s ratio. By sub-
stituting Eq. (3.33) into Eq. (3.34) and the resulting stress into the first three equations
of (3.27), we obtain, after integration,

Mx = −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)

My = −D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
(3.35)

Mxy = Myx = −(1 − ν)D
∂2w

∂x∂y

where D, the flexural rigidity of the plate, is given by

D = Eh3

12(1 − ν2)
(3.36)

The flexural rigidity D is analogous to the flexural stiffness of a beam (EI ). In fact,
D = EI for a plate of unit width when ν is taken as zero. The use of Eqs. (3.35) in
Eqs. (3.29) and (3.30) lead to the relations

Qx = −D
∂

∂x

(
∂2w

∂x2
+ ∂2w

∂y2

)

Qy = −D
∂

∂y

(
∂2w

∂x2
+ ∂2w

∂y2

)
(3.37)

3.6.5 Equation of Motion in Terms of Displacement

By substituting Eqs. (3.35) and (3.37) into Eqs. (3.28)–(3.30), we notice that moment
equilibrium equations (3.29) and (3.30) are satisfied automatically, and Eq. (3.28) gives
the desired equation of motion as

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4

)
+ ρh

∂2w

∂t2
= f (x, y, t) (3.38)

If f (x, y, t) = 0, we obtain the free vibration equation as

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4

)
+ ρh

∂2w

∂t2
= 0 (3.39)
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Equations (3.38) and (3.39) can be written in a more general form:

D∇4w + ρh
∂2w

∂t2
= f (3.40)

D∇4w + ρh
∂2w

∂t2
= 0 (3.41)

where ∇4 = ∇2∇2, the biharmonic operator, is given by

∇4 = ∂4

∂x4
+ 2

∂4

∂x2∂y2
+ ∂4

∂y4
(3.42)

in Cartesian coordinates.

3.6.6 Initial and Boundary Conditions

As the equation of motion, Eq. (3.38) or (3.39), involves fourth-order partial derivatives
with respect to x and y, and second-order partial derivatives with respect to t , we need
to specify four conditions in terms of each of x and y (i.e., two conditions for any
edge) and two conditions in terms of t (usually, in the form of initial conditions) to
find a unique solution of the problem. If the displacement and velocity of the plate at
t = 0 are specified as w0(x, y) and ẇ0(x, y), the initial conditions can be expressed as

w(x, y, 0) = w0(x, y) (3.43)

∂w

∂t
(x, y, 0) = ẇ0(x, y) (3.44)

The general boundary conditions that are applicable for any type of geometry of the
plate can be stated as follows. Let n and s denote the coordinates in the directions
normal and tangential to the boundary. At a fixed edge, the deflection and the slope
along the normal direction must be zero:

w = 0 (3.45)

∂w

∂n
= 0 (3.46)

For a simply supported edge, the deflection and the bending moment acting on the
edge about the s direction must be zero; that is,

w = 0 (3.47)

Mn = 0 (3.48)

where the expression for Mn in terms of normal and tangential coordinates is given
by [5]

Mn = −D

[
∇2w − (1 − ν)

(
1

R

∂w

∂n
+ ∂2w

∂s2

)]
(3.49)

where R denotes the radius of curvature of the edge. For example, if the edge with
y = b = constant of a rectangular plate is simply supported, Eqs. (3.47) and (3.48)
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become

w(x, b) = 0, 0 ≤ x ≤ a (3.50)

My = −D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
(x, b) = 0, 0 ≤ x ≤ a (3.51)

where the dimensions of the plate are assumed to be a and b parallel to the x and y

axes, respectively. The other possible boundary conditions of the plate are discussed
in Chapter 14.

3.7 ADDITIONAL CONTRIBUTIONS

In the equilibrium approach, the principles of equilibrium of forces and moments are
used by considering an element of the physical system. This gives the analyst a physical
feel of the problem. Hence, the approach has been used historically by many authors to
derive equations of motion. For example, Love [6] considered the free-body diagram of
a curved rod to derive coupled equations of motion for the vibration of a curved rod or
beam. Timoshenko and Woinowsky-Krieger derived equations of motion for the vibra-
tion of plates and cylindrical shells [7]. Static equilibrium equations of symmetrically
loaded shells of revolution have been derived using the equilibrium approach, and the
resulting equations have subsequently been specialized for spherical, conical, circular
cylindrical, toroidal, and ellipsoidal shells by Ugural [3] for determining the membrane
stresses. The approach was also used to derive equilibrium equations of axisymmet-
rically loaded circular cylindrical and general shells of revolution by including the
bending behavior.

In the equilibrium approach, the boundary conditions are developed by consider-
ing the physics of the problem. Although the equilibrium and variational approaches
can give the same equations of motion, the variational methods have the advantage
of yielding the exact form of the boundary conditions automatically. Historically, the
development of plate theory, in terms of the correct forms of the governing equation and
the boundary conditions, has been associated with the energy (or variational) approach.
Several investigators, including Bernoulli, Germain, Lagrange, Poisson, and Navier,
have attempted to present a satisfactory theory of plates but did not succeed com-
pletely. Later, Kirchhoff [8] derived the correct governing equations for plates using
minimization of the (potential) energy and pointed out that there exist only two bound-
ary conditions on a plate edge. Subsequently, Lord Kelvin and Tait [9] gave physical
insight to the boundary conditions given by Kirchhoff by converting twisting moments
along the edge of the plate into shearing forces. Thus, the edges are subject to only
two forces: shear and moment.
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PROBLEMS
3.1 The system shown in Fig. 3.5 consists of a cylinder
of mass M0 and radius R that rolls without slipping on a
horizontal surface. The cylinder is connected to a viscous
damper of damping constant c and a spring of stiffness k.
A uniform bar of length l and mass M is pin-connected
to the center of the cylinder and is subjected to a force
F at the other end. Derive the equations of motion of
the two-degree-of-freedom system using the equilibrium
approach.

3.2 Consider a prismatic bar with one end (at x = 0)
connected to a spring of stiffness K0 and the other
end (at x = l) attached to a mass M0 as shown in
Fig. 3.6. The bar has a length of l, cross-sectional area A,
mass density ρ, and modulus of elasticity E. Derive the
equation of motion for the axial vibration of the bar and
the boundary conditions using the equilibrium approach.
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Figure 3.5
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3.3 A beam resting on an elastic foundation and sub-
jected to a distributed transverse force f (x, t) is shown
in Fig. 3.7(a). One end of the beam (at x = 0) is simply
supported and the other end (at x = l) carries a mass M0.
The free-body diagram of the end mass M0 is shown in
Fig. 3.7(b).

(a) Derive the equation of motion of the beam using the
equilibrium approach.

(b) Find the boundary conditions of the beam.

3.4 Consider a differential element of a membrane
under uniform tension T in a polar coordinate system
as shown in Fig. 3.8. Derive the equation of motion
for the transverse vibration of a circular membrane of
radius R using the equilibrium approach. Assume that
the membrane has a mass of m per unit area.

3.5 Consider a differential element of a circular plate
subjected to the transverse distributed force f (r, θ, t)

as shown in Fig. 3.9. Noting that Qt and Mrt vanish
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due to the symmetry, derive an equation of motion for
the transverse vibration of a circular plate using the
equilibrium approach.

3.6 Consider a rectangular plate resting on an elastic
foundation with a foundation modulus k so that the

resisting force offered by the foundation to a transverse
deflection of the plate w is given by kw per unit area.
The plate is subjected to a transverse force f (x, y, t)

per unit area. Derive a differential equation of motion
governing the transverse vibration of the plate using the
equilibrium approach.



4

Derivation of Equations:
Variational Approach

4.1 INTRODUCTION

As stated earlier, vibration problems can be formulated using an equilibrium, a varia-
tional, or an integral equation approach. The variational approach is considered in this
chapter. In the variational approach, the conditions of extremization of a functional are
used to derive the equations of motion. The variational methods offer the following
advantages:

1. Forces that do no work, such as forces of constraint on masses, need not be
considered.

2. Accelerations of masses need not be considered; only velocities are needed.
3. Mathematical operations are to be performed on scalars, not on vectors, in

deriving the equations of motion.

Since the variational methods make use of the principles of calculus of variations,
the basic concepts of calculus of variations are presented. However, a brief review of
the calculus of a single variable is given first to indicate the similarity of the concepts.

4.2 CALCULUS OF A SINGLE VARIABLE

To understand the principles of calculus of variations, we start with the extremization
of a function of a single variable from elementary calculus [2]. For this, consider a
continuous and differentiable function of one variable, defined in the interval (x1,x2),
with extreme points at a, b, and c as shown in Fig. 4.1. In this figure the point x =
a denotes a local minimum with f (a) ≤ f (x) for all x in the neighborhood of a.
Similarly, the point x = b represents a local maximum with f (b) ≥ f (x) for all x in
the neighborhood of b. The point x = c indicates a stationary or inflection point with
f (c) ≤ f (x) on one side and f (c) ≥ f (x) on the other side of the neighborhood of c.
To establish the conditions of extreme values of the function f (x), consider a Taylor
series expansion of the function about an extreme point such as x = a:

f (x) = f (a) + df

dx

∣∣∣∣
a

(x − a) + 1

2!

d2f

dx2

∣∣∣∣
a

(x − a)2 + 1

3!

d3f

dx3

∣∣∣∣
a

(x − a)3 + · · ·
(4.1)
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f (x)

x1
x

x2ca b

Figure 4.1 Extreme values of a function of one variable.

which can be rewritten as

f (x) − f (a) = df

dx

∣∣∣∣
a

(x − a) + 1

2!

d2f

dx2

∣∣∣∣
a

(x − a)2 + · · · (4.2)

If x = a is a local minimum, the quantity on the right-hand side of Eq. (4.2) must
be positive for all values of x in the neighborhood of a. Since the value of x − a

can be positive, zero, or negative in the neighborhood of a, the necessary condition is
that df/ dx|a = 0 and a sufficient condition is that d2f/dx2|a > 0 for f (a) to be a
local minimum. A similar procedure can be used to establish the conditions of local
maximum at x = b and stationary point at x = c. Conditions for the extreme values of
f (x) can be summarized as follows. Local minimum at x = a:

df

dx

∣∣∣∣
a

= 0,
d2f

dx2

∣∣∣∣
a

> 0 (4.3)

Local maximum at x = b:

df

dx

∣∣∣∣
b

= 0,
d2f

dx2

∣∣∣∣
b

< 0 (4.4)

Stationary point at x = c:

df

dx

∣∣∣∣
c

= 0,
d2f

dx2

∣∣∣∣
c

= 0 (4.5)

4.3 CALCULUS OF VARIATIONS

The calculus of variations deals with the determination of extreme (minima, maxima,
or stationary) values of functionals. A functional is defined as a function of one or more
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other functions. A simple problem in calculus of variations can be stated as follows.
Find the function φ(x) that satisfies the conditions

φ(x1) = φ1, φ(x2) = φ2 (4.6)

and makes the integral functional

I =
∫ x2

x1

f (x, φ, φx) dx (4.7)

stationary. Here x1, x2, φ1, and φ2 are given, x is the independent variable, φ is the
unknown function of x, φx = dφ(x)/ dx, and f (x, φ, φx) is a known function of x,
φ, and φx . To find the true solution φ(x) that extremizes the functional I , we consider
a family of trial functions φ(x) defined by

φ(x) = φ(x) + εη(x) (4.8)

where ε is a parameter and η(x) is an arbitrary differentiable function with

η(x1) = η(x2) = 0 (4.9)

Thus, for any specified function η(x), there is a family of functions given by Eq. (4.8)
with each value of ε designating a member of that family. Equation (4.9) ensures that
the trial functions satisfy the end conditions specified:

φ(x1) = φ(x1) = φ1

φ(x2) = φ(x2) = φ2 (4.10)

Geometrically, the family of curves φ(x) = φ(x) connect the points (x1,φ1) and (x2,φ2)
as shown in Fig. 4.2. The minimizing curve φ(x) is a member of the family for ε = 0.
The difference between the curves φ(x) and φ(x) is given by εη(x). Using φ and
φx = dφ/ dx for φ and φx = dφ/ dx, respectively, in f (x, φ, φx), the integral over
the trial curve can be expressed as

I (ε) =
∫ x2

x1

f (x, φ, φx) dx =
∫ x2

x1

f (x, φ + εη, φx + εηx) dx (4.11)

where ηx = dη/ dx. As in the case of the calculus of one variable, we expand the
functional I (ε) about ε = 0:

I (ε) = I
∣∣
ε=0 + dI

dε

∣∣∣∣∣
ε=0

ε + 1

2!

d2I

dε2

∣∣∣∣∣
ε=0

ε2 + · · · (4.12)

which can be rewritten as

I (ε) − I |ε=0 = dI

dε

∣∣∣∣∣
ε=0

ε + 1

2!

d2I

dε2

∣∣∣∣∣
ε=0

ε2 + · · · (4.13)
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Figure 4.2 Exact and trial solutions.

It can be observed that the necessary condition for the extremum of I is that

dI

dε

∣∣∣∣∣
ε=0

= Iε(0) = 0 (4.14)

Using differentiation of an integral1 and noting that both φ and φx are functions of ε,
we obtain

Iε = dI

dε
=
∫ x2

x1

(
∂f

∂φ

∂φ

∂ε
+ ∂f

∂φx

∂φx

∂ε

)
dx =

∫ x2

x1

(
∂f

∂φ
η + ∂f

∂φx

ηx

)
dx (4.15)

When ε is set equal to zero, (φ, φx) are replaced by (φ,φx) and Eq. (4.15) reduces to

Iε(0) = dI

dε
(0) =

∫ x2

x1

(
∂f

∂φ
η + ∂f

∂φx

ηX

)
dx = 0 (4.16)

1If

I = I (ε) =
∫ x2(ε)

x1(ε)

f (x, ε) dε (a)

then

Iε = dI

dε
= f (x2, ε)

dx2

dε
− f (x1, ε)

dx1

dε
+
∫ x2(ε)

x1(ε)

∂f

∂ε
dx (b)

If x1 and x2 are constants, Eq. (b) reduces to

Iε = dI

dε
=
∫ x2

x1

∂f

∂ε
dx (c)
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Integrating the second term of the integral in Eq. (4.16) by parts, we obtain

I ε(0) = ∂f

∂φx

η

∣∣∣∣
x2

x1

+
∫ x2

x1

[
∂f

∂φ
− d

dx

(
∂f

∂φx

)]
η dx = 0 (4.17)

In view of Eq. (4.9), Eq. (4.17) gives

Iε(0) =
∫ x2

x1

[
∂f

∂φ
− d

dx

(
∂f

∂φx

)]
η dx = 0 (4.18)

Since Eq. (4.18) must hold for all η, we have

∂f

∂φ
− d

dx

(
∂f

∂φx

)
= 0 (4.19)

This equation, known as the Euler–Lagrange equation, is, in general, a second-order
differential equation. The solution of Eq. (4.19) gives the function φ(x) that makes the
integral I stationary.

4.4 VARIATION OPERATOR

Equation (4.17) can also be derived using a variation operator δ, defined as

δφ = φ(x) − φ(x) (4.20)

where φ(x) is the true function of x that extremizes I , and φ(x) is another function of x

which is infinitesimally different from φ(x) at every point x in the interval x1 < x < x2.
The variation of a function φ(x) denotes an infinitesimal change in the function at a
given value of x. The change is virtual and arbitrary. The variation differs from the
usual differentiation, which denotes a measure of the change in a function (such as φ)
resulting from a specified change in an independent variable (such as x). In view of
Eq. (4.8), Eq. (4.20) can be represented as

δφ(x) = φ(x) − φ(x) = εη(x) (4.21)

where the parameter ε tends to zero. The variation operator has the following important
properties, which are useful in the extremization of the functional I .

1. Since the variation operator is defined to cause an infinitesimal change in the
function φ for a fixed value of x, we have

δx = 0 (4.22)

and hence the independent variable x will not participate in the variation process.
2. The variation operator is commutative with respect to the operation of differ-

entiation. For this, consider the derivative of a variation:

d

dx
δφ = d

dx
εη(x) = ε

dη(x)

dx
(4.23)
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Next, consider the operation of the variation of a derivation, δ(dφ/ dx). Using
the definition of Eq. (4.21),

δ
dφ

dx
= dφ

dx
− dφ

dx
= d

dx
(φ − φ) = d

dx
εη(x) = ε

dη(x)

dx
(4.24)

Thus, Eqs. (4.23) and (4.24) indicate that the operations of differentiation and
variation are commutative:

d

dx
δφ = δ

dφ

dx
(4.25)

3. The variation operator is commutative with respect to the operation of integra-
tion. For this, consider the variation of an integral:

δ

∫ x2

x1

φ(x) dx =
∫ x2

x1

φ(x) dx −
∫ x2

x1

φ(x) dx

=
∫ x2

x1

[φ(x) − φ(x)] dx =
∫ x2

x1

δφ(x) dx (4.26)

Equation (4.26) establishes that the operations of integration and variation are
commutative:

δ

∫ x2

x1

φ(x) dx =
∫ x2

x1

δφ(x) dx (4.27)

For the extremization of the functional I of Eq. (4.7), we follow the procedure
used for the extremization of a function of a single variable and define the functional
I to be stationary if the first variation is zero:

δI = 0 (4.28)

Using Eq. (4.7) and the commutative property of Eq. (4.27), Eq. (4.28) can be writ-
ten as

δI =
∫ x2

x1

δf dx = 0 (4.29)

where the variation of f is caused by the varying function φ(x):

δf = f (x, φ, φx) − f (x, φ, φx) = f (x, φ + εη, φx + εηx) − f (x, φ, φx) (4.30)

The expansion of the function f (x, φ + εη, φx + εηx) about (x, φ, φx) gives

f (x, φ + εη, φx + εηx) = f (x, φ, φx) + ∂f

∂φ
εη + ∂f

∂φx

εηx + · · · (4.31)

Since ε is assumed to be small, we neglect terms of higher order in ε in Eq. (4.31), so
that

δf = ε

(
∂f

∂φ
η + ∂f

∂φx

ηx

)
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Thus,

δI =
∫ x2

x1

δf dx = ε

∫ x2

x1

(
∂f

∂φ
η + ∂f

∂φx

ηx

)
dx = 0 (4.32)

for all functions η(x). The second term in the integral, with ε in Eq. (4.32), can be
integrated by parts as∫ x2

x1

∂f

∂φx

ηx dx = −
∫ x2

x1

η
d

dx

(
∂f

∂φx

)
dx + η

∂f

∂φx

∣∣∣∣
x2

x1

(4.33)

Using Eq. (4.33) in (4.32), we obtain

δI

ε
=
∫ x2

x1

[
∂f

∂φ
− d

dx

(
∂f

∂φx

)]
η(x) dx + η

∂f

∂φx

∣∣∣∣
x2

x1

= 0 (4.34)

Since the function η(x) is arbitrary, Eq. (4.34) will be satisfied for all possible values
of η(x) only if

∂f

∂φ
− d

dx

(
∂f

∂φx

)
= 0 (4.35)

η
∂f

∂φx

∣∣∣∣
x2

x1

= 0 (4.36)

Equation (4.35) can be seen to be the Euler–Lagrange equation, and Eq. (4.36) denotes
the boundary conditions. Since the function φ(x) is specified or fixed at the endpoints,
as φ(x1) = φ1 and φ(x2) = φ2 [see Eq. (4.6)], η(x1) = η(x2) = 0 [see Eq. (4.9)] and
hence no variation is permitted in φ(x) at the endpoints. Thus, Eq. (4.36) will be
satisfied automatically.

4.5 FUNCTIONAL WITH HIGHER-ORDER DERIVATIVES

The extremization of functionals involving higher-order derivatives will be useful
in deriving the equations of motion of several continuous systems. To illustrate the
methodology, we consider the extremization of a functional (I ) involving second deriva-
tives:

I =
∫ x2

x1

f (x, φ, φx, φxx) dx (4.37)

where φ = φ(x), φx = dφ/ dx, and φxx = d2φ/dx2. Let φ(x) denote the true function
that extremizes the functional I and φ(x) a tentative solution:

φ(x) = φ(x) + εη(x) (4.38)

When Eq. (4.38) is used for φ in Eq. (4.37), we obtain

I =
∫ x2

x1

f (x, φ, φx, φxx) dx (4.39)
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By proceeding as in Section 4.3, the necessary condition for the extremum of I can be
expressed as

dI

dε

∣∣∣∣∣
ε=0

= I ε(0) = 0 (4.40)

where

dI

dε
= d

dε

∫ x2

x1

f (x, φ, φx, φxx) dx =
∫ x2

x1

(
∂f

∂φ

∂φ

∂ε
+ ∂f

∂φx

∂φx

∂ε
+ ∂f

∂φxx

∂φxx

∂ε

)
dx

=
∫ x2

x1

(
∂f

∂φ
η + ∂f

∂φx

ηx + ∂f

∂φxx

ηxx

)
dx (4.41)

By setting ε = 0, φ becomes φ and the condition of Eq. (4.40) becomes∫ x2

x1

(
∂f

∂φ
η + ∂f

∂φx

ηx + ∂f

∂φxx

ηxx

)
dx = 0 (4.42)

The second and third terms of the integral in Eq. (4.42) can be integrated by parts as∫ x2

x1

∂f

∂φx

ηx dx = −
∫ x2

x1

d

dx

(
∂f

∂φx

)
η dx + ∂f

∂φx

η

∣∣∣∣
x2

x1

(4.43)

∫ x2

x1

∂f

∂φxx

ηxx dx = −
∫ x2

x1

d

dx

(
∂f

∂φxx

)
ηx dx + ∂f

∂φxx

ηx

∣∣∣∣
x2

x1

= +
∫ x2

x1

d2

dx2

(
∂f

∂φxx

)
η dx − d

dx

(
∂f

∂φxx

)
η

∣∣∣∣
x2

x1

+ ∂f

∂φxx

ηx

∣∣∣∣
x2

x1

(4.44)

Using Eqs. (4.43) and (4.44), Eq. (4.42) can be written as∫ x2

x1

[
∂f

∂φ
− d

dx

(
∂f

∂φx

)
+ d2

dx2

(
∂f

∂φxx

)]
η dx

+ ∂f

∂φx

η

∣∣∣∣
x2

x1

− d

dx

(
∂f

∂φxx

)
η

∣∣∣∣
x2

x1

+ ∂f

∂φxx

ηx

∣∣∣∣
x2

x1

= 0 (4.45)

If the function φ(x) and its first derivative φx(x) = dφ(x)/ dx are specified or fixed
at the endpoints x1 and x2, both η(x) and ηx(x) = dη(x)/ dx will be zero at x1 and
x2, and hence each of the terms[

∂f

∂φx

− d

dx

(
∂f

∂φxx

)]
η

∣∣∣∣
x2

x1

,
∂f

∂φxx

ηx

∣∣∣∣
x2

x1

will be zero. Hence, the necessary condition for the extremization of the functional I ,
also known as the Euler–Lagrange equation, can be obtained from Eq. (4.45) as

∂f

∂φ
− d

dx

(
∂f

∂φx

)
+ d2

dx2

(
∂f

∂φxx

)
= 0 (4.46)
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Note that if the functional I involves derivatives of higher than second order, so that

I =
∫ x2

x1

f (x, φ(0), φ(1), φ(2), . . . , φ(j)) dx (4.47)

where φ(j) denotes the j th-order derivative of φ,

φ(j) = djφ

dxj
, j = 1, 2, . . . (4.48)

the corresponding Euler–Lagrange equation can be derived as

n∑
j=0

(−1)n−j dn−j

dxn−j

(
∂f

∂φ(n−j)

)
= 0 (4.49)

4.6 FUNCTIONAL WITH SEVERAL DEPENDENT VARIABLES

In some applications, such as the vibration of a multidegree-of-freedom system, the
functional will contain a single independent variable (such as time) but several depen-
dent variables (such as the displacements of individual masses). To consider the extrem-
ization of such functionals, let

I =
∫ x2

x1

f (x, φ1, φ2, . . . , φn, (φ1)x, (φ2)x, . . . , (φn)x) dx (4.50)

where (φi)x = dφi/ dx, i = 1, 2, . . . , n. To find the functions φ1(x), φ2(x), . . . , φn(x)

with specified end conditions, φi(x1) = φi1 and φi(x2) = φi2 that extremize the func-
tional I of Eq. (4.50), we assume a set of tentative differentiable functions
φi(x) as

φi(x) = φi(x) + εηi(x), i = 1, 2, . . . , n (4.51)

where ε is a parameter and ηi(x) are arbitrary differentiable functions with

ηi(x1) = ηi(x2) = 0 (4.52)

Using φi and (φi)x = dφi/ dx for φi and (φi)x = dφi/ dx in Eq. (4.50), we obtain

I (ε) =
∫ x2

x1

f (x, φ1, φ2, . . . , φn, (φ1)x, (φ2)x, . . . , (φn)x) dx (4.53)

By proceeding as in Section 4.3, the necessary condition for the extremum of I can be
expressed as

dI

dε

∣∣∣∣∣
ε=0

= I ε(0) = 0 (4.54)
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where

dI

dε
=
∫ x2

x1

[
∂f

∂φ1

∂φ1

∂ε
+ · · · + ∂f

∂φn

∂φn

∂ε
+ ∂f

∂(φ1)x

∂(φ1)x

∂ε
+ · · · + ∂f

∂(φn)x

∂(φn)x

∂ε

]
dx

=
∫ x2

x1

[
∂f

∂φ1

η1 + · · · + ∂f

∂φn

ηn + ∂f

∂(φ1)x
η1x + · · · + ∂f

∂(φn)x
ηnx

]
dx (4.55)

For ε = 0, φi = φi and (φi)x = (φi)x , i = 1, 2, . . . , n, and the necessary condition of
Eq. (4.54) becomes∫ x2

x1

[
∂f

∂φ1
η1 + · · · + ∂f

∂φn

ηn + ∂f

∂(φ1)x
η1x + · · · + ∂f

∂(φn)x
ηnx

]
dx = 0 (4.56)

By using the relation∫ x2

x1

∂f

∂(φi)x
ηix dx = −

∫ x2

x1

d

dx

(
∂f

∂(φi)x

)
ηi dx + ∂f

∂(φi)x
ηi

∣∣∣∣
x2

x1

, i = 1, 2, . . . , n

(4.57)

and noting that ηi = 0 at x1 and x2 from Eq. (4.52), Eq. (4.56) can be expressed as∫ x2

x1

{[
∂f

∂φ1
− d

dx

(
∂f

∂(φ1)x

)]
η1 + · · · +

[
∂f

∂φn

− d

dx

(
∂f

∂(φn)x

)]
ηn

}
dx = 0

(4.58)

Since η1(x), . . . , ηn(x) are arbitrary functions of x, we assume a particular ηi(x)

to be arbitrary and all the remaining ηj (x) = 0 (j = 1, 2, . . . , i−1, i+1, . . . , n) so
that Eq. (4.58) leads to the necessary conditions, also known as the Euler–Lagrange
equations:

∂f

∂φi

− d

dx

(
∂f

∂(φi)x

)
= 0, i = 1, 2, . . . , n (4.59)

Note that if the functional involves the second derivatives of the functions φi(x) as

I =
∫ x2

x1

f (x, φ1, φ2, . . . , φn, (φ1)x, (φ2)x, . . . , (φn)x, (φ1)xx, (φ2)xx, . . . , (φn)xx) dx

(4.60)

the Euler–Lagrange equations can be derived as

d2

dx2

(
∂f

∂(φi)xx

)
− d

dx

(
∂f

∂(φi)x

)
+ ∂f

∂φi

= 0, i = 1, 2, . . . , n (4.61)

In general, if the functional I involves derivatives of higher than the second order, so
that

I =
∫ x2

x1

f (x, φ
(0)
1 , . . . , φ(0)

n , φ
(1)
1 , . . . , φ(1)

n , φ
(2)
1 , . . . , φ(2)

n , . . . , φ
(j)

1 , . . . , φ(j)
n ) dx

(4.62)
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where φ
(j)

i denotes the j th-order derivative of φi ,

φ
(j)

i = djφi(x)

dxj
(4.63)

the corresponding Euler–Lagrange equations can be derived as

n∑
j=0

(−1)n−j dn−j

dxn−j

(
∂f

∂φ
(n−j)

i

)
= 0, i = 1, 2, . . . , n (4.64)

4.7 FUNCTIONAL WITH SEVERAL INDEPENDENT VARIABLES

Many problems involve extremization of a functional involving more than one inde-
pendent variable. Hence, we consider the extremization of a functional in the form of
a multiple integral:

I =
∫∫∫

V

f (x, y, z, φ, φx, φy, φz) dV (4.65)

where x, y, and z are the independent variables and φ is the dependent variable with
φ = φ(x, y, z), φi = ∂φ(i = x, y, z)/∂i, and V is the volume or domain of integration
bounded by a surface S. We assume that the function φ(x, y, z) is specified on the
surface S. If φ(x, y, z) is the true function that extremizes the functional I , we consider
a trial function φ(x, y, z) that differs infinitesimally from φ in volume V as

φ(x, y, z) = φ(x, y, z) + εη(x, y, z) (4.66)

All the trial functions are assumed to attain the same value on the boundary S, so that

η(x, y, z) = 0 on S (4.67)

When φ is used for φ in Eq. (4.65), we obtain2

I =
∫

V

f (x, y, z, φ + εη, φx + εηx, φy + εηy, φz + εηz) dV (4.68)

The necessary condition for the extremum of I can be expressed as

dI

dε

∣∣∣∣∣
ε=0

= I ε(0) = 0 (4.69)

where

dI

dε
=
∫

V

(
∂f

∂φ

∂φ

∂ε
+ ∂f

∂φx

∂φx

∂ε
+ ∂f

∂φy

∂φy

∂ε
+ ∂f

∂φz

∂φz

∂ε

)
dV

=
∫

V

(
∂f

∂φ
η + ∂f

∂φx

ηx + ∂f

∂φy

ηy + ∂f

∂φz

ηz

)
dV (4.70)

2For simplicity, the multiple integral is written as
∫
V

.
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By setting ε = 0, φ becomes φ and the condition of Eq. (4.69) becomes∫
V

(
∂f

∂φ
η + ∂f

∂φx

ηx + ∂f

∂φy

ηy + ∂f

∂φz

ηz

)
dV = 0 (4.71)

Applying Green’s theorem, Eq. (4.71) can be expressed as

−
∫

V

[
d

dx

(
∂f

∂φx

)
+ d

dy

(
∂f

∂φy

)
+ d

dz

(
∂f

∂φz

)]
η dV

+
∫

S

(
∂f

∂φx

lx + ∂f

∂φy

ly + ∂f

∂φz

lz

)
η dS = 0 (4.72)

where lx , ly , and lz denote the cosines of the angle between the normal to the surface S

and the x, y, and z axes, respectively. Since η = 0 on S according to Eq. (4.67),
and η(x, y, z) is arbitrary in V , the necessary condition for extremization or the
Euler–Lagrange equation becomes

∂f

∂φ
− d

dx

(
∂f

∂φx

)
− d

dy

(
∂f

∂φy

)
− d

dz

(
∂f

∂φz

)
= 0 (4.73)

4.8 EXTREMIZATION OF A FUNCTIONAL WITH CONSTRAINTS

In some cases the extremization of a functional subject to a condition is desired. The
best known case, called the isoperimetric problem, involves finding the closed curve of
a given perimeter for which the enclosed area is a maximum. To demonstrate the pro-
cedure involved, consider the problem of finding a continuously differentiable function
φ(x) that extremizes the functional

I =
∫ x2

x1

f (x, φ, φx) dx (4.74)

while making the functional

J =
∫ x2

x1

g(x, φ, φx) dx (4.75)

assume a prescribed value and with both φ(x1) = φ1 and φ(x2) = φ2 prescribed. If
φ(x) denotes the true solution of the problem, we consider a two-parameter family of
trial solutions φ(x) as

φ(x) = φ(x) + ε1η1(x) + ε2η2(x) (4.76)

where ε1 and ε2 are parameters and η1(x) and η2(x) are arbitrary differentiable
functions with

η1(x1) = η1(x2) = η2(x1) = η2(x2) = 0 (4.77)

Equation (4.77) ensures that φ(x1) = φ(x1) = φ1 and φ(x2) = φ(x2) = φ2. Note that
φ(x) cannot be expressed as merely a one-parameter family of functions because any
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change in the value of the single parameter, in general, will alter the value of J , whose
value must be maintained as prescribed.

We can use the method of Lagrange multipliers to solve the problem. When φ is
substituted for φ in Eqs. (4.74) and (4.75), we obtain I (ε1, ε2) and J (ε1, ε2). Hence,
we define a new function, L, as

L = I (ε1, ε2) + λJ (ε1, ε2) =
∫ x2

x1

F(x, φ, φx) dx (4.78)

where λ is an undetermined constant, called a Lagrange multiplier, and

F(x, φ, φx) = f (x, φ, φx) + λg(x, φ, φx) (4.79)

The necessary conditions for the extremum of L, which also correspond to the solution
of the original constrained problem, can be expressed as

∂L

∂ε1

∣∣∣∣
ε1= ε2=0

= ∂L

∂ε2

∣∣∣∣
ε1= ε2=0

= 0 (4.80)

From Eqs. (4.78) and (4.79), we obtain

∂L

∂εj

=
∫ x2

x1

(
∂F

∂φ

∂φ

∂εj

+ ∂F

∂φx

∂φx

∂εj

)
dx =

∫ x2

x1

[
∂F

∂φ
ηj + ∂F

∂φx

(ηj )x

]
dx, j = 1, 2

(4.81)

where

(ηj )x = dηj (x)

dx
(4.82)

Setting ε1 = ε2 = 0, (φ, φx) will be replaced by (φ, φx), so that the conditions of
Eq. (4.80) become

∂F

∂εj

∣∣∣∣
ε1= ε2=0

=
∫ x2

x1

[
∂F

∂φ
ηj + ∂F

∂φx

(ηj )x

]
dx = 0, j = 1, 2 (4.83)

Integrating the second term of the integral in Eq. (4.83) by parts leads to∫ x2

x1

[
∂F

∂φ
− d

dx

(
∂F

∂φx

)]
ηj dx = 0, j = 1, 2 (4.84)

Since the functions η1(x) and η2(x) are arbitrary, the necessary condition or
Euler–Lagrange equation can be expressed as

∂F

∂φ
− d

dx

(
∂F

∂φx

)
= 0 (4.85)

Note: Solution of the second-order Euler–Lagrange equation (4.85) yields a function
φ(x) with three unknown quantities: two constants of integration and one Lagrange
multiplier [see Eq. (4.79)]. For a given isoperimetric problem, the two end conditions
specified, φ(x1) = φ1 and φ(x2) = φ2, and the prescribed value of J can be used to
find the three unknown quantities. The following example illustrates the procedure.
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Example 4.1 Determine the shape of a perfectly flexible rope of uniform cross section
that hangs at rest in a vertical plane with its endpoints fixed. The length of the rope is
specified as l.

SOLUTION Since the rope is to be in a static equilibrium position, the potential
energy of the system is to be minimized subject to the constraint stated on the length
of the rope. Let (x1, y1) and (x2, y2) denote the fixed endpoints of the rope in the xy
(vertical) plane with x1 < x2 (see Fig. 4.3). If the mass of the rope per unit length is
denoted by ρ, the potential energy of an elemental length of the rope (ds) at (x, y) is
given by ρ ds g0y, where g0 denotes the acceleration due to gravity. Thus, the total
potential energy to be minimized is given by

I =
∫ l

s=0
ρ ds g0y (E4.1.1)

Using the relation (dx)2 + (dy)2 = (ds)2, we obtain

ds =
√

1 +
(

dy

dx

)2

dx (E4.1.2)

Thus, the variational problem can be stated as follows: Determine the curve (function)
y(x) that passes through points (x1, y1) and (x2, y2), which minimizes

I = ρg0

∫ x2

x1

y

√
1 +

(
dy

dx

)2

dx (E4.1.3)

x1

(x1,y1)

(x2,y2)

ds

y(x)

dy

x dx

x2
x

y

s

0

Figure 4.3
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with the constraint

J =
∫ l

s=0
ds =

∫ x2

x1

g dx ≡
∫ x2

x1

√
1 +

(
dy

dx

)2

dx = l (E4.1.4)

where

g =
√

1 +
(

dy

dx

)2

dx (E4.1.5)

The function, F , can be expressed as

F = f + λg = ρg0y

√
1 + y2

x + λ

√
1 + y2

x (E4.1.6)

Noting that F is independent of x, the Euler–Lagrange equation can be expressed as
[Eq. (4.85) with y in place of φ]

d

dx

[
(ρg0y + λ)

(
y2

x√
1 + y2

x

−
√

1 + y2
x

)]
= 0 (E4.1.7)

The integration of Eq. (E4.1.7) with respect to x yields

(ρg0y + λ)

(
y2

x√
1 + y2

x

−
√

1 + y2
x

)
= c1 (E4.1.8)

where c1 is a constant. Equation (E4.1.8) can be rearranged to obtain

y2
x − (1 + y2

x) = c1
√

1 + y2
x

ρg0y + λ
(E4.1.9)

Squaring both sides of Eq. (E4.1.9) and rearranging yields

dx = c1
dy√

(ρg0y + λ)2 − c2
1

(E4.1.10)

or

x = c1

∫
dy√

(ρg0y + λ)2 − c2
1

+ c2 (E4.1.11)

By using the transformation
z = ρg0y + λ (E4.1.12)

Eq. (E4.1.11) can be written as

x = c1

ρg0

∫
dz√

z2 − c2
1

+ c2 = − c1

ρg0
cosh−1 z

c1
+ c2 (E4.1.13)
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Thus, the solution of the isoperimetric problem is given by

y(x) = − λ

ρg0
− c1

ρg0
cosh

ρg0(x − c2)

c1
(E4.1.14)

This solution indicates that the shape of a hanging rope is a catenary with vertical axis.
The constants c1, c2, and λ can be determined by making the catenary pass through
the specified points (x1, y1) and (x2, y2) and using the constraint equation (E4.1.4).

4.9 BOUNDARY CONDITIONS

In all previous sections the necessary condition for the extremum of a given functional
was derived by assuming that the variation is zero on the boundary (at the endpoints
x1 and x2 in the case of a single independent variable). This assumption is equivalent
to asserting a specific value of the function on the boundary and is not subject to
variation. However, there are many applications where the function to be varied is not
specified on the boundary, but other equally valid boundary conditions are imposed.
It is to be noted that investigation of the boundary conditions is an integral part of
the variational approach, and any alteration of the boundary conditions causes a cor-
responding change in the extremum value of the functional. If the function is not
specified on the boundary, the proper type of boundary conditions that can be imposed
will be supplied by the variational method. In fact, one of the attractive features of
the variational approach for complex problems is that it gives not only the govern-
ing differential equation(s) of motion, in the form of Euler–Lagrange equation(s), but
also the correct boundary conditions of the problem. Consider the extremization of the
functional

I =
∫ x2

x1

f (x, φ, φx, φxx) dx (4.86)

The necessary condition for the extremum of I can be expressed as [see Eq. (4.45)].∫ x2

x1

[
∂f

∂φ
− d

dx

(
∂f

∂φx

)
+ d2

dx2

(
∂f

∂φxx

)]
η dx + ∂f

∂φxx

ηx

∣∣∣∣
x2

x1

+
[

∂f

∂φx

− d

dx

(
∂f

∂φxx

)]
η

∣∣∣∣
x2

x1

= 0 (4.87)

To satisfy Eq. (4.87) for any arbitrary function η(x) in x1 < x < x2, we need to satisfy
all the following equations:

∂f

∂φ
− d

dx

(
∂f

∂φx

)
+ d2

dx2

(
∂f

∂φxx

)
= 0 (4.88)

∂f

∂φxx

ηx

∣∣∣∣
x2

x1

= 0 (4.89)

[
∂f

∂φx

− d

dx

(
∂f

∂φxx

)]
η

∣∣∣∣
x2

x1

= 0 (4.90)
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As seen earlier, Eq. (4.88) denotes the governing differential equation (Euler–Lagrange
equation), while Eqs. (4.89) and (4.90) indicate the boundary conditions to be satisfied.
It is not necessary to specify the values of η and ηx = dη/dx at x1 and x2 in order to
satisfy Eqs. (4.89) and (4.90). We can satisfy these equations by specifying, alternately,
the following:

∂f

∂φxx

∣∣∣∣
x2

x1

= 0 (4.91)

∂f

∂φx

− d

dx

(
∂f

∂φxx

)∣∣∣∣
x2

x1

= 0 (4.92)

The conditions specified by Eqs. (4.91) and (4.92) are called natural boundary con-
ditions because they come out naturally from the extremization process (if they are
satisfied, they are called free boundary conditions). The conditions

δφ|x2
x1

= 0 or η|x2
x1

= 0 (4.93)

δφx |x2
x1

= 0 or ηx |x2
x1

= 0 (4.94)

are called geometric or kinematic or forced boundary conditions. It can be seen that
Eqs. (4.89) and (4.90) can be satisfied by any combination of natural and geometric
boundary conditions at each of the endpoints x1 and x2:

specify value of φx(so that ηx = 0) or specify
∂f

∂φxx

= 0 (4.95)

or

specify value of φ(so that η = 0) or specify
∂f

∂φx

− d

dx

(
∂f

∂φxx

)
= 0 (4.96)

The physical significance of the natural and geometric boundary conditions is discussed
for a beam deflection problem in the following example.

Example 4.2 A uniform elastic cantilever beam of length l is loaded uniformly as
shown in Fig. 4.4. Derive the governing differential equation and the proper boundary
conditions of the beam. Also find the deflection of the beam.

l

x0

Load = p per unit length

Figure 4.4
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SOLUTION The principle of minimum potential energy is applicable for elastic
bodies subject to static loads. This principle states that of all possible displacement
configurations a body can assume that satisfy compatibility and given displacement
boundary conditions, the configuration that satisfies the equilibrium conditions makes
the potential energy assume a minimum value. Hence, if U denotes the potential energy
of a body, U must be minimum for the true equilibrium state. Thus, δU must be zero.

The potential energy of a body is given by the strain energy minus the work done
by the external loads. In the present case, the strain energy due to the bending of the
beam (π) is given by

π = EI

2

∫ l

0

(
d2u

dx2

)2

dx

where E is Young’s modulus, I is the moment of inertia of the cross section of the
beam about the neutral axis, and u(x) is the transverse displacement of the beam. The
work done by the external loads (W ) is given by

W =
∫ l

0
pu dx

where p denotes distributed load (load per unit length) on the beam. Thus, the potential
energy functional becomes

U =
∫ l

0

[
EI

2
(u′′)2 − pu

]
dx (E4.2.1)

where a prime indicates differentiation with respect to x once. By comparing
Eq. (E4.2.1) with the general form in Eq. (4.86), we obtain

f (x, u, u′, u′′) = EI

2
(u′′)2 − pu (E4.2.2)

Noting that
∂f

∂u
= −p

∂f

∂u′ = 0

∂f

∂u′′ = EIu′′

(E4.2.3)

the Euler–Lagrange equation or the differential equation of equilibrium of the beam
can be obtained from Eq. (4.46) as

EIu′′′′ − p = 0 (E4.2.4)

The boundary conditions indicated in Eq. (4.45) take the form

EIu′′′δu|x2
x1

= 0 (E4.2.5)

EIu′′δu′|x2
x1

= 0 (E4.2.6)
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From elementary strength of materials, we notice that EIu′′′ is the shear force, EIu′′ is
the bending moment, u′ is the rotation or slope, and u is the transverse displacement.
Equation (E4.2.5) states that either the shear force or the variation of displacement
must be zero at each end. Similarly, Eq. (E4.2.6) states that either the bending moment
or the variation of slope must be zero at each end of the beam. In the present case, at
x = x1 = 0, the beam is fixed and hence u = u′ = 0, and at x = x2 = l, the beam is
free and hence EIu′′ = EIu′′′ = 0. Thus, we have the geometric (displacement) boundary
conditions at the fixed end and free or natural boundary conditions at the free end of
the beam.

The deflection of the beam, u(x), can be found by solving Eq. (E4.2.4):

EIu′′′′ = p = constant (E4.2.7)

Integrating this equation, we obtain

EIu′′′ = px + c1 (E4.2.8)

where c1 is a constant. Since EIu′′′ = 0 at x = l, we can find that

c1 = −pl (E4.2.9)

EIu′′′ = px − pl (E4.2.10)

Integration of Eq. (E4.2.10) gives

EIu′′ = px2

2
− pxl + c2 (E4.2.11)

where c2 is a constant. As EIu′′ = 0 at x = l,

c2 = pl2

2
(E4.2.12)

This gives

EIu′′ = p

2
(x2 − 2xl + l2) (E4.2.13)

Integrating this again, we have

EIu′ = p

2

(
x3

3
− x2l + xl2

)
+ c3 (E4.2.14)

where the constant c3 can be found by using the condition that u′ = 0 at x = 0. This
leads to c3 = 0 and

EIu′ = p

2

(
x3

3
− x2l + xl2

)
(E4.2.15)

Integration of this equation gives

EIu = p

2

(
x4

12
− x3l

3
+ x2l2

2

)
+ c4 (E4.2.16)
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Since u = 0 at x = 0, we have c4 = 0, and the deflection of the beam is given by

u(x) = p

2EI

(
x4

12
− x3l

3
+ x2l2

2

)
(E4.2.17)

4.10 VARIATIONAL METHODS IN SOLID MECHANICS

Several variational methods can be used to derive the governing differential equations
of an elastic body. The principles of minimum potential energy, minimum complemen-
tary energy, and stationary Reissner energy can be used to formulate static problems.
The variational principle valid for dynamics of systems of particles, rigid bodies, or
deformable solids is called Hamilton’s principle. All these variational principles are
discussed in this section, with more emphasis placed on Hamilton’s principle.

4.10.1 Principle of Minimum Potential Energy

The potential energy of an elastic body (U ) is defined as

U = π − WP (4.97)

where π is the strain energy and WP is the work done on the body by the external
forces (−WP is also called the potential energy of the applied loads). The principle of
minimum potential energy can be stated as follows: Of all possible displacement states a
body can assume (u, v, and w for a three-dimensional body) that satisfy compatibility
and specified kinematic or displacement boundary conditions, the state that satisfies
the equilibrium equations makes the potential energy assume a minimum value. If the
potential energy is expressed in terms of the displacement components u, v, and w, the
principle of minimum potential energy gives, at the equilibrium state,

δU(u, v,w) = δπ(u, v,w) − δWP (u, v,w) = 0 (4.98)

where the variation is to be taken with respect to the displacement in Eq. (4.98), while
the forces and stresses are assumed constant. The strain energy of a linear elastic body
is given by

π = 1

2

∫∫∫
V

�εT �σ dV (4.99)

where �ε is the strain vector, �σ is the stress vector, V is the volume of the body, and
the superscript T denotes the transpose. By using the stress–strain relations

�σ = [D]�ε (4.100)

where [D] is the elasticity matrix, the strain energy can be expressed as

π = 1
2

∫∫∫
V

�εT[D]�ε dV (4.101)
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Note that the initial strains are assumed to be absent in Eq. (4.101). If initial strains
are present, with the initial strain vector given by �ε0, the strain energy of the body
becomes

π = 1
2

∫∫∫
V

�εT[D]�ε dV − ∫∫∫
V

�εT[D]�ε0 dV (4.102)

The work done by the external forces can be expressed as

WP =
∫∫∫

V

(φxu + φyv + φzw) dV +
∫∫
S2

(
xu + 
yv + 
zw) dS2 (4.103)

where S2 is the surface of the body on which surface forces (tractions) are prescribed.

Denoting the known body force vector �φ, the prescribed surface force (traction) vector
�
, and the displacement vector �u as

�φ =




φx

φy

φz


 , �
 =





x


y


z


 , �u =




u

v

w




Eq. (4.103) can be written equivalently as

WP =
∫∫∫

V

�φ
T
�u dV +

∫∫
S2

�

T
�u dS2 (4.104)

Using Eqs. (4.102) and (4.104), the potential energy of the body can be expressed as

U(u, v,w) = 1
2

∫∫∫
V

�εT[D](�ε − 2�ε0) dV − ∫∫∫
V

�φT�u dV − ∫∫
S2

�
T �u dS2 (4.105)

Thus, according to the principle of minimum potential energy, the displacement field
�u(x, y, z) that minimizes U and satisfies all the boundary conditions is the one that
satisfies the equilibrium equations. In the principle of minimum potential energy, we
minimize the functional U , and the resulting equations denote the equilibrium equations
while the compatibility conditions are satisfied identically.

4.10.2 Principle of Minimum Complementary Energy

The complementary energy of an elastic body (Uc) is defined as

Uc = complementary strain energy in terms of stresses (π)

− work done by the applied loads during stress changes (WP )

The principle of the minimum complementary energy can be stated as follows: Of
all possible stress states that satisfy the equilibrium equations and the stress boundary
conditions, the state that satisfies the compatibility conditions will make the comple-
mentary energy assume a minimum value. By expressing the complementary energy
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Uc in terms of the stresses σij , the principle of minimum complementary energy gives,
for compatibility,

δUc(σxx, σyy, . . . , σzx) = δπ((σxx, σyy, . . . , σzx) − δWP (σxx, σyy, . . . , σzx) = 0
(4.106)

where the variation is taken with respect to the stress components in Eq. (4.106) while
the displacements are assumed constant. The complementary strain energy of a linear
elastic body can be expressed as

π = 1

2

∫∫∫
V

�σ T�ε dV (4.107)

In the presence of known initial strains �ε0, the complementary strain energy becomes

π = 1
2

∫∫∫
V

�σ T([C]�σ + 2�ε0) dV (4.108)

where the strain–stress relations are assumed to be of the form

�ε = [C]�σ (4.109)

The work done by the applied loads during stress change, also known as complementary
work, is given by

WP =
∫∫
S1

(φxu + φyv + φzw) dS1 =
∫∫
S1

�φT�u dS1 (4.110)

where S1 is the part of the surface of the body on which the values of displacements
are prescribed as

�u =




u

v

w




Thus, the complementary energy of the body can be expressed, using Eqs. (4.108) and
(4.110), as

Uc(σxx, σyy, . . . , σzx) = 1
2

∫∫∫
V

�σ([C]�σ + 2�ε0) dV − ∫∫
S1

�φT�u dS1 (4.111)

In the principle of minimum complementary energy, the functional Uc is minimized
and the resulting equations denote the compatibility equations, while the equilibrium
equations are satisfied identically.

4.10.3 Principle of Stationary Reissner Energy

In the principle of minimum potential energy, the potential energy U is expressed in
terms of displacements, and variations of u, v, and w are permitted. Similarly, in the
case of the principle of minimum complementary energy, the complementary energy Uc

is expressed in terms of stresses, and variations of σxx, σyy, . . . , σzx are permitted. In
the present case, the Reissner energy Ur is expressed in terms of both displacements and
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stresses, and variations with respect to both displacements and stresses are permitted.
The Reissner energy for a linearly elastic body is defined as

Ur =
∫∫∫

V

(internal stresses × strains expressed in terms of displacements

− complementary strain energy in terms of stresses) dV

− work done by applied forces

=
∫∫∫

V

{[
σxx

∂u

∂x
+ σyy

∂v

∂y
+ · · · + σzx

(
∂w

∂x
+ ∂u

∂z

)]
− π

}
dV

−
∫∫∫

V

(φxu + φyv + φzw) dV −
∫∫
S2

(
xu + 
yv + 
zw) dS2

−
∫∫
S1

[
(u − u)
x + (v − v)
y + (w − w)
z

]
dS1

=
∫∫∫

V

(�σ T�ε − 1
2 �σ T[C]�σ − �


T
�u) dV − ∫∫

S2

�uT �
dS2 − ∫∫
S1

(�u − �u)T �
 dS1

(4.112)

When the variation of Ur is set equal to zero by considering variations in both dis-
placements and stresses, we obtain

δUr =
∑
ij

∂Ur

∂σij

δσij +
(

∂Ur

∂u
δu + ∂Ur

∂v
δv + ∂Ur

∂w
δw

)
= 0 (4.113)

where the subscripts i and j are used to include all the components of stress
σxx, σyy, . . . , σzx . The first term on the right-hand side of Eq. (4.113) gives the
stress–displacement relations, and the second term gives the equilibrium equations and
boundary conditions. The principle of stationary Reissner energy can be stated in words
as follows: Of all possible stress and displacement states a body can have, the particular
set that makes the Reissner energy stationary gives the correct stress–displacement and
equilibrium equations, along with the boundary conditions.

4.10.4 Hamilton’s Principle

The variational principle that can be used for dynamic problems is called Hamilton’s
principle. According to this principle, variation of the functional is taken with respect
to time. The functional used in Hamilton’s principle, similar to U , Uc, and Ur , is called
the Lagrangian (L) and is defined as

L = T − U = kinetic energy − potential energy (4.114)

Development of Hamilton’s principle for discrete as well as continuous systems is
presented in the following sections.
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Hamilton’s Principle for Discrete Systems Let a discrete system (system with a finite
number of degrees of freedom) be composed of n masses or particles. First, we consider
a single particle of mass m, at the position vector �r , subjected to a force �f (�r). The
position of the particle, �r , at any time t is given by Newton’s second law of motion:

m
d2�r
dt2

− �f (�r) = �0 (4.115)

If the true path of the particle is �r(t), we define a varied path as �r + δ�r , where δ�r
denotes the variation of the path at any fixed time t . We assume that the true path and
the varied path are same at two distinct times t1 and t2, so that

δ�r(t1) = δ�r(t2) = 0 (4.116)

By taking the dot product of Eq. (4.115) with δ�r and integrating with respect to time
from t1 to t2 yields

∫ t2

t1

[
m

d2�r
dt2

− �f (�r)
]

· δ�r d t = 0 (4.117)

The first term of the integral in Eq. (4.117) can be integrated by parts as

∫ t2

t1

m
d2�r
dt2

· δ�r d t = −
∫ t2

t1

m
d�r
d t

· d(δ�r)
d t

d t + m
d�r
d t

· δ�r
∣∣∣∣
t2

t1

(4.118)

In view of Eq. (4.116), the second term on the right side of Eq. (4.118) will be zero
and Eq. (4.117) becomes

∫ t2

t1

[
m

d�r
d t

· d

d t
δ�r + −→

f (r) · δ−→r
]

d t = 0 (4.119)

The kinetic energy of the particle (T ) is given by

T = 1

2
m

d�r
d t

•
d�r
d t

(4.120)

and hence

δT = m
d�r
d t

•δ
d�r
d t

= m
d�r
d t

•
dδ�r
d t

(4.121)

Using Eq. (4.121) in Eq. (4.119), the general form of Hamilton’s principle for a single
mass (particle) can be expressed as

∫ t2

t1

(δT + �f •δ�r) d t = 0 (4.122)
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Conservative Systems For a conservative system, the sum of the potential and
kinetic energies is a constant, and the force �f can be derived from the potential energy
U as

�f = −∇U (4.123)

where ∇ denotes the gradient operator. Noting that

∇U •δ�r = ∂U

∂x
δx + ∂U

∂y
δy + ∂U

∂z
δz = δU(x, y, z) (4.124)

Hamilton’s principle for a single mass in a conservative system is given by

δI = δ

∫ t2

t1

L d t = 0 (4.125)

where

L = T − U (4.126)

is called the Lagrangian function. Thus, Hamilton’s principle for a particle acted by a
conservative force can be stated as follows: Of all possible paths that the particle could
take from its position at time t1 to its position at time t2, the true path will be the one
that extremizes the integral

I =
∫ t2

t1

L d t (4.127)

Use of Generalized Coordinates If the position of the path at any time t , �r , is
expressed in terms of the generalized coordinates q1, q2, and q3 (instead of x, y, and
z), the Lagrangian L can be expressed as

L = L(q1, q2, q3, q̇1, q̇2, q̇3) (4.128)

where q̇i = dqi/ d t (i = 1, 2, 3) denotes the ith generalized velocity. Then the neces-
sary condition for the extremization of I can be written as

δI = δ

∫ t2

t1

L(q1, q2, q3, q̇1, q̇2, q̇3) d t =
∫ t2

t1

3∑
i=1

[
∂L

∂qi

− d

d t

(
∂L

∂q̇i

)]
δqi d t = 0

(4.129)

If qi are linearly independent, with no constraints among qi , all δqi are independent,
and hence Eq. (4.129) leads to

∂L

∂qi

− d

d t

(
∂L

∂q̇i

)
= 0, i = 1, 2, 3 (4.130)

Equations (4.130) denote the Euler–Lagrange equations that correspond to the extrem-
ization of I and are often called the Lagrange equations of motion.
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Nonconservative Systems If the forces are not conservative, the general form of
Hamilton’s principle, given by Eq. (4.122), can be rewritten as

δ

∫ t2

t1

T d t +
∫ t2

t1

δWnc d t = 0 (4.131)

where

δWnc = �f •δ�r
denotes the virtual work done by the nonconservative force �f . In this case, a functional
I does not exist for extremization. If the virtual work δWnc is expressed in terms of
generalized coordinates (q1,q2,q3) and generalized forces (Q1,Q2,Q3) as

δWnc =
3∑

i=1

Qiδqi (4.132)

where δqi is the virtual generalized displacement, Eq. (4.131) can be expressed as∫ t2

t1

3∑
i=1

[
∂T

∂qi

− d

d t

(
∂T

∂q̇i

)
+ Qi

]
δqi d t = 0 (4.133)

Thus, the Euler–Lagrange equations corresponding to Eq. (4.133) are given by

∂T

∂qi

− d

d t

(
∂T

∂q̇i

)
+ Qi = 0, i = 1, 2, 3 (4.134)

System of Masses If a system of n mass particles or rigid bodies with masses mi and
position vectors �ri are considered, Hamilton’s principle can be expressed as follows.
For conservative forces,

δ

∫ t2

t1

L(q1, q2, . . . , q̇1, q̇2, . . .) d t = 0 (4.135)

which is a generalization of Eq. (4.125). For nonconservative forces,

δ

∫ t2

t1

T d t +
∫ t2

t

δWnc d t = 0 (4.136)

which is a generalization of Eq. (4.131). The kinetic energy and the virtual work in
Eqs. (4.135) and (4.136) are given by

T = 1

2

n∑
i=1

mi

d�ri

d t
•
d�ri

d t
(4.137)

δW(δWnc) =
n∑

i=1

�fi •δ�ri (4.138)

As can be seen from Eqs. (4.125) and (4.131), Hamilton’s principle reduces the prob-
lems of dynamics to the study of a scalar integral that does not depend on the
coordinates used. Note that Hamilton’s principle yields merely the equations of motion
of the system but not the solution of the dynamics problem.
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Hamilton’s Principle for Continuous Systems For a continuous system, the kinetic
energy of the body, T , can be expressed as

T = 1
2

∫∫∫
V

ρ �̇uT �̇u dV (4.139)

where ρ is the density of the material and �̇u is the vector of velocity components at
any point in the body:

�̇u =




u̇

v̇

ẇ




Thus, the Lagrangian can be written as

L = 1

2

∫∫∫
V

(ρ �̇uT �̇u − �εT[D]�ε + 2�uT �φ) dV +
∫∫
S2

�uT �
dS2 (4.140)

Hamilton’s principle can be stated in words as follows: Of all possible time histories
of displacement states that satisfy the compatibility equations and the constraints or the
kinematic boundary conditions and that also satisfy the conditions at initial and final
times t1 and t2, the history corresponding to the actual solution makes the Lagrangian
functional a minimum. Hamilton’s principle can thus be expressed as

δ

∫ t2

t1

L d t = 0 (4.141)

Generalized Hamilton’s Principle For an elastic body in motion, the equations of
dynamic equilibrium for an element of the body can be written, using Cartesian tensor
notation, as

σij,j + φi = ρ
∂2ui

∂t2
, i = 1, 2, 3 (4.142)

where ρ is the density of the material, φi is the body force per unit volume acting
along the xi direction, ui is the component of displacement along the xi direction, the
σij denotes the stress tensor

σij =




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 ≡




σxx σxy σxz

σxy σyy σyz

σxz σyz σzz


 (4.143)

and
σij,j = ∂σi1

∂x1
+ ∂σi2

∂x2
+ ∂σi3

∂x3
(4.144)

with x1 = x, x2 = y, x3 = z and u1 = u, u2 = v, u3 = w.
The solid body is assumed to have a volume V with a bounding surface S. The

bounding surface S is assumed to be composed of two parts, S1 and S2, where the
displacements ui are prescribed on S1 and surface forces (tractions) are prescribed on
S2. Consider a set of virtual displacements δui of the vibrating body which vanishes
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over the boundary surface S1, where values of displacements are prescribed, but are
arbitrary over the rest of the boundary surface S2, where surface tractions are prescribed.
The virtual work done by the body and surface forces is given by∫∫∫

V

φiδui dV +
∫∫
S


iδui dS (4.145)

where 
i indicates the prescribed surface force along the direction ui . Although the
surface integral is expressed over S in Eq. (4.145), it needs to be integrated only over
S2, since δui vanishes over the surface S1, where the boundary displacements are
prescribed. The surface forces 
i can be represented as


i = σij νj ≡
3∑

j=1

σij νj , i = 1, 2, 3 (4.146)

where �ν = {ν1 ν2 ν3}T is the unit vector along the outward normal of the surface S

with ν1, ν2, and ν3 as its components along the x1, x2, and x3 directions, respectively.
By substituting Eq. (4.146), the second term on the right-hand side of Eq. (4.145) can
be written as ∫∫

S

σij δuiνj dS (4.147)

Using Gauss’s theorem [7], expression (4.147) can be rewritten in terms of the volume
integral as ∫∫

S


iδui dS =
∫∫
S

σij δuiνj dS =
∫∫∫

V

(σij δui),j dV

=
∫∫∫

V

σij,j δui dV +
∫∫∫

V

σij δui,j dV (4.148)

Because of the symmetry of the stress tensor, the last term in Eq. (4.148) can be written
as ∫∫∫

V

σij δui,j dV =
∫∫∫

V

σij

[ 1
2 (δui,j + δuj,i)

]
dV =

∫∫∫
V

σij δεij dV (4.149)

where εij denotes the strain tensor:

εij =




ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33


 ≡




εxx εxy εxz

εxy εyy εyz

εxz εyz εzz


 (4.150)

In view of the equations of dynamic equilibrium, Eq. (4.142), the first integral on the
right hand side of Eq. (4.148), can be expressed as∫∫∫

V

σij,j δui dV =
∫∫∫

V

(
ρ

∂2ui

∂t2
− φi

)
δui dV (4.151)
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Thus, the second term of expression (4.145) can be written as∫∫
S


iδui dS =
∫∫∫

V

σij δεij dV +
∫∫∫

V

(
ρ

∂2ui

∂t2
− φi

)
δui dV (4.152)

This gives the variational equation of motion∫∫∫
V

σij δεij dV =
∫∫∫

V

(
φi − ρ

∂2ui

∂t2

)
δui dV +

∫∫
S


iδui dS (4.153)

This equation can be stated more concisely by introducing different levels of restric-
tions. If the body is perfectly elastic, Eq. (4.153) can be stated in terms of the strain
energy density π0 as

δ

∫∫∫
V

π0 dV =
∫∫∫

V

(
φi − ρ

∂2ui

∂t2

)
δui dV +

∫∫
S


iδui dS (4.154)

or

δ

∫∫∫
V

(
π0 + ρ

∂2ui

∂t2
δui

)
dV =

∫∫∫
V

φiδui dV +
∫∫
S


iδui dS (4.155)

If the variations δui are identified with the actual displacements (∂ui/∂t)dt during a
small time interval dt, Eq. (4.155) states that in an arbitrary time interval, the sum of
the energy of deformation and the kinetic energy increases by an amount that is equal
to the work done by the external forces during the same time interval.

Treating the virtual displacements δui as functions of time and space not identified
with the actual displacements, the variational equation of motion, Eq. (4.154), can be
integrated between two arbitrary instants of time t1 and t2 and we obtain∫ t2

t1

∫∫∫
V

δπ0 dV d t =
∫ t2

t1

d t

∫∫∫
V

φiδui dV +
∫ t2

t1

d t

∫∫
S


iδui dS

−
∫ t2

t1

d t

∫∫∫
V

ρ
∂2ui

∂t2
δui dV (4.156)

Denoting the last term in Eq. (4.156) as A, inverting the order of integration, and
integrating by parts leads to

A =
∫∫∫

V

ρ
∂ui

∂t
δui dV |t2t1 −

∫∫∫
V

dV

∫ t2

t1

∂ui

∂t

(
ρ

∂δui

∂t
+ ∂ρ

∂t
δui

)
d t (4.157)

In most problems, the time rate of change of the density of the material, ∂ρ/∂t , can
be neglected. Also, we consider δui to be zero at all points of the body at initial and
final times t1 and t2, so that

δui(t1) = δui(t2) = 0 (4.158)
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In view of Eq. (4.158), Eq. (4.157) can be rewritten as

A = −
∫ t2

t1

∫∫∫
V

ρ
∂ui

∂t

∂δui

∂t
dV d t = −

∫ t2

t1

∫∫∫
V

ρ
∂ui

∂t
δ
∂ui

∂t
dV d t

= −
∫ t2

t1

δ

∫∫∫
V

1

2
ρ

∂ui

∂t

∂ui

∂t
dV d t = −

∫ t2

t1

δT d t (4.159)

where

T = 1

2

∫∫∫
V

ρ
∂ui

∂t

∂ui

∂t
dV (4.160)

is the kinetic energy of the vibrating body. Thus, Eq. (4.156) can be expressed as∫ t2

t1

δ(π − T ) d t =
∫ t2

t1

∫∫∫
V

φiδui dV d t +
∫ t2

t1

∫∫
S2


iδui dS d t (4.161)

where π denotes the total strain energy of the solid body:

π =
∫∫∫

V

π0 dV (4.162)

If the external forces acting on the body are such that the sum of the integrals on the
right-hand side of Eq. (4.161) denotes the variation of a single function W (known as
the potential energy of loading), we have∫∫∫

V

φiδui dV +
∫∫
S2


iδui dS = −δW (4.163)

Then Eq. (4.161) can be expressed as

δ

∫ t2

t1

L d t ≡
∫ t2

t1

(π − T + W) d t = 0 (4.164)

where

L = π − T + W (4.165)

is called the Lagrangian function and Eq. (4.164) is known as Hamilton’s principle.
Note that a negative sign is included, as indicated in Eq. (4.163), for the potential
energy of loading (W ). Hamilton’s principle can be stated in words as follows: The
time integral of the Lagrangian function between the initial time t1 and the final time
t2 is an extremum for the actual displacements (motion) with respect to all admissible
virtual displacements that vanish throughout the entire time interval: first, at all points
of the body at the instants t1 and t2, and second, over the surface S1, where the
displacements are prescribed.

Hamilton’s principle can be interpreted in another way by considering the dis-
placements ui(x1, x2, x3, t), i = 1, 2, 3, to constitute a dynamic path in space. Then
Hamilton’s principle states: Among all admissible dynamic paths that satisfy the pre-
scribed geometric boundary conditions on S1 at all times and the prescribed conditions
at two arbitrary instants of time t1 and t2 at every point of the body, the actual dynamic
path (solution) makes the Lagrangian function an extremum.
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4.11 APPLICATIONS OF HAMILTON’S PRINCIPLE

4.11.1 Equation of Motion for Torsional Vibration of a Shaft (Free Vibration)

Strain Energy To derive a general expression for the strain energy of a shaft, consider
the shaft to be of variable cross section under a torsional load as shown in Fig. 4.5. If
θ(x, t) denotes the angular displacement of the cross section at x, the angular displace-
ment of the cross section at x + dx can be denoted as θ(x, t) + [∂θ(x, t)/∂x] dx,
due to the distributed torsional load mt(x, t). The shear strain at a radial distance
r is given by γ = r(∂θ/∂x). The corresponding shear stress can be represented as
τ = Gγ = Gr(∂θ/∂x), where G is the shear modulus. The strain energy density π0
can be represented as π0 = 1

2τγ = 1
2Gr2 (∂θ/∂x)2. The total strain energy of the shaft

can be determined as

π =
∫∫∫

V

π0 dV =
∫ L

0

∫∫
A

1

2
Gr2

(
∂θ

∂x

)2

dA dx = 1

2

∫ L

0
GJ

(
∂θ

∂x

)2

dx (4.166)

where V is the volume, L is the length, A is the cross-sectional area, and J = Ip polar
moment of inertia (for a uniform circular shaft) of the shaft.

Kinetic Energy The kinetic energy of a shaft with variable cross section can be
expressed as

T = 1

2

∫ L

0
I0(x)

(
∂θ(x, t)

∂t

)2

dx (4.167)

where I0(x) = ρIp(x) is the mass moment of inertia per unit length of the shaft and
ρ is the density. By using Eqs. (4.166) and (4.167), Hamilton’s principle can be used
to obtain

δ

∫ t2

t1

(T − π) d t = δ

∫ L

0

[
1

2

∫ L

0
I0

(
∂θ

∂t

)2

dx − 1

2

∫ L

0
GJ

(
∂θ

∂x

)2

dx

]
d t = 0

(4.168)

By carrying out the variation operation, the various terms in Eq. (4.168) can be rewrit-
ten, noting that δ and ∂/∂t as well as δ and ∂/∂x are commutative, as

δ

∫ t2

t1

[
1

2

∫ L

0
I0

(
∂θ

∂t

)2

dx

]
d t = −

∫ t2

t1

∫ L

0
I0

∂2θ

∂t2
δθ dx d t (4.169)

a c

d
b

dx

x
r

x

L

0
mt(x,t)

Figure 4.5 Torsional vibration of a shaft.
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assuming that θ is prescribed at t1 and t2 so that δθ = 0 at t1 and t2. Similarly,

δ

∫ t2

t1

[
1

2

∫ L

0
GJ

(
∂θ

∂x

)2

dx

]
d t =

∫ t2

t1

[
GJ

∂θ

∂x
δθ

∣∣∣∣
L

0
−
∫ L

0

∂

∂x

(
GJ

∂θ

∂x

)
δθ dx

]
d t

(4.170)

Thus, Eq. (4.168) becomes

∫ t2

t1

{∫ L

0

[
∂

∂x

(
GJ

∂θ

∂x

)
− I0

∂2θ

∂t2

]
δθ dx − GJ

∂θ

∂x
δθ

∣∣∣∣
t2

t1

}
d t = 0 (4.171)

Assuming that δθ = 0 at x = 0 and x = L, and δθ is arbitrary in 0 < x < L, Eq. (4.171)
requires that

∂

∂x

(
GJ

∂θ

∂x

)
− I0

∂2θ

∂t2
= 0, 0 < x < L (4.172)

(
GJ

∂θ

∂x

)
δθ = 0 at x = 0 and x = L (4.173)

Equation (4.172) denotes the equation of motion of the shaft, and Eq. (4.173) indicates
the boundary conditions. The boundary conditions require that either GJ(∂θ/∂x) = 0
(stress is zero) or δθ = 0 (θ is specified) at x = 0 and x = L.

4.11.2 Transverse Vibration of a Thin Beam

Consider an element of a thin beam in bending as shown in Fig. 4.6. If w denotes the
deflection of the beam at any point x along the length of the beam, the slope of the
deflected centerline is given by ∂w/∂x. Since a plane section of the beam remains plane
after deformation according to simple (thin) beam theory, the axial displacement of a
fiber located at a distance z from the neutral axis u due to the transverse displacement
w can be expressed as (point A moves to A′)

u = −z
∂w

∂x
(4.174)

Thus, the axial strain can be expressed as

εx = ∂u

∂x
= −z

∂2w

∂x2
(4.175)

and the axial stress as

σx = Eεx = −Ez
∂2w

∂x2
(4.176)

The strain energy density of the beam element (π0) is given by

π0 = 1

2
σxεx = 1

2
Ez2

(
∂2w

∂x2

)2

(4.177)
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u = −z ∂w
∂x

∂w
∂x

w

z, w

z

A′

0

f (x,t)

z
A

x

x

Figure 4.6 Beam in bending.

and hence the strain energy of the beam (π) can be expressed as

π =
∫∫∫

V

π0 dV =
∫ L

0

1

2
E

∫∫
A

[dA(x)z2]

(
∂2w

∂x2

)2

dx = 1

2

∫ L

0
EI(x)

(
∂2w

∂x2

)2

dx

(4.178)

where I (x) denotes the area moment of inertia of the cross section of the beam at x:

I (x) =
∫∫
A

dA(x)z2 (4.179)

The kinetic energy of the beam can be expressed as

T = 1

2

∫ L

0
m(x)

[
∂w(x, t)

∂t

]2

dx (4.180)

where m(x) = ρA(x) is the mass per unit length of the beam and ρ is the density of
the beam. The virtual work of the applied distributed force, f (x, t), is given by

δW(t) =
∫ L

0
f (x, t)δw(x, t) dx (4.181)

Noting that the order of integrations with respect to t and x can be interchanged and
the operators δ and d/ dx or δ and d/ d t are commutative, the variations of π and T

can be written as

δπ = δ

∫ t2

t1

∫ L

0

1

2
EI

(
∂2w

∂x2

)2

dx d t =
∫ t2

t1

∫ L

0
EI

∂2w

∂x2
δ

(
∂2w

∂x2

)
dx d t

=
∫ t2

t1

[
EI

∂2w

∂x2
δ
∂w

∂x

∣∣∣∣
L

0
−
∫ L

0

∂

∂x

(
EI

∂2w

∂x2

)
δ
∂w

∂x
dx

]
d t (4.182)
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Since

∫ t2

t1

∫ L

0

∂

∂x

(
EI

∂2w

∂x2

)
δ

(
∂w

∂x

)
dx d t

=
∫ t2

t1

[
∂

∂x

(
EI

∂2w

∂x2

)
δw

∣∣∣∣
L

0
−
∫ L

0

∂2

∂x2

(
EI

∂2w

∂x2

)
δw dx

]
d t (4.183)

Eq. (4.182) becomes

δπ =
∫ t2

t1

[
EI

∂2w

∂x2
δ

(
∂w

∂x

)∣∣∣∣
L

0
− ∂

∂x

(
EI

∂2w

∂x2

)
δw

∣∣∣∣
L

0

+
∫ L

0

∂2

∂x2

(
EI

∂2w

∂x2

)
δw dx

]
d t (4.184)

δT = δ

∫ t2

t1

∫ L

0

1

2
m(x)

(
∂w

∂t

)2

dx d t =
∫ t2

t1

∫ L

0
m(x)

∂w

∂t
δ

(
∂w

∂t

)
dx d t

=
∫ L

0

[(
m

∂w

∂t

)
δw

∣∣∣∣
t2

t1

−
∫ t2

t1

∂

∂t

(
m

∂w

∂t

)
δw d t

]
dx

−
∫ L

0

[∫ t2

t1

∂

∂t

(
m

∂w

∂t

)
δw d t

]
dx (4.185)

because δw is zero at t = t1 and t = t2. Thus, Hamilton’s principle can be stated as

δ

∫ t2

t1

(T − π + W) d t = 0

or

∫ t2

t1

[
−
∫ L

0
m

∂2w

∂t2
δw dx − EI

∂2w

∂x2
δ

(
∂w

∂x

)∣∣∣∣
L

0
+ ∂

∂x

(
EI

∂2w

∂x2

)
δw

∣∣∣∣
L

0

−
∫ L

0

∂2

∂x2

(
EI

∂2w

∂x2

)
δw dx +

∫ L

0
f δw d t

]
d t = 0 (4.186)

Equation (4.186) leads to the following equations:

∂2

∂x2

(
EI

∂2w

∂x2

)
+ m

∂2w

∂x2
− f = 0, 0 < x < L (4.187)

EI
∂2w

∂x2
δ

(
∂w

∂x

)∣∣∣∣
L

o

= 0 (4.188)

∂

∂x

(
EI

∂2w

∂x2

)
δw

∣∣∣∣
L

0
= 0 (4.189)
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Equation (4.187) denotes the equation of motion for the transverse vibration of the
beam, and Eqs. (4.188) and (4.189) represent the boundary conditions. It can be seen
that Eq. (4.188) requires that either

EI
∂2w

∂x2
= 0 or δ

(
∂w

∂x

)
= 0 at x = 0 and x = L (4.190)

while Eq. (4.189) requires that either

∂

∂x

(
EI

∂2w

∂x2

)
= 0 or δw = 0 at x = 0 and x = L (4.191)

Thus, Eqs. (4.188) and (4.189) can be satisfied by the following common boundary
conditions:

1. Fixed or clamped end:

w = transverse deflection = 0,
∂w

∂x
= bending slope = 0 (4.192)

2. Pinned or hinged end:

w = transverse deflection = 0, EI
∂2w

∂x2
= bending moment = 0

(4.193)

3. Free end:

EI
∂2w

∂x2
= bending moment = 0,

∂

∂x

(
EI

∂2w

∂x2

)
= shear force = 0

(4.194)

4.12 RECENT CONTRIBUTIONS

Nagem et al. [11] observed that the Hamiltonian formulation of the damped oscillator
can be used to model dissipation in quantum mechanics, to analyze low-temperature
thermal fluctuations in RLC circuits, and to establish Pontryagin control theory for
damped systems. Sato examined the governing equations used for the vibration and
stability of a Timoshenko beam from the point of view of Hamilton’s principle [12]. He
derived the governing equations using an extended Hamilton’s principle by considering
the deviation of the external force following the deflection of the beam at its tip in
terms of the angle ε measured from the x axis (which is taken to be along the length
of the beam).

The variational finite difference method was presented for the vibration of sector
plates by Singh and Dev [13]. Conventional finite difference techniques are normally
applied to discretize the differential formulation either by approximating the field vari-
able directly or by replacing the differentials by appropriate difference quotients. In
general, the boundary conditions pose difficulties, particularly in problems with com-
plex geometric configurations. The difficulties of conventional finite difference analysis
can be overcome by using an integral-based finite difference approach in which the
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principle of virtual work or minimum potential energy is used. Reference [13] demon-
strates the application of the variational finite difference method to vibration problems.

Gladwell and Zimmermann [14] presented the variational formulations of the
equations governing the harmonic vibration of structural and acoustic systems. Two for-
mulations, one involving displacements only and the other involving forcelike quantities
only, were presented along with a discussion of the dual relationship. The principles
were applied to the vibration of membranes and plates, to coupled air-membrane and
air-plate vibrations, and to the vibration of isotropic elastic solid.
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PROBLEMS
4.1 Formulate the problem of finding a plane curve of
smallest arc length y(x) that connects points (x1, y1) and
(x2, y2).

4.2 Solve the problem formulated in Problem 4.1 and
show that the shortest distance between points (x1, y1)
and (x2, y2) is a straight line.

4.3 A plane curve y(x) is used to connect points (x1, y1)
and (x2, y2) with x1 < x2. The curve y(x) is rotated
about the x axis to generate a surface of revolution in
the range x1 ≤ x ≤ x2 (Fig. 4.7). Formulate the prob-
lem of finding the curve y(x) that corresponds to
minimum area of the surface of revolution in the xy
plane.
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x1 x2x
x

y(x)

y(x)

(x1,y1)

(x2,y2)

0

Figure 4.7

4.4 Solve the problem formulated in Problem 4.3.

4.5 Given two points A = (x1, y1) and B = (x2, y2) in
the xy plane, consider an arc defined by y = y(x) > 0,
x1 ≤ x ≤ x2, that passes through A and B whose rota-
tion about the x axis generates a surface of revolution.
Find the arc y = y(x) such that the area included in
x1 ≤ x ≤ x2 is a minimum.

4.6 Consider the Lagrangian functional L, given by

L =
∫ l

0

ρA

2

(
∂u

∂t

)2

dx −
∫ l

0

AE

2

(
∂u

∂x

)2

dx

+
∫ l

0
f u dx + Fu(l)

This functional corresponds to the axial vibration of a
bar where u(x, t) denotes the axial displacement.

(a) Find the first variation of the functional L with
δu(0, t) = δu(x, t1) = δu(x, t2) = 0.

(b) Derive the Euler–Lagrange equations by setting the
coefficients of δu in (0, l) and at x = l in the result
of part (a) to zero separately.

4.7 Consider a solid body of revolution obtained by
rotating a curve y = y(x) in the xy plane passing
through the origin (0,0), about the x axis as shown in
Fig. 4.8. When this body of revolution moves in the −x

direction at a velocity v in a fluid of density ρ, the nor-
mal pressure acting on an element of the surface of the

body is given by

p = 2ρv2 sin2 θ (4.1)

where θ is the angle between the direction of the velocity
of the fluid and the tangent to the surface. The drag
force on the body, P , can be found by integrating the x

component of the force acting on the surface of a slice
of the body shown in Fig. 4.8(b)[9]:

P = 4πρv2
∫ L

0

(
dy

dx

)3

y dx (4.2)

Find the curve y = y(x) that minimizes the drag on the
body of revolution, given by Eq. (4.2), subject to the
condition that y(x) satisfies the end conditions y(x =
0) = 0 and y(x = L) = R.

4.8 Consider the functional I (w) that arises in the
transverse bending of a thin rectangular plate resting on
an elastic foundation:

I (w) = D

2

∫ a

x=0

∫ b

y=0

[(
∂2w

∂x2

)2

+
(

∂2w

∂y2

)2

+ 2ν
∂2w

∂x2

∂2w

∂y2
+ 2(1 − ν)

(
∂2w

∂x∂y

)2

+ kw2

]

× dx dy −
∫ a

x=0

∫ b

y=0
f0w dx dy
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Figure 4.8 Solid body of revolution moving in a fluid.

where w(x, y) denotes the transverse deflection, D the
bending rigidity, ν the Poisson ratio, k the foundation
modulus, and f0 the transverse distributed load acting
on the plate with w = 0 on the boundary of the plate.

(a) Find the first variation of the functional I (w) with
respect to w.

(b) Derive the Euler–Lagrange equation corresponding
to the functional I (w).

(c) Identify the natural and forced boundary conditions
of the problem.

4.9 Consider the problem of minimizing the functional
I (y) given by

I (y) =
∫ b

x=a

y(x) dx, y(a) = A, y(b) = B

subject to the constraint

∫ b

x=a

√
1 +

(
dy

dx

)2

= l

Derive the Euler–Lagrange equations of the problem
using Lagrange multipliers.

4.10 The transverse deflection of a membrane of area
A (in the xy plane), subjected to a distributed transverse

load f (x, y), gives rise to the functional

I (w) = 1

2

∫∫
A

[(
∂w

∂x

)2

+
(

∂w

∂y

)2

− 2f w

]
dx dy

Derive the governing differential equation and the
boundary conditions by minimizing the functional I (w).

4.11 The potential energy of a thin beam, I (w), lying
along the x axis subjected to a distributed transverse
load f (x) per unit length, a bending moment M1 and a
shear force V1 at the end x = 0, and a bending moment
M2 and a shear force V2 at the end x = l is given by

I (w) = 1

2

∫ l

x=0
EI

(
d2w

dx2

)2

dx −
∫ l

x=0
f w dx

+M1

(
dw

dx

)
x=0

− M2

(
dw

dx

)
x=l

−V1w|x=0 + V2w|x=l

where w(x) denotes the transverse deflection and EI
the bending stiffness of the beam. Derive the governing
differential equation and the boundary conditions of the
beam by minimizing the potential energy.



5

Derivation of Equations: Integral
Equation Approach

5.1 INTRODUCTION

In this chapter we describe the integral formulation of the equations of motion governing
the vibration of continuous systems. An integral equation is an equation in which the
unknown function appears under one or more signs of integration. The general form
of an integral equation is given by∫ b

a

K(t, ξ )φ(ξ) dξ + a0(t)φ(t) = f (t) (5.1)

where K(t, ξ) is a known function of the variables t and ξ and is called the kernal or
nucleus, φ(ξ) is an unknown function, a0(t) and f (t) are known functions, and a and
b are known limits of integration. The function φ(t) which satisfies Eq. (5.1) is called
the solution of the integral Eq. (5.1). Physically, Eq. (5.1) relates the present value
of the function φ(t) to the sum or integral of what had happened to all its previous
values, φ(ξ), from the previous state, a, to the present state, b. The first and second
terms on the left-hand side of Eq. (5.1) are called the regular and exceptional parts
of the equation, respectively, while the term on the right-hand side, f (t), is called the
disturbance function. In some cases, the integral equation may contain the derivatives
of the unknown function φ(ξ) as∫ b

a

K(t, ξ )φ(ξ) dξ + a0(t)φ(t) + a1(t)φ
(1)(t) + · · · + an(t)φ

(n)(t) = f (t) (5.2)

where a1(t), . . . , an(t) are known functions of t and φ(i)(t) = diφ/ d t i , i = 1, 2, . . . , n.
Equation (5.2) is called an integrodifferential equation.

5.2 CLASSIFICATION OF INTEGRAL EQUATIONS

Integral equations can be classified in a variety of ways, as indicated below.

5.2.1 Classification Based on the Nonlinear Appearance of φ(t)

If the unknown function φ(t) appears nonlinearly in the regular and/or exceptional parts,
the equation is said to be a nonlinear integral equation. For example, the equation
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G[φ(t)] −
∫ b

a

H [t, ξ, φ(ξ)] dξ = f (t) (5.3)

where G and/or H are nonlinear functions of φ(t), is called a nonlinear integral
equation. On the other hand, if both G and H in Eq. (5.3) are linear in terms of φ(t),
the equation is said to be a linear integral equation. Thus, Eq. (5.1) is called a linear
integral equation, while Eq. (5.2) is said to be a linear integrodifferential equation.

5.2.2 Classification Based on the Location of Unknown Function φ(t)

Based on the location of the unknown function, the integral equations are said to be of
the first, second, or third kind. For example, if the unknown function appears under the
integral sign only, the equation is said to be of the first kind. If the unknown function
appears both under the integral sign and outside the integral, the equation is considered
to be of the second or third kind. In the second kind of integral equation, the unknown
function, appearing outside the integral sign, appears alone, whereas in the third kind,
it appears in the form of a product a0(t)φ(t), where a0(t) is a known function of t .
According to this classification, Eq. (5.1) is an integral equation of the third kind. The
corresponding equations of the second and first kinds can be expressed, respectively, as

φ(t) − λ

∫ b

a

K(t, ξ )φ(ξ) dξ = f (t) (5.4)

and ∫ b

a

K(t, ξ )φ(ξ) dξ = f (t) (5.5)

If f (t) = 0 in Eq. (5.4), we obtain

φ(t) = λ

∫ b

a

K(t, ξ )φ(ξ) dξ (5.6)

which is called a homogeneous integral equation. Note that the λ in Eqs. (5.4) and (5.6)
denotes a constant and can be incorporated into the kernel K(t, ξ). However, in many
applications, this constant represents a significant parameter that may assume several
values. Hence, it is included as a separate parameter in these equations.

5.2.3 Classification Based on the Limits of Integration

Based on the type of integral in the regular part, the integral equations are classified
as Fredholm- or Volterra-type equations. If the integral is over finite limits with fixed
endpoints (definite integral), the equation is said to be of Fredholm type. On the other
hand, if the integration limits are variable (indefinite integral), the integral equation is
said to be of Volterra type. It can be seen that in Eqs. (5.1) to (5.6), the regular parts
involve definite integrals and hence they are considered to be of Fredholm type.

If K(t, ξ) = 0 for ξ > t , the regular parts of Eqs. (5.1) to (5.6) can be expressed
as indefinite integrals as ∫ t

a

K(t, ξ )φ(ξ) dξ
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and hence the resulting equations will be of Volterra type Thus, Volterra-type integral
equations of the third, second, and first kind can be expressed, in sequence, as∫ t

a

K(t, ξ )φ(ξ) dξ + a0(t)φ(t) = f (t) (5.7)

φ(t) −
∫ t

a

K(t, ξ )φ(ξ) dξ = f (t) (5.8)

∫ t

a

K(t, ξ )φ(ξ) dξ = f (t) (5.9)

Similar to Eq. (5.6), the Volterra-type homogeneous integral equation can be written as

φ(t) =
∫ t

a

K(t, ξ )φ(ξ) dξ (5.10)

5.2.4 Classification Based on the Proper Nature of an Integral

If the regular part of the integral equation contains a singular integral, the equation is
called a singular integral equation. Otherwise, the equation is called a normal integral
equation. The singularity in the integral may be due to either an infinite range of inte-
gration or a nonintegrable or unbounded kernel which causes the integrand to become
infinite at some point in the range of integration. Thus, the following equations are
examples of singular integral equations:∫ ∞

0
K(t, ξ)φ(ξ) dξ = f (t) (5.11)

φ(t) − λ

∫ ∞

−∞
K(t, ξ)φ(ξ) dξ = f (t) (5.12)

5.3 DERIVATION OF INTEGRAL EQUATIONS

5.3.1 Direct Method

The direct method of deriving integral equations is illustrated through the following
example.

Example 5.1 Load Distribution on a String Consider the problem of finding the load
distribution on a tightly stretched string, which results in a specified deflection shape
of the string. Let a string of length L be under tension P . When a concentrated load F

is applied to the string at point ξ , the string will deflect as shown in Fig. 5.1. Let the
transverse displacement of the string at ξ due to F be δ. Then the displacement w(x)

at any other point x can be expressed as

w(x) =




δx

ξ
, 0 ≤ x ≤ ξ

δ
L − x

L − ξ
, ξ ≤ x ≤ L

(E5.1.1)
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Figure 5.1 Tightly stretched string subject to a force F .

For small displacements δ, the conditions for the equilibrium of horizontal and vertical
forces can be written as

P cos θ = P cos φ (E5.1.2)

F = P sin θ + P sin φ

≈ P(tan θ + tan φ)

= P
Lδ

ξ(L − ξ)
(E5.1.3)

Equation (E5.1.3) can be solved for δ, which upon substitution in Eq. (E5.1.3) results in

w(x) = F

P
g(x, ξ) (E5.1.4)

where g(x, ξ) is the impulse response function, also known as Green’s function,
given by

g(x, ξ) =




x(L − ξ)

L
, x ≤ ξ

ξ(L − x)

L
, ξ ≤ x

(E5.1.5)

If the external load applied to the string is distributed with a magnitude of f (ξ) per
unit length, the transverse displacement of the string can be expressed as

w(x) = 1

P

∫ L

0
g(x, ξ)f (ξ) dξ (E5.1.6)

If the displacement variation w(x) is specified, Eq. (E5.1.6) becomes an integral equ-
ation of the first kind for the unknown force distribution f (x). For free vibration, the
force per unit length, due to inertia, is given by

f (x, t) = −ρ(x)
∂2w(x, t)

∂t2
(E5.1.7)
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where ρ(x) is the mass density (mass per unit length) of the string at x. Using
Eq. (E5.1.7), Eq. (E5.1.6) can be written as

w(x, t) = − 1

P

∫ L

0
g(x, ξ)ρ(ξ)

∂2w(ξ, t)

∂t2
dξ (E5.1.8)

When ρ(x) is known, Eq. (E5.1.8) denotes the governing integrodifferential equation
for the displacement w(x, t). Assuming a simple harmonic solution with frequency ω,

w(x, t) = W(x) sin ωt (E5.1.9)

where W(x) denotes the amplitude of displacement of the string at x, Eq. (E5.1.8)
becomes

W(x) = ω2

P

∫ L

0
g(x, ξ)ρ(ξ)W(ξ) dξ (E5.1.10)

which can be seen to be an integral equation of the second kind for W(x).

5.3.2 Derivation from the Differential Equation of Motion

The equation of motion for the free vibration of a string can be expressed as (see
Eq. (8.9)

c2 ∂2w

∂x2
= ∂2w

∂t2
(5.13)

where

c2 = P

ρ
(5.14)

ρ is the mass density of the string per unit length and P is the tension. If the string is
fixed at both ends, the boundary conditions are given by

w(0, t) = 0

w(L, t) = 0 (5.15)

If the string is given an initial displacement f (x) and initial velocity g(x), we have

w(x, 0) = f (x)

∂w

∂t
(x, 0) = g(x) (5.16)

Using the separation of variables technique, w(x, t) can be expressed as

w(x, t) = X(x)T (t) (5.17)

where X is a function of x and T is a function of t . Using Eq. (5.17), Eq. (5.13) can
be rewritten as

d2T / d t2

T
= c2 d2X/ dx2

X
= −λc2 (5.18)
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where −λc2 is a constant. Equation (5.18) yields two ordinary differential equations:

d2T

d t2
+ λc2T = 0 (5.19)

d2X

dx2
+ λX = 0 (5.20)

Since T (t) �≡ 0, the boundary conditions can be expressed as

X(0) = 0

X(L) = 0 (5.21)

Integration of Eq. (5.20) gives

dX

dx
= −λ

∫ x

0
X dξ + c1 (5.22)

where c1 is a constant. Integration of Eq. (5.22) leads to

X = −λ

∫ x

0
dη

∫ x

0
X dξ + c1x + c2 (5.23)

where c2 is a constant. Changing the order of integration, Eq. (5.23) can be rewritten as

X(x) = −λ

∫ x

0
X(ξ) dξ

∫ x

ξ

dη + c1x + c2

= −λ

∫ x

0
(x − ξ)X(ξ) dξ + c1x + c2 (5.24)

The use of the boundary conditions, Eq. (5.21), results in

c2 = 0

c1 = 1

L

∫ L

0
(L − ξ)X(ξ) dξ (5.25)

The differential Eq. (5.13) can thus be expressed as an equivalent integral equation in
X(x) as

X(x) + λ

∫ x

0
(x − ξ)X(ξ) dξ − λ

x

L

∫ L

0
(L − ξ)X(ξ) dξ = 0 (5.26)

Introducing

K(x, ξ) =
{

ξ(L − x), 0 ≤ ξ < x

x(L − ξ), x ≤ ξ ≤ L
(5.27)

Eq. (5.26) can be rewritten as

X(x) = λ

∫ L

0
K(x, ξ)X(ξ) dξ (5.28)
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This equation can be seen to be of the same form as Eq. (E5.1.10) (Volterra-type
homogeneous integral equation). Equation (5.28) can be solved using the procedure
outlined in the following example.

Example 5.2 Find the solution of Eq. (5.28).

SOLUTION We rewrite Eq. (5.28) as

X(x) + λ

∫ x

0
(x − ξ)X(ξ) dξ − λx d = 0 (E5.2.1)

where

d = 1

L

∫ L

0
(L − ξ)X(ξ) dξ (E5.2.2)

Taking the Laplace transform of Eq. (E5.2.1), we obtain

X(s) + λ
1

s2
X(s) − λ

1

s2
d = 0 (E5.2.3)

where X(s) is the Laplace transform of X(x). Equation (E5.2.3) yields

X(s) = λ d

s2 + λ
(E5.2.4)

and the inverse transform of Eq. (E5.2.4) gives

X(x) =
√

λ d sin
√

λx (E5.2.5)

Substitution of Eq. (E5.2.5) into Eq. (E5.2.2) gives

d
∫ L

0
(L − ξ)

√
λ sin

√
λ ξ dξ = dL (E5.2.6)

which can be satisfied when d = 0 or∫ L

0
(L − ξ)

√
λ sin

√
λ ξ dξ = L (E5.2.7)

Since d = 0 leads to the trivial solution X(x) = 0 and w(x, t) = 0, Eq. (E5.2.7) must
be satisfied. Equation (E5.2.7) yields

L − sin
√

λL√
λ

= L (E5.2.8)

or

sin
√

λL = 0 (E5.2.9)

or

λ = n2π2

L2
, n = 1, 2, . . . (E5.2.10)
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Equations (E5.2.5) and (E5.2.10) lead to

X(x) = a sin
nπx

L
(E5.2.11)

where a is a constant.

5.4 GENERAL FORMULATION OF THE EIGENVALUE PROBLEM

5.4.1 One-Dimensional Systems

For a one-dimensional continuous system, the displacement w(x, t) can be expressed as

w(x, t) =
∫ L

0
a(x, ξ)f (ξ, t) dξ (5.29)

where a(x, ξ) is the flexibility influence function that satisfies the boundary conditions
of the system and f (ξ, t) is the distributed load at point ξ at time t . For a system
undergoing free vibration, the load represents the inertia force, so that

f (x, t) = −m(x)
∂2w(x, t)

∂t2
(5.30)

where m(x) is the mass per unit length. Assuming a harmonic motion of frequency ω

during free vibration,

w(x, t) = W(x) cos ωt (5.31)

Eq. (5.30) can be expressed as

f (x, t) = ω2m(x)W(x) cos ωt (5.32)

Substituting Eqs. (5.31) and (5.32) into Eq. (5.29) results in

W(x) = ω2
∫ L

0
a(x, ξ)m(ξ)W(ξ) dξ (5.33)

It can be seen that Eq. (5.33) is a homogeneous integral equation of the second kind
and represents the eigenvalue problem of the system in integral form.

Example 5.3 Free Transverse Vibration of a Membrane Consider a membrane of
area A whose equilibrium shape lies in the xy plane. Let the membrane be fixed at
its boundary, S, and subjected to a uniform tension P (force per unit length). Let
the transverse displacement of point Q(x, y) due to the transverse load f (ξ, η) dξ dη

applied at the point R(ξ, η) be w(Q). By considering the equilibrium of a small element
of area dx dy of the membrane, the differential equation can be derived as

∂2w

∂x2
+ ∂2w

∂y2
= −f (x, y)

P
(E5.3.1)
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The Green’s function of the membrane, K(x, y; ξ, η), is given by [4]

K(Q,R) ≡ K(x, y; ξ, η) = log
1

r
− h(Q, R) (E5.3.2)

where r denotes the distance between two points Q and R in the domain of the
membrane:

r =
√

(x − ξ)2 + (y − η)2 (E5.3.3)

and h(Q, R) is a harmonic function whose values on the boundary of the membrane,
S, are the same as those of log(1/r) so that K(Q, R) will be zero on S. For example, if
the membrane is circular with center at (0,0) and radius a, the variation of the function
K(Q,R) will be as shown in Fig. 5.2. Since the membrane is fixed along its boundary
S, the transverse displacement of point Q can be expressed as

w(Q) = 1

2πP

∫∫
A

K(Q, R)f (R) dA (E5.3.4)

x

Boundary, S

a
R

Q(x,y)

(x, h)

K(Q, R)

y

O

Figure 5.2 Variation of the Green’s function for a circular membrane. (From Ref. [4]).
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From this static relation, the free vibration relation can be obtained by substituting
−ρ(R)[∂2w(R)/∂t2] for f (R) in Eq. (E5.3.4) so that

w(Q) = − 1

2πP

∫∫
A

K(Q,R)ρ(R)
∂2w

∂t2
(R) dA (E5.3.5)

Assuming harmonic motion with frequency ω, we have

w(Q) = W(Q)eiωt (E5.3.6)

where W(Q) denotes the amplitude of vibration at point Q. Substitution of Eq. (E5.3.6)
in Eq. (E5.3.5) yields the relation

W(Q) = ω2

2πP

∫∫
A

K(Q, R)ρ(R)W(R) dA (E5.3.7)

5.4.2 General Continuous Systems

The general form of Eq. (5.33), valid for any continuous system, can be expressed as

W(x) = λ

∫
V

g(x, ξ)m(ξ)W(ξ) dV (ξ) (5.34)

where W(x) and W(ξ) denote the displacements at points x and ξ , respectively.
Depending on the dimensionality of the problem, points x and ξ may be defined by
one, two, or three spatial coordinates. The general flexibility influence function g(x, ξ),
also known as the Green’s function, is symmetric in x and ξ , [i.e., g(x, ξ) = g(ξ, x)]
for a self-adjoint problem.

Note that the kernel, g(x, ξ)m(ξ), in Eq. (5.34) is not symmetric unless m(ξ) is a
constant. However, the kernel can be made symmetric by noting the fact that m(ξ) > 0
and introducing the function φ(x):

φ(x) =
√

m(x)W(x) (5.35)

By multiplying both sides of Eq. (5.34) by
√

m(x) and using Eq. (5.35), we obtain

φ(x) = λ

∫
V

K(x, ξ)φ(ξ) dV (ξ) (5.36)

where the kernel

K(x, ξ) =
√

m(x)m(ξ)g(x, ξ) ≡ K(ξ, x) (5.37)

can be seen to be symmetric. An advantage of the transformation above is that a
symmetric kernel usually possesses an infinite number of eigenvalues, λ, for which
Eq. (5.36) will have nonzero solutions. On the other hand, a nonsymmetric kernel
may or may not have eigenvalues [1]. For any specific eigenvalue λi , Eq. (5.36) has a
nontrivial solution φi(x), which is related to Wi(x) by Eq. (5.35). The function Wi(x)

represents the eigenfunction corresponding to the eigenvalue λi of the system.



5.5 Solution of Integral Equations 133

5.4.3 Orthogonality of Eigenfunctions

It can be shown that the eigenfunctions φi(x) are orthogonal in the usual sense, while
the functions Wi(x) are orthogonal with respect to the functions m(x). For this, consider
Eq. (5.36), corresponding to two distinct eigenvalues λi and λj :

φi(x) = λi

∫
V

K(x, ξ)φi(ξ) dV (ξ) (5.38)

φj (x) = λj

∫
V

K(x, ξ)φj (ξ) dV (ξ) (5.39)

Multiply Eq. (5.38) by φj (x), integrate over the domain V , and use Eq. (5.39) to
obtain ∫

V

φi(x)φj (x) dV (x) = λi

∫
V

φj (x)

[∫
V

K(x, ξ)φi(ξ) dV (ξ)

]
dV (x)

= λi

∫
V

φi(ξ)

[∫
V

K(ξ, x)φj (ξ) dV (x)

]
dV (ξ)

= λi

λj

∫
V

φi(ξ)φj (ξ) dV (ξ) (5.40)

which yields

(λi − λj )

∫
V

φi(x)φj (x) dV (x) = 0 (5.41)

Since λi and λj are distinct, λi �= λj , Eq. (5.41) leads to the orthogonality relation

∫
V

φi(x)φj (x) dV (x) = 0, λi �= λj (5.42)

When Eq. (5.35) is used in Eq. (5.42), we obtain the orthogonality relation for the
eigenfunctions Wi(x) as

∫
V

m(x)Wi(x)Wj (x) dV (x) =
{

0 for λi �= λj

1 for λi = λj
(5.43)

5.5 SOLUTION OF INTEGRAL EQUATIONS

Several methods, both exact and approximate methods, can be used to find the solu-
tions of integral equations [1, 4–6]. The method of undetermined coefficients and the
Rayleigh–Ritz, Galerkin, collocation, and numerical integration methods are considered
in this section.
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5.5.1 Method of Undetermined Coefficients

In this method the unknown function is assumed to be in the form of a power series
of a finite number of terms. The assumed function is then substituted into the integral
equation and the regular part is integrated. This results in a set of simultaneous equations
in terms of the unknown coefficients. Solution of these simultaneous equations yields
the solution of the integral equation.

Example 5.4 Find the solution of the integral equation

2
∫ 1

0
(1 − ξ + xξ)φ(ξ) dξ = −x + 1 (E5.4.1)

SOLUTION Assume the solution of φ(x) in a power series of two terms as

φ(x) = c1 + c2x (E5.4.2)

where c1 and c2 are constants to be determined. Substitute Eq. (E5.4.2) into Eq. (E5.4.1)
and carry out the integration to obtain

2
∫ 1

0
(1 − ξ + xξ)(c1 + c2ξ) dξ = −x + 1 (E5.4.3)

Upon integration, Eq. (E5.4.3) becomes(
c1 + 4

3c2
) + x

(
c1 + 2

3c2
) = −x + 1 (E5.4.4)

Equating similar terms on both sides of Eq. (E5.4.4), we obtain

c1 + 4
3c2 = 1

c1 + 2
3c2 = −1 (E5.4.5)

Equations (E5.4.5) yield c1 = −3 and c2 = 3. Thus, the solution of the integral
Eq. (E5.4.1) is given by

φ(x) = −3 + 3x (E5.4.6)

5.5.2 Iterative Method

An iterative method similar to the matrix iteration method for the solution of a matrix
eigenvalue problem can be used for the solution of the integral Eq. (5.34). The iteration
method assumes that the eigenvalues are distinct and well separated such that λ1 < λ2 <

λ3 · · · . In addition, the iteration method is based on the expansion theorem related to
the eigenfunctions Wi(x). Similar to the expansion theorem of the matrix eigenvalue
problem, the expansion theorem related to the integral formulation of the eigenvalue
problem can be stated as

W(x) =
∞∑
i=1

ciWi(x) (5.44)
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where the coefficients ci are determined as

ci =
∫

V

m(x)W(x)Wi(x) dV (x) (5.45)

Equation (5.44) indicates that any function W(x) that satisfies the boundary conditions
of the system can be represented as a linear combination of the eigenfunctions Wi(x)

of the system.

First Eigenfunction The iteration method starts with the selection of a trial function
W

(1)
1 (x) as an approximation to the first eigenfunction or mode shape, W1(x). Substitut-

ing W
(1)
1 (x) for W(x) on the right-hand side of Eq. (5.34) and evaluating the integral,

the next (improved) approximation to the eigenfunction W1(x) can be obtained:

W
(2)
1 (x) =

∫
V

g(x, ξ)m(ξ)W
(1)
1 (ξ) dV (ξ) (5.46)

Using Eq. (5.44), Eq. (5.46) can be expressed as

W
(2)
1 (x) =

∞∑
i=1

ci

∫
V

g(x, ξ)m(ξ)Wi(ξ) dV (ξ)

=
∞∑
i=1

ciWi(x)

λi

(5.47)

The definition of the eigenvalue problem, Eq. (5.34), yields

Wi(x) = λi

∫
V

g(x, ξ)m(ξ)Wi(ξ) dV (ξ) (5.48)

Using W
(2)
1 (x) as the trial function on the right-hand side of Eq. (5.48), we obtain the

new approximation, W
(3)
1 (x), as

W
(3)
1 (x) =

∫
V

g(x, ξ)m(ξ)W
(2)
1 (ξ) dV (ξ)

=
∞∑
i=1

ciWi(x)

λ2
i

(5.49)

The continuation of the process leads to

W
(n)
1 (x) =

∞∑
i=1

ciWi(x)

λn−1
i

, n = 2, 3, . . . (5.50)

Since the eigenvalues are assumed to satisfy the relation λ1 < λ2 · · ·, the first term on
the right-hand side of Eq. (5.50) becomes large compared to the other terms and as



136 Derivation of Equations: Integral Equation Approach

n → ∞, Eq. (5.50) yields

lim
n→∞ W

(n−1)
1 (x) = c1W1(x)

λn−2
1

(5.51)

lim
n→∞ W

(n)
1 (x) = c1W1(x)

λn−1
1

(5.52)

Equations (5.51) and (5.52) yield the converged eigenvalue λ1 as

λ1 = lim
n→∞

W
(n−1)
1 (x)

W
(n)
1 (x)

(5.53)

and the converged eigenvector can be taken as

W1(x) = lim
n→∞ W

(n)
1 (x) (5.54)

Higher Eigenfunctions To determine the second eigenfunction, the trial function
W

(1)
2 (x) used must be made completely free of the first eigenfunction, W1(x). For this

we use any arbitrary trial function W̃
(1)
2 (x) to generate W

(1)
2 (x) as

W
(1)
2 (x) = W̃

(1)
2 (x) − a1W1(x) (5.55)

where a1 is a constant that can be determined from the orthogonality condition of the
eigenfunctions:∫

V

m(x)W
(1)
2 (x)W1(x) dV (x)

=
∫

V

m(x)W̃
(1)
2 (x)W1(x) dV (x) − a1

∫
V

m(x)[W1(x)]2 dV (x) = 0 (5.56)

or

a1 =
∫
V

m(x)W̃
(1)
2 (x)W1(x) dV (x)∫

V
m(x)[W1(x)]2 dV (x)

(5.57)

When W1(x) is normalized according to Eq. (5.43),∫
V

m(x)[W1(x)]2 dV (x) = 1 (5.58)

Eq. (5.57) becomes

a1 =
∫

V

m(x)W̃
(1)
2 (x)W1(x) dV (x) (5.59)

Once a1 is determined, we substitute Eq. (5.55) for W(x) on the right-hand side of
Eq. (5.34), evaluate the integral, and denote the result as W̃

(2)
2 (x), the next (improved)

approximation to the true eigenfunction W2(x):

W̃
(2)
2 (x) =

∫
V

g(x, ξ)m(ξ)W
(1)
2 (ξ) dV (ξ) (5.60)
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For the next iteration, we generate W
(2)
2 (x) that is free of W1(x) as

W
(2)
2 (x) = W̃

(2)
2 (x) − a2W1(x) (5.61)

where a2 can be found using an equation similar to Eq.(5.59) as

a2 =
∫

V

m(x)W̃
(2)
2 (x)W1(x) dV (x) (5.62)

when W1(x) is normalized according to Eq. (5.43).
When the iterative process is continued, we obtain, as n → ∞, the converged

result as

λ2 = lim
n→∞

W
(n−1)
2 (x)

W
(n)
2 (x)

(5.63)

W2(x) = lim
n→∞ W

(n)
2 (x) (5.64)

To find the third eigenfunction of the system, we start with any arbitrary trial function
W̃

(1)
3 (x) and generate the function W

(1)
3 (x) that is completely free of the first and second

eigenfunctions W1(x) and W2(x) as

W
(1)
3 (x) = W̃

(1)
3 (x) − a1W1(x) − a2W2(x) (5.65)

where the constants a1 and a2 can be found by making W
(1)
3 (x) orthogonal to both

W1(x) and W2(x). The procedure used in finding the second eigenfunction can be used
to find the converged solution for λ3 and W3(x). In fact, a similar process can be used
to find all other higher eigenvalues and eigenfunctions.

Example 5.5 Find the first eigenvalue and the corresponding eigenfunction of a tightly
stretched string under tension using the iterative method with the trial function

W
(1)
1 (x) = x(L − x)

L2

SOLUTION Let the mass of the string be m per unit length and the tension in the
string be P . The Green’s function or the flexibility influence function, g(x, ξ), can be
derived by applying a unit load at point ξ and finding the resulting deflection at point
x as shown in Fig. 5.3. For vertical force equilibrium, we have

P
a

ξ
+ P

a

L − ξ
= 1 (E5.5.1)
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(a)

(b)

L

P P

F = 1
a

L − xx

x

y

L − xx

L − xx

y

a

Figure 5.3

which yields

a = ξ(L − ξ)

PL
(E5.5.2)

Thus, the Green’s function is given by

g(x, ξ) =




ax

ξ
, ξ > x

a(L − x)

L − ξ
, ξ < x

(E5.5.3)

which can be expressed as

g(x, ξ) =




x(L − ξ)

PL
, ξ > x

ξ(L − x)

PL
, ξ < x

(E5.5.4)

Using the trial function

W
(1)
1 (x) = x(L − x)

L2
(E5.5.5)
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for W1(x) on the right-hand side of Eq. (5.34), we obtain the new trial function
W

(2)
1 (x) as

W
(2)
1 (x) =

∫ L

ξ=0
g(x, ξ)m(ξ)W

(1)
1 (ξ) dξ

=
∫ x

ξ=0
g(x, ξ)m(ξ)W

(1)
1 (ξ) dξ +

∫ L

ξ=x

g(x, ξ)m(ξ)W
(1)
1 (ξ) dξ

=
∫ x

ξ=0

ξ(L − x)

PL
(m)

ξ(L − ξ)

L2
dξ

+
∫ L

ξ=x

x(L − ξ)

PL
(m)

ξ(L − ξ)

L2
dξ (E5.5.6)

Equation (E5.5.6) can be simplified as

W
(2)
1 (x) = m

12PL2
(L3x − 2Lx3 + x4) (E5.5.7)

Using Eqs. (E5.5.5) and (E5.5.7), we obtain

ω2
1 ≈ W

(1)
1 (x)

W
(2)
1 (x)

= 12P

mL2

x/L − x2/L2

x/L − 2(x3/L3) + x4/L4
(E5.5.8)

or

ω2
1 ≈ 12P

mL2
(E5.5.9)

or

ω1 ≈ 3.4641

√
P

mL2
(E5.5.10)

This approximate solution can be seen to be quite good compared to the exact value
of the first natural frequency, ω1 = π

√
P/mL2.

5.5.3 Rayleigh–Ritz Method

In the Rayleigh–Ritz method, also known as the assumed modes method, the solution
of the free vibration problem is approximated by a linear combination of n admissible
functions, ui(x), as

w(x, t) =
n∑

i=1

ui(x)ηi(t) (5.66)

where ηi(t) are time-dependent generalized coordinates. The kinetic energy of the
system, T (t), can be expressed as

T (t) = 1
2

∫ L

x=0 m(x)[ẇ(x, t)]2 dx

= 1
2

∑n
i=1

∑n
j=1 mij η̇i(t)η̇j (t) (5.67)
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where m(x) denotes the mass per unit length, a dot above a symbol represents a time
derivative, and

mij = mji =
∫ L

x=0
m(x)ui(x)uj (x) dx (5.68)

The potential energy of the system, U(t), can be expressed in terms of the flexibility
influence function g(x, ξ) and the distributed load f (x, t) as

U(t) = 1
2

∫ L

x=0 f (x, t)
[∫ L

0 g(x, ξ)f (ξ, t) dξ
]

dx (5.69)

Assuming that

f (x, t) = ω2m(x)W(x, t) (5.70)

for free vibration, Eq. (5.69) can be expressed as

U(t) = ω4

2

∫ L

0
m(x)W(x, t)

[∫ L

0
g(x, ξ)m(ξ)W(ξ, t) dξ

]
dx (5.71)

Substitution of Eq. (5.66) into (5.71) leads to

U(t) = 1
2 λ̃2 ∑n

i=1

∑n
j=1 kij ηi(t)ηj (t) (5.72)

where

kij = kji =
∫ L

0
m(x)ui(x)

[∫ L

0
g(x, ξ)m(ξ)uj (ξ)dξ

]
dx (5.73)

and λ̃ denotes an approximation of ω2. Equations (5.66), (5.67), and (5.72) essentially
approximate the continuous system by an n-degree-of-freedom system.

Lagrange’s equations for an n-degree-of-freedom conservative system are given by

d

d t

(
∂T

∂η̇k

)
− ∂T

∂ηk

+ ∂U

∂ηk

= 0, k = 1, 2, . . . , n (5.74)

where ηk is the generalized displacement and η̇k is the generalized velocity. Substitution
of Eqs. (5.67) and (5.72) into (5.74) yields the following equations of motion:

n∑
i=1

mkiη̈i + λ̃2
n∑

i=1

kkiηi = 0, k = 1, 2, . . . , n (5.75)

For harmonic variation of ηi(t),

η̈i = −λ̃ηi (5.76)

and Eqs. (5.75) lead to the matrix eigenvalue problem

λ̃[k]�η = [m]�η (5.77)

where [k] = [kij ] and [m] = [mij ] are symmetric matrices and λ̃ = ω2. The problem
of Eq. (5.77) can be solved readily to find the eigenvalues λ̃ and the corresponding
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eigenvectors �η. The eigenfunctions of the continuous system can then be determined
using Eq. (5.66).

Example 5.6 Find the natural frequencies of a tightly stretched string under tension
using the Rayleigh–Ritz method.

SOLUTION Let the mass of the string be m per unit length and the tension in the
string be P . The Green’s function or flexibility influence function of the string can be
expressed as (see Example 5.1)

g(x, ξ) = g(ξ, x) =




ξ(L − x)

LP
, ξ < x

x(L − ξ)

LP
, ξ > x

(E5.6.1)

We assume a two-term solution for the deflection of the string as

w(x, t) = u1(x)η1(t) + u2(x)η2(t) (E5.6.2)

where the admissible functions u1(x) and u2(x) are chosen as

u1(x) = x

L

(
1 − x

L

)
(E5.6.3)

u2(x) = x2

L2

(
1 − x

L

)
(E5.6.4)

and η1(t) and η2(t) are the time-dependent generalized coordinates to be determined.
The elements of the matrix [m] can be determined as

mij =
∫ L

x=0
m(x)ui(x)uj (x) dx (E5.6.5)

Equation (E5.6.5) gives

m11 = m

∫ L

x=0
u2

1(x) dx = m

L2

∫ L

x=0
x2

(
1 − x

L

)2
dx = mL3

30L2
= mL

30

m12 = m21 = m

∫ L

x=0
u1(x)u2(x) dx = m

L3

∫ L

x=0
x3

(
1 − x

L

)2
dx = mL4

60L3
= mL

60

m22 = m

∫ L

x=0
u2

2(x) dx = m

L4

∫ L

x=0
x4

(
1 − x

L

)2
dx = mL5

105L4
= mL

105

The elements of the matrix [k] can be found from

kij = kji =
∫ L

0
m(x)ui(x)

[∫ L

0
g(x, ξ)m(ξ)uj (ξ) dξ

]
dx (E5.6.6)
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In Eq. (E5.6.6) the inside integral for k11 can be evaluated as follows:∫ L

0
g(x, ξ)m(ξ)u1(ξ) dξ

= m

∫ x

0

ξ(L − x)

LP

ξ

L

(
1 − ξ

L

)
dξ + m

∫ L

x

x(L − ξ)

LP

ξ

L

(
1 − ξ

L

)
dξ

= m

L2P

(
−L

6
x3 + 1

12
x4 + L3

12
x

)
(E5.6.7)

Thus, Eq. (E5.6.6) yields

k11 =
∫ L

0
m

(
x

L
− x2

L2

)
m

L2P

(
−L

6
x3 + 1

12
x4 + L3

12
x

)
dx

= m2

L4P

∫ L

0

Lx − x2

12
(−2Lx3 + x4 + L3x) dx

= 17m2L3

5040P
(E5.6.8)

Similarly, we can obtain from Eq.(E5.6.6)

k12 = k21 =
∫ L

0
m

(
x2

L2
− x3

L3

)
m

L2P

(
−L

6
x3 + x4

12
+ L3

12
x

)
dx

= m2L3

P

(
17

10,080

)
(E5.6.9)

The inside integral in Eq. (E5.6.6) for k22 can be evaluated as∫ L

0 g(x, ξ)m(ξ)u2(ξ) dξ

= m

∫ L

0

ξ(L − x)

LP

(
ξ 2

L2
− ξ 3

L3

)
dξ + m

∫ L

x

x(L − ξ)

LP

(
ξ 2

L2
− ξ 3

L3

)
dξ

= m

L4P

−5L2x4 + 3Lx5 + 2L5x

60
(E5.6.10)

Thus, Eq. (E5.6.6) gives k22 as

k22 =
∫ L

0
m(x)u2(x)

m

60L4P
(−5L2x4 + 3Lx5 + 2L5x) dx

= m2

60L4P

∫ L

0

(
x2

L2
− x3

L3

)
(−5L2x4 + 3Lx5 + 2L5x) dx

= m2L3

P

(
11

12,600

)
(E5.6.11)

Thus, the eigenvalue problem can be expressed as

mL

420

[
14 7
7 4

]
�X = m2L3λ

50,400

[
170 85
85 44

]
�X (E5.6.12)



5.5 Solution of Integral Equations 143

or [
14 7
7 4

]
�X = λ̃

[
170 85
85 44

]
�X (E5.6.13)

where

λ̃ = mL2λ

120P
(E5.6.14)

λ = ω2 (E5.6.15)

is the eigenvalue and �X is the eigenvector (mode shape). The solution of Eq. (E5.6.13)
is given by

λ̃1 = 0.0824, λ̃2 = 0.3333 (E5.6.16)

with

�X(1) =
{

1.0000
0.0

}
, �X(2) =

{
−0.4472

0.8944

}
(E5.6.17)

5.5.4 Galerkin’s Method

In the Galerkin method, the function φ is approximated by a linear combination of n

comparison functions, ui(x), as

φ(x, t) =
n∑

i=1

ui(x)ηi (5.78)

where ηi are coefficients (or generalized coordinates) to be determined. Consider the
eigenvalue problem of the continuous system in the integral form

w(x) = λ

∫
V

g(x, ξ)m(ξ)w(ξ) dV (ξ) (5.79)

where w(x) is the displacement at point x and g(x, ξ) is the symmetric Green’s function
or flexibility influence function. By introducing

φ(x) =
√

m(x)w(x) (5.80)

and multiplying both sides of Eq. (5.79) by
√

m(x), we obtain

φ(x) = λ

∫
V

K(x, ξ)φ(ξ) dV (ξ) (5.81)

where K(x, ξ) denotes the symmetric kernel:

K(x, ξ) = g(x, ξ)
√

m(x)
√

m(ξ) (5.82)
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When the approximate solution, Eq. (5.78), is substituted into Eq. (5.81), the equal-
ity will not hold; hence an error function, ε(x), also known as the residual, can be
defined as

ε(x) = φ(x) − λ̃

∫
V

K(x, ξ)φ(ξ) dV (ξ) (5.83)

where λ̃ denotes an approximate value of λ and V indicates the domain of the system.
To determine the coefficients ηk, the weighted integral of the error function over the
domain of the system is set equal to zero. Using the functions u1(x), u2(x), . . . , un(x)

as the weighting functions, n equations can be derived:∫
V

ε(x)uk(x) dV (x) = 0, k = 1, 2, . . . , n (5.84)

Substituting Eq. (5.83) into (5.84), we obtain

n∑
i=1

ηi

∫
V

uk(x)uj (x) dV (x)

− λ̃

n∑
i=1

ηi

∫
V

ηk(x)

[∫
V

K(x, ξ)ui(ξ) dV (ξ)

]
dV (x) = 0 (5.85)

Defining

ui(x) =
√

m(x)ũi(x), i = 1, 2, . . . , n (5.86)

kik = kki =
∫

V

uk(x)

[∫
V

K(x, ξ)ui(ξ) dV (ξ)

]
dV (x)

=
∫

V

m(x)ũk(x)

[∫
V

g(x, ξ)m(ξ)ũi(ξ ) dV (ξ)

]
dV (x) (5.87)

mik = mki =
∫

V

uk(x)ui(x) dV (x)

=
∫

V

m(x)ũk(x)ũi(x) dV (x) (5.88)

Eq. (5.85) can be expressed as

λ̃[k]�η = [m]�η (5.89)

which can be seen to be similar to Eq. (5.77).

5.5.5 Collocation Method

Consider the eigenvalue problem of a continuous system in integral form:

w(x) =
∫

V

g(x, ξ)m(ξ)w(ξ) dV (ξ) (5.90)
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The solution of the free vibration problem is approximated by a linear combination of
n comparison functions, ui(x), as

w(x) =
n∑

i=1

ui(x)ηi (5.91)

where ηi are coefficients or generalized coordinates to be determined. When Eq. (5.91)
is substituted into Eq. (5.90), the equality will not hold; hence an error function or
residual ε(x) can be defined as

ε(x) = w(x) − λ̃

∫
V

g(x, ξ)m(ξ) dV (ξ) (5.92)

By substituting Eq. (5.91) into (5.90), the error function can be expressed as

ε(x) = w(x) − λ̃

∫
V

g(x, ξ)m(ξ)w(ξ) dV (ξ)

=
n∑

i=1

ηiui(x) − λ̃

n∑
i=1

ηi

∫
V

g(x, ξ)m(ξ)ui(ξ) dV (ξ) (5.93)

To determine the coefficients ηk, the error function is set equal to zero at n distinct
points. By setting the error, Eq. (5.93), equal to zero at the points xk(k = 1, 2, . . . , n),
we obtain

ε(xk) = 0, k = 1, 2, . . . , n (5.94)

Equations (5.93) and (5.94) lead to the eigenvalue problem

n∑
i=1

(mki − λ̃kki)ηi = 0, k = 1, 2, . . . , n (5.95)

which can be expressed in matrix form as

[m]�η = λ̃[k]�η (5.96)

where the elements of the matrices [m] and [k] are given by

mki = ui(xk) (5.97)

kki =
∫

V

g(xk, ξ)m(ξ)ui(ξ) dV (ξ) (5.98)

It is to be noted that the matrices [m] and [k] are, in general, not symmetric. The
solution of the eigenvalue problem with nonsymmetric matrices [m] and [k] is more
complex than the one with symmetric matrices [3].
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5.5.6 Numerical Integration Method

In the numerical integration method, the regular part of the integral equation is decom-
posed into the form of a sum, and the equation is then reduced to a set of simultaneous
linear equations with the values of the unknown function at some points in the domain
of integration treated as the unknown quantities. The procedure is illustrated through
the following example.

Example 5.7 Find the solution of the integral equation

φ(x) +
∫ 1

0
(1 + xξ)φ(ξ) dξ = f (x) ≡ x2 − 23

24
x + 4

3
(E5.7.1)

numerically and compare the result with the exact solution

φ(x) = x2 − 2x + 1 (E5.7.2)

SOLUTION We use the Gauss integration method for the numerical solution of
Eq. (E5.7.1).

In Gauss integration, the integral is evaluated by using the formula

∫ 1

−1
g(t) d t =

n∑
i=1

wig(ti) (E5.7.3)

where n is called the number of Gauss points, wi are called weights, and ti are the
specified values of t in the range of integration. For any specified n, the values of wi

and ti are chosen so that the formula will be exact for polynomials up to and including
degree 2n − 1. Since the range of integration in Eq. (E5.7.3) for x is −1 to +1, the
formula can be made applicable to a general range of integration using a transformation
of the variable. Thus, an integral of the form

∫ b

a
f (x) dx can be evaluated, using the

Gauss integration method, as

∫ b

a

f (x) dx = b − a

2

n∑
i=1

wif (xi) (E5.7.4)

where the coordinate transformation

x = (b − a)t + a + b

2
(E5.7.5)

is used so that

xi = (b − a)ti + a + b

2
(E5.7.6)
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Using n = 4, the corresponding values of wi and ti are given by [2]

w1 = w4 = 0.34785 48451 47454
(E5.7.7)

w2 = w3 = 0.65214 51548 62546

t1 = −0.861136311594053

t2 = −0.339981043584856
(E5.7.8)

t3 = −t2

t4 = −t1

The values of the variable xi given by Eq. (E5.7.6) for a = 0 and b = 1 are

x1 = 0.06943184
x2 = 0.33000946
x3 = 0.66999054
x4 = 0.93056816

(E5.7.9)

Treating the values of φ(x) at the Gaussian points xi as unknowns, Eq. (E5.7.1) can
be expressed as

φi + 1
2 [w1(1 + xiξ1)φ1 + w2(1 + xiξ2)φ2 + w3(1 + xiξ3)φ3 + w4(1 + xiξ4)φ4]

= x2
i − 23

24xi + 4
3 , i = 1, 2, 3, 4 (E5.7.10)

where φi = φ(xi), xi ≡ ξi are given by Eq. (E5.7.9), and wi are given by Eq.(E5.7.7).
The four linear equations indicated by Eq. (E5.7.10) are given by

1.17476588φ1 + 0.33354393φ2 + 0.34124103φ3

+ 0.18516506φ4 = 1.27161527

0.17791265φ1 + 1.36158392φ2 + 0.39816827φ3

+ 0.22733989φ4 = 1.12598062
(E5.7.11)

0.18201829φ1 + 0.39816827φ2 + 1.47244242φ3

+ 0.28236628φ4 = 1.14014649

0.18516506φ1 + 0.42620826φ2 + 0.52936965φ3

+ 1.32454112φ4 = 1.30749607

The solution of Eq. (E5.7.11) is given by φ1 = 0.8660, φ2 = 0.4489, φ3 = 0.1089, and
φ4 = 0.0048, which can be seen to be same as the exact solution given by Eq. (E5.7.2)
with four-decimal-place accuracy.

5.6 RECENT CONTRIBUTIONS

Strings and Bars Laura and Gutierrez determined the fundamental frequency coeffi-
cient of vibrating systems using Rayleigh’s optimization concept when solving integral
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equations by means of the Ritz method [13]. The authors considered the transverse
vibration of a string of variable density, the longitudinal vibration of a rod with a
nonuniform cross section, and the transverse vibration of a beam with ends elastically
restrained against rotation as illustrative examples.

Beams An integral equation approach was used by many investigators for the solu-
tion of a vibrating beam [13]. In Ref. [9], Bergman and McFarland used Green’s
functions to study the free vibrations of an Euler–Bernoulli beam with homogeneous
boundary conditions, supported in its interior by arbitrarily located pin supports and
translational and rotational springs. A method of determining the dynamic response
of prismatic damped Euler–Bernoulli beams subjected to distributed and concentrated
loads using dynamic Green’s functions was presented by Abu-Hilal [8]. The method
gives exact solutions in closed form and can be used for single- and multispan beams,
single- and multiloaded beams, and statically determinate or indeterminate beams. The
responses of a statically indeterminate cantilevered beam and a cantilevered beam with
elastic support are considered as example problems. The use of Green’s functions
in the frequency analysis of Timoshenko beams with oscillators was considered by
Kukla [7].

Membranes Spence and Horgan [10] derived bounds on the natural frequencies of
composite circular membranes using an integral equation method. The membrane was
assumed to have a stepped radial density. Although such problems, involving discontin-
uous coefficients in the differential equation, can be treated using classical variational
methods, it was shown that an eigenvalue estimation technique based on an integral for-
mulation is more efficient. Gutierrez and Laura [11] analyzed the transverse vibrations
of composite membranes using the integral equation method and Rayleigh’s optimiza-
tion suggestion. Specifically, the fundamental frequency of vibration of membranes of
nonuniform density was determined.

Plates Bickford and Wu [12] considered the problem of finding upper and lower
bounds on the natural frequencies of free vibration of a circular plate with stepped
radial density. The problem, which involves discontinuous coefficients in the governing
differential equation, has been formatted with an integral equation by using a Green’s
function and the basic theory of linear integral equations.
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PROBLEMS
5.1 Classify the following integral equations:

(a) φ(x) + λ
∫ 1

0 (x + y)φ2(y) dy = 0

(b) φ(x) − λ
∫ 1

0 ex−yφ(y) dy = f (x)

(c) z(x, t) = ∫ t

0 G(x, y)
[
p(y) − µ(y) ∂2z

∂t2 ]
]

dy,

0 ≤ x ≤ l

5.2 Classify the equation

φ(x) = x +
∫ x

0
(ξ − x)φ(ξ) dξ (5.1)

Show that the function φ(x) = sin x is a solution of
Eq. (5.1).

5.3 Consider the integral equation

φ(x) = ω2
∫ 1

0
K(x, ξ)φ(ξ) dξ, 0 ≤ x ≤ 1 (5.1)

where

K(x, ξ) =
{
x(1 − ξ), x ≤ ξ

ξ(1 − x), ξ ≤ x
(5.2)

Determine the condition(s) under which the function
φ(x) = sin ωx satisfies Eq. (5.1).

5.4 Consider the integral equation [1]

φ(t) −
∫ t

−∞
e−(t−ξ)(t − ξ)φ(ξ) = tet (5.1)

and the function

φ(t) = c1te
t + c2e

t (5.2)

Show that the function φ(t) given by Eq. (5.2) is a
solution of Eq. (5.1).

5.5 Solve the equation

φ(x) − 6
∫ 1

0
xξ2φ(ξ) dξ = 2ex − x + 1

using the method of undetermined coefficients by assum-
ing the solution φ(x) to be of the form

φ(x) = 2ex + c1x + 1

5.6 Consider the integral equation

φ(x) = λ

∫ 1

0
(1 + xξ)φ(ξ) dξ

Solve this equation using the method of undetermined
coefficients by assuming the solution as

φ(x) = c1 + c2x
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5.7 Find the solution of the equation

φ(x) − λ

∫ 1

0
(x − ξ)2φ(ξ) dξ = x

by assuming a solution of the form

φ(x) = c1 + c2x + c3x
2

Use the method of undetermined coefficients.

5.8 Solve the integral equation

φ(x) −
∫ 1

0
(x − ξ)φ(ξ) dξ = 4x + x2

using the method of undetermined coefficients. Assume
the solution φ(x) as

φ(x) = c1 + c2x + c3x
2

5.9 Find the solution of the following equation using
a numerical method [1]:

φ(t) − 1

4

∫ π/2

0
tξφ(ξ) dξ = sin t − t

4

Compare your solution with the exact solution, φ(t) =
sin t .

5.10 Find the solution of the following integral equation
(eigenvalue problem) using the Gaussian integration
method:

φ(x) = λ

∫ 1

0
(x + ξ)φ(ξ) dξ

(a) with two Gaussian points; (b) with four Gaussian
points; and (c) with six Gaussian points.
[Hint : The locations and weights corresponding to dif-
ferent number of Gauss points are given in Table 5.1.]:

Table 5.1 Data for Problem 5.10

Number of points, Locations, Weights,
n xi wi

1 0.00000 00000 00000 2. 00000 00000 00000

2 ±0.57735 02691 89626 1. 00000 00000 00000

3 ±0.77459 66692 41483 0.55555 55555 55555
0.00000 00000 00000 0.88888 88888 88889

4 ±0.86113 63115 94053 0.34785 48451 47454
±0.33998 10435 84856 0.65214 51548 62546

5 ±0.90617 98459 38664 0.23692 68850 56189
±0.53846 93101 05683 0.47862 86704 99366

0.00000 00000 00000 0.56888 88888 88889

6 ±0.93246 95142 03152 0.17132 44923 79170
±0.66120 93864 66265 0.36076 15730 48139
±0.23861 91860 83197 0.46791 39345 72691

Source: Ref. [2].
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Solution Procedure: Eigenvalue
and Modal Analysis Approach

6.1 INTRODUCTION

The equations of motion of many continuous systems are in the form of nonhomoge-
neous linear partial differential equations of order 2 or higher subject to boundary and
initial conditions. The boundary conditions may be homogeneous or nonhomogeneous.
The initial conditions are usually stated in terms of the values of the field variable and
its time derivative at time zero. The solution procedure basically involves two steps.
In the first step, the nonhomogeneous part of the equation of motion is neglected and
the homogeneous equation is solved using the separation-of-variables technique. This
leads to an eigenvalue problem whose solution yields an infinite set of eigenvalues
and the corresponding eigenfunctions. The eigenfunctions are orthogonal and form a
complete set in the sense that any function f̃ ( �X) that satisfies the boundary condi-
tions of the problem can be represented by a linear combination of the eigenfunctions.
This property constitutes what is known as the expansion theorem. In the second step,
the solution of the nonhomogeneous equation is assumed to be a sum of the products
of the eigenfunctions and time-dependent generalized coordinates using the expansion
theorem. This process leads to a set of second-order ordinary differential equations in
terms of the generalized coordinates. These equations are solved using the initial con-
ditions of the problem. Once the generalized coordinates are known, complete solution
of the problem can be determined from the expansion theorem.

6.2 GENERAL PROBLEM

The equation of motion of an undamped continuous system is in the form of a partial
differential equation which can be expressed as

M( �X)
∂2w( �X, t)

∂t2
+ L[w( �X, t)] = f ( �X, t) +

s∑
j=1

Fj(t)δ( �X − �Xj), �X ∈ V (6.1)

where �X is a typical point in the domain of the system (V ), M( �X) is the mass dis-
tribution, w( �X, t) is the field variable or displacement of the system that depends on
the spatial variables ( �X) and time (t), L[w( �X, t)] is the stiffness distribution of the
system, f ( �X, t) is the distributed force acting on the system, Fj(t) is the concentrated

151

Vibration of Continuous Systems. Singiresu S. Rao
© 2007 John Wiley & Sons, Inc. ISBN: 978-0-471-77171-5



152 Solution Procedure: Eigenvalue and Modal Analysis Approach

force acting at the point �X = �Xj of the system, s is the number of concentrated forces
acting on the system, and δ( �X − �Xj) is the Dirac delta function, defined as

δ( �X − �Xj) = 0, �X �= �Xj∫
V

δ( �X − �Xj) dV = 1
(6.2)

Note that the vector �X will be identical to x for one-dimensional systems, includes x

and y for two-dimensional systems, and consists of x, y, and z for three-dimensional
systems. In Eq. (6.1), L and M are linear homogeneous differential operators involving
derivatives with respect to the spatial variables �X (but not with respect to time, t) up
to the orders 2p and 2q, respectively, where p and q are integers with p > q. For
example, for a two-dimensional problem in a Cartesian coordinate system, the operator
L can be expressed for p = 1 as

L[w] = c1w + c2
∂w

∂x
+ c3

∂w

∂y
+ c4

∂2w

∂x2
+ c5

∂2w

∂y2
+ c6

∂2w

∂x∂y
(6.3)

and the linearity of L implies that

L[c1w1 + c2w2] = c1L[w1] + c2L[w2] (6.4)

where c1, c2, . . . , c6 are constants. In the case of the transverse vibration of a string
having a mass distribution of ρ(x) per unit length and subjected to a constant tension
P , the operators M and L are given by [see Eq. (8.8)]

M = ρ(x) (6.5)

L = P
∂2

∂x2
(6.6)

In the case of the torsional vibration of a shaft, the operators M and L are given by
[see Eq. (10.19)]

M = I0(x) (6.7)

L = ∂

∂x

(
GIP

∂

∂x

)
(6.8)

where I0(x) is the mass polar moment of inertia of the shaft per unit length, G is the
shear modulus, and IP (x) is the polar moment of inertia of the cross section of the
shaft. Similarly, in the case of the transverse vibration of a uniform plate in bending,
the operators M and L are given by [see Eq. (14.8)]

M = ρh (6.9)

L = D

(
∂4

∂x4
+ 2

∂4

∂x2∂y2
+ ∂4

∂y4

)
(6.10)

where ρ is the density, h is the thickness, and D is the flexural rigidity of the plate.
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The governing differential equation (6.1) is subject to p boundary conditions at
every point of boundary S of domain V of the system. The boundary conditions can
be expressed as

Ai[w] = λBi[w], i = 1, 2, . . . , p (6.11)

where Ai and Bi are linear homogeneous differential operators involving derivatives
of w, with respect to the normal and tangential directions of the boundary, up to the
order 2p − 1, and λ is a parameter known as the eigenvalue of the system. In some
problems, the boundary conditions do not involve the eigenvalue λ, in which case Eq.
(6.11) reduces to

Ai[w] = 0, i = 1, 2, . . . , p (6.12)

We shall consider mostly boundary conditions of the type given by Eq. (6.12) in further
discussions. In the case of free vibration, f and all Fj will be zero, and Eq. (6.1) reduces
to the homogeneous form

M( �X)
∂2w( �X, t)

∂t2
+ L[w( �X, t)] = 0, �X ∈ V (6.13)

6.3 SOLUTION OF HOMOGENEOUS EQUATIONS:
SEPARATION-OF-VARIABLES TECHNIQUE

The separation-of-variables technique is applicable to the solution of homogeneous
second- and higher-order linear partial differential equations with constant coefficients
subject to homogeneous boundary conditions. The partial differential equations may
represent initial or boundary value problems. To illustrate the method of separation of
variables, we consider a homogeneous hyperbolic equation of the form

ρ(x)
∂2w(x, t)

∂t2
+ L[w(x, t)] = 0, x ∈ G, t > 0 (6.14)

where G denotes a bounded region such as [0, l], x is the spatial variable, t is time,
ρ(x) is positive and independent of t , L is a linear differential operator, and w(x, t)

is an unknown function to be determined. The homogeneous boundary conditions can
be stated as

A1w(0, t) + B1
∂w

∂x
(0, t) = 0 (6.15)

A2w(l, t) + B2
∂w

∂x
(l, t) = 0 (6.16)

The initial conditions for Eq. (6.14) can be expressed as

w(x, 0) = f (x), x ∈ G (6.17)

∂w

∂t
(x, 0) = g(x), x ∈ G (6.18)
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The separation-of-variables technique replaces the partial differential equation in two
parameters, x and t , Eq. (6.14), by two ordinary differential equations. The solution of
Eq. (6.14) is assumed to be a product of two functions, each depending on only one
of parameters x and t as

w(x, t) = W(x)T (t) (6.19)

where W(x) is required to satisfy the boundary conditions, Eqs. (6.15) and (6.16), and
T (t) is required to satisfy the initial conditions, Eqs. (6.17) and (6.18). Substituting
Eq. (6.19) into Eq. (6.14) and dividing throughout by ρ(x)W(x)T (t) yields

T ′′(t)
T (t)

= − L[W(x)]

ρ(x)W(x)
(6.20)

where T ′′(t) = d2T (t)/ d t2. Since the left and right sides of Eq. (6.20) depend on
different variables, they cannot be functions of their respective variables. Thus, each
side of Eq. (6.20) must equal a constant. By denoting this constant by −λ, we obtain
the following equations for W(x) and T (t) (see Problem 6.1):

L[W(x)] = λρ(x)W(x) (6.21)

T ′′(t) + λT (t) = 0 (6.22)

The ordinary differential equations (6.21) and (6.22) can be solved by satisfying the
boundary and initial conditions to find W(x) and T (t), respectively. Consequently,
w(x, t) = W(x)T (t) will satisfy both the boundary and initial conditions. Since both
the equation and the boundary conditions for W(x) are homogeneous, W(x) = 0 will
be a solution of the problem (called the trivial solution). However, we require nonzero
solutions for W(x) in the boundary value problem, and such solutions exist only for
certain values of the parameter λ in Eq. (6.21). The problem of determining the nonzero
W(x) and the corresponding value of the parameter λ is known as an eigenvalue
problem. Here λ is called an eigenvalue and W(x) is called an eigenfunction. The
eigenvalue problem is known as the Sturm–Liouville problem in the mathematical
literature and is discussed in the following section.

6.4 STURM–LIOUVILLE PROBLEM
The mathematical models for the vibration of some continuous systems are in the form
of a certain type of two-point boundary value problem known as the Sturm–Liouville
problem. The Sturm–Liouville problem is a one-dimensional eigenvalue problem whose
governing equation is of the general form

d

dx

[
p(x)

dw

dx

]
+ [q(x) + λr(x)]w(x) = 0, a < x < b

or
(pw′)′ + (q + λr)w = 0, a < x < b (6.23)

with boundary conditions in the form

A1w(a) + B1w
′(a) = 0 (6.24)

A2w(b) + B2w
′(b) = 0 (6.25)
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where a prime denotes a derivative with respect to x, and p(x), q(x), and r(x) are
continuous functions defined in the closed interval a ≤ x ≤ b, with p(x) > 0, r(x) >

0 and Ai ≥ 0, Bi ≥ 0 with Ai + Bi > 0 for i = 1, 2. The boundary conditions of
Eqs. (6.24) and (6.25) are said to be homogeneous because a linear combination of
w(x) and w′(x) at x = a and x = b are both equal to zero.

6.4.1 Classification of Sturm–Liouville Problems

Based on the nature of the boundary conditions and the behavior of p(x) at the bound-
aries, Sturm–Liouville problems can be classified as regular, periodic, or singular. The
problem defined by Eqs. (6.23)–(6.25) is called a regular Sturm–Liouville problem.
Note that p(x) > 0 and is continuous in the interval a ≤ x ≤ b with constants Ai and
Bi not equal to zero simultaneously in the ith boundary condition, i = 1, 2 [Eqs. (6.24)
and (6.25)]. In this case the problem involves finding constant values of λ correspond-
ing to each of which a nontrivial solution w(x) can be found for Eq. (6.23) while
satisfying the boundary conditions of Eqs. (6.24) and (6.25).

If the function p(x) and the boundary conditions involving w(x) and w′(x) are
periodic over the interval a ≤ x ≤ b, the problem is called a periodic Sturm–Liouville
problem. In this case, the problem involves finding constant values of λ corresponding
to each of which a nontrivial solution can be found for Eq. (6.23) while satisfying the
periodic boundary conditions given by

p(a) = p(b), w(a) = w(b), w′(a) = w′(b) (6.26)

If the functions p(x) or r(x) or both are zero at any one or both of the boundary
points a and b, the problem is called a singular Sturm–Liouville problem. In this case
the problem involves finding constant values of λ corresponding to each of which a
nontrivial solution w(x) can be found to satisfy Eq. (6.23) and the boundary conditions
of Eqs. (6.24) and (6.25). For example, if the singular point is located at either x = a

or x = b so that either p(a) = 0 or p(b) = 0, the boundary condition that is often
imposed at the singular point basically requires the solution w(x) to be bounded at that
point.

Note that Eq. (6.23) always has the solution w(x) = 0, called the trivial solution.
For nontrivial solutions (solutions that are not identically zero) that satisfy the specified
boundary conditions at x = a and x = b, the parameter λ cannot be arbitrary. Thus,
the problem involves finding constant values of λ for which nontrivial solutions exist
that satisfy the specified boundary conditions.

Each value of λ for which a nontrivial solution can be found is called an eigenvalue
of the problem and the corresponding solution w(x) is called an eigenfunction of the
problem. Because the Sturm–Liouville problem is homogeneous, it follows that the
eigenfunctions are not unique. The eigenfunction corresponding to any eigenvalue can
be multiplied by any constant factor, and the resulting function remains an eigenfunction
to the same eigenvalue λ.

Example 6.1 Regular Sturm–Liouville Problem Find the solution to the eigenvalue
problem

d2W(x)

dx2
+ λW(x) = 0 (E6.1.1)
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with the boundary conditions

W(0) − dW

dx
(0) = 0 (E6.1.2)

W(1) + dW

dx
(1) = 0 (E6.1.3)

SOLUTION Equation (E6.1.1) can be identified as a Sturm–Liouville problem,
Eq. (6.23), with p(x) = 1, q(x) = 0, and r(x) = 1. Theoretically, we can consider three
cases: λ < 0, λ = 0, and λ > 0.

When λ < 0, we set λ = −α2 and write Eq. (E6.1.1) as

d2W(x)

dx2
− α2W(x) = 0 (E6.1.4)

which has the general solution

W(x) = c1e
αx + c2e

−αx (E6.1.5)

The boundary conditions, Eqs. (E6.1.2) and (E6.1.3), become

c1(1 − α) + c2(1 + α) = 0 (E6.1.6)

c1(1 + α)eα + c2(1 − α)e−α = 0 (E6.1.7)

It can be shown (see Problem 6.2) that for α > 0, c1 and c2 do not have nonzero
solution; the only solution is the trivial solution, c1 = 0 and c2 = 0. Hence, the problem
has no negative eigenvalue.

When λ = 0, Eq. (E6.1.1) reduces to

d2W(x)

dx2
= 0 (E6.1.8)

which has the general solution

W(x) = c1 + c2x (E6.1.9)

The boundary conditions, Eqs. (E6.1.2) and (E6.1.3), become

c1 − c2 = 0 (E6.1.10)

c1 + 2c2 = 0 (E6.1.11)

The only solution to Eqs. (E6.1.10) and (E6.1.11) is the trivial solution c1 = 0 and
c2 = 0. Hence, λ = 0 is not an eigenvalue of the problem

When λ > 0, we set λ = α2 and write Eq. (E6.1.1) as

d2W(x)

dx2
+ α2W(x) = 0 (E6.1.12)

which has the general solution

W(x) = c1 cos αx + c2 sin αx (E6.1.13)
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The boundary conditions, Eqs. (E6.1.2) and (E6.1.3), become

c1 − αc2 = 0 (E6.1.14)

c1 cos α + c2 sin α − c1α sin α + c2α cos α = 0 (E6.1.15)

The solution of Eqs. (E6.1.14) and (E6.1.15) is given by

c1 = αc2 (E6.1.16)

c2[(1 − α2) sin α + 2α cos α] = 0 (E6.1.17)

If c2 is zero in Eq. (E6.1.17), c1 will also be zero from Eq. (E6.1.16). This will be a
trivial solution. Hence, for a nontrivial solution, we should have

(1 − α2) sin α + 2α cos α = 0 (E6.1.18)

Equation (E6.1.18) is a transcendental equation whose roots are given by

tan αi = 2αi

α2
i − 1

, i = 1, 2, . . . (E6.1.19)

Equation (E6.1.19) can be solved numerically to find αi , hence the eigenvalues are
given by λi = α2

i and the corresponding eigenfunctions are given by

Wi(x) = c2(αi cos αix + sin αix) (E6.1.20)

Example 6.2 Periodic Sturm–Liouville Problem Find the solution of the boundary
value problem

d2W(x)

dx2
+ λW(x) = 0, 0 < x < 1 (E6.2.1)

subject to the boundary conditions

W(0) = W(1) (E6.2.2)

dW

dx
(0) = dW

dx
(1) (E6.2.3)

SOLUTION Equation (E6.2.1) can be identified as the Sturm–Liouville problem of
Eq. (6.23) with p(x) = 1, q(x) = 0, and r(x) = 1. We can consider three cases: λ < 0,
λ = 0, and λ > 0.

When λ < 0, we set λ = −α2 and write Eq. (E6.2.1) as

d2W(x)

dx2
− α2W(x) = 0 (E6.2.4)

which has the general solution

W(x) = c1e
αx + c2e

−αx (E6.2.5)
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The boundary conditions, Eqs. (E6.2.2) and (E6.2.3), become

c1(1 − eα) + c2(1 − e−α) = 0 (E6.2.6)

c1α(1 − eα) − c2α(1 − e−α) = 0 (E6.2.7)

Equation (E6.2.6) gives

c2 = −c1
1 − eα

1 − e−α
(E6.2.8)

Substitution of Eq.(E6.2.8) in Eq. (E6.2.7) yields

2c1α(1 − eα) = 0 (E6.2.9)

Since α > 0, Eq. (E6.2.9) gives c1 = 0 and hence c2 = 0 [from Eq. (E6.2.8)]. This is
a trivial solution and hence the problem has no negative eigenvalue.

When λ = 0, Eq. (E6.2.1) reduces to

d2W(x)

dx2
= 0 (E6.2.10)

which has the general solution

W(x) = c1 + c2x (E6.2.11)

The boundary conditions, Eqs. (E6.2.2) and (E6.2.3), become

c1 = c1 + c2 (E6.2.12)

c2 = c2 (E6.2.13)

Equations (E6.2.12) and (E6.2.13) imply that c2 = 0 and hence the solution,
Eq. (E6.2.11), reduces to

W(x) = c1 (E6.2.14)

where c1 is any nonzero constant. This shows that λ = 0 is an eigenvalue of the problem
with the corresponding eigenfunction given by Eq. (E6.2.14).

When λ > 0, we set λ = α2 and write Eq. (E6.2.1) as

d2W(x)

dx2
+ α2W(x) = 0 (E6.2.15)

which has the general solution

W(x) = c1 cos αx + c2 sin αx (E6.2.16)

The boundary conditions, Eqs. (E6.2.2) and (E6.2.3), become

c1 = c1 cos α + c2 sin α (E6.2.17)

c2α = −c1α sin α + c2α cos α (E6.2.18)
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The solution of Eqs. (E6.2.17) and (E6.2.18) yields

c2 = c1
1 − cos α

sin α
(E6.2.19)

and
c2 = −c1

sin α

1 − cos α
(E6.2.20)

which imply that either c1 = 0 or

cos α = 1 (E6.2.21)

Equation (E6.2.21) implies that α is zero or an integer multiple of 2π , so that

αm = ±m · 2π, m = 0, 1, 2, . . . (E6.2.22)

Thus, the eigenvalues of the problem are given by

λm = α2
m = 4m2π2, m = 0, 1, 2, . . . (E6.2.23)

with the corresponding eigenfunctions given by Eq. (E6.2.16):

Wm(x) = c1 cos 2mπx + c2 sin 2mπx, m = 0, 1, 2, . . . (E6.2.24)

Example 6.3 Singular Sturm–Liouville Problem The free transverse vibration of a
circular membrane of radius a, clamped around the edge, is governed by the equation

r2 d2W(r)

dr2
+ r

dW(r)

dr
+ (ω2 − m2)W(r) = 0, 0 ≤ r ≤ a (E6.3.1)

subject to the requirement of a bounded solution with the condition

W(a) = 0 (E6.3.2)

where r denotes the radial direction, W (r) is the transverse displacement, ω is the
natural frequency (ω2 is called the eigenvalue), and m is an integer [see Eq. (13.126)].
Find the solution of the problem.

SOLUTION Equation (E6.3.1) can be identified as Bessel’s differential equation
of order m with the parameter ω. The equation can be rewritten in the form of a
Sturm–Liouville equation:

d

dr

(
r

dW

dr

)
+

(
ω2r2 − m2

r

)
W = 0, 0 ≤ r ≤ a (E6.3.3)

which can be compared to Eq. (6.23) with the notations p(x) = r, q(x) =
−m2/r, r(x) = r2, and λ = ω2. It can be seen that Eq. (E6.3.3) denotes a singular
Sturm–Liouville problem because p(0) = 0. The solution of Eq. (E6.3.3) is given by

W(r) = B1Jm(ωr) + B2Ym(ωr) (E6.3.4)

where B1 and B2 are constants and Jm and Ym are Bessel functions of the first and
second kind, respectively. The solution is required to be bounded, but W (r) approaches
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infinity at r = 0. Thus, B2 must be set equal to zero to ensure a bounded solution. Thus,
Eq. (E6.3.4) reduces to

W(r) = B1Jm(ωr) (E6.3.5)

The use of the boundary condition of Eq. (E6.32) in Eq. (E6.3.5) yields

Jm(ωa) = 0 (E6.3.6)

Equation (E6.3.6) has infinite roots ωia, i = 1, 2, . . .. Thus, the ith eigenvalue of the
membrane is given by λi = ω2

i , and the corresponding eigenfunction by

Wi(r) = B1Jm(ωir) (E6.3.7)

where the constant B1 can be selected arbitrarily.

6.4.2 Properties of Eigenvalues and Eigenfunctions

The fundamental properties of eigenvalues and eigenfunctions of Sturm–Liouville prob-
lems are given below.

1. Regular and periodic Sturm–Liouville problems have an infinite number of
distinct real eigenvalues λ1, λ2, . . . which can be arranged as

λ1 < λ2 < · · ·

The smallest eigenvalue λ1 is finite and the largest one is infinity:

lim
n→∞ λn = ∞

2. A unique eigenfunction exists, except for an arbitrary multiplicative constant,
for each eigenvalue of a regular Sturm–Liouville problem.

3. The infinite sequence of eigenfunctions w1(x), w2(x), . . . defined over the inter-
val a ≤ x ≤ b are said to be orthogonal with respect to a weighting function r(x) ≥ 0 if

∫ b

a

r(x)wm(x)wn(x) dx = 0, m �= n (6.27)

When m = n, Eq. (6.27) defines the norm of wn(x), denoted ||wn(x)||, as

||wn(x)||2 =
∫ b

a

r(x)w2
m(x) dx > 0 (6.28)

By normalizing the function wm(x) as

wm(x) = wm(x)

||wm(x)|| , m = 1, 2, . . . (6.29)
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we obtain the orthonormal functions wm(x) with the properties∫ b

a

r(x)wm(x)wn(x) dx = 0, m �= n (6.30)

∫ b

a

r(x)wm(x)wn(x) dx = 1, m = n (6.31)

4. Expansion theorem. The orthogonality of the eigenfunctions w1(x), w2(x), . . .

over the interval a ≤ x ≤ b with respect to a weighting function r(x) permits them to
be used to represent any function f̃ (x) over the same interval as a linear combination
of wm(x) as

f̃ (x) =
∞∑

m=1

cmwm(x) = c1w1(x) + c2w2(x) + · · · (6.32)

where c1, c2, . . . are constants known as coefficients of the expansion. Equation (6.32)
denotes the eigenfunction expansion of f̃ (x) and is known as the expansion theorem.
To determine the coefficients cm, we multiply Eq. (6.32) by r(x)wn(x) and integrate
the result with respect to x from a to b:

∫ b

a

r(x)f̃ (x)wn(x) dx =
∞∑

m=1

[∫ b

a

cmr(x)wm(x)wn(x) dx

]
(6.33)

When Eqs. (6.27) and (6.28) are used, Eq. (6.33) reduces to∫ b

a

r(x)f̃ (x)wn(x) dx = cn

∫ b

a

r(x)[wn(x)]2 dx = cn||wn(x)||2 (6.34)

Equation (6.34) gives the coefficients cn as

cn =
∫ b

a
r(x)f̃ (x)wn(x) dx

||wn(x)||2 , n = 1, 2, . . . (6.35)

5. Orthogonality of eigenfunctions. If the functions p(x), q(x), r(x), and r(x) are
real valued and continuous with r(x) > 0 on the interval a ≤ x ≤ b, the eigenfunctions
wm(x) and wn(x) corresponding to different eigenvalues λm and λn, respectively, are
orthogonal with respect to the weighting function r(x). This property can be proved as
follows.

Since the eigenfunctions satisfy the Sturm–Liouville equation (6.23), we have

(pw′
m)′ + (q + λmr)wm = 0, a < x < b (6.36)

(pw′
n)

′ + (q + λnr)wn = 0, a < x < b (6.37)

Multiply Eq. (6.36) by wn(x) and Eq. (6.37) by wm(x) and subtract the resulting equat-
ions one from the other to obtain

(λm − λn)rwmwn = wm(pw′
n)

′ − wn(pw′
m)′ = (pw′

nwm − pw′
mwn)

′ (6.38)
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Integration of Eq. (6.38) with respect to x from a to b results in

(λm − λn)

∫ b

a

rwm(x)wn(x) dx = [p(w′
n(x)wm(x) − w′

m(x)wn(x)]ba

= p(b)[w′
n(b)wm(b) − w′

m(b)wn(b)]

−p(a)[w′
n(a)wm(a) − w′

m(a)wn(a)] (6.39)

Based on whether p(x) is zero or not at x = a or x = b, we need to consider the
following cases:

(a) p(a) = 0 and p(b) = 0: In this case, the expression on the right-hand side of
Eq. (6.39) is zero. Since λm and λn are distinct, we have∫ b

a

r(x)wm(x)wn(x) dx = 0, m �= n (6.40)

Note that Eq. (6.40) is valid irrespective of the boundary conditions of
Eqs. (6.24) and (6.25).

(b) p(b) = 0 and p(a) �= 0: In this case, the expression on the right-hand side of
Eq. (6.39) reduces to

−p(a)[w′
n(a)wm(a) − w′

m(a)wn(a)] (6.41)

The boundary condition at x = a can be written as

A1wm(a) + B1w
′
m(a) = 0 (6.42)

A1wn(a) + B1w
′
n(a) = 0 (6.43)

Multiply Eq. (6.42) by wn(a) and Eq. (6.43) by wm(a) and subtract the result-
ing equations one from the other to obtain

B1[w′
n(a)wm(a) − w′

m(a)wn(a)] = 0 (6.44)

Assuming that B1 �= 0, the expression in brackets in Eq. (6.44) must be zero.
This means that the expression in (6.41) is zero. Hence, the orthogonality
condition given in Eq. (6.40) is valid. Note that if B1 = 0, then A1 �= 0 by
assumption, and a similar argument proves the orthogonality condition in
Eq. (6.40).

(c) p(a) = 0 and p(b) �= 0: By using a procedure similar to that of case (b) with
the boundary condition of Eq. (6.25), the orthogonality condition in Eq. (6.40)
can be proved.

(d) p(a) �= 0 and p(b) �= 0: In this case we need to use both the procedures of
cases (b) and (c) to establish the validity of Eq. (6.40).

(e) p(a) = p(b): In this case the right-hand side of Eq. (6.39) can be written as

p(b)[w′
n(b)wm(b) − w′

m(b)wn(b) − w′
n(a)wm(a) + w′

m(a)wn(a)] (6.45)

By using the boundary condition of Eq. (6.24) as before, we can prove that
the expression in brackets in Eq. (6.45) is zero. This proves the orthogonality
condition given in Eq. (6.40).
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6.5 GENERAL EIGENVALUE PROBLEM

The eigenvalue problem considered in Section 6.4, also known as the Sturm–Liouville
problem, is valid only for one-dimensional systems. A general eigenvalue problem
applicable to one-, two-, and three-dimensional systems is discussed in this section.

In the case of free vibration, f and all Fj will be zero and Eq. (6.1) reduces to
the homogeneous form

M( �X)
∂2w( �X, t)

∂t2
+ L[w( �X, t)] = 0, �X ∈ V (6.46)

For the natural frequencies of vibration, we assume the displacement w( �X, t) to be a
harmonic function as

w( �X, t) = W( �X)eiωt (6.47)

where W( �X) denotes the mode shape (also called the eigenfunction or normal mode)
and ω indicates the natural frequency of vibration. Using Eq. (6.47), Eq. (6.46) can be
represented as

L[W ] = λM[W ] (6.48)

where λ = ω2 is also called the eigenvalue of the system. Equation (6.48), along
with the boundary conditions of Eq. (6.11) or (6.12), defines the eigenvalue prob-
lem of the system. The solution of the eigenvalue problem yields an infinite number of
eigenvalues λ1, λ2, . . . and the corresponding eigenfunctions W1( �X), W2( �X), . . .. The
eigenvalue problem is said to be homogeneous, and the amplitudes of the eigenfunc-
tions Wi( �X), i = 1, 2, . . ., are arbitrary. Thus, only the shapes of the eigenfunctions
can be determined uniquely.

6.5.1 Self-Adjoint Eigenvalue Problem

Before defining a problem known as the self-adjoint eigenvalue problem, two types of
functions, called admissible and comparison functions, are introduced. These functions
are used in certain approximate methods of solving the eigenvalue problem. As seen
in Chapter 4, the boundary conditions of Eq. (6.12) are composed of geometric (or
forced) and natural (or free) boundary conditions.

A function u( �X) is said to be an admissible function if it is p times differentiable
over the domain V and satisfies only the geometric boundary conditions of the eigen-
value problem. Note that an admissible function does not satisfy the natural boundary
conditions as well as the governing differential equation of the eigenvalue problem.
A function u( �X) is said to be a comparison function if it is 2p times differentiable
over the domain V and satisfies all the boundary conditions (both geometric and nat-
ural) of the eigenvalue problem. Note that a comparison function does not satisfy the
governing differential equation of the eigenvalue problem. On the other hand, the eigen-
functions Wi( �X), i = 1, 2, . . . satisfy the governing differential equation as well as all
the boundary conditions of the eigenvalue problem.
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Definition The eigenvalue problem defined by Eqs. (6.48) and (6.12) is said to be self-
adjoint if for any two arbitrary comparison functions u1( �X) and u2( �X), the following
relations are valid:∫

V

u1( �X)L[u2( �X)] dV =
∫

V

u2( �X)L[u1( �X)] dV (6.49)

∫
V

u1( �X)M[u2( �X)] dV =
∫

V

u2( �X)M[u1( �X)] dV (6.50)

Positive Definite Problem An eigenvalue problem, defined by Eqs. (6.48) and (6.12),
is said to be positive definite if the operators L and M are both positive definite. The
operator L is considered positive if for any comparison function u( �X), the following
relation is valid: ∫

V

u( �X)L[u( �X)] dV ≥ 0 (6.51)

The operator L is considered positive definite if the integral in Eq. (6.51) is zero only
when u( �X) is identically equal to zero. Similar definitions are valid for the operator
M . The eigenvalue problem is said to be semidefinite if the operator L is only positive
and the operator M is positive definite. It is to be noted that the eigenvalue problems
corresponding to most continuous systems considered in subsequent discussions are
self-adjoint, as implied by Eqs. (6.49) and (6.50). In most cases, the operator M( �X)

denotes the distributed mass of the system, and hence the positive definiteness of M( �X)

is ensured.
If the system or the eigenvalue problem is positive definite, all the eigenvalues λi

will be positive. If the system is semidefinite, some λi will be zero. It can be seen that
these properties are similar to that of a discrete system.

Example 6.4 The free axial vibration of a uniform bar fixed at both the ends x = 0
and x = L is governed by the equation

EA
∂2u(x, t)

∂x2
+ m

∂2u(x, t)

∂t2
= 0 (E6.4.1)

where E is Young’s modulus, A is the cross sectional, area, m is the mass per unit
length, and u(x, t) is the axial displacement of the bar. Show that the eigenvalue
problem, obtained with

u(x, t) = U(x) cos ωt (E6.4.2)

in Eq. (E6.4.1), is self-adjoint. Consider the following comparison functions:

U1(x) = C1x(L − x), U2(x) = C2 sin
πx

L
(E6.4.3)

SOLUTION The eigenvalue problem corresponding to Eq. (E6.4.1) is given by

EA
d2U(x)

dx2
= λmU(x) (E6.4.4)
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where λ = ω2 is the eigenvalue. Comparing Eq. (E6.4.4) with Eq. (6.48), we identify
the operators L and M as

L = EA
∂2

∂x2
, M = m (E6.4.5)

The eigenvalue problem will be self-adjoint if the following conditions hold true:∫ L

0
U1(x)L[U2(x)] dx =

∫ L

0
U2(x)L[U1(x)] dx (E6.4.6)

∫ L

0
U1(x)M[U2(x)] dx =

∫ L

0
U2(x)M[U1(x)] dx (E6.4.7)

The boundary conditions of the bar can be expressed as

U(0) = 0, U(L) = 0 (E6.4.8)

The comparison functions given by Eq. (E6.4.3) can be seen to satisfy the boundary
conditions, Eq. (E6.4.8). Using U1(x) and U2(x), we find that∫ L

0
U1(x)L[U2(x)] dx =

∫ L

0
C1x(L − x)EA

d2

dx2

(
C2 sin

πx

L

)
dx

= −4C1C2EAL

π
(E6.4.9)

∫ L

0
U2(x)L[U1(x)] dx =

∫ L

0
C2 sin

πx

L
EA

d2

dx2
(C1xL − C1x

2) dx

= −4C1C2EAL

π
(E6.4.10)

It can be seen that Eq. (E6.4.6) is satisfied. Similarly, Eq. (E6.4.7) can also be shown
to be satisfied. Thus, the eigenvalue problem is self-adjoint.

6.5.2 Orthogonality of Eigenfunctions

The orthogonality property, proved for the Sturm–Liouville problem in Section 6.4.2,
can also be established for a general eigenvalue problem. For this, let λi and λj denote
two distinct eigenvalues, with Wi = Wi( �X) and Wj = Wj( �X) indicating the corre-
sponding eigenfunctions. Then

L[Wi] = λiM[Wi] (6.52)

L[Wj ] = λjM[Wj ] (6.53)

Multiply Eq. (6.52) by Wj and Eq. (6.53) by Wi and subtract the resulting equations
from each other:

WjL[Wi] − WiL[Wj ] = λiWjM[Wi] − λjWiM[Wj ] (6.54)
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Integrate both sides of Eq. (6.54) over the domain V of the system to obtain∫
V

(WjL[Wi] − WiL[Wj ]) dV =
∫

V

(λiWjM[Wi]) − λjWiM[Wj ] dV (6.55)

If the eigenvalue problem is assumed to be self-adjoint, then∫
V

WjL[Wi] dV =
∫

V

WiL[Wj ] dV (6.56)

and ∫
V

WjM[Wi] dV =
∫

V

WiM[Wj ] dV (6.57)

In view of Eqs. (6.56) and (6.57), Eq. (6.55) reduces to

(λi − λj )

∫
V

WiM[Wj ] dV = 0 (6.58)

Since λi and λj are distinct, Eq. (6.58) yields∫
V

WiM[Wj ] dV = 0 for λi �= λj (6.59)

Equations (6.59) and (6.53) can be used to obtain∫
V

WiL[Wj ] dV = 0 for λi �= λj (6.60)

Equations (6.59) and (6.60) are known as the generalized orthogonality conditions and
the eigenfunctions Wi( �X) and Wj( �X) are considered to be orthogonal in a generalized
sense. The eigenfunctions Wi( �X) can be normalized with respect to M[Wi] by setting∫

V

Wi( �X)M[Wi( �X)] dV = 1, i = 1, 2, . . . (6.61)

Equation (6.61) basically specifies the amplitude of the eigenfunction Wi( �X); without
this normalization, the amplitude of the function Wi( �X) remains arbitrary. If M[Wi( �X)]
denotes the mass distribution M( �X), the orthogonality condition can be written as∫

V

M( �X)Wi( �X)Wj( �X) dV = 0 for λi �= λj (6.62)

In this case, the functions
√

M( �X)Wi( �X) and
√

M( �X)Wj( �X) are considered to be
orthogonal in the usual sense.

6.5.3 Expansion Theorem

As in the case of the Sturm–Liouville problem, the eigenfunctions constitute a complete
set in the sense that any function f̃ ( �X) that satisfies the homogeneous boundary condi-
tions of the problem can be represented by a linear combination of the eigenfunctions
Wm( �X) of the problem as

f̃ ( �X) =
∞∑

m=1

cmWm( �X) (6.63)
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where the coefficients cm can be determined as in the case of Eq. (6.35) as

cm =
∫
V

f̃ ( �X)M[Wm( �X)] dV

||Wm( �X)||2 , m = 1, 2, . . . (6.64)

Equation (6.63), also known as the expansion theorem, plays an important role in
vibration analysis and is commonly used to find the forced vibration response of a
system by modal analysis.

6.6 SOLUTION OF NONHOMOGENEOUS EQUATIONS

The equation of motion of a continuous system subjected to external forces leads to a
nonhomogeneous partial differential equation given by Eq. (6.1):

M( �X)
∂2w( �X, t)

∂t2
+ L[w( �X, t)] = f ( �X, t) +

s∑
j=1

Fj (t)δ( �X − �Xj), �X ∈ V

(6.65)

subject to the boundary conditions indicated in Eq. (6.12):

Ai[w( �X, t)] = 0, i = 1, 2, . . . , p (6.66)

and initial conditions similar to those given by Eqs. (6.17) and (6.18):

w( �X, 0) = f ( �X) (6.67)

∂w

∂t
( �X, 0) = g( �X) (6.68)

To find the solution or response of the system, w( �X, t), we use a procedure known
as modal analysis. This procedure involves the following steps:

1. Solve the eigenvalue problem associated with Eqs. (6.65) and (6.66). The eigen-
value problem consists of the differential equation

L[W( �X)] = λM[W( �X)], �X ∈ V (6.69)

with the boundary conditions

Ai[W( �X)] = 0, i = 1, 2, . . . , p (6.70)

where λ = ω2 is the eigenvalue, W( �X) is the eigenfunction, and ω is the natural
frequency of the system. The solution of Eqs. (6.69) and (6.70) yields an infinite set
of eigenvalues λ1, λ2, . . . and the corresponding eigenfunctions, also known as mode
shapes, W1( �X), W2( �X), . . .. The eigenfunctions are orthogonal, so that∫

V

M( �X)Wm( �X)Wn( �X) dV = δmn (6.71)

2. Normalize the eigenfunctions so that∫
V

Wm( �X)L[Wn( �X)] dV = ω2
mδmn (6.72)
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3. Express the forced response of the system [i.e., the solution of the problem in
Eqs. (6.65)–(6.68)] using the expansion theorem as

w( �X, t) =
∞∑

m=1

Wm( �X)ηm(t) (6.73)

where the ηm(t) are known as the time-dependent generalized coordinates. In
Eq. (6.73), the eigenfunctions Wm( �X) are known from steps 1 and 2, while the gener-
alized coordinates ηm(t) are unknown and to be determined by satisfying the equation
of motion and the initial conditions of Eqs. (6.67) and (6.68). To determine ηm(t), we
substitute Eq. (6.73) in Eq. (6.65) to obtain

M( �X)
∂2

∂t2

[ ∞∑
m=1

Wm( �X)ηm(t)

]
+ L

[ ∞∑
m=1

Wm( �X)ηm(t)

]

= f ( �X, t) +
s∑

j=1

Fj(t)δ( �X − �Xj) (6.74)

which can be rewritten as
∞∑

m=1

η̈m(t)M( �X)Wm( �X) +
∞∑

m=1

ηm(t)L[Wm( �X)]

= f ( �X, t) +
s∑

j=1

Fj (t)δ( �X − �Xj) (6.75)

where η̈m(t) = d2ηm(t)/dt2. By multiplying Eq. (6.75) by Wn( �X) and integrating the
result over the domain V , we obtain

∞∑
m=1

η̈m(t)

∫
V

Wn( �X)M( �X)Wm( �X) dV

+
∞∑

m=1

ηm(t)

∫
V

Wn( �X)L[Wm( �X)] dV

=
∫

V

Wn( �X)f ( �X, t) dV +
s∑

j=1

∫
V

Wn( �X)Fj (t)δ( �X − �Xj) dV (6.76)

Using the property of Dirac delta function given by Eq. (6.2), the last term of Eq. (6.76)
can be simplified as

s∑
j=1

Wn( �Xj)Fj (t) (6.77)

In view of Eqs. (6.71), (6.72), and (6.77), Eq. (6.76) can be rewritten as

η̈m(t) + ω2
mηm(t) = Qm(t), m = 1, 2, . . . (6.78)



6.7 Forced Response of Viscously Damped Systems 169

where Qm(t) is called the mth generalized force, given by

Qm(t) =
∫

V

Wm( �X)f ( �X, t) dV +
s∑

j=1

Wm( �Xj)Fj (t) (6.79)

Equation (6.78) denotes an infinite set of uncoupled second-order ordinary differential
equations. A typical equation in (6.78) can be seen to be similar to the equation of a
single-degree-of-freedom system [see Eq. (2.107)]. The solution of Eq. (6.78) can be
expressed as [see Eq. (2.109)]

ηm(t) = 1

ωm

∫ t

0
Qm(τ) sin ωm(t − τ) dτ

+ ηm(0) cos ωmt + η̇m(0)
sin ωmt

ωm

, m = 1, 2, . . . (6.80)

where ηm(0) and η̇m(0) are the initial values of the generalized coordinate (generalized
displacement) ηm(t) and the time derivative of the generalized coordinate (generalized
velocity) η̇m(t) = dηm(t)/ d t . Using the initial conditions of Eqs. (6.67) and (6.68),
the values of ηm(0) and η̇m(0) can be determined as

ηm(0) =
∫

V

M( �X)Wm( �X)w( �X, 0) dV

=
∫

V

M( �X)Wm( �X)f ( �X) dV (6.81)

η̇m(0) =
∫

V

M( �X)Wm( �X)ẇ( �X, 0) dV

=
∫

V

M( �X)Wm( �X)g( �X) dV (6.82)

Finally, the solution of the problem (i.e., the forced response of the system) can be
found using Eqs. (6.80) and (6.73).

6.7 FORCED RESPONSE OF VISCOUSLY DAMPED SYSTEMS

Consider the vibration of a viscously damped continuous system. We assume the damp-
ing force, Fd , resisting the motion of the system to be proportional to the velocity and
opposite to the direction of the velocity, similar to the case of a discrete system:

Fd( �X, t) = −C
∂w( �X, t)

∂t
= − ∂

∂t
C[w( �X, t)] (6.83)

where C is a linear homogeneous differential operator, similar to the operator L, com-
posed of derivatives with respect to the spatial coordinates �X (but not with respect to
time t) of order up to 2p. Thus, the equation of motion of the viscously damped system
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can be expressed, similar to Eq. (6.65), as [3, 4]

M( �X)
∂2w( �X, t)

∂t2
+ ∂

∂t
C[w( �X, t)] + L[w( �X, t)]

= f ( �X, t) +
s∑

j=1

Fj(t)δ( �X − �Xj), �X ∈ V (6.84)

subject to the homogeneous boundary conditions

Ai[w( �X, t)] = 0, i = 1, 2, . . . , p (6.85)

and the initial conditions
w( �X, 0) = f ( �X) (6.86)

∂w

∂t
( �X, 0) = g( �X) (6.87)

For the undamped system, we find the eigenvalues λm and the corresponding eigen-
functions Wm( �X) by solving the eigenvalue problem

L[W( �X)] = λM[W( �X)], �X ∈ V (6.88)

subject to the boundary conditions

Ai[W( �X)] = 0, i = 1, 2, . . . , p (6.89)

The orthogonal eigenfunctions are assumed to be normalized according to Eqs. (6.71)
and (6.72). As in the case of an undamped system, the damped response of the system is
assumed to be a sum of the products of eigenfunctions and time-dependent generalized
coordinates ηm(t), using the expansion theorem, as

w( �X, t) =
∞∑

m=1

Wm( �X)ηm(t) (6.90)

Substitution of Eq. (6.90) into Eq. (6.84) leads to
∞∑

m=1

η̈m(t)M( �X)Wm( �X) +
∞∑

m=1

η̇m(t)C[Wm( �X)] +
∞∑

m=1

ηm(t)L[Wm( �X)]

= f ( �X, t) +
s∑

j=1

Fj(t)δ( �X − �Xj), �X ∈ V (6.91)

By multiplying Eq. (6.91) by Wn( �X) and integrating the result over the domain of the
system V , and using Eqs. (6.71) and (6.72), we obtain

η̈m(t) +
∞∑

n=1

cmnη̇m(t) + ω2
mηm(t) = Qm(t), m = 1, 2, . . . (6.92)

where cmn, known as the viscous damping coefficients, are given by

cmn =
∫

V

Wm( �X)C[Wn( �X)] dV (6.93)
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and Qm(t), called the generalized forces, are given by

Qm(t) =
∫

V

Wm( �X)f ( �X, t) dV +
s∑

j=1

Wm( �Xj)Fj (t) (6.94)

In many practical situations, the viscous damping operator C is not known. To simplify
the analysis, the operator C is assumed to be a linear combination of the operator L

and the mass function M:

C = α1L + α2M (6.95)

where α1 and α2 are constants. With this assumption, the viscous damping coefficients
can be expressed as

cmn = cmnδmn = 2ζmωmδmn (6.96)

where ζm is called the damping ratio. Introducing Eq. (6.96) into Eq. (6.92), we obtain
a set of uncoupled second-order ordinary differential equations:

η̈m(t) + 2ζmωmη̇m(t) + ω2
mηm(t) = Qm(t), m = 1, 2, . . . (6.97)

Equations (6.97) are similar to those of a viscously damped single-degree-of-freedom
system [see Eq. (2.119)]. The solution of Eq. (6.97) is given by [see Eq. (2.120)]

ηm(t) =
∫ t

0
Qm(τ)h(t − τ) dτ + g(t)ηm(0) + h(t)η̇m(0) (6.98)

where

h(t) = 1

ωdm

e−ζmωmt sin ωdmt (6.99)

g(t) = e−ζmωmt

(
cos ωdmt + ζmωm

ωdm

sin ωdmt

)
(6.100)

and ωdm is the mth frequency of damped vibration given by

ωdm =
√

1 − ζ 2
m ωm (6.101)

where the system is assumed to be underdamped. Once the ηm(t) are known, the
solution of the original equation (6.84) can be found from Eq. (6.90).

6.8 RECENT CONTRIBUTIONS

A discussion of the various methods of physical modeling and a brief survey of the
direct solution techniques for a class of linear vibration systems, including discrete as
well as distributed parameter systems, have been presented by Chen [5]. The discussion
of discrete systems includes close-coupled, far-coupled, and branched systems. The dis-
cussion of continuous systems includes one-dimensional problems of vibrating strings
and beams and two-dimensional problems of vibrating membranes and plates. Anderson
and Thomas discussed three methods for solving boundary value problems that have
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both time derivatives of the dependent variable and known time-dependent functions
in the boundary conditions [6]. In these methods, the time dependence is eliminated
from the boundary conditions by decomposing the solution into a quasistatic part and a
dynamic part. The boundary conditions containing the time derivatives of the dependent
variable are satisfied identically by imposing special requirements on the quasistatic
portion of the complete solution. The method is illustrated with a problem that deals
with the forced thickness–stretch vibrations of an elastic plate.

Anderson [7] investigated the forced vibrations of two elastic bodies having a
surface contact within the framework of the classical linear theory of elasticity. The
generalized orthogonality condition and a simple form of the generalized forces are
derived. The procedure is illustrated by considering the example of the forced thick-
ness–stretch vibration of a two-layer plate system.

As indicated earlier, the modal analysis, based on eigenfunction expansion, is a
commonly used technique for the transient analysis of continuous systems. However,
the conventional modal expansion is not directly applicable to non-self-adjoint systems
whose eigenfunctions are nonorthogonal. In Ref. [8], an exact closed-form solution
method was presented for transient analysis of general one-dimensional distributed
systems that have non-self-adjoint operators, and eigenvalue-dependent boundary con-
ditions are subject to arbitrary external, initial, and boundary disturbances. In this
reference, an eigenfunction series solution is derived through introduction of augmented
spatial operators and through application of the modal expansion theorem given in
Ref. [9]. The method is demonstrated by considering a cantilever beam with end mass,
viscous damper, and spring.

Structural intensity can be used to describe the transfer of vibration energy. The
spatial distribution of structural intensity within a structure offers information on energy
transmission paths and positions of sources and sinks of mechanical energy. Gavric
et al. [10] presented a method for the measurement of structural intensity using a normal
mode approach. The method is tested on an assembly of two plates.
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PROBLEMS
6.1 Prove that the left and right sides of Eq. (6.20)
must be equal to a negative constant.

6.2 Show that for α > 0, Eqs. (E6.1.6) and (E6.1.7) do
not have a nonzero solution for c1 and c2.

6.3 Convert the following differential equation to
Sturm–Liouville form, Eq. (6.23):

(1 − x2)2 d2w

dx2
− 2x(1 − x2)

dw

dx

+ [λ(1 − x2) − n2]w = 0

6.4 Find the eigenvalues and eigenfunctions of the
equation

d2w

dx2
+ λw = 0, w(0) = 0, w(2π) = 0

6.5 Determine whether the following functions are
orthogonal in the interval 0 ≤ x ≤ l:

Wi(x) = sin
iπx

l
, i = 1, 2, . . .

6.6 Determine whether the following differential
equation is self-adjoint:

x2 d2w

dx2
+ x

dw

dx
+ (x2 − m2)w = 0

6.7 Determine whether the following differential
equation is self-adjoint:

(1 − x2)
d2w

dx2
− 2x

dw

dx
− λw = 0

6.8 Consider the Sturm–Liouville equation

(xw′)′ +
(

ω2x − 1

x

)
w = 0, 0 ≤ x ≤ 1

Determine the bounded solution of the equation subject
to the condition w(1) = 0.

6.9 Consider the differential equation corresponding to
the transverse vibration of a string fixed at x = 0 and
x = l:

d2W(x)

dx2
+ α2W(x) = 0, 0 ≤ x ≤ l

where α2 = ω2ρ/P, ρ is the mass per unit length and
P is the tension in the string. Determine whether each
of the following functions is an admissible, comparison,
or eigenfunction:

(a) W(x) = c sin(πx/l)

(b) W(x) = cx(x − l)

(c) W(x) = cx(2x − l)

6.10 The eigenvalue problem corresponding to the
transverse vibration of a uniform beam is given by

EI
d4W(x)

dx4
= λmW(x)

where EI is the bending stiffness, m is the mass per
unit length, W (x) is the transverse displacement (eigen-
function or mode shape), and λ = ω2 is the eigenvalue.
Assuming the beam to be simply supported at both ends
x = 0 and x = L, show that the problem is self-adjoint
by considering the following comparison functions:

W1(x) = C1 sin
πx

L
, W2(x) = C2x(2Lx2 − x3 − L3)

6.11 A uniform shaft with torsional rigidity GJ is fixed
at x = 0 and carries a rigid disk of mass polar moment
of inertia I0 at x = L. State the boundary conditions of
the shaft in torsional vibration at x = 0 and x = L and
establish that one of the boundary conditions depends
on the natural frequency of vibration of the shaft.
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Solution Procedure: Integral
Transform Methods

7.1 INTRODUCTION

Integral transforms are considered to be operational methods or operational calcu-
lus methods that are developed for the efficient solution of differential and integral
equations. In these methods, the operations of differentiation and integration are sym-
bolized by algebraic operators. Oliver Heaviside (1850–1925) was the first person to
develop and use the operational methods for solution of the telegraph equation and
the second-order hyperbolic partial differential equations with constant coefficients in
1892 [1]. However, his operational methods were based mostly on intuition and lacked
mathematical rigor. Although subsequently, the operational methods have developed
into one of most useful mathematical methods, contemporary mathematicians hardly
recognized Heaviside’s work on operational methods, due to its lack of mathematical
rigor.

Subsequently, many mathematicians tried to interpret and justify Heaviside’s work.
For example, Bromwich and Wagner tried to justify Heaviside’s work on the basis of
contour integration [2, 3]. Carson attempted to derive the operational method using an
infinite integral of the Laplace type [4]. Van der Pol and other mathematicians tried
to derive the operational method by employing complex variable theory [5]. All these
attempts proved successful in establishing the mathematical validity of the operational
method in the early part of the twentieth century. As such, the modern concept of
the operational method has a rigorous mathematical foundation and is based on the
functional transformation provided by Laplace and Fourier integrals.

In general, if a function f (t), defined in terms of the independent variable t , is
governed by a differential equation with certain initial or boundary conditions, the
integral transforms convert f (t) into F(s) defined by

F(s) =
∫ t2

t1

f (t)K(s, t) d t (7.1)

where s is a parameter, K(s, t) is called the kernal of the transformation, and t1 and
t2 are the limits of integration. The transform is said to be finite if t1 and t2 are finite.
Equation (7.1) is called the integral transformation of f (t). It converts a differential
equation into an algebraic equation in terms of the new, transformed function F(s).
The initial or boundary conditions will be accounted for automatically in the process
of conversion to an algebraic equation. The resulting algebraic equation can be solved
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for F(s) without much difficulty. Once F(s) is known, the original function f (t) can
be found by using the inverse integral transformation.

If a function f , defined in terms of two independent variables, is governed by a
partial differential equation, the integral transformation reduces the number of inde-
pendent variables by one. Thus, instead of a partial differential equation, we need to
solve only an ordinary differential equation, which is much simpler. A major task in
using the integral transform method involves carrying out the inverse transformation.
The transform and its inverse are called the transform pair. The most commonly used
integral transforms are the Fourier and Laplace transforms. The application of both
these transforms for the solution of vibration problems is considered in this chapter.

7.2 FOURIER TRANSFORMS

7.2.1 Fourier Series

In Section 1.10 we saw that the Fourier series expansion of a function f (t) that is
periodic with period τ and contains only a finite number of discontinuities is given by

f (t) = a0

2
+

∞∑
n=1

(
an cos

2nπ, t

τ
+ bn sin

2nπt

τ

)
(7.2)

where the coefficients an and bn are given by

a0 = 2

τ

∫ τ/2

−τ/2
f (t) d t

an = 2

τ

∫ τ/2

−τ/2
f (t) cos

2nπt

τ
d t, n = 1, 2, . . . (7.3)

bn = 2

τ

∫ τ/2

−τ/2
f (t) sin

2nπt

τ
d t, n = 1, 2, . . . .

Using the identities

cos
2πt

τ
= ei(2πt/τ) + e−i(2πt/τ)

2
, sin

2πt

τ
= ei(2πt/τ) − e−i(2πt/τ)

2i
(7.4)

Eq. (7.2) can be expressed as

f (t) = a0

2
+

∞∑
n=1

[
an

ei(n·2πt/τ) + e−i(n·2πt/τ)

2
+ bn

ei(n·2πt/τ) − e−i(n·2πt/τ)

2i

]

= ei(0)(2πt/τ)

(
a0

2
− ib0

2

)
+

∞∑
n=1

[
ein·2πt/τ

(
an

2
− ibn

2

)
+ e−in·2πt/τ

(
an

2
+ ibn

2

)]

(7.5)
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where b0 = 0. By defining the complex Fourier coefficients cn and c−n as

cn = an − ibn

2
, c−n = an + ibn

2
(7.6)

Eq. (7.5) can be expressed as

f (t) =
∞∑

n=−∞
cne

in·2πt/τ (7.7)

where the Fourier coefficients cn can be determined using Eqs. (7.3) as

cn = an − ibn

2

= 1

τ

∫ τ/2

−τ/2
f (t)

(
cos

n · 2πt

τ
− i sin

n · 2πt

τ

)
d t = 1

τ

∫ τ/2

−τ/2
f (t)e−in(2πt/τ) d t

(7.8)

Using Eq. (7.8), Eq. (7.7) can be written as

f (t) =
∞∑

n=−∞

ein·2πt/τ

τ

∫ τ/2

−τ/2
f (t)e−in(2πt/τ) d t (7.9)

7.2.2 Fourier Transforms

When the period of the periodic function f (t) in Eq. (7.9) is extended to infin-
ity, the expansion will be applicable to nonperiodic functions as well. For this, let
ωn = n · 2π/τ and �ωn = nω0 − (n − 1)ω0 = 2π/τ . As τ → ∞, �ωn → dω → 0
and the subscript n need not be used since the discrete value of ωn becomes continuous.
By using the relations nω0 = ω and dω = 2π/τ as τ → ∞, Eq. (7.9) becomes

f (t) = lim
τ→∞

∞∑
n=−∞

1

τ
ein(2πt/τ)

∫ τ/2

−τ/2
f (t)e−in(2πt/τ) d t

= 1

2π

∫ ∞

−∞
e−iωt

∫ ∞

−∞
f (t)eiωt d t dω (7.10)

Equation (7.10), called the Fourier integral, is often expressed in the form of the
following Fourier transform pair:

F(ω) =
∫ ∞

−∞
f (t)eiωt d t (7.11)

f (t) = 1

2π

∫ ∞

−∞
F(ω)e−iωt dω (7.12)

where F(ω) is called the Fourier transform of f (t) and f (t) is called the inverse
Fourier transform of F(ω). In Eq. (7.12), F(ω) dω can be considered as the harmonic
contribution of the function f (t) in the frequency range ω to ω + dω. This also denotes
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the limiting value of cn as τ → ∞, as indicated by Eq. (7.8). Thus, Eq. (7.12) denotes
an infinite sum of harmonic oscillations in which all frequencies from −∞ to ∞ are
represented.

Notes

1. By rewriting Eq. (7.10) as

f (t) = 1√
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
f (t)e−iωt d t

]
eiωt dω (7.13)

the Fourier transform pair can be defined in a symmetric form as

F(ω) = 1√
2π

∫ ∞

−∞
f (t)e−iωt d t (7.14)

f (t) = 1√
2π

∫ ∞

−∞
F(ω)eiωt dω (7.15)

It is also possible to define the Fourier transform pair as

F(ω) = 1√
2π

∫ ∞

−∞
f (t)eiωt d t (7.16)

f (t) = 1√
2π

∫ ∞

−∞
F(ω)e−iωt dω (7.17)

2. The Fourier transform pair corresponding to an even function f (t) can be
defined as follows:

F(ω) =
∫ ∞

0
f (t) cos ωt d t (7.18)

f (t) = 2

π

∫ ∞

0
F(ω) cos ωt dω (7.19)

The Fourier sine transform pair corresponding to an odd function f (t) can be defined as

F(ω) =
∫ ∞

0
f (t) sin ωt d t (7.20)

f (t) = 2

π

∫ ∞

0
F(ω) sin ωt dω (7.21)

3. The Fourier transform pair is applicable only to functions f (t) that satisfy
Dirichlet’s conditions in the range (−∞,∞). A function f (t) is said to satisfy Dirich-
let’s conditions in the interval (a, b) if (a) f (t) has only a finite number of maxima and
minima in (a, b) and (b) f (t) has only a finite number of finite discontinuities with no
infinite discontinuity in (a, b). As an example, the function f (t) = t/(1 + t2) satisfies
Dirichlet’s conditions in the interval (−∞, ∞), whereas the function f (t) = 1/(1 − t)

does not satisfy Dirichlet’s conditions in any interval containing the point t = 1 because
f (t) has an infinite discontinuity at t = 1.



178 Solution Procedure: Integral Transform Methods

7.2.3 Fourier Transform of Derivatives of Functions

Let the Fourier transform of the j th derivative of the function f (t) be denoted as
F (j)(ω). Then, by using the definition of Eq. (7.11),

F (j)(ω) =
∫ ∞

−∞

djf (t)

dtj
eiωt d t = eiωt d

j−1f (t)

dtj−1

∣∣∣∣
∞

−∞
− i ω F (j−1)(ω) (7.22)

Assuming that the (j − 1)st derivative of f (t) is zero as t → ±∞, Eq. (7.22) reduces to

F (j)(ω) = −i ω F (j−1)(ω) (7.23)

Again assuming that all derivatives of order 1, 2, . . . , j − 1 are zero as t → ±∞,
Eq. (7.23) yields

F (j)(ω) = (−i ω)jF (ω) (7.24)

where F(ω) is the complex Fourier transform of f (t) given by Eq. (7.11).

7.2.4 Finite Sine and Cosine Fourier Transforms

The Fourier series expansion of a function f (t) in the interval 0 ≤ t ≤ π is given by
[using Eq. (1.32)]

f (t) = a0

π
+ 2

π

∞∑
n=1

an cos nt (7.25)

where

an =
∫ π

0
f (t) cos nt d t (7.26)

Using Eqs. (7.25) and (7.26), the finite cosine Fourier transform pair is defined as

F(n) =
∫ π

0
f (t) cos nt d t (7.27)

f (t) = F(0)

π
+ 2

π

∞∑
n=1

F(n) cos nt (7.28)

A similar procedure can be used to define the finite sine Fourier transforms. Starting
with the Fourier sine series expansion of a function f (t) defined in the interval 0 ≤
t ≤ π [using Eq. (7.32)], we obtain

f (t) = 2

π

∞∑
n=1

bn sin nt (7.29)

where

bn =
∫ π

0
f (t) sin nt d t (7.30)
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the finite sine Fourier transform pair is defined as

F(n) =
∫ π

0
f (t) sin nt d t (7.31)

f (t) = 2

π

∞∑
n=1

F(n) sin nt (7.32)

When the independent variable t is defined in the range (0,a) instead of (0,π), the finite
cosine transform is defined as

F(n) =
∫ a

0
f (t) cos ξ t d t (7.33)

where ξ is yet unspecified. Defining a new variable y as y = πt/a so that
dy = (π/a)dt , Eq. (7.33) can be rewritten as

F(n) = a

π

∫ π

0
f (y) cos

(
ξ
ya

π

)
dy (7.34)

where

f (y) = f
(ya

π

)
(7.35)

If ξa/π = n or ξ = nπ/a, then

a

π
f (y) = 1

π
F(0) + 2

π

∞∑
n=1

F(n) cos ny (7.36)

Returning to the original variable t , we define the finite cosine transform pair as

F(n) =
∫ a

0
f (t) cos

nπt

a
d t (7.37)

f (t) = F(0)

a
+ 2

a

∞∑
n=1

F(n) cos
nπt

a
(7.38)

Similarly, the finite sine Fourier transform pair is defined as

F(n) =
∫ a

0
f (t) sin

nπt

a
d t (7.39)

f (t) = 2

a

∞∑
n=1

F(n) sin
nπt

a
(7.40)

Example 7.1 Find the Fourier transform of the function

f (x) =
{

a, 0 < x < a

0, x > a
(E7.1.1)
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SOLUTION The Fourier transform of f (x), as defined by Eq. (7.14), is given by

F(ω) = 1√
2π

∫ ∞

−∞
f (x)e−iωx dx

= 1√
2π

∫ a

0
ae−iωx dx = a√

2π

(
e−iωx

−iω

)a

0

= a(1 − e−iωa)

iω
√

2π
(E7.1.2)

Example 7.2 Find the Fourier transform of the function

f (x) = c1f1(x) + c2f2(x)

where c1 and c2 are constants.

SOLUTION The Fourier transform of f (x) can be found using Eq. (7.14) as

F(ω) = 1√
2π

∫ ∞

−∞
f (x)e−iωx dx

= c1√
2π

∫ ∞

−∞
f1(x)e−iωx dx + c2√

2π

∫ ∞

−∞
f2(x)e−iωx dx

= c1F1(ω) + c2F2(ω) (E7.2.1)

This shows that Fourier transform is a linear operation; that is, the Fourier transform
of a linear sum of a set of functions is equal to the linear sum of the Fourier transforms
of the individual functions.

Example 7.3 Find the Fourier transform of the function f (ax), where a is a positive
constant.

SOLUTION The Fourier transform of f (ax) is given by [Eq. (7.14)]

1√
2π

∫ ∞

−∞
f (ax)e−iωx dx (E7.3.1)

By introducing a new variable t as t = ax so that dt = adx, the expression (E7.3.1)
can be rewritten as

1

a
√

2π

∫ ∞

−∞
f (t)e−iωt/a d t (E7.3.2)

Thus, the Fourier transform of f (ax) is given by

1

a
F

(ω

a

)
, a > 0 (E7.3.3)
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7.3 FREE VIBRATION OF A FINITE STRING

Consider a string of length l under tension P and fixed at the two endpoints x = 0
and x = l. The equation of motion governing the transverse vibration of the string is
given by

c2 ∂2w(x, t)

∂x2
= ∂2w(x, t)

∂t2
; 0 ≤ x ≤ l (7.41)

By redefining the spatial coordinate x in terms of p as

p = xπ

l
(7.42)

Eq. (7.41) can be rewritten as

π2c2

l2

∂2w(p, t)

∂x2
= ∂2w(p, t)

∂t2
, 0 ≤ p ≤ π (7.43)

We now take finite sine transform of Eq. (7.43). According to Eq. (7.31), we multiply
Eq. (7.43) by sin np and integrate with respect to p from 0 to π :

π2c2

l2

∫ π

0

∂2w

∂p2
sin np dp =

∫ π

0

∂2w

∂t2
sin np dp (7.44)

where∫ π

0

∂2w(p, t)

∂p2
sin np dp =

(
∂w

∂p
sin np − nw cos np

)∣∣∣∣
π

0
− n2

∫ π

0
w sin np dp

(7.45)

Since the string is fixed at p = 0 and p = π , the first term on the right-hand side of
Eq. (7.45) vanishes, so that∫ π

0

∂2w(p, t)

∂p2
sin np dp = −n2

∫ π

0
w sin np dp (7.46)

Thus, Eq. (7.44) becomes

−n2π2c2

l2

∫ π

0
w sin np dp = ∂2

∂t2

∫ π

0
w sin np dp (7.47)

Defining the finite Fourier sine transform of w(p, t) as [see Eq. (7.31)]

W(n, t) =
∫ π

0
w(p, t) sin np dp (7.48)

Eq. (7.47) can be expressed as an ordinary differential equation as

d2W(n, t)

dt2
+ π2c2n2

l2
W(n, t) = 0 (7.49)

The solution of Eq. (7.49) is given by

W(n, t) = C̃1e
i(πcn/l)t + C̃2e

−i(πcn/l)t
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or

W(n, t) = C1 cos
πcnt

l
+ C2 sin

πcnt

l
(7.50)

where the constants C̃1 and C̃2 or C1 and C2 can be determined from the known initial
conditions of the string.

Let the initial conditions of the string be given by

w(x, t = 0) = w0(x) (7.51)

∂w

∂t
(x, t = 0) = ẇ0(x) (7.52)

In terms of the finite Fourier sine transform W(n, t) defined by Eq. (7.48), Eqs. (7.51)
and (7.52) can be expressed as

W(n, t = 0) = W0(n) (7.53)

dW

d t
(n, t = 0) = Ẇ0(n) (7.54)

where

W0(n) =
∫ π

0
w0(p) sin np dp (7.55)

or

W0(n) = π

l

∫ l

0
w0(ξ) sin

nπξ

l
dξ (7.56)

Ẇ0(n) =
∫ π

0
ẇ0(p) sin np dp (7.57)

or

Ẇ0(n) = π

l

∫ l

0
ẇ0(ξ) sin

nπξ

l
dξ (7.58)

Equations (7.53), (7.54), and (7.50) lead to

C1 = W0(n) (7.59)

C2 = l

ncπ
Ẇ0(n) (7.60)

Thus, the solution, Eq. (7.50), becomes

W(n, t) = W0(n) cos
nπct

l
+ l

nπc
Ẇ0(n) sin

nπct

l
(7.61)

The inverse finite Fourier sine transform of W(n, t) is given by [see Eq. (7.32)]

w(p, t) = 2

π

∞∑
n=1

W(n, t) sin np (7.62)
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Substituting Eq. (7.61) into (7.62), we obtain

w(p, t) = 2

π

∞∑
n=1

W0(n) cos
nπct

l
sin np + 2l

π2c

∞∑
n=1

1

n
Ẇ0(n) sin

nπct

l
sin np (7.63)

Using Eqs. (7.56) and (7.58), Eq. (7.63) can be expressed in terms of x and t as

w(x, t) = 2

l

∞∑
n=1

sin
nπx

l
cos

nπct

l

∫ l

0
w0(ξ) sin

nπξ

l
dξ

+ 2

πc

∞∑
n=1

1

n
sin

nπx

l
sin

nπct

l

∫ l

0
ẇ0(ξ) sin

nπξ

l
dξ (7.64)

7.4 FORCED VIBRATION OF A FINITE STRING

Consider a string of length l under tension P , fixed at the two endpoints x = 0 and
x = l, and subjected to a distributed transverse force f̃ (x, t). The equation of motion
of the string is given by [see Eq. (8.7)]

P
∂2w(x, t)

∂x2
+ f̃ (x, t) = ρ

∂2w(x, t)

∂t2
(7.65)

or

c2 ∂2w

∂x2
+ f (x, t) = ∂2w

∂t2
(7.66)

where

f (x, t) = f̃ (x, t)

ρ
(7.67)

As in Section 7.3 we change the spatial variable x to p as

p = xπ

l
(7.68)

so that Eq. (7.66) can be written as

π2

l2

∂2w(p, t)

∂p2
+ f

(
lp

π
, t

)
= 1

c2

∂2w

∂t2
(7.69)

By proceeding as in the case of free vibration (Section 7.3), Eq. (7.69) can be expressed
as an ordinary differential equation:

d2W(n, t)

dt2
+ π2c2n2

l2
W(n, t) = c2F(n, t) (7.70)

where

W(n, t) =
∫ π

0
w(p, t) sin np dp (7.71)

F(n, t) =
∫ π

0
f

(
lp

n
, t

)
sin np dp (7.72)
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Assuming the initial conditions of the string to be zero, the steady-state solution of
Eq. (7.70) can be expressed as

W(n, t) = cl

πn

∫ t

0
F(n, τ) sin

nπc

l
(t − τ) dτ (7.73)

The inverse finite Fourier sine transform of W(n, t) is given by [see Eq. (7.32)]

w(p, t) = 2

π

∞∑
n=1

Wn(n, t) sin np

= 2cl

π2

∞∑
n=1

1

n
sin np

∫ t

0
F(n, τ) sin

nπc

l
(t − τ) dτ (7.74)

or

w(x, t) = 2cl

π2

∞∑
n=1

1

n
sin

nπx

l

∫ t

0
F(n, τ) sin

nπc

l
(t − τ) dτ (7.75)

Example 7.4 Find the response of a string of length l, fixed at x = 0 and x = l, under
the action of the harmonic force f (x, t) = f̃0(x)eiωt , where ω is the forcing frequency.
Assume the initial displacement and velocity of the string to be zero.

SOLUTION Since the force is harmonic, the response of the string is assumed to be
harmonic as

w(x, t) = u(x)eiωt (E7.4.1)

and the equation of motion, Eq. (7.66), becomes

c2 d2u(x)

dx2
+ ω2u(x) + f0(x) = 0 (E7.4.2)

where

f0(x) = f̃0(x)

ρ
(E7.4.3)

By introducing the new spatial variable p = πx/l [as defined in Eq. (7.42)],
Eq. (E7.4.2) can be written as

π2c2

l2

d2u(p)

dp2
+ ω2u(p) + f0

(
lp

π

)
= 0 (E7.4.4)

We now take the finite Fourier sine transform of Eq. (E7.4.4). According to
Eq. (7.31), we multiply Eq. (E7.4.4) by sin np and integrate with respect to p from 0
to π :

∫ π

0

[
π2c2

l2

d2u

dp2
+ ω2u + f0

(
lp

π

)]
sin np dp = 0 (E7.4.5)
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where∫ π

0

d2u

dp2
sin np dp =

(
du

dp
sin np − nu cos np

) ∣∣∣∣
π

0

− n2
∫ π

0
u sin np dp (E7.4.6)

The first term on the right-hand side of Eq. (E7.4.6) will be zero because u(0) =
u(π) = 0 (since the string is fixed at p = 0 and p = π) and sin 0 = sin nπ = 0. We
define the finite Fourier sine transforms of u(p) and f0(lp/π) as U(n) and F0(n):

U(n) =
∫ π

0
u(p) sin np dp (E7.4.7)

F0(n) =
∫ π

0
f0

(
lp

π

)
sin np dp (E7.4.8)

The inverse finite Fourier sine transforms of Eqs. (E7.4.7) and (E7.4.8) yield

u(p) = 2

π

∞∑
n=1

U(n) sin np (E7.4.9)

f0

(
lp

π

)
= 2

π

∞∑
n=1

F0(n) sin np (E7.4.10)

Thus, Eq. (E7.4.5) can be rewritten as

−π2c2n2

l2
U(n) + ω2U(n) + F0(n) = 0

or

U(n) = F0(n)

(π2c2n2/l2)(1 − ω2/ω2
n)

(E7.4.11)

where

ω2
n = π2c2n2

l2
(E7.4.12)

denotes the natural frequency of the string. Finally, by taking the inverse finite Fourier
sine transform of Eq. (E7.4.9) using Eqs. (E7.4.9) and (E7.4.10), we obtain the steady-
state forced response of the string as

w(x, t) = 2eiωt

P l

∞∑
n=1

sin(nπx/l)
∫ l

0 f̃0(y) sin(nπy/l)y dy

(n2π2/l2)(1 − ω2/ω2
n)

(E7.4.13)

7.5 FREE VIBRATION OF A BEAM

Consider a uniform beam of length l simply supported at x = 0 and x = l. The equation
of motion governing the transverse vibration of the beam is given by [see Eq. (3.19)]

∂4w

∂x4
+ 1

c2

∂2w

∂t2
= 0 (7.76)
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where

c2 = EI

ρA
(7.77)

The boundary conditions can be expressed as

w(x, t) = 0 at x = 0, x = l (7.78)

∂2w

∂x2
(x, t) = 0 at x = 0, x = l (7.79)

We take finite Fourier sine transform of Eq. (7.76). For this, we multiply Eq. (7.76) by
sin(nπx/l) and integrate with respect to x from 0 to l:

∫ l

0

∂4w

∂x4
sin

nπx

l
dx + 1

c2

∫ l

0

∂2w

∂t2
sin

nπx

l
dx = 0 (7.80)

Here ∫ l

0

∂4w

∂x4
sin

nπx

l
dx = ∂3w

∂x3
sin

nπx

l

∣∣∣∣
l

0
−

∫ l

0

nπ

l

∂3w

∂x3
cos

nπx

l
dx

= ∂3w

∂x3
sin

nπx

l

∣∣∣∣
l

0
− nπ

l

∂2w

∂x2
cos

nπx

l

∣∣∣∣
l

0

−
(nπ

l

)2
∫ l

0

∂2w

∂x2
sin

nπx

l
dx (7.81)

In view of the boundary conditions of Eq. (7.79), Eq. (7.81) reduces, to

∫ l

0

∂4w

∂x4
sin

nπx

l
dx = −

(nπ

l

)2
∫ l

0

∂2w

∂x2
sin

nπx

l
dx (7.82)

Again using integration by parts, the integral on the right-hand side of Eq. (7.82) can
be expressed as

∫ l

0

∂2w

∂x2
sin

nπx

l
dx = ∂w

∂x
sin

nπx

l

∣∣∣∣
l

0

−
∫ l

0

nπ

l

∂w

∂x
cos

nπx

l
dx

= ∂w

∂x
sin

nπx

l

∣∣∣∣
l

0

− nπ

l
w cos

nπx

l

∣∣∣∣
l

0

−
(nπ

l

)2
∫ l

0
w sin

nπx

l
dx

= −
(nπ

l

)2
∫ l

0
w sin

nπx

l
dx (7.83)

in view of the boundary conditions of Eq. (7.78). Thus, Eq. (7.80) can be expressed as

(nπ

l

)4
∫ l

0
w sin

nπx

l
dx + 1

c2

∂2

∂t2

∫ l

0
w sin

nπx

l
dx = 0 (7.84)
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Defining the finite Fourier sine transform of w(x, t) as [see Eq. (7.39)]

W(n, t) =
∫ l

0
w(x, t) sin

nπx

l
dx (7.85)

Eq (7.84) reduces to the ordinary differential equation

d2W(n, t)

dt2
+ c2n4π4

l4
W(n, t) = 0 (7.86)

The solution of Eq. (7.86) can be expressed as

W(n, t) = C1e
i(cn2π2/ l2)t + C2e

−i(cn2π2/ l2)t (7.87)

or

W(n, t) = C1 cos
cn2π2

l2
t + C2 sin

cn2π2

l2
t (7.88)

Assuming the initial conditions of the beam as

w(x, t = 0) = w0(x) (7.89)

dw

d t
(x, t = 0) = ẇ0(x) (7.90)

the finite Fourier sine transforms of Eqs. (7.89) and (7.90) yield

W(n, t = 0) = W0(n) (7.91)

dW

d t
(n, t = 0) = Ẇ0(n) (7.92)

where

W0(n) =
∫ l

0
w0(x) sin

nπx

l
dx (7.93)

Ẇ0(n) =
∫ l

0
ẇ0(x) sin

nπx

l
dx (7.94)

Using initial conditions of Eqs. (7.93) and (7.94), Eq. (7.88) can be expressed as

W(n, t) = W0(n) cos
cn2π2

l2
t + l2

cn2π2
Ẇ0(n) sin

cn2π2

l2
t (7.95)

Finally, the transverse displacement of the beam, w(x, t), can be determined by using
the finite inverse Fourier sine transform of Eq. (7.95) as

w(n, t) = 2

l

∞∑
n=1

W(n, t) sin
nπx

l
(7.96)
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which can be rewritten, using Eqs. (7.93) and (7.94), as

w(x, t) = 2

l

∞∑
n=1

sin
nπx

l
cos

cn2π2

l2
t

∫ l

ξ=0
w0(ξ) sin

nπξ

l
dξ

+ 2l

cπ2

∞∑
n=1

1

n2
sin

nπx

l
sin

cn2π2

l2
t

∫ l

ξ=0
ẇ0(ξ) sin

nπξ

l
dξ (7.97)

7.6 LAPLACE TRANSFORMS

The Laplace transform technique is an operational method that can be used conveniently
for solving linear ordinary differential equations with constant coefficients. The method
can also be used for the solution of linear partial differential equations that govern the
response of continuous systems. Its advantage lies in the fact that differentiation of the
time function corresponds to multiplication of the transform by a complex variable s.
This reduces a differential equation in time t to an algebraic equation in s. Thus,
the solution of the differential equation can be obtained by using either a Laplace
transform table or the partial fraction expansion method. An added advantage of the
Laplace transform method is that during the solution process, the initial conditions of
the differential equation are taken care of automatically, so that both the homogeneous
(complementary) solution and the particular solution can be obtained simultaneously.

The Laplace transformation of a time-dependent function, f (t), denoted as F(s),
is defined as

L[f (t)] = F(s) =
∫ ∞

0
f (t)e−st d t (7.98)

where L is an operational symbol denoting that the quantity upon which it operates is
to be transformed by the Laplace integral∫ ∞

0
e−st d t (7.99)

The inverse or reverse process of finding the function f (t) from the Laplace transform
F(s), known as the inverse Laplace transform, is donated as

L−1[F(s)] = f (t) = 1

2πi

∫ c+i∞

c−i∞
F(s)est ds, t > 0 (7.100)

Certain conditions are to be satisfied for the existence of the Laplace transform of the
function f (t). One condition is that the absolute value of f (t) must be bounded as

|f (t)| ≤ Ceαt (7.101)

for some constants C and α. This means that if the values of the constants C and α

can be found such that

|e−stf (t)| ≤ Ce(α−s)t (7.102)
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then

L[f (t)] =
∫ ∞

0
e−st f (t) d t ≤ C

∫ ∞

0
e(α−s)t d t = C

s − α
(7.103)

Another condition is that the function f (t) must be piecewise continuous. This means
that in a given interval, the function f (t) has a finite number of finite discontinuities
and no infinite discontinuity.

7.6.1 Properties of Laplace Transforms

Some of the important properties of Laplace transforms are indicated below.

1. Linearity property . If c1 and c2 are any constant and f1(t) and f2(t) are
functions of t with Laplace transforms F1(s) and F2(s), respectively, then

L[c1f1(t) + c2f2(t)] = c1L[f1(t)] + c2L[f2(t)]

= c1F1(s) + c2F2(s) (7.104)

The validity of Eq. (7.104) can be seen from the definition of the Laplace transform.
Because of this property, the operator L can be seen to be a linear operator.

2. First translation or shifting property . If L[f (t)] = F(s) for s > β, then

L[eatf (t)] = F(s − a) (7.105)

where s − a > β and a may be a real or complex number. To see the validity of
Eq. (7.105), we use the definition of the Laplace transform

L[eatf (t)] =
∫ ∞

0
eate−st f (t) d t =

∫ ∞

0
e−(s−a)tf (t) d t = F(s − a) (7.106)

Equation (7.105) shows that the effect of multiplying f (t) by eat in the real domain is
to shift the transform of f (t) by an amount a in the s-domain.

3. Second translation or shifting property . If

L[f (t)] = F(s) and g(t) =
{

f (t − a), t > a

0, t < a

then

L[g(t)] = e−asF (s) (7.107)

4. Laplace transformation of derivatives. If L[f (t)] = F(s), then

L[f ′(t)] = L

[
df (t)

d t

]
= sF (s) − f (0) (7.108)

To see the validity of Eq. (7.108), we use the definition of Laplace transform as

L

[
df (t)

d t

]
=

∫ ∞

0
e−st df (t)

d t
d t (7.109)
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Integrating the right-hand side of Eq. (7.109) by parts, we obtain

e−st f (t)|∞0 −
∫ ∞

0
(−se−st )f (t) d t = −f (0) + sF (s) (7.110)

The property of Eq. (7.108) can be extended to the nth derivative of f (t) to obtain

L

[
d(n)f (t)

dtn

]
= L[f (n)(t)]

= −f (n−1)(0) − sf (n−2)(0) − s2f (n−3)(0) − · · · − s(n−1)f (0) − s(n)F (s)

(7.111)

where

f (n−i)(0) = dn−if (t)

dtn−i

∣∣∣∣
t=0

(7.112)

5. Convolution theorem . Let the Laplace transforms of the functions f (t) and
g(t) be given by F(s) and G(s), respectively. Then

L[(f ∗ g)(t)] = F(s) ∗ G(s) (7.113)

where F ∗ G is called the convolution or the faltung of F and G. Equation (7.113)
can be expressed equivalently as

L

[∫ t

0
f (τ)g(t − τ) dτ

]
= F(s)G(s) (7.114)

or conversely,

L−1[F(s)G(s)] =
∫ t

0
f (τ)g(t − τ) dτ (7.115)

To prove the validity of Eqs. (7.113) to (7.115), consider the definition of the Laplace
transform and the convolution operation as

L[(f ∗ g)(t)] =
∫ ∞

0
e−st

[∫ t

0
f (τ)g(t − τ) dτ

]
d t (7.116)

From the region of integration shown in Fig. 7.1, the integral in Eq. (7.116) can be
rewritten, by interchanging the order of integration, as

L[(f ∗ g)(t)] =
∫ ∞

0
f (τ)

[∫ ∞

τ

e−st g(t − τ) d t

]
dτ (7.117)

By using the second property, the inner integral can be written as e−stG(s), so that
Eq. (7.117) can be expressed as

L[(f ∗ g)(t)] =
∫ ∞

0
G(s)e−sτ f (τ ) dτ = G(s)

∫ ∞

0
e−sτ f (τ ) dτ

= G(s)F (s) (7.118)
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0
t

t
=

t

t

Figure 7.1 Region of integration in Eq. (7.116).

The converse result can be stated as

L−1[F(s)G(s)] =
∫ t

0
f (τ)g(t − τ) dτ

= f (t) ∗ g(t) (7.119)

7.6.2 Partial Fraction Method

In the Laplace transform method, sometimes we need to find the inverse transformation
of the function

F(s) = P(s)

Q(s)
(7.120)

where P(s) and Q(s) are polynomials in s with the degree of P(s) less than that of
Q(s). Let the polynomial Q(s) be of order n with roots a1, a2, a3, . . . , an, so that

Q(s) = (s − a1)(s − a2)(s − a3) · · · (s − an) (7.121)

First, let us consider the case in which all the n roots a1, a2, a3, . . . , an are distinct, so
that Eq. (7.120) can be expressed as

F(s) = P(s)

Q(s)
= c1

s − a1
+ c2

s − a2
+ c3

s − a3
+ · · · + cn

s − an

(7.122)

where ci are coefficients. The points a1, a2, a3, . . . , an are called simple poles of F(s).
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The poles denote points at which the function F(s) becomes infinite. The coeffi-
cients ci in Eq. (7.122) can be found as

ci = lim
s→ai

[(s − ai)F (s)] = P(s)

Q′(s)

∣∣∣∣
s=ai

(7.123)

where Q′(s) is the derivative of Q(s) with respect to s. Using the result

L−1
[

1

s − ai

]
= eai t (7.124)

the inverse transform of Eq. (7.122) can be found as

f (t) = L−1[F(s)] = c1e
a1t + c2e

a2t + · · · + cne
ant =

n∑
i=1

cie
ai t

=
n∑

i=1

lim
s→ai

[(s − ai)F (s)est ]

=
n∑

i=1

P(s)

Q′(s)
est

∣∣∣∣
s=ai

(7.125)

Next, let us consider the case in which Q(s) has a multiple root of order k, so that

Q(s) = (s − a1)
k(s − a2)(s − a3) · · · (s − an−k) (7.126)

In this case, Eq. (7.120) can be expressed as

F(s) = P(s)

Q(s)
= c11

s − a1
+ c12

(s − a2)2
+ · · · + c1k

(s − a1)k

+ c2

s − a2
+ c3

s − a3
+ · · · + cn−k

s − an−k

(7.127)

Note that the coefficients c1j can be determined as

c1j = 1

(k − j)!

dk−j

dsk−j
[(s − a1)

kF (s)]|s=a1 , j = 1, 2, 3, . . . , k (7.128)

while the coefficients ci, i = 2, 3, . . . , n − k, can be found as in Eq. (7.125). Since

L−1
[

1

(s − a1)j

]
= tj−1

(j − 1)!
ea1t (7.129)

the inverse of Eq. (7.127) can be expressed as

f (t) =
[
c11 + c12t + c13

t2

2!
+ · · · + c1k

tk−1

(k − 1)!

]
ea1t

+ c2e
a2t + c3e

a3t + c4e
a4t + · · · + cn−ke

an−kt (7.130)
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7.6.3 Inverse Transformation

The inverse Laplace transformation, denoted as L−1[F(s)], is also defined by the com-
plex integration formula

L−1[F(s)] = f (t) = 1

2πi

∫ α+i∞

α−i∞
estF (s) ds (7.131)

where α is a suitable real constant, in Eq. (7.131), the path of the integration is a line
parallel to the imaginary axis that crosses the real axis at Re s = α and extends from
−∞ to +∞. We assume that F(s) is an analytic function of the complex variable s

in the right half-plane Re s > α and all the poles lie to the left of the line x = α. This
condition is usually satisfied for all physical problems possessing stability since the
poles to the right of the imaginary axis denote instability. The details of evaluation of
Eq. (7.131) depend on the nature of the singularities of F(s).

The path of the integration is the straight line L as shown in Fig. 7.2 in the complex
s plane, with equation s = α + iR, −∞ < R < +∞ and Re s = α is chosen so that
all the singularities of the integrand of Eq. (7.131) lie to the left of the line L. The
Cauchy-residue theorem is used to evaluate the contour integral as∫

C

estF (s) ds =
∫

L

estF (s) ds +
∫




estF (s) ds

= 2πi[sum of the residues of estF (s) at the poles inside C]

(7.132)

Γ

a

a + iR

a − iR

0
Re s

Im s

L

Figure 7.2 Contour of integration.
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where R → ∞ and the integral over 
 tends to zero in most cases. Thus, Eq. (7.131)
reduces to the form

lim
R→∞

1

2πi

∫ α+iR

α−iR

estF (s) ds

= sum of the residues of estF (s) at the poles of F(s) (7.133)

The following example illustrates the procedure of contour integration.

Example 7.5 Find the inverse Laplace transform of the function

F(s) = s

s2 + c2
(E7.5.1)

SOLUTION The inverse transform is given by

f (t) = 1

2πi

∫ α+i∞

α−i∞
estF (s) ds

= 1

2πi

∫ α+i∞

α−i∞
est s

s2 + c2
ds (E7.5.2)

The integrand in Eq. (E7.5.2) has two simple poles at s = ±ic, and residues at these
poles are given by

R1 = residue of estF (s) at s = −ic

= lim
s→−ic

(s + ic)
sest

s2 + c2
= 1

2
e−ict (E7.5.3)

R2 = residue of estF (s) at s = ic

= lim
s→+ic

(s − ic)
sest

s2 + c2
= 1

2
eict (E7.5.4)

Hence,

f (t) = 1

2πi

∫ α+i∞

α−i∞
estF (s) ds = R1 + R2 = 1

2
(eict + e−ict ) = cos ct (E7.5.5)

7.7 FREE VIBRATION OF A STRING OF FINITE LENGTH

In this case the equation of motion is

c2 ∂2w

∂x2
− ∂2w

∂t2
= 0 (7.134)

If the string is fixed at x = 0 and x = l, the boundary conditions are

w(0, t) = 0 (7.135)

w(l, t) = 0 (7.136)
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Let the initial conditions of the string be given by

w(x, t = 0) = w0(x) (7.137)

∂w

∂t
(x, t = 0) = ẇ0(x) (7.138)

Applying Laplace transforms to Eq. (7.134), we obtain

c2 d2W(x, s)

dx2
− s2W(x, s) + sw0(x) + ẇ0(x) = 0 (7.139)

where

W(x, s) =
∫ ∞

0
w(x, t)e−st d t (7.140)

Taking finite Fourier sine transform of Eq. (7.139), we obtain

(s2 + c2p2
n)W(pn, s) = sW 0(pn) + Ẇ 0(pn) (7.141)

where

W(pn, s) =
∫ l

0
W(x, s) sin pnx dx (7.142)

W 0(pn) =
∫ l

0
w0(x) sin pnx dx (7.143)

Ẇ 0(pn) =
∫ l

0
ẇ0(x) sin pnx dx (7.144)

with

pn = nπ

l
(7.145)

Equation (7.141) gives

W(pn, s) = sWo(pn) + Ẇ 0(pn)

s2 + c2p2
n

(7.146)

Performing the inverse finite Fourier sine transform of Eq. (7.146) yields

W(x, s) = 2

l

∞∑
n=1

sin pnx

s2 + c2p2
n

∫ l

0
[sw0(ξ) + ẇ0(ξ)] sin pnξ dξ (7.147)

Finally, by taking the inverse Laplace transform of W(x, s) in Eq. (7.147), we obtain

w(x, t) = 2

l

∞∑
n=1

sin pnx

[
cos

cnπt

l

·
∫ l

0
w0(ξ) sin pnξ dξ + sin(cnπt/ l)

cnπ/l

∫ l

0
ẇ0(ξ) sin pnξ dξ

]
(7.148)
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0 x

l

s0

Figure 7.3 Axial stress at the end of a bar.

Example 7.6 A uniform bar is fixed at x = 0 and subjected to an axial stress σ0 at
x = l as shown in Fig. 7.3. Assuming the bar to be at rest initially, determine the axial
vibration response of the bar.

SOLUTION The equation governing the longitudinal vibration of a bar is giving by
[see Eq. (9.15)]:

c2 ∂2u(x, t)

∂x2
= ∂2u(x, t)

∂t2
(E7.6.1)

The boundary conditions are given by

u(0, t) = 0 (E7.6.2)

∂u

∂x
(l, x) = εx(l, t) = σ0

E
(E7.6.3)

and the initial conditions by

u(x, 0) = 0 (E7.6.4)

∂u

∂t
(x, 0) = 0 (E7.6.5)

By taking Laplace transform of Eq. (E7.6.1) with respect to t , we obtain

s2U(x, s) − su(x, 0) − ∂u

∂t
(x, 0) = c2 d2U(x, s)

dx2
(E7.6.6)

which in view of the initial conditions of Eqs. (E7.6.4) and (E7.6.5), reduces to

d2U

dx2
− s2

c2
U = 0 (E7.6.7)

where

U(x, s) = L[u(x, t)] (E7.6.8)

Noting that L(1) = 1/s, the Laplace transforms of Eqs. (E7.6.2) and (E7.6.3) can be
written as

U(0, s) = 0 (E7.6.9)

dU

dx
(l, s) = σ0

Es
(E7.6.10)
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The solution of Eq. (E7.6.7) is given by

U(x, s) = c1 cosh
sx

c
+ c2 sinh

sx

c
(E7.6.11)

where the constants c1 and c2 can be found using Eqs. (E7.6.9) and (E7.6.10) as

c1 = 0 (E7.6.12)

c2
s

c
cosh

sl

c
= σ0

Es
or c2 = cσ0

Es2 cosh(sl/c)
(E7.6.13)

Thus, the solution, U(x, s), becomes

U(x, s) = cσ0

E

sinh(sx/c)

s2 cosh(sl/c)
(E7.6.14)

By taking the inverse Laplace transform of Eq. (E7.6.14), we obtain the axial displace-
ment of the bar as [8]

u(x, t) = σ0

E

[
x + 8l

π2

∞∑
n=1

(−1)n

(2n − 1)2
sin

(2n − 1)πx

2l
cos

(2n − 1)πct

2l

]
(E7.6.15)

7.8 FREE VIBRATION OF A BEAM OF FINITE LENGTH

The equation of motion for the transverse vibration of a beam is given by

c2 ∂4w(x, t)

∂x4
+ ∂2w(x, t)

∂t2
= 0 (7.149)

where

c2 = EI

ρA
(7.150)

For free vibration, w(x, t) is assumed to be harmonic with frequency ω:

w(x, t) = w(x)eiωt (7.151)

so that Eq. (7.149) reduces to an ordinary differential equation:

d4w(x)

dx4
− β4w(x) = 0 (7.152)

where

β4 = ω2

c2
= ω2ρA

EI
(7.153)

By taking Laplace transforms of Eq. (7.152), we obtain

s4W(s) − s3w(0) − s2w′(0) − sw′′(0) − w′′′(0) − β4W(s) = 0 (7.154)

or

W(s) = 1

s4 − β4

[
s3w(0) + s2w′(0) + sw′′(0) + w′′′(0)

]
(7.155)
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where w(0), w′(0), w′′(0), and w′′′(0) denote the deflection and its first, second, and
third derivative, respectively, at x = 0. By noting that

L−1
[

s3

s4 − β4

]
= 1

2
(cosh βx + cos βx) (7.156)

L−1
[

s2

s4 − β4

]
= 1

2β
(sinh βx + sin βx) (7.157)

L−1
[

s

s4 − β4

]
= 1

2β2
(cosh βx − cos βx) (7.158)

L−1
[

1

s4 − β4

]
= 1

2β3
(sinh βx − sin βx) (7.159)

the inverse Laplace transform of Eq.(7.155) gives

w(x) = 1

2
(cosh βx + cos βx)w(0) + 1

2β
(sinh βx + sin βx)w′(0)

+ 1

2β2
(cosh βx − cos βx)w′′(0) + 1

2β3
(sinh βx − sin βx)w′′′(0) (7.160)

7.9 FORCED VIBRATION OF A BEAM OF FINITE LENGTH

The governing equation is given by

EI
∂4w(x, t)

∂x4
+ ρA

∂2w

∂t2
= f (x, t) (7.161)

where f (x, t) denotes the time-varying distributed force. Let the initial deflection
and velocity be given by w0(x) and ẇ0(x), respectively. The Laplace transform of
Eq. (7.161), with respect to t with s as the subsidiary variable, yields

d4W(x, s)

dx4
+ ρA

EI
s2W(x, s) = ρA

EI
[sw0(x) + ẇ0(x)] + 1

EI
F(x, s) (7.162)

or

d4W(x, s)

dx4
− β4W(x, s) = G(x, s) (7.163)

where

β4 = −ρAs2

EI
(7.164)

G(x, s) = ρA

EI
[sw0(x) + ẇ0(x)] + 1

EI
F(x, s) (7.165)

Again, by taking Laplace transform of Eq. (7.163) with respect to x with p as the
subsidiary variable, we obtain

(p4 − β4)W(p, s) = G(p, s) + p3W(0, s)

+p2W
′
x(0, s) + pW

′′
x(0, s) + W

′′′
x (0, s)
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or

W(p, s) = G(p, s)

p4 − β4
+ p3W(0, s) + p2W

′
x(0, s) + pW

′′
x(0, s) + W

′′′
x (0, s)

p4 − β4

(7.166)

where W(0, s), W
′
x(0, s), W

′′
x(0, s), and W

′′′
x (0, s) denote the Laplace transforms with

respect to t of w(x, t), (∂w/∂x)(x, t), (∂2w/∂x2)(x, t) and (∂3w/∂x3)(x, t) respec-
tively, at x = 0. Next, we perform the inverse Laplace transform of Eq. (7.166) with
respect to x. For this, we use Eqs. (7.156)–(7.159) and express the inverse transform
of Eq. (7.166) as

W(x, s) = 1

2β3

∫ x

0
G(η, s)[sinh β(x − η) − sin β(x − η)] dη

+ 1

2
W(0, s)(cosh βx + cos βx) + 1

2β
W

′
x(0, s)(sinh βx + sin βx)

+ 1

2β2
W

′′
x(0, s)(cosh βx − cos βx) + 1

2β3
W

′′′
x (0, s)(sinh βx − sin βx)

(7.167)

Finally, we perform the inverse Laplace transform of Eq. (7.167) with respect to t to
find the desired solution, w(x, t). The procedure is illustrated in the following example.

Example 7.7 A uniform beam of length l is subjected to a concentrated harmonic force
f0 sin ωt at x = ξ, 0 < ξ < l. Assuming the end conditions of the beam to be simple
supports and the initial conditions to be zero, determine the response of the beam.

SOLUTION The boundary conditions of the beam can be expressed as

w(0, t) = 0 (E7.7.1)

∂2w

∂x2
(0, t) = 0 (E7.7.2)

w(l, t) = 0 (E7.7.3)

∂2w

∂x2
(l, t) = 0 (E7.7.4)

Taking Laplace transforms, Eqs. (E7.7.1)–(E7.7.4) can be written as

W(0, s) = 0 (E7.7.5)

W ′′
x (0, s) = 0 (E7.7.6)

W(l, s) = 0 (E7.7.7)

W ′′
x (l, s) = 0 (E7.7.8)

The applied concentrated force can be expressed as

f (x, t) = f0δ(x − ξ)h(t) ≡ f0 sin ωtδ(x − ξ) (E7.7.9)
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The Laplace transform of Eq. (E7.7.9) gives

F(x, s) = f0δ(x − ξ)H(s) (E7.7.10)

where

H(s) = L[h(t)] = L[sin ωt] = ω

s2 + ω2
(E7.7.11)

Since the initial conditions are zero,

w0(x) = ẇ0(x) = 0 (E7.7.12)

and hence Eq. (7.165) yields

G(x, s) = F(x, s)

EI
= f0

EI
δ(x − ξ)H(s) (E7.7.13)

Using the boundary conditions at x = 0 [Eqs. (E7.7.5) and (E7.7.6)] and Eq. (E7.7.13),
Eq. (7.167) can be expressed as

W(x, s) = 1

2β3

∫ x

0

f0

EI
δ(η − ξ)H(s)[sinh β(x − η) − sin β(x − η)] dη

+ c1 sinh βx + c2 sin βx (E7.7.14)

where

c1 = 1

2β
W ′

x(0, s) + 1

2β3
W ′′′

x (0, s) (E7.7.15)

c2 = 1

2β
W ′

x(0, s) − 1

2β3
W ′′′

x (0, s) (E7.7.16)

By differentiating W(x, s) given by Eq. (E7.7.14) with respect to x and using the
conditions of Eqs. (E7.7.7) and (E7.7.8), we obtain

W(l, s) = 0 = f0H(s)

2β3EI

∫ l

0
δ(η − ξ)[sinh β(l − η) − sin β(l − η)] dη

+ c1 sinh βl + c2 sin βl (E7.7.17)

W ′′
x (l, s) = 0 = f0H(s)

2β3EI

∫ l

0
δ(η − ξ)[sinh β(l − η) + sin β(l − η)] dη

+ c1 sinh βl − c2 sin βl (E7.7.18)

The solution of Eqs. (E7.7.17) and (E7.7.18) gives

c1 = −f0H(s) sinh β(l − ξ)

2β3EI sinh βl
(E7.7.19)

c2 = f0H(s) sin β(l − ξ)

2β3EI sin βl
(E7.7.20)
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Thus, Eq. (E7.7.18) becomes

W(x, s) = f0H(s)

2β3EI

∫ x

0
δ(η − ξ)[sinh β(x − η) − sin β(x − η)] dη

− f0H(s)

2β3EI

sinh β(l − ξ) sinh βx sin βl − sin β(l − ξ) sin βx sinh βl

(sinh βl sin βl)

= f0H(s)

2β3EI
[sinh β(x − ξ) − sin β(x − ξ)]δ(x − ξ)

+ sinh β(l − ξ) sinh βx sin βl − sin β(l − ξ) sin βx sinh βl

sinh βl sin βl
(E7.7.21)

which results in the solution

w(x, t) = f0 sin ωt

2β3EI

{
[sin β(x − ξ) − sinh β(x − ξ)] δ(x − ξ)

+ sinh β(l − ξ) sinh βx sin βl − sin β(l − ξ) sin βx sinh βl

sinh βl sin βl

}
(E7.7.22)

The value of β4 can be obtained from Eq. (7.164), by substituting s = iω as

β4 = ρAω2

EI
(E7.7.23)

7.10 RECENT CONTRIBUTIONS

Fast Fourier Transforms The fast Fourier transform algorithm and the associated
programming considerations in the calculation of sine, cosine, and Laplace transforms
was presented by Cooley et al. [13]. The problem of establishing the correspondence
between discrete and continuous functions is described.

Beams Cobble and Fang [14] considered the finite transform solution of the damped
cantilever beam equation with distributed load, elastic support, and the wall edge elasti-
cally restrained against rotation. The solution is based on the properties of a Hermitian
operator and its orthogonal basis vectors.

Membranes The general solution of the vibrating annular membrane with arbitrary
loading, initial conditions, and time-dependent boundary conditions was given by
Sharp [15].

Hankel Transform The solution of the scalar wave equation of an annular membrane,
in which the motion is symmetrical about the origin, for arbitrary initial and boundary
conditions was given in Ref. [16]. The solution is obtained by using a finite Hankel
transform. An example is given to illustrate the procedure and the solution is compared
to the one given by the method of separation of variables.
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Plates A method of determining a finite integral transform that will remove the
presence of one of the independent variables in a fourth-order partial differential
equation is applied to the equation of motion of classical plate theory for complete
and annular circular plates subjected to various boundary conditions by Anderson [17].
The method is expected to be particularly useful for the solution of plate vibration
problems with time-dependent boundary conditions. Forced torsional vibration of thin,
elastic, spherical, and hemispherical shells subjected to either a free or a restrained
edge was considered by Anderson in Ref. [18].

z Transform Application of the z-transform method to the solution of the wave
equation was presented by Tsai et al. [19]. In the conventional method of solution
using the Laplace transformation, the conversion, directly from the s domain to the t

domain to find the time function, sometimes proves to be very difficult and yields a
solution in the form of an infinite series. However, if the s domain solution is first
transformed to the z domain and then converted to the time domain, the process of
inverse transformation is simplified and a closed-form solution may be obtained.
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PROBLEMS
7.1 Find the Fourier transforms of the following
functions:

(a) f (x) = 1
x2+a2

(b) f (x) = δ(x − a)e−c2x2

7.2 Find the Fourier cosine transforms of the following
functions:

(a) f (x) = e−x

(b) f (x) =
{
a, 0 < x < a

0, x > a

7.3 Find the Fourier sine transforms of the following
functions:

(a) f (x) = e−x

(b) f (x) =
{
a, 0 < x < a

0, x > a

7.4 Find the Fourier cosine transforms of the following
functions:

(a) f (x) =
{

sin x, 0 ≤ x ≤ π

0, otherwise

(b) f (x) =
{

1 − x2, 0 ≤ x ≤ 1
0, otherwise

7.5 Find the Fourier sine transforms of the following
functions:

(a) f (x) =
{

sin x, 0 ≤ x ≤ π

0, otherwise

(b) f (x) =
{

1 − x2, 0 ≤ x ≤ 1
0, otherwise

7.6 Find the Laplace transforms of the following
functions:

(a) f (t) = t

(b) f (t) = eαt

(c) f (t) = sin αt

(d) f (t) = cos αt

7.7 Find the Laplace transforms of the following
functions:

(a) f (t) =
{

6, 0 < t < 2
0, t > 2

(b) f (t) =
{

sin t, 0 < t < π

0, π < t < 2π

7.8 Find the Laplace transforms of the following
functions:

(a) f (t) =
{

cos(t − π/4), t > π/4
0, t < π/4

(b) Heaviside’s unit step function:

f (t) = U(t − a) =
{

1, t > a

0, t < a

7.9 A single-degree-of-freedom spring–mass–damper
system is subjected to a displacement x0 and velocity
ẋ0 at time t = 0. Determine the resulting motion of the
mass (m) using Laplace transforms. Assume the spring
and damping forces to be kx and cẋ, where k is the
spring constant and ẋ = dx/ d t is the velocity of the
mass.

7.10 Derive an expression for the response of a uniform
beam of length l fixed at both ends when subjected to
a concentrated force f0(t) at x = ξ, 0 < ξ < l. Assume
the initial conditions of the beam to be zero. Use Fourier
transforms.

7.11 Find the response of a uniform beam of length l

fixed at both the ends when subjected to an impulse
Ĝ at x = ξ, 0 < ξ < l. Assume that the beam is in
equilibrium before the impulse is applied. Use Fourier
transforms.
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7.12 Find the free transverse displacement of a semi-
infinite string using Fourier transforms. The governing
equation is

c2 ∂2w

∂x2
= ∂2w

∂t2

and the initial conditions are

w(x, 0) = w0(x),
∂w

∂t
(x, 0) = ẇ0

Assume that the string is fixed at x = 0 and stretched
along the positive x axis under tension P .

7.13 Consider a finite string of length l fixed at x = 0
and x = l, subjected to tension P . Find the transverse
displacement of a string that is initially at rest and
subjected to an impulse F̂ at point x = a, 0 < a < l

using the Fourier transform method.

7.14 Find the steady-state transverse vibration response
of a string of length l fixed at both ends, subjected to
the force

f (x, t) = f0 sin �t

using the Fourier transform method.

7.15 Find the Laplace transforms of the following func-
tions:

(a) f (t) =
{

0, t < 0
at, t ≥ 0

(b) f (t) = eαt , α is real

(c) f (t) = 2e−2t sin 3t

7.16 Find the solution of the following differential
equation using Laplace transforms:

d2w

dx2
+ 4

dw

dx
+ 3w = sin 2t

with w(0) = 1 and dw/ d t (0) = −1.

7.17 The longitudinal vibration of a uniform bar of
length l is governed by the equation

c2 ∂2u(x, t)

∂x2
= ∂2u(x, t)

∂t2

where c2 = E/ρ with E and ρ denoting Young’s modu-
lus and the mass density of the bar respectively. The bar
is fixed at x = 0 and free at x = l. Find the free vibration
response of the bar subject to the initial conditions

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u̇0(x)

using Laplace transforms.

7.18 Find the longitudinal vibration response of a uni-
form bar fixed at x = 0 and subjected to an axial force
f (t) at x = l, using Laplace transforms. The equation
of motion is given in Problem 7.17.

7.19 A uniform bar fixed at x = 0, is subjected to a
sudden displacement of magnitude u0 at x = l. Find the
ensuing axial motion of the bar using Laplace trans-
forms. The governing equation of the bar is given in
Problem 7.17.

7.20 A taut string of length 1, fixed at x = 0 and x = 1
is subjected to tension P . If the string is given an initial
displacement

w(x, 0) = w0(x) =
{

2x, 0 < x < 0.5
2(1 − x), 0.5 < x < 1

and released with zero velocity, determine the ensuing
motion of the string.
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Transverse Vibration of Strings

8.1 INTRODUCTION

It is well known that most important musical instruments, including the violin and the
guitar, involve strings whose natural frequencies and mode shapes play a significant
role in their performance. The characteristics of many engineering systems, such as
guy wires, electric transmission lines, ropes and belts used in machinery, and thread
manufacture, can be derived from a study of the dynamics of taut strings. The free
and forced transverse vibration of strings is considered in this chapter. As will be seen
in subsequent chapters, the equation governing the transverse vibration of strings will
have the same form as the equations of motion of longitudinal vibration of bars and
torsional vibration of shafts.

8.2 EQUATION OF MOTION

8.2.1 Equilibrium Approach

Figure 8.1 shows a tightly stretched elastic string or cable of length l subjected to a
distributed transverse force f (x,t) per unit length. The string is assumed to be sup-
ported at the ends on elastic springs of stiffness k1 and k2. By assuming the transverse
displacement of the string w(x,t) to be small, Newton’s second law of motion can be
applied for the motion of an element of the string in the z direction as

net force acting on an element = inertia force acting on the element (8.1)

If P is the tension, ρ is the mass per unit length, and θ is the angle made by the
deflected string with the x axis, Eq. (8.1) can be rewritten, for an element of length
dx, as

(P + dP) sin(θ + dθ) + f dx − P sin θ = ρ dx
∂2w

∂t2
(8.2)

Noting that

dP = ∂P

∂x
dx (8.3)

sin θ ≈ tan θ = ∂w

∂x
(8.4)

sin(θ + dθ) ≈ tan(θ + dθ) = ∂w

∂x
+ ∂2w

∂x2
dx (8.5)
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k1 k2

z, w

x

ds

0
x x + dx

l

f (x,t)

(a)

z, w

x

ds

f (x,t)

P

P

q

q + dq

x dx

(b)

Figure 8.1 (a) Vibrating string; (b) differential element.

Eq. (8.2) can be expressed as

∂

∂x

[
P

∂w(x,t)

∂x

]
+ f (x,t) = ρ(x)

∂2w(x,t)

∂t2
(8.6)

If the string is uniform and the tension is constant, Eq. (8.6) takes the form

P
∂2w(x,t)

∂x2
+ f (x,t) = ρ

∂2w(x,t)

∂t2
(8.7)

For free vibration, f (x,t) = 0 and Eq. (8.7) reduces to

P
∂2w(x,t)

∂x2
= ρ

∂2w(x,t)

∂t2
(8.8)
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which can be rewritten as

c2 ∂2w

∂x2
= ∂2w

∂t2
(8.9)

where

c =
(

P

ρ

)1/2

(8.10)

Equation (8.9) is called the one-dimensional wave equation.

8.2.2 Variational Approach

Strain Energy There are three sources of strain energy for the taut string shown in
Fig. 8.1. The first is due to the deformation of the string over 0 ≤ x ≤ l, where the
tension P(x) tries to restore the deflected string to the equilibrium position; the second
is due to the deformation of the spring at x = 0; and the third is due to the deformation
of the spring at x = l. The length of a differential element dx in the deformed position,
ds, can be expressed as

ds =
[
(dx)2 +

(
∂w

∂x
dx

)2
]1/2

=
[

1 +
(

∂w

∂x

)2
]1/2

dx ≈
[

1 + 1

2

(
∂w

∂x

)2
]

dx

(8.11)

by assuming the slope of the deflected string, ∂w/∂x, to be small. The strain energy
due to the deformations of the springs at x = 0 and x = l is given by 1

2k1w
2(0,t) and

1
2k2w

2(l,t), and the strain energy associated with the deformation of the string is given
by the work done by the tensile force P(x) while moving through the distance ds –dx :∫ l

0
P(x)[ds(x,t) − dx] = 1

2

∫ l

0
P(x)

[
∂w(x,t)

∂x

]2

dx (8.12)

Thus, the total strain energy, π , is given by

π = 1

2

∫ l

0
P(x)

[
∂w(x,t)

∂x

]2

dx + 1

2
k1w

2(0,t) + 1

2
k2w

2(l,t) (8.13)

Kinetic Energy The kinetic energy of the string is given by

T = 1

2

∫ l

0
ρ(x)

[
∂w(x,t)

∂t

]2

dx (8.14)

where ρ(x) is the mass of the string per unit length.

Work Done by External Forces The work done by the nonconservative distributed
load acting on the string, f (x,t), can be expressed as

W =
∫ l

0
f (x,t)w(x,t) dx (8.15)
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Hamilton’s principle gives

δ

∫ t2

t1

(T − π + W) d t = 0 (8.16)

or

δ

∫ t2

t1

[
1

2

∫ l

0
ρ(x)

(
∂w

∂t

)2

dx − 1

2

∫ l

0
P(x)

(
∂w

∂x

)2

dx − 1

2
k1w

2(0,t)

− 1

2
k2w

2(l,t) +
∫ l

0
f (x,t)w dx

]
d t = 0 (8.17)

The variations of the individual terms appearing in Eq. (8.17) can be carried out as
follows:∫ t2

t1

δT d t =
∫ t2

t1

d t

∫ l

0
ρ(x)

∂w

∂t
δ
∂w

∂t
dx =

∫ t2

t1

d t

∫ l

0
ρ

∂w

∂t

∂(δw)

∂t
dx (8.18)

using the interchangeability of the variation and differentiation processes.
Equation (8.18) can be evaluated by using integration by parts with respect to time:∫ l

0

[∫ t2

t1

ρ
∂w

∂t

∂(δw)

∂t
d t

]
dx =

∫ l

0

{(
ρ

∂w

∂t
δw|t2t1

)

−
∫ l

0

[∫ t2

t1

∂

∂t

(
ρ

∂w

∂t

)
δw d t

]}
dx (8.19)

Using the fact that δw = 0 at t = t1 and t = t2 and assuming ρ(x) to be constant,
Eq. (8.19) yields ∫ t2

t1

δT d t = −
∫ t2

t1

(∫ l

0
ρ

∂2w

∂t2
δw dx

)
d t (8.20)

The second term of Eq. (8.16) can be written as∫ t2

t1

δπ d t =
∫ t2

t1

[ ∫ l

0
P(x)

∂w

∂x

∂

∂x
(δw) dx + k1w(0,t)δw(0,t)

+ k2w(l,t)δw(l,t)

]
d t (8.21)

By using integration by parts with respect to x, Eq. (8.21) can be expressed as∫ t2

t1

δπ d t =
∫ t2

t1

[
P

∂w

∂x
δw|l0 −

∫ l

0

∂

∂x

(
P

∂w

∂x

)
δw dx + k1w(0,t)δw(0,t)

+ k2w(l,t)δw(l,t)

]
d t (8.22)

The third term of Eq. (8.16) can be written as∫ t2

t1

δW d t =
∫ t2

t1

[∫ l

0
f (x,t)δw(x,t) dx

]
d t (8.23)
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By inserting Eqs. (8.20), (8.22), and (8.23) into Eq. (8.16) and collecting the terms, we
obtain∫ t2

t1

{∫ l

0

[
−ρ

∂2w

∂t2
+ ∂

∂x

(
P

∂w

∂x

)
+ f

]
δw dx +

(
P

∂w

∂x
− k1w

)
δw

∣∣∣∣
x=0

−
(

P
∂w

∂x
+ k2w

)
δw|x=l

}
d t = 0 (8.24)

Since the variation δw over the interval 0 < x < l is arbitrary, Eq. (8.24) can be sat-
isfied only when the individual terms of Eq. (8.24) are equal to zero:

∂

∂x

(
P

∂w

∂x

)
+ f = ρ

∂2w

∂t2
, 0 < x < l (8.25)

(
P

∂w

∂x
− k1w

)
δw = 0, x = 0 (8.26)

(
P

∂w

∂x
+ k2w

)
δw = 0, x = l (8.27)

Equation (8.25) denotes the equation of motion while Eqs. (8.26) and (8.27) represent
the boundary conditions. Equation (8.26) can be satisfied when w(0,t) = 0 or when
P [∂w/∂x](0,t) − k1w(0,t) = 0. Since the displacement w cannot be zero for all time
at x = 0, Eq. (8.26) can only be satisfied by setting

P
∂w

∂x
− k1w = 0 at x = 0 (8.28)

Similarly, Eq. (8.27) leads to the condition

P
∂w

∂x
+ k2w = 0 at x = l (8.29)

Thus, the differential equation of motion of the string is given by Eq. (8.25) and the
corresponding boundary conditions by Eqs. (8.28) and (8.29).

8.3 INITIAL AND BOUNDARY CONDITIONS

The equation of motion, Eq. (8.6), or its special forms (8.7) and (8.8) or (8.9), is a
partial differential equation of order 2 in x as well as t . Thus, two boundary conditions
and two initial conditions are required to find the solution, w(x,t). If the string is given
an initial deflection w0(x) and an initial velocity ẇ0(x), the initial conditions can be
stated as

w(x, t = 0) = w0(x)

∂w

∂t
(x, t = 0) = ẇ0(x) (8.30)

If the string is fixed at x = 0, the displacement is zero and hence the boundary condi-
tions will be

w(x = 0,t) = 0, t ≥ 0 (8.31)
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If the string is connected to a pin that is free to move in a transverse direction, the
end will not be able to support any transverse force, and hence the boundary condition
will be

P(x)
∂w

∂x
(x,t) = 0 (8.32)

If the axial force is constant and the end x = 0 is free, Eq. (8.32) becomes

∂w

∂x
(0,t) = 0, t ≥ 0 (8.33)

If the end x = 0 of the string is connected to an elastic spring of stiffness k, the
boundary condition will be

P(x)
∂w

∂x
(x,t)

∣∣∣∣
x=0

= kw(x,t)

∣∣∣∣
x=0

, t ≥ 0 (8.34)

Some of the possible boundary conditions of a string are summarized in Table 8.1.

8.4 FREE VIBRATION OF AN INFINITE STRING

Consider a string of infinite length. The free vibration equation of the string, Eq. (8.9),
is solved using three different approaches in this section.

8.4.1 Traveling-Wave Solution

The solution of the wave equation (8.9) can be expressed as

w(x,t) = F1(x − ct) + F2(x + ct) (8.35)

where F1 and F2 are arbitrary functions of (x − ct) and (x + ct), respectively. The solu-
tion given by Eq. (8.35) is known as D’Alembert’s solution. The validity of Eq. (8.35)
can be established by differentiating Eq. (8.35) as

∂2w

∂x2
(x,t) = F ′′

1 (x − ct) + F ′′
2 (x + ct) (8.36)

∂2w

∂t2
(x,t) = c2F ′′

1 (x − ct) + c2F ′′
2 (x + ct) (8.37)

where a prime indicates a derivative with respect to the respective argument. By sub-
stituting Eqs. (8.36) and (8.37) into Eq. (8.9), we find that Eq. (8.9) is satisfied. The
functions F1(x − ct) and F2(x + ct) denote waves that propagate in the positive and
negative directions of the x axis, respectively, with a velocity c. The functions F1 and
F2 can be determined from the known initial conditions of the string. Using the initial
conditions of Eq. (8.30), Eq. (8.35) yields

F1(x) + F2(x) = w0(x) (8.38)

−cF ′
1(x) + cF ′

2(x) = ẇ0(x) (8.39)
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Table 8.1 Boundary Conditions of a String

Support conditions of the string
Boundary conditions

to be satisfied

1. Both ends fixed

0

w(x,t)

P P

x

l

w(0,t) = 0
w(l,t) = 0

2. Both ends free

0

w(x,t)
P

P

x

l

∂w

∂x
(0,t) = 0

∂w

∂x
(l,t) = 0

3. Both ends attached with masses

P

P

x
l0

w(x,t)

m1
m2

m1
∂2w

∂t2
(0,t) = P

∂w

∂x
(0,t)

−m2
∂2w

∂t2
(l,t) = P

∂w

∂x
(l,t)

4. Both ends attached with springs

w(x,t)

P P

k1 k2

l
x0

k1w(0,t) = P
∂w

∂x
(0,t)

−k2w(l,t) = P
∂w

∂x
(l,t)

5. Both ends attached with dampers

w(x,t)

P
P

c1 c2

l
x0

c1
∂w

∂t
(0,t) = P

∂w

∂x
(0,t)

−c2
∂w

∂t
(l,t) = P

∂w

∂x
(l,t)
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where a prime in Eq. (8.39) denotes a derivative with respect to the respective argument
at t = 0 (i.e., with respect to x). By integrating Eq. (8.39) with respect to x, we obtain

−F1(x) + F2(x) = 1

c

∫ x

x0

ẇ0(x) dx (8.40)

where x0 is a constant. Equations (8.38) and (8.40) can be solved to find F1(x) and
F2(x) as

F1(x) = 1

2

[
w0(x) − 1

c

∫ x

x0

ẇ0(x) dx

]
(8.41)

F2(x) = 1

2

[
w0(x) + 1

c

∫ x

x0

ẇ0(x) dx

]
(8.42)

By replacing x by x − ct and x + ct , respectively, in Eqs. (8.41) and (8.42), we can
express the wave solution of the string, w(x,t), as

w(x,t) = F1(x − ct) + F2(x + ct)

= 1

2

[
w0(x − ct) + w0(x + ct) + 1

2c

∫ x+ct

x−ct

ẇ0(x) dx

]
(8.43)

The solution given by Eq. (8.43) can be rewritten as

w(x,t) = wd(x,t) + wv(x,t) (8.44)

where wd(x,t) represents a wave propagating due to a known initial displacement
w0(x) with zero initial velocity, and wv(x,t) indicates a wave moving due to the
initial velocity ẇ0(x) with zero initial displacement. A typical wave traveling due to
initial displacement (introduced by pulling the string slightly in the transverse direction
with zero velocity) is shown in Fig. 8.2.

At t = t1 = 0

At t = t2 > t1

At t = t3 > t2

At t = t4 > t3

Figure 8.2 Propagation of a wave caused by an initial displacement.
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8.4.2 Fourier Transform–Based Solution

To find the free vibration response of an infinite string (−∞ < x < ∞) under the
initial conditions of Eq. (8.30), we take the Fourier transform of Eq. (8.9). For this, we
multiply Eq. (8.9) by eiax and integrate from x = −∞ to x = ∞:

∫ ∞

−∞

∂2w(x,t)

∂x2
eiax dx = 1

c2

∂2

∂t2

∫ ∞

−∞
w(x,t)eiax dx (8.45)

Integration of the left-hand side of Eq. (8.45) by parts results in

∫ ∞

−∞

∂2w(x,t)

∂x2
eiax dx = ∂w

∂x
eiax

∣∣∣∣
∞

−∞
− ia

∫ ∞

−∞

∂w

∂x
eiax dx

= ∂w

∂x
eiax

∣∣∣∣
∞

−∞
−

[
iaweiax

∣∣∣∣
∞

−∞
− (ia)2

∫ ∞

−∞
weiax dx

]

=
(

∂w

∂x
− iaw

)
eiax

∣∣∣∣
∞

−∞
− a2

∫ ∞

−∞
weiax dx (8.46)

Assuming that both w and ∂w/∂x tend to zero as |x| → ∞, the first term on the right-
hand side of Eq. (8.46) vanishes. Using Eq. (7.16), the Fourier transform of w(x,t) is
defined as

W(a,t) = 1√
2π

∫ ∞

−∞
w(x,t)eiax dx (8.47)

and Eq. (8.45) can be rewritten in the form

1

c2

d2W

dt2
+ a2W = 0 (8.48)

Note that the use of the Fourier transform reduced the partial differential equation (8.9)
into the ordinary differentiation equation (8.48). The solution of Eq. (8.48) can be
expressed as

W(a,t) = C1e
iact + C2e

−iact (8.49)

where the constants C1 and C2 can be evaluated using the initial conditions, Eqs. (8.30).
By taking the Fourier transforms of the initial displacement [w = w0(x)] and initial
velocity [∂w/∂t = ẇ0(x)], we obtain

W(a, t = 0) = 1√
2π

∫ ∞

−∞
w0(x)eiax dx = W0(a) (8.50)

dW

d t
(a, t = 0) = 1√

2π

∫ ∞

−∞
ẇ0(x)eiax dx = Ẇ0(a) (8.51)
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The use of Eqs. (8.50) and (8.51) in (8.49) leads to

W0(a) = C1 + C2 (8.52)

Ẇ0(a) = iac(C1 − C2) (8.53)

whose solution gives

C1 = W0

2
+ 1

2iac
Ẇ0 (8.54)

C2 = W0

2
− 1

2iac
Ẇ0 (8.55)

Thus, Eq. (8.49) can be expressed as

W(a,t) = 1

2
W0(a)(eiact + e−iact ) + 1

2iac
Ẇ0(a)(eiact − e−iact ) (8.56)

By using the inverse Fourier transform of Eq. (8.47), we obtain

w(x,t) = 1√
2π

∫ ∞

−∞
W(a,t)e−iax da (8.57)

which, in view of Eq. (8.56), becomes

w(x,t) = 1

2

{
1√
2π

∫ ∞

−∞
W0(a)[e−ia(x−ct) + e−ia(x+ct)] da

}

+ 1

2c

{
1√
2π

∫ ∞

−∞

Ẇ0(a)

ia
[e−ia(x−ct) − e−ia(x+ct)] da

}
(8.58)

Note that the inverse Fourier transforms of W0(a) and Ẇ0(a), Eqs. (8.50) and (8.51),
can be obtained as

w0(x) = 1√
2π

∫ ∞

−∞
W0(a)e−iax da (8.59)

ẇ0(ξ) = 1√
2π

∫ ∞

−∞
Ẇ0(a)e−iaξ da (8.60)

so that

w0(x ∓ ct) = 1√
2π

∫ ∞

−∞
W0(a)e−ia(x∓ct) da (8.61)

By integrating Eq. (8.60) with respect to ξ from x − ct to x + ct , we obtain

∫ x+ct

x−ct

ẇ0(ξ) dξ = 1√
2π

∫ ∞

−∞

Ẇ0(a)

ia
[e−ia(x−ct) − e−ia(x+ct)] da (8.62)
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When Eqs. (8.61) and (8.62) are substituted into Eq. (8.58), we obtain

w(x,t) = 1

2
[w0(x + ct) + w0(x − ct)] + 1

2c

∫ x+ct

x−ct

ẇ0(ξ) dξ (8.63)

which can be seen to be identical to Eq. (8.43).

8.4.3 Laplace Transform–Based Solution

The Laplace transforms of the terms in the governing equation (8.9) lead to

L

[
∂2w

∂x2

]
= d2W(x, s)

dx2
(8.64)

L

[
∂2w

∂t2

]
= s2W(x, s) − sw(x, 0) − ∂w

∂t
(x, 0) (8.65)

where

W(x, s) =
∫ ∞

0
e−stw(x,t) d t (8.66)

Using Eqs. (8.64) and (8.65) along with the initial conditions of Eq. (8.30), Eq. (8.9)
can be expressed as

c2 d2W

dx2
= s2W − sw0(x) − ẇ0(x) (8.67)

Now, we take the Fourier transform of Eq. (8.67). For this, we multiply Eq. (8.67) by
eipx and integrate with respect to x from −∞ to +∞, to obtain

c2
∫ ∞

−∞

d2W

dx2
eipx dx = s2

∫ ∞

−∞
Weipx dx − s

∫ ∞

−∞
w0(x)eipx dx −

∫ ∞

−∞
ẇ0(x)eipx dx

(8.68)

The integral on the left-hand side of Eq. (8.68) can be evaluated by parts:

∫ ∞

−∞

d2W

dx2
eipx dx = dW

dx
eipx

∣∣∣∣
+∞

−∞
−

∫ ∞

−∞

dW

dx
ipeipx dx

= dW

dx
eipx

∣∣∣∣
+∞

−∞
− ipWeipx

∣∣∣∣∣
+∞

−∞
− p2

∫ +∞

−∞
Weipx dx (8.69)

Assuming that the deflection, W(x, s), and the slope, dW(x, s)/dx, tend to be zero as
x → ±∞, Eq. (8.69) reduces to∫ +∞

−∞

d2W

dx2
eipx dx = −p2

∫ +∞

−∞
Weipx dx (8.70)
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and hence Eq. (8.68) can be rewritten as

(c2p2 + s2)

∫ +∞

−∞
W(x, s)eipx dx = s

∫ +∞

−∞
w0(x)eipx dx +

∫ +∞

−∞
ẇ0(x)eipx dx

or

W(c2p2 + s2) = sW 0 + Ẇ 0

or

W = sW 0 + Ẇ 0

c2p2 + s2
(8.71)

where

W(p, s) = 1√
2π

∫ +∞

−∞
W(x, s)eipx dx (8.72)

W 0(p) = 1√
2π

∫ +∞

−∞
w0(x)eipx dx (8.73)

Ẇ 0(p) = 1√
2π

∫ +∞

−∞
ẇ0(x)eipx dx (8.74)

Now we first take the inverse Fourier transform of W(p, s) to obtain

W(x, s) = 1√
2π

∫ ∞

−∞

sW 0(p) + Ẇ 0(p)

c2p2 + s2
e−ipx dx (8.75)

and next we take the inverse Laplace transform of W(x, s) to obtain

w(x,t) = L−1[W(x, s)] (8.76)

Noting that

L−1
[

s

c2p2 + s2

]
= cos pct (8.77)

and

L−1
[

1

c2p2 + s2

]
= 1

pc
sin pct (8.78)

Eqs. (8.76) and (8.75) yield

w(x,t) = 1√
2π

∫ ∞

−∞

[
W 0(p) cos pct + 1

pc
Ẇ 0(p) sin pct

]
e−ipx dp (8.79)

where

w0(x) = 1√
2π

∫ ∞

−∞
W 0(p)e−ipx dp (8.80)

ẇ0(x) = 1√
2π

∫ ∞

−∞
Ẇ 0(p)e−ipx dp (8.81)
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From Eqs. (8.80) and (8.81), we can write

w0(x ± ct) = 1√
2π

∫ ∞

−∞
W 0(p)e−ip(x±ct) dp (8.82)

∫ x+ct

x−ct

ẇ0(ξ) dξ = 1√
2π

∫ ∞

−∞

Ẇ 0(p)

ip
[e−ip(x−ct) − eip(x+ct)] dp (8.83)

In addition, the following identities are valid:

cos pct = 1

2
(eipct + e−ipct ) (8.84)

sin pct = 1

2i
(eipct − e−ipct ) (8.85)

Thus Eq. (8.79) can be rewritten as

w(x,t) = 1

2
[w0(x + ct) + w0(x − ct)] + 1

2c

∫ x+ct

x−ct

ẇ0(ξ) dξ (8.86)

which can be seen to be the same as the solution given by Eqs. (8.43) and (8.63).
Note that Fourier transforms were used in addition to Laplace transforms in the current
approach.

8.5 FREE VIBRATION OF A STRING OF FINITE LENGTH

The solution of the free vibration equation, Eq. (8.9), can be found using the method
of separation of variables. In this method, the solution is written as

w(x,t) = W(x)T (t) (8.87)

where W(x) is a function of x only and T (t) is a function of t only. By substituting
Eq. (8.87) into Eq. (8.9), we obtain

c2

W

d2W

dx2
= 1

T

d2T

dt2
(8.88)

Noting that the left-hand side of Eq. (8.88) depends only on x while the right-hand
side depends only on t , their common value must be a constant, a, and hence

c2

W

d2W

dx2
= 1

T

d2T

dt2
= a (8.89)

Equation (8.89) can be written as two separate equations:

d2W

dx2
− a

c2
W = 0 (8.90)

d2T

dx2
− aT = 0 (8.91)



218 Transverse Vibration of Strings

The constant a is usually negative1 and hence, by setting a = −ω2, Eqs. (8.90) and
(8.91) can be rewritten as

d2W

dx2
+ ω2

c2
W = 0 (8.92)

d2T

dt2
+ ω2T = 0 (8.93)

The solution of Eqs. (8.92) and (8.93) can be expressed as

W(x) = A cos
ωx

c
+ B sin

ωx

c
(8.94)

T (t) = C cos ωt + D sin ωt (8.95)

where ω is the frequency of vibration, the constants A and B can be evaluated from
the boundary conditions, and the constants C and D can be determined from the initial
conditions of the string.

8.5.1 Free Vibration of a String with Both Ends Fixed

If the string is fixed at both ends, the boundary conditions are given by

w(0,t) = w(l,t) = 0, t ≥ 0 (8.96)

Equations (8.96) and (8.94) yield

W(0) = 0 (8.97)

W(l) = 0 (8.98)

The condition of Eq. (8.97) requires that

A = 0 (8.99)

in Eq. (8.94). Using Eqs. (8.98) and (8.99) in Eq. (8.94), we obtain

B sin
ωl

c
= 0 (8.100)

1To show that a is usually a negative quantity, multiply Eq. (8.90) by W(x) and integrate with respect to x
from 0 to l to obtain ∫ l

0
W(x)

d2W(x)

dx2
dx = a

c2

∫ l

0
W 2(x) dx (a)

Equation (a) indicates that the sign of a will be same as the sign of the integral on the left-hand side. The
left-hand side of Eq. (a) can be integrated by parts to obtain

∫ l

0
W(x)

d2W(x)

dx2
dx = W(x)

dW(x)

dx

∣∣∣∣
l

0
−

∫ l

0

[
dW(x)

dx

]2

dx (b)

The first term on the right-hand side of Eq. (b) can be seen to be zero or negative for a string with any
combination of fixed end (W = 0), free end (dW/dx = 0), or elastically supported end (P dW/dx = −kW),
where k is the spring constant of the elastic support. Thus, the integral on the left-hand side of Eq. (a), and
hence the sign of a is negative.
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For a nontrivial solution, B cannot be zero and hence

sin
ωl

c
= 0 (8.101)

Equation (8.101) is called the frequency or characteristic equation, and the values of ω

that satisfy Eq. (8.101) are called the eigenvalues (or characteristic values or natural
frequencies) of the string. The nth root of Eq. (8.101) is given by

ωnl

c
= nπ, n = 1, 2, . . . (8.102)

and hence the nth natural frequency of vibration of the string is given by

ωn = ncπ

l
, n = 1, 2, . . . (8.103)

The transverse displacement of the string, corresponding to ωn, known as the nth mode
of vibration or nth harmonic or nth normal mode of the string is given by

wn(x,t) = Wn(x)Tn(t) = sin
nπx

l

(
Cn cos

ncπt

l
+ Dn sin

ncπt

l

)
(8.104)

In the nth mode, each point of the string vibrates with an amplitude proportional
to the value of Wn at that point with a circular frequency ωn. The first four modes
of vibration are shown in Fig. 8.3. The mode corresponding to n = 1 is called the
fundamental mode, ω1 is called the fundamental frequency, and

τ1 = 2π

ω1
= 2l

c
(8.105)

is called the fundamental period. The points at which wn = 0 for t ≥ 0 are called
nodes. It can be seen that the fundamental mode has two nodes (at x = 0 and x = l),
the second mode has three nodes (at x = 0, x = l/2, and x = l), and so on.

The free vibration of the string, which satisfies the boundary conditions of
Eqs. (8.97) and (8.98), can be found by superposing all the natural modes wn(x) as

w(x,t) =
∞∑

n=1

wn(x,t) =
∞∑

n=1

sin
nπx

l

(
Cn cos

ncπt

l
+ Dn sin

ncπt

l

)
(8.106)

This equation represents the general solution of Eq. (8.9) and includes all possible
vibrations of the string. The particular vibration that occurs is uniquely determined
by the initial conditions specified. The initial conditions provide unique values of the
constants Cn and Dn in Eq. (8.106). For the initial conditions stated in Eq. (8.30),
Eq. (8.106) yields

∞∑
n=1

Cn sin
nπx

l
= w0(x) (8.107)

∞∑
n=1

ncπ

l
Dn sin

nπx

l
= ẇ0(x) (8.108)
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0

w1(x,t)

l
x

0

w2(x,t)

l
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x

0

w3(x,t)
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2l
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l
3

x

0

w4(x,t)

l

l

2

3l

4
l
4

x

Figure 8.3 Mode shapes of a string.

Noting that Eqs. (8.107) and (8.108) denote Fourier sine series expansions of w0(x) and
ẇ0(x) in the interval 0 ≤ x ≤ l, the values of Cn and Dn can be determined by multi-
plying Eqs. (8.107) and (8.108) by sin nπx

l
and integrating with respect to x from 0 to

l. This gives the constants Cn and Dn as

Cn = 2

l

∫ l

0
w0(x) sin

nπx

l
dx (8.109)

Dn = 2

ncπ

∫ l

0
ẇ0(x) sin

nπx

l
dx (8.110)

Note that the solution given by Eq. (8.106) represents the method of mode superposition
since the response is expressed as a superposition of the normal modes. As indicated
earlier, the procedure is applicable in finding not only the free vibration response but
also the forced vibration response of any continuous system.

Example 8.1 Find the free vibration response of a fixed–fixed string whose middle
point is pulled out by a distance h and then let it go at time t = 0 as shown in Fig. 8.4.
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w0(x)

h

l
4

x0
l l
2

3l
4

Figure 8.4 Initial deflection of the string.

SOLUTION The free vibration solution if the string is given by Eq. (8.106) with Cn

and Dn given by Eqs. (8.109) and (8.110), respectively. In the present case, the initial
displacement can be represented as

w0(x) =




2 hx

l
for 0 ≤ x ≤ l

2

2 h(l − x)

l
for

l

2
≤ x ≤ l

(E8.1.1)

and the initial velocity is zero:

ẇ0(x) = 0 (E8.1.2)

Equations (E8.1.2) and (8.106) yield

Dn = 0 (E8.1.3)

Thus, the free vibration response becomes

w(x,t) =
∞∑

n=1

Cn sin
nπx

l
cos

ncπt

l
(E8.1.4)

The constant Cn can be evaluated using Eq. (8.109) as

Cn = 2

l

∫ l

0
w0(x) sin

nπx

l
dx

= 2

l

[∫ l/2

0

2hx

l
sin

nπx

l
dx +

∫ l

l/2

2h

l
(l − x) sin

nπx

l
dx

]

=




8h

π2n2
sin

nπ

2
for n = 1, 3, 5, . . .

0 for n = 2, 4, 6, . . .

(E8.1.5)
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Noting the relation

sin
nπ

2
= (−1)(n−1)/2, n = 1, 3, 5, . . . (E8.1.6)

the free vibration response of the string can be expressed as

w(x,t) = 8h

π2

(
sin

πx

l
cos

πct

l
− 1

9
sin

3πx

l
cos

3πct

l
+ · · ·

)
(E8.1.7)

The solution given by Eq. (E8.1.7), using different number of terms, is shown in
Fig. 8.5. The fast convergence of the series of Eq. (E8.1.7) can be seen from the
figure.

0
l

x
l
2

0
l

x
l
2

0
l

x
l
2

0
l

x
l
2

Figure 8.5

Example 8.2 A string of length l fixed at both ends is struck at t = 0 such that the
initial displacement distribution is zero and the initial velocity distribution is given by
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a

l

4

x0
l l

2

3l

4

w0(x)•

Figure 8.6 Initial velocity of the string

(Fig. 8.6):

ẇ0(x) =




4ax

l
, 0 ≤ x ≤ l

4

4a

l

(
l

2
− x

)
,

l

4
≤ x ≤ l

2

0,
l

2
≤ x ≤ l

(E8.2.1)

Find the resulting free vibration response of the string.

SOLUTION Since the initial displacement of the string is zero,

w0(x) = 0 (E8.2.2)

and hence Eq. (8.106) gives

Cn = 0 (E8.2.3)

Thus, the free vibration solution becomes

w(x,t) =
∞∑

n=1

Dn sin
nπx

l
sin

ncπt

l
(E8.2.4)

The constant Dn can be evaluated using Eqs. (8.110) and (E8.2.1) as

Dn = 2

ncπ

∫ l

0
ẇ0(x) sin

nπx

l
dx

= 2

ncπ

[∫ l/4

0

4ax

l
sin

nπx

l
dx +

∫ l/2

l/4

4a

l

(
l

2
− x

)
sin

nπx

l
dx

]

= 8a

π2n2

(
2 sin

πn

4
− sin

πn

2

)
(E8.2.5)
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Thus, the free vibration response of the string is given by

w(x,t) = 8al

π3c

[
(
√

2 − 1) sin
πx

l
sin

πct

l
+ 1

4
sin

2πx

l
sin

2πct

l

+
√

2 + 1

27
sin

3πx

l
sin

3πct

l
−

√
2 + 1

125
sin

5πx

l
sin

5πct

l
+ · · ·

]
(E8.2.6)

It is to be noted that the modes involving n = 4, 8, 12, . . . are absent in Eq. (E8.2.6).
The solution given by Eq. (E8.2.6), using a different number of terms is shown in
Fig. 8.7. The fast convergence of the series of Eq. (E8.2.6) can be seen from the
figure.

First term

0
l

x

First two terms

0
l

x

0

First three terms

l
x

0

First four terms

l
x

l

2

l

2

l

2

l

2

Figure 8.7

Example 8.3 Find the natural frequencies and mode shapes of a taut wire supported
at the ends by springs as shown in Fig. 8.8.
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k1 k2

z, w

0
l

x

P

P

Figure 8.8 Taut wire supported by springs at the two ends.

SOLUTION The nth mode of vibration of the wire can be represented as

wn(x,t) = Wn(x)Tn(t)

=
(
An cos

ωnx

c
+ Bn sin

ωnx

c

)
(Cn cos ωnt + Dn sin ωnt). (E8.3.1)

At the two ends of the wire, the spring force must be in equilibrium with the z

component of the tensile force P in the wire. Thus, the boundary conditions can be
expressed as

P
∂w

∂x
(0,t) = k1w(0,t) (E8.3.2)

P
∂w

∂x
(l,t) = −k2w(l,t) (E8.3.3)

Substituting Eq. (E8.3.1) into Eqs. (E8.3.2) and (E8.3.3), we obtain

P
dWn(0)

dx
= k1Wn(0) (E8.3.4)

or

PBn

ωn

c
= k1An (E8.3.5)

P
dWn(l)

dx
= −k2Wn(l) (E8.3.6)

or

P

(
−Anωn

c
sin

ωnl

c
+ Bnωn

c
cos

ωnl

c

)
= −k2

(
An cos

ωnl

c
+ Bn sin

ωnl

c

)
(E8.3.7)

Equations (E8.3.5) and (E8.3.7) can be rewritten as

An(k1) − Bn

Pωn

c
= 0 (E8.3.8)

An

(
k2 cos

ωnl

c
− Pωn

c
sin

ωnl

c

)
+ Bn

(
k2 sin

ωnl

c
+ Pωn

c
cos

ωnl

c

)
= 0 (E8.3.9)
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For a nontrivial solution of the constants An and Bn, the determinant of their coefficient
matrix must be zero:

k1

(
k2 sin

ωnl

c
+ Pωn

c
cos

ωnl

c

)
+ Pωn

c

(
k2 cos

ωnl

c
− Pωn

c
sin

ωnl

c

)
= 0

(E8.3.10)

Defining

αn = ωnl

c
(E8.3.11)

βn = ρlω2
n

k1
(E8.3.12)

γn = ρlω2
n

k2
(E8.3.13)

the frequency equation, Eq. (E8.3.10), can be expressed as(
1 − α2

n

βnγn

)
tan αn −

(
1

βn

+ 1

γn

)
αn = 0 (E8.3.14)

Using the relation

Bn = An

k1c

Pωn

= An

αn

βn

(E8.3.15)

From Eq. (E8.3.8), the modal function Wn(x) can be written as

Wn(x) = Cn

(
cos

ωnx

c
+ αn

βn

sin
ωnx

c

)
= Cn

(
cos

αnx

l
+ αn

βn

sin
αnx

l

)
(E8.3.16)

Notes

1. If k1 and k2 are both large, k1 → ∞ and k2 → ∞ and the frequency equation,
Eq. (E8.3.10), reduces to

sin
ωnl

c
= 0 (E8.3.17)

Equation (E8.3.17) corresponds to the frequency equation of a wire with both
ends fixed.

2. If k1 and k2 are both small, 1/βn → 0 and 1/γn → 0 and Eq. (E8.3.14) gives
the frequencies as

tan αn = 0 or αn = nπ or ωn = nπc

l
(E8.3.18)

and Eq. (E8.3.16) yields the modal functions as

Wn(x) = Cn cos
ωnx

l
(E8.3.19)

It can be observed that this solution corresponds to that of a wire with both
ends free.



8.6 Forced Vibration 227

3. If k1 is large and k2 is small, k1 → ∞ and k2 → 0, and Eq. (E8.3.10) yields

cos
ωnl

c
= 0 or

ωnl

c
= (2n − 1)π

2

or

ωn = (2n − 1)πc

2l
(E8.3.20)

and Eq. (E8.3.16) gives the modal functions as

Wn(x) = Cn sin
αnx

l
= Cn sin

ωnx

c
(E8.3.21)

This solution corresponds to that of a wire which is fixed at x = 0 and free at
x = l.

8.6 FORCED VIBRATION

The equation of motion governing the forced vibration of a uniform string subjected
to a distributed load f (x,t) per unit length is given by

ρ
∂2w(x,t)

∂t2
− P

∂2w(x,t)

∂x2
= f (x,t) (8.111)

Let the string be fixed at both ends so that the boundary conditions become

w(0, t) = 0 (8.112)

w(l,t) = 0 (8.113)

The solution of the homogeneous equation [with f (x,t) = 0 in Eq. (8.111)], which
represents free vibration, can be expressed as [see Eq. (8.106)]

w(x,t) =
∞∑

n=1

sin
nπx

l

(
Cn cos

ncπt

l
+ Dn sin

ncπt

l

)
(8.114)

The solution of the nonhomogeneous equation [with f (x,t) in Eq. (8.111)], which also
satisfies the boundary conditions of Eqs. (8.112) and (8.113), can be assumed to be of
the form

w(x,t) =
∞∑

n=1

sin
nπx

l
ηn(t) (8.115)

where ηn(t) denotes the generalized coordinates. By substituting Eq. (8.115) into
Eq. (8.111), we obtain

ρ

∞∑
n=1

sin
nπx

l

d2ηn(t)

dt2
+ P

∞∑
n=1

(nπ

l

)2
sin

nπx

l
ηn(t) = f (x,t) (8.116)
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Multiplication of Eq. (8.116) by sin(nπx/l) and integration from 0 to l, along with
the use of the orthogonality of the functions sin(iπx/l), leads to

d2ηn(t)

dt2
+ n2c2π2

l2
ηn(t) = 2

ρl
Qn(t) (8.117)

where

Qn(t) =
∫ l

0
f (x,t) sin

nπx

l
dx (8.118)

The solution of Eq. (8.117), including the homogeneous solution and the particular
integral, can be expressed as

ηn(t) = Cn cos
ncπt

l
+ Dn sin

ncπt

l
+ 2

ncπρ

∫ t

0
Qn(τ) sin

ncπ(t − τ)

l
dτ (8.119)

Thus, in view of Eq. (8.115), the forced vibration response of the string is given by

w(x,t) =
∞∑

n=1

(
Cn cos

ncπt

l
+ Dn sin

ncπt

l

)
sin

nπx

l

+ 2

cπρ

∞∑
n=1

1

n
sin

nπx

l

∫ t

0
Qn(τ) sin

ncπ(t − τ)

l
dτ (8.120)

where the constants Cn and Dn are determined from the initial conditions of the string.

Example 8.4 Find the forced vibration response of a uniform taut string fixed at
both ends when a uniformly distributed force f0 per unit length is applied. Assume the
initial displacement and the initial velocity of the string to be zero.

SOLUTION For a uniformly distributed force f (x,t) = f0, Eq. (8.118) gives

Qn(t) =
∫ l

0
f0 sin

nπx

l
dx = 2lf0

nπ
, n = 1, 3, 5, . . . (E8.4.1)

and hence∫ t

0
Qn(τ) sin

nπc(t − τ)

l
dτ = 2lf0

nπ

∫ t

0
sin

nπc(t − τ)

l
dτ

= −2lf0

nπ

l

nπc

∫ 0

nπct/ l

sin y dy

= 2l2f0

nπ2c

(
1 − cos

nπct

l

)
, n = 1, 3, 5, . . . (E8.4.2)
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Thus, the forced response of the string becomes [Eq. (8.120)]:

w(x,t) =
∞∑

n=1

(
Cn cos

ncπt

l
+ Dn sin

ncπt

l

)
sin

nπx

l

+ 4l2f0

c2π3ρ

∞∑
n=1,3,5,...

1

n3
sin

nπx

l

(
1 − cos

ncπt

l

)
(E8.4.3)

Use of the initial conditions
w(x, 0) = 0 (E8.4.4)

∂w(x, 0)

∂t
= 0 (E8.4.5)

in Eq. (E8.4.3) yields
∞∑

n=1

Cn sin
nπx

l
= 0 (E8.4.6)

∞∑
n=1

ncπ

l
Dn sin

nπx

l
= 0 (E8.4.7)

Equations (E8.4.6) and (E8.4.7) result in

Cn = Dn = 0 (E8.4.8)

and hence the forced vibration response of the string is given by [see Eq. (E8.4.3)]:

w(x,t) = 4l2f0

c2π3ρ

∞∑
n=1,3,5,...

1

n3
sin

nπx

l

(
1 − cos

ncπt

l

)
(E8.4.9)

Example 8.5 Find the steady-state forced vibration response of a fixed–fixed string
subjected to a concentrated force F(t) = F0 at x = x0.

SOLUTION The applied force can be represented as

f (x,t) = F(t)δ(x − x0) (E8.5.1)

The steady-state forced vibration response of the string can be expressed, using
Eq. (8.120), as

w(x,t) = 2

cπρ

∞∑
n=1

1

n
sin

nπx

l

∫ l

0
Qn(τ) sin

ncπ(t − τ)

l
dτ (E8.5.2)

where Qn(t) is given by Eq. (8.118):

Qn(t) =
∫ l

0
f (x,t) sin

nπx

l
dx =

∫ l

0
F(t)δ(x − x0) sin

nπx

l
dx

= F(t) sin
nπx0

l
(E8.5.3)
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The function F(t) = F0 can be denoted as

F(t) = F0H(t) (E8.5.4)

where H(t) is the Heaviside function, defined by

H(t) =
{

0, t ≤ 0

1, t ≥ 0
(E8.5.5)

Substitution of Eqs. (E8.5.4) and (E8.5.3) into (E8.5.2) results in

w(x,t) = 2F0

cπρ

∞∑
n=1

1

n
sin

nπx

l

∫ l

0
H(τ) sin

nπx0

l
sin

nπc(t − τ)

l
dτ

= 2F0l

π2c2ρ

∞∑
n=1

1

n2
sin

nπx0

l
sin

nπx

l

(
1 − cos

nπct

l

)
(E8.5.6)

Example 8.6 Find the steady-state response of a fixed–fixed string subjected to a
load moving at a constant velocity v given by

f (x,t) =
{

F(t)δ(x − vt), 0 ≤ vt ≤ l

0, vt > l
(E8.6.1)

where F(t) is a suddenly applied force F0.

SOLUTION The steady-state response of the string is given by Eq. (8.120) as

w(x,t) = 2

cπρ

∞∑
n=1

1

n
sin

nπx

l

∫ l

0
Qn(τ) sin

nπc(t − τ)

l
dτ (E8.6.2)

where Qn(t) is given by Eq. (8.118):

Qn(t) =
∫ l

0
f (x,t) sin

nπx

l
dx (E8.6.3)

Using Eq. (E8.6.1), Qn(t) can be evaluated as

Qn(t) =
∫ l

0
F(t)δ(x − vt) sin

nπx

l
dx = F(t) sin

nπvt

l
(E8.6.4)

Thus, Eq. (E8.6.2) becomes

w(x,t) = 2

cπρ

∞∑
n=1

1

n
sin

nπx

l

∫ l

0
F(τ) sin

nπvt

l
sin

nπc(t − τ)

l
dτ (E8.6.5)

Using

F(t) = F0H(t) (E8.6.6)
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Eq. (E8.6.5) can be evaluated as

w(x,t) = 2F0

cπρ

∞∑
n=1

1

n
sin

nπx

l

∫ l

0
H(τ) sin

nπvt

l
sin

nπc(t − τ)

l
dτ

= 2F0

cπρ

∞∑
n=1

sin(nπx/l)

n
(
n2π2v2/l2 − n2π2c2/l2

) (nπv

l
sin

nπc

l
t − nπc

l
sin

nπv

l
t
)

(E8.6.7)

8.7 RECENT CONTRIBUTIONS

The D’Alembert’s solution of Eq. (8.8), as given by Eq. (8.35), is obtained by assuming
that the increase in tension due to stretching is negligible. If this assumption is not made,
Eq. (8.9) becomes [4]

∂2w

∂t2
=

[
c2 + 1

2
c2

1

(
∂w

∂x

)2
]

∂2w

∂x2
(8.121)

where

c1 =
√

E

ρ0
(8.122)

with ρ0 denoting the density of the string. Here c1 denotes the speed of compressional
longitudinal wave through the string. An approximate solution of Eq. (8.121) was
presented by Bolwell [4]. The dynamics of cables, chains, taut inclined cables, and
hanging cables was considered by Triantafyllou [5, 6]. In particular, the problem of
linear transverse vibration of an elastic string hanging freely under its own weight
presents a paradox, in that a solution can be obtained only when the lower end is free.
An explanation of the paradox was given by Triantafyllou [6], who also showed that
the paradox can be removed by including bending stiffness using singular perturbations.

A mathematical model of the excitation of a vibrating system by a plucking action
was studied by Griffel [7]. The mechanism is of the type used in musical instru-
ments [8]. The effectiveness of the mechanism is computed over a range of the relevant
parameters. In Ref. [9], Simpson derived the equations of in-plane motion of an elastic
catenary translating uniformly between its end supports in an Eulerian frame of ref-
erence. The approximate analytical solution of these equations is given for a shallow
catenary in which the tension is dominated by the cable section modulus. Although the
mathematical description of a vibrating string is given by the wave equation, a quantum
model of information theory was used by Barrett to obtain a one-degree-of-freedom
mechanical system governed by a second-order differential equation [10].

The vibration of a sectionally uniform string from an initial state was considered
by Beddoe [11]. The problem was formulated in terms of reflections and transmissions
of progressive waves and solved using the Laplace transform method without incorpo-
rating the orthogonality relationships. The exact equations of motion of a string were
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formulated by Narasimha [12], and a systematic procedure was described for obtaining
approximations to the equations to any order, making only the assumption that the strain
in the material of the string is small. It was shown that the lowest-order equations in
the scheme, which were nonlinear, were used to describe the response of the string
near resonance.

Electrodischarge machining (EDM) is a noncontact process of electrically remov-
ing (cutting) material from conductive workpieces. In this process, a high potential
difference is generated between a wire and a workpiece by charging them positively
and negatively, respectively. The potential difference causes sparks between the wires
and the workpiece. By moving the wire forward and sideways, the contour desired can
be cut on the workpiece. In Ref. [13], Shahruz developed a mathematical model for
the transverse vibration of the moving wire used in the EDM process in the form of a
nonlinear partial differential equation. The equation was solved, and it was shown that
the transverse vibration of the wire is stable and decays to zero for wire axial speeds
below a critical value.

A comprehensive view of cable structures was presented by Irvine [14]. The natural
frequencies and mode shapes of cables with attached masses have been determined by
Sergev and Iwan [15]. The linear theory of free vibrations of a suspended cable has
been outlined by Irvine and Caughey [16]. Yu presented explicit vibration solutions of
a cable under complicated loads [17]. A theoretical and experimental analysis of free
and forced vibration of sagged cable/mass suspension has been presented by Cheng
and Perkins [18]. The linear dynamics of a translating string on an elastic foundation
was considered by Perkins [19].
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PROBLEMS
8.1 Find the free vibration response of a fixed–fixed
string of length l which is given an initial displacement

w0(x) = h sin
2πx

l

and initial velocity ẇ0(x) = 0.

8.2 A steel wire of diameter 1
32 in. and length 3 ft

is fixed at both ends and is subjected to a tension of
200 lb. Find the first four natural frequencies and the
corresponding mode shapes of the wire.

8.3 Determine the stress that needs to be applied to the
wire of Problem 8.2 to reduce its fundamental natural
frequency of vibration by 50 % of the value found in
Problem 8.2.

8.4 A string of length l is fixed at x = 0 and subjected
to a transverse force f (t) = f0 cos ωt at x = l. Find the
resulting vibration of the string.

8.5 Find the forced vibration response of a fixed–fixed
string of length l that is subjected to the distributed
transverse force f (x,t) = F(x)eiωt .

8.6 A uniform string of length l is fixed at both ends
and is subjected to the following initial conditions:

w(x, 0) = x0 sin
2πx

l
, ẇ(x, 0) = −y0 sin

2πx

l

8.7 Derive the boundary conditions corresponding to
support conditions 3, 4, and 5 of Table 8.1 from equi-
librium considerations.

8.8 The transverse vibration of a string of length l = 2
is governed by the equation

16
∂2w

∂x2
= ∂2w

∂t2

The boundary and initial conditions of the string are
given by

w(0,t) = 0, w(2,t) = 0

w(x, 0) = 0.1x(2 − x),
∂w

∂t
(x, 0) = 0

Find the displacement of the string, w(x,t).

8.9 A semi-infinite string has one end at x = 0 and the
other end at x = ∞. It is initially at rest on the x axis
and the end x = 0 is made to oscillate with a transverse
displacement of w(0,t) = c sin 
t . Find the transverse
displacement of the string, w(x,t).

8.10 Find the natural frequencies of transverse vibration
of a taut string of length l resting on linear springs
of stiffnesses k1 and k2 at the ends x = 0 and x = l,
respectively. Assume the following data: P = 1000 N,
ρ = 0.1 kg/m, and k1 = k2 = 5000 N/m.
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Longitudinal Vibration of Bars

9.1 INTRODUCTION

A straight elastic bar can undergo longitudinal, torsional, and lateral vibration. Among
these, the longitudinal vibration is the simplest to analyze. If x denotes the longitudinal
(centroidal) axis and y and z represent the principal directions of the cross section, the
longitudinal vibrations take place in the x direction, torsional vibrations occur about
the x axis, and lateral vibrations involve motion in either the xy plane or the xz plane.
These vibrations may be coupled in some cases. For example, if the cross section is
not symmetric about the y or z axis, the torsional and lateral vibrations are coupled.
If the bar is pretwisted along the x direction, the lateral vibrations in the xy and xz

planes are coupled. We consider first the longitudinal vibration of a bar using a simple
theory.

9.2 EQUATION OF MOTION USING SIMPLE THEORY

We consider a simple theory for the longitudinal vibration of bars based on the following
assumptions:

1. The cross sections of the bar originally plane remain plane during deformation.
2. The displacement components in the bar (except for the component parallel to

the bar’s longitudinal axis) are negligible.

These assumptions permit the specification of the displacement as a function of
the single space coordinate denoting location along the length of the bar. Although
lateral displacement components exist in any cross section, the second assumption can
be shown to be valid for vibrations involving wavelengths that are long compared
to the cross-sectional dimensions of the bar. We shall derive the equation of motion
using two different approaches: by applying Newton’s second law of motion and from
Hamilton’s principle.

9.2.1 Using Newton’s Second Law of Motion

For an elastic bar of length l, Young’s modulus E, and mass density ρ with varying
cross-sectional area A(x) as shown in Fig. 9.1(a), the equation of motion has been
derived, using Newton’s second law of motion, in Section 3.4 as

∂

∂x

[
E(x)A(x)

∂u(x, t)

∂x

]
+ f (x, t) = ρ(x)A(x)

∂2u(x, t)

∂t2
(9.1)
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(a)

x

0

dx

l

x

a

b d

c

(b)

u

c

d

a
a′

b′b

P + dP P

c′

d′

dx

dxu + ∂u
∂x

Figure 9.1 Longitudinal vibration of a bar.

For a uniform bar, Eq. (9.1) reduces to

EA
∂2u(x, t)

∂x2
+ f (x, t) = ρA

∂2u(x, t)

∂t2
(9.2)

9.2.2 Using Hamilton’s Principle

During longitudinal vibration, the cross section of the bar located at a distance x from
the origin undergoes an axial displacement of u while the cross section located at
a distance x + dx undergoes an axial displacement of u + du = u + (∂u/∂x) dx, as
shown in Fig. 9.1(b). Since the deformation of the cross section in the y and z directions
(v and w) is assumed to be negligible, the displacement field can be expressed as

u = u(x, t), v = 0, w = 0 (9.3)

The strains in the cross section at x are given by

εxx = ∂u

∂x
, εyy = εzz = 0, εxy = εyz = εzx = 0 (9.4)

Note that the displacements v and w, and the strains εyy and εzz, will not be zero, due
to Poisson’s effect in a real bar; they are assumed to be zero in the simple theory. The
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stresses acting in the cross section at x, corresponding to the strains given by Eq. (9.4),
are

σxx = E
∂u

∂x
, σyy = σzz = 0, σxy = σyz = σzx = 0 (9.5)

The strain and kinetic energies of the bar can be found as

π = 1

2

∫ l

0
σxxεxxA dx = 1

2

∫ l

0
EA

(
∂u

∂x

)2

dx (9.6)

T = 1

2

∫ l

0
ρA

(
∂u

∂t

)2

dx (9.7)

The work done by the external force f (x, t) is given by

W =
∫ l

0
f (x, t)u dx (9.8)

The generalized Hamilton’s principle can be stated as

δ

∫ t2

t1

(T − π + W) d t = 0 (9.9)

The substitution of Eqs. (9.6)–(9.8) into Eq. (9.9) yields the equation of motion and
the associated boundary conditions as (see Problem 9.8)

∂

∂x

(
EA

∂u

∂x

)
+ f = ρA

∂2u

∂t2
(9.10)

EA
∂u

∂x
δu

∣∣∣∣
l

0

= 0 (9.11)

Note that Eq. (9.11) will be satisfied for a free boundary where

σxx = EA
∂u

∂x
= 0 (9.12)

or when the displacement is specified at the boundary with δu = 0; for a fixed end, the
boundary condition is

u = 0 (9.13)

9.3 FREE VIBRATION SOLUTION AND NATURAL FREQUENCIES

The equation governing the free vibration of bars can be obtained by setting f = 0 in
Eqs. (9.1) and (9.2). For nonuniform bars:

∂

∂x

[
EA(x)

∂u(x, t)

∂x

]
= ρA(x)

∂2u(x, t)

∂t2
(9.14)
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For uniform bars:

EA
∂2u(x, t)

∂x2
= ρA

∂2u(x, t)

∂t2

or

c2 ∂2u(x, t)

∂x2
= ∂2u(x, t)

∂t2
(9.15)

where

c =
√

E

ρ
(9.16)

The solution of Eq. (9.15) can be obtained using either the wave solution approach or
the method of separation of variables. The wave solution of Eq. (9.15) can be expressed,
as in the case of vibration of strings, as

u(x, t) = f1(x − ct) + f2(x + ct) (9.17)

Although this solution [Eq. (9.17)] is useful in the study of certain impact and wave
propagation problems involving impulses of very short duration, it is not very useful
in the study of vibration problems. The method of separation of variables followed by
the eigenvalue and modal analyses is more useful in the study of vibrations.

9.3.1 Solution Using Separation of Variables

To develop the solution using the method of separation of variables, the solution of
Eq. (9.15) is written as

U(x, t) = U(x)T (t) (9.18)

where U and T depend on only x and t , respectively. Substitution of Eq. (9.18) into
Eq. (9.15) leads to

c2

U

d2U

dx2
= 1

T

d2T

d t2
(9.19)

Since the left-hand side of Eq. (9.19) depends only on x and the right-hand side depends
only on t , their common value must be a constant, which can be shown to be a negative
number (see Problem 9.7), denoted as −ω2. Thus, Eq. (9.19) can be written as two
separate equations:

d2U(x)

dx2
+ ω2

c2
U(x) = 0 (9.20)

d2T (t)

d t2
+ ω2T (t) = 0 (9.21)



238 Longitudinal Vibration of Bars

The solution of Eqs. (9.20) and (9.21) can be represented as

U(x) = A cos
ωx

c
+ B sin

ωx

c
(9.22)

T (t) = C cos ωt + D sin ωt (9.23)

where ω denotes the frequency of vibration, the function U (x) represents the normal
mode, the constants A and B can be evaluated from the boundary conditions, the
function T (t) indicates harmonic motion, and the constants C and D can be determined
from the initial conditions of the bar. The complete solution of Eq. (9.15) becomes

u(x, t) = U(x)T (t) =
(
A cos

ωx

c
+ B sin

ωx

c

)
(C cos ωt + D sin ωt) (9.24)

The common boundary conditions of the bar are as follows. For the fixed end:

u = 0 (9.25)

For the free end:
∂u

∂x
= 0 (9.26)

Some possible boundary conditions of a bar are shown in Table 9.1. The application of
the boundary conditions in Eq. (9.22) leads to the frequency equation whose solution
yields the eigenvalues. The substitution of any specific eigenvalue in Eq. (9.22) gives
the corresponding eigenfunction.

If the axial displacement and the axial velocity of the bar are specified as u0(x) and
u̇0(x), respectively, at time t = 0, the initial conditions can be stated as

u(x, t = 0) = u0(x) (9.27)

∂u

∂t
(x, t = 0) = u̇0(x) (9.28)

The following examples illustrate the formulation of boundary conditions, the deter-
mination of natural frequencies for specified boundary conditions of the bar, and the
method of finding the free vibration solution of the bar in longitudinal vibration.

Example 9.1 The ends of a uniform bar are connected to masses, springs, and viscous
dampers as shown in Fig. 9.2(a). State the boundary conditions of the bar in axial
vibration.

SOLUTION If the axial displacement, velocity, and acceleration of the bar at x = 0
are assumed to be positive with values u(0, t), ∂u/∂t (0, t), and ∂2u/∂t2(0, t),
respectively, the spring force k1u(0, t), the damping force c1[∂u/∂t](0, t), and the
inertia force m1[∂2u/∂t2](0, t) act toward the left as shown in the free-body diagram
of Fig. 9.2(b). The boundary condition at x = 0 can be expressed as

[force (reaction) in bar at x = 0]

= (sum of spring, damper, and inertia forces at x = 0)
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c1
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m1u
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k1u
x = 0

c1u
x = 0

.

x = 0
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∂u
∂x

m2u
x = l

..

k2u
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∂u
∂x

c2u
x = l

.

Free-body diagram
of mass m1

Free-body diagram
of mass m2∂u

∂x
+ x, + u, +

(a)

(b)

Figure 9.2 Bar with masses, springs, and dampers at ends.

or

AE
∂u

∂x
(0, t) = k1u(0, t) + c1

∂u

∂t
(0, t) + m1

∂2u

∂t2
(0, t) (E9.1.1)

In a similar manner, the boundary condition at x = l can be expressed as

AE
∂u

∂x
(l, t) = −k2u(l, t) − c2

∂u

∂t
(l, t) − m2

∂2u

∂t2
(l, t) (E9.1.2)

Example 9.2 A uniform bar of length l, cross-sectional area A, density ρ, and Young’s
modulus E, is fixed at x = 0 and a rigid mass M is attached at x = l [Fig. 9.3(a)].
Determine the natural frequencies and mode shapes of longitudinal vibration of the bar.

SOLUTION The solution for the free longitudinal vibration of a bar is given by
Eq. (9.24):

u(x, t) =
(

˜
A cos

ωx

c
+

˜
B sin

ωx

c

)
(C cos ωt + D sin ωt) (E9.2.1)

The boundary condition at the fixed end, x = 0, is given by

u(0, t) = 0 (E9.2.2)



242 Longitudinal Vibration of Bars

M
P (l,t)

M
∂2u

∂t2
(l,t)

Mx

l

A, E, r

(a) (b)

Figure 9.3 Longitudinal vibration of a bar, fixed at x = 0 and mass attached at x = l: (a) bar
with end mass M; (b) free body diagram of mass M .

The boundary condition at x = l can be expressed from the free-body diagram of the
mass shown in Fig. 9.3(b) as

reaction force = P(l, t) = Aσ(l, t) = AE
∂u

∂x
(l, t)

= −inertia force = −M
∂2u

∂t2
(l, t) (E9.2.3)

Equations (E9.2.2) and (E9.2.1) give

˜
A = 0 (E9.2.4)

and hence Eq. (E9.2.1) becomes

u(x, t) =
˜
B sin

ωx

c
(C cos ωt + D sin ωt) (E9.2.5)

Equation (E9.2.5) gives

∂u

∂x
=

˜
B

ω

c
cos

ωx

c
(C cos ωt + D sin ωt) (E9.2.6)

∂2u

∂t2
= −

˜
Bω2 sin

ωx

c
(C cos ωt + D sin ωt) (E9.2.7)

Using Eqs. (E9.2.6) and (E9.2.7), Eq. (E9.2.3) can be expressed as

AE
ω

c ˜
B cos

ωl

c
(C cos ωt + D sin ωt) = Mω2

˜
B sin

ωl

c
(C cos ωt + D sin ωt)

or

tan
ωl

c
= AE

Mωc
(E9.2.8)

By introducing the mass of the bar, m, as

m = ρAl (E9.2.9)

Eq. (E9.2.8) can be rewritten as

α tan α = β (E9.2.10)
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where

α = ωl

c
(E9.2.11)

β = ρAl

M
= m

M
(E9.2.12)

Equation (E9.2.10) is the frequency equation in the form of a transcendental equation
which has an infinite number of roots. For the nth root, Eq. (E9.2.10) can be written
as

αn tan αn = β, n = 1, 2, . . . (E9.2.13)

with

αn = ωnl

c
or ωn = αnc

l
(E9.2.14)

The mode shapes corresponding to the natural frequency ωn can be expressed as

Un(x) =
˜
Bn sin

ωnx

c
, n = 1, 2, . . . (E9.2.15)

The first 10 roots of Eq. (E9.2.13) for different values of the mass ratio β are given in
Table 9.2.

Table 9.2 Roots of Eq. (E9.2.13)

Value of αn for:

n β = 0 β = 10 β = 1 β = 1
10 β = 1

100

1 0 1.4289 0.8603 0.3111 0.0998
2 3.1416 4.3058 3.4256 3.1731 3.1448
3 6.2832 7.2281 6.4373 6.2991 6.2848
4 9.4248 10.2003 9.5293 9.4354 9.4258
5 12.5664 13.2142 12.6453 12.5743 12.5672
6 15.7080 16.2594 15.7713 15.7143 15.7086
7 18.8496 19.3270 18.9024 18.8549 18.8501
8 21.9911 22.4108 22.0365 21.9957 21.9916
9 25.1327 25.5064 25.1724 25.1367 25.1331

10 28.2743 28.6106 28.3096 28.2779 28.2747

Example 9.3 A uniform bar of length l, cross-sectional area A, density ρ, and Young’s
modulus E is free at x = 0 and attached to a spring of stiffness K at x = l, as shown
in Fig. 9.4(a). Determine the natural frequencies and the mode shapes of longitudinal
vibration of the bar.
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x

l

A, E, r

K

(a)

P(l,t)

Ku(l,t)

(b)

Figure 9.4 Bar free at x = 0 and attached to a spring at x = l.

SOLUTION The solution for the free longitudinal vibration of a bar is given by
Eq. (9.24):

u(x, t) =
(

˜
A cos

ωx

c
+

˜
B sin

ωx

c

)
(C cos ωt + D sin ωt) (E9.3.1)

Since the end x = 0 is free, we have

AE
∂u

∂x
(0, t) = 0 or

∂u

∂x
(0, t) = 0 (E9.3.2)

Equations (E9.3.1) and (E9.3.2) yield

˜
B = 0 (E9.3.3)

Thus, Eq. (E9.3.1) reduces to

u(x, t) =
˜
A cos

ωx

c
(C cos ωt + D sin ωt) (E9.3.4)

The boundary condition at x = l can be expressed as [Fig. 9.4(b)]

reaction force = −spring force

that is,

AE
∂u

∂x
(l, t) = −Ku(l, t) (E9.3.5)

Equations (E9.3.4) and (E9.3.5) lead to

−
˜
A

ωAE

c
sin

ωl

c
(C cos ωt + D sin ωt) = −K

˜
A cos

ωl

c
(C cos ωt + D sin ωt)

or

AEω

cK
= cot

ωl

c
(E9.3.6)
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Introducing the mass of the bar, m, as

m = ρAl (E9.3.7)

Eq. (E9.3.6) can be rewritten as

α cot α = β (E9.3.8)

where

α = ωl

c
(E9.3.9)

β = k

K
(E9.3.10)

k = AE

l
(E9.3.11)

denotes the stiffness of the bar. Equation (E9.3.8) denotes the frequency equation in
the form of a transcendental equation with an infinite number of roots. For the nth root,
Eq. (E9.3.8) can be expressed as

αn cot αn = βn, n = 1, 2, . . . (E9.3.12)

with

αn = ωnl

c
or ωn = αnc

l
(E9.3.13)

The mode shape corresponding to the natural frequency ωn can be expressed as

Un(x) =
˜
An cos

ωnx

c
, n = 1, 2, . . . (E9.3.14)

The first 10 roots of Eq. (E9.3.12) for different values of the stiffness ratio β = k/K

are given in Table 9.3.

Table 9.3 Roots of Eq. (E9.3.12)

Value of αn for:

n β = 1 β = 1
5 β = 1

10 β = 1
50 β = 1

100

1 3.145 1.435 1.505 1.555 1.565
2 4.495 3.145 3.145 3.145 3.145
3 6.285 4.665 4.695 4.705 4.715
4 7.725 6.285 6.285 6.285 6.285
5 9.425 7.825 7.845 7.855 7.855
6 10.905 9.425 9.425 9.425 9.425
7 12.565 10.975 10.985 10.995 10.995
8 14.065 12.565 12.565 12.565 12.565
9 15.705 14.125 14.135 14.135 14.135

10 17.225 15.705 15.705 15.705 15.705
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Example 9.4 Find the natural frequencies of vibration and the mode shapes of a bar
with free ends.

SOLUTION The boundary conditions of a free–free bar can be expressed as

∂u

∂x
(0, t) = dU

dx
(0) = 0, t ≥ 0 (E9.4.1)

∂u

∂x
(l, t) = dU

dx
(l) = 0, t ≥ 0 (E9.4.2)

In the solution

U(x) =
˜
A cos

ωx

c
+

˜
B sin

ωx

c
(E9.4.3)

dU

dx
(x) = −

˜
A

ω

c
sin

ωx

c
+

˜
B

ω

c
cos

ωx

c
(E9.4.4)

use of the condition, Eq. (E9.4.1), gives

˜
B = 0 (E9.4.5)

The condition of Eq. (E9.4.2) leads to the frequency equation (noting that
˜
A cannot be

equal to zero for a nontrivial solution):

sin
ωl

c
= 0 (E9.4.6)

which yields

ωl

c
= nπ, n = 1, 2, . . . (E9.4.7)

As different values of n give different frequencies of the various modes of vibration,
the nth frequency and the corresponding mode shape can be expressed as

ωn = nπc

l
, n = 1, 2, . . . (E9.4.8)

Un(x) =
˜
A cos

ωnx

c
=

˜
A cos

nπx

l
, n = 1, 2, . . . (E9.4.9)

The first three frequencies and the corresponding mode shapes, given by Eqs. (E9.4.8)
and (E9.4.9), are shown in Table 9.4.

9.3.2 Orthogonality of Eigenfunctions

The differential equation governing the free longitudinal vibration of a prismatic bar,
Eq. (9.1) with f = 0, can be written in general form as

L[u(x, t)] + M
∂2u

∂t2
(x, t) = 0 (9.29)
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Table 9.4 First Three Mode Shapes of a Free–Free bar

Mode
number, n

Natural frequency,
ωn Mode shape, Un(X)

1
πc

l 0

l
2

x
l

U1(x)

2
2πc

l 0

l
4

l
2 l

3l
4

x

U2(x)

3
3πc

l 0

l
6

l
2

5l
6

x
l

U3(x)

where

L = −R
∂2

∂x2
≡ −EA

∂2

∂x2
, M = ρA (9.30)

R = EA denotes the axial rigidity and ρA indicates the mass per unit length of the bar.
For free vibration (with harmonic motion) in the ith natural mode, we can write

ui(x, t) = Ui(x)(Ci cos ωit + Di sin ωit) (9.31)

Substituting Eq. (9.31) into Eq. (9.29), we obtain

RU ′′
i (x) + Mω2

i Ui(x) = 0 (9.32)

where a prime denotes a derivative with respect to x. Equation (9.32) can be rewritten
as an eigenvalue problem

U ′′
i (x) = λiUi(x) (9.33)

where Ui(x) is the eigenfunction or normal function determined from the boundary
conditions and

λi = −Mω2
i

R
= −

(ωi

c

)2
(9.34)
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is the eigenvalue with

c =
√

R

M
=

√
E

ρ
(9.35)

Let Ui(x) and Uj(x) denote the eigenfunctions corresponding to the natural frequencies
ωi and ωj , respectively, so that

U ′′
i = λiUi (9.36)

U ′′
j = λjUj (9.37)

Multiply Eq. (9.36) by Uj and Eq. (9.37) by Ui and integrate the resulting equations
from 0 to l to obtain ∫ l

0
U ′′

i Uj dx = λi

∫ l

0
UiUj dx (9.38)

∫ l

0
U ′′

j Ui dx = λj

∫ l

0
UiUj dx (9.39)

Integrate the left-hand sides of Eqs. (9.38) and (9.39) by parts:

U ′
iUj |l0 −

∫ l

0
U ′

iU
′
j dx = λi

∫ l

0
UiUj dx (9.40)

U ′
jUi |l0 −

∫ l

0
U ′

iU
′
j dx = λj

∫ l

0
UiUj dx (9.41)

The first terms on the left-hand sides of Eqs. (9.40) and (9.41) are zero if the end of
the bar is either fixed or free. Subtract Eq. (9.41) from (9.40) to obtain

(λi − λj )

∫ l

0
UiUj dx = 0 (9.42)

When the eigenvalues are distinct λi �= λj , Eq. (9.42) gives the orthogonality principle
for normal functions: ∫ l

0
UiUj dx = 0, i �= j (9.43)

In view of Eq. (9.43). Eqs. (9.40) and (9.39) yield∫ l

0
U ′

iU
′
j dx = 0, i �= j (9.44)

∫ l

0
U ′′

i Uj dx = 0, i �= j (9.45)

Equations (9.43)–(9.45) indicate that the orthogonality is valid not only among the
eigenfunctions, but also among the derivatives of the eigenfunctions.
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Note The orthogonality relationships for a bar with a mass
˜
M attached at the end

x = l [as in Fig. 9.3(a)] can be developed as follows. Rewrite Eq. (9.32) corresponding
to two distinct eigenvalues i and j as

RU ′′
i = −mω2

i Ui, RU ′′
j = −mω2

jUj (9.46)

with m ≡ M = ρA. To include the boundary condition at x = l in the orthogonality
relation, we write the boundary condition for eigenvalues i and j as

RU ′
i (l) =

˜
Mω2

i Ui(l), RU ′
j (l) =

˜
Mω2

jUj (l) (9.47)

Using a procedure similar to the one used in deriving Eq. (9.43), we obtain the orthog-
onality condition as (see Problem 9.21)

m

∫ l

0
UiUj dx +

˜
MUi(l)Uj (l) = 0, i �= j (9.48)

9.3.3 Free Vibration Response due to Initial Excitation

The response or displacement of the bar during longitudinal vibration can be expressed
in terms of the normal functions Ui(x), using the expansion theorem, as

u(x, t) =
∞∑
i=1

Ui(x)ηi(t) (9.49)

Substitution of Eq. (9.49) into Eq. (9.29) results in

∞∑
i=1

[Rηi(t)U
′′
i (x) + Mη̈i(t)Ui(x)] = 0 (9.50)

Multiplication of Eq. (9.50) by Uj(x) and integration from 0 to l yields

∞∑
i=1

[
Rηi(t)

∫ l

0
U ′′

i Uj dx + Mη̈i

∫ l

0
UiUj dx

]
= 0 (9.51)

In view of the orthogonality relationships, Eqs. (9.43) and (9.45), Eq. (9.51) reduces
to

Miη̈i(t) + Riηi(t) = 0, i = 1, 2, . . . (9.52)

where Mi and Ri denote the generalized mass and generalized stiffness (or rigidity),
respectively, in mode i:

Mi = M

∫ l

0
U 2

i dx (9.53)

Ri = R

∫ l

0
U ′′

i Ui dx = −R

∫ l

0
(U ′

i )
2 dx = ω2

i Mi (9.54)
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If the eigenfunctions are normalized with respect to the mass distribution as

Mi = M

∫ l

0
U 2

i dx = 1 (9.55)

Eq. (9.54) gives Ri = ω2
i and Eq. (9.52) becomes

η̈i(t) + ω2
i ηi(t) = 0, i = 1, 2, . . . (9.56)

The solution of Eq. (9.56) is given by

ηi(t) = ηi(0) cos ωit + η̇i(0)

ωi

sin ωit (9.57)

where ηi(0) = ηi0 and η̇i(0) = η̇i0 are the initial values of ηi(t) and η̇i (t), which can be
determined from the initial values of the displacement and velocity given by Eqs. (9.27)
and (9.28). For this, first we express u0(x) and u̇0(x) using Eq. (9.49) as

u0(x) =
∞∑
i=1

Ui(x)ηi0 (9.58)

u̇0(x) =
∞∑
i=1

Ui(x)η̇i0 (9.59)

Multiplication of Eqs. (9.58) and (9.59) by Uj(x) and integration from 0 to l result in

∫ l

0
u0(x)Uj (x) dx =

∞∑
i=1

ηi0

∫ l

0
Ui(x)Uj (x) dx = ηj0 (9.60)

∫ l

0
u̇0(x)Uj (x) dx =

∞∑
i=1

η̇i0

∫ l

0
Ui(x)Uj (x) dx = η̇j0 (9.61)

in view of the orthogonality of the normal modes. Thus, the j th generalized coordinate
can be determined from Eq. (9.57). The total response of the bar can be expressed as
[Eq. (9.49)]

u(x, t) =
∞∑
i=1

ui(x, t) =
∞∑
i=1

Ui(x)

(
ηi0 cos ωit + η̇i0

ωi

sin ωit

)
(9.62)

Example 9.5 Find the free vibration response of a uniform bar with free ends due to
initial displacement and velocity.

SOLUTION The free vibratory motion of the free–free bar in the nth mode can be
expressed, using Eq. (9.24), as

un(x, t) = Un(x)Tn(t) = cos
nπx

l

(
Cn cos

nπc

l
t + Dn sin

nπc

l
t
)

(E9.5.1)
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where Cn and Dn are constants. By superposing the solutions given by Eq. (E9.5.1),
we can represent any longitudinal vibration of the bar in the form

u(x, t) =
∞∑

n=1

cos
nπx

l

(
Cn cos

nπc

l
t + Dn sin

nπc

l
t
)

(E9.5.2)

where the constants Cn and Dn can be determined from the initial conditions specified.
If the initial displacement and initial velocity of the bar are specified as

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u̇0(x) (E9.5.3)

then Eq. (E9.5.2) gives

u(x, 0) = u0(x) =
∞∑

n=1

Cn cos
nπx

l
(E9.5.4)

∂u

∂t
(x, 0) = u̇0(x) =

∞∑
n=1

nπc

l
Dn cos

nπx

l
(E9.5.5)

To determine the constant Cn in Eq. (E9.5.4), we multiply both sides of Eq. (E9.5.4)
by the mth mode shape, cos(mπx/l), and integrate from 0 to l:∫ l

0
u0(x) cos

mπx

l
dx =

∫ l

0

∞∑
n=1

Cn cos
nπx

l
cos

mπx

l
dx (E9.5.6)

Noting that ∫ l

0
cos

nπx

l
cos

mπx

l
=




0, m �= n

l

2
, m = n

(E9.5.7)

Eq. (E9.5.6) can be simplified to obtain

Cn = 2

l

∫ l

0
u0(x) cos

nπx

l
dx (E9.5.8)

Using a similar procedure, the constant Dn in Eq. (E9.5.5) can be determined as

Dn = 2

nπc

∫ l

0
u̇0(x) cos

nπx

l
dx (E9.5.9)

Example 9.6 Consider a free–free bar of uniform cross-sectional area. It is subjected
to an axial compressive force at each end. Find the free vibration response of the bar
when the forces are suddenly removed.

SOLUTION We assume that the middle of the bar remains stationary. The displace-
ment of the bar just before the forces are removed (one-half of the initial displacement
at each end) is given by

u0 = u(x, 0) = ε0l

2
− ε0x (E9.6.1)
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and the initial velocity by

u̇0 = ∂u

∂t
(x, 0) = 0 (E9.6.2)

where ε0 denotes the compressive strain at the ends at time t = 0.
Using Eqs. (E9.5.8) and (E9.5.9) and Eqs. (E9.6.1) and (E9.6.2), the constants Cn

and Dn can be evaluated as

Cn = 2

l

∫ l

0

(
ε0l

2
− ε0x

)
cos

nπx

l
dx

= ε0l

nπ

∫ l

0
cos

nπx

l
d

(nπx

l

)
− 2ε0

l

n2π2

∫ l

0

nπx

l
cos

nπx

l
d

(nπx

l

)

=



0, n is even

4ε0l

n2π2
, n is odd

(E9.6.3)

Dn = 0 (E9.6.4)

Thus, the general solution for the longitudinal vibration of the free–free bar can be
expressed as [see Eq. (E9.5.2)]

u(x, t) = 4ε0l

π2

∞∑
n=1,3,5,···

1

n2
cos

nπx

l
cos

nπcx

l
(E9.6.5)

Example 9.7 A bar of uniform cross-sectional area A, length l, modulus of elasticity
E, and density ρ is fixed at both ends. It is subjected to an axial force F0 at the middle
[Fig. 9.5(a)] and is suddenly removed at t = 0. Find the resulting vibration of the bar.

l
2

l

xF00

(a)

(b)

l
2

l
2

F0l
4EA

Figure 9.5 (a) Bar subjected to axial force F0 at the middle; (b) initial displacement distribu-
tion, u0(x).
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SOLUTION The tensile strain induced in the left half of the bar is given by

ε = F0

2EA
(E9.7.1)

which is equal in magnitude to the compressive strain in the right half of the bar. Thus,
the initial displacement of the bar can be expressed as [see Fig. 9.5(b)]

u(x, 0) = u0(x) =




εx = F0x

2EA
, 0 ≤ x ≤ l

2

ε(l − x) = F0(l − x)

2EA
,

l

2
≤ x ≤ l

(E9.7.2)

Since the initial velocity is zero, we have

∂u

∂t
(x, 0) = u̇0(x) = 0, 0 ≤ x ≤ l (E9.7.3)

To find the general solution of the bar, we note the boundary conditions

u(0, t) = 0, t ≥ 0 (E9.7.4)

u(l, t) = 0, t ≥ 0 (E9.7.5)

The use of Eq. (E9.7.4) in Eq. (9.24) gives
˜
A = 0, and the use of Eq. (E9.7.5) gives

the frequency equation:

˜
B sin

ωl

c
= 0 or sin

ωl

c
= 0 (E9.7.6)

The natural frequencies are given by

ωnl

c
= nπ, n = 1, 2, . . .

or

ωn = nπc

l
, n = 1, 2, . . . (E9.7.7)

and the corresponding mode shapes by

Un(x) =
˜
Bn sin

nπx

l
, n = 1, 2, . . . (E9.7.8)

The general free vibration solution of the bar can be expressed using the mode super-
position approach as

u(x, t) =
∞∑

n=1

un(x, t) =
∞∑

n=1

sin
nπx

l

(
Cn cos

nπct

l
+ Dn sin

nπct

l

)
(E9.7.9)
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Using the initial velocity condition, Eq. (E9.7.3), in Eq. (E9.7.9) gives Dn = 0. The
use of the initial displacement condition, Eq. (E9.7.2), in Eq. (E9.7.9) yields

Cn = 2

l

∫ l/2

0

F0x

2EA
sin

nπx

l
dx + 2

l

∫ l

l/2

F0(l − x)

EA
sin

nπx

l
dx

= F0

EAl

l2

n2π2

∫ l/2

0

nπx

l
sin

nπx

l
d

(nπx

l

)

+ F0l

EA

l

nπ

∫ l

l/2
sin

nπx

l
d

(nπx

l

)

− F0

EAl

l2

n2π2

∫ l

l/2

nπx

l
sin

nπx

l
d

(nπx

l

)

=




2F0l

AEπ2

(−1)(n−1)/2

n2
if n is odd

0 if n is even

(E9.7.10)

Thus, the free vibration solution of the bar becomes

u(x, t) = 2F0l

AEπ2

∞∑
n=1,3,5,...

(−1)(n−1)/2

n2
sin

nπx

l
cos

nπct

l
(E9.7.11)

9.4 FORCED VIBRATION

The equation of motion for the longitudinal vibration of a prismatic bar subjected to a
distributed force f (x, t) per unit length can be expressed in a general form as

−Ru′′(x, t) + Mü(x, t) = f (x, t) (9.63)

or

−c2u′′(x, t) + ü(x, t) =
˜
f (x, t) (9.64)

where R and M are given by Eq. (9.30), c by Eq. (9.35), and

˜
f = f

M
= f

ρA
(9.65)

In modal analysis, the forced vibration response is assumed to be given by the sum of
products of normal modes and generalized coordinates as indicated by Eq. (9.49). By
substituting Eq. (9.49) in Eq. (9.64) for u(x, t), multiplying by Uj(x), and integrating
from 0 to l, we obtain

∞∑
i=1

[−c2ηi

∫ l

0
U ′′

i (x)Uj (x) dx + η̈i

∫ l

0
Ui(x)Uj (x) dx]

=
∫ l

0
Uj(x)

˜
f (x, t) dx (9.66)
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In view of the orthogonality relations, Eqs. (9.43) and (9.45), Eq. (9.66) becomes (for
i = j )

η̈i + ω2
i ηi =

∫ l

0
Ui(x)

˜
f (x, t) dx (9.67)

Equation (9.67) represents a second-order ordinary differential equation for the gener-
alized coordinate ηi(t). The solution of Eq. (9.67) can be obtained, using a Duhamel
integral, as

ηi(t) = 1

ωi

∫ l

0
Ui(x)

∫ t

0 ˜
f (x, τ ) sin ωi(t − τ) dτ dx (9.68)

Thus, the total steady-state forced longitudinal vibration response of the bar is given
by (ignoring the effect of initial conditions)

u(x, t) =
∞∑
i=1

Ui(x)

ωi

∫ l

0
Ui(x)

∫ t

0 ˜
f (x, τ ) sin ωi(t − τ) dτ dx (9.69)

Note If the bar is subjected to an axial concentrated force Fm(t) at x = xm, there is
no need for integration over the length of the bar, and Eq. (9.69) takes the form

u(x, t) =
∞∑
i=1

Ui(x)Ui(x = xm)

ωi

∫ t

0

Fm(τ)

ρA
sin ωi(t − τ) dτ (9.70)

Example 9.8 Consider a prismatic bar fixed at both ends. Find the steady-state
response of the bar if the following loads are applied suddenly at the same time (see
Fig. 9.6): a uniformly distributed longitudinal force of magnitude f0 per unit length,
and an axial concentrated force F0 at the middle point of the bar, x = l/2.

x0

f0 per unit length

F0

l
2

l
2

Figure 9.6 Bar subjected to distributed and concentrated loads.

SOLUTION We can find the steady-state response of the bar by superposing the
responses due to the two loads. To find the response due to the uniformly distributed
load, we use

˜
f (x, τ ) = f0

ρA
(E9.8.1)

in Eq. (9.69) to obtain

u(x, t) =
∞∑
i=1

Ui(x)

ωi

∫ l

0
Ui(x)

f0

ρA

∫ t

0
sin ωi(t − τ) dτ dx (E9.8.2)
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where from the free vibration analysis [Eq. (E9.7.8)] we have

Ui(x) = Bi sin
iπx

l
(E9.8.3)

ωi = iπc

l
(E9.8.4)

and Bi is a constant (i = 1, 2, . . .). When Ui(x) is normalized as∫ l

0
U 2

i (x) dx = 1 (E9.8.5)

or

B2
i

∫ l

0
sin2 iπx

l
dx = 1 (E9.8.6)

we obtain

Bi =
√

2

l
(E9.8.7)

and hence

Ui(x) =
√

2

l
sin

iπx

l
(E9.8.8)

Thus, Eq. (E9.8.2) becomes

u(x, t) =
∞∑

n=1

√
2

l

l

nπc
sin

nπx

l

∫ l

0

√
2

l
sin

nπx

l

f0

ρA

∫ t

τ=0
sin ωn(t − τ) dτ dx

=
∑

n=1,3,5,...

4f0l
2

π3c2ρA

1

n3
sin

nπx

l

(
1 − cos

nπct

l

)
(E9.8.9)

To find the response of the bar due to the concentrated load, we use Fm(τ) = F0 in
Eq. (9.70), so that

u(x, t) =
∞∑

n=1

√
2

l

sin(nπx/l)
√

2/l sin(nπ/2)

nπc/l

F0

ρA

∫ t

0
sin ωn(t − τ) dτ

=
∑

n=1,3,5,...

2F0l

π2c2ρA

1

n2
sin

nπx

l
(−1)(n−1)/2

(
1 − cos

nπct

l

)
(E9.8.10)

Thus, the total response of the bar is given by the sum of the two responses given by
Eqs. (E9.8.9) and (E9.8.10):

u(x, t) = 2l

π2c2ρA

∑
n=1,3,5,...

sin
nπx

l

(
1 − cos

nπct

l

)[
2f0l

πn3
+ F0

n2
(−1)(n−1)/2

]

(E9.8.11)
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9.5 RESPONSE OF A BAR SUBJECTED TO LONGITUDINAL
SUPPORT MOTION

Let a prismatic bar be subjected to a support or base motion, ub(t) = p(t) in the axial
direction as shown in Fig. 9.7. The equation of motion for the longitudinal vibration
of the bar can be obtained as

ρA
∂2u(x, t)

∂t2
− EA

∂2

∂x2
[u(x, t) − ub(t)] = 0 (9.71)

By defining a new variable v(x, t) that denotes the displacement of any point in the
bar relative to the base as

v(x, t) = u(x, t) − ub(t) (9.72)

we can write

∂2u

∂t2
= ∂2v

∂t2
+ ∂2p

∂t2
(9.73)

Using Eqs. (9.72) and (9.73), Eq. (9.71) can be rewritten as

ρA
∂2v(x, t)

∂t2
− EA

∂2v(x, t)

∂x2
= −ρA

∂2p(t)

∂t2
(9.74)

A comparison of Eq. (9.74) with Eq. (9.10) shows that the term on the right-hand side
of Eq. (9.74) denotes equivalent distributed loading induced by the base motion. By
dividing Eq. (9.74) by ρA, we obtain

∂2v

∂t2
− c2 ∂2v

∂x2
= −∂2p

∂t2
(9.75)

Since Eq. (9.75) is similar to Eq. (9.64), we can find the equation for the ith generalized
coordinate ηi(t) in Eq. (9.49) as

∂2ηi

∂t2
+ ω2

i ηi = −∂2p

∂t2

∫ l

0
Ui(x) dx, i = 1, 2, . . . (9.76)

The solution of Eq. (9.76) can be expressed, using a Duhamel integral, as

ηi(t) = − 1

ωi

∫ l

0
Ui(x) dx

∫ t

0

∂2p

∂t2
(τ ) sin ωi(t − τ) dτ (9.77)

x

l

ub(t) = p(t)

0

Figure 9.7 Bar with support motion.
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The total solution for v(x, t) can be obtained by superposing all the normal-mode
responses as

v(x, t) = −
∞∑
i=1

Ui(x)

ωi

∫ l

0
Ui(x) dx

∫ t

0

∂2p

∂t2
(τ ) sin ωi(t − τ) dτ (9.78)

Finally, the longitudinal vibrational motion of the bar can be found from Eq. (9.72) as

u(x, t) = ub(t) + v(x, t) (9.79)

9.6 RAYLEIGH THEORY

9.6.1 Equation of Motion

In this theory, the inertia of the lateral motions by which the cross sections are extended
or contracted in their own planes is considered. But the contribution of shear stiffness to
the strain energy is neglected. An element in the cross section of the bar, located at the
coordinates y and z, undergoes the lateral displacements −νy(∂u/∂x) and −νz(∂u/∂x),
respectively, along the y and z directions, with ν denoting Poisson’s ratio [2, 3, 6].
Thus, the displacement field is given by

u = u(x, t), v = −νy
∂u(x, t)

∂x
, w = −νz

∂u(x, t)

∂x
(9.80)

The strain energy of the bar and the work done by the external forces are given by
Eqs. (9.6) and (9.8), while the kinetic energy of the bar can be obtained as

T = 1

2

∫ l

0
dx

∫ A

0
ρ dA

(
∂u

∂t

)2

+ 1

2

∫ l

0
dx

∫ A

0
ρ dA

[(
∂v

∂t

)2

+
(

∂w

∂t

)2
]

= 1

2

∫ l

0
ρA

(
∂u

∂t

)2

dx + 1

2

∫ l

0
dx

∫ A

0
ρ dA

[(
−νy

∂2u

∂x∂t

)2

+
(

−νz
∂2u

∂x∂t

)2
]

= 1

2

∫ l

0
ρA

(
∂u

∂t

)2

dx + 1

2

∫ l

0
ρν2Ip

(
∂2u

∂x∂t

)2

dx (9.81)

where Ip is the polar moment of the inertia of the cross section, defined by

Ip =
∫

A

(y2 + z2) dA (9.82)

The application of extended Hamilton’s principle gives

δ

∫ t2

t1

d t

∫ l

0

[
1

2
ρA

(
∂u

∂t

)2

+ 1

2
ρν2Ip

(
∂2u

∂x∂t

)2

− 1

2
EA

(
∂u

∂x

)2

+ f u

]
dx = 0

(9.83)
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yielding the equation of motion and the boundary conditions as

− ∂

∂x

(
ρν2Ip

∂3u

∂x∂t2

)
− ∂

∂x

(
EA

∂u

∂x

)
+ ρA

∂2u

∂t2
= f (9.84)

(
EA

∂u

∂x
+ ρν2Ip

∂3u

∂x∂t2

)
δu

∣∣∣∣
l

0
= 0 (9.85)

Note that Eq. (9.85) is satisfied if the bar is either fixed or free at the ends x = 0 and
x = l. At a fixed end, u = 0 and hence δu = 0, while

EI
∂u

∂x
+ ρν2Ip

∂3u

∂x∂t2
= 0 (9.86)

at a free end.

9.6.2 Natural Frequencies and Mode Shapes

For the free axial vibration of a uniform bar, we set f = 0 and Eqs. (9.84) and (9.85)
reduce to

ρν2Ip

∂4u

∂x2∂t2
+ EA

∂2u

∂x2
− ρA

∂2u

∂t2
= 0 (9.87)

(
EA

∂u

∂x
+ ρν2Ip

∂3u

∂x∂t2

)
δu

∣∣∣∣
l

0
= 0 (9.88)

The natural frequencies of the bar can be determined using a harmonic solution

u(x, t) = U(x) cos ωt (9.89)

Using Eq. (9.89), Eq. (9.87) can be expressed as

(−ρν2Ipω2 + EA)
d2U

dx2
+ ρAω2U = 0 (9.90)

The solution of the second-order ordinary differential equation, Eq. (9.90) can be writ-
ten as

U(x) = C1 cos px + C2 sin px (9.91)

where

p =
√

ρAω2

EA − ρν2Ipω2
(9.92)

and C1 and C2 are constants to be determined from the boundary conditions of the bar.
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Bar with Both Ends Fixed For a bar fixed at both ends,

U(x = 0) = 0 and U(x = l) = 0 (9.93)

Equations (9.91) and (9.93) lead to

C1 = 0 (9.94)

sin pl = 0 (9.95)

Equation (9.95) gives the frequencies of vibration:

pl = nπ, n = 1, 2, . . .

or

ω2
n = n2π2

(1 + ν2Ipn2π2/Al2)

E

ρl2
, n = 1, 2, . . . (9.96)

The mode shape corresponding to the frequency ωn is given by

Un(x) = sin nπx, n = 1, 2, . . . (9.97)

It can be seen that the mode shapes [Eq. (9.97)] are identical to those given by the
simple theory, whereas the natural frequencies [Eq. (9.96)] are reduced by the factor

(
1 + ν2Ipn2π2

Al2

)1/2

compared to those given by the simple theory.

9.7 BISHOP’S THEORY

9.7.1 Equation of Motion

This theory considers the effect not only of the inertia of the lateral motions but also of
the shear stiffness [1, 3, 6]. The displacement field is given by Eq. (9.80). The strains
in the cross section can be obtained as

εxx = ∂u

∂x
, εyy = ∂v

∂y
= −ν

∂u

∂x
, εzz = ∂w

∂z
= −ν

∂u

∂x
,

εxy =
(

∂u

∂y
+ ∂v

∂x

)
= −νy

∂2u

∂x2
, εyz =

(
∂v

∂z
+ ∂w

∂y

)
= 0,

εzx =
(

∂u

∂z
+ ∂w

∂x

)
= −νz

∂2u

∂x2
(9.98)
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The stresses induced in the cross section of the bar can be determined, using the
three-dimensional Hooke’s law, as



σxx

σyy

σzz

σxy

σyz

σzx




= E

(1 + ν)(1 − 2ν)




1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2







εxx

εyy

εzz

εxy

εyz

εzx




(9.99)

Substitution of Eq. (9.98) in Eq. (9.99) results in




σxx

σyy

σzz

σxy

σyz

σzx




=




E ∂u
∂x

0
0

−νGy ∂2u

∂x2

0

−νGz∂2u

∂x2




(9.100)

The strain energy of the bar can be computed as

π = 1

2

∫∫∫
V

(σxxεxx + σyyεyy + σzzεzz + σxyεxy + σyzεyz + σzxεzx) dV

= 1

2

∫ l

0
dx

∫ ∫ A

0
dA

[
E

(
∂u

∂x

)2

+ 0 + 0 + ν2Gy2
(

∂2u

∂x2

)2

+ 0 + ν2Gz2
(

∂2u

∂x2

)2
]

= 1

2

∫ l

0

[
EA

(
∂u

∂x

)2

+ ν2GIp

(
∂2u

∂x2

)2
]

dx (9.101)

The kinetic energy of the bar and the work done by the external forces are given by
Eqs. (9.81) and (9.8), respectively. The extended Hamilton’s principle can be expressed
as

δ

∫ t2

t1

(T − π + W) d t = 0 (9.102)

By substituting Eqs. (9.81), (9.101), and (9.8) for T , π , and W , respectively, in
Eq. (9.102) and simplifying results in the following equation of motion and the asso-
ciated boundary conditions,

∂2

∂x2

(
ν2GIp

∂2u

∂x2

)
− ∂

∂x

(
ν2ρIp

∂3u

∂x∂t2

)
− ∂

∂x

(
EA

∂u

∂x

)
+ ρA

∂2u

∂t2
= f

(9.103)[
EA

∂u

∂x
+ ν2ρIp

∂3u

∂x∂t2
− ν2 ∂

∂x

(
GIp

∂2u

∂x2

)]
δu

∣∣∣∣
l

0
+

(
ν2GIp

∂2u

∂x2

)
δ

(
∂u

∂x

) ∣∣∣∣
l

0
= 0

(9.104)

it can be seen that if an end is rigidly fixed, u = ∂u/∂x = 0 and hence δu = δ(∂u/∂x) =
0 in Eq. (9.104).
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9.7.2 Natural Frequencies and Mode Shapes

For a uniform bar undergoing free vibration (f = 0), Eqs. (9.103) and (9.104) can be
written as

ν2GIp

∂4u

∂x4
− ρν2Ip

∂4u

∂x2∂t2
− EA

∂2u

∂x2
+ ρA

∂2u

∂t2
= 0 (9.105)

(
EA

∂u

∂x
+ ν2ρIp

∂3u

∂x∂t2
− ν2GIp

∂3u

∂x3

)
δu

∣∣∣∣
l

0
+

(
ν2GIp

∂2u

∂x2

)
δ

(
∂u

∂x

)∣∣∣∣
l

0
= 0 (9.106)

The natural frequencies of the bar can be found using a harmonic solution:

u(x, t) = U(x) cos ωt (9.107)

Substitution of Eq. (9.107) into (9.105) leads to

ν2GIp

d4U

dx4
+ (ρν2Ipω2 − EA)

d2U

dx2
− ρAω2U = 0 (9.108)

By assuming the solution of Eq. (9.108) as

U(x) = Cepx (9.109)

where C and p are constants, the auxiliary equation can be obtained as

ν2GIpp4 + (ρν2Ipω2 − EA)p2 − ρAω2 = 0 (9.110)

Equation (9.110) is a quadratic equation in p2 whose roots are given by

p2 = (EA − ρν2Ipω2) ± √
(EA − ρν2Ipω2)2 + 4ν2GIpρAω2

2ν2GIp

= a ± b (9.111)

where

a = EA − ρν2Ipω2

2ν2GIp

(9.112)

b =
√

(EA − ρν2Ipω2)2 + 4ν2GIpρAω2

2ν2GIp

(9.113)

Since b > a, the roots can be expressed as

p1 = −p2 = s1 = √
a + b, p3 = −p4 = is2 = i

√
b − a (9.114)

Thus, the general solution of Eq. (9.110) can be written as

U(x) = C1e
s1x + C2e

−s1x + C3e
is2 + C4e

−is2 (9.115)

where the constants C1, C2, C3, and C4 are to be determined from the boundary
conditions of the bar. Noting that sinh x = 1

2 (ex − e−x), cosh x = 1
2 (ex + e−x), sin x =

(1/2i)(eix − e−ix), and cos x = 1
2 (eix + e−ix), Eq. (9.115) can be rewritten as

U(x) = C1 cosh s1x + C2 sinh s1x + C3 cos s2x + C4 sin s2x (9.116)

where C1, C2, C3, and C4 are constants.
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Bar Fixed Loosely at Both Ends If the bar is fixed loosely at both ends, the axial
displacement and shear strain will be zero at each end, so that

U(0) = 0 (9.117)

U(l) = 0 (9.118)

d2U

dx2
(0) = 0 (9.119)

d2U

dx2
(l) = 0 (9.120)

Equations (9.116)–(9.120) lead to

C1 + C3 = 0 (9.121)

C1 cosh s1l + C2 sinh s1l + C3 cos s2l + C4 sin s2l = 0 (9.122)

C1s
2
1 − C3s

2
2 = 0 (9.123)

C1s
2
1 cosh s1l + C2s

2
1 sinh s1l − C3s

2
2 cos s2l − C4s

2
2 sin s2l = 0 (9.124)

Equations (9.121) and (9.123) give

C1 = C3 = 0 (9.125)

and Eqs. (9.122) and (9.124) reduce to

C2 sinh s1l + C4 sin s2l = 0 (9.126)

C2s
2
1 sinh s1l − C4s

2
2 sin s2l = 0 (9.127)

The condition for a nontrivial solution of C2 and C4 in Eqs. (9.126) and (9.127) is∣∣∣∣ sinh s1l sin s2l

s2
1 sinh s1l −s2

2 sin s2l

∣∣∣∣ = 0

or

sinh s1l sin s2l = 0 (9.128)

Since sinh s1l �= 0 for nonzero values of s1l, Eq. (9.128) leads to the frequency equation

sin s2l = 0 (9.129)

The natural frequencies are given by

s2l = nπ, n = 1, 2, . . . (9.130)

Using Eqs. (9.114), (9.112), and (9.113) in (9.130), we can express the natural fre-
quencies as (see Problem 9.6)

ω2
n = n2π2E

ρl2

(
AEl2 + ν2GIpn2π2

AEl2 + ν2EIpn2π2

)
(9.131)
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The mode shape corresponding to the frequency ωn is given by

Un(x) = sin nπx, n = 1, 2, . . . (9.132)

It can be observed that the mode shapes [Eq. (9.132)] are identical to those given by
the simple theory, whereas the natural frequencies [Eq. (9.131)] are reduced by the
factor

(
AEl2 + ν2GIpn2π2

AEl2 + ν2EIpn2π2

)1/2

compared to those given by the simple theory.

9.7.3 Forced Vibration Using Modal Analysis

The equation of motion of a prismatic bar in longitudinal vibration, Eq. (9.105), can
be expressed as

Mü + Lu = f (9.133)

where

M = ρA − ν2ρIp

∂2

∂x2
(9.134)

L = ν2GIp

∂4

∂x4
− EI

∂2

∂x2
(9.135)

In modal analysis, the solution is expressed as the sum of natural modes as

u(x, t) =
∞∑
i=1

Ui(x)ηi(t) (9.136)

so that the equation of motion for the ith normal mode becomes

(M[Ui(x)])η̈i (t) + (L[Ui(x)])ηi(t) = f (x, t) (9.137)

By multiplying Eq. (9.137) by Uj(x) and integrating from 0 to l, we obtain

∫ l

0
(M[Ui(x)])Uj (x)η̈i (t) dx +

∫ l

0
(L[Ui(x)])Uj (x)ηi(t) dx =

∫ l

0
f (x, t)Uj (x) dx

(9.138)

In view of the orthogonality relations among natural modes, Eq. (9.138) reduces to

Miη̈i + Kiηi = fi, i = 1, 2, . . . (9.139)
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where Mi is the generalized mass, Ki is the generalized stiffness, and fi is the gener-
alized force in the ith mode, given by

Mi =
∫ l

0
(M[Ui(x)])Ui(x) dx (9.140)

Ki =
∫ l

0
(L[Ui(x)])Ui(x) dx (9.141)

fi =
∫ l

0
f (x, t)Ui(x) dx (9.142)

The solution of Eq. (9.139) can be expressed, using a Duhamel integral, as

ηi(t) = η0 cos ωit + η̇i(0)

ωi

sin ωit + 1

Miωi

∫ t

0
fi(τ ) sin ωi(t − τ) dτ, i = 1, 2, . . .

(9.143)

where ωi is the ith natural frequency given by

ωi =
√

Ki

Mi

, i = 1, 2, . . . (9.144)

and ηi(0) and η̇i(0) are the initial values of the generalized displacement ηi(t) and
generalized velocity η̇i(t). If u0(x) = u(x, 0) and u̇0(x) = u̇(x, 0) are the initial values
specified for longitudinal displacement and velocity, we can express

u0(x) =
∞∑
i=1

Ui(x)ηi(0) (9.145)

u̇0(x) =
∞∑
i=1

Ui(x)η̇i(0) (9.146)

Multiplying Eqs. (9.145) and (9.146) by M[Uj(x)] and integrating from 0 to l results
in ∫ l

0
u0(x)M[Uj (x)] dx =

∞∑
i=1

∫ l

0
ηi(0)Ui(x)M[Uj (x)] dx (9.147)

∫ l

0
u̇0(x)M[Uj (x)] dx =

∞∑
i=1

∫ l

0
η̇i (0)Ui(x)M[Uj (x)] dx (9.148)

When the property of orthogonality of normal modes is used, Eqs. (9.147) and (9.148)
yield

ηi(0) = 1

Mi

∫ l

0
u0(x)M[Ui(x)] dx, i = 1, 2, . . . (9.149)

η̇i(0) = 1

Mi

∫ l

0
u̇0(x)M[Ui(x)] dx, i = 1, 2, . . . (9.150)
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Finally, the total axial motion (displacement) of the bar can be expressed as

u(x, t) =
∞∑
i=1

[
ηi(0) cos ωit + η̇i(0)

ωi

sin ωit + 1

Miωi

∫ t

0
fi(τ ) sin ωi(t − τ) dτ

]
Ui(x)

(9.151)

Example 9.9 Determine the steady-state response of a prismatic bar fixed loosely
at both ends when an axial force F0 is suddenly applied at the middle as shown in
Fig. 9.8.

x

l

l
2

F0

Figure 9.8 Bar supported loosely at ends.

SOLUTION The natural frequencies and normal modes of the bar are given by
Eqs. (9.131) and (9.132):

ω2
i = i2π2E

ρl2

AEl2 + ν2GIpi2π2

AEl2 + ν2EIpi2n2
(E9.9.1)

Ui(x) = sin iπx (E9.9.2)

The generalized mass Mi and the generalized stiffness Ki in mode i can be determined
as

Mi =
∫ l

0
(M[Ui(x)])Ui(x) dx =

∫ l

0

[(
ρA − ν2ρIp

∂2

∂x2

)
sin iπx

]
sin iπx dx

= (ρA + ν2ρIpi2π2)
l

2
(E9.9.3)

Ki =
∫ l

0
(L[Ui(x)])Ui(x) dx =

∫ l

0

[(
ν2GIp

∂4

∂x4
− EI

∂2

∂x2

)
sin iπx

]
sin iπx dx

= (ν2GIpi4π4 + EIi2π2)
l

2
(E9.9.4)

The applied axial force can be represented as

f (x, t) = F0H(t)δ

(
x − l

2

)
(E9.9.5)
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where H(t) is the Heaviside unit step function and δ is the Dirac delta function. The
generalized force in the ith normal mode can be computed as

fi(t) =
∫ l

0
f (x, t)Ui(x) dx =

∫ l

0
F0H(t)δ

(
x − l

2

)
Ui(x) dx

= F0H(t)Ui

(
x = l

2

)
= F0H(t) sin

iπl

2
(E9.9.6)

Thus, the steady-state solution of the ith generalized coordinate is given by the solution
of Eq. (9.139) as

ηi(t) = 1

Miωi

∫ t

0
fi(τ ) sin ωi(t − τ) dτ, i = 1, 2, . . . (E9.9.7)

which can be written as

ηi(t) = 1

Miωi

∫ t

0
F0H(τ) sin

iπl

2
sin ωi(t − τ) dτ

= F0 sin(iπl/2)

Miωi

∫ t

0
H(τ) sin ωi(t − τ) dτ = F0 sin(iπl/2)

Miω
2
i

(1 − cos ωit)

(E9.9.8)

Thus, the total steady-state response of the bar is given by

u(x, t) =
∞∑
i=1

F0 sin(iπl/2)

Miω
2
i

(1 − cos ωit) (E9.9.9)

9.8 RECENT CONTRIBUTIONS

Additional problems of longitudinal vibration, including the determination of the natural
frequencies of nonuniform bars, and free and forced vibration of uniform viscoelastic
and viscoelastically coated bars, are discussed in detail by Rao [3].

A comparative evaluation of the approximate solutions given by discretization
methods such as the finite element and finite difference methods for the free axial
vibration of uniform rods was made by Ramesh and Itku [14]. The solution of the
wave equation, which describes the axial free vibration of uniform rods in terms of
eigenvalues and eigenfunctions, was used as a basis for comparison of the approximate
solutions. It was observed that the frequencies given by the discretization methods were
influenced significantly and the mode shapes were relatively insensitive to the choice
of mass lumping scheme.

Kukla et al. [15] considered the problem of longitudinal vibration of two rods cou-
pled by many translational springs using the Green’s function method. The frequencies
of longitudinal vibration of a uniform rod with a tip mass or spring was considered by
Kohoutek [8]. Raj and Sujith [9] developed closed-form solutions for the free longitu-
dinal vibration of inhomogeneous rods. The longitudinal impulsive response analysis
of variable-cross-section bars was presented by Matsuda et al. [10].

Exact analytical solutions for the longitudinal vibration of bars with a nonuniform
cross section were presented by Li [11] and Kumar and Sujith [12].
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The solutions are found in terms of special functions such as the Bessel and
Neumann as well as trigonometric functions. Simple expressions are given to predict the
natural frequencies of nonuniform bars with various boundary conditions. The equation
of motion of a vibrating Timoshenko column is discussed by Kounadis in Ref. [13].
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PROBLEMS
9.1 Derive the frequency equation for the longitudinal
vibration of the bar shown in Fig. 9.9.

9.2 Derive the equation of motion for the longitudinal
vibration of a bar by including the damping force that
is proportional to the longitudinal velocity.

9.3 A uniform bar is fixed at one end and free at the
other end. Find the longitudinal vibration response of

the bar subject to the initial conditions u(x, 0) = U0x
2

and u̇(x, 0) = 0.

9.4 Consider a uniform bar fixed at one end and
carrying a mass M at the other end. Find the longi-
tudinal vibration response of the bar when its fixed
end is subjected to a harmonic axial motion as shown
in Fig. 9.10.
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Mx

l

A, E, r

K

Figure 9.9

A, E, r

l

x

u(t) = U0 sin Ωt

M

Figure 9.10

9.5 Specialize Eq. (E9.2.10) to the case where the mass
of the bar is negligible compared to the mass attached.
Solve the resulting equation to find the fundamental
frequency of vibration of the bar.

9.6 Derive Eq. (9.131).

9.7 Show that the expressions on either side of the
equality sign in Eq. (9.19) is equal to a negative quantity.

9.8 Derive Eqs. (9.10) and (9.11) from Eq. (9.9).

9.9 Derive the frequency equation for the longitudinal
vibration of a uniform bar fixed at x = 0 and attached
to a mass M and spring of stiffness k at x = l (case 5
of Table 9.1).

9.10 Derive the frequency equation for the longitudinal
vibration of a uniform bar free at x = 0 and attached to
a mass M at x = l (case 7 of Table 9.1).

9.11 Derive Eqs. (9.84) and (9.85) from Hamil-
ton’s principle.

9.12 Derive Eqs. (9.103) and (9.104) from Hamil-
ton’s principle.

9.13 Consider a uniform free–free bar. If the ends x = 0
and x = l are subjected to the displacements u(0, t) =
U1e

i�t and u(l, t) = U2e
i�t , determine the axial motion

of the bar, u(x, t), 0 < x < l, t > 0.

9.14 A uniform bar fixed at x = 0 and free at x = l is
subjected to a distributed axial force f (x, t) = x2 sin 2t .
Determine the resulting axial motion of the bar.

9.15 The ends of a uniform bar are connected to
two springs as shown in Fig. 9.11. Derive the fre-
quency equation corresponding to the axial vibration of
the bar.

A, E, r

l

x

k k

0

Figure 9.11
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9.16 A uniform bar is fixed at x = 0 and is subjected to
a sudden axial force f0 (shown in Fig. 9.12) at x = l.
Find the ensuing axial motion of the bar at x = l.

9.17 A uniform bar of length l, cross-sectional area A,
Young’s modulus E, and mass density ρ strikes a spring
of stiffness k with a velocity V as shown in Fig. 9.13.
Find the resulting axial motion of the bar, u(x, t),
measured from the instant the bar strikes the spring.

9.18 A uniform bar of length l, cross-sectional area A,
Young’s modulus E, and mass density ρ is fixed at
x = 0 and carries a mass M at x = l. The end x = l is
subjected to an axial force F(t) = F0 sin �t as shown in
Fig. 9.14. Determine the steady-state response, u(x, t),
of the bar.

9.19 Find the longitudinal vibration response of a uni-
form bar of length l, fixed at x = 0 and free at x = l,
when the end x = 0 is subjected to an axial harmonic
displacement, ub(t) = c sin ωt where c is a constant and
ω is the frequency.

9.20 Find the steady state axial motion of a prismatic
bar of length l, fixed at x = 0, when an axial force
F(t) = F0 acts at the end x = l using the Laplace
transform approach.

9.21 Derive the orthogonality relationships for a
bar, fixed at x = 0, carrying a mass

˜
M at x = l.

0

f0

f(t)

t

Figure 9.12

x

l

k
V

Figure 9.13

x

l

M
F(t) = F0 sinΩt

A, E, r

Figure 9.14
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Torsional Vibration of Shafts

10.1 INTRODUCTION

Many rotating shafts and axles used for power transmission experience torsional vibra-
tion, particularly when the prime mover is a reciprocating engine. The shafts used
in high-speed machinery, especially those carrying heavy wheels, are subjected to
dynamic torsional forces and vibration. A solid or hollow cylindrical rod of circular
section undergoes torsional displacement or twisting such that each transverse section
remains in its own plane when a torsional moment is applied. In this case the cross
sections of the rod do not experience any motion parallel to the axis of the rod. How-
ever, if the cross section of the rod is not circular, the effect of a twist will be more
involved. In this case the twist will be accompanied by a warping of normal cross
sections. The torsional vibrations of uniform and nonuniform rods with circular cross
section and rods with noncircular section are considered in this chapter. For noncir-
cular sections, the equations of motion are derived using both the Saint-Venant and
Timoshenko–Gere theories. The methods of determining the torsional rigidity of non-
circular rods is presented using the Prandtl stress function and the Prandtl membrane
analogy.

10.2 ELEMENTARY THEORY: EQUATION OF MOTION

10.2.1 Equilibrium Approach

Consider an element of a nonuniform circular shaft between two cross sections at
x and x + dx, as shown in Fig. 10.1(a). Let Mt(x, t) denote the torque induced in
the shaft at x and time t and Mt(x, t) + dMt(x, t) the torque induced in the shaft at
x + dx and at the same time t . If the angular displacement of the cross section at x

is denoted as θ(x, t), the angular displacement of the cross section at x + dx can be
represented as θ(x, t) + dθ(x, t). Let the external torque acting on the shaft per unit
length be denoted mt(x, t). The inertia torque acting on the element of the shaft is
given by I0dx(∂2θ/∂t2), where I0 is the mass polar moment of inertia of the shaft per
unit length. Noting that dMt = (∂Mt/∂x) dx and dθ = (∂θ/∂x)dx, Newton’s second
law of motion can be applied to the element of the shaft to obtain the equation of
motion as (

Mt + ∂Mt

∂x
dx

)
− Mt + mt dx = I0 dx

∂2θ

∂t2
(10.1)
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From strength of materials, the relationship between the torque in the shaft and the
angular displacement is given by [1]

Mt = GIp

∂θ

∂x
(10.2)

where G is the shear modulus and Ip = J is the polar moment of inertia of the
cross section of the shaft. Using Eq. (10.2), the equation of motion, Eq. (10.1), can
be expressed as

∂

∂x

(
GIp

∂θ(x, t)

∂x

)
+ mt(x, t) = I0

∂2θ(x, t)

∂t2
(10.3)

10.2.2 Variational Approach

The equation of motion of a nonuniform shaft, using the variational approach, has been
derived in Section 4.11.1. In this section the variational approach is used to derive the
equation of motion and the boundary conditions for a nonuniform shaft with torsional
springs (with stiffnesses kt1 and kt2) and masses (with mass moments of inertia I10 and
I20) attached at each end as shown in Fig. 10.1.

The cross sections of the shaft are assumed to remain plane before and after angular
deformation. Since the cross section of the shaft at x undergoes an angular displacement

(b)

x
dx

mt(x,t) dx

Mt(x,t)

q(x,t)

q(x,t) + dq(x,t)

Mt(x,t) + dMt(x,t)

(a)

kt1

I10

O

I20

q(x,t)

mt(x,t)

kt2

x

x dx
l

Figure 10.1 Torsional vibration of a nonuniform shaft.
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P′

P

y

z

O
a

q

Figure 10.2 Rotation of a point in the cross section of a shaft.

θ (x, t) about the center of twist, the shape of the cross section does not change. The
cross section simply rotates about the x axis. A typical point P rotates around the x

axis by a small angle θ as shown in Fig. 10.2. The displacements of point P parallel
to the y and z axes are given by the projections of the displacement PP ′ on oy and oz :

v(y, z) = OP′ cos α − OP cos(α − θ)

= OP ′ cos α − OP cos α cos θ − OP sin α sin θ (10.4)

w(y, z) = OP ′ sin α − OP sin(α − θ)

= OP ′ sin α − OP sin α cos θ + OP cos α sin θ

Since θ is small, we can write

sin θ ≈ θ, cos θ≈1

OP cos α � OP ′ cos α = y

OP sin α � OP ′ sin α = z (10.5)

so that

v(y, z) = −zθ, w(y, z) = yθ (10.6)

Thus, the displacement components of the shaft parallel to the three coordinate axes
can be expressed as

u(x, t) = 0

v(x, t) = −zθ(x, t)

w(x, t) = yθ(x, t) (10.7)
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The strains in the shaft are assumed to be

εxy = ∂u

∂y
+ ∂v

∂x
= −z

∂θ

∂x

εxz = ∂u

∂z
+ ∂w

∂x
= y

∂θ

∂x
(10.8)

εxx = εyy = εzz = εyz = 0

and the corresponding stresses are given by

σxy = −Gz
∂θ

∂x

σxz = Gy
∂θ

∂x
(10.9)

σxx = σyy = σzz = σyz = 0

The strain energy of the shaft and the torsional springs is given by

π = 1

2

∫∫∫
V

(σxxεxx + σyyεyy + σzzεzz + σxyεxy + σxzεxz + σyzεyz) dV

+ [ 1
2kt1θ

2(0, t) + 1
2kt2θ

2(l, t)
]

= 1

2

∫ l

x=0



∫∫
A

[
G

(
∂θ

∂x

)2

(y2 + z2)

]
dA


 dx +

[
1

2
kt1θ

2(0, t) + 1

2
kt2θ

2(l, t)

]

= 1

2

∫ l

0
GIp

(
∂θ

∂x

)2

dx +
[

1

2
kt1θ

2(0, t) + 1

2
kt2θ

2(l, t)

]
(10.10)

where Ip = ∫∫
A

(y2 + z2)dA. The kinetic energy of the shaft can be expressed as

T = 1

2

∫∫∫
V

ρ

[(
∂u

∂t

)2

+
(

∂v

∂t

)2

+
(

∂w

∂t

)2
]

dV

+
[

1

2
I10

(
∂θ

∂t
(0, t)

)2

+ 1

2
I20

(
∂θ

∂t
(l, t)

)2
]

= 1

2

∫ l

0
ρIp

(
∂θ

∂t

)2

dx +
[

1

2
I10

(
∂θ

∂t
(0, t)

)2

+ 1

2
I20

(
∂θ

∂t
(l, t)

)2
]

(10.11)

The work done by the external torque mt(x, t) can be represented as

W =
∫ l

0
mtθ dx (10.12)
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The application of the generalized Hamilton’s principle yields

δ

∫ t2

t1

(π − T − W) d t = 0

or

δ

∫ t2

t1

{
1

2

∫ l

0
GIp

(
∂θ

∂x

)2

dx +
[

1

2
kt1θ

2(0, t) + 1

2
kt2θ

2(l, t)

]

− 1

2

∫ l

0
ρIp

(
∂θ

∂t

)2

dx −
[

1

2
I10

(
∂θ

∂t
(0, t)

)2

+ 1

2
I20

(
∂θ

∂t
(l, t)

)2
]

−
∫ l

0
mtθ dx

}
d t = 0 (10.13)

The variations in Eq. (10.13) can be evaluated using integration by parts to obtain

δ

∫ l

0

1

2
GIp

(
∂θ

∂x

)2

dx =
∫ l

0
GIp

(
∂θ

∂x

)
∂(δθ)

∂x
dx

= GIp

∂θ

∂x
δθ |l0 −

∫ l

0

∂

∂x

(
GIp

∂θ

∂x

)
δθ dx (10.14)

δ

∫ t2

t1

[
1

2
kt1θ

2(0, t) + 1

2
kt2θ

2(l, t)

]
d t

=
∫ t2

t1

[kt1θ(0, t)δθ(0, t) + kt2θ(l, t)δθ(l, t)] d t (10.15)

δ

∫ t2

t1

[
1

2

∫ l

0
ρIp

(
∂θ

∂t

)2

dx

]
d t

=
∫ l

0

(
ρIp

∂θ

∂t
δθ

∣∣∣∣
t2

t1

)
dx −

∫ l

0

(∫ t2

t1

ρIp

∂2θ

∂t2
δθ d t

)
dx

= −
∫ t2

t1

(∫ l

0
ρIp

∂2θ

∂t2
δθ dx

)
d t (10.16)

δ

∫ t2

t1

[
1

2
I10

(
∂θ

∂t
(0, t)

)2

+ 1

2
I20

(
∂θ

∂t
(l, t)

)2
]

d t

= −
∫ t2

t1

[
I10

∂2θ(0, t)

∂t2
δθ(0, t) + I20

∂2θ(l, t)

∂t2
δθ(l, t)

]
d t (10.17)

Note that integration by parts with respect to time, along with the fact that δθ = 0
at t = t1 and t = t2, has been used in deriving Eqs. (10.16) and (10.17). By using
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Eqs. (10.14)–(10.17) in Eq. (10.13), we obtain∫ t2

t1

{
GIp

∂θ

∂x
δθ

∣∣∣∣
l

0
+ kt1θδθ |0

+ I10
∂2θ

∂t2
δθ

∣∣∣∣
0

+kt2θδθ |l + I20
∂2θ

∂t2
δθ

∣∣∣∣
l
}

d t

+
∫ t2

t1

{∫ l

0

[
− ∂

∂x

(
GIp

∂θ

∂x

)
+ ρIp

∂2θ

∂t2
− mt

]
δθ dx

}
d t = 0 (10.18)

By setting the two expressions under the braces in each term of Eq. (10.18) equal to
zero, we obtain the equation of motion for the torsional vibration of the shaft as

I0
∂2θ

∂t2
= ∂

∂x

(
GIp

∂θ

∂x

)
+ mt(x, t) (10.19)

where I0 = ρIp is the mass moment of inertia of the shaft per unit length, and the
boundary conditions as(

−GIp

∂θ

∂x
+ kt1θ + I10

∂2θ

∂t2

)
δθ = 0 at x = 0

(
GIp

∂θ

∂x
+ kt2θ + I20

∂2θ

∂t2

)
δθ = 0 at x = l (10.20)

Each of the equations in (10.20) can be satisfied in two ways but will be satisfied only
one way for any specific end conditions of the shaft. The boundary conditions implied
by Eqs. (10.20) are as follows. At x = 0, either θ is specified (so that δθ = 0) or(

GIp

∂θ

∂x
− kt1θ − I10

∂2θ

∂t2

)
= 0 (10.21)

At x = l, either θ is specified (so that δθ = 0) or(
GIp

∂θ

∂x
+ kt1θ + I10

∂2θ

∂t2

)
= 0 (10.22)

In the present case, the second conditions stated in each of Eqs. (10.21) and (10.22)
are valid.

10.3 FREE VIBRATION OF UNIFORM SHAFTS

For a uniform shaft, Eq. (10.19) reduces to

GIp

∂2θ

∂x2
(x, t) + mt(x, t) = I0

∂2θ

∂t2
(x, t) (10.23)

By setting mt(x, t) = 0, we obtain the free vibration equation

c2 ∂2θ

∂x2
(x, t) = ∂2θ

∂t2
(x, t) (10.24)
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where

c =
√

GIp

I0
(10.25)

It can be observed that Eqs. (10.23)–(10.25) are similar to the equations derived in
the cases of transverse vibration of a string and longitudinal vibration of a bar. For a
uniform shaft, I0 = ρIp and Eq. (10.25) takes the form

c =
√

G

ρ
(10.26)

By assuming the solution as

θ(x, t) = 	(x)T (t) (10.27)

Eq. (10.24) can be written as two separate equations:

d2	(x)

∂x2
+ ω2

c2
	(x) = 0 (10.28)

d2T

∂t2
+ ω2T (t) = 0 (10.29)

The solutions of Eqs. (10.28) and (10.29) can be expressed as

	(x) = A cos
ωx

c
+ B sin

ωx

c
(10.30)

T (t) = C cos ωt + D sin ωt (10.31)

where A, B,C, and D are constants. If ωn denotes the nth frequency of vibration and
	n(θ) the corresponding mode shape, the general free vibration solution of Eq. (10.24)
is given by

θ(x, t) =
∞∑

n=1

	n(θ)Tn(t)

=
∞∑

n=1

(
An cos

ωnx

c
+ Bn sin

ωnx

c

)
(Cn cos ωnt + Dn sin ωnt) (10.32)

The constraints Cn and Dn can be evaluated from the initial conditions, and the con-
straints An and Bn can be determined (not the absolute values, only their relative
values) from the boundary conditions of the shaft. The initial conditions are usually
stated in terms of the initial angular displacement and angular velocity distributions of
the shaft.

10.3.1 Natural Frequencies of a Shaft with Both Ends Fixed

For a uniform circular shaft of length l fixed at both ends, the boundary conditions are
given by

θ(0, t) = 0 (10.33)

θ(l, t) = 0 (10.34)
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The free vibration solution is given by Eq. (10.27):

θ(x, t) = 	(θ)T (t) ≡
(
A cos

ωx

c
+ B sin

ωx

c

)
(C cos ωt + D sin ωt) (10.35)

Equations (10.33) and (10.35) yield

A = 0 (10.36)

and the solution can be expressed as

θ(x, t) = sin
ωx

c
(C′ cos ωt + D′ sin ωt) (10.37)

where C′ and D′ are new constants. The use of Eq. (10.34) in (10.37) gives the fre-
quency equation

sin
ωl

c
= 0 (10.38)

The natural frequencies of vibration are given by the roots of Eq. (10.38) as

ωl

c
= nπ, n = 1, 2, . . .

or

ωn = nπc

l
, n = 1, 2, . . . (10.39)

The mode shape corresponding to the natural frequency ωn can be expressed as

	n(x) = Bn sin
ωnx

c
, n = 1, 2, . . . (10.40)

The free vibration solution of the fixed–fixed shaft is given by a linear combination of
its normal modes:

θ(x, t) =
∞∑

n=1

sin
ωnx

c
(C′

n cos ωnt + D′
n sin ωnt) (10.41)

10.3.2 Natural Frequencies of a Shaft with Both Ends Free

Since the torque, Mt = GIp(∂θ/∂x), is zero at a free end, the boundary conditions of
a free–free shaft are given by

∂θ

∂x
(0, t) = 0 (10.42)

∂θ

∂x
(l, t) = 0 (10.43)

In view of Eq. (10.27), Eqs. (10.42) and (10.43) can be expressed as

d	

dx
(0) = 0 (10.44)

d	

dx
(l) = 0 (10.45)
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Equation (10.30) gives

	(x) = A cos
ωx

c
+ B sin

ωx

c
(10.46)

d	

dx
(x) = −Aω

c
sin

ωx

c
+ Bω

c
cos

ωx

c
(10.47)

Equations (10.44) and (10.47) yield

B = 0 (10.48)

and Eqs. (10.45) and (10.47) result in

sin
ωl

c
= 0 (10.49)

The roots of Eq. (10.49) are given by

ωn = nπc

l
= nπ

l

√
G

ρ
, n = 1, 2, . . . (10.50)

The nth normal mode is given by

	n(x) = An cos
ωnx

c
, n = 1, 2, . . . (10.51)

The free vibration solution of the shaft can be expressed as [see Eq. (10.32)]

θ(x, t) =
∞∑

n=1

	n(x)Tn(t) =
∞∑

n=1

cos
ωnx

c
(Cn cos ωnt + Dn sin ωnt) (10.52)

where the constants Cn and Dn can be determined from the initial conditions of the
shaft.

10.3.3 Natural Frequencies of a Shaft Fixed at One End and Attached to a
Torsional Spring at the Other

For a uniform circular shaft fixed at x = 0 and attached to a torsional spring of stiffness
kt at x = l as shown in Fig. 10.3, the boundary conditions are given by

θ(0, t) = 0 (10.53)

Mt(l, t) = GIp

∂θ

∂x
(l, t) = −ktθ(l, t) (10.54)

l

x

G, r, Ip

0 kt

Figure 10.3 Shaft fixed at x = 0 and a torsional spring attached at x = l.
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The free vibration solution of a shaft is given by Eq. (10.27):

θ(x, t) = 	(θ)T (t) ≡
(
A cos

ωx

c
+ B sin

ωx

c

)
(C cos ωt + D sin ωt) (10.55)

The use of the boundary condition of Eq. (10.53) in Eq. (10.55) gives

A = 0 (10.56)

and the solution can be expressed as

θ(x, t) = sin
ωx

c
(C cos ωt + D sin ωt) (10.57)

The use of the boundary condition of Eq. (10.54) in Eq. (10.57) yields the frequency
equation

ωGIp

c
cos

ωl

c
= −kt sin

ωl

c
(10.58)

Using Eq. (10.26), Eq. (10.58) can be rewritten as

α tan α = −β (10.59)

where

α = ωl

c
, β = ω2ρlIp

kt

(10.60)

The roots of the frequency equation (10.60) give the natural frequencies of vibration
of the shaft as

ωn = αnc

l
, n = 1, 2, . . . (10.61)

and the corresponding mode shapes as

	n(x) = Bn sin
ωnx

c
, n = 1, 2, . . . (10.62)

Finally, the free vibration solution of the shaft can be expressed as

θ(x, t) =
∞∑

n=1

sin
ωnx

c
(Cn cos ωnt + Dn sin ωnt) (10.63)

Several possible boundary conditions for the torsional vibration of a uniform shaft are
given in Table 10.1 along with the corresponding frequency equations and the mode
shapes.

Example 10.1 Determine the free torsional vibration solution of a uniform shaft car-
rying disks at both the ends as shown in Fig. 10.4.
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l

x

I1
I2

Figure 10.4 Shaft with disks at both ends, under torsional vibration.

SOLUTION The boundary conditions, with the inertial torques exerted by the disks,
can be expressed as

GJ
∂θ

∂x
(0, t) = I1

∂2θ

∂t2
(0, t) (E10.1.1)

GJ
∂θ

∂x
(l, t) = −I2

∂2θ

∂t2
(l, t) (E10.1.2)

Assuming the solution in the nth mode of vibration as

θn(x, t) = 	n(x)(Cn cos ωnt + Dn sin ωnt) (E10.1.3)

where

	n(x) = An cos
ωnx

c
+ Bn sin

ωnx

c
(E10.1.4)

the boundary conditions of Eqs. (E10.1.1) and (E10.1.2) can be rewritten as

GJ
d	n

dx
(0) = −I1ω

2
n	n(0)

or

GJ
ωn

c
Bn = −I1ω

2
nAn (E10.1.5)

and

GJ
d	n

dx
(l) = I2ω

2
n	n(l)

or

GJ
ωn

c

(
−An sin

ωnl

c
+ Bn cos

ωnl

c

)
= I2ω

2
n

(
An cos

ωnl

c
+ Bn sin

ωnl

c

)
(E10.1.6)

Equations (E10.1.5) and (E10.1.6) represent a system of two homogeneous algebraic
equations in the two unknown constants An and Bn, which can be rewritten in matrix
form as

 I1ω
2
n GJ

ωn

c

GJ
ωn

c
sin

ωnl

c
+ I2ω

2
n cos

ωnl

c
−GJ

ωn

c
cos

ωnl

c
+ I2ω

2
n sin

ωnl

c




·
{
An

Bn

}
=
{

0
0

}
(E10.1.7)
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The determinant of the coefficient matrix in Eq. (E10.1.7) is set equal to zero for a
nontrivial solution of An and Bn to obtain the frequency equation as

−I1ω
3
n

GJ

c
cos

ωnl

c
+ I1I2ω

4
n sin

ωnl

c
− G2J 2 ω2

n

c2
sin

ωnl

c
− GJ

ω3
n

c
I2 cos

ωnl

c
= 0

(E10.1.8)

Rearranging the terms, Eq.(E10.1.8) can be expressed as(
α2

n

β1β2
− 1

)
tan αn = αn

(
1

β1
+ 1

β2

)
(E10.1.9)

where

αn = ωnl

c
(E10.1.10)

β1 = ρJ l

I1
= I0

I1
(E10.1.11)

β2 = ρJ l

I2
= I0

I2
(E10.1.12)

Thus, the mode shapes or normal functions can be expressed, using Eq. (E10.1.5)
in (E10.1.3), as

	n(x) = An

(
cos

αnx

l
− αn

β1
sin

αnx

l

)
(E10.1.13)

Thus, the complete free vibration solution of the shaft with disks is given by

θ(x, t) =
∞∑

n=1

	n(x)(Cn cos ωnt + Dn sin ωnt)

=
∞∑

n=1

(
cos

αnx

l
− αn

β1
sin

αnx

l

)
(
˜
Cn cos ωnt +

˜
Dn sin ωnt) (E10.1.14)

where
˜
Cn and

˜
Dn denote new constants whose values can be determined from the

initial conditions specified.

Notes

1. If the mass moments of inertia of the disks I1 and I2 are large compared to the mass
moment of inertia of the shaft I0, β1 and β2 will be small and the frequency equation,
Eq. (E10.1.9), can be written as

αn tan αn ≈ β1 + β2 (E10.1.15)

2. If the mass moments of inertia of the disks I1 and I2 are small compared to the mass
moment of inertia of the shaft I0, β1 and β2 will be large and the frequency equation,
Eq. (E10.1.9), can be written as

tan αn≈0 (E10.1.16)
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x

x = 0 x = l

I2I1

kt2kt1

Figure 10.5 Shaft attached to a heavy disk and a torsional spring at each end.

Example 10.2 Derive the frequency equation of a uniform shaft attached to a heavy
disk and a torsional spring at each end as shown in Fig. 10.5.

SOLUTION The free vibration of the shaft in the ith mode is given by

θi(x, t) = 	i(x)(Ci cos ωit + Di sin ωit) (E10.2.1)

where

	i(x) = Ai cos
ωix

c
+ Bi sin

ωix

c
(E10.2.2)

The boundary conditions, considering the resulting torques of the torsional springs and
the inertial torques of the heavy disks, can be stated as

GIp

∂θ

∂x
(0, t) = I1

∂2θ

∂t2
(0, t) + kt1θ(0, t) (E10.2.3)

GIp

∂θ

∂x
(l, t) = −I2

∂2θ

∂t2
(l, t) − kt2θ(l, t) (E10.2.4)

Using Eq. (E10.2.1), Eqs. (E10.2.3) and (E10.2.4) can be expressed as

GIp

d	i(0)

dx
= −I1ω

2
i 	i(0) + kt1	i(0) (E10.2.5)

GIp

d	i(l)

dx
= I2ω

2
i 	i(l) − kt2	i(l) (E10.2.6)

Equation (E10.2.2) gives

d	i(x)

dx
= −Aiωi

c
sin

ωix

c
+ Biωi

c
cos

ωix

c
(E10.2.7)

In view of Eqs. (E10.2.2) and (E10.2.7), Eqs. (E10.2.5) and (E10.2.6) yield

Ai(I1ω
2
i − kt1) + Bi

GIpωi

c
= 0 (E10.2.8)

Ai

[
GIpωi

c
sin

ωil

c
+ (I2ω

2
i − kt2) cos

ωil

c

]

+ Bi

[
−GIpωi

c
cos

ωil

c
+ (I2ω

2
i − kt2) sin

ωil

c

]
= 0 (E10.2.9)
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For a nontrivial solution of Ai and Bi , the determinant of the coefficient matrix must
be equal to zero in Eqs. (E10.2.8) and (E10.2.9). This gives the desired frequency
equation as∣∣∣∣∣ I1ω

2
i − kt1

GIpωi

c

GIpωi

c
sin ωi l

c
+ (I2ω

2
i − kt2) cos ωi l

c
−GIpωi

c
cos ωi l

c
+ (I2ω

2
i − kt2) sin ωil

c

∣∣∣∣∣ = 0

(E10.2.10)

Example 10.3 Derive the orthogonality relationships for a shaft in torsional vibration.

SOLUTION
Case (i): Shaft with simple boundary conditions The eigenvalue problem of the
shaft, corresponding to two distinct natural frequencies of vibration ωi and ωj , can be
expressed as [from Eq. (10.28)]

	′′
i (x) + ω2

i

c2
	i(x) = 0 (E10.3.1)

	′′
j (x) + ω2

j

c2
	j(x) = 0 (E10.3.2)

where a prime denotes a derivative with respect to x. Multiply Eq. (E10.3.1) by 	j(x)

and Eq. (E10.3.2) by 	i(x) and integrate the resulting equations from 0 to l to obtain∫ l

0
	′′

i 	j dx + ω2
i

c2

∫ l

0
	i	j dx = 0 (E10.3.3)

∫ l

0
	′′

j	i dx + ω2
j

c2

∫ l

0
	i	j dx = 0 (E10.3.4)

Integrating the left-hand sides of Eqs. (E10.3.3) and (E10.3.4) by parts results in

	′
i	j

∣∣∣∣ l0 −
∫ l

0
	′

i	
′
j dx + ω2

i

c2

∫ l

0
	i	j dx = 0 (E10.3.5)

	′
j	i

∣∣∣∣ l0 −
∫ l

0
	′

i	
′
j dx + ω2

i

c2

∫ l

0
	i	j dx = 0 (E10.3.6)

If the ends of the shaft are either fixed (	i = 	j = 0) or free (	′
i = 	′

j = 0), the
first terms of Eqs. (E10.3.5) and (E10.3.6) will be zero. By subtracting the resulting
Equation (E10.3.6) from (E10.3.5), we obtain

(ω2
i − ω2

j )

∫ l

0
	i	j dx = 0 (E10.3.7)

For distinct eigenvalues, ωi �= ωj , and Eq. (E10.3.7) gives the orthogonality relation
for normal modes of the shaft as∫ l

0
	i	j dx = 0, i �= j (E10.3.8)
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In view of Eq. (E10.3.8), Eqs. (E10.3.5) and (E10.3.3) give∫ l

0
	′

i	
′
j dx = 0, i �= j (E10.3.9)

∫ l

0
	′′

i 	j dx = 0, i �= j (E10.3.10)

Equations (E10.3.8)–(E10.3.10) denote the desired orthogonality relationships for the
torsional vibration of a shaft.
Case (ii): Shaft with disks at both ends The eigenvalue problem of the shaft cor-
responding to two distinct natural frequencies of vibration can be expressed as [from
Eq. (10.28)]

GIp	′′
i (x) + ω2

i I0	i(x) = 0 (E10.3.11)

GIp	′′
j (x) + ω2

j I0	j(x) = 0 (E10.3.12)

Multiplying Eq. (E10.3.11) by 	j(x) and Eq. (E10.3.12) by 	i(x) and integrating over
the length of the shaft, we have

GIp

∫ l

0
	′′

i 	j dx = −I0ω
2
i

∫ l

0
	i	j dx (E10.3.13)

GIp

∫ l

0
	′′

j	i dx = −I0ω
2
j

∫ l

0
	i	j dx (E10.3.14)

The disk located at x = 0 and x = l must also be considered in developing the orthog-
onality relationship and hence the boundary conditions given by Eqs. (E10.2.5) and
(E10.2.6) (without the torsional springs) are written for modes i and j as

GIp	′
i0

= −I1ω
2
i 	i0 (E10.3.15)

GIp	′
j0

= −I1ω
2
j	j0 (E10.3.16)

GIp	′
il

= I2ω
2
i 	il (E10.3.17)

GIp	′
jl

= I2ω
2
j	jl

(E10.3.18)

where

	′
i0

= d	i

dx
(x = 0), 	′

il
= d	i

dx
(x = l) (E10.3.19)

Multiply Eqs. (E10.3.15)–(E10.3.19), respectively by 	j0 ,	i0 ,	jl
and 	il to obtain

GIp	′
i0
	j0 = −I1ω

2
i 	i0	j0 (E10.3.20)

GIp	′
j0

	i0 = −I1ω
2
j	i0	j0 (E10.3.21)

GIp	′
il
	jl

= I2ω
2
i 	il	jl

(E10.3.22)

GIp	′
jl
	il = I2ω

2
j	il	jl

(E10.3.23)
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Add Eqs. (E10.3.20) and (E10.3.21) to (E10.3.13) and subtract Eqs. (E10.3.22) and
(E10.3.23) from (E10.3.14) to produce the combined relationships

GIp

∫ l

0
	′′

i 	j dx + GIp	′
i0
	j0 + GIp	′

j0
	i0

= −I0ω
2
i

∫ l

0
	i	j dx − I1ω

2
i 	i0	j0 − I1ω

2
j	i0	j0 (E10.3.24)

GIp

∫ l

0
	′′

j	i dx − GIp	′
il
	jl

− GIp	′
jl
	il

= −I0ω
2
i

∫ l

0
	i	j dx − I2ω

2
i 	il	jl

− I2ω
2
j	il	jl

(E10.3.25)

Carrying out the integrations on the left-hand sides of Eqs. (E10.3.24) and (E10.3.25)
by parts, we obtain

GIp	′
il
	jl

− GIp

∫ l

0
	′

i	
′
j dx + GIp	′

j0
	i0

= −I0ω
2
i

∫ l

0
	i	j dx − I1ω

2
i 	i0	j0 − I1ω

2
j	i0	j0 (E10.3.26)

− GIp	′
j0

	i0 − GIp

∫ l

0
	′

j	
′
i dx − GIp	′

il
	jl

= −I0ω
2
j

∫ l

0
	i	j dx − I2ω

2
i 	il	jl

− I2ω
2
j	il	jl

(E10.3.27)

Subtract Eqs. (E10.3.20) and (E10.3.21) from (E10.3.13) to obtain

GIp

∫ l

0
	′′

i 	j dx − GIp	′
i0
	j0 − GIp	′

j0
	i0

= −I0ω
2
i

∫ l

0
	i	j dx + I1ω

2
i 	i0	j0 + I1ω

2
j	i0	j0 (E10.3.28)

Integration on the left-hand side of Eq. (E10.3.28) by parts results in

GIp	′
il
	jl

− GIp	′
i0
	j0 − GIp

∫ l

0
	′

i	
′
j dx − GIp	′

i0
	j0 − GIp	′

j0
	i0

= −I0ω
2
i

∫ l

0
	i	j dx + I1ω

2
i 	i0	j0 + I1ω

2
j	i0	j0 (E10.3.29)

Subtraction of Eq. (E10.3.29) from Eq. (E10.3.27) results in

2GIp(	′
i0
	j0 − 	′

il
	jl

)

= (ω2
i − ω2

j )I0

∫ l

0
	i	j dx − I1(ω

2
j + ω2

i )	i0	j0 − I2(ω
2
i + ω2

j )	il	jl

(E10.3.30)
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By using two times the result obtained by subtracting Eq. (E10.3.22) from (E10.3.20)
on the left-hand side of Eq. (E10.3.30), we obtain, after simplification,

(ω2
i − ω2

j )(I0

∫ l

0
	i	j dx + I1	i0	j0 + I2	il	jl

) = 0 (E10.3.31)

For ωi �= ωj , Eq. (E10.3.31) gives

I0

∫ l

0
	i	j dx + I1	i0	j0 + I2	il	jl

= 0 (E10.3.32)

Addition of Eqs. (E10.3.13) and (E10.3.20) and subtraction of Eq. (E10.3.22) from the
result yields

GIp

(∫ l

0
	′′

i 	j dx + 	′
i0
	j0 − 	′

il
	jl

)

= −ω2
i

(
I0

∫ l

0
	i	j dx + I1	i0	j0 + I2	il	jl

)
(E10.3.33)

In view of Eq. (E10.3.32), Eq. (E10.3.33) gives

GIp

(∫ l

0
	′′

i 	j dx + 	′
i0
	j0 − 	′

il
	jl

)
= 0 (E10.3.34)

Finally, the addition of Eqs. (E10.3.26) and (E10.3.27) gives

−2GIp

∫ l

0
	′

i	
′
j dx = −

(
ω2

i + ω2
j

)(
I0

∫ l

0
	i	j dx + I1	i0	j0 + I2	il	jl

)
(E10.3.35)

In view of Eq. (E10.3.32), Eq. (E10.3.35) reduces to

GIp

∫ l

0
	′

i	
′
j dx = 0 (E10.3.36)

Equations (E10.3.32), (E10.3.34) and (E10.3.36) denote the orthogonality relations for
torsional vibration of a uniform shaft with heavy disks at both ends.

10.4 FREE VIBRATION RESPONSE DUE TO INITIAL
CONDITIONS: MODAL ANALYSIS

The angular displacement of a shaft in torsional vibration can be expressed in terms of
normal modes 	i(x) using the expansion theorem, as

θ(x, t) =
∞∑
i=1

	i(x)ηi(t) (10.64)
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where ηi(t) is the ith generalized coordinate. Substituting Eq. (10.64) into Eq. (10.24),
we obtain

c2
∞∑
i=1

	′′
i (x)ηi(t) =

∞∑
i=1

	i(x)η̈i (t) (10.65)

where 	′′
i (x) = d2	i(x)/dx2 and η̈i(t) = d2ηi(t)/dt2. Multiplication of Eq. (10.65)

by 	j(x) and integration from 0 to l yields

c2
∞∑
i=1

∫ l

0
	′′

i (x)	j (x) dx ηi(t) =
∞∑
i=1

∫ ∞

0
	i(x)	j (x) dx η̈i(t) (10.66)

In view of the orthogonality relationships, Eqs. (E10.3.8) and (E10.3.10), Eq. (10.66)
reduces to

c2
∫ l

0
	′′

i (x)	i(x) dx ηi(t) =
∫ ∞

0
	2

i (x) dx η̈i(t)

or

−ω2
i

(∫ l

0
	2

i (x) dx

)
ηi(t) =

(∫ l

0
	2

i (x) dx

)
η̈i(t) (10.67)

Equation (10.67) yields

η̈i(t) + ω2
i ηi(t) = 0, i = 1, 2, . . . (10.68)

The solution of Eq. (10.68) is given by

ηi(t) = ηi0 cos ωit + η̇i0

ωi

sin ωit (10.69)

where ηi0 = ηi(t = 0) and η̇i0 = η̇i (t = 0) denote the initial values of the generalized
coordinate ηi(t) and the generalized velocity η̇i(t), respectively.

Initial Conditions If the initial conditions of the shaft are given by

θ(x, 0) = θ0(x) (10.70)

∂θ

∂t
(x, 0) = θ̇0(x) (10.71)

Eq. (10.64) gives

θ0(x) =
∞∑
i=1

	i(x)ηi0 (10.72)

θ̇0(x) =
∞∑
i=1

	i(x)η̇i0 (10.73)
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By multiplying Eqs. (10.72) and (10.73) by 	j(x) and integrating from 0 to l, we
obtain∫ l

0
θ0(x)	j (x) dx =

∞∑
i=1

ηi0

∫ l

0
	i(x)	j (x) dx = ηj0, j = 1, 2, . . . (10.74)

∫ l

0
θ̇0(x)	j (x) dx =

∞∑
i=1

η̇i0

∫ l

0
	i(x)	j (x) dx = η̇j0, j = 1, 2, . . . (10.75)

in view of the orthogonality of normal modes [Eq. (E10.3.8)]. Using the initial values
of ηj (t) and η̇j (t), Eqs. (10.74) and (10.75), the free vibration response of the shaft
can be determined from Eqs. (10.69) and (10.64):

θ(x, t) =
∞∑
i=1

	i(x)

(
ηi0 cos ωit + η̇i0

ωi

sin ωit

)
(10.76)

Example 10.4 Find the free vibration response of an unrestrained uniform shaft shown
in Fig. 10.6 when it is twisted by an equal and apposite angle a0 at the two ends at
t = 0 and then released.

SOLUTION The initial displacement of the shaft can be expressed as

θ(x, 0) = θ0(x) = a0

(
2
x

l
− 1

)
(E10.4.1)

which gives the angular deflections as −a0 at x = 0 and a0 at x = l. The initial velocity
can be assumed to be zero:

θ̇ (x, 0) = θ̇0 = 0 (E10.4.2)

The natural frequencies and the mode shapes of the shaft are given by Eqs. (10.50)
and (10.51):

ωi = iπ

l

√
G

ρ
, i = 1, 2, . . . (E10.4.3)

	i(x) = Ai cos
ωix

c
, i = 1, 2, . . . (E10.4.4)

The mode shapes are normalized as∫ l

0
	2

i (x) dx = A2
i

∫ l

0
cos2 ωix

c
dx = 1 (E10.4.5)

l

x
0

G, r, Ip

Figure 10.6 Unrestrained (free–free) shaft.
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which gives

Ai =
√

2

l
(E10.4.6)

and hence

	i(x) =
√

2

l
cos

ωix

c
, i = 1, 2, . . . (E10.4.7)

The initial values of the generalized displacement and generalized velocity can be
determined using Eqs. (10.74) and (10.75) as:

ηi0 =
∫ l

0
θ0(x)	i(x) dx (E10.4.8)

=
∫ l

0
a0

(
2
x

l
− 1

)√2

l
cos

ωix

c
dx = a0

√
2

l

∫ l

0

(
2
x

l
− 1

)
cos

ωix

c
dx (E10.4.9)

=

 −4

√
2la0

i2π2
, i = 1, 3, 5, . . .

0, i = 2, 4, 6, . . .

(E10.4.10)

η̇i0 =
∫ l

0
θ̇0(x)	i(x) dx = 0 (E10.4.11)

Thus, the free vibration response of the shaft is given by Eq. (10.76)

θ(x, t) = −8a0

π2

∞∑
i=1,3,5,...

cos
iπx

l
cos

iπct

l
(E10.4.12)

10.5 FORCED VIBRATION OF A UNIFORM SHAFT: MODAL
ANALYSIS

The equation of motion of a uniform shaft subjected to distributed external torque,
mt(x, t), is given by Eq. (10.23):

GIp

∂2θ

∂x2
(x, t) + mt(x, t) = I0

∂2θ

∂t2
(x, t) (10.77)

The solution of Eq. (10.77) using modal analysis is expressed as

θ(x, t) =
∞∑

n=1

	n(x)ηn(t) (10.78)

where 	n(x) is the nth normalized normal mode and ηn(t) is the nth generalized
coordinate. The normal modes 	n(x) are determined by solving the eigenvalue problem

GIp

d2	n(x)

dx2
+ I0ω

2
n	n(x) = 0 (10.79)
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by applying the boundary conditions of the shaft. By substituting Eq. (10.78) into
(10.77), we obtain

∞∑
n=1

GIp	′′
n(x)ηn(t) + mt(x, t) =

∞∑
n=1

I0	n(x)η̈n(t) (10.80)

where

	′′
n(x) = d2	n(x)

dx2
, η̈n(t) = d2ηn(t)

dt2
(10.81)

Using Eq. (10.79), Eq. (10.80) can be rewritten as

−
∞∑

n=1

I0ω
2
n	n(x)ηn(t) + mt(x, t) =

∞∑
n=1

I0	n(x)η̈n(t) (10.82)

Multiplication of Eq. (10.82) by 	m(x) and integration from 0 to l result in

− I0ω
2
nηn(t)

∞∑
n=1

	n(x)	m(x) dx +
∫ l

0
mt(x, t)	m(x) dx

= I0η̈n(t)

∫ l

0
	n(x)	m(x) dx (10.83)

In view of the orthogonality relationships, Eq. (E10.3.8), Eq. (10.83) reduces to

η̈n(t) + ω2
nηn(t) = Qn(t), n = 1, 2, . . . (10.84)

where the normal modes are assumed to satisfy the normalization condition∫ l

0
	2

n(x) dx = 1, n = 1, 2, . . . (10.85)

and Qn(t), called the generalized force in nth mode, is given by

Qn(t) = 1

I0

∫ l

0
mt(x, t)	n(x) dx (10.86)

The complete solution of Eq. (10.84) can be expressed as

ηn(t) = An cos ωnt + Bn sin ωnt + 1

ωn

∫ t

0
Qn(τ) sin ωn(t − τ) dτ (10.87)

where the constants An and Bn can be determined from the initial conditions of the
shaft. Thus, the forced vibration response of the shaft [i.e., the solution of Eq. (10.77)],
is given by

θ(x, t) =
∞∑

n=1

[
An cos ωnt + Bn sin ωnt + 1

ωn

∫ t

0
Qn(τ) sin ωn(t − τ) dτ

]
	n(x)

(10.88)
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The steady-state response of the shaft, without considering the effect of initial condi-
tions, can be obtained from Eq. (10.88), as

θ(x, t) =
∞∑

n=1

	n(x)

ωn

∫ t

0
Qn(τ) sin ωn(t − τ) dτ (10.89)

Note that if the shaft is unrestrained (free at both ends), the rigid-body displacement,
θ(t), is to be added to the solution given by Eq. (10.89). If Mt(t) denotes the torque
applied to the shaft, the rigid-body motion of the shaft, θ(t), can be determined from
the relation

I0
d2θ(t)

dt2
= Mt(t) (10.90)

where I0 = ρlIp denotes the mass moment of inertia of the shaft and d2θ(t)/dt2

indicates the acceleration of rigid-body motion.

Example 10.5 Find the steady-state response of a shaft, free at both ends, when
subjected to a torque Mt = a0t , where a0 is a constant at x = l.

SOLUTION The steady-state response of the shaft is given by Eq. (10.89):

θ(x, t) =
∞∑

n=1

	n(x)

ωn

∫ t

0
Qn(τ) sin ωn(t − τ) dτ (E10.5.1)

where the generalized force Qn(t) is given by Eq. (10.86):

Qn(t) = 1

I0

∫ l

0
mt(x, t)	n(x) dx (E10.5.2)

Since the applied torque is concentrated at x = l,mt (x, t) can be represented as

mt(x, t) = Mtδ(x − l) = a0tδ(x − l) (E10.5.3)

where δ is the Dirac delta function. Thus,

Qn(t) = 1

I0

∫ l

0
a0tδ(x − l)	n(x) dx = a0

I0
	n(l)t (E10.5.4)

For a free–free shaft, the natural frequencies and mode shapes are given by Eqs. (10.50)
and (10.51):

ωn = nπc

l
= nπ

l

√
G

ρ
, n = 1, 2, . . . (E10.5.5)

	n(x) = An cos
ωnx

c
, n = 1, 2, . . . (E10.5.6)

When 	n(x) is normalized as ∫ l

0
	2

n(x) dx = 1 (E10.5.7)
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we obtain

An =
√

2

l
, n = 1, 2, . . . (E10.5.8)

	n(x) =
√

2

l
cos

nπx

l
, n = 1, 2, . . . (E10.5.9)

The integral in Eq. (E10.5.1) can be evaluated as∫ t

0
Qn(τ) sin ωn(t − τ) dτ = a0

I0

√
2

l
cos nπ

∫ t

0
τ sin ωn(t − τ) dτ (E10.5.10)

= a0

I0ωn

√
2

l
cos nπ

(
t − 1

ωn

sin ωnt

)
(E10.5.11)

Thus, the steady-state response, given by Eq. (E10.5.1), becomes

θ(x, t) =
∞∑

n=1

1

ωn

√
2

l
cos

nπx

l

(
a0

I0ωn

√
2

l
cos nπ

)(
t − 1

ωn

sin ωnt

)
(E10.5.12)

=
∞∑

n=2,4,...

2a0

lI0ω2
n

cos
nπx

l

(
t − 1

ωn

sin ωnt

)

−
∞∑

n=1,3,...

2a0

lI0ω2
n

cos
nπx

l

(
t − 1

ωn

sin ωnt

)
(E10.5.13)

Since the shaft is unrestrained, the rigid-body motion is to be added to Eq. (E10.5.13).
Using Mt = a0t in Eq. (10.90) and integrating it twice with respect to t , we obtain

the rigid-body rotation of the shaft as

θ(t) = a0

I0

t3

6
(E10.5.14)

Thus, the complete torsional vibration response of the shaft becomes

θ(t) = a0

6I0
t3 + 2a0

lI0


 ∞∑

n=2,4,...

1

ω2
n

cos
nπx

l

(
t − 1

ωn

sin ωnt

)

−
∞∑

n=1,3,...

1

ω2
n

cos
nπx

l

(
t − 1

ωn

sin ωnt

) (E10.5.15)

10.6 TORSIONAL VIBRATION OF NONCIRCULAR SHAFTS:
SAINT-VENANT’S THEORY

For a shaft or bar of noncircular cross section subjected to torsion, the cross sections
do not simply rotate with respect to one another as in the case of a circular shaft, but
they are deformed, too. The originally plane cross sections of the shaft do not remain
plane but warp out of their own planes after twisting as shown in Fig. 10.7. Thus, the
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(b)

(a)

Figure 10.7 Shaft with rectangular cross section under torsion: (a) before deformation; (b)
after deformation.

points in the cross section undergo an axial displacement. A function ψ(y, z), known
as the warping function, is used to denote the axial displacement as

u = ψ(y, z)
∂θ

∂x
(10.91)

where ∂θ/∂x denotes the rate of twist along the shaft, assumed to be a constant. The
other components of displacement in the shaft are given by

v = −zθ(x, t) (10.92)

w = yθ(x, t) (10.93)

The strains are given by

εxx = ∂u

∂x
= 0 (since∂θ/∂x is a constant)

εyy = ∂v

∂y
= 0

εzz = ∂w

∂z
= 0

εxy = ∂u

∂y
+ ∂v

∂x
=
(

∂ψ

∂y
− z

)
∂θ

∂x
(10.94)

εxz = ∂u

∂z
+ ∂w

∂x
=
(

∂ψ

∂z
+ y

)
∂θ

∂x

εyz = ∂v

∂z
+ ∂w

∂y
= −θ + θ = 0
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The corresponding stresses can be determined as

σxx = σyy = σzz = σyz = 0, σxy = G

(
∂ψ

∂y
− z

)
∂θ

∂x
,

σxz = G

(
∂ψ

∂z
+ y

)
∂θ

∂x
(10.95)

The strain energy of the shaft is given by

π = 1

2

∫∫∫
V

(σxxεxx + σyyεyy + σzzεzz + σxyεxy + σxzεxz + σyzεyz) dV

= 1

2

∫ l

x=0

∫∫
A

G

[(
∂ψ

∂y
− z

)2

+
(

∂ψ

∂z
+ y

)2
](

∂θ

∂x

)2

dA dx (10.96)

Defining the torsional rigidity (C) of its noncircular section of the shaft as

C =
∫∫
A

G

[(
∂ψ

∂y
− z

)2

+
(

∂ψ

∂z
+ y

)2
]

dA (10.97)

the strain energy of the shaft can be expressed as

π = 1

2

∫ l

0
C

(
∂θ

∂x

)2

dx (10.98)

Neglecting the inertia due to axial motion, the kinetic energy of the shaft can be
written as in Eq. (10.11). The work done by the applied torque is given by Eq. (10.12).
Hamilton’s principle can be written as

δ

∫ t2

t1

∫ l

0



∫∫
A

1

2
G

[(
∂ψ

∂y
− z

)2

+
(

∂ψ

∂z
+ y

)2
]

dA



(

∂θ

∂x

)2

dx d t

−δ

∫ t2

t1

∫ l

0

1

2
ρIp

(
∂θ

∂t

)2

dx d t − δ

∫ t2

t1

∫ l

0
mtθ dx d t = 0 (10.99)

The first integral of Eq. (10.99) can be evaluated as

δ

∫ t2

t1

∫ l

0

∫∫
A

1

2
G

[(
∂ψ

∂y
− z

)2

+
(

∂ψ

∂z
+ y

)2
](

∂θ

∂x

)2

dA dx d t

=
∫ t2

t1

∫ l

0

∫∫
A

G

[(
∂ψ

∂y
− z

)2

+
(

∂ψ

∂z
+ y

)2
]

∂θ

∂x

∂(δθ)

∂x
dA dx d t

+
∫ t2

t1

∫ l

0

∫∫
A

G

(
∂θ

∂x

)2 [(
∂ψ

∂y
− z

)
∂(δψ)

∂y
+
(

∂ψ

∂z
+ y

)
∂(δψ)

∂z

]
dA dx d t

(10.100)
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The first integral term on the right-hand side of Eq. (10.100) can be expressed as [see
Eq. (10.97)]∫ t2

t1

∫ l

0
GC

∂θ

∂x

∂(δθ)

∂x
dx d t =

∫ t2

t1

[∫ l

0
− ∂

∂x

(
GC

∂θ

∂x

)
δθ + GC

∂θ

∂x
δθ |l0

]
d t

(10.101)

The second integral term on the right-hand side of Eq. (10.100) is set equal to zero
independently:

∫ t2

t1

∫ l

0

∫∫
A

G

(
∂θ

∂x

)2 [(
∂ψ

∂y
− z

)
∂(δψ)

∂y
+
(

∂ψ

∂z
+ y

)
∂(δψ)

∂z

]
dy dz dx d t = 0

(10.102)

Integrating Eq. (10.102) by parts, we obtain

∫ t2

t1

[∫ l

0
G

(
∂θ

∂x

)2

dx

]−
∫∫
A

∂

∂y

(
∂ψ

∂y
− z

)
δψ dy dz +

∫
ξ

(
∂ψ

∂y
− z

)
lyδψ dξ

−
∫∫
A

∂

∂z

(
∂ψ

∂z
+ y

)
δψ dy dz +

∫
ξ

(
∂ψ

∂z
+ y

)
lzδψ dξ


 d t = 0

(10.103)

where ξ is the bounding curve of the cross section and ly(lz) is the cosine of the angle
between the normal to the bounding curve and the y(z) direction. Equation (10.103)
yields the differential equation for the warping function ψ as(

∂2ψ

∂y2
+ ∂2ψ

∂z2

)
= ∇2ψ = 0 (10.104)

and the boundary condition on ψ as(
∂ψ

∂y
− z

)
ly +

(
∂ψ

∂z
+ y

)
lz = 0 (10.105)

Physically, Eq. (10.105) represents that the shear stress normal to the boundary must be
zero at every point on the boundary of the cross section of the shaft. When Eq. (10.101)
is combined with the second and third integrals of Eq. (10.99), it leads to the equation
of motion as

ρIp

∂2θ(x, t)

∂t2
= ∂

∂x

(
C

∂θ(x, t)

∂x

)
+ mt(x, t) (10.106)

and the boundary conditions on θ as

C
∂θ

∂x
δθ |l0 = 0 (10.107)



10.7 Torsional Vibration of Noncircular Shafts, Including Axial Inertia 299

10.7 TORSIONAL VIBRATION OF NONCIRCULAR SHAFTS,
INCLUDING AXIAL INERTIA

Love included the inertia due to the axial motion caused by the warping of the cross
section in deriving the equation of motion of a shaft in torsional vibration [4, 10]. In
this case, the kinetic energy of the shaft is given by

T = 1

2

∫ l

0

∫∫
A

ρ

[
ψ2(y, z)

(
∂2θ

∂t∂x

)2

+ z2
(

∂θ

∂t

)2

+ y2
(

∂θ

∂t

)2
]

dA dx

= I1 + I2 (10.108)

where

I1 = 1

2

∫ l

0

∫∫
A

ρψ2
(

∂2θ

∂t∂x

)2

dA dx (10.109)

I2 = 1

2

∫ l

0
ρIp

(
∂θ

∂t

)2

dx (10.110)

Note that I1 denotes the axial inertia term. The variation associated with I1 in Hamil-
ton’s principle leads to

δ

∫ t2

t1

I1 d t =
∫ t2

t1

δI1 d t

=
∫ t2

t1

∫ l

0
ρ

(∫∫
A

ψ2 dA

)
∂2θ

∂t∂x

∂2(δθ)

∂t∂x
dx d t

+
∫ t2

t1

∫ l

0
ρ

(
∂2θ

∂t∂x

)2

∫∫

A

ψδψ dA


 dx d t (10.111)

Denoting

Iψ =
∫∫
A

ψ2 dA (10.112)

Iθ =
∫ l

0
ρ

(
∂2θ

∂t∂x

)2

dx (10.113)

the integrals in Eq. (10.111) can be evaluated to obtain

δ

∫ t2

t1

I1 d t = −
∫ t2

t1

∫ l

0

∂

∂t

(
ρIψ

∂2θ

∂t∂x

)
∂(δθ)

∂x
dx d t +

∫ t2

t1

Iθ

∫∫
A

ψδψ dA d t

=
∫ t2

t1

∫ l

0

∂2

∂x∂t

(
ρIψ

∂2θ

∂t∂x

)
δθ dx d t −

∫ t2

t1

∂

∂t

(
ρIψ

∂2θ

∂t∂x

)
δθ |l0 d t

+
∫ t2

t1

Iθ

∫∫
A

ψδψ dA d t (10.114)
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The first, second, and third terms on the right-hand side of Eq. (10.114) contribute to
the equation of motion, Eq. (10.106), the boundary conditions on θ , Eq. (10.107), and
to the differential equation for ψ , Eq. (10.104), respectively. The new equations are
given by

ρIp

∂2θ

∂t2
= ∂2

∂t ∂x

(
ρIψ

∂2θ

∂x ∂t

)
+ ∂

∂x

(
C

∂θ

∂x

)
+ mt (10.115)

(
C

∂θ

∂x
+ ρIψ

∂3θ

∂x ∂t2

)
δθ |l0 = 0 (10.116)

∂2ψ

∂y2
+ ∂2ψ

∂z2
+ Iθ

Ig

ψ = 0 (10.117)

(
∂ψ

∂y
− z

)
ly +

(
∂ψ

∂z
+ y

)
lz = 0 (10.118)

where

Ig =
∫ l

0
G

(
∂θ

∂x

)2

dx (10.119)

10.8 TORSIONAL VIBRATION OF NONCIRCULAR SHAFTS:
TIMOSHENKO–GERE THEORY

In this theory also, the displacement components of a point in the cross section are
assumed to be [4, 11, 17]

u = ψ(y, z)
∂θ

∂x
(x, t) (10.120)

v = −zθ(x, t) (10.121)

w = yθ(x, t) (10.122)

where ∂θ/∂x is not assumed to be a constant. The components of strains can be obtained
as

εxx = ∂u

∂x
= ψ(y, z)

∂2θ

∂x2
(10.123)

εyy = ∂v

∂y
= 0 (10.124)

εzz = ∂w

∂z
= 0 (10.125)

εxy = ∂v

∂x
+ ∂u

∂y
=
(

∂ψ

∂y
− z

)
∂θ

∂x
(10.126)

εxz = ∂u

∂z
+ ∂w

∂x
=
(

∂ψ

∂z
+ y

)
∂θ

∂x
(10.127)

εyz = ∂v

∂z
+ ∂w

∂y
= −θ + θ = 0 (10.128)
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The component of stress are given by




σxx

σyy

σzz

σxy

σyz

σzx




= E

(1 + ν)(1 − 2ν)




1 − v ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − v 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2







εxx

εyy

εzz

εxy

εyz

εzx




(10.129)

that is,

σxx = E(1 − ν)ψ

(1 + ν)(1 − 2ν)

∂2θ

∂x2
≈ Eψ

∂2θ

∂x2
(10.130)

σyy = σzz = Eνψ

(1 + ν)(1 − 2ν)

∂2θ

∂x2
≈ 0 (10.131)

σxy = E

(1 + ν)(1 − 2ν)

1 − 2ν

2

(
∂ψ

∂y
− z

)
∂θ

∂x
= G

(
∂ψ

∂y
− z

)
∂θ

∂x
(10.132)

σyz = 0 (10.133)

σzx = E

(1 + ν)(1 − 2ν)

1 − 2ν

2

(
∂ψ

∂z
+ y

)
∂θ

∂x
= G

(
∂ψ

∂z
+ y

)
∂θ

∂x
(10.134)

Note that the effect of Poisson’s ratio is neglected in Eqs. (10.130) and (10.131). The
strain energy of the shaft can be determined as

π = 1

2

∫∫∫
V

(σxxεxx + σyyεyy + σzzεzz + σxyεxy + σxzεxz + σyzεyz) dV

= I1 + I2 (10.135)

where

I1 = 1

2

∫ l

x=0

∫∫
A

E

(
ψ

∂2θ

∂x2

)2

dA dx (10.136)

I2 = 1

2

∫ l

x=0

∫∫
A

{
G

[(
∂ψ

∂y
− z

)
∂θ

∂x

]2

+ G

[(
∂ψ

∂z
+ y

)
∂θ

∂x

]2
}

dA dx (10.137)

The variation of the integral I1 can be evaluated as

δI1 = δ


1

2

∫ t2

t1

∫ l

x=0

∫∫
A

Eψ2
(

∂2θ

∂x2

)2

dA dx




=
∫ t2

t1

∫ l

x=0

∫∫
A

Eψδψ

(
∂2θ

∂x2

)2

dA dx d t
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+
∫ t2

t1

∫ l

x=0

∫∫
A

Eψ2 ∂2θ

∂x2

∂2(δθ)

∂x2
dA dx d t

=
∫ t2

t1

∫ l

x=0

∫∫
A

Eψδψ

(
∂2θ

∂x2

)2

dA dx d t +
∫ t2

t1

∫ l

x=0
EIψ

∂2θ

∂x2

∂2(δθ)

∂x2
dx d t

(10.138)

where

Iψ =
∫∫
A

ψ2 dA (10.139)

When the second term on the right-hand side of Eq. (10.138) is integrated by parts, we
obtain

δI1 =
∫ t2

t1

∫ l

x=0

∫∫
A

Eψδψ

(
∂2θ

∂x2

)2

dA dx d t +
∫ t2

t1

[
EIψ

∂2θ

∂x2
δ

(
∂θ

∂x

) ∣∣∣∣ l0
− ∂

∂x

(
EIψ

∂2θ

∂x2

)
δθ

∣∣∣∣ l0 +
∫ l

0

∂2

∂x2

(
EIψ

∂2θ

∂x2

)
δθ dx

]
d t (10.140)

The variation of the integral I2 can be evaluated as indicated in Eqs. (10.100), (10.101)
and (10.103). The expressions for the kinetic energy and the work done by the applied
torque are given by Eqs. (10.108) and (10.12), respectively, and hence their variations
can be evaluated as indicated earlier. The application of Hamilton’s principle leads to
the equation of motion for θ(x, t):

ρIp

∂2θ

∂t2
− ∂2

∂t ∂x

(
ρIψ

∂2θ

∂x ∂t

)
− ∂

∂x

(
C

∂θ

∂x

)
+ ∂2

∂x2

(
EIψ

∂2θ

∂x2

)
= mt(x, t)

(10.141)

and the boundary conditions[
C

∂θ

∂x
+ ρIψ

∂3θ

∂t2 ∂x
− ∂

∂x

(
EIψ

∂2θ

∂x2

)]
δθ

∣∣∣∣ l0 = 0 (10.142)

EIψ

∂2θ

∂x2
δ

(
∂θ

∂x

) ∣∣∣∣ l0 = 0 (10.143)

The differential equation for the warping function ψ becomes∫ l

0
G

(
∂θ

∂x

)2

dx

(
∂2ψ

∂y2
+ ∂2ψ

∂z2

)
+
[∫ l

0
ρ

(
∂2θ

∂x ∂t

)2

dx −
∫ l

0
E

(
∂2θ

∂x2

)2

dx

]
ψ = 0

(10.144)

with the boundary condition on ψ given by(
∂ψ

∂y
− z

)
ly +

(
∂ψ

∂z
+ y

)
lz = 0 (10.145)
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10.9 TORSIONAL RIGIDITY OF NONCIRCULAR SHAFTS

It is necessary to find the torsional rigidity C of the shaft in order to find the solution of
the torsional vibration problem, Eq. (10.106). The torsional rigidity can be determined
by solving the Laplace equation, Eq. (10.104):

∇2ψ = ∂2ψ

∂y2
+ ∂2ψ

∂z2
= 0 (10.146)

subject to the boundary condition, Eq. (10.105):(
∂ψ

∂y
− z

)
ly +

(
∂ψ

∂z
+ y

)
lz = 0 (10.147)

which is equivalent to

σxyly + σxzlz = 0 (10.148)

Since the solution of Eq. (10.146), for the warping function ψ , subject to the boundary
condition of Eq. (10.147) or (10.148) is relatively more difficult, we use an alternative
procedure which leads to a differential equation similar to Eq. (10.146), and a boundary
condition that is much simpler in form than Eq. (10.147) or (10.148). For this we
express the stresses σxy and σxz in terms of a function �(y, z), known as the Prandtl
stress function, as [3, 7]

σxy = ∂�

∂z
, σxz = −∂�

∂y
(10.149)

The stress field corresponding to Saint-Venant’s theory, Eq. (10.95), along with
Eq. (10.149), satisfies the equilibrium equations:

∂σxx

∂x
+ ∂σxy

∂y
+ ∂σxz

∂z
= 0

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σyz

∂z
= 0

∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
= 0 (10.150)

By equating the corresponding expressions of σxy and σxz given by Eqs. (10.95) and
(10.149), we obtain

G
∂θ

∂x

(
∂ψ

∂y
− z

)
= ∂�

∂z
(10.151)

G
∂θ

∂x

(
∂ψ

∂z
+ y

)
= −∂�

∂y
(10.152)

Differentiating Eq. (10.151) with respect to z and Eq. (10.152) with respect to y and
subtracting the resulting equations one from the other leads to the Poisson equation:

∇2� = ∂2�

∂y2
+ ∂2�

∂z2
= −2Gβ (10.153)
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where

∂θ

∂x
= β (10.154)

is assumed to be a constant. The condition to be satisfied by the stress function � on
the boundary can be derived by considering a small element of the rod at the boundary
as shown in Fig. 10.8. The component of shear stress along the normal direction n can
be expressed as

σxn = σxyly + σxzlz = 0 (10.155)

since the boundary is stress-free. In Eq. (10.155), the direction cosines are given by

ly = cos α = dz

d t
, lz = sin α = −dy

d t
(10.156)

where t denotes the tangential direction. Using Eq. (10.149), the boundary condition,
Eq. (10.155), can be written as

∂�

∂z
ly − ∂�

∂y
lz = 0 (10.157)

The rate of change of � along the tangential direction at the boundary (t) can be
expressed as

d�

d t
= ∂�

∂y

dy

d t
+ ∂�

∂z

dz

d t
= −∂�

∂y
sin α + ∂�

∂z
cos α = 0 (10.158)

using Eqs. (10.156) and (10.157). Equation (10.158) indicates that the stress function
� is a constant on the boundary of the cross section of the rod. Since the magnitude

(a)

n

y

z

t

sxz

sxy

a

(b)

−dy

dz

t

dt

n

a

a

Figure 10.8 Boundary condition on the stresses.
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of this constant does not affect the stress, which contains only derivatives of �, we
choose, for convenience,

� = 0 (10.159)

to be the boundary condition.
Next we derive a relation between the unknown angle β(angle of twist per unit

length) and the torque (Mt ) acting on the rod. For this, consider the cross section of
the twisted rod as shown in Fig. 10.9. The moment about the x axis of all the forces
acting on a small elemental area dA located at the point (y,z) is given by

(σxz dA)y − (σxy dA)z (10.160)

The resulting moment can be found by integrating the expression in Eq. (10.160) over
the entire area of cross section of the bar as

Mt =
∫∫
A

(σxzy − σxyz) dA = −
∫∫
A

(
∂�

∂y
y + ∂�

∂z
z

)
dA (10.161)

Each term under the integral sign in Eq. (10.161) can be integrated by parts to obtain
(see Fig. 10.9):∫∫

A

∂�

∂y
y dA =

∫∫
A

∂�

∂y
y dy dz =

∫
dz

∫ P2

P1

∂�

∂y
dy

=
∫

dz

(
�y

∣∣∣∣P4

P3
−
∫ P2

P1

� dy

)
= −

∫
dz

∫ P2

P1

� dy = −
∫∫
A

� dA

(10.162)

sxy

sxy

y

z

y

z

dA
(y,z)

P2

P3

P1

P4

Figure 10.9 Forces acting on the cross section of a rod under torsion.
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a a

b

b

y

z

Figure 10.10 Elliptic cross section of a rod.

since � = 0 at the points P1 and P2. Similarly,∫∫
A

∂�

∂z
z dA =

∫∫
A

∂�

∂z
z dy dz =

∫
dy

∫ P4

P3

∂�

∂z
z dz

=
∫

dy

(
�z

∣∣∣∣P4

P3
−
∫ P4

P3

� dz

)
= −

∫∫
A

� dA (10.163)

Thus, the torque on the cross section (Mt ) is given by

Mt = 2
∫∫
A

� dA (10.164)

The function � satisfies the linear differential (Poisson) equation given by Eq. (10.153)
and depends linearly on Gβ, so that Eq. (10.164) produces an equation of the form
Mt = GJβ = Cβ, where J is called the torsional constant (J is the polar moment of
inertia of the cross section for a circular section) and C is called the torsional rigidity.
Thus, Eq. (10.164) can be used to find the torsional rigidity (C).

Note There are very few cross-sectional shapes for which Eq. (10.164) can be
evaluated in closed form to find an exact solution of the torsion problem. The following
example indicates the procedure of finding an exact closed-form solution for the torsion
problem for an elliptic cross section.

Example 10.6 Find the torsional rigidity of a rod with an elliptic cross section
(Fig. 10.10).

SOLUTION The equation of the boundary of the ellipse can be expressed as

f (y, z) = 1 − y2

a2
− z2

b2
= 0 (E10.6.1)

Noting that ∇2f is a constant, we take the stress function �(y, z) as

�(y, z) = c

(
1 − y2

a2
− z2

b2

)
(E10.6.2)
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where c is a constant. Using Eq. (E10.6.2) in Eq. (10.153), we obtain

∇2� = ∂2�

∂y2
+ ∂2�

∂z2
= −2c

(
1

a2
+ 1

b2

)
= −2Gβ (E10.6.3)

If we choose

c = Gβa2b2

a2 + b2
(E10.6.4)

the function � satisfies not only the differential equation, Eq. (10.153), but also the
boundary condition, Eq. (10.159). The stresses σxy and σxz become

σxy = ∂�

∂z
= − 2Gβa2

(a2 + b2)
z (E10.6.5)

σxz = −∂�

∂y
= 2Gβb2

(a2 + b2)
y (E10.6.6)

The torque (Mt ) can be obtained as

Mt =
∫∫
A

(σxzy − σxyz) dA = 2Gβ

a2 + b2

∫∫
A

(y2b2 + z2a2) dA (E10.6.7)

Noting that ∫∫
A

y2 dA =
∫∫
A

y2 dy dz = Iz = 1

4
πba3 (E10.6.8)

∫∫
A

z2 dA =
∫∫
A

z2 dz dy = Iy = 1

4
πab3 (E10.6.9)

Eq. (E10.6.7) yields

Mt = πa3b3

a2 + b2
Gβ (E10.6.10)

When Mt is expressed as

Mt = GJβ = Cβ (E10.6.11)

Eq. (E10.6.10) gives the torsional constant J as

J = πa3b3

a2 + b2
(E10.6.12)

and the torsional rigidity C as

C = πa3b3

a2 + b2
G = Mt

β
(E10.6.13)

The rate of twist can be expressed in terms of the torque as

β = Mt

C
= Mt(a

2 + b2)

Gπa3b3
(E10.6.14)
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10.10 PRANDTL’S MEMBRANE ANALOGY

Prandtl observed that the differential equation for the stress function, Eq. (10.153), is
of the same form as the equation that describes the deflection of a membrane or soap
film under transverse pressure [see Eq. (13.1) without the right-hand-side inertia term].
This analogy between the torsion and membrane problems has been used in determining
the torsional rigidity of rods with noncircular cross sections experimentally [3, 4]. An
actual experiment with a soap bubble would consist of an airtight box with a hole cut
on one side (Fig. 10.11). The shape of the hole is the same as the cross section of
the rod in torsion. First, a soap film is created over the hole. Then air under pressure
(p) is pumped into the box. This causes the soap film to deflect transversely as shown
in Fig. 10.11. If P denotes the uniform tension in the soap film, the small transverse
deflection of the soap film (w) is governed by the equation [see Eq. (13.1) without the
right-hand-side inertia term]

P

(
∂2w

∂y2
+ ∂2w

∂z2

)
+ p = 0 (10.165)

or

∇2w = − p

P
(10.166)

in the hole region (cross section) and

w = 0 (10.167)

on the boundary of the hole (cross section). Note that the differential equation and the
boundary condition, Eqs. (10.166) and (10.167), are of precisely the same form as for
the stress function �, namely, Eqs. (10.153) and (10.159):

∇2� = −2Gβ (10.168)

in the interior, and

� = 0 (10.169)

on the boundary. Thus, the soap bubble represents the surface of the stress function
with

w

p/P
= �

2Gβ
(10.170)

Air pressure

z
y

Deflected soap film
Hole in box with shape
similar to the cross section
of the rod in torsion

Figure 10.11 Soap film for the membrane analogy.
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or

� =
˜
Cw (10.171)

where
˜
C denotes a proportionality constant:

˜
C = 2GβP

p
(10.172)

The analogous quantities in the two cases are given in Table 10.2.
The membrane analogy provides more than an experimental technique for the solu-

tion of torsion problem. It also serves as the basis for obtaining approximate analytical
solutions for rods with narrow cross sections and open thin-walled cross sections.
Table 10.3 gives the values of the maximum shear stress and the angle of twist per
unit length for some commonly encountered cross-sectional shapes of rods.

Example 10.7 Determine the torsional rigidity of a rod with a rectangular cross section
as shown in Fig. 10.12.

SOLUTION We seek a solution of the membrane equation, (10.166), and use it for
the stress function, Eq. (10.171). The governing equation for the deflection of a mem-
brane is

∂2w

∂y2
+ ∂2w

∂z2
= − p

P
, −a ≤ y ≤ a,−b ≤ z ≤ b (E10.7.1)

Table 10.2 Prandtl’s Membrane Analogy

Soap bubble (membrane) problem Torsion problem

w �
1
P

G

p 2β

− ∂w
∂z

, ∂w
∂y

σxy, σxz

2 (volume under bubble) Mt

b
MtMt

O

b

x

a
al

y

z

Figure 10.12 Rod with a rectangular cross section.
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Table 10.3 Torsional Properties of Shafts with Various Cross Sections

Cross section
Angle of twist per

unit length, θ

Maximum shear
stress, τmax

1. Solid circular shaft

2R

tmax
2T

πGR4

2T

πR3

2. Thick-walled tube

R0
tmax

Ri

T = torque
G = shear modulus

2T

πG(R4
0 − R4

i )

2T R0

π(R4
0 − R4

i )

3. Thin-walled tube

R

ttmax

T

2πGR3t

T

2πR2t

4. Solid elliptic shaft

2b

2a

tmax

tmax

x

yx
a

y
b

+ − 1 = 0
2 2

(a2 + b2)T

πGa3b3

2T

πab2

5. Hollow elliptic tube

2b

2a
tmax

tmax
t

√
2(a2 + b2)T

4πGa2b2t

T

2πabt

(continued on next page)
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Table 10.3 (continued )

Cross section
Angle of twist per

unit length, θ

Maximum shear
stress, τmax

6. Solid square shaft

tmax

tmax

a

a
7.092T

Ga4

4.808T

a3

7. Solid rectangular shaft
T

αGab3

tmax

tmax

a

b

a

b
α β

1.0 0.141 0.208
2.0 0.229 0.246
3.0 0.263 0.267
5.0 0.291 0.292

10.0 0.312 0.312
∞ 0.333 0.333

T

βab2

8. Hollow rectangular shaft

a

b

t1

t1

t2 t2

tmax 1

tmax 2

(at2 + bt1)T

2Gt1t2a2b2

τmax 1 = T

2abt1

τmax 2 = T

2abt2

9. Solid equilateral triangular shaft

tmax

tmax

tmax a

2a 3 26T

Ga4

13T

a3

10. Thin-walled tube
T S

4GÃ2t
t

S = circumference of the centerline
of the tube (midwall perimeters)

Ã = area enclosed by the midwall
perimeters

T

2Ãt
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and the boundary conditions are

w(−a, z) = w(a, z) = 0, −b ≤ z ≤ b (E10.7.2)

w(y, −b) = w(y, b) = 0, −a ≤ y ≤ a (E10.7.3)

The deflection shape, w(y, z), that satisfies the boundary conditions at y = ∓a,
Eq. (E10.7.2), can be expressed as

w(y, z) =
∞∑

i=1,3,5,...

ai cos
iπy

2a
Zi(z) (E10.7.4)

where ai is a constant and Zi(z) is a function of z to be determined. Substituting
Eq. (E10.7.4) into Eq. (E10.7.1), we obtain

∞∑
i=1,3,5,...

ai cos
iπy

2a

(
− i2π2

4a2
Zi + d2Zi

dz2

)
= − p

P
(E10.7.5)

When the relation

∞∑
i=1,3,5,...

4

iπ
(−1)(i−1)/2 cos

iπy

2a
= 1 (E10.7.6)

is introduced on the right-hand side of Eq. (E10.7.5), the equation yields

d2Zi

dz2
− i2π2

4a2
Zi = − p

P

4

iπai

(−1)(i−1)/2 (E10.7.7)

The solution of this second-order differential equation can be expressed as

Zi(z) = Ai cosh
iπz

2a
+ Bi sinh

iπz

2a
+ 16pa2

P i2π2ai

(−1)(i−1)/2 (E10.7.8)

where Ai and Bi are constants to be determined from the boundary conditions at
z = ∓b. Using the condition Zi(z = −b) = 0 in Eq. (E10.7.8) yields Bi = 0, and the
condition Zi(z = b) = 0 leads to

Ai = 16pa2

P i2π2ai

1

cosh(iπb/2a)
(E10.7.9)

Thus, the function Zi(z) and the deflection of the rectangular membrane can be
expressed as

Z(z) = 16pa2

P i2π2ai

(−1)(i−1)/2
[

1 − cosh(iπz/2a)

cosh(iπb/2a)

]
(E10.7.10)

w(y, z) = 16pa2

Pπ2

∞∑
i=1,3,5,...

1

i2
(−1)(i−1)/2

[
1 − cosh(iπz/2a)

cosh(iπb/2a)

]
cos

iπy

2a

(E10.7.11)



10.11 Recent Contributions 313

Equations (E10.7.11), (10.171), and (10.172) yield the stress function �(y, z) as

�(y, z) = 32Gβa2

π2

∞∑
i=1,3,5,...

1

i2
(−1)(i−1)/2

[
1 − cosh(iπz/2a)

cosh(iπb/2a)

]
cos

iπy

2a
(E10.7.12)

The torque on the rod, Mt , can be determined as [see Eq. (10.164)]

Mt = 2
∫∫
A

� dA

= 64Gβa2

π2

∫ a

−a

∫ b

−b

∞∑
i=1,3,5,...

1

i2
(−1)(i−1)/2

[
1 − cosh(iπz/2a)

cosh(iπb/2a)

]
cos

iπy

2a
dy dz

= 32Gβ(2a)3(2b)

π4

∞∑
i=1,3,5,...

1

i4
− 64Gβ(2a)4

π5

∞∑
i=1,3,5,...

1

i5
tanh

iπb

2a
(E10.7.13)

Using the identity

∞∑
i=1,3,5,...

1

i4
= π4

96
(E10.7.14)

Eq. (E10.7.13) can be rewritten as

Mt = 1

3
Gβ(2a)3(2b)


1 − 192a

π5b

∞∑
i=1,3,5,...

1

i5
tanh

iπb

2a


 (E10.7.15)

The torsional rigidity of the rectangular cross section (C) can be found as

C = Mt

β
= kG(2a)3(2b) (E10.7.16)

where

k = 1

3


1 − 192

π5

a

b

∞∑
i=1,3,5,...

1

i5
tanh iπ

b

a


 (E10.7.17)

For any given rectangular cross section, the ratio b/a is known and hence the series
in Eq. (E10.7.17) can be evaluated to find the value of k to any desired accuracy. The
values of k for a range of b/a are given in Table 10.4.

10.11 RECENT CONTRIBUTIONS

The torsional vibration of tapered rods with rectangular cross section, pre-twisted uni-
form rods, and pre-twisted tapered rods is presented by Rao [4]. In addition, several
refined theories of torsional vibration of rods are also presented in Ref. [4].
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Table 10.4 Values of k in
Eq. (E10.7.16)

b/a k b/a k

1.0 0.141 4.0 0.281
1.5 0.196 5.0 0.291
2.0 0.229 6.0 0.299
2.5 0.249 10.0 0.312
3.0 0.263 ∞ 0.333

Torsional Vibration of Bars The torsional vibration of beams with a rectangular cross
section is presented by Vet [8]. An overview of the vibration problems associated with
turbomachinery is given by Vance [9]. The free vibration coupling of bending and
torsion of a uniform spinning beam was studied by Filipich and Rosales [16]. The
exact solution was presented and a numerical example was presented to point out the
influence of whole coupling.

Torsional Vibration of Thin-Walled Beams The torsional vibration of beams of thin-
walled open section has been studied by Gere [11]. The behavior of torsion of bars
with warping restraint is studied using Hamilton’s principle by Lo and Goulard [12].

Vibration of a Cracked Rotor The coupling between longitudinal, lateral, and tor-
sional vibrations of a cracked rotor was studied by Darpe et al. [13]. In this work, the
stiffness matrix of a Timoshenko beam element was modified to account for the effect
of a crack and all six degrees of freedom per node were considered.

Torsional Vibration Control The torsional vibration control of a shaft through active
constrained layer damping treatments has been studied by Shen et al. [14]. The equation
of motion of the arrangement, consisting of piezoelectric and viscoelastic layers, is
derived and its stability and controllability are discussed.

Torsional Vibration of Machinery Drives The startup torque in an electrical induction
motor can create problems when the motor is connected to mechanical loads such as
fans and pumps through shafts. The interrelationship between the electric motor and
the mechanical system, which is effectively a multimass oscillatory system, has been
examined by Ran et al. [15].
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PROBLEMS
10.1 A shaft with a uniform circular cross section of
diameter d and length l carries a heavy disk of mass
moment of inertia I1 at the center. Find the first three
natural frequencies and the corresponding modes of the
shaft in torsional vibration. Assume that the shaft is fixed
at both the ends.

10.2 A shaft with a uniform circular cross section of
diameter d and length l carries a heavy disk of mass
moment of inertia I1 at the center. If both ends of the
shaft are fixed, determine the free vibration response
of the system when the disk is given an initial angular
displacement of θ0 and a zero initial angular velocity.

10.3 A uniform shaft supported at x = 0 and rotating
at an angular velocity � is suddenly stopped at the end
x = 0. If the end x = l is free and the cross section of
the shaft is tubular with inner and outer radii ri and ro,

respectively, find the subsequent time variation of the
angular displacement of the shaft.

10.4 A uniform shaft of length l is fixed at x = 0 and
free at x = l. Find the forced vibration response of the
shaft if a torque Mt(t) = Mt0 cos �t is applied at the free
end. Assume the initial conditions of the shaft to be zero.

10.5 Find the first three natural frequencies of torsional
vibration of a shaft of length 1 m and diameter 20 mm
for the following end conditions:

(a) Both ends are fixed.

(b) One end is fixed and the other end is free.

(c) Both ends are free.

Material of the shaft: steel with ρ = 7800 kg/m3 and
G = 0.8 × 1011 N/m2.
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10.6 Solve Problem 10.5 by assuming the material
of the shaft to be aluminum with ρ = 2700 kg/m3 and
G = 0.26 × 1011 N/m2.

10.7 Consider two shafts each of length l with thin-
walled tubular sections, one in the form of a circle
and the other in the form of a square, as shown in
Fig. 10.13.

t

t

Figure 10.13

Assuming the same wall thickness of the tubes and the
same total area of the region occupied by the mate-
rial (material area), compare the fundamental natural
frequencies of torsional vibration of the shafts.

10.8 Solve Problem 10.7 by assuming the tube wall
thickness and the interior cavity areas of the tubes to be
the same.

10.9 Determine the velocity of propagation of tor-
sional waves in the drive shaft of an automobile for the
following data:

(a) Cross section: circular with diameter 100 mm; mate-
rial: steel with ρ = 7800 kg/m3 and G = 0.8 × 1011

N/m2.

(b) Cross section: hollow with inner diameter 80 mm
and outer diameter 120 mm; material: aluminum
with ρ = 2700 kg/m3 and G = 0.26 × 1011 N/m2.

10.10 Find the first three natural frequencies of torsional
vibration of a shaft fixed at x = 0 and a disk of mass
moment of inertia I1 = 20 kg·m2/rad attached at x = l.
Shaft: uniform circular cross section of diameter
20 mm and length 1 m; material of shaft: steel with
ρ = 7800 kg/m3 and G = 0.8 × 1011 N/m2.

10.11 Find the fundamental natural frequency of tor-
sional vibration of the shaft described in Problem 10.10
using a single-degree-of-freedom model.

10.12 Find the free torsional vibration response of a
uniform shaft of length l subjected to an initial angular
displacement θ(x, 0) = θ0(x/l) and an initial angular
velocity θ̇ (x, 0) = 0 using modal analysis. Assume the
shaft to be fixed at x = 0 and free at x = l.

10.13 Find the free torsional vibration response of a
uniform shaft of length l subjected to an initial angular
displacement θ(x, 0) = 0 and an initial angular velocity
θ̇ (x, 0) = V0δ(x − l) using modal analysis. Assume the
shaft to be fixed at x = 0 and free at x = l.

10.14 Derive the frequency equation for the torsional
vibration of a uniform shaft with a torsional spring of
stiffness kt attached to each end.

10.15 Find the steady-state response of a shaft fixed
at both ends when subjected to a torque Mt(x, t) =
Mt0 sin �t at x = l/4 using modal analysis.
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Transverse Vibration of Beams

11.1 INTRODUCTION

The free and forced transverse vibration of beams is considered in this chapter. The
equations of motion of a beam are derived according to the Euler–Bernoulli, Rayleigh,
and Timoshenko theories. The Euler–Bernoulli theory neglects the effects of rotary
inertia and shear deformation and is applicable to an analysis of thin beams. The
Rayleigh theory considers the effect of rotary inertia, and the Timoshenko theory con-
siders the effects of both rotary inertia and shear deformation. The Timoshenko theory
can be used for thick beams. The equations of motion for the transverse vibration of
beams are in the form of fourth-order partial differential equations with two boundary
conditions at each end. The different possible boundary conditions of the beam can
involve spatial derivatives up to third order. The responses of beams under moving
loads, beams subjected to axial force, rotating beams, continuous beams, and beams on
elastic foundation are considered using thin beam (Euler–Bernoulli) theory. The free
vibration solution, including the determination of natural frequencies and mode shapes,
is considered according to the three theories.

11.2 EQUATION OF MOTION: EULER–BERNOULLI THEORY

The governing equation of motion and boundary conditions of a thin beam have been
derived by considering an element of the beam shown in Fig. 11.1(b), using New-
ton’s second law of motion (equilibrium approach), in Section 3.5. The equation of
motion was derived in Section 4.11.2 using the extended Hamilton’s principle (vari-
ational approach). We now derive the equation of motion and boundary conditions
corresponding to the transverse vibration of a thin beam connected to a mass, a lin-
ear spring, and a torsional spring at each end [Fig. 11.1(a), (b)] using the generalized
Hamilton’s principle. In the Euler–Bernoulli or thin beam theory, the rotation of cross
sections of the beam is neglected compared to the translation. In addition, the angular
distortion due to shear is considered negligible compared to the bending deformation.
The thin beam theory is applicable to beams for which the length is much larger than
the depth (at least 10 times) and the deflections are small compared to the depth. When
the transverse displacement of the centerline of the beam is w, the displacement com-
ponents of any point in the cross section, when plane sections remain plane and normal
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f(x,t)

m1

m2

k1

k2

x dx

l

kt1

kt2

x

Centerline of
deformed beam

Centerline of
undeformed beam

w(x,t)

O′
O

z

(a)

z

x

O

O′

V(x,t)

M(x,t)

w(x,t)

f(x,t)

V(x,t) + dV(x,t)

M(x,t) + dM(x,t)

dx

(b)

Figure 11.1(a), (b) Beam in bending.

to the centerline, are given by [Fig. 11.1(c)]

u = −z
∂w(x, t)

∂x
, v = 0, w = w(x, t) (11.1)

where u, v, and w denote the components of displacement parallel to x, y, and z

directions, respectively. The components of strain and stress corresponding to this
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B

A

B′

A′

Original beam

z

z

w

x

Deformed beam

u = − z ∂w

∂x

∂w

∂x

∂w

∂x

(c)

Figure 11.1(c) Beam in bending.

displacement field are given by

εxx = ∂u

∂x
= −z

∂2w

∂x2
, εyy = εzz = εxy = εyz = εzx = 0

σxx = −Ez
∂2w

∂x2
, σyy = σzz = σxy = σyz = σzx = 0

(11.2)

The strain energy of the system (π) can be expressed as

π = 1

2

∫∫∫
V

(σxxεxx + σyyεyy + σzzεzz + σxyεxy+σyzεyz + σzxεzx) dV

+
[

1

2
k1w

2(0, t) + 1

2
kt1

(
∂w

∂x
(0, t)

)2

+ 1

2
k2w

2(l, t) + 1

2
kt2

(
∂w

∂x
(l, t)

)2
]

= 1

2

∫ l

0
EI

(
∂2w

∂x2

)2

dx

+
[

1

2
k1w

2(0, t) + 1

2
kt1

(
∂w

∂x
(0, t)

)2

+ 1

2
k2w

2(l, t) + 1

2
kt2

(
∂w

∂x
(l, t)

)2
]

(11.3)

where the first term on the right-hand side of Eq. (11.3) denotes the strain energy of
the beam, the second term, in brackets, indicates the strain energy of the springs, and
I denotes the area moment of inertia of the cross section of the beam about the y axis:

I = Iy =
∫∫
A

z2 dA (11.4)
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The kinetic energy of the system (T ) is given by

T = 1

2

∫ l

0

∫∫
A

ρ

(
∂w

∂t

)2

dA dx +
[

1

2
m1

(
∂w

∂t
(0, t)

)2

+ 1

2
m2

(
∂w

∂t
(l, t)

)2
]

= 1

2

∫ l

0
ρA

(
∂w

∂t

)2

dx +
[

1

2
m1

(
∂w

∂t
(0, t)

)2

+ 1

2
m2

(
∂w

∂t
(l, t)

)2
]

(11.5)

where the first term on the right-hand side of Eq. (11.5) represents the kinetic energy of
the beam, and the second term, in brackets, indicates the kinetic energy of the attached
masses. The work done by the distributed transverse load f (x, t) is given by

W =
∫ l

0
f w dx (11.6)

The application of the generalized Hamilton’s principle gives

δ

∫ t2

t1

(π − T − W) d t = 0

or

δ

∫ t2

t1

{
1

2

∫ l

0
EI

(
∂2w

∂x2

)2

dx

+
[

1

2
k1w

2(0, t) + 1

2
kt1

(
∂w

∂x
(0, t)

)2

+ 1

2
k2w

2(l, t) + 1

2
kt2

(
∂w

∂x
(l, t)

)2
]

− 1

2

∫ l

0
ρA

(
∂w

∂t

)2

dx −
[

1

2
m1

(
∂w

∂t
(0, t)

)2

+ 1

2
m2

(
∂w

∂t
(l, t)

)2
]

−
∫ l

0
f w dx

}
d t = 0 (11.7)

The variations in Eq. (11.7) can be evaluated using integration by parts, similar to those
used in Eqs. (4.181), (4.184) and (4.185), to obtain

δ

∫ t2

t1

1

2

∫ l

0
EI

(
∂2w

∂x2

)2

dx d t =
∫ t2

t1

[
EI

∂2w

∂x2
δ

(
∂w

∂x

)∣∣∣∣
l

0
− ∂

∂x

(
EI

∂2w

∂x2

)
δw

∣∣∣∣
l

0

+
∫ l

0

∂2

∂x2

(
EI

∂2w

∂x2

)
δw dx

]
d t

δ

∫ t2

t1

[
1

2
k1w

2(0, t) + 1

2
kt1

(
∂w

∂x
(0, t)

)2

+ 1

2
k2w

2(l, t) + 1

2
kt2

(
∂w

∂x
(l, t)

)2
]

d t

=
∫ t2

t1

[
k1w(0, t)δw(0, t) + kt1

∂w(0, t)

∂x
δ

(
∂w(0, t)

∂x

)

+ k2w(l, t)δw(l, t) + kt2
∂w(l, t)

∂x
δ

(
∂w(l, t)

∂x

)]
d t (11.8)
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δ

∫ t2

t1

[
1

2

∫ l

0
ρA

(
∂w

∂t

)2

dx

]
d t

=
∫ l

0

(
ρA

∂w

∂t
δw

∣∣∣∣
t2

t1

)
dx −

∫ l

0

(∫ t2

t1

ρA
∂2w

∂t2
δw d t

)
dx

= −
∫ t2

t1

(∫ l

0
ρA

∂2w

∂t2
δw dx

)
d t

δ

∫ t2

t1

[
1

2
m1

(
∂w

∂t
(0, t)

)2

+ 1

2
m2

(
∂w

∂t
(l, t)

)2
]

d t

= −
∫ t2

t1

[
m1

∂2w(0, t)

∂t2
δw(0, t) + m2

∂2w(l, t)

∂t2
δw(l, t)

]
d t (11.9)

Note that integration by parts with respect to time, along with the fact that δw = 0 at
t = t1 and t = t2, is used in deriving Eqs. (11.9).

δ

∫ t2

t1

(∫ l

0
f w dx

)
d t =

∫ t2

t1

∫ l

0
f δw dx d t (11.10)

In view of Eqs. (11.8)–(11.10), Eq. (11.7) becomes

∫ t2

t1

{
EI

∂2w

∂x2
δ

(
∂w

∂x

)∣∣∣∣
l

0
− ∂

∂x

(
EI

∂2w

∂x2

)
δw

∣∣∣∣
l

0
+ k1wδw

∣∣∣∣∣
0

+ kt1
∂w

∂x
δ

(
∂w

∂x

)∣∣∣∣∣
0

+ m1
∂2w

∂t2
δw

∣∣∣∣
0
+ k2wδw|l + kt2

∂w

∂x
δ

(
∂w

∂x

)∣∣∣∣
l

+ m2
∂2w

∂t2
δw

∣∣∣∣
l
}

d t

+
∫ t2

t1

{∫ l

0

[
∂2

∂x2

(
EI

∂2w

∂x2

)
+ ρA

∂2w

∂t2
− f

]
δw dx

}
d t = 0 (11.11)

By setting the two expressions within the braces in each term of Eq. (11.11) equal to
zero, we obtain the differential equation of motion for the transverse vibration of the
beam as

∂2

∂x2

(
EI

∂2w

∂x2

)
+ ρA

∂2w

∂t2
= f (x, t) (11.12)

and the boundary conditions as

EI
∂2w

∂x2
δ

(
∂w

∂x

)∣∣∣∣
l

0
− ∂

∂x

(
EI

∂2w

∂x2

)
δw

∣∣∣∣
l

0
+ k1wδw|0 +kt1

∂w

∂x
δ

(
∂w

∂x

)∣∣∣∣
0

+m1
∂2w

∂t2
δw|0 + k2wδw|l + kt2

∂w

∂x
δ

(
∂w

∂x

)
|l + m2

∂2w

∂t2
δw|l = 0 (11.13)
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To satisfy Eq. (11.13), the following conditions are to be satisfied:(
−EI

∂2w

∂x2
+ kt1

∂w

∂x

)
δ

(
∂w

∂x

)∣∣∣∣
x=0

= 0 (11.14)

(
EI

∂2w

∂x2
+ kt2

∂w

∂x

)
δ

(
∂w

∂x

)∣∣∣∣
x=l

= 0 (11.15)

[
∂

∂x

(
EI

∂2w

∂x2

)
+ k1w + m1

∂2w

∂t2

]
δw

∣∣∣∣
x=0

= 0 (11.16)

[
− ∂

∂x

(
EI

∂2w

∂x2

)
+ k2w + m2

∂2w

∂t2

]
δw

∣∣∣∣
x=l

= 0 (11.17)

Each of the equations in (11.14)–(11.17) can be satisfied in two ways but will be
satisfied in only one way for any specific support conditions of the beam. The boundary
conditions implied by Eqs. (11.14)–(11.17) are as follows, At x = 0,

∂w

∂x
= constant

[
so that δ

(
∂w

∂x

)
= 0

]
or

(
−EI

∂2w

∂x2
+ kt1

∂w

∂x

)
= 0 (11.18)

and

w = constant(so that δw = 0) or

[
∂

∂x

(
EI

∂2w

∂x2

)
+ k1w + m1

∂2w

∂t2

]
= 0

(11.19)

At x = l,

∂w

∂x
= constant

[
so that δ

(
∂w

∂x

)
= 0

]
or

[
EI

∂2w

∂x2
+ kt2

∂w

∂x

]
= 0 (11.20)

and

w = constant(so that δw = 0) or

[
− ∂

∂x

(
EI

∂2w

∂x2

)
+ k2w + m2

∂2w

∂t2

]
= 0

(11.21)

In the present case, the second conditions stated in each of Eqs. (11.18)–(11.21)are
valid.

Note The boundary conditions of a beam corresponding to different types of end
supports are given in Table 11.1. The boundary conditions for supports, other than the
supports shown in the table, can be obtained from Hamilton’s principle by including
the appropriate energy terms in the formulation of equations as illustrated for the case
of attached masses and springs in this section.

11.3 FREE VIBRATION EQUATIONS

For free vibration, the external excitation is assumed to be zero:

f (x, t) = 0 (11.22)
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and hence the equation of motion, Eq. (11.13), reduces to

∂2

∂x2

[
EI (x)

∂2w(x, t)

∂x2

]
+ ρA(x)

∂2w(x, t)

∂t2
= 0 (11.23)

For a uniform beam, Eq. (11.23) can be expressed as

c2 ∂4w

∂x4
(x, t) + ∂2w

∂t2
(x, t) = 0 (11.24)

where

c =
√

EI

ρA
(11.25)

11.4 FREE VIBRATION SOLUTION

The free vibration solution can be found using the method of separation of variables as

w(x, t) = W(x)T (t) (11.26)

Using Eq. (11.26) in Eq. (11.24) and rearranging yields

c2

W(x)

d4W(x)

dx4
= − 1

T (t)

d2T (t)

dt2
= a = ω2 (11.27)

where a = ω2 can be shown to be a positive constant (see Problem 11.20).
Equation (11.27) can be rewritten as two equations:

d4W(x)

dx4
− β4W(x) = 0 (11.28)

d2T (t)

dt2
+ ω2T (t) = 0 (11.29)

where

β4 = ω2

c2
= ρAω2

EI
(11.30)

The solution of Eq. (11.29) is given by

T (t) = A cos ωt + B sin ωt (11.31)

where A and B are constants that can be found from the initial conditions. The solution
of Eq. (11.28) is assumed to be of exponential form as

W(x) = Cesx (11.32)

where C and s are constants. Substitution of Eq. (11.32) into Eq. (11.28) results in the
auxiliary equation

s4 − β4 = 0 (11.33)

The roots of this equation are given by

s1,2 = ±β, s3,4 = ±iβ (11.34)
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Thus, the solution of Eq. (13.28) can be expressed as

W(x) = C1e
βx + C2e

−βx + C3e
iβx + C4e

−iβx (11.35)

where C1, C2, C3, and C4 are constants. Equation (11.35) can be expressed more
conveniently as

W(x) = C1 cos βx + C2 sin βx + C3 cosh βx + C4 sinh βx (11.36)

or
W(x) = C1(cos βx + cosh βx) + C2(cos βx − cosh βx)

+C3(sin βx + sinh βx) + C4(sin βx − sinh βx) (11.37)

where C1, C2, C3, and C4, are different constants in each case. The natural frequencies
of the beam can be determined from Eq. (11.30) as

ω = β2

√
EI

ρA
= (βl)2

√
EI

ρAl4
(11.38)

The function W(x) is known as the normal mode or characteristic function of the
beam and ω is called the natural frequency of vibration. For any beam, there will be
an infinite number of normal modes with one natural frequency associated with each
normal mode. The unknown constants C1 to C4 in Eq. (11.36) or (11.37) and the value
of β in Eq. (11.38) can be determined from the known boundary conditions of the
beam.

If the ith natural frequency is denoted as ωi and the corresponding normal mode
as Wi(x), the total free vibration response of the beam can be found by superposing
the normal modes as

w(x, t) =
∞∑
i=1

Wi(x)(Ai cos ωit + Bi sin ωit) (11.39)

where the constants Ai and Bi can be determined from the initial conditions of the
beam.

11.5 FREQUENCIES AND MODE SHAPES OF UNIFORM BEAMS

The natural frequencies and mode shapes of beams with a uniform cross section with
different boundary conditions are considered in this section.

11.5.1 Beam Simply Supported at Both Ends

The transverse displacement and the bending moment are zero at a simply supported
(or pinned or hinged) end. Hence, the boundary conditions can be stated as

W(0) = 0 (11.40)

EI
d2W

dx2
(0) = 0 or

d2W

dx2
(0) = 0 (11.41)



11.5 Frequencies and Mode Shapes of Uniform Beams 327

W(l) = 0 (11.42)

EI
d2W

dx2
(l) = 0 or

d2W

dx2
(l) = 0 (11.43)

When used in the solution of Eq. (11.37), Eqs. (11.40) and (11.41) yield

C1 = C2 = 0 (11.44)

When used with Eq. (11.37), Eqs. (11.42) and (11.43) result in

C3(sin βl + sinh βl) + C4(sin βl − sinh βl) = 0 (11.45)

−C3(sin βl − sinh βl) − C4(sin βl + sinh βl) = 0 (11.46)

Equations (11.45) and (11.46) denote a system of two equations in the two unknowns
C3 and C4. For a nontrivial solution of C3 and C4, the determinant of the coefficients
must be equal to zero. This leads to

−(sin βl + sinh βl)2 + (sin βl − sinh βl)2 = 0

or

sin βl sinh βl = 0 (11.47)

It can be observed that sinh βl is not equal to zero unless β = 0. The value of β = 0
need not be considered because it implies, according to Eq. (11.38), ω = 0, which
corresponds to the beam at rest. Thus, the frequency equation becomes

sin βl = 0 (11.48)

The roots of Eq. (11.48), βnl, are given by

βnl = nπ, n = 1, 2, . . . (11.49)

and hence the natural frequencies of vibration become

ωn = (βnl)
2
(

EI

ρAl4

)1/2

= n2π2
(

EI

ρAl4

)1/2

, n = 1, 2, . . . (11.50)

Substituting Eq. (11.48) into Eq. (11.45), we find that C3 = C4. Hence, Eq. (11.37)
gives the mode shape as

Wn(x) = Cn sin βnx = Cn sin
nπx

l
, n = 1, 2, . . . (11.51)

The first four natural frequencies of vibration and the corresponding mode shapes are
shown in Fig. 11.2. The normal modes of vibration are given by

wn(x, t) = Wn(x)(An cos ωnt + Bn sin ωnt), n = 1, 2, . . . (11.52)

The total (free vibration) solution can be expressed as

w(x, t) =
∞∑

n=1

wn(x, t) =
∞∑

n=1

sin
nπx

l
(An cos ωnt + Bn sin ωnt) (11.53)
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l

Figure 11.2 Natural frequencies and mode shapes of a beam simply supported at both ends.
ωn = (βnl)

2(EI/ρAL4)1/2, βnl = nπ .

If the initial conditions are given by

w(x, 0) = w0(x) (11.54)

∂w

∂t
(x, 0) = ẇ0(x) (11.55)

Eqs. (11.53)–(11.55) lead to

∞∑
n=1

An sin
nπx

l
= w0(x) (11.56)

∞∑
n=1

ωnBn sin
nπx

l
= ẇ0(x) (11.57)

Multiplying Eqs. (11.56) and (11.57) by sin(mπx/l) and integrating from 0 to l yields

An = 2

l

∫ l

0
w0(x) sin

nπx

l
dx (11.58)

Bn = 2

ωnl

∫ l

0
ẇ0(x) sin

nπx

l
dx (11.59)

11.5.2 Beam Fixed at Both Ends

At a fixed end, the transverse displacement and the slope of the displacement are zero.
Hence, the boundary conditions are given by

W(0) = 0 (11.60)

dW

dx
(0) = 0 (11.61)
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W(l) = 0 (11.62)

dW

dx
(l) = 0 (11.63)

When Eq. (11.37) is used, the boundary conditions (11.60) and (11.61) lead to

C1 = C3 = 0 (11.64)

and the boundary conditions (11.62) and (11.63) yield

C2(cos βl − cosh βl) + C4(sin βl − sinh βl) = 0 (11.65)

−C2(sin βl + sinh βl) + C4(cos βl − cosh βl) = 0 (11.66)

Equations (11.65) and (11.66) denote a system of two homogeneous algebraic equations
with C2 and C4 as unknowns. For a nontrivial solution of C2 and C4, we set the
determinant of the coefficients of C2 and C4 in Eqs. (11.65) and (11.66) to zero to
obtain ∣∣∣∣ cos βl − cosh βl sin βl − sinh βl

−(sin βl + sinh βl) cos βl − cosh βl

∣∣∣∣ = 0

or

(cos βl − cosh βl)2 + (sin2 βl − sinh2 βl) = 0 (11.67)

Equation (11.67) can be simplified to obtain the frequency equation as

cos βl cosh βl − 1 = 0 (11.68)

Equation (11.65) gives

C4 = −cos βl − cosh βl

sin βl − sinh βl
C2 (11.69)

If βnl denotes the nth root of the transcendental equation (11.68), the corresponding
mode shape can be obtained by substituting Eqs. (11.64) and (11.69) in Eq. (11.37) as

Wn(x) = Cn

[
(cos βnx − cosh βnx) − cos βnl − cosh βnl

sin βnl − sinh βnl
(sin βnx − sinh βnx)

]
(11.70)

The first four natural frequencies and the corresponding mode shapes are shown in
Fig. 11.3. The nth normal mode of vibration can be expressed as

wn(x, t) = Wn(x)(An cos ωnt + Bn sin ωnt) (11.71)

and the free vibration solution as

w(x, t) =
∞∑

n=1

wn(x, t)

=
∞∑

n=1

[
(cos βnx − cosh βnx) − cos βnl − cosh βnl

sin βnl − sinh βnl
(sin βnx − sinh βnx)

]

· (An cos ωnt + Bn sin ωnt) (11.72)
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W1(x) b1l = 4.7300

0 l

W2(x) b2l = 7.8532

0
0.5l

l

W3(x) b3l = 10.9956

0
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l

W4(x) b4l = 14.1372

0
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l
0.5l 0.722l

Figure 11.3 Natural frequencies and mode shapes of a beam fixed at both ends. ωn =
(βnl)

2(EI/ρAL4)1/2, βnl � (2n + 1)π/2.

where the constants An and Bn in Eq. (11.72) can be determined from the known initial
conditions as in the case of a beam with simply supported ends.

11.5.3 Beam Free at Both Ends

At a free end, the bending moment and shear force are zero. Hence, the boundary
conditions of the beam can be stated as

EI
d2W(0)

dx2
= 0 or

d2W(0)

dx2
= 0 (11.73)

EI
d3W(0)

dx3
= 0 or

d3W(0)

dx3
= 0 (11.74)

EI
d2W(l)

dx2
= 0 or

d2W(l)

dx2
= 0 (11.75)

EI
d3W(l)

dx3
= 0 or

d3W(l)

dx3
= 0 (11.76)

By differentiating Eq. (11.37), we obtain

d2W

dx2
(x) = β2[C1(− cos βx + cosh βx) + C2(− cos βx − cosh βx)

+ C3(− sin βx + sinh βx) + C4(− sin βx − sinh βx)] (11.77)

d3W(x)

dx3
= β3[C1(sin βx + sinh βx) + C2(sin βx − sinh βx)

+ C3(− cos βx + cosh βx) + C4(− cos βx − cosh βx)] (11.78)



11.5 Frequencies and Mode Shapes of Uniform Beams 331

Equations (11.73) and (11.74) require that

C2 = C4 = 0 (11.79)

in Eq. (11.37), and Eqs. (11.75) and (11.76) lead to

C1(− cos βl + cosh βl) + C3(− sin βl + sinh βl) = 0 (11.80)

C1(sin βl + sinh βl) + C3(− cos βl + cosh βl) = 0 (11.81)

For a nontrivial solution of the constants C1 and C3 in Eqs. (11.80) and (11.81), the
determinant formed by their coefficients is set equal to zero:∣∣∣∣ − cos βl + cosh βl − sin βl + sinh βl

sin βl + sinh βl − cos βl + cosh βl

∣∣∣∣ = 0 (11.82)

Equation (11.82) can be simplified to obtain the frequency equation as

cos βl cosh βl − 1 = 0 (11.83)

Note that Eq. (11.83) is the same as Eq. (11.68) obtained for a beam fixed at both ends.
The main difference is that a value of β0l = 0 leads to a rigid-body mode in the case
of a free–free beam. By proceeding as in the preceding case, the nth mode shape of
the beam can be expressed as

Wn(x) = (cos βnx + cosh βnx) − cos βnl − cosh βnl

sin βnl − sinh βnl
(sin βnx + sinh βnx) (11.84)

The first five natural frequencies given by Eq. (11.83) and the corresponding mode
shapes given by Eqs. (11.80) and (11.81) are shown in Fig. 11.4. The nth normal
mode and the free vibration solution are given by

wn(x, t) = Wn(x)(An cos ωnt + Bn sin ωnt) (11.85)

and

w(x, t) =
∞∑

n=1

wn(x, t)

=
∞∑

n=1

[
(cos βnx + cosh βnx) − cos βnl − cosh βnl

sin βnl − sinh βnl
(sin βnx + sinh βnx)

]

· (An cos ωnt + Bn sin ωnt) (11.86)

11.5.4 Beam with One End Fixed and the Other Simply Supported

At a fixed end, the transverse deflection and slope of deflection are zero, and at a
simply supported end, the transverse deflection and bending moment are zero. If the
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Figure 11.4 Natural frequencies and mode shapes of a beam with free ends. ωn =
(βnl)

2(EI/ρAL4)1/2, βnl � (2n + 1)π/2.

beam is fixed at x = 0 and simply supported at x = l, the boundary conditions can be
stated as

W(0) = 0 (11.87)

dW

dx
(0) = 0 (11.88)

W(l) = 0 (11.89)

EI
d2W

dx2
(l) = 0 or

d2W

dx2
(l) = 0 (11.90)

Condition (11.87) leads to

C1 + C3 = 0 (11.91)

in Eq.(11.36), and Eqs. (11.88) and (11.36) give

dW

dx

∣∣∣∣
x=0

= β(−C1 sin βx + C2 cos βx + C3 sinh βx + C4 cosh βx)x=0 = 0

or

β(C2 + C4) = 0 (11.92)
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Thus, the solution, Eq. (11.36), becomes

W(x) = C1(cos βx − cosh βx) + C2(sin βx − sinh βx) (11.93)

Applying conditions (11.89) and (11.90) to Eq. (11.93) yields

C1(cos βl − cosh βl) + C2(sin βl − sinh βl) = 0 (11.94)

−C1(cos βl + cosh βl) − C2(sin βl + sinh βl) = 0 (11.95)

For a nontrivial solution of C1 and C2 in Eqs. (11.94) and (11.95), the determinant of
their coefficients must be zero:∣∣∣∣ cos βl − cosh βl sin βl − sinh βl

−(cos βl + cosh βl) −(sin βl + sinh βl)

∣∣∣∣ = 0 (11.96)

Expanding the determinant gives the frequency equation

cos βl sinh βl − sin βl cosh βl = 0

or
tan βl = tanh βl (11.97)

The roots of this equation, βnl, give the natural frequencies of vibration:

ωn = (βnl)
2
(

EI

ρAl4

)1/2

, n = 1, 2, . . . (11.98)

If the value of C2 corresponding to βn is denoted as C2n, it can be expressed in terms
of C1n from Eq. (11.94):

C2n = −C1n

cos βnl − cosh βnl

sin βnl − sinh βnl
(11.99)

Hence, Eq. (11.93) can be written as

Wn(x) = C1n

[
(cos βnx − cosh βnx) − cos βnl − cosh βnl

sin βnl − sinh βnl
(sin βnx − sinh βnx)

]
(11.100)

The first four natural frequencies and the corresponding mode shapes given by
Eqs. (11.98) and (11.100) are shown in Fig. 11.5.

11.5.5 Beam Fixed at One End and Free at the Other

If the beam is fixed at x = 0 and free at x = l, the transverse deflection and its slope
must be zero at x = 0 and the bending moment and shear force must be zero at x = l.
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W1(x) b1l = 3.9266

0 l

W2(x) b2l = 7.0686

0 l
0.559l

W3(x) b3l = 10.2102

0 l
0.386l 0.692l

W4(x) b4l = 13.3518

0 l
0.294l 0.529l 0.765l

Figure 11.5 Natural frequencies and mode shapes of a fixed simply supported beam. ωn =
(βnl)

2(EI/ρAL4)1/2, βnl � (4n + 1)π/4.

Thus, the boundary conditions become

W(0) = 0 (11.101)

dW

dx
(0) = 0 (11.102)

EI
d2W

dx2
(l) = 0 or

d2W

dx2
(l) = 0 (11.103)

EI
d3W

dx3
(l) = 0 or

d3W

dx3
(l) = 0 (11.104)

When used in the solution of Eq. (11.37), Eqs. (11.101) and (11.102) yield

C1 = C3 = 0 (11.105)

When used with Eq. (11.37) Eqs. (11.103) and (11.104) result in

C2(cos βl + cosh βl) + C4(sin βl + sinh βl) = 0 (11.106)

C2(− sin βl + sinh βl) + C4(cos βl + cosh βl) = 0 (11.107)

Equations (11.106) and (11.107) lead to the frequency equation

cos βl cosh βl + 1 = 0 (11.108)

Using Eq. (11.106), we obtain

C4 = −cos βl + cosh βl

sin βl + sinh βl
C2 (11.109)
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W1(x) b1l = 1.8751

0
l

W2(x) b2l = 4.6941

0 l
0.783l

W3(x) b3l = 7.8547

0 l

0.504l 0.868l

W4(x) b4l = 10.9956

0 l
0.644l0.358l 0.906l

Figure 11.6 Natural frequencies and mode shapes of a fixed–free beam. ωn =
(βnl)

2(EI/ρAL4)1/2, βnl � (2n − 1)π/2.

and hence the nth mode shape can be expressed as

Wn(x) = (cos βnx − cosh βnx) − cos βnl + cosh βnl

sin βnl + sinh βnl
(sin βnx − sinh βnx) (11.110)

The first four natural frequencies and the corresponding mode shapes given by
Eqs. (11.108) and (11.110) are shown in Fig. 11.6.

Example 11.1 Determine the natural frequencies and mode shapes of transverse
vibration of a uniform beam fixed at one end and a mass M attached at the other end.

SOLUTION If the beam is fixed at x = 0, the transverse deflection and its slope are
zero at x = 0. At the other end, x = l, the bending moment is zero and the shear force
is equal to the inertia force due to the attached mass M . Thus, the boundary conditions
can be stated as

W(0) = 0 (E11.1.1)

dW

dx
(0) = 0 (E11.1.2)

EI
d2W

dx2
(l) = 0 or

d2W

dx2
(l) = 0 (E11.1.3)

EI
∂3w(l, t)

∂x3
= M

∂2w(l, t)

∂t2
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or

EI
d3W

dx3
(l) = −Mω2W(l) (E11.1.4)

The boundary conditions (E11.1.1) and (E11.1.2) require that

C1 = C3 = 0 (E11.1.5)

in Eq. (11.37). Thus, the solution becomes

W(x) = C2(cos βx − cosh βx) + C4(sin βx − sinh βx) (E11.1.6)

When used in Eq. (E11.1.6), the conditions (E11.1.3) and (E11.1.4) lead to

C2(cos βl + cosh βl) + C4(sin βl + sinh βl) = 0 (E11.1.7)

C2[(−EIβ3)(sin βl − sinh βl) − Mω2(cos βl − cosh βl)]

+C4[(EIβ3)(cos βl + cosh βl) − Mω2(sin βl − sinh βl)] = 0 (E11.1.8)

For a nontrivial solution of the constants C2 and C4, the determinant formed by their
coefficients is set equal to zero:∣∣∣∣∣∣∣∣

cos βl + cosh βl sin βl + sinh βl

[−EIβ3(sin βl − sinh βl)

−Mω2(cos βl − cosh βl)]

[EIβ3(cos βl + cosh βl)

−Mω2(sin βl − sinh βl)]

∣∣∣∣∣∣∣∣
= 0 (E11.1.9)

The simplification of Eq. (E11.1.9) leads to the frequency equation

1 + 1

cos βl cosh βl
− Rβl(tan βl − tanh βl) = 0 (E11.1.10)

R = M

ρAl
(E11.1.11)

denotes the ratio of the attached mass M to the mass of the beam. Equation (E11.1.7)
gives

C4 = −cos βl + cosh βl

sin βl + sinh βl
C2 (E11.1.12)

and hence the nth mode shape can be expressed as

Wn(x) = C2n

[
(cos βnx − cosh βnx)

− cos βnl + cosh βnl

sin βnl + sinh βnl
(sin βnx − sinh βnx)

]
(E11.1.13)

where C2n is a constant. The first two natural frequencies given by Eq. (E11.1.10) for
different values of the mass ratio (R) are given in Table 11.1.2.
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Table 11.1.2 Natural Frequencies of a Beam with
One End Fixed and a Mass Attached at the Other

R n βnl R n βnl

0.01 1 1.852 10 1 0.736
2 4.650 2 3.938

0.1 1 1.723 100 1 0.416
2 4.399 2 3.928

1 1 1.248 ∞ 1 0
2 4.031 2 3.927

Example 11.2 The ends of a beam carry masses and are supported by linear springs
and linear viscous dampers as shown in Fig. 11.7(a). State the boundary conditions of
the beam using an equilibrium approach.

m1
∂2w

∂t2
(0,t) m2

∂2w

∂t2
(l,t)

c1
∂w
∂t

(0,t)

c2
∂w
∂t

(l,t)

V(0,t)

V(l,t)

k1w(0,t) k2w(l,t)

m1 m2Beam, EI

k1 c1 c2 k2

x = 0 x = l

(a)

(b)

Figure 11.7(a), (b)

SOLUTION If the transverse displacement, velocity, and acceleration of the beam at
x = 0 are assumed to be positive with values w(0, t), ∂w(0, t)/∂t , and ∂2w(0, t)/∂t2,
respectively, the spring force k1w(0, t), damping force c1[∂w(0, t)/∂t], and the inertia
force m1[∂2w(0, t)/∂t2] act downward, as shown in Fig. 11.7(b). The positive shear
force (V ) at x = 0 is equal to the negative of the forces of spring, damper, and inertia
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kt1 kt2

ct1

ct2

I02I01

I01

M(0,t) M(l,t)
kt1

ct1

Beam, EI

x = 0 

(c)

(d)

x = l

x = 0 x = l

∂w
∂x

∂x ∂t

∂2w

kt2

ct2

∂w
∂x

∂x ∂t

∂2w

∂x ∂t2
∂3w

I02
∂x ∂t2
∂3w

Figure 11.7(c), (d)

at x = 0. This boundary condition can be expressed as

V (x, t) = ∂

∂x

[
EI (x)

∂2w(x, t)

∂x2

]

= −
[
k1w(x, t) + c1

∂w

∂t
(x, t) + m1

∂2w(x, t)

∂t2

]
at x = 0 (E11.2.1)

In addition, the bending moment must be zero at x = 0:

EI (x)
∂2w(x, t)

∂x2
= 0 at x = 0 (E11.2.2)

In a similar manner, the shear force boundary condition at x = l can be expressed as

V (x, t) = ∂

∂x

[
EI (x)

∂2w(x, t)

∂x2

]

= k2w(x, t) + c2
∂w(x, t)

∂t
+ m2

∂2w(x, t)

∂t2
at x = l (E11.2.3)

In addition, the bending moment must be zero at x = l:

EI (x)
∂2w(x, t)

∂x2
= 0 at x = l (E11.2.4)
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Note: If the ends of the beam carry mass moments of inertia and are supported by
torsional springs and torsional dampers as shown in Fig. 11.7(c), the reaction moments
at the ends are shown in Fig. 11.7(d). Thus, the bending moment and shear force
boundary conditions at the ends can be expressed as

M(x, t) = EI (x)
∂2w(x, t)

∂x2
= −kt1

∂w(x, t)

∂x

−ct1
∂2w(x, t)

∂x∂t
− I01

∂3w(x, t)

∂x∂t2
at x = 0 (E11.2.5)

V (x, t) = ∂

∂x

[
EI (x)

∂2w(x, t)

∂x2

]
= 0 at x = 0 (E11.2.6)

M(x, t) = EI (x)
∂2w(x, t)

∂x2
= kt2

∂w(x, t)

∂x

+ ct2
∂2w(x, t)

∂x∂t
+ I02

∂3w(x, t)

∂x∂t2
at x = l (E11.2.7)

V (x, t) = ∂

∂x

[
EI (x)

∂2w(x, t)

∂x2

]
= 0 at x = l (E11.2.8)

11.6 ORTHOGONALITY OF NORMAL MODES

The eigenvalue problem corresponding to a nonuniform beam can be obtained by
assuming a harmonic solution with frequency ω in Eq. (11.23) as

d2

dx2

[
EI (x)

d2W(x)

dx2

]
= ω2ρA(x)W(x) (11.111)

To derive the orthogonality relations for beams, consider two eigenvalues ω2
i and ω2

j

and the corresponding eigen or normal functions Wi(x) and Wj(x), respectively, so
that

d2

dx2

[
EI (x)

d2Wi(x)

dx2

]
= ω2

i ρA(x)Wi(x) (11.112)

and

d2

dx2

[
EI (x)

d2Wj(x)

dx2

]
= ω2

j ρA(x)Wj (x) (11.113)

Multiply Eq. (11.112) by Wj(x) and integrate over the length of the beam to obtain∫ l

0
Wj(x)

d2

dx2

[
EI (x)

d2Wi(x)

dx2

]
dx = ω2

i

∫ l

0
ρA(x)Wj (x)Wi(x) dx (11.114)

Integrating the left-hand side of Eq. (11.114) by parts twice and using any combination
of the boundary conditions among fixed, pinned, and free ends of the beam [given by
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Eqs. (11.18)–(11.21)], we obtain∫ l

0
Wj(x)

d2

dx2

[
EI (x)

d2Wi(x)

dx2

]
dx

= Wj(x)
d

dx

[
EI (x)

d2Wi(x)

dx2

]∣∣∣∣
l

0
− dWj(x)

dx
EI (x)

d2Wi(x)

dx2

∣∣∣∣
l

0

+
∫ l

0
EI (x)

d2Wj(x)

dx2

d2Wi(x)

dx2
dx

=
∫ l

0
EI (x)

d2Wj(x)

dx2

d2Wi(x)

dx2
dx (11.115)

Thus, Eq. (11.114) can be written as∫ l

0
EI (x)

d2Wj(x)

dx2

d2Wi(x)

dx2
dx = ω2

i

∫ l

0
ρA(x)Wj (x)Wi(x) dx (11.116)

Similarly, by multiplying Eq. (11.113) by Wi(x) and integrating over the length of the
beam, we can obtain∫ l

0
EI (x)

d2Wi(x)

dx2

d2Wj(x)

dx2
dx = ω2

j

∫ l

0
ρA(x)Wi(x)Wj (x) dx (11.117)

Noting that the order of the subscripts i and j under the integrals is immaterial and
subtracting Eq. (11.117) from Eq. (11.116) yields

(ω2
i − ω2

j )

∫ l

0
ρA(x)Wi(x)Wj (x) dx = 0 (11.118)

Since the eigenvalues are distinct, Eq. (11.118) gives∫ l

0
ρA(x)Wi(x)Wj (x) dx = 0, i, j = 1, 2, . . . , ω2

i �= ω2
j (11.119)

In view of Eq. (11.119), Eq. (11.116) or (11.117) gives∫ l

0
EI (x)

d2Wi(x)

dx2

d2Wj(x)

dx2
dx = 0, i, j = 1, 2, . . . ω2

i �= ω2
j (11.120)

Equation (11.119) is called the orthogonality relation for normal functions.
Equation (11.120) represents another form of the orthogonality condition for the normal
modes. In fact, by normalizing the ith normal mode as∫ l

0
ρA(x)W 2

i (x) dx = 1, i = 1, 2, . . . (11.121)

Eqs. (11.119) and (11.121) can be expressed in the following form:∫ l

0
ρA(x)Wi(x)Wj (x) dx = δij (11.122)
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where δij is the Kronecker delta:

δij =
{

0, i �= j

1, i = j
(11.123)

Using Eq. (11.122) in Eq. (11.114), another form of orthogonality relation can be
derived as ∫ l

0
Wj(x)

d2

dx2

[
EI (x)

d2Wi(x)

dx2

]
dx = ω2

i δij (11.124)

According to the expansion theorem, any function W(x) that satisfies the boundary
conditions of the beam denotes a possible transverse displacement of the beam and can
be expressed as a sum of eigenfunctions as

W(x) =
∞∑
i=1

ciWi(x) (11.125)

where the constants ci are defined by

ci =
∫ l

0
ρA(x)Wi(x)W(x) dx, i = 1, 2, . . . (11.126)

and

ciω
2
i =

∫ l

0
Wi(x)

d2

dx2

[
EI (x)

d2W(x)

dx2

]
dx, i = 1, 2, . . . (11.127)

Note that the derivative

d2

dx2

[
EI (x)

d2W(x)

dx2

]

is assumed to be continuous in Eq. (11.127).

11.7 FREE VIBRATION RESPONSE DUE TO INITIAL CONDITIONS

The free vibration response of a beam can be expressed as a linear combination of all
the natural or characteristic motions of the beam. The natural or characteristic motions
consist of the natural modes multiplied by time-dependent harmonic functions with
frequencies equal to the natural frequencies of the beam. To show this, consider the
response in the following form:

w(x, t) =
∞∑
i=1

Wi(x)ηi(t) (11.128)

where Wi(x) is the ith natural mode and ηi(t) is a time-dependent function to be
determined. By substituting Eq. (11.128) in the equation of motion of free vibration of
the beam, Eq. (11.23), we obtain

∞∑
i=1

d2

dx2

[
EI (x)

d2Wi(x)

dx2

]
ηi(t) +

∞∑
i=1

ρA(x)Wi(x)
d2ηi(t)

d t2
= 0 (11.129)
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Multiplying Eq. (11.129) by Wj(x) and integrating over the length of the beam yields

∞∑
i=1

{∫ l

0
Wj(x)

d2

dx2

[
EI (x)

d2Wi(x)

dx2

]
dx

}
ηi(t)

+
∞∑
i=1

[∫ l

0
ρA(x)Wj (x)Wi(x) dx

]
d2ηi(t)

d t2
= 0 (11.130)

In view of the orthogonality conditions, Eqs. (11.122) and (11.124), Eq. (11.130) gives
the following equations, which are known as modal equations:

d2ηi(t)

d t2
+ ω2

i ηi(t) = 0, i = 1, 2, . . . (11.131)

where ηi(t) is called the ith modal displacement (coordinate) and ωi is the ith natural
frequency of the beam. Each equation in (11.131) is similar to the equation of motion
of a single-degree-of-freedom system whose solution can be expressed as

ηi(t) = Ai cos ωit + Bi sin ωit, i = 1, 2, . . . (11.132)

where Ai and Bi are constants that can be determined from the initial conditions. If

ηi(t = 0) = ηi(0) and
dηi

d t
(t = 0) = η̇i(0) (11.133)

are the initial values of modal displacement and modal velocity, Eq. (11.132) can be
expressed as

ηi(t) = ηi(0) cos ωit + η̇i(0)

ωi

sin ωit, i = 1, 2, . . . (11.134)

If the initial displacement and velocity distributions of the beam are specified as

w(x, t = 0) = w0(x),
∂w

∂t
(x, t = 0) = ẇ(x, 0) = ẇ0(x) (11.135)

the initial values of modal displacement and modal velocity can be determined as
follows. Using Eq. (11.135) in Eq. (11.128), we find

w(x, t = 0) =
∞∑
i=1

Wi(x)ηi(0) = w0(x) (11.136)

∂w

∂t
(x, t = 0) =

∞∑
i=1

Wi(x)η̇i(0) = ẇ0(x) (11.137)

By multiplying Eq. (11.136) by ρA(x)Wj (x), integrating over the length of the beam,
and using the orthogonality condition of Eq. (11.122), we obtain

ηi(0) =
∫ l

0
ρA(x)Wi(x)w0(x) dx, i = 1, 2, . . . (11.138)
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A similar procedure with Eq. (11.137) leads to

η̇i (0) =
∫ l

0
ρA(x)Wi(x)ẇ0(x) dx, i = 1, 2, . . . (11.139)

Once ηi(0) and η̇i(0) are known, the response of the beam under the specified initial
conditions can be computed using Eqs. (11.128), (11.134), (11.138), and (11.139). The
procedure is illustrated in the following example.

Example 11.3 A uniformly distributed load of magnitude f0 per unit length acts on
the entire length of a uniform simply supported beam. Find the vibrations that ensue
when the load is suddenly removed.

SOLUTION The initial deflection of the beam under the distributed load of intensity
f0 is given by the static deflection curve [2]

w0(x) = f0

24EI
(x4 − 2lx3 + l3x) (E11.3.1)

and the initial velocity of the beam is assumed to be zero:

ẇ0(x) = 0 (E11.3.2)

For a simply supported beam, the normalized normal modes can be found from
Eq. (11.121): ∫ l

0
ρA(x)W 2

i (x) dx = 1, i = 1, 2, . . . (E11.3.3)

In the present case, the normal modes are given by Eq. (11.51):

Wi(x) = Ci sin
iπx

l
, i = 1, 2, . . . (E11.3.4)

where Ci is a constant. Equations (E11.3.3) and (E11.3.4) lead to

ρAC2
i

∫ l

0
sin2 iπx

l
dx = 1 (E11.3.5)

or

Ci =
√

2

ρAl
, i = 1, 2, . . . (E11.3.6)

Thus, the normalized normal modes are given by

Wi(x) =
√

2

ρAl
sin

iπx

l
, i = 1, 2, . . . (E11.3.7)

The response of a beam subject to initial conditions is given by Eqs. (11.128) and
(11.134):

w(x, t) =
∞∑
i=1

Wi(x)

[
ηi(0) cos ωit + η̇i(0)

ωi

sin ωit

]
(E11.3.8)
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where ηi(0) and η̇i(0) are given by Eqs. (11.138) and (11.139):

ηi(0) =
∫ l

0
ρA(x)Wi(x)w0(x) dx = ρA

√
2

ρAl

∫ l

0
sin

iπx

l

f0

24EI
(x4 − 2lx3 + l3x) dx

= 2
√

2ρAlf0l
4

EIπ5i5
, i = 1, 3, 5, . . . (E11.3.9)

η̇i(0) =
∫ l

0
ρA(x)Wi(x)ẇ0(x) dx = 0, i = 1, 2, . . . (E11.3.10)

Thus, the response of the beam can be expressed as [Eq. (E11.3.8)]

w(x, t) =
∞∑

i=1,3,...

√
2

ρAl
sin

iπx

l

2
√

2ρAlf0l
4

EIπ5i5
cos ωit

= 4f0l
4

EIπ5

∞∑
i=1,3,...

1

i5
sin

iπx

l
cos ωit (E11.3.11)

11.8 FORCED VIBRATION

The equation of motion of a beam under distributed transverse force is given by [see
Eq. (11.12)]

∂2

∂x2

[
EI (x)

∂2w(x, t)

∂x2

]
+ ρA(x)

∂2w(x, t)

∂t2
= f (x, t) (11.140)

Using the normal mode approach (modal analysis), the solution of Eq. (11.140) is
assumed to be a linear combination of the normal modes of the beam as

w(x, t) =
∞∑
i=1

Wi(x)ηi(t) (11.141)

where Wi(x) are the normal modes found by solving the equation (using the four
boundary conditions of the beam)

d2

dx2

[
EI (x)

d2Wi(x)

dx2

]
− ρA(x)ω2

i Wi(x) = 0 (11.142)

and ηi(t) are the generalized coordinates or modal participation coefficients. Using
Eq. (11.141), Eq. (11.140) can be expressed as

∞∑
i=1

d2

dx2

[
EI (x)

d2Wi(x)

dx2

]
ηi(t) + ρA(x)

∞∑
i=1

Wi(x)
d2ηi(t)

d t2
= f (x, t) (11.143)

Using Eq. (11.142), Eq. (11.143) can be rewritten as

ρA(x)

∞∑
i=1

ω2
i Wi(x)ηi(t) + ρA(x)

∞∑
i=1

Wi(x)
d2ηi(t)

d t2
= f (x, t) (11.144)
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Multiplying Eq. (11.144) by Wj(x) and integrating from 0 to l results in

∞∑
i=1

ηi(t)

∫ l

0
ρA(x)ω2

i Wj (x)Wi(x) dx

+
∞∑
i=1

d2ηi(t)

d t2

∫ l

0
ρA(x)Wj (x)Wi(x) dx =

∫ l

0
Wj(x)f (x, t) dx (11.145)

In view of the orthogonality condition, Eq. (11.122), all terms in each of the summations
on the left side of Eq. (11.145) vanish except for the one term for which i = j , leaving

d2ηi(t)

d t2
+ ω2

i ηi(t) = Qi(t), i = 1, 2, . . . (11.146)

where Qi(t) is the generalized force corresponding to the ith mode given by

Qi(t) =
∫ l

0
Wi(x)f (x, t) dx, i = 1, 2, . . . (11.147)

The complete solution of Eq. (11.146) can be expressed as [see Eq.(2.109)]

ηi(t) = Ai cos ωit + Bi sin ωit + 1

ωi

∫ t

0
Qi(τ) sin ωi(t − τ) dτ (11.148)

Thus, the solution of Eq. (11.140) is given by Eqs.(11.141) and (11.148):

w(x, t) =
∞∑
i=1

[
Ai cos ωit + Bi sin ωit + 1

ωi

∫ t

0
Qi(τ) sin ωi(t − τ) dτ

]
Wi(x)

(11.149)

Note that the first two terms inside the brackets denote the free vibration, and the third
term indicates the forced vibration of the beam. The constants Ai and Bi in Eq.(11.149)
can be evaluated using the initial conditions of the beam.

Example 11.4 Find the response of a uniform simply supported beam subjected to a
step-function force F0 at x = ξ , as shown in Fig. 11.8. Assume the initial conditions
of the beam to be zero.

SOLUTION The natural frequencies and the normal modes of vibration of a uniform
simply supported beam are given by

ωi = i2π2

l2

√
EI

ρA
(E11.4.1)

Wi(x) = Ci sin
iπx

l
(E11.4.2)
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F(t) = F0

r, A, E, I

(a)

(b)

x
l

x

F(t)

F0

t
0

Figure 11.8

where Ci is a constant. If the normal modes are normalized according to Eq. (11.122),
we have ∫ l

0
ρA(x)W 2

i (x) dx = ρAC2
i

∫ l

0
sin2 iπx

l
dx = 1

or

Ci =
√

2

ρAl
(E11.4.3)

Thus, the normalized mode shapes are given by

Wi(x) =
√

2

ρAl
sin

iπx

l
(E11.4.4)

The force acting on the beam can be expressed as

f (x, t) = F0δ(x − ξ) (E11.4.5)

and the generalized force corresponding to the ith mode can be determined using
Eq.(11.147) as

Qi(t) =
∫ l

0
Wi(x)f (x, t) dx

=
√

2

ρAl

∫ l

0
sin

iπx

l
F0δ(x − ξ) dx =

√
2

ρAl
F0 sin

iπξ

l
(E11.4.6)
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The generalized coordinate in the ith mode is given by Eq.(11.148):

ηi(t) = Ai cos ωit + Bi sin ωit +
√

2

ρAl
F0 sin

iπξ

l

1

ωi

∫ t

0
sin ωi(t − τ) dτ

= Ai cos ωit + Bi sin ωit + F0

√
2

ρAl
sin

iπξ

l

1

ω2
i

(1 − cos ωit) (E11.4.7)

where the constants Ai and Bi can be determined from the initial conditions of the beam.
In the present case, the initial conditions are zero and hence ηi(t) can be expressed as

ηi(t) = F0

√
2

ρAl

l4

i4π4

ρA

EI
sin

iπξ

l
(1 − cos ωit) (E11.4.8)

Thus, the response of the beam is given by [see Eq.(11.149)]

w(x, t) = 2F0l
3

π4EI

∞∑
i=1

1

i4
sin

iπx

l
sin

iπξ

l
(1 − cos ωit) (E11.4.9)

Example 11.5 A uniform beam is subjected to a concentrated harmonic force F0 sin �t

at x = ξ (Fig. 11.9).

F(t) = F0 sin Ωt δ(x − x)

x

l

x

Figure 11.9

(a) Find an expression for the response of the beam valid for all support conditions.
(b) Find an expression for the response of a simply supported beam when ξ = l/2.

Assume zero initial conditions.

SOLUTION (a) The generalized force corresponding to the ith mode is given by
Eq.(11.147):

Qi(t) = F0

∫ l

0
Wi(x) sin �tδ(x − ξ) dx = F0Wi(ξ) sin �t (E11.5.1)
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For zero initial conditions, the generalized coordinate in the ith mode becomes [see
Eq.(11.148)]

ηi(t) = 1

ωi

∫ t

0
Qi(τ) sin ωi(t − τ) dτ = F0

ωi

∫ t

0
Wi(ξ) sin �τ sin ωi(t − τ) dτ

= F0

ω2
i

Wi(ξ)
1

1 − �2/ω2
i

(
sin �t − �

ωi

sin ωit

)
(E11.5.2)

The response of the beam can be expressed as [Eq.(11.141)]

w(x, t) = F0

∞∑
i=1

Wi(x)Wi(ξ)

ω2
i − �2

(
sin �t − �

ωi

sin ωit

)
(E11.5.3)

where Wi(x) and Wi(ξ) correspond to the normalized normal modes.
(b) For a simply supported beam, the normalized normal modes are given by [see

Eq.(E11.4.4)]

Wi(x) =
√

2

ρAl
sin

iπx

l
(E11.5.4)

and hence

Wi

(
ξ = l

2

)
=
√

2

ρAl
sin

iπ

2
=




0, i = 2, 4, 6, . . .√
2

ρAl
, i = 1, 5, 9, . . .

−
√

2
ρAl

, i = 3, 7, 11, . . .

(E11.5.5)

Thus, the response of the beam, Eq. (E11.5.3), becomes

w(x, t) = 2F0

ρAl


 ∞∑

i=1,5,9,...

sin(iπx/l)

ω2
i − �2

(
sin �t − �

ωi

sin ωit

)

−
∞∑

i=3,7,11,...

sin(iπx/l)

ω2
i − �2

(
sin �t − �

ωi

sin ωit

) (E11.5.6)

where

ωi = i2π2

l2

√
EI

ρA
(E11.5.7)

Example 11.6 Find the dynamic response of a uniform beam simply supported at
both ends and subjected to a harmonically varying load:

f (x, t) = f0 sin
nπx

l
sin ωt (E11.6.1)
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where f0 is a constant, n is an integer, l is the length of the beam, and ω is the
frequency of variation of the load. Assume the initial displacement and initial velocity
of the beam to be zero.

SOLUTION The equation of motion of the beam is given by [see Eq.(11.12)]

EI
∂4w(x, t)

∂x4
+ ρA

∂2w(x, t)

∂t2
= f0 sin

nπx

l
sin ωt (E11.6.2)

Although the solution of Eq. (E11.6.2) can be obtained using Eq. (11.141), a simpler
approach can be used because of the nature of the load, Eq.(E11.6.1). The homogeneous
(or free vibration) solution of Eq.(E11.6.2) can be expressed as

w(x, t) =
∞∑
i=1

sin
iπx

l
(Ci cos ωit + Di sin ωit) (E11.6.3)

where ωi is the natural frequency of the beam, given by [see Eq.(11.50)]

ωi = i2π2

√
EI

ρAl4
(E11.6.4)

The particular integral of Eq.(E11.6.2) can be expressed as

w(x, t) = an sin
nπx

l
sin ωt (E11.6.5)

where the expression for an can be found by substituting Eq.(E11.6.5) into Eq.(E11.6.2)
as

an = f0l
4

EI (nπ)4
[
1 − (ω/ωn)

2
] (E11.6.6)

The total solution of Eq. (E11.6.2) is given by sum of its homogeneous solution and
the particular integral:

w(x, t) =
∞∑
i=1

sin
iπx

l
(Ci cos ωit + Di sin ωit) + an sin

nπx

l
sin ωt (E11.6.7)

The initial conditions of the beam are given by

w(x, 0) = 0 (E11.6.8)

∂w

∂t
(x, 0) = 0 (E11.6.9)

Substituting Eq. (E11.6.7) into Eqs. (E11.6.8) and (E11.6.9), we obtain

Ci = 0 for all i (E11.6.10)

Di =




0 for i �= n

−an

ω

ωn

for i = n
(E11.6.11)



350 Transverse Vibration of Beams

Thus, the solution of the beam becomes

w(x, t) = f0l
4

EI (nπ)4
[
1 − (ω/ωn)

2
] sin

nπx

l

(
sin ωt − ω

ωn

sin ωnt

)
(E11.6.12)

11.9 RESPONSE OF BEAMS UNDER MOVING LOADS

Consider a uniform beam subjected to a concentrated load P that moves at a constant
speed v0 along the beam as shown in Fig. 11.10. The boundary conditions of the simply
supported beam are given by

w(0, t) = 0 (11.150)

∂2w

∂x2
(0, t) = 0 (11.151)

w(l, t) = 0 (11.152)

∂2w

∂x2
(l, t) = 0 (11.153)

The beam is assumed to be at rest initially, so that the initial conditions can be written as

w(x, 0) = 0 (11.154)

∂w

∂t
(x, 0) = 0 (11.155)

Instead of representing the concentrated force using a Dirac delta function, it will be
represented using a Fourier series. For this, the concentrated load P acting at x = d is
assumed to be distributed uniformly over an elemental length 2
x centered at x = d

as shown in Fig. 11.11. Now the distributed force, f (x), can be defined as

f (x) =




0 for 0 < x < d − 
x

P
2
x

for d − 
x ≤ x ≤ d + 
x

0 for d + 
x < x < l

(11.156)

From Fourier series analysis, it is known that if a function f (x) is defined only over
a finite interval (e.g., from x0 to x0 + L), the definition of the function f (x) can be

v0

d = v0t

P

l

x

Figure 11.10 Simply supported beam subjected to a moving concentrated load.
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d

P

x
l

f (x)

∆x ∆x

Figure 11.11 Concentrated load assumed to be uniformly distributed over a length 2
x.

extended for all values of x and can be considered to be periodic with period L. The
Fourier series expansion of the extended periodic function converges to the function
f (x) in the original interval from x0 to x0 + L. As a specific case, if the function f (x)

is defined over the interval 0 to l, its Fourier series expansion in terms of only sine
terms is given by

f (x) =
∞∑

n=1

fn sin
nπx

l
(11.157)

where the coefficients fn are given by

fn = 2

l

∫ l

0
f (x) sin

nπx

l
dx (11.158)

In the present case, the Fourier coefficients fn can be computed, using Eq. (11.156)
for f (x), as

fn = 2

l

[∫ d−
x

0
(0)
(

sin
nπx

l

)
dx +

∫ d+
x

d−
x

P

2
x

(
sin

nπx

l

)
dx

+
∫ l

d+
x

(0)
(

sin
nπx

l

)
dx

]

= P

l
x

∫ d+
x

d−
x

sin
nπx

l
dx = 2P

l
sin

nπ d

l

sin(nπ
x/l)

nπ
x/l
(11.159)

Since P is actually a concentrated load acting at x = d , we let 
x → 0 in Eq.(11.159)
with

lim

x→0

sin(nπ
x/l)

(nπ
x/l)
= 1 (11.160)

to obtain the coefficients

fn = 2P

l
sin

nπ d

l
(11.161)
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Thus, the Fourier sine series expansion of the concentrated load acting at x = d can
be expressed as

f (x) = 2P

l

∞∑
n=1

sin
nπ d

l
sin

nπx

l
(11.162)

Using d = v0t in Eq. (11.162), the load distribution can be represented in terms of x

and t as

f (x, t) = 2P

l

(
sin

πx

l
sin

πv0t

l
+ sin

2πx

l
sin

2πv0t

l
+ sin

3πx

l
sin

3πv0t

l
+ · · ·

)
(11.163)

The response of the beam under the nth component of the load represented by
Eq. (11.163) can be obtained using Eq. (E11.6.12) as

w(x, t) = 2P l3

EI (nπ)4
[
1 − (2πv0/lωn)

2] sin
nπx

l

(
sin

2πv0

l
t − 2πv0

ωnl
sin ωnt

)
(11.164)

The total response of the beam considering all components (or harmonics) of the load,
given by Eq.(11.163), can be expressed as

w(x, t) = 2P l3

EIπ4

∞∑
n=1

1

n4

1

1 − (2πv0/lωn)
2 sin

nπx

l

(
sin

2πv0

l
t − 2πv0

ωnl
sin ωnt

)
(11.165)

11.10 TRANSVERSE VIBRATION OF BEAMS SUBJECTED TO
AXIAL FORCE

The problem of transverse vibration of beams subjected to axial force finds application
in the study of vibration of cables, guy wires, and turbine blades. Although the vibration
of a cable can be studied by modeling it as a taut string, many cables fail due to fatigue
caused by alternating flexure induced by vortex shedding in a light wind. In turbines,
blade failures are associated with combined transverse loads due to fluids flowing at
high velocities and axial loads due to centrifugal action.

11.10.1 Derivation of Equations

Consider a beam undergoing transverse vibration under axial tensile force as shown in
Fig. 11.12(a). The forces acting on an element of the beam of length dx are shown in
Fig. 11.12(b). The change in the length of the beam element is given by

ds − dx =
{

(dx)2 +
[
∂w(x, t)

∂x
dx

]2
}1/2

− dx (11.166)



11.10 Transverse Vibration of Beams Subjected to Axial Force 353

dxx

x

P(x,t)

f (x,t)

(a)

(b)

w(x,t)
V

M

P
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0 x
x
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V + ∂V
∂x
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P + ∂P
∂x
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M + ∂M
∂x
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(c)

P + ∂P
∂x

dx

w + ∂w
∂x
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dw = ∂w
∂x
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w(x,t)
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x

P
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Figure 11.12

For small amplitudes of vibration, Eq. (11.166) can be approximated as [Fig. 11.12(c)]

ds − dx ≈
√

dx2 + dw2 − dx ≈ 1

2

(
∂w

∂x

)2

dx (11.167)

The small displacement values w(x, t) are assumed to cause no changes in the axial
force P(x, t) and the transverse distributed force f (x, t). The work done by the axial
force against the change in the length of the element of the beam can be expressed as

WP = −1

2

∫ l

0
P(x, t)

[
∂w(x, t)

∂x

]2

dx (11.168)
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The work done by the transverse load f (x, t) is given by

Wf =
∫ l

0
f (x, t)w(x, t) dx (11.169)

Thus, the total work done (W ) is given by

W = WP + Wf = −1

2

∫ l

0
P(x, t)

[
∂w(x, t)

∂x

]2

dx +
∫ l

0
f (x, t)w(x, t) dx (11.170)

The strain and kinetic energies of the beam are given by

π = 1

2

∫ l

0
EI (x)

[
∂2w(x, t)

∂x2

]2

dx (11.171)

T = 1

2

∫ l

0
ρA(x)

[
∂w(x, t)

∂t

]2

dx (11.172)

The extended Hamilton’s principle can be expressed as

δ

∫ t2

t1

(T − π + W) d t = 0 (11.173)

The various terms of Eq. (11.173) can be evaluated as follows:

δ

∫ t2

t1

T d t =
∫ l

0

∫ t2

t1

ρA
∂w

∂t

∂

∂t
(δw) d t dx

=
∫ l

0

[
ρA

∂w

∂t
δw

∣∣∣∣
t2

t1

−
∫ t2

t1

∂

∂t

(
ρA

∂w

∂t

)
δw d t

]
dx

= −
∫ t2

t1

∫ l

0
ρA

∂2w

∂t2
δw dx d t (11.174)

since δw(x, t) = 0 at t = t1 and t = t2.

δ

∫ t2

t1

π d t =
∫ t2

t1

∫ l

0
EI

∂2w

∂x2
δ

(
∂2w

∂x2

)
dx d t

=
∫ t2

t1

∫ l

0
EI

∂2w

∂x2

∂2(δw)

∂x2
dx d t

=
∫ t2

t1

[
EI

∂2w

∂x2

∂(δw)

∂x

∣∣∣∣
l

0
− ∂

∂x

(
EI

∂2w

∂x2

)
δw

∣∣∣∣
l

0

+
∫ l

0

∂2

∂x2

(
EI

∂2w

∂x2

)
δw dx

]
d t (11.175)
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δ

∫ t2

t1

W d t =
∫ t2

t1

[
−P

∂w

∂x
δ

(
∂w

∂x

)
dx +

∫ l

0
f δw dx

]
d t

=
∫ t2

t1

[
−
∫ l

0
P

∂w

∂x

∂

∂x
(δw) dx +

∫ l

0
f δw dx

]
d t

=
∫ t2

t1

[
− P

∂w

∂x
δw

∣∣∣∣
l

0
+
∫ l

0

∂

∂x

(
P

∂w

∂x

)
δw dx +

∫ l

0
f δw dx

]
d t

(11.176)

Substitution of Eqs. (11.174)–(11.176) into Eq. (11.173) leads to

−
∫ t2

t1

∫ l

0

[
ρA

∂2w

∂t2
+ ∂2

∂x2

(
EI

∂2w

∂x2

)
− ∂

∂x

(
P

∂w

∂x

)
− f

]
δw d t

−
∫ t2

t1

EI
∂2w

∂x2
δ

(
∂w

∂x

)∣∣∣∣
l

0
d t +

∫ t2

t1

[
∂

∂x

(
EI

∂2w

∂x2

)
− P

∂w

∂x

]
δw

∣∣∣∣
l

0
d t = 0 (11.177)

Since δw is assumed to be an arbitrary (nonzero) variation in 0 < x < l, the expression
under the double integral in Eq. (11.177) is set equal to zero to obtain the differential
equation of motion:

∂2

∂x2

(
EI

∂2w

∂x2

)
− ∂

∂x

(
P

∂w

∂x

)
+ ρA

∂2w

∂t2
= f (x, t) (11.178)

Setting the individual terms with single integrals in Eq. (11.177) equal to zero, we
obtain the boundary conditions as

EI
∂2w

∂x2
δ

(
∂w

∂x

)∣∣∣∣
l

0
= 0 (11.179)

[
∂

∂x

(
EI

∂2w

∂x2

)
− P

∂w

∂x

]
δw

∣∣∣∣
l

0
= 0 (11.180)

Equation (11.179) indicates that the bending moment, EI (∂2w/∂x2), or the slope,
∂w/∂x, must be zero at x = 0 as well as at x = l, while Eq. (11.180) denotes that
either the total vertical force,

∂

∂x

(
EI

∂2w

∂x2

)
− P

∂w

∂x

or the deflection, w, must be zero at x = 0 and also at x = l.

11.10.2 Free Vibration of a Uniform Beam

For a uniform beam with no transverse force, Eq. (11.178) becomes

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
− P

∂2w

∂x2
= 0 (11.181)
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The method of separation of variables is used to find the solution of Eq. (11.181):

w(x, t) = W(x)(A cos ωt + B sin ωt) (11.182)

By substituting Eq. (11.182) into Eq. (11.181), we obtain

EI
d4W

dx4
− P

d2W

dx2
− ρAω2W = 0 (11.183)

By assuming the solution of W(x) in the form

W(x) = Cesx (11.184)

where C is a constant, Eq. (11.183) gives the auxiliary equation

s4 − P

EI
s2 − ρAω2

EI
= 0 (11.185)

The roots of Eq. (11.185) are given by

s2
1 , s2

2 = P

2EI
±
(

P 2

4E2I 2
+ ρAω2

EI

)1/2

(11.186)

Thus, the solution of Eq. (11.183) can be expressed as

W(x) = C1 cosh s1x + C2 sinh s1x + C3 cos s2x + C4 sin s2x (11.187)

where the constants C1 to C4 are to be determined from the boundary conditions of
the beam.

Example 11.7 Find the natural frequencies of a uniform simply supported beam
subjected to an axial force P .

SOLUTION The boundary conditions of the beam are given by

W(0) = 0 (E11.7.1)

d2W

dx2
(0) = 0 (E11.7.2)

W(l) = 0 (E11.7.3)

d2W

dx2
(l) = 0 (E11.7.4)

When Eqs. (E11.7.1) and (E11.7.2) are used in the solution, Eq. (11.187), we obtain
C1 = C3 = 0. This leads to

W(x) = C2 sinh s1x + C4 sin s2x (E11.7.5)

Equations (E11.7.3)–(E11.7.5) yield

C2 sinh s1l + C4 sin s2l = 0 (E11.7.6)

C2s
2
1 sinh s1l − C4s

2
2 sin s2l = 0 (E11.7.7)
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For a nontrivial solution of C2 and C4 in Eqs. (E11.7.6) and (E11.7.7), the determinant
of their coefficient matrix is set equal to zero. This leads to the frequency equation

sinh s1l sin s2l = 0 (E11.7.8)

Noting that s1l ≥ 0, the roots of Eq. (E11.7.8) are given by

s2l = nπ, n = 0, 1, 2, . . . (E11.7.9)

Equations (E11.7.9) and (11.186) yield the natural frequencies of the beam as

ωn = π2

l2

√
EI

ρA

(
n4 + n2P l2

π2EI

)1/2

(E11.7.10)

If the axial force is compressive (P is negative), Eq. (E11.7.10) can be rewritten as

ωn = π2

l2

(
EI

ρA

)1/2 (
n4 − n2 P

Pcri

)1/2

(E11.7.11)

where

Pcri = π2EI

l2
(E11.7.12)

is the smallest Euler buckling load of a simply supported beam under compressive
load.
Notes:

1. If P = 0, Eq. (E11.7.11) reduces to Eq. (11.50), which gives the natural fre-
quencies of vibration of a simply supported beam.

2. If EI = 0, Eq. (E11.7.10) reduces to Eq. (8.103), which gives the natural fre-
quencies of vibration of a taut string fixed at both ends.

3. If P → Pcri, the fundamental natural frequency of vibration approaches zero
(ω1 → 0).

4. If P > 0, the values of the natural frequencies increase due to the stiffening of
the beam.

11.11 VIBRATION OF A ROTATING BEAM

Let a uniform beam rotate about an axis parallel to the z axis at a constant angular
velocity �. The radius of the hub r is considered to be negligibly small (Fig. 11.13).
The beam is assumed to be fixed at x = 0 and free at x = l. At any point x along the
beam, the centrifugal force induces an axial force, P(x), given by

P(x) =
∫ l

x

ρA�2η dη = 1

2
ρA�2l2

(
1 − x2

l2

)
(11.188)
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z

r

w(x,t)

f(x,t)

l

h

dh

Ω

x

Figure 11.13

Note that the force induced due to the longitudinal elastic displacement of the beam is
neglected in deriving Eq. (11.188). The equation of motion for the transverse vibration
of the rotating beam can be obtained using Eq. (11.188) for P in Eq. (11.178):

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
− 1

2
ρA�2l2 ∂

∂x

[(
1 − x2

l2

)
∂w

∂x

]
= f (x, t) (11.189)

Because of the coordinate system indicated in Fig. 11.13, the axial force, P , given by
Eq. (11.188) will be zero at x = l, and hence the boundary conditions of the beam will
be same as those of a nonrotating beam:

w = 0 and
∂w

∂x
= 0 at x = 0 (11.190)

and

EI
∂2w

∂x2
= 0 and EI

∂3w

∂x3
= 0 at x = l (11.191)

For the free vibration of the rotating beam, a harmonic solution of the form

w(x, t) = W(x) cos(ωt − φ) (11.192)

is assumed. Using Eq. (11.192), Eqs. (11.189)–(11.191) can be expressed as

EI
d4W

dx4
− 1

2
ρA�2l2 d

dx

[(
1 − x2

l2

)
dW

dx

]
= ω2ρAW (11.193)
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or

EI
d4W

dx4
− 1

2
ρA�2(l2 − x2)

d2W

dx2
+ ρA�2lx

dW

dx
− ρAω2W = 0 (11.194)

W(x) = dW(x)

dx
= 0, x = 0 (11.195)

d2W(x)

dx2
= d3W(x)

dx3
= 0, x = l (11.196)

The exact solution of the problem defined by Eqs. (11.194)–(11.196) is difficult to
find. However, approximate solutions can be found using the methods of Chapter 17.

11.12 NATURAL FREQUENCIES OF CONTINUOUS BEAMS ON
MANY SUPPORTS

Consider a continuous beam supported at n points as shown in Fig. 11.14. For the
vibration analysis of the beam, we consider the span (or section) between each pair of
consecutive supports as a separate beam with its origin at the left support of the span.
Hence the solution given by Eq. (11.36) or (11.37) is valid for each span of the beam.
Thus, the characteristic function or normal mode of span i can be expressed, using
Eq. (11.36), as

Wi(x) = Ai cos βix + Bi sin βix + Ci cosh βix + Di sinh βix, i = 1, 2, . . . , n − 1
(11.197)

where

βi =
(

ρiAiω
2

EiIi

)1/4

, i = 1, 2, . . . , n − 1 (11.198)

and ρi,Ai, Ei , and Ii denote the values of ρ, A,E, and I , respectively, for span i.
The following conditions are used to evaluate the constants Ai, Bi, Ci , and Di, i =
1, 2, . . . , n − 1:

1. The deflection is zero at the origin of each span (except possibly the first span):

Wi(0) = 0 (11.199)

1 2 i

x x
l1

i + 1 n − 1
n

Span n − 1Span iSpan 1

x x
li

x
ln − 1

Figure 11.14 Continuous beam on multiple supports.
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2. At the end of each span, the deflection is zero (except possibly when i = n − 1)
since the deflection is zero at each intermediate support.

Wi(li) = 0 (11.200)

3. Since the beam is continuous, the slope and bending moment just to the left
and to the right of any intermediate support are the same. Thus,

dWi−1(li−1)

dx
= dWi(0)

dx
(11.201)

Ei−1Ii−1
d2Wi−1(li−1)

dx2
= EiIi

d2Wi(0)

dx2
(11.202)

4. At each of the end supports 1 and n, two boundary conditions can be writ-
ten, depending on the nature of support (such as fixed, simply supported, or
free condition). When Eqs. (11.199)–(11.202) are applied for each span of the
beam (i = 1, 2, . . . , n − 1), along with the boundary conditions at each end of
the beam, we get a total of 4(n − 1) homogeneous algebraic equations in the
unknown constants Ai, Bi, Ci , and Di, i = 1, 2, . . . , n − 1. Using the condition
for the nontrivial solution of the constants, we can obtain the frequency equation
of the system.

Example 11.8 Determine the natural frequencies and mode shapes of a beam resting
on three simple supports as shown in Fig. 11.15(a). Assume the beam to be uniform
with l1 = l2 = l.

1 2

(a)

3

Span 1 

l1 l2

Span 2 

x x

(b)

(c)

Figure 11.15 Uniform beam resting on three simple supports.
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SOLUTION The characteristic functions in the two spans of the beam can be
expressed as

W1(x) = A1 cos β1x + B1 sin β1x + C1 cosh β1x + D1 sinh β1x (E11.8.1)

W2(x) = A2 cos β2x + B2 sin β2x + C2 cosh β2x + D2 sinh β2x (E11.8.2)

To simplify the computations, the x axis is taken from support 1 to the right for span
1 and from support 3 to the left for span 2. The simply supported end conditions at
support 1 are given by

W1(0) = 0 (E11.8.3)

E1I1
d2W1(0)

dx2
= 0 or

d2W1(0)

dx2
= 0 (E11.8.4)

Equations (E11.8.1), (E11.8.3), and (E11.8.4) give

A1 + C1 = 0

−A1 + C1 = 0

or

A1 = C1 = 0 (E11.8.5)

Thus, Eq. (E11.8.1) reduces to

W1(x) = B1 sin β1x + D1 sinh β1x (E11.8.6)

Since the displacement is zero at support 2, W1(l1) = 0 and hence Eq. (E11.8.6) gives

B1 sin β1l1 + D1 sinh β1l1 = 0

or

D1 = −B1
sin β1l1

sinh β1l1
(E11.8.7)

Thus, Eq. (E11.8.6) can be written as

W1(x) = B1

(
sin β1x − sin β1l1

sinh β1l1
sinh β1x

)
(E11.8.8)

Next, the simply supported end conditions at support 3 are given by

W2(0) = 0 (E11.8.9)

E2I2
d2W2(0)

dx2
= 0 or

d2W2(0)

dx2
= 0 (E11.8.10)

Equations (E11.8.2), (E11.8.9), and (E11.8.10) yield

A2 + C2 = 0

−A2 + C2 = 0



362 Transverse Vibration of Beams

or

A2 = C2 = 0 (E11.8.11)

Thus, Eq. (E11.8.2) reduces to

W2(x) = B2 sin β2x + D2 sinh β2x (E11.8.12)

Using the condition that the displacement at support 2 is zero in Eq. (E11.8.12), we
obtain

D2 = −B2
sin β2l2

sinh β2l2
(E11.8.13)

and hence Eq. (E11.8.12) becomes

W2(x) = B2

(
sin β2x − sin β2l2

sinh β2l2
sinh β2x

)
(E11.8.14)

The slope is continuous at support 2. This yields

dW1(l1)

dx
= −dW2(l2)

dx
(E11.8.15)

which can be expressed, using Eqs. (E11.8.8) and (E11.8.14), as,

B1β1

(
cos β1l1 − sin β1l1

sinh β1l1
cosh β1l1

)
+ B2β2

(
cos β2l2 − sin β2l2

sinh β2l2
cosh β2l2

)
= 0

(E11.8.16)

Finally, the bending moment is continuous at support 2. This leads to

E1I1
d2W1(l1)

dx2
= E2I2

d2W2(l2)

dx2
(E11.8.17)

which becomes, in view of Eqs. (E11.8.8) and (E11.8.14),

B1E1I1β
2
1 sin β1l1 − B2E2I2β

2
2 sin β2l2 = 0 (E11.8.18)

Equations (E11.8.16) and (E11.8.18) denote two simultaneous homogeneous algebraic
equations in the unknown constants B1 and B2. For a nontrivial solution of these
constants, the determinant of their coefficient matrix is set equal to zero. This gives
the frequency equation as

β1

(
cos β1l1 − sin β1l1

sinh β1l1
cosh β1l1

)
E2I2β

2
2 sin β2l2

+β2

(
cos β2l2 − sin β2l2

sinh β2l2
cosh β2l2

)
E1I1β

2
1 sin β1l1 = 0 (E11.8.19)
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For a uniform beam with identical spans, E1 = E2 = E, I1 = I2 = I, β1 = β2 = β,
and l1 = l2 = l, and Eq. (E11.8.19) reduces to

(cos βl − sin βl coth βl) sin βl = 0 (E11.8.20)

Equation (E11.8.20) will be satisfied when

sin βl = 0 (E11.8.21)

or

tan βl − tanh βl = 0 (E11.8.22)

Case (i): When sin βl = 0 This condition gives the natural frequencies as

βnl = nπ, n = 1, 2, . . .

or

ωn = n2π2

√
EI

ρAl4
, n = 1, 2, . . . (E11.8.23)

These natural frequencies can be seen to be identical to those of a beam of length l

simply supported at both ends. When Eq. (E11.8.21) is valid, Eq. (E11.8.16) gives

B1 = −B2 (E11.8.24)

and hence the mode shape becomes

W1n(x) = C2n

(
sin βnx − sin βnl

sinh βnl
sinh βnx

)
for span 1

W2n(x) = −C2n

(
sin βnx − sin βnl

sinh βnl
sinh βnx

)
for span 2

(E11.8.25)

where the constants C2n can be assumed to be 1, for simplicity. The mode shape given
by Eq. (E11.8.25) denotes an antisymmetric mode with respect to the middle support
2, as shown in Fig. 11.15(b).
Case (ii): When tan βl − tanh βl = 0 This condition can be seen to correspond to a
beam of length l fixed at one end and simply supported at the other end. The roots, βnl,
of Eq. (E11.8.22) are given in Fig. 11.4. When Eq. (E11.8.22) is valid, Eq. (E11.8.18)
gives B1 = B2 and the mode shape becomes

W1n(x) = W2n(x) = C2n

(
sin βnx − sin βnl

sinh βnl
sinh βnx

)
for spans 1 and 2

(E11.8.26)

where the constant C2n can be assumed to be 1, for simplicity. Notice that the mode
shape given by Eq. (E11.8.26) indicates a symmetric mode with respect to the middle
support 2, as shown in Fig. 11.15(c).
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Figure 11.16 Free-body diagram of a beam on an elastic foundation.

11.13 BEAM ON AN ELASTIC FOUNDATION

Let a uniform beam rest on an elastic foundation, such as a rail track on soil, as shown
in Fig. 11.16. The continuous elastic foundation is denoted by a large number of closely
spaced translational springs. The load per unit length of the beam necessary to cause
the foundation to deflect by a unit amount, called the foundation modulus, is assumed to
be kf . By considering a small element of the vibrating beam on an elastic foundation,
the equation of motion of the beam can be expressed as

∂2

∂x2

(
EI

∂2w

∂x2

)
+ ρA

∂2w

∂t2
+ kf w = f (x, t) (11.203)

where f (x, t) denotes the distributed load on the beam.

11.13.1 Free Vibration

For the free vibration of a uniform beam, Eq. (11.203) reduces to

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
+ kf w = 0 (11.204)



11.13 Beam on an Elastic Foundation 365

The free vibration solution of the beam is expressed as

w(x, t) =
∞∑
i=1

Wi(x)(Ci cos ωit + Di sin ωit) (11.205)

where ωi is the ith natural frequency and Wi(x) is the corresponding natural mode
shape of the beam. Substitution of the ith modal solution into Eq. (11.204) yields

d4Wi(x)

dx4
+
(

−ρAω2
i

EI
+ kf

EI

)
Wi(x) = 0 (11.206)

Defining

α4
i =

(
− kf

EI
+ ω2

i

c2

)
and c =

√
EI

ρA
(11.207)

Eq. (11.206) can be written as

d4Wi(x)

dx4
− α4

i Wi(x) = 0 (11.208)

The solution of Eq. (11.208) can be expressed as

Wi(x) = C1i cos αix + C2i sin αix + C3i cosh αix + C4i sinh αix (11.209)

where the constants C1i , C2i , C3i , and C4i can be evaluated from the boundary con-
ditions of the beam. Noting that Eq. (11.209) has the same form as that of a beam
without a foundation [see Eq. (11.36)], the solutions obtained for beams with different
end conditions in Section 11.5 are applicable to this case also if βi is replaced by αi .
The natural frequencies of the beam on an elastic foundation are given by Eq. (11.207):

ωi = cα2
i

√
1 + kf

EIα4
i

(11.210)

Assuming the beam on elastic foundation to be simply supported at the ends, the normal
modes can be expressed as

Wi(x) = Ci sin αix (11.211)

where Ci is a constant. The natural frequencies of the beam can be found as

αil = iπ, i = 1, 2, 3, . . .

or

ωi = i2π2c

l2

√
1 + kf l4

EIi4π4
, i = 1, 2, 3, . . . (11.212)

The free-end forced response of a simply supported beam on an elastic foundation can
be found from the corresponding results of a simply supported beam with no foundation
by using Eq. (11.212) for ωi instead of Eq.(11.50).
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11.13.2 Forced Vibration

The forced transverse vibration of a uniform beam on elastic foundation is governed
by the equation

∂2w(x, t)

∂t2
+ kf

ρA
w(x, t) + EI

ρA

∂4w(x, t)

∂x4
= f (x, t)

ρA
(11.213)

When the normal mode method is used, the solution of Eq. (11.213) can be
expressed as

w(x, t) =
∞∑

n=1

Wn(x)ηn(t) (11.214)

where Wn(x) is the nth normal mode and ηn is the corresponding generalized coordinate
of the beam. Noting that the normal mode Wn(x) satisfies the relation [see Eq. (11.206)]

d4Wn(x)

dx4
=
(

ρAω2
n

EI
− kf

EI

)
Wn(x) (11.215)

Eq. (11.213) can be reduced to

d2ηn(t)

dt2
+ ω2

nηn(t) = Qn(t), n = 1, 2, . . . (11.216)

where the natural frequency, ωn, is given by Eq.(11.210) and the generalized force,
Qn(t), by

Qn(t) =
∫ l

0
Wn(x)f (x, t) dx (11.217)

The solution of Eq. (11.216) can be expressed as

ηn(t) = 1

ωn

∫ t

0
Qn(τ) sin ωn(t − τ) dτ

+ ηn(0) cos ωnt + η̇n(0)
sin ωnt

ωn

, n = 1, 2, . . . (11.218)

where the initial values of the generalized displacement ηn(0) and generalized velocity
η̇n(0) are determined from the initial conditions of w(x, t) [see Eqs. (11.138) and
(11.139)]:

ηn(0) =
∫ l

0
ρA(x)Wn(x)w0(x) dx (11.219)

η̇n(0) =
∫ l

0
ρA(x)Wn(x)ẇ0(x) dx (11.220)

where w0(x) = w(x, 0) and ẇ0(x) = ẇ(x, 0).
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v0

f (x,t)
Uniform beam

x
Elastic foundation

(foundation modulus, kf)

Figure 11.17 Beam on an elastic foundation subjected to a moving load.

11.13.3 Beam on an Elastic Foundation Subjected to a Moving Load

Let an infinitely long uniform beam on an elastic foundation be subjected to a distributed
transverse load f (x, t) traveling at a constant speed v0 along the beam as shown in
Fig. 11.17. The vibration response of a railroad track under the moving weight of the
rail can be determined using the present analysis. Since the load moves at a constant
speed along x, the distributed load can be denoted in terms of x and t as f (x − v0t).
The equation of motion for the transverse vibration of the beam is given by

EI
∂4w(x, t)

∂x4
+ ρA

∂2w(x, t)

∂t2
+ kf w(x, t) = f (x − v0t) (11.221)

Using

z = x − v0t (11.222)

Eq. (11.221) can be rewritten as

EI
d4w(z)

dz4
+ ρAv2

0
d2w(z)

dz2
+ kf w(z) = f (z) (11.223)

If f (x, t) is a concentrated load F0 moving along the beam with a constant velocity
v0, the equation of motion can be written as

EI
d4w(z)

dz4
+ ρAv2

0
d2w(z)

dz2
+ kf w(z) = 0 (11.224)

and the concentrated load F0 is incorporated as a known shear force at z = 0 into the
solution. The solution of Eq. (11.224) is assumed to be

w(z) = eµz (11.225)

Substitution of Eq. (11.225) into Eq. (11.224) yields the auxiliary equation

EIµ4 + ρAv2
0µ

2 + kf = 0 (11.226)



368 Transverse Vibration of Beams

The roots of Eq. (11.226) can be expressed as

µ1,2 = ±i

√
α −

√
β (11.227)

µ3,4 = ±i

√
α +

√
β (11.228)

where

α = ρAv2
0

2EI
(11.229)

β = ρ2A2v4
0

4E2I 2
− kf

EI
(11.230)

Thus, the solution of Eq. (11.224) becomes

w(z) = C1e
i
√

α−√
βz + C2e

−i
√

α−√
βz + C3e

i
√

α+√
βz + C4e

−i
√

α+√
βz (11.231)

where the constants C1, C2, C3, and C4 can be determined using the conditions

w = 0 at z = ∞ (11.232)

d2w

dz2
= 0 at z = ∞ (11.233)

dw

dz
= 0 at z = 0 (11.234)

EI
d3w

dz3
= F0

2
at z = 0 (11.235)

[Note that the concentrated load F0 at z = 0 causes discontinuity of the shear force.
By considering the shear forces immediately on the left- and right-hand sides of F0,
we obtain

−EI
d3w

dz3
(z = 0+) + EI

d3w

dz3
(z = 0−) = F0 (11.236)

Due to symmetry at z = 0, Eq. (11.236) yields Eq.(11.235) as z → 0.]
To satisfy Eqs. (11.232) and (11.233), C1 and C3 must be zero in Eq. (11.231).

This gives

w(z) = C2e
−i

√
α−√

βz + C4e
−i

√
α+√

βz (11.237)

The use of conditions (11.234) and (11.235) in Eq. (11.237) yields

−iC2

√
α −

√
β − iC4

√
α +

√
β = 0 (11.238)

iC2

(√
α −

√
β

)3

+ iC4

(√
α +

√
β

)3

= F0

2
(11.239)
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The solution of Eqs. (11.238) and (11.239) is given by

C2 = − F0

i · 4EI
√

β
√

α − √
β

(11.240)

C4 = F0

i · 4EI
√

β
√

α + √
β

(11.241)

Thus, the solution of Eq. (11.224) can be expressed as

w(z) = − F0

i · 4EI
√

β
√

α − √
β

e−i
√

α−√
βz + F0

i · 4EI
√

β
√

α + √
β

e−i
√

α+√
βz

(11.242)

11.14 RAYLEIGH’S THEORY

The inertia due to the axial displacement of the beam is included in Rayleigh’s theory.
This effect is called rotary (or rotatory) inertia. The reason is that since the cross section
remains plane during motion, the axial motion of points located in any cross section
undergoes rotary motion about the y axis. Using u = −z(∂w/∂x) from Eq. (11.1), the
axial velocity is given by

∂u

∂t
= −z

∂2w

∂t ∂x
(11.243)

and hence the kinetic energy associated with the axial motion is given by

Ta = 1

2

∫ l

0

∫∫
A

ρ

(
∂u

∂t

)2

dA dx = 1

2

∫ l

0


∫∫

A

z2 dA


 ρ

(
∂2w

∂t ∂x

)2

dx

= 1

2

∫ l

0
ρI

(
∂2w

∂t ∂x

)2

dx (11.244)

The term associated with Ta in Hamilton’s principle can be evaluated as

Ia = δ

∫ t2

t1

Ta d t = δ

∫ t2

t1

1

2

∫ l

0
ρI

(
∂2w

∂t ∂x

)2

dx d t

=
∫ t2

t1

∫ l

0
ρI

∂2w

∂t ∂x
δ

(
∂2w

∂t ∂x

)
dx d t (11.245)

Using integration by parts with respect to time, Eq. (11.245) gives

Ia = −
∫ t2

t1

∫ l

0
ρI

∂3w

∂t2 ∂x
δ

(
∂w

∂x

)
dx d t (11.246)

Using integration by parts with respect to x, Eq. (11.246) yields

Ia =
∫ t2

t1

[
−ρI

∂3w

∂t2 ∂x
δw

∣∣∣∣
l

0
+
∫ l

0

∂

∂x

(
ρI

∂3w

∂t2 ∂x

)
δw dx

]
d t (11.247)
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When −Ia is added to Eq. (11.11), the equation of motion, Eq. (11.12), and the bound-
ary conditions, Eq.(11.13), will be modified as follows (by neglecting the springs and
masses at the ends):

∂2

∂x2

(
EI

∂2w

∂x2

)
− ∂

∂x

(
ρI

∂3w

∂t2∂x

)
+ ρA

∂2w

∂t2
= f (x, t) (11.248)

EI
∂2w

∂x2
δ

(
∂w

∂x

)∣∣∣∣
l

0
−
[

∂

∂x

(
EI

∂2w

∂x2

)
− ρI

∂3w

∂t2∂x

]
δw

∣∣∣∣
l

0
= 0 (11.249)

For a uniform beam, the equation of motion and the boundary conditions can be
expressed as

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
− ρI

∂4w

∂x2∂t2
− f = 0 (11.250)

EI
∂2w

∂x2
δ

(
∂w

∂x

)∣∣∣∣
l

0
= 0 (11.251)

(
EI

∂3w

∂x3
− ρI

∂3w

∂x∂t2

)
δw

∣∣∣∣
l

0
= 0 (11.252)

For free vibration, f (x, t) = 0, and Eq. (11.250) becomes

EI
∂4w

∂x4
− ρI

∂4w

∂x2∂t2
+ ρA

∂2w

∂t2
= 0 (11.253)

For harmonic oscillations, the solution is assumed as

w(x, t) = W(x) cos(ωt − φ) (11.254)

Equations (11.253) and (11.254) lead to

EI
d4W

dx4
+ ρIω2 d2W

dx2
− ρAω2W = 0 (11.255)

Using

W(x) = esx (11.256)

the auxiliary equation corresponding to Eq. (11.255) can be derived as

EIs4 + ρIω2s2 − ρAω2 = 0 (11.257)

Denoting the roots of Eq. (11.257) as s1, s2, s3, and s4, the solution of Eq. (11.255)
can be expressed as

W(x) =
4∑

i=1

Cie
six (11.258)

where the constants C1, C2, C3, and C4 can be determined from the boundary conditions.
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Example 11.9 Determine the natural frequencies of vibration of a simply supported
Rayleigh beam.

SOLUTION By introducing the parameters

α2 = EI

ρA
(E11.9.1)

r2 = I

A
(E11.9.2)

the equation of motion, Eq. (11.253), can be written for free vibration as

α2 ∂4w

∂x4
+ ∂2w

∂t2
− r2 ∂4w

∂x2∂t2
= 0 (E11.9.3)

The solution of Eq. (E11.9.3) can be assumed as

w(x, t) = C sin
nπx

l
cos ωnt (E11.9.4)

where C is a constant and ωn denotes the nth natural frequency of vibration.
Equation (E11.9.4) can be seen to satisfy the boundary conditions of Eqs. (11.251) and
(11.252). By substituting Eq. (E11.9.4) into Eq. (E11.9.3), we obtain the frequency
equation as

α2
(nπ

l

)4
− ω2

n

(
1 + n2π2r2

l2

)
= 0 (E11.9.5)

Equation (E11.9.5) gives the natural frequencies of vibration as

ω2
n = α2 (nπ/l)4

1 + (n2π2/l2)r2
, n = 1, 2, . . . (E11.9.6)

11.15 TIMOSHENKO’S THEORY

11.15.1 Equations of Motion

The effect of shear deformation, in addition to the effect of rotary inertia, is consid-
ered in this theory. To include the effect of shear deformation, first consider a beam
undergoing only shear deformation as indicated in Fig. 11.18. Here a vertical section,
such as PQ, before deformation remains vertical (P ′Q′) after deformation but moves
by a distance w in the z direction. Thus, the components of displacement of a point in
the beam are given by

u = 0, v = 0, w = w(x, t) (11.259)

The components of strain can be found as

εxx = ∂u

∂x
= 0, εyy = ∂v

∂y
= 0, εzz = ∂w

∂z
= 0 εxy = ∂u

∂y
+ ∂v

∂x
= 0,

εyz = ∂v

∂z
+ ∂w

∂y
= 0, εzx = ∂u

∂z
+ ∂w

∂x
= ∂w

∂x
(11.260)
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Figure 11.18 Beam in shear deformation.

The shear strain εzx is the same as the rotation β(x, t) = ∂w/∂x(x, t) experienced by
any fiber located parallel to the centerline of the beam, as shown in Fig. 11.18(b).
The components of stress corresponding to the strains indicated in Eq. (11.260) are
given by

σxx = σyy = σzz = σxy = σyz = 0, σzx = Gεzx = G
∂w

∂x
(11.261)

Equation (11.261) states that the shear stress σzx is the same (uniform) at every point
in the cross section of the beam. Since this is not true in reality, Timoshenko used a
constant k, known as the shear correction factor, in the expression for σzx as

σzx = kG
∂w

∂x
(11.262)

The total transverse displacement of the centerline of the beam is given by (see
Fig. 11.19):

w = ws + wb (11.263)

and hence the total slope of the deflected centerline of the beam is given by

∂w

∂x
= ∂ws

∂x
+ ∂wb

∂x
(11.264)

Since the cross section of the beam undergoes rotation due only to bending, the rotation
of the cross section can be expressed as

φ = ∂wb

∂x
= ∂w

∂x
− ∂ws

∂x
= ∂w

∂x
− β (11.265)
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Figure 11.19 Bending and shear deformations: (a) element with no deformation; (b) Element
with only shear deformation; (c) element with only bending deformation; (d) element with total
deformation.

where β = ∂ws/∂x is the shear deformation or shear angle. An element of fiber located
at a distance z from the centerline undergoes axial displacement due only to the rotation
of the cross section (shear deformation does not cause any axial displacement), and
hence the components of displacement can be expressed as

u = −z

(
∂w

∂x
− β

)
≡ −zφ(x, t)

v = 0

w = w(x, t)

(11.266)
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where the strains corresponding to the displacement field given by Eq. (11.266) are

εxx = ∂u

∂x
= −z

∂φ

∂x

εyy = ∂v

∂y
= 0

εzz = ∂w

∂z
= 0

εxy = ∂u

∂y
+ ∂v

∂x
= 0

εyz = ∂w

∂y
+ ∂v

∂z
= 0

εzx = ∂u

∂z
+ ∂w

∂x
= −φ + ∂w

∂x

(11.267)

The components of stress corresponding to the strains of Eq. (11.267) are given by

σxx = −Ez
∂φ

∂x

σzx = kG

(
∂w

∂x
− φ

)
(11.268)

σyy = σzz = σxy = σyz = 0

The strain energy of the beam can be determined as

π = 1

2

∫∫∫
V

(σxxεxx + σyyεyy + σzzεzz+σxyεxy + σyzεyz + σzxεzx) dV

= 1

2

∫ l

0

∫∫
A

[
Ez2

(
∂φ

∂x

)2

+ kG

(
∂w

∂x
− φ

)2
]

dA dx

= 1

2

∫ l

0

[
EI

(
∂φ

∂x

)2

+ kAG

(
∂w

∂x
− φ

)2
]

dx (11.269)

The kinetic energy of the beam, including rotary inertia, is given by

T = 1

2

∫ l

0

[
ρA

(
∂w

∂t

)2

+ ρI

(
∂φ

∂t

)2
]

dx (11.270)

The work done by the external distributed load f (x, t) is given by

W =
∫ l

0
f w dx (11.271)
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Application of extended Hamilton’s principle gives

δ

∫ t2

t1

(π − T − W) d t = 0

or∫ t2

t1

{∫ l

0

[
EI

∂φ

∂x
δ

(
∂φ

∂x

)
+ kAG

(
∂w

∂x
− φ

)
δ

(
∂w

∂x

)
− kAG

(
∂w

∂x
− φ

)
δφ

]
dx

−
∫ l

0

[
ρA

∂w

∂t
δ

(
∂w

∂t

)
+ ρI

∂φ

∂t
δ

(
∂φ

∂t

)]
dx −

∫ l

0
f δw dx

}
d t = 0

(11.272)
The integrals in Eq. (11.272) can be evaluated using integration by parts (with respect

to x or t) as follows.∫ t2

t1

∫ l

0
EI

∂φ

∂x
δ

(
∂φ

∂x

)
dx d t =

∫ t2

t1

[
EI

∂φ

∂x
δφ

∣∣∣∣
l

0
−
∫ l

0

∂

∂x

(
EI

∂φ

∂x

)
δφ dx

]
d t

(11.273)∫ t2

t1

∫ l

0
kAG

(
∂w

∂x
− φ

)
δ

(
∂w

∂x

)
dx d t

=
∫ t2

t1

[
kAG

(
∂w

∂x
− φ

)
δw

∣∣∣∣
l

0
−
∫ l

0
kAG

∂

∂x

(
∂w

∂x
− φ

)
δw dx

]
d t

(11.274)

−
∫ t2

t1

∫ l

0
ρA

∂w

∂t
δ

(
∂w

∂t

)
dx d t = −

∫ t2

t1

∫ l

0
ρA

∂2w

∂t2
δw dx d t (11.275)

−
∫ t2

t1

∫ l

0
ρI

∂φ

∂t
δ

(
∂φ

∂t

)
dx d t =

∫ t2

t1

∫ l

0
ρI

∂2φ

∂t2
δφ dx d t (11.276)

Substitution of Eqs. (11.273)–(11.276) into Eq. (11.269) leads to∫ t2

t1

{
kAG

(
∂w

∂x
− φ

)
δw

∣∣∣∣
l

0
+ EI

∂φ

∂x
δφ

∣∣∣∣
l

0

+
∫ l

0

[
− ∂

∂x

〈
kAG

(
∂w

∂x
− φ

)〉
+ ρA

∂2w

∂t2
− f

]
δw dx

+
∫ l

0

[
− ∂

∂x

(
EI

∂φ

∂x

)
− kAG

(
∂w

∂x
− φ

)
+ ρI

∂2φ

∂t2

]
δφ dx

}
d t = 0 (11.277)

Equation (11.277) gives the differential equations of motion for w and φ as

− ∂

∂x

[
kAG

∂

∂x

(
∂w

∂x
− φ

)]
+ ρA

∂2w

∂t2
= f (x, t) (11.278)

− ∂

∂x

(
EI

∂φ

∂x

)
− kAG

(
∂w

∂x
− φ

)
+ ρI

∂2φ

∂t2
= 0 (11.279)
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and the boundary conditions as

kAG

(
∂w

∂x
− φ

)
δw

∣∣∣∣
l

0
= 0 (11.280)

EI
∂φ

∂x
δφ

∣∣∣∣
l

0
= 0 (11.281)

11.15.2 Equations for a Uniform Beam

Equations (11.278) and (11.279) can be combined into a single equation of motion for
a uniform beam. For a uniform beam, Eqs. (11.278) and (11.279) reduce to

−kAG
∂2w

∂x2
+ kAG

∂φ

∂x
+ ρA

∂2w

∂t2
= f (11.282)

or

∂φ

∂x
= ∂2w

∂x2
− ρ

kG

∂2w

∂t2
+ f

kAG
(11.283)

and

−EI
∂2φ

∂x2
− kAG

∂w

∂x
+ kAGφ + ρI

∂2φ

∂t2
= 0 (11.284)

which upon differentiation with respect to x becomes

−EI
∂2

∂x2

(
∂φ

∂x

)
− kAG

∂2w

∂x2
+ kAG

∂φ

∂x
+ ρI

∂2

∂t2

(
∂φ

∂x

)
= 0 (11.285)

Substitution of Eq. (11.283) into Eq. (11.285) yields the desired equation:

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
− ρI

(
1 + E

kG

)
∂4w

∂x2∂t2
+ ρ2I

kG

∂4w

∂t4

+ EI

kAG

∂2f

∂x2
− ρI

kAG

∂2f

∂t2
− f = 0 (11.286)

For free vibration, Eq. (11.286) reduces to

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
− ρI

(
1 + E

kG

)
∂4w

∂x2∂t2
+ ρ2I

kG

∂4w

∂t4
= 0 (11.287)

The terms in Eq. (11.287) can be identified as follows. The first two terms are the same
as those of the Euler–Bernoulli theory. The third term, −ρI (∂4w/∂x2∂t2), denotes
the effect of rotary inertia. In fact, the first three terms are the same as those of
the Rayleigh theory. Finally, the last two terms, involving kG in the denominators,
represent the influence of shear deformation. Equations (11.280) and (11.281) will be
satisfied by the following common support conditions. At a clamped or fixed end:

φ = 0, w = 0 (11.288)
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At a pinned or simply supported end:

EI
∂φ

∂x
= 0, w = 0 (11.289)

At a free end:

EI
∂φ

∂x
= 0, kAG

(
∂w

∂x
− φ

)
= 0 (11.290)

11.15.3 Natural Frequencies of Vibration

The natural frequencies of vibration of uniform Timoshenko beams can be found by
assuming a harmonic time variation of solution and solving Eq. (11.287) while satisfy-
ing the specific boundary conditions of the beam. In some cases, it is more convenient
to solve the simultaneous differential equations in φ and w [Eqs. (11.278) and (11.279)]
while satisfying the particular boundary conditions of the beam. Both these approaches
are demonstrated in the following applications.

Simply Supported Beam By dividing Eq. (11.287) by ρA and defining

α2 = EI

ρA
(11.291)

r2 = I

A
(11.292)

Eq. (11.287) can be rewritten as

α2 ∂4w

∂x4
+ ∂2w

∂t2
− r2

(
1 + E

kG

)
∂4w

∂x2∂t2
+ ρr2

kG

∂4w

∂t4
= 0 (11.293)

The boundary conditions can be expressed as

w(x, t) = 0, x = 0, l (11.294)

∂φ

∂x
(x, t) = 0, x = 0, l (11.295)

Equation (11.295) can be expressed, using Eq. (11.283) with f = 0, as

∂φ

∂x
(x, t) = ∂2w(x, t)

∂x2
− ρ

kG

∂2w(x, t)

∂t2
= 0, x = 0, l (11.296)

When harmonic time variations are assumed for φ(x, t) and w(x, t) with frequency
ωn, the boundary condition of Eq. (11.296) will reduce to

∂φ

∂x
(x, t) = ∂2w(x, t)

∂x2
= 0, x = 0, l (11.297)

in view of Eq. (11.294). Thus, the boundary conditions can be stated in terms of w as

w (0, t) = 0, w(l, t) = 0 (11.298)

d2w

dx2
(0, t) = 0,

d2w

dx2
(l, t) = 0 (11.299)
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The solution of Eq. (11.293), which also satisfies the boundary conditions of
Eqs. (11.298) and (11.299), is assumed as

w(x, t) = C sin
nπx

l
cos ωnt (11.300)

where C is a constant and ωn is the nth natural frequency of vibration. Substitution of
Eq. (11.300) into Eq. (11.293) gives the frequency equation

ω4
n

ρr2

kG
− ω2

n

(
1 + n2π2r2

l2
+ n2π2r2

l2

E

kG

)
+ α2n4π4

l4
= 0 (11.301)

Equation (11.301) is a quadratic equation in ω2
n and gives two values of ω2

n for any
value of n. The smaller value of ω2

n corresponds to the bending deformation mode, and
the larger value corresponds to the shear deformation mode.

Fixed–Fixed Beam The boundary conditions can be expressed as

w(0, t) = 0, φ(0, t) = 0 (11.302)

w(l, t) = 0, φ(l, t) = 0 (11.303)

Since the expression for φ in terms of w is not directly available, Eqs. (11.283) and
(11.284) are solved, with f = 0, simultaneously. For this, the solution is assumed to
be of the form

w(x, t) = W(x) cos ωnt (11.304)

φ(x, t) = �(x) cos ωnt (11.305)

Substitution of Eqs. (11.304) and (11.305) into Eqs. (11.283) and (11.284) gives (by
setting f = 0)

−kAG
d2W

dx2
+ kAG

d�

dx
− ρAω2

nW = 0 (11.306)

−EI
d2�

dx2
− kAG

dW

dx
+ kAG� − ρIω2

n� = 0 (11.307)

The solutions of Eqs. (11.306) and (11.307) are assumed to be

W(x) = C1 exp
(ax

l

)
(11.308)

�(x) = C2 exp
(ax

l

)
(11.309)

where a, C1, and C2 are constants. Substitution of Eqs. (11.308) and (11.309) into
Eqs. (11.306) and (11.307) leads to(

−kAG
a2

l2
− ρAω2

n

)
C1 +

(
kAG

a

l

)
C2 = 0 (11.310)

(
−kAG

a

l

)
C1 +

(
−EI

a2

l2
− kAG

a

l
+ kAG − ρI ω2

n

)
C2 = 0 (11.311)
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For a nontrivial solution of the constants C1 and C2, the determinant of their coefficients
in Eqs. (11.310) and (11.311) is set equal to zero. This yields the equation

a4 +
[
ω2

nl
2
( ρ

E
+ ρ

kG

)]
a2 +

[
ω2

n l4
(

ω2
nρ

2

kGE
− ρA

EI

)]
= 0 (11.312)

The roots of Eq. (11.312) are given by

a = ∓
{

−a1

2
∓
[(a1

2

)2
− a2

]1/2
}1/2

(11.313)

where

a1 = ω2
nl

2ρ

(
1

E
+ 1

kG

)
(11.314)

a2 = ω2
nl

4ρ

(
ω2

nρ

kGE
− A

EI

)
(11.315)

The four values of a given by Eq. (11.313) can be used to express W(x) and �(x)

in the form of trigonometric and hyperbolic functions. When the boundary conditions
are used with the functions W(x) and �(x), the characteristic equation for finding the
natural frequencies of vibration, ωn, can be found.

Example 11.10 Find the first three natural frequencies of vibration of a rectangular
steel beam 1 m long, 0.05 m wide, and 0.15 m deep with simply supported ends
using Euler–Bernoulli theory, Rayleigh theory, and Timoshenko theory. Assume that
E = 207 × 109 Pa, G = 79.3 × 109 Pa, ρ = 76.5 × 103 N/m3, and k = 5

6 .

SOLUTION The natural frequencies of vibration are given according to Timoshenko
theory [Eq. (11.301)]:

ω4
n

ρr2

kG
− ω2

n

(
1 + n2π2r2

l2
+ n2π2r2

l2

E

kG

)
+ α2n4π4

l4
= 0 (E11.10.1)

According to Rayleigh theory [terms involving k are to be deleted in Eq. (E11.10.1)],

−ω2
n

(
1 + n2π2r2

l2

)
+ α2n4π4

l4
= 0 (E11.10.2)

By Euler–Bernoulli theory [term involving r2 is to be deleted in Eq. (E11.10.2)],

−ω2
n + α2n4π4

l4
= 0 (E11.10.3)

For the given beam, A = (0.05)(0.15) = 0.0075 m2, I = 1
12 (0.05)(0.15)3 = 14.063 ×

10−6 m4, and Eqs. (E11.10.1)–(E11.10.3) become

2.1706 × 10−9ω4
n − (1 + 76.4754 × 10−3n2)ω2

n + 494.2300 × 103n4 = 0 (E11.10.4)

−(1 + 18.5062 × 10−3n2)ω2
n + 494.2300 × 103n4 = 0 (E11.10.5)

−ω2
n + 494.2300 × 103n4 = 0 (E11.10.6)
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Table 11.3 Computation for Example 11.10

Natural frequency (rad/s)

Euler–Bernoulli Rayleigh Timoshenko
n Bending Shear

1 703.0149 696.5987 677.8909 22,259.102
2 2,812.0598 2,713.4221 2,473.3691 24,402.975
3 6,327.1348 5,858.0654 4,948.0063 27,446.297

The natural frequencies computed from Eqs. (E11.10.4)–(E11.10.6) are given in
Table 11.3.

11.16 COUPLED BENDING–TORSIONAL VIBRATION OF BEAMS

In the transverse vibration of beams considered so far, it is implied that the cross
section of the beam has two axes of symmetry (y and z axes). If the cross section
of the beam has two axes of symmetry, the centroid and the shear center (or center
of flexure) coincide and the bending and torsional vibrations are uncoupled. In all the
cases considered so far, the transverse vibration of the beam is assumed to be in a
plane of symmetry (xz plane). On the other hand, if the cross section of a beam has
only one axis of symmetry, the shear center lies on the axis of symmetry. When the
load does not act through the shear center, the beam will undergo twisting in addition
to bending. Note that, in general, the shear center need not lie on a principal axis; it
may lie outside the cross section of the beam as shown in Fig. 11.20 for a beam with
channel section. In Fig. 11.20, the line GG′ represents the centroidal axis, the x axis
(OO ′) denotes the shear center axis, the z axis indicates the axis of symmetry, and the
y axis represents a direction parallel to the web. For the thin-walled channel section,
the locations of the shear center and the centroid from the center of the web are given
by [3]

c = a2b2t

Iz

(11.316)

d = b2

2(b + a)
(11.317)

Iz ≈ 2

3
a3t + 2

(
1

12
bt3 + bta2

)
≈ 2

3
a3t + 2a2bt (11.318)

where 2a, b, and t are the height of web, width of flanges, and thickness of web and
flanges as shown in Fig. 11.20. The distance between the centroid and the shear center
of the channel section, e, is given by

e = c + d = a2b2t

Iz

+ b2

2(a + b)
(11.319)
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Figure 11.20 Beam with a channel section, GG′ centroidal axis; OO ′ shear center axis.

11.16.1 Equations of Motion

Consider the beam with a channel section subjected to a distributed load f (x) acting
along the centroidal axis GG′ as shown in Fig. 11.21. Since the load does not pass
through the shear center axis OO ′, the beam will undergo both bending and torsional
deflections. To study the resulting coupled bending–torsion motion of the beam, the
load acting through the centroidal axis is replaced by the same load and a torque
of magnitude fe, distributed along the shear center axis OO ′ (see Fig. 11.21). Then
the equation governing the bending deflection of the beam in the xy plane can be
written as

EIz

∂4v

∂x4
= f (11.320)

where v is the deflection of the beam in the y direction and EIz is the bending rigidity
of the cross section about the z axis. For the torsional deflection of the beam, the
total torque acting on any cross section of the beam, T (x), is written as the sum of
the Saint-Venant torque (Tsv) and the torque arising from the restraint against warping
(Tw) [3]:

T (x) = Tsv(x) + Tw(x) = GJ
dφ

dx
− EJw

d3φ

dx3
(11.321)

where φ is the angle of twist (rotation), GJ is the torsional rigidity under uniform
torsion (in the absence of any warping restraint), EJw is the warping rigidity, and Jw
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Figure 11.21 (a) Load acting through a centroid; (b) load acting through the shear center; (c) torque acting about
the shear center.

is the sectional moment of inertia of the cross section with [3]

J = 1

3

∑
bit

3
i = 1

3
(2bt3 + 2at3) = 2

3
t3(a + b) (11.322)

Jw = a2b3t

3

4at + 3bt

2at + 6bt
(11.323)

By differentiating Eq. (11.321) with respect to x and using the relation dT / dx = f e,
we obtain

GJ
d2φ

dx2
− EJw

d4φ

dx4
= f e (11.324)

Note that the solution of Eqs. (11.320) and (11.324) gives the bending deflection,
v(x), and torsional deflection, φ(x), of the beam under a static load, f (x). For the
free vibration of the beam, the inertia forces acting in the y and φ directions are
given by

−ρA
∂2

∂t2
(v − eφ) (11.325)

and

−ρIG

∂2φ

∂t2
(11.326)

where v − eφ denotes the net transverse deflection of the beam in the y direction,
ρ is the density, A is the cross-sectional area, and IG is the polar moment of inertia
of the cross section about its centroidal axis. The equations of motion for the coupled
bending–torsional vibration of the beam can be written, by using the term (11.325) in
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place of f and including the inertia force in Eq. (11.324), as

EIz

∂4v

∂x4
= −ρA

∂2

∂t2
(v − eφ) (11.327)

GJ
∂2φ

∂x2
− EJw

∂4φ

∂x4
= −ρAe

∂2

∂t2
(v − eφ) + ρIG

∂2φ

∂t2
(11.328)

11.16.2 Natural Frequencies of Vibration

For free vibration of the beam, the solution is assumed to be in the form

v(x, t) = V (x)C1 cos(ωt + θ1) (11.329)

φ(x, t) = �(x)C2 cos(ωt + θ2) (11.330)

where V (x) and �(x) are the normal modes, ω is the natural frequency of vibration, C1

and C2 are constants, and θ1 and θ2 are the phase angles. By substituting Eqs. (11.329)
and (11.330) into Eqs. (11.327) and (11.328), we obtain

EIz

d4V

dx4
= ρAω2(X − e�) (11.331)

GJ
d2�

dx2
− EJw

d4�

dx4
= ρAeω2(V − e�) − ρIGω2� (11.332)

The normal modes of the beam, V (x) and �(x), can be found by satisfying not only
Eqs. (11.331) and (11.332) but also the boundary conditions of the beam. The following
example illustrates the procedure.

Example 11.11 Find the natural frequencies of coupled vibration of a beam simply
supported at both ends. Assume the cross section of the beam to be a channel section,
as shown in Fig. 11.20.

SOLUTION The simply supported boundary conditions can be expressed as

V (x) = 0 at x = 0, x = l (E11.11.1)

d2V

dx2
(x) = 0 at x = 0, x = l (E11.11.2)

�(x) = 0 at x = 0, x = l (E11.11.3)

d2�

dx2
(x) = 0 at x = 0, x = l (E11.11.4)

The following functions can be seen to satisfy the boundary conditions of
Eqs. (E11.11.1)–(E11.11.4):

Vj(x) = Aj sin
jπx

l
, j = 1, 2, 3, . . . (E11.11.5)

�j(x) = Bj sin
jπx

l
, j = 1, 2, 3, . . . (E11.11.6)
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where Aj and Bj are constants. By substituting Eqs. (E11.11.5) and (E11.11.6) into
Eqs. (11.331) and (11.332), we obtain the following equations for finding the j th natural
frequency (ωj ):

EIz

(
jπ

l

)4

Aj = ρAω2
j (Aj − eBj ) (E11.11.7)

−GJ

(
jπ

l

)2

Bj − EJw

(
jπ

l

)4

Bj = ρAeω2
j (Aj − eBj ) − ρIGω2

jBj (E11.11.8)

Equations (E11.11.7) and (E11.11.8) can be rewritten as

(p2 − ω2
j )Aj + (ω2

j e)Bj = 0 (E11.11.9)

(q2ω2
j )Aj + (r2 − ω2

j )Bj = 0 (E11.11.10)

where

p2 = EIzj
4π4

ρAl4
(E11.11.11)

q2 = Ae

IG + Ae2
(E11.11.12)

r2 = GJl2j 2π2 + EJwj 4π4

ρl4(IG + Ae2)
(E11.11.13)

For a nontrivial solution of Aj and Bj , the determinant of their coefficient matrix must
be equal to zero. This leads to∣∣∣∣∣

p2 − ω2
j ω2

j e

q2ω2
j r2 − ω2

j

∣∣∣∣∣ = 0

or

ω4
j (1 − q2e) − ω2

j (p
2 + r2) + p2r2 = 0 (E11.11.14)

The solution of Eq. (E11.11.14) gives

ω2
j = p2 + r2 ∓ [(p2 − r2)2 + 4p2r2q2e]1/2

2(1 − eq2)
(E11.11.15)

Equation (E11.11.15) gives two values of ω2
j , corresponding to two possible modes of

the coupled bending–torsional vibration of the beam. The mode shapes corresponding
to the two natural frequencies ω2

j can be determined by solving Eqs. (E11.11.9) and
(E11.11.10). To find the physical significance of the two natural frequencies given by
Eq. (E11.11.15), consider a beam with symmetric cross section with e = 0. For this
case, Eq. (E11.11.15) gives

ω2
j = r2; p2 (E11.11.16)
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From Eqs. (E11.11.16), (E11.11.11), and (E11.11.13), we find that ω2
j = p2 corre-

sponds to the flexural vibration mode and ω2
j = r2 corresponds to the torsional vibration

mode. For a beam with a nonsymmetric cross section with e �= 0, one of the natural
frequencies given by Eq. (E11.11.15) will be smaller and the other will be larger than
the values given by Eq. (E11.11.16).

11.17 TRANSFORM METHODS: FREE VIBRATION OF AN
INFINITE BEAM

As indicated in Chapter 7, Laplace and Fourier transform methods can be used to solve
free and forced vibration problems. The applicability of the methods to beam problems
is illustrated in this section by considering the free vibration of an infinite beam. The
equation of motion for the transverse vibration of a uniform beam is given by

c2 ∂4w(x, t)

∂x4
+ ∂2w(x, t)

∂t2
= 0 (11.333)

where

c2 = EI

ρ
(11.334)

Let the initial conditions of the beam be given by

w(x, t = 0) = w0(x) (11.335)

∂w

∂t
(x, t = 0) = ẇ0(x) (11.336)

By taking the Laplace transform of Eq. (11.333), we obtain

c2 d4W(x, s)

dx4
+ s2W(x, s) = sw0(x) + ẇ0(x) (11.337)

Next, we take Fourier transform of Eq. (11.337). For this, we multiply Eq. (11.337) by
eipx and integrate the resulting equation with respect to x from −∞ to ∞:

c2
∫ ∞

−∞

[
d4W(x, s)

dx4
+ s2

c2
W(x, s)

]
eipx dx =

∫ ∞

−∞
[sw0(x) + ẇ0(x)] eipx dx

(11.338)

The first term of Eq. (11.338) can be integrated by parts to obtain

∫ ∞

−∞

d4W(x, s)

dx4
eipx dx =

(
d3W

dx3
− ip

d2W

dx2
− p2 dW

dx
+ ip3W)

)
eipx

∣∣∣∣
∞

−∞

+p4
∫ ∞

−∞
Weipx dx (11.339)
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Since W(x, s), dW(x, s)/ dx, d2W(x, s)/dx2 and d3W(x, s)/dx3 tend to zero as
|x| → ∞, Eq. (11.339) reduces to∫ ∞

−∞

d4W

dx4
eipx dx = p4

∫ ∞

−∞
Weipx dx (11.340)

Defining the Fourier transforms of W(x, s), w0(x), and ẇ0(x) as

W(p, s) = 1√
2π

∫ ∞

−∞
W(x, s)eipx dx (11.341)

W 0(p) = 1√
2π

∫ ∞

−∞
w0(x)eipx dx (11.342)

Ẇ 0(p) = 1√
2π

∫ ∞

−∞
ẇ0(x)eipx dx (11.343)

Eq. (11.338) can be rewritten as

c2p4W(p, s) + s2W(p, s) = sW 0(p) + Ẇ 0(p)

or

W(p, s) = sW 0(p) + Ẇ 0(p)

c2p4 + s2
(11.344)

The inverse Fourier transform of Eq. (11.344) yields

W(x, s) = 1√
2π

∫ ∞

−∞

sW 0(p) + Ẇ 0(p)

c2p4 + s2
e−ipx dx (11.345)

Finally, we take the inverse Laplace transform of W(x, s). Noting that

L−1[W(x, s)] = w(x, t) (11.346)

L−1
[

s

c2p4 + s2

]
= cos p2ct (11.347)

L−1
[

1

c2p4 + s2

]
= 1

p2c
sin p2ct (11.348)

Eq. (11.345) gives

w(x, t) = 1√
2π

∫ ∞

−∞

[
W 0(p) cos p2ct + Ẇ 0(p) sin p2ct

]
e−ipx dp (11.349)

The convolution theorem for the Fourier transforms yields∫ ∞

−∞
F 1(p)F 2(p)e−ipx dp =

∫ ∞

−∞
f1(η)f2(x − η) dη (11.350)
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Noting the validity of the relations

1√
2π

∫ ∞

−∞
cos p2cte−ipx dp = 1

2
√

ct

(
cos

x2

4ct
+ sin

x2

4ct

)
(11.351)

1√
2π

∫ ∞

−∞
sin p2cte−ipx dp = 1

2
√

ct

(
cos

x2

4ct
− sin

x2

4ct

)
(11.352)

Eqs. (11.350)–(11.352) can be used to express Eq. (11.349) as

w(x, t) = 1

2
√

2πct

∫ ∞

−∞
w0(x − η)

(
cos

η2

4ct
+ sin

η2

4ct

)
dη

+ 1

2
√

2πct

∫ ∞

−∞
ẇ0(x − η)

(
cos

η2

4ct
− sin

η2

4ct

)
dη (11.353)

Introducing

λ2 = η2

4ct
(11.354)

Eq. (11.353) can be rewritten as

w(x, t) = 1√
2π

∫ ∞

−∞
[w0(x − 2λ

√
ct)(cos λ2 + sin λ2)

+ ẇ0(x − 2λ
√

ct)(cos λ2 − sin λ2)] dλ (11.355)

11.18 RECENT CONTRIBUTIONS

Higher-Order Theories The second-order theories account for the deformation of the
beam due to shear by considering a second variable in deriving the governing differen-
tial equations. Some theories, such as Timoshenko theory, include a shear coefficient
to account for the nonuniformity of shear deformation across the cross section and
the accompanying cross-sectional warping. Other theories include a third variable to
characterize the degree to which bending warping occurs. Ewing [6] presented a model
of the latter type for application to constant-cross-section beams undergoing symmetric
bending vibration (with no bending–torsion coupling).

Beams on an Elastic Foundation A power series solution was presented for the free
vibration of a simply supported Euler–Bernoulli beam resting on an elastic foundation
having quadratic and cubic nonlinearities [7]. The problem was posed as a nonlinear
eigenvalue problem by assuming the time dependence to be harmonic.

Multispan Beams In Ref. [8], Wang determined the natural frequencies of contin-
uous Timoshenko beams. A modal analysis procedure was proposed by Wang [9] to
investigate the forced vibration of multispan Timoshenko beams. The effects of span
number, rotary inertia, and shear deformation on the maximum moment, maximum
deflection, and critical velocity of the beam are determined.
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Self-Excited Vibration In tall buildings and pylons of suspension bridges, the flex-
ibility and the transverse motion of the structures generates self-excited lift and drag
aerodynamic forces, known as galloping, which cause nonlinear dynamic behavior. An
approximate solution of this problem is presented by Nayfeh and Abdel-Rohman [10].

Damped Beams Wang et al. [11] studied the free vibration of a transmission-line
conductor equipped with a number of Stockbridge dampers by modeling it as a ten-
sioned beam acted on by concentrated frequency-dependent forces. An exact solution
is obtained using integral transformation.

Beams with Tip Mass Zhou gave the exact analytical solution for the eigenfrequencies
and mode shapes of a cantilever beam carrying a heavy tip mass with translational and
rotational elastic supports in the context of antenna structures [12].

Beams under Axial Loads The vibrational behavior of initially imperfect simply sup-
ported beams subject to axial loading has been considered by Ilanko [13]. The natural
frequencies of beams subjected to tensile axial loads are investigated by Bokaian [14].

Moving Loads and Bridge Structures The analysis of the vibrational behavior of
structural elements traversed by moving forces or masses can be used to study the
dynamics of a bridge traveled by a car or of rails traveled by a train. The problem was
studied by Gutierrez and Laura [15].

Waves An analytical method for finding the vibrational response and the net trans-
mitted power of bending wave fields in systems consisting of coupled finite beams has
been studied by Hugin [16].

Beams with Discontinuities A method of finding the bending moments and shear
forces as well as the free vibration characteristics of a Timoshenko beam having dis-
continuities was presented by Popplewell and Chang [17].

Beams with Variable Properties The eigenfunction method using shear theory was
used by Gupta and Sharma [18] to analyze the forced motion of a rectangular beam
whose thickness, density, and elastic properties along the length vary in any number
of steps. A beam of two steps clamped at both edges and subjected to a constant or
half-sine pulse load was considered.

Computation of Elastic Properties Larsson [19] discussed accuracy in the computa-
tion of Young’s modulus and the longitudinal–transverse shear modulus from flexural
vibration frequencies.

Coupled Vibrations Yaman [20] presented an exact analytical method, based on the
wave propagation approach, for the forced vibrations of uniform open-section channels.
Coupled wave numbers, various frequency response curves, and mode shapes were
presented for undamped and structurally damped channels using the Euler–Bernoulli
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model. Bercin and Tanaka studied the coupled flexural–torsional vibrations of mono-
symmetric beams [21]. The effects of warping stiffness, shear deformation and rotary
inertia are taken into account in the formulations.

Frames The vibration of frame structures according to the Timoshenko theory was
studied by Wang and Kinsman [22]. A portal frame subjected to free and forced vibra-
tions is used to illustrate the method.
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PROBLEMS
11.1 Derive the equation of motion and the boundary
conditions of a Timoshenko beam resting on an elas-
tic foundation using Newton’s second law of motion.
Assume that the beam is supported on a linear spring, of
stiffness K0, at x = 0 and a rotational spring, of stiffness
Kt0, at x = l.

11.2 Derive the equation of motion and the boundary
conditions of a Rayleigh beam resting on an elastic
foundation using a variational approach. Assume that
the beam is supported on a linear spring of stiffness K

at x = 0 and carries a mass M at x = l.

11.3 Find the natural frequencies and normal modes of
a uniform beam simply supported at x = 0 and free at
x = l.

11.4 Derive the orthogonality relationships of the
transverse vibration of a uniform beam that is fixed
at x = 0 and carries a mass m0 and mass moment of
inertia I0 at x = l, and is supported on a linear spring of
stiffness K and torsional spring of stiffness Kt at x = l

as shown in Fig. 11.22.

x

l

K

Kt

m0, I0r, A, E, I

Figure 11.22

11.5 Determine the frequency equation for the two-
span beam shown in Fig. 11.23. Assume that the two

spans have identical values of mass density ρ, cross-
sectional area A, and flexural rigidity EI .

2l l

Figure 11.23

11.6 Compute the first four natural frequencies
of transverse vibration of a uniform beam for
the following boundary conditions: (a) fixed–fixed;
(b) pinned–pinned; (c) fixed–free; (d) free–free;
(e) fixed–pinned. Data: E = 30 × 106 lb/in2, A =
2 in2, I = 1

3 in4, ρ = 732.4 × 10−6 lb-sec2/in4,
and l = 20 in.

11.7 A uniform beam simply supported at both
ends is deflected initially by a concentrated force
F applied at the middle. Determine the free vibra-
tion of the beam when the force F is suddenly
removed.

11.8 Determine the free vibration of a uniform
beam simply supported at both ends that is sub-
jected to an initial uniform transverse velocity v0 at
0 < x < l.

11.9 A uniform cantilever beam is deflected initially by
a concentrated force F applied at the free end. Determine
the free vibration of the beam when the force F is
suddenly removed.
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11.10 A uniform fixed–fixed beam is deflected initially
by a concentrated force F applied at the middle. Deter-
mine the free vibration of the beam when the force F is
suddenly removed.

11.11 A railway track can be modeled as an infinite
beam resting on an elastic foundation with a soil stiffness
of k per unit length. A railway car moving on the railway
track can be modeled as a load F0 moving at a constant
velocity v0. Derive the equation of motion of the beam.

11.12 Compare the natural frequencies of vibration of a
uniform beam, simply supported at both ends, given by
the Euler–Bernoulli, Rayleigh, and Timoshenko theories
for the following data:

(a) E = 30 × 106psi, ρ = 732.4 × 10−6lb-sec2/in4,

A = 2in2, I = 1

3
in4, l = 20 in.,

k = 5

6
,G = 11.5 × 106psi

(b) E = 30 × 106psi, ρ = 732.4 × 10−6lb-sec2/in4,

A = 8in2, I = 10
2

3
in4, l = 20 in.,

k = 5

6
,G = 11.5 × 106psi

(c) E = 10.3 × 106psi, ρ = 253.6 × 10−6lb-sec2/in4,

A = 2in2, I = 1

3
in4, l = 20 in.,

k = 5

6
,G = 3.8 × 106psi

(d) E = 10.3 × 106psi, ρ = 253.6 × 10−6lb-sec2/in4,

A = 8in2, I = 10
2

3
in4, l = 20 in.,

k = 5

6
,G = 3.8 × 106psi

11.13 Plot the variations of ωRn/ωEn and ωT n/ωEn

over the range 0 ≤ nr/l ≤ 1.0 for E/kG = 1.0, 2.5 and
5.0, where ωEn, ωRn, and ωT n denote the nth natural
frequency of vibration of a uniform beam given by the
Euler–Bernoulli, Rayleigh, and Timoshenko theories,
respectively.

11.14 Derive the equation of motion of a transversely
vibrating beam subjected to an axial force P using
Newton’s second law of motion.

11.15 Find the first four natural frequencies of vibration
of a uniform beam with a channel section as shown in
Fig. 11.24 and simply supported at both ends.

4 in.

4 in.

0.1 in.

0.1 in.

0.1 in.

10 in.

Figure 11.24

11.16 In the frequency equation of a simply supported
Timoshenko beam, Eq. (11.301), the contribution of the
first term, ω4

n(ρr2/kG), can be shown to be negligibly
small for nr/l � 1. By neglecting the first term, the
approximate frequency of vibration can be found as

ω2
n ≈ α2n4π4/l4

1 + n2π2r2/l2 + (n2π2r2/l2)E/kG

Find the first three natural frequencies of vibration
of the beam considered in Example 11.10 using the
approximate expression given above, and find the error
involved compared to the values given by the exact
equation (11.301).

11.17 Consider a beam subjected to a base motion
such as one experienced during an earthquake shown in
Fig. 11.25. If the elastic deflection of the beam, w(x, t),
is measured relative to the support motion, wg(t), the
total displacement of the beam is given by

wt(x, t) = wg(t) + w(x, t)

(a) Derive the equation of motion of the beam, sub-
jected to base motion, considering the inertia force
associated with the total acceleration of the beam.

(b) Suggest a method of finding the response of a beam
subjected to a specified base motion wg(t).
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wg(t)

w(x,t)

l

x

x

Figure 11.25 Beam subjected to support excitation.

11.18 A uniform simply supported beam is subjected
to a step-function force F0 at the midspan (at x = l/2).
Assuming zero initial conditions, derive expressions for
the following dynamic responses: (a) displacement dis-
tribution in the beam; (b) bending moment distribution
in the beam;(c) bending stress distribution in the beam.

11.19 Determine the response of a simply supported
beam subjected to a moving uniformly distributed load,
as shown in Fig. 11.26.

l
x

c = v0t

f0

v0

Figure 11.26 Simply supported beam subjected to a
traveling distributed load.

11.20 Show that the constant a in Eq. (11.27) is posi-
tive.

11.21 Derive the expressions for the constants An and
Bn in Eq. (11.72) in terms of the initial conditions of
the beam [Eqs. (11.54) and (11.55)].

11.22 Using Hamilton’s principle, derive the equation
of motion, Eq. (11.203), and the boundary conditions of
a beam resting on an elastic foundation.

11.23 Derive Eq. (11.216) from Eqs. (11.213) and
(11.214) for the forced vibration of a beam on an elastic
foundation.

11.24 Derive the characteristic equation for a
fixed–fixed Timoshenko beam using the solution
of Eqs. (11.308) and (11.309) and the boundary
conditions of Eqs. (11.302) and (11.303).

11.25 Determine the natural frequencies of vibration of
a fixed–fixed beam using Rayleigh’s theory.



12

Vibration of Circular Rings
and Curved Beams

12.1 INTRODUCTION

The problems of vibration of circular rings and curved beams (or rods) find application
in several practical problems. The vibration of circular rings is encountered in an
investigation of the frequencies and dynamic response of ring-stiffened cylinders such
as those encountered in airplane fuselages, circular machine parts such as gears and
pulleys, rotating machines, and stators of electrical machines. The vibration of a curved
rod can be categorized into four types when the centerline of an undeformed rod is a
plane curve and its plane is a principal plane of the rod at each point. In the first type,
flexural vibrations take place in the plane of the ring without undergoing any extension
of the centerline of the ring. In the second type, flexural vibrations, involving both
displacement at right angles to the plane of the ring and twist, take place. In the third
type, the curved rod or ring vibrates in modes similar to the torsional vibrations of a
straight rod. In the fourth type, the ring possesses modes of vibration similar to the
extensional vibration of a straight rod. It is assumed that the undeformed centerline
of the ring has a radius R, the cross section of the ring is uniform, and the cross-
sectional dimensions of the ring are small (for a thin ring) compared to the radius of
the centerline of the ring. The vibration of curved beams is important in the study of
the dynamic behavior of arches.

12.2 EQUATIONS OF MOTION OF A CIRCULAR RING

12.2.1 Three-Dimensional Vibrations of a Circular Thin Ring

Next, we derive the general equations of motion governing the three-dimensional vibra-
tions of a thin rod which in the unstressed state forms a circular ring or a portion of such
a ring [Fig. 12.1(a)]. The effects of rotary inertia and shear deformation are neglected.
The following assumptions are made in the derivation:

1. The centerline of the ring in an undeformed state forms a full circle or an arc
of a circle.

2. The cross section of the ring is constant around the circle.
3. No boundary constraints are introduced on the ring (i.e., the rim is assumed

free).
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Section 1–1

1 1

(c)

Figure 12.1 Element of a circular ring.

Consider the free-body diagram of an element of a circular ring abcd shown in
Fig. 12.1(b), where M1(θ, t) is the in-plane bending moment, taken positive when it
tends to reduce the radius of curvature of the beam, F(θ, t) is the shearing force,
taken positive when it acts in a radially inward direction on a positive face, P(θ, t) is
the tensile force, and f (θ, t) and p(θ, t) are the external radial and tangential forces,
respectively, per unit length. The radial and tangential inertia forces acting on the
element of the circular ring are given by

ρA(θ)R dθ
∂2u(θ, t)

∂t2
and ρA(θ)R dθ

∂2w(θ, t)

∂t2

where ρ is the density, A is the cross-sectional area, and R is the radius of the centerline
of the ring. The equations of motion in the radial and tangential directions can be
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expressed as (by neglecting small quantities of high order):

∂F

∂θ
+ P + f R = ρAR

∂2u

∂t2
(12.1)

∂P

∂θ
− F + pR = ρAR

∂2w

∂t2
(12.2)

If v(θ, t) denotes the transverse displacement, Q(θ, t) the transverse shear force, and
q(θ, t) the external distributed transverse force in a direction normal to the middle plane
of the ring [Fig. 12.1(c) and (d)], the transverse inertia force acting on the element of
the ring is

ρA(θ)R dθ
∂2v(θ, t)

∂t2

and the equation of motion in the transverse direction is given by

∂Q

∂θ
+ qR = ρAR

∂2v

∂t2
(12.3)

The moment equation of motion in the middle plane of the ring (about an axis normal
to the middle plane of the ring) leads to

∂M1

∂θ
+ FR = 0 (12.4)

Let M2(θ, t) be the bending moment in the ring about the radial axis, Mt(θ, t) the
torsional moment about the tangential axis, and m0(θ, t) the distributed external torque
acting on the ring. Then the dynamical moment equilibrium equation about the radial
axis of the element of the ring is given by

∂M2

∂θ
− QR + Mt = 0 (12.5)

Similarly, the dynamical moment equilibrium equation about the tangential axis can be
expressed as

∂Mt

∂θ
− M2 + m0R = 0 (12.6)

The six equations(12.1)–(12.6) are the equations of motion governing the three-
dimensional vibrations of a ring in 10 unknowns: F , P , Q, M1, M2, Mt , u, v, w,
and � [� and v appear in the expression of Mt , as shown in Eq. (12.18)]. To
solve the equations, four more relations are required. These relations include the
moment–displacement relations, along with the condition of inextensionality of the
centerline of the ring.

12.2.2 Axial Force and Moments in Terms of Displacements

To express the forces and moments in the ring in terms of the deformation components,
consider a typical element of the ring, ab, located at a distance x from the centroidal
axis of the ring, as shown in Fig. 12.2(a). If the axial stress in the element is σ , the
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dq
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dq′O
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∂s
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R′
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B
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q

dq
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x
AB

R

O

Figure 12.2 (a) Differential element of a curved beam; (b) Undeformed and deformed positions
of the central axis of the curved beam.

axial force and the bending moment can be expressed as

P =
∫∫
A

σ dA (12.7)

M1 =
∫∫
A

σx dA (12.8)

where

σ = Eε (12.9)

ε is the axial strain, E is Young’s modulus, and A is the cross-sectional area of the
ring. The strain in the element can be expressed as [1, 5, 6]

ε = 1

R

[
−u + ∂w

∂θ
− x

R

∂

∂θ

(
w + ∂u

∂θ

)]
(12.10)

where u and w are, respectively, the radial and tangential displacements of a typical
point A lying on the central axis of the ring as shown in Fig. 12.2(b). By substituting
Eqs. (12.10) and (12.9) into Eqs. (12.7) and (12.8) and performing the integrations, we
obtain

P = EA

R

(
−u + ∂w

∂θ

)
(12.11)

M1 = EI1

R2

∂

∂θ

(
w + ∂u

∂θ

)
(12.12)
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where I1 denotes the moment of inertia of the cross section about an axis perpendicular
to the middle plane of the ring and passing through the centroid:

I1 =
∫∫
A

x2 dA (12.13)

Note that the x contribution of Eq. (12.10) does not enter in Eq. (12.11) since the axis
is the centroidal axis. The condition of inextensionality of the centerline of the ring is
given by

ε = 0 (12.14)

By neglecting products of small quantities in Eq. (12.10), Eq. (12.14) leads to

∂w

∂θ
= u (12.15)

Equation (12.12) denotes the differential equation for the deflection curve of a thin
curved bar with a circular centerline. If the inextensionality of the centerline of the
ring, Eq. (12.15), is used, Eq. (12.12) takes the form

M1 = EI1

R2

(
u + ∂2u

∂θ2

)
(12.16)

It can be seen that for infinitely large radius, Eq. (12.16) coincides with the equation
for the bending moment of a straight beam.

Proceeding in a similar manner, two more relations for bending in a normal plane
and for twisting of the ring can be derived as [5, 7]

M2 = EI2

R2

(
R� − d2v

dθ2

)
(12.17)

Mt = GJ

R2

(
dv

dθ
+ R

d�

dθ

)
(12.18)

where EI2 is the flexural rigidity of the ring in a normal plane, GJ is the torsional
rigidity of the ring (GJ is denoted as C for noncircular sections), and � is the angular
displacement of the cross section of the ring due to torsion.

12.2.3 Summary of Equations and Classification of Vibrations

The 10 governing equations in 10 unknowns for the three-dimensional vibrations of a
circular ring are given by Eqs. (12.1)–(12.6) and (12.15)–(12.18). It can be seen that
these equations fall into two sets: one consisting of Eqs. (12.1), (12.2), (12.4), (12.15),
and (12.16), where the variables v and � do not appear, and the other consisting of
Eqs. (12.3), (12.5), (12.6), (12.17) and (12.18), where the variables u and w do not
appear. In the first set of equations, the motion can be specified by the displacement u or
w, and hence they represent flexural vibrations of the ring in its plane. In the second set
of equations, the motion can be specified by v or �, and hence they represent flexural
vibrations at right angles to the plane of the ring, also called coupled twist–bending
vibrations involving both displacement at right angles to the plane of the ring and twist.
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In general, it can be shown [5] that the vibrations of a curved rod fall into two such
classes whenever the centerline of the undeformed rod is a plane curve and its plane
is a principal plane of the rod at each point. In case the centerline is a curve of double
curvature such as a helical rod, it is not possible to separate the modes of vibration
into two classes, and the problem becomes extremely difficult. In addition to the two
types of vibration stated, a curved rod also possesses modes of vibration analogous
to the torsional and extensional vibrations of a straight rod. When u = w = 0 and v

is assumed to be small compared to R�, Eq. (12.6) becomes the primary equation
governing the torsional vibrations of a ring. On the other hand, when v = � = 0 and
the inextensionality condition of Eq. (12.15) is not used, the ring undergoes extensional
vibrations.

12.3 IN-PLANE FLEXURAL VIBRATIONS OF RINGS

12.3.1 Classical Equations of Motion

As indicated in Section 12.2.3, the equations of motion for the in-plane flexural vibra-
tions of a thin ring are given by Eqs. (12.1), (12.2), (12.4), (12.15) and (12.16). These
equations can be combined into a single equation as

∂6w

∂θ6
+ 2

∂4w

∂θ4
+ ∂2w

∂θ2
− R4

EI1

(
∂f

∂θ
− p

)
+ ρAR4

EI1

∂2

∂t2

(
∂2w

∂θ2
− w

)
= 0 (12.19)

Equation (12.19) represents the equation of motion for the in-plane vibrations of a thin
ring in terms of the radial deflection w.

Natural Frequencies of Vibration For free vibration, the external forces f and p are
assumed to be zero. Then, by assuming the solution to be harmonic, as

w(θ, t) = W(θ)eiωt (12.20)

where ω is the frequency of vibration, Eq. (12.19) becomes

d6W

dθ6
+ 2

d4W

dθ4
+ d2W

dθ2
− ρAR4ω2

EI1

(
d2W

dθ2
− W

)
= 0 (12.21)

The solution of Eq. (12.21) is assumed as

W(θ) = C1 sin(nθ + φ) (12.22)

where C1 and φ are constants. When Eq. (12.22) is substituted, Eq. (12.21) gives the
natural frequencies of vibration as

ω2
n = EI1

ρAR4

n6 − 2n4 + n2

n2 + 1
, n = 2, 3, . . . (12.23)

Note that for a complete ring, n in Eq. (12.22) must be an integer, for this gives n

complete waves of deflection W in the circumference of the ring and W must be a
function whose values recur as θ increases by 2π . Also, n cannot take the value of 1
since it represents pure rigid-body oscillation without any alteration of shape, as shown
in Fig. 12.3. Thus, n can only take the values 2, 3, . . .. The normal modes of the ring
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n = 1

n = 2

Figure 12.3 Mode shapes of a ring.

can be expressed as

wn(θ, t) = C1 sin(nθ + φ)eiωnt (12.24)

where C1 and φ can be determined from the initial conditions of the ring.

12.3.2 Equations of Motion That Include Effects of Rotary Inertia and Shear
Deformation

A procedure similar to the one used in the ease of a straight beam by Timoshenko can
be used to include the effects of shear deformation and rotatory inertia in the equations
of motion of a ring. The slope of the deflection curve (ψ) depends not only on the
rotation of cross sections of the ring, but also on the shear. If φ denotes the slope of
the deflection curve when the shearing force is neglected and β denotes the angular
deformation due to shear at the neutral axis in the same cross section, then the angle
between the deformed and undeformed centerlines can be expressed as (Fig. 12.4)

ψ = φ + β (12.25)

But ψ can be expressed in terms of the displacement components u and w once the
geometry of deformation is known. From Fig. 12.4, the total slope of the deflection
curve can be expressed as

ψ = 1

R

∂u

∂θ
+ w

R
(12.26)



400 Vibration of Circular Rings and Curved Beams

b

f

M1 + dM1

P + dP F + dF

M1

F

P

a

b

c

d

q

dq

O

Figure 12.4 Composition of the slope of a deflection curve.

and hence Eq. (12.25) yields

β = 1

R

(
∂u

∂θ
+ w − Rφ

)
(12.27)

As for the shear force, the exact manner of distribution of the shear stress over the cross
section is not known. Hence, to account for the variation of β through the cross section,
a numerical factor k that depends on the shape of the cross section is introduced and
the shear force is expressed as

F = kβAG (12.28)

where G is the rigidity modulus of the material of the ring. Since the exact determination
of the factor k for rings involves consideration of the theory of elasticity, the value of
k of a straight beam can be used in Eq. (12.28) as an approximation. Equations (12.27)
and (12.28) can be combined to obtain

F = kAG

R

(
∂u

∂θ
+ w − Rφ

)
(12.29)

The bending moment can be expressed in terms of the displacement components as
[Eq. (12.16) is modified in the presence of shear deformation]

M1 = EI1

R

∂φ

∂θ
(12.30)

The differential equation of rotation of an element abcd, shown in Fig. 12.4, can be
found as

∂M1

∂θ
+ RF = ρI1R

∂2φ

∂t2
(12.31)
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The differential equations for the translatory motion of the element in the radial and
tangential directions are given by

∂F

∂θ
+ P + f R = ρAR

∂2u

∂t2
(12.32)

∂P

∂θ
− F + pR = ρAR

∂2w

∂t2
(12.33)

By eliminating P from Eqs. (12.32) and (12.33), we obtain

∂2F

∂θ2
+ F = ρAR

(
∂3u

∂θ∂t2
− ∂2w

∂t2

)
+ R

(
p − ∂f

∂θ

)
(12.34)

The condition for inextensionality of the centerline is given by Eq. (12.15). Thus, the
set of equations (12.29), (12.30), (12.31), (12.34), and (12.15) govern the in-plane
flexural vibrations of a ring when the effects of rotary inertia and shear deformation
are included. From these equations, a single equation of motion can be derived as

∂6w

∂θ6
+ 2

∂4w

∂θ4
+ ∂2w

∂θ2

=
(

ρR2

E
+ ρR2

kG

)
∂6w

∂θ4∂t2
+

(
2
ρR2

E
− ρAR4

EI1
− ρR2

kG

)
∂4w

∂θ2∂t2

+
(

ρR2

E
+ ρAR4

EI1

)
∂2w

∂t2
+

(
ρ2R4

kEG

)
∂4w

∂t4
−

(
ρ2R4

kEG

)
∂6w

∂θ2∂t4

− ρR4

kEAG

∂2

∂t2

(
p − ∂f

∂θ

)
− R4

EI1

(
p − ∂f

∂θ

)
+ R2

kAG

(
p − ∂f

∂θ

)
(12.35)

Equation (12.35) denotes the governing differential equation of motion of a ring that
takes into account the effect of rotary inertia and shear deformation. If the effect of
shear deformation is neglected, the terms involving k are to be neglected in Eq. (12.35).
Similarly, if the effects of rotary inertia and shear deformation are neglected, Eq. (12.35)
can be seen to reduce to Eq. (12.19). Finally, R → ∞ and Eq. (12.35) reduces to the
equation of motion of a Timoshenko beam.

Natural Frequencies of Vibration For free vibration, the external forces f and p are
assumed to be zero. By assuming a harmonic solution as in Eq. (12.24), the frequency
equation can be derived as

K2
2 (−n2S2

2S1 − S2
2S1) + K2(n

4S2 + n4S2S1 − 2S2n
2 + n2S2S1 + n2 + S2 + 1)

+ (−n6 + 2n4 − n2) = 0 (12.36)

where

K2 = ρAR4

EI1
ω2, S1 = E

kG
, S2 = I1

AR2

Equation (12.36) is a quadratic in K2 and hence two frequency values are associ-
ated with each mode of vibration (i.e., for each value of n). The smaller of the two
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ω values corresponds to the flexural mode, and the higher value corresponds to the
thickness-shear mode. Similar behavior is exhibited by a Timoshenko beam as well.
In Eq. (12.36), n must be an integer with a value greater than 1. The values of the
natural frequencies given by Eq. (12.36) for various values of S1 and S2 are given
in Tables 12.1. Note that if the terms involving S2 are neglected in Eq. (12.36), we
obtain a frequency equation that neglects the effect of shear deformation (but considers
the effect of rotary inertia). Similarly, if the terms involving S1 and S2 are neglected,
Eq. (12.36) reduces to Eq. (12.23), which neglects both the effects of rotary inertia and
shear deformation.

12.4 FLEXURAL VIBRATIONS AT RIGHT ANGLES TO THE
PLANE OF A RING

12.4.1 Classical Equations of Motion

As stated in Section 12.2.3, the equations of motion for the coupled twist–bending
vibrations of a thin ring are given by Eqs. (12.3), (12.5), (12.6), (12.17), and (12.18).
All these equations can be combined to obtain a single equation as

∂6v

∂θ6
+ 2

∂4v

∂θ4
+ ∂2v

∂θ2
+ ρAR4

EI2

∂4v

∂θ2∂t2
− ρAR4

C

∂2v

∂t2

− R4

EI2

∂2q

∂θ2
+ R4

C
q + R3

(
1

C
+ 1

EI2

)
∂2m0

∂θ2
= 0 (12.37)

where C = GJ . Thus, Eq. (12.37) denotes the classical equation for the flexural vibra-
tions involving transverse displacement and twist of a thin ring. The twist � is related
to the transverse deflection v by

∂2�

∂θ2
= 1

EI2 + C

(
EI2

R

∂4v

∂θ4
− C

R

∂2v

∂θ2
+ ρAR3 ∂2v

∂t2
− R3q

)
(12.38)

Table 12.1 In-Plane Flexural Vibrations of a Ring, Natural Frequencies, and
Values of ωn

√
ρAR4/EI1; Effects of Rotary Inertia and Shear Deformation

Included

E/kG I1/AR2 n Flexural mode Thickness-shear mode

1.0 0.02 2 2.543 52.759
3 6.682 56.792

0.10 2 2.167 12.382
3 5.017 15.127

2.0 0.02 2 2.459 38.587
3 6.289 42.667

3.0 0.02 2 2.380 32.400
3 5.950 36.800

0.25 2 1.321 4.695
3 2.682 6.542



12.4 Flexural Vibrations at Right Angles to the Plane of a Ring 403

Natural Frequencies of Vibration For free vibration, q = m0 = 0, and Eq. (12.37)
gives the natural frequencies of vibration, by assuming a harmonic solution, as

ω2
n = EI 2

ρAR4

n6 − 2n4 + n2

n2 + EI 2/C
, n = 2, 3, . . . (12.39)

Note that the value of n = 1 corresponds to rigid-body motion and the normal modes
of the ring are given by

vn(θ, t) = C1 sin(nθ + φ)eiωnt , n = 2, 3, . . . (12.40)

12.4.2 Equations of Motion That Include Effects of Rotary Inertia and Shear
Deformation

Using a procedure similar to that of a Timosherko beam, the slope of the transverse
deflection curve is expressed as

1

R

∂v

∂θ
= α + β (12.41)

where α is the slope of the deflection curve when the shearing force is neglected and
β is the angle of shear at the neutral axis in the same cross section. The transverse
shearing force F is given by

Q = kβAG (12.42)

where k is a numerical factor taken to account for the variation of β through the cross
section and is a constant for any given cross section. Using Eq. (12.41), Q can be
expressed as

Q = kAG

(
1

R

∂v

∂θ
− α

)
(12.43)

The moment–displacement relations, with a consideration of the shear deformation
effect, can be expressed as

M2 = EI2

R

(
� − ∂α

∂θ

)
(12.44)

Mt = C

R

(
α + ∂�

∂θ

)
(12.45)

The differential equation for the translatory motion of an element of the ring in the
transverse direction is given by

∂Q

∂θ
+ Rq = ρAR

∂2v

∂t2
(12.46)

The equations of motion for the rotation of an element of the ring about the radial and
tangential axes can be expressed as

∂M2

∂θ
+ Mt − QR = −ρI2R

∂2α

∂t2
(12.47)

∂Mt

∂θ
− M2 + m0R = ρJR

∂2�

∂t2
(12.48)
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In view of Eqs. (12.43)–(12.45), Eqs. (12.46)–(12.48) can be rewritten as

∂

∂θ

[
kAG

(
1

R

∂v

∂θ
− α

)]
+ qR − ρAR

∂2v

∂t2
= 0

(12.49)

∂

∂θ

[
EI2

R

(
� − ∂α

∂θ

)]
− kARG

(
1

R

∂v

∂θ
− α

)
+ C

R

(
α + ∂�

∂θ

)
+ ρI2R

∂2α

∂t2
= 0

(12.50)

∂

∂θ

[
C

R

(
α + ∂�

∂θ

)]
− EI2

R

(
� − ∂α

∂θ

)
+ m0R − ρJR

∂2�

∂t2
= 0

(12.51)

Equations (12.49)–(12.51) thus represent the equations of motion of a ring for the
coupled twist–bending vibrations of a ring, including the effects of rotary inertia and
shear deformation. These three equations can be combined to obtain a single equation
in terms of the displacement variable v as [7, 9]

∂6v

∂θ6
+ 2

∂4v

∂θ4
+ ∂2v

∂θ2
− ρR2

G

(
1

k
+ AR2G

C

)
∂2v

∂t2

− ρ2R4

G2

(
I2G

kC
+ GJ

kEI2
+ AR2G2J

CEI2

)
∂4v

∂t4

− ρ3R6J

GEkC

∂6v

∂t6
+ ρR2

G

(
AR2G

EI2
− 2

k
+ I2G

kC
+ GJ

EI2

)
∂4v

∂θ2∂t2

− ρR2

G

(
GJ

C
+ 1

k
+ G

E

)
∂6v

∂θ4∂t2

+ ρ2R4

G2

(
GJ

kC
+ G2J

EC
+ G

kE

)
∂6v

∂θ2∂t4
+ R2

kAG

∂4q

∂θ4
+ R2

kAG

(
2 − kAGR2

EI2

)
∂2q

∂θ2

− ρR4

kAG

(
1

E
+ J

C

)
∂4q

∂θ2∂t2
+ R2

(
1

kAG
+ R2

C

)
q

+ ρR4

kAG

(
I2

C
+ J

EI2
+ kAR2GJ

EI2C

)
∂2q

∂t2
+ ρ2R6J

kAGCE

∂4q

∂t4

+ R3
(

1

EI2
+ 1

C

)
∂2m0

∂θ2
= 0 (12.52)

In this case, the twist � is related to v as

∂2�

∂θ
= 1

EI2 + C

[
EI2

R

∂4v

∂θ4
− C

R

∂2v

∂θ2
+ ρR

(
C

kG
+ AR2

)
∂2v

∂t2
+ ρ2I2R

3

kG

∂4v

∂t4

− ρI2R

(
1 + E

kG

)
∂4v

∂θ2∂t2
− R

(
R2 + C

kAG

)
q + EI2R

kAG

∂2q

∂θ2
− ρI2R

3

kAG

∂2q

∂t2

]
(12.53)
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Various special cases can be derived from Eqs. (12.52) and (12.53) as follows:

1. When the effect of shear deformation is considered without the effect of rotary
inertia:

∂6v

∂θ6
+ 2

∂4v

∂θ4
+ ∂2v

∂θ2
−

(
ρR2

kG
+ ρAR4

C

)
∂2v

∂t2
+

(
ρAR4

EI2
− 2

ρR2

kG

)
∂4v

∂θ2∂t2

− ρR2

kG

∂6v

∂θ4∂t2
+ R2

kAG

∂4q

∂θ4
+

(
2R2

kAG
− R4

EI2

)
∂2q

∂θ2
+

(
R2

kAG
+ R4

C

)
q

+
(

R3

EI2
+ R3

C

)
∂2m0

∂θ2
= 0 (12.54)

∂2�

∂θ2
= 1

EI2 + C

[
EI2

R

∂4v

∂θ4
− C

R

∂2v

∂θ2
+

(
ρRC

kG
+ ρAR3

)
∂2v

∂t2

− EI2ρR

kG

∂4v

∂θ2∂t2
+ EI2R

kAG

∂2q

∂θ2
−

(
RC

kAG
+ R3

)
q

]
(12.55)

2. When the effect of rotary inertia is considered without the effect of shear defor-
mation:

∂6v

∂θ6
+ 2

∂4v

∂θ4
+ ∂2v

∂θ2
− ρAR4

C

∂2v

∂t2
− ρ2AR6J

EI2C

∂4v

∂t4

+ ρR2

G

(
AR2G

EI2
+ I2G

C
+ GJ

EI2

)
∂4v

∂θ2∂t2
− ρR2

G

(
GJ

C
+ G

E

)
∂6v

∂θ4∂t2

+ ρ2R4J

EC

∂6v

∂θ2∂t4
− R4

EI2

∂2q

∂θ2
+ R4

C
q + ρR6J

EI2C

∂2q

∂t2

+ R3
(

1

EI2
+ 1

C

)
∂2m0

∂θ2
= 0 (12.56)

∂2�

∂θ2
= 1

EI2 + C

(
EI2

R

∂4v

∂θ4
− C

R

∂2v

∂θ2
+ ρAR3 ∂2v

∂t2
− ρI2R

∂4v

∂θ2∂t2
− R3q

]
(12.57)

3. When the effects of both rotary inertia and shear deformation are neglected:

∂6v

∂θ6
+ 2

∂4v

∂θ4
+ ∂2v

∂θ2
+ ρAR4

EI2

∂4v

∂θ2∂t2
− ρAR4

C

∂2v

∂t2
− R4

EI2

∂2q

∂θ2

+ R4

C
q + R3

(
1

EI2
+ 1

C

)
∂2m0

∂θ2
= 0 (12.58)

∂2�

∂θ2
= 1

EI2 + C

(
EI2

R

∂4v

∂θ4
− C

R

∂2v

∂θ2
+ ρAR3 ∂2v

∂t2
− R3q

)
(12.59)

Further, if R is made equal to infinity and the terms involving the torsional
motion are neglected, Eq. (12.52) will reduce to the Timoshenko beam equation.
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Natural Frequencies of Vibration Setting q = m0 = 0 for free vibration with the
harmonic solution and introducing

T = ρAR4ω2

EI2
, S1 = E

G
, S2 = I2

AR2
, S3 = I2

J
, S4 = 1

k
, S5 = EI2

C
(12.60)

the frequency equation can be derived as

T 3 S1S
3
2S4S5

S3
− T 2

[
n2S2

2

(
S1S4 + S5

S3
+ S1S4S5

S3

)
+ S1S

2
2S4

S3
+ S1S

2
2S4S5 + S2S5

S3

]

+ T

[
S1S2S4 + S5 + n2

(
1 + S2

S3
− 2S1S2S4 + S2S5

)
+ n4S2

(
1 + S1S4 + S5

S3

)]

+ (2n4 − n6 − n2) = 0 (12.61)

This equation is a cubic in T and gives three frequency values for each mode number
n with the lowest one corresponding to the flexural mode. The two higher frequencies
correspond to the torsional and transverse thickness–shear modes. For a complete ring,
n must be an integer with values greater than 1. Corresponding to any ωn given by
Eq. (12.61), the normal mode can be expressed as

vn(θ, t) = C1 sin(nθ + φ)eiωnt (12.62)

In this case, the solution of Eq. (12.53) can be expressed as (by considering the periodic
nature of �):

�n(θ, t) = − 1

(EI2 + C)n2

[
n4 EI2

R
+ n2 C

R
− ρRω2

n

(
C

kG
+ AR2

)

− n2ρI2Rω2
n

(
1 + E

kG

)
+ ρ2R3I2

kG
ω4

n

]
C1 sin(nθ + φ)eiωnt

(12.63)

Note that if the effect of rotatory inertia only is under consideration, terms involving
k in Eqs. (12.61) and (12.63) are to be omitted. The in-plane and normal-to-plane
natural frequencies of vibration of a ring with circular cross section are compared in
Table 12.2.

12.5 TORSIONAL VIBRATIONS

For the torsional vibration of a circular ring, the in-plane displacement components u

and w are assumed to be zero. In addition, the transverse displacement v, perpendicular
to the plane of the ring, is assumed to be small compared to R�, where R is the radius
of the undeformed centerline of the ring and � is the angular deformation of the cross
section of the ring (Fig. 12.5). In this case, ignoring the terms involving α, Eq. (12.51)
gives

C

R2

∂2(R�)

∂θ2
− EI2

R2
(R�) = ρJ

∂2(R�)

∂t2
(12.64)
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Table 12.2 Comparison of In-Plane and Normal-to-Plane Frequencies of a Ringa

Value of ωn

√
mAR4/EI according to:

Both shear and
Rotary inertia Shear deformation rotary inertia

Classical theory considered considered considered

Mode Normal- Normal- Normal- Normal-
shape, n In-plane to-plane In-plane to-plane In-plane to-plane In-plane to-plane

2 2.683 2.606 2.544 2.011 2.011 2.259 1.975 1.898
3 7.589 7.478 6.414 4.860 4.572 5.028 4.446 4.339
4 14.552 14.425 10.765 7.875 7.169 7.671 6.974 6.886
5 23.534 23.399 15.240 10.796 9.709 10.192 9.478 9.431
6 34.524 34.385 19.706 13.590 12.191 12.636 11.948 11.946

aRing with circular cross section, r/R = 0.5, k = 0.833, E/G = 2.6.

Ω Ω

Figure 12.5 Torsional vibration of a ring

For a complete circular ring, the free vibrations involving n wavelengths in the cir-
cumference and frequency ω are assumed to be of the form

�(θ, t) = C1 sin(nθ + φ)eiωt (12.65)

Substituting Eq. (12.65) into (12.64), we obtain

ω2
n = Cn2 + EI2

ρJR2
(12.66)

12.6 EXTENSIONAL VIBRATIONS

For the extensional vibration of a circular ring, we assume v and � to be zero. In this
case, the centerline of the ring extends by (1/R)[(∂w/∂θ) − u] and tension developed
is given by [1, 5]

P = EA

R

(
∂w

∂θ
− u

)
(12.67)
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The equations of motion governing u and w are given by Eqs. (12.1) and (12.2), which
can be rewritten, for free vibration, as

∂F

∂θ
+ P = ρAR

∂2u

∂t2
(12.68)

∂P

∂θ
− F = ρAR

∂2w

∂t2
(12.69)

Neglecting F , Eqs. (12.68) and (12.69) can be written as

P = EA

R

(
∂w

∂θ
− u

)
= ρAR

∂2u

∂t2
(12.70)

∂P

∂θ
= EA

R

(
∂2w

∂θ2
− ∂u

∂θ

)
= ρAR

∂2w

∂t2
(12.71)

During free vibration, the displacements u and w can be assumed to be of the form

u(θ, t) = (C1 sin nθ + C2 cos nθ)eiωt (12.72)

w(θ, t) = n(C1 cos nθ − C2 sin nθ)eiωt (12.73)

Using Eqs. (12.72) and (12.73), Eqs. (12.70) and (12.71) yield the frequency of exten-
sional vibrations of the ring as

ω2
n = E

ρR2
(1 + n2) (12.74)

12.7 VIBRATION OF A CURVED BEAM WITH VARIABLE
CURVATURE

12.7.1 Thin Curved Beam

Consider a thin uniform curved beam with variable curvature as shown in Fig. 12.6.
The curved beam is assumed to have a span l and height h and its center line (middle
surface) is defined by the equation y = y(x), where the x axis is defined by the line
joining the two endpoints (supports) of the curved beam. The curvature of its centerline
is defined by ρ(θ) or ρ(x), where the angle θ is indicated in Fig. 12.6(a). The radial
and tangential displacements of the centerline are denoted u and w, respectively, and
the rotation of the cross section of the beam is denoted φ, with the positive directions
of the displacements as indicated in Fig. 12.6(a).

Equations of Motion The dynamic equilibrium approach will be used for derivation
of the equations of motion by including the effect of rotary inertia [21, 22]. For this we
consider the free-body diagram of an element of the curved beam shown in Fig. 12.6(b).
By denoting the inertia forces per unit length in the radial and tangential directions,
respectively, as Fi and Pi and the inertia moment (rotary inertia) per unit length as Mi ,
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Figure 12.6 Curved beam analysis: (a) geometry of the curved beam; (b) free-body diagram
of an element of the curved beam.

the equilibrium equations can be expressed as follows [22, 23]. Equilibrium of forces
in the radial direction:

∂F

∂θ
− P + ρFi = 0 (12.75)

Equilibrium of forces in the tangential direction:

∂P

∂θ
+ F + ρPi = 0 (12.76)

Equilibrium of moments in the xy plane:

∂M

∂θ
− ρF − ρMi = 0 (12.77)

The tangential force (P ) and the moment (M) can be expressed in terms of the dis-
placement components u and w as [5]

P = EA

ρ

[
dw

dθ
+ w + I

Aρ2

(
d2u

dθ2
+ u

)]
(12.78)

M = −EI

ρ2

(
d2u

dθ2
+ u

)
(12.79)

The rotation of the cross section (φ) is related to the displacement components u and
w as [13, 21]

φ = 1

ρ

(
du

dθ
− w

)
(12.80)
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During free vibration, u and w can be expressed as

u(θ, t) = U(θ) cos ωt (12.81)

w(θ, t) = W(θ) cos ωt (12.82)

where ω is the frequency of vibration and U(θ) and W(θ) denote the time-independent
variations of the amplitudes of u(θ, t) and w(θ, t), respectively. Thus, the inertia forces
and the inertia moment during free vibration of the curved beam are given by

Fi = mω2U (12.83)

Pi = mω2W (12.84)

Mi = mω2I

Aρ

(
dU

dθ
− W

)
(12.85)

where m is the mass of the beam per unit length.
Equations (12.78), (12.79), (12.77), (12.83)–(12.85), (12.81), and (12.82) can be

used in Eqs. (12.75) and (12.76) to obtain

− EI

{
1

ρ3

(
d4U

dθ4
+ d2U

dθ2

)
− 5

ρ4

dρ

dθ

(
d3U

dθ3
+ dU

dθ

)

+ 2

[
4

ρ5

(
dρ

dθ

)2

− 1

ρ4

d2ρ

dθ2

](
d2U

dθ2
− dW

dθ

)}

− cmω2I

A

[
1

ρ

(
d2U

dθ2
− dW

dθ

)
− 1

ρ2

dρ

dθ

(
dU

dθ
− W

)]

− EA

ρ

[
dW

dθ
+ W + I

Aρ2

(
d2U

dθ2
+ U

)]
+ ρmω2U = 0 (12.86)

EA

[
1

ρ

(
d2W

dθ2
+ dU

dθ

)
+ I

Aρ3

(
d3U

dθ3
+ dU

dθ

)
− 1

ρ2

dρ

dθ

(
dW

dθ
+ U

)

− 3I

Aρ4

dρ

dθ

(
d2U

dθ2
+ U
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− EI

[
1

ρ3

(
d3U

dθ3
+ dU

dθ

)

− 2

ρ4

dρ

dθ

(
d2U

dθ2
+ U

)]
− cmω2I

Aρ

(
dU

dθ
− W

)
+ ρmω2W = 0 (12.87)

where c is a constant set equal to 0 or 1 if rotary inertia effect (Mi) is excluded or
included, respectively. It can be seen that Eqs. (12.86) and (12.87) denote two coupled
differential equations in the displacement variables U(θ) and W(θ). Introducing the
nondimensional parameters

ξ = x

l
, η = y

l
,

˜
U = U

l
,

˜
W = W

l
(12.88)

ζ = ρ

l
,

˜
h = h

l
,

˜
r = 1

l

√
A

I
, �i = ωi

√
ml4

EI
(12.89)
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where ωi denotes the ith frequency; i = 1, 2, . . ., Eqs. (12.86) and (12.87) can be
expressed as [21, 22]

d4

˜
U

dθ4
= p1

d3

˜
U

dθ3
+

(
p2 + cp3

˜
r4

�2
i

) d2

˜
U

dθ2
+

(
p1 − cp4

˜
r4

�2
i

) d
˜
U

dθ

+
(
p5 + p6

˜
r4

�2
i

)
˜
U +

(
1 − c

˜
r4

�2
i

)
p3

d
˜
W

dθ
+ cp4

˜
r4

�2
i

˜
W (12.90)

d2

˜
W

dθ2
= p7

d2

˜
U

dθ2
+

( c

˜
r4

�2
i − 1

) d
˜
U

dθ
+ p8

˜
U + p9

d
˜
W

dθ

+ p3 − c

˜
r4

�2
i

˜
W (12.91)

where

p1 = 5

ζ

dζ

dθ
(12.92)

p2 = 2

ζ

d2ζ

dθ2
− 8

ζ 2

(
dζ

dθ

)2

− 2 (12.93)

p3 = −
˜
r2ζ 2 (12.94)

p4 = −
˜
r2ζ

dζ

dθ
(12.95)

p5 = 2

ζ

d2ζ

dθ2
− 8

ζ 2

(
dζ

dθ

)2

−
˜
r2ζ 2 − 1 (12.96)

p6 =
˜
r4ζ 4 (12.97)

p7 = 1

˜
r2ζ 3

dζ

dθ
(12.98)

p8 = 1

ζ

dζ

dθ

(
1 + 1

˜
r2ζ 2

)
(12.99)

p9 = 1

ζ

dζ

dθ
(12.100)

The coefficients p1 to p9 can be computed by starting from the equation of the curved
beam, y = y(x). Using the nondimensional parameters defined in Eqs. (12.88) and
(12.89) for ξ , η, ζ and

˜
r , we can express the equation of the curved beam in nondi-

mensional form as η = η(ξ). Using the relation

θ = π

2
− tan−1 dη

dξ
(12.101)

we obtain

1

ζ
= d2η

dξ 2

[
1 +

(
dη

dξ

)2
]−3/2

(12.102)
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Equations (12.101) and (12.102) can be used to compute the first and second derivatives
of ζ as

dζ

dθ
= dζ

dξ

dξ

dθ
(12.103)

d2ζ

dθ2
= d

dξ

(
dζ

dθ

)
dξ

dθ
(12.104)

The coefficients p1 to p9, defined in Eqs. (12.92)–(12.100), can be computed using
Eqs. (12.101)–(12.104).

Numerical Solution The boundary conditions of the curved beam or arch can be
stated as follows. For a clamped or fixed end:

w = 0 or
˜
W = 0 (12.105)

u = 0 or
˜
U = 0 (12.106)

∂u

∂θ
= 0 or

d
˜
U

dθ
= 0 (12.107)

For a pinned or hinged end:

w = 0 or
˜
W = 0 (12.108)

u = 0 or
˜
U = 0 (12.109)

∂2u

∂θ2
= 0 or

d2

˜
U

dθ2
= 0 (12.110)

The equations of motion, Eqs. (12.90) and (12.91), can be solved numerically to find the
frequency parameter �i and the mode shape defined by

˜
Ui(ξ) and

˜
Wi(ξ). Numerical

results are obtained for three types of curved beams: parabolic, sinusoidal, and elliptic-
shaped beams [22].

For a parabolic-shaped curved beam, the equation of the beam is given by

y(x) = −4hx

l2
(x − l), 0 ≤ x ≤ l (12.111)

or

η(ξ) = −4ξ(ξ − 1)
˜
h, 0 ≤ ξ ≤ 1 (12.112)

For a sinusoidal-shaped curved beam, shown in Fig. 12.7, the equation of the curved
beam is given by

y = sin
πx

L
(12.113)

x = αl + x, y = H − h + y (12.114)

or

η =
˜
h − d + d sin(eξ + eα), 0 ≤ ξ ≤ 1 (12.115)



12.7 Vibration of a Curved Beam with Variable Curvature 413

x

y

h

H

l
L

al al

A By

x

Curved beam

Half
sinewave

Figure 12.7 Sinusoidal-shaped curved beam.

where

d = ˜
h

1 − sin αe
(12.116)

e = π

1 + 2α
(12.117)

For the elliptic-shaped curved beam shown in Fig. 12.8, the equation of the curved
beam is given by

η =
˜
h − f + f

g

[
g2 −

(
ξ − 1

2

)2
]1/2

, 0 ≤ ξ ≤ 1 (12.118)

where

f = g
˜
h

g − (α + α2)1/2
(12.119)

g = 1
2 (1 + 2α) (12.120)

l

x

y
Curved beam

al al

h

A B

Figure 12.8 Elliptic-shaped curved beam.
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Table 12.3 Natural Frequency Parameters of Curved Beams

Frequency parameter, �i

i = 1 i = 2 i = 3

Without With Without With Without With
Geometry and boundary rotary rotary rotary rotary rotary rotary
conditions of the inertia, inertia, inertia, inertia, inertia, inertia,
curved beam c = 0 c = 1 c = 0 c = 1 c = 0 c = 1

Parabolic shape, 11.47 10.94 29.49 28.72 38.69 33.73
pinned–pinned:

˜
h = 0.1,

˜
r = 10

Sinusoidal shape, 16.83 16.37 23.32 22.88 35.61 31.78
pinned–fixed:
α = 0.5,

˜
h = 0.3,

˜
r = 10

Elliptic shape, 16.92 16.69 17.24 16.98 28.49 26.20
fixed–fixed:
α = 0.5,

˜
h = 0.5,

˜
r = 10

Source: Ref. 22.

Frequency parameters corresponding to the three types of curved beams with different
boundary conditions are given in Table 12.3.

12.7.2 Curved Beam Analysis, Including the Effect of Shear Deformation

Equations of Motion The dynamic equilibrium approach will be used to derive
the equations of motion by considering the free-body diagram of an element of the
curved beam as shown in Fig. 12.6(b). When the effects of rotary inertia and shear
deformation are considered, the equilibrium equations can be obtained, similar to
those of Section 12.7.1, as follows [21]. Equilibrium of forces in the radial
direction:

∂F

∂θ
− P − ρFi = 0 (12.121)

Equilibrium of forces in the tangential direction:

∂P

∂θ
+ F − ρPi = 0 (12.122)

Equilibrium of moments in the xy plane:

1

ρ

∂M

∂θ
− F + Mi = 0 (12.123)

Rotation of the tangent to the centroidal axis is given by [21]

γ = 1

ρ

(
∂u

∂θ
− w

)
(12.124)
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When shear deformation is considered, the rotation angle γ can be expressed as

γ = ψ + β (12.125)

where ψ is the rotation angle with no shear deformation and β is the angular defor-
mation due to shear. Equations (12.124) and (12.125) yield

β = 1

ρ

(
∂u

∂θ
− w − ρψ

)
(12.126)

When the effects of rotary inertia, shear deformation, and axial deformation are con-
sidered, the bending moment (M), normal force (P ), and shear force (F ) in the curved
beam are given by [19, 20]

M = −EI

ρ

dψ

dθ
(12.127)

P = EA

ρ

(
dw

dθ
+ u

)
+ EI

ρ2

dψ

dθ
(12.128)

F = kAGβ = kAG

ρ

(
du

dθ
− w − ρψ

)
(12.129)

where k is the shear factor. To find the natural frequencies of vibration of the curved
beam, all the displacement components are assumed to be harmonic with frequency ω,
so that

w(θ, t) = W(θ) cos ωt (12.130)

u(θ, t) = U(θ) cos ωt (12.131)

ψ(θ, t) = �(θ) cos ωt (12.132)

Thus, the inertia forces are given by

Pi(θ) = −mAω2W(θ) (12.133)

Fi(θ) = −mAω2U(θ) (12.134)

Mi(θ) = −mIω2�(θ) (12.135)

where m is the mass density of the curved beam. Using a procedure similar to that of
Section 12.7.1, the equations of motion can be expressed in nondimensional
form as [21]:

d2

˜
U

dθ2
= 1

ζ

dζ

dθ

d
˜
U

dθ
+ 1

µ

(
1 − ζ 2

˜
r2 ˜

�2
i

)
˜
U +

(
1 + 1

µ

)
d

˜
W

dθ

− 1

ζ

dζ

dθ ˜
W +

(
ζ + 1

µζ
˜
r2

)
d�

dθ
(12.136)
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d2

˜
W

dθ2
= 1

ζ

dζ

dθ

d
˜
W

dθ
+

(
µ − ζ 2

˜
r2 ˜

�2
i

)
˜
W − (1 + µ)

d
˜
U

dθ

+ 1

ζ

dζ

dθ ˜
U − 1

ζ
˜
r2

d2�

dθ2
+ 2

ζ 2

˜
r2

dζ

dθ

d�

dθ
+ µζ� (12.137)

d2�

dθ2
= 1

ζ

dζ

dθ

d�

dθ
+

(
µ

˜
r2 − ˜

�2
i

˜
r2

)
ζ 2� − ζµ

˜
r2 d

˜
U

dθ
+ ζµ

˜
r2

˜
W (12.138)

where

µ = kG

E
(12.139)

˜
�i = ωi

˜
rl

√
m

E
(12.140)

and the other symbols are defined by Eqs. (12.88) and (12.89).

Numerical Solution The boundary conditions of the curved beam are as follows. For
a clamped or fixed end:

u = 0 or
˜
U = 0 (12.141)

w = 0 or
˜
W = 0 (12.142)

ψ = 0 or � = 0 (12.143)

For a pinned or hinged end:

u = 0 or
˜
U = 0 (12.144)

w = 0 or
˜
W = 0 (12.145)

∂ψ

∂θ
= 0 or

d�

dθ
= 0 (12.146)

The frequency parameters corresponding to three types of curved beams with different
boundary conditions are given in Table 12.4.

12.8 RECENT CONTRIBUTIONS

Curved Beams and Rings An analytical procedure was proposed by Stavridis and
Michaltsos [12] for evaluation of the eigenfrequencies of a thin-walled beam curved in
plan in response to transverse bending and torsion with various boundary conditions.
Wasserman [13] derived an exact formula for the lowest natural frequencies and critical
loads of elastic circular arches with flexibly supported ends for symmetric vibration in
a direction perpendicular to the initial curvature of the arch. The values of frequencies
and critical loads were shown to be dependent on the opening angle of the arch, on
the stiffness of the flexibly supported ends, and on the ratio of the flexural rigidity
to the torsional rigidity of the cross section. Bickford and Maganty [14] obtained the
expressions for out-of-plane modal frequencies of a thick ring, which accounts for the
variations in curvature across the cross section.
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Table 12.4 Natural Frequencies of Curved Beams, Including the
Effect of Shear Deformationa

Geometry and boundary Frequency parameter, �i
conditions of the
curved beam i = 1 i = 2 i = 3

Parabolic shape, 21.83 56.00 102.3
Pinned-pinned:

˜
h = 0.3,

˜
r = 75

Sinusoidal shape, 56.30 66.14 114.3
fixed–fixed:
α = 0.5,

˜
h = 0.1,

˜
r = 100

Elliptic shape, 35.25 57.11 83.00
fixed–pinned:
α = 0.5,

˜
h = 0.2,

˜
r = 50

Source: Ref. 21.
aFor shear coefficient, µ = 0.3.

Vibration of Multispan Curved Beams Culver and Oestel [15] presented a method
of analysis for determining the natural frequencies of multispan horizontally curved
girders used in bridge structures. The method was illustrated by deriving the frequency
equation of a two-span curved girder. Numerical results and comparison with existing
solutions were also given.

Vibration of Helical Springs The longitudinal and torsional vibrations of helical
springs of finite length with small pitch were analyzed by Kagawa [16] on the basis of
Love’s formulation for a naturally curved thin rod of small deformation. The driving-
point impedance at one end of the spring while the other end is free or supported was
discussed.

Vibration of Gears Ring gear structural modes of planetary gears used in modern
automotive, aerospace, marine, and other industrial drivetrain systems often contribute
significantly to the severity of the gear whine problem caused by transmission error
excitation. The dynamics and modes of ring gears have been studied utilizing the
analytical and computational solutions of smooth rings having nearly the same nominal
dimensions but without the explicit presence of the spline and tooth geometries by
Tanna and Lim [17].

Vibration of Frames of Electrical Machines The frames of electrical machines such
as motors and generators can be modeled as circular arcs with partly built-in ends. The
actual frequencies of vibration of these frames are expected to lie within the limits
given by those of an arc with hinged ends and of an arc with fixed ends. The vibration
of the frames of electrical machines were studied by Erdelyi and Horvay [18].

Vibration of Arches and Frames General relations between the forces and moments
developed in arches and frames as well as the dynamic equilibrium equations have
been presented by Borg and Gennaro [19] and Henrych [20]. The natural frequencies
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of noncircular arches, considering the effects of rotary inertia and shear deformation,
have been investigated by Oh et al. [21].
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PROBLEMS
12.1 Derive Eqs. (12.17) and (12.18).

12.2 Derive Eq. (12.24) from Eqs. (12.19)–(12.23).

12.3 Derive Eq. (12.26) from Eqs. (12.19), (12.20),
(12.22), (12.23), and (12.25).

12.4 Derive Eq. (12.10) by considering the deforma-
tions shown in Fig. 12.2(b).

12.5 Find the first five natural frequencies of inplane
flexural vibrations of a circular ring with I1/AR2 = 0.25
and E/kG = 2.0 (a) according to classical theory; (b)
by considering the effect of rotary inertia only; (c) by
considering the effects of both rotary inertia and shear
deformation.

12.6 Derive Eq. (12.50) from Eqs. (12.45)–(12.49).

12.7 Derive Eq. (12.61) from Eqs. (12.45), (12.48),
(12.49), (12.59), and (12.60).

12.8 Derive Eq. (12.78) from Eqs. (12.69)–(12.71) and
(12.72)–(12.74).

12.9 Find the first five natural frequencies of coupled
twist–bending vibrations of a circular ring with r/R =
0.25, k = 0.8333, and E/G = 3.0 (a) according to clas-
sical theory; (b) by considering the effect of rotary iner-
tia only; (c) by considering the effects of both rotary
inertia and shear deformation.

12.10 Find the first five natural frequencies of pure
torsional vibrations of a circular ring with a circular

cross section for the following data: radius of the cross
section = 1 cm, radius of the centerline of the ring =
15 cm, Young’s modulus = 207 GPa, shear modulus =
79.3 GPa, and unit weight = 76.5 kN/m3.

12.11 Find the first five natural frequencies of exten-
sional vibrations of a circular ring with circular
cross section for the following data: radius of cross
section = 1 cm, radius of the centerline of the ring =
15 cm, Young’s modulus = 207 GPa, and unit weight =
76.5 kN/m3.

12.12 Derive Eqs. (12.131) and (12.132).

12.13 Derive Eqs. (12.136)–(12.138).

12.14 Derive the following differential equations for
determining the radial and tangential components of
displacement (u and v) of an arch:

u

ρ
+ dv

ds
= N

EA
− M

ρEA
+ Me

EI

d2u

ds2
+ u

ρ2
= − M

EI

where N is the tangential force, M is the bending
moment, E is Young’s modulus, A is the cross-sectional
area, I is the area moment of inertia of the cross section,
ρ is the radius of curvature of the centroidal axis, e is the
distance between the centroidal axis and the neutral axis
of the cross section, and s is the tangential coordinate.
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Vibration of Membranes

13.1 INTRODUCTION

A membrane is a perfectly flexible thin plate or lamina that is subjected to tension.
It has negligible resistance to shear or bending forces, and the restoring forces arise
exclusively from the in-plane stretching or tensile forces. The drumhead and diaphragms
of condenser microphones are examples of membranes.

13.2 EQUATION OF MOTION

13.2.1 Equilibrium Approach

Consider a homogeneous and perfectly flexible membrane bounded by a plane curve C

in the xy plane in the undeformed state. It is subjected to a pressure loading of intensity
f (x, y, t) per unit area in the transverse or z direction and tension of magnitude P per
unit length along the edge as in the case of a drumhead. Each point of the membrane is
assumed to move only in the z direction, and the displacement, w(x, y, t), is assumed
to be very small compared to the dimensions of the membrane. Consider an elemental
area of the membrane, dx dy, with tensile forces of magnitude P dx and P dy acting
on the sides parallel to the x and y axes, respectively, as shown in Fig. 13.1. After
deformation, the net forces acting on the element of the membrane along the z direction
due to the forces P dx and P dy will be [see Fig. 13.1(d)](

P
∂2w

∂y2
dx dy

)
and

(
P

∂2w

∂x2
dx dy

)

The pressure force acting on the element of the membrane in the z direction is f (x, y)

dx dy. The inertia force on the element is given by

ρ(x, y)
∂2w

∂t2
dx dy

where ρ(x, y) is the mass per unit area. The application of Newton’s second law
of motion yields the equation of motion for the forced transverse vibration of the
membrane as

P

(
∂2w

∂x2
+ ∂2w

∂y2

)
+ f = ρ

∂2w

∂t2
(13.1)
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When the external force f (x, y) = 0, the free vibration equation can be expressed as

c2
(

∂2w

∂x2
+ ∂2w

∂y2

)
= ∂2w

∂t2
(13.2)

where

c =
(

P

ρ

)1/2

(13.3)

Equation (13.2) is also known as the two-dimensional wave equation, with c denoting
the wave velocity.

Initial and Boundary Conditions Since the equation of motion, Eq. (13.1) or (13.2),
involves second-order partial derivatives with respect to each of t , x, and y, we need
to specify two initial conditions and four boundary conditions to find a unique solution

x

y

PdyPdydy

dx

Pdx

Boundary, C

Pdx

Pdy

Pdy

0

(a)

(b)

z

x
0

f (x,y,t)

dx

dx

+

+ww

∂x
∂w

∂x
∂w

∂x
∂w

∂x
∂ dx

∂x
∂w

Undeflected

Deflected

Figure 13.1 (a) Undeformed membrane in the xy plane; (b) deformed membrane as seen in
the xz plane; (c) deformed membrane as seen in the yz plane; (d) forces acting on an element
of the membrane.
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(c)

(d)

Pdx

Pdx

Pdy

Pdy

f (x,y,t)

f (x,y,t)

∂y
∂w∂x

∂w

+
∂y
∂w

∂y
∂ dy

dy

dx

∂y
∂w

+
∂x
∂w

∂x
∂ dx

∂x
∂w

Pdx

Pdx

z

y

0

dy

dy

+

+w

w

∂y
∂w

∂y
∂w

∂y
∂w

∂y ′
∂ dy

∂y
∂w

Undeflected

Deflected

Figure 13.1 (continued )

of the problem. Usually, the displacement and velocity of the membrane at t = 0 are
specified as w0(x) and ẇ0(x), respectively. Thus, the initial conditions are given by

w(x, y, 0) = w0(x, y) (13.4)

∂w

∂t
(x, y, 0) = ẇ0(x, y) (13.5)

The boundary conditions of the membrane can be stated as follows:

1. If the membrane is fixed at any point (x1,y1) on the boundary, the deflection
must be zero, and hence

w(x1, y1, t) = 0, t ≥ 0 (13.6)
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2. If the membrane is free to deflect transversely (in the z direction) at any point
(x2,y2) of the boundary, there cannot be any force at the point in the z direction.
Thus,

P
∂w

∂n
(x2, y2, t) = 0, t ≥ 0 (13.7)

where ∂w/∂n indicates the derivative of w with respect to a direction n normal
to the boundary at the point (x2,y2).

13.2.2 Variational Approach

To derive the equation of motion of a membrane using the extended Hamilton’s prin-
ciple, the expressions for the strain and kinetic energies as well as the work done
by external forces are needed. The strain and kinetic energies of a membrane can be
expressed as

π = 1

2

∫∫
A

P

[(
∂w

∂x

)2

+
(

∂w

∂y

)2
]

dA (13.8)

T = 1

2

∫∫
A

ρ

(
∂w

∂t

)2

dA (13.9)

The work done by the distributed pressure loading f (x, y, t) is given by

W =
∫∫
A

f w dA (13.10)

The application of Hamilton’s principle gives

δ

∫ t2

t1

(π − T − W) d t = 0 (13.11)

or

δ

∫ t2

t1


1

2

∫∫
A

P

[(
∂w

∂x

)2

+
(

∂w

∂y

)2
]

dA − 1

2

∫∫
A

ρ

(
∂w

∂t

)2

dA −
∫∫
A

f w dA


 d t = 0

(13.12)

The variations in Eq. (13.12) can be evaluated using integration by parts as follows:

I1 = δ

∫ t2

t1

P

2

∫∫
A

(
∂w

∂x

)2

dA d t = P

∫ t2

t1

∫∫
A

∂w

∂x

∂

∂x
(δw) dA d t

= P

∫ t2

t1


∮

C

∂w

∂x
δwlx dC −

∫∫
A

∂

∂x

(
∂w

∂x

)
δw dA


 d t (13.13)
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I2 = δ

∫ t2

t1

P

2

∫∫
A

(
∂w

∂y

)2

dA d t = P

∫ t2

t1

∫∫
A

∂w

∂y

∂

∂y
(δw) dA d t

= P

∫ t2

t1


∮

C

∂w

∂y
δwly dC −

∫∫
A

∂

∂y

(
∂w

∂y

)
δw dA


 d t (13.14)

I3 = δ

∫ t2

t1

ρ

2

∫∫
A

(
∂w

∂t

)2

dA d t = ρ

2

∫∫
A

δ

∫ t2

t1

(
∂w

∂t

)2

dA d t (13.15)

By using integration by parts with respect to time, the integral I3 can be written as

I3 = ρ

2

∫∫
A

δ

∫ t2

t1

(
∂w

∂t

)2

d t dA = ρ

∫∫
A

[
∂w

∂t
δw

∣∣∣∣
t2

t1

−
∫ t2

t1

∂

∂t

(
∂w

∂t

)
δw d t

]
dA

(13.16)

Since δw vanishes at t1 and t2, Eq. (13.16) reduces to

I3 = −ρ

∫ t2

t1

∫∫
A

∂2w

∂t2
δw dA d t (13.17)

I4 = δ

∫ t2

t1

∫∫
A

f w dA d t =
∫ t2

t1

∫∫
A

f δw dA d t (13.18)

Using Eqs. (13.13), (13.14), (13.17), and (13.18), Eq. (13.12) can be expressed as

∫ t2

t1


−

∫∫
A

(
P

∂2w

∂x2
+ P

∂2w

∂y2
+ f − ρ

∂2w

∂t2

)
δw dA


 d t

+
∫ t2

t1

[∮
C

P

(
∂w

∂x
lx + ∂w

∂y
ly

)
δw dC

]
d t = 0 (13.19)

By setting each of the expressions under the brackets in Eq. (13.19) equal to zero,
we obtain the differential equation of motion for the transverse vibration of the mem-
brane as

P

(
∂2w

∂x2
+ ∂2w

∂y2

)
+ f = ρ

∂2w

∂t2
(13.20)

and the boundary condition as∮
C

P

(
∂w

∂x
lx + ∂w

∂y
ly

)
δw dC = 0 (13.21)

Note that Eq. (13.21) will be satisfied for any combination of boundary conditions for
a rectangular membrane. For a fixed edge:

w = 0 and hence δw = 0 (13.22)
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For a free edge with x = 0 or x = a, ly = 0 and lx = 1:

P
∂w

∂x
= 0 (13.23)

With y = 0 or y = b, lx = 0 and ly = 1:

P
∂w

∂y
= 0 (13.24)

For arbitrary geometries of the membrane, Eq. (13.21) can be expressed as∮
C

P
∂w

∂n
δw dC = 0 (13.25)

which will be satisfied when either the edge is fixed with

w = 0 and hence δw = 0 (13.26)

or the edge is free with

P
∂w

∂n
= 0 (13.27)

13.3 WAVE SOLUTION

The functions

w1(x, y, t) = f (x − ct) (13.28)

w2(x, y, t) = f (x + ct) (13.29)

w3(x, y, t) = f (x cos θ + y sin θ − ct) (13.30)

can be verified to be the solutions of the two-dimensional wave equation, Eq. (13.2).
For example, consider the function w3 given by Eq. (13.30). The partial derivatives of
w3 with respect to x, y, and t are given by

∂w3

∂x
= f ′ cos θ (13.31)

∂2w3

∂x2
= f ′′ cos2 θ (13.32)

∂w3

∂y
= f ′ sin θ (13.33)

∂2w3

∂y2
= f ′′ sin2 θ (13.34)

∂w3

∂t
= −cf ′ (13.35)

∂2w3

∂t2
= c2f ′′ (13.36)
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where a prime denotes a derivative with respect to the argument of the function. When
w3 is substituted for w using the relations (13.32), (13.34), and (13.36), Eq. (13.2)
can be seen to be satisfied. The solutions given by Eqs. (13.28) and (13.29) are the
same as those of a string. Equation (13.28) denotes a wave moving in the positive x

direction at velocity c with its crests parallel to the y axis. The shape of the wave is
independent of y and the membrane behaves as if it were made up of an infinite number
of strips, all parallel to the x axis. Similarly, Eq. (13.29) denotes a wave moving in the
negative x direction with crests parallel to the x axis and the shape independent of x.
Equation (13.30) denotes a parallel wave moving in a direction at an angle θ to the x

axis with a velocity c.

13.4 FREE VIBRATION OF RECTANGULAR MEMBRANES

The free vibration of a rectangular membrane of sides a and b (Fig. 13.2) can be deter-
mined using the method of separation of variables. Thus, the displacement w(x, y, t)

is expressed as a product of three functions as

w(x, y, t) = W(x, y)T (t) ≡ X(x)Y (y)T (t) (13.37)

where W is a function of x and y, and X, Y , and T are functions of x, y, and t ,
respectively. Substituting Eq. (13.37) into the free vibration equation, Eq.(13.2), and
dividing the resulting expression through by X(x)Y (y)T (t), we obtain

c2
[

1

X(x)

d2X(x)

dx2
+ 1

Y (y)

d2Y (y)

dy2

]
= 1

T (t)

d2T (t)

dt2
(13.38)

Since the left-hand side of Eq. (13.38) is a function of x and y only, and the right-hand
side is a function of t only, each side must be equal to a constant, say, k1:

c2
[

1

X(x)

d2X(x)

dx2
+ 1

Y (y)

d2Y (y)

dy2

]
= 1

T (t)

d2T (t)

d t2
= k = −ω2 (13.39)

y

xa

b

Figure 13.2 Rectangular membrane.

1The constant k can be shown to be a negative quantity by proceeding as in the case of free vibration of
strings (Problem 13.3). Thus, we can write k = −ω2, where ω is another constant.
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Equation (13.39) can be rewritten as two separate equations:

1

X(x)

d2X(x)

dx2
+ ω2

c2
= − 1

Y (y)

d2Y (y)

dy2
(13.40)

d2T (t)

d t2
+ ω2T (t) = 0 (13.41)

It can be noted, again, that the left-hand side of Eq. (13.40) is a function of x only and
the right-hand side is a function of y only. Hence, Eq. (13.40) can be rewritten as two
separate equations:

d2X(x)

dx2
+ α2X(x) = 0 (13.42)

d2Y (y)

dy2
+ β2Y (y) = 0 (13.43)

where α2 and β2 are new constants related to ω2 as

β2 = ω2

c2
− α2 (13.44)

Thus, the problem of solving a partial differential equation involving three variables,
Eq. (13.2), has been reduced to the problem of solving three second-order ordinary
differential equations, Eqs. (13.41)–(13.43). The solutions of Eqs. (13.41)–(13.43) can
be expressed as2

T (t) = A cos ωt + B sin ωt (13.45)

X(x) = C1 cos αx + C2 sin αx (13.46)

Y (y) = C3 cos βy + C4 sin βy (13.47)

where the constants A and B can be determined from the initial conditions and the
constants C1 to C4 can be found from the boundary conditions of the membrane.

2The solution given by Eqs. (13.45)–(13.47) can also be obtained by proceeding as follows. The equation
governing the free vibration of a rectangular membrane can be expressed, setting f = 0 in Eq. (13.1), as

∂2w

∂x2
+ ∂2w

∂y2
= 1

c2

∂2w

∂t2
(a)

By assuming a harmonic solution at frequency ω as

w(x, y, t) = W(x, y)eiωt (b)

Eq. (a) can be expressed as

∂2W(x, y)

∂x2
+ ∂2W(x, y)

∂y2
+ ω2

c2
W(x, y) = 0 (c)

By assuming the solution of W(x, y) in the form

W(x, y) = X(x)Y (y) (d)

and proceeding as indicated earlier, the solution shown in Eqs. (13.45)–(13.47) can be obtained.
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13.4.1 Membrane with Clamped Boundaries

If a rectangular membrane is clamped or fixed on all the edges, the boundary conditions
can be stated as

w(0, y, t) = 0, 0 ≤ y ≤ b, t ≥ 0 (13.48)

w(a, y, t) = 0, 0 ≤ y ≤ b, t ≥ 0 (13.49)

w(x, 0, t) = 0, 0 ≤ x ≤ a, t ≥ 0 (13.50)

w(x, b, t) = 0, 0 ≤ x ≤ a, t ≥ 0 (13.51)

In view of Eq. (13.37), the boundary conditions of Eqs. (13.48)–(13.51) can be
restated as

X(0) = 0 (13.52)

X(a) = 0 (13.53)

Y (0) = 0 (13.54)

Y (b) = 0 (13.55)

The conditions X(0) = 0 and Y (0) = 0 [Eqs. (13.52) and (13.54)] require that C1 = 0
in Eq. (13.46) and C3 = 0 in Eq. (13.47). Thus, the functions X(x) and Y (y) become

X(x) = C2 sin αx (13.56)

Y (y) = C4 sin βy (13.57)

For nontrivial solutions of X(x) and Y (y), the conditions X(a) = 0 and Y (b) = 0
[Eqs. (13.53) and (13.55)] require that

sin αa = 0 (13.58)

sin βb = 0 (13.59)

Equations (13.58) and (13.59) together define the eigenvalues of the membrane through
Eq. (13.44). The roots of Eqs. (13.58) and (13.59) are given by

αma = mπ, m = 1, 2, . . . (13.60)

βnb = nπ, n = 1, 2, . . . (13.61)

The natural frequencies of the membrane, ωmn, can be determined using Eq. (13.44) as

ω2
mn = c2(α2

m + β2
n)

or

ωmn = πc

[(m

a

)2
+

(n

b

)2
]1/2

, m = 1, 2, . . . , n = 1, 2, . . . (13.62)

The following observations can be made from Eq. (13.62):

1. For any given mode of vibration, the natural frequency will decrease if either
side of the rectangle is increased.
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2. The fundamental natural frequency, ω11, is most influenced by changes in the
shorter side of the rectangle.

3. For an elongated rectangular membrane (with b � a), the fundamental natural
frequency, ω11, is negligibly influenced by variations in the longer side.

The eigenfunction or mode shape, Wmn(x, y), of the membrane corresponding to
the natural frequency ωmn is given by

Wmn(x, y) = Xm(x)Yn(y) = C2m sin
mπx

a
C4n sin

nπy

b

= Cmn sin
mπx

a
sin

nπy

b
, m, n = 1, 2, . . . (13.63)

where Cmn = C2mC4n is a constant. Thus, the natural mode of vibration corresponding
to ωmn can be expressed as

wmn(x, y, t) = sin
mπx

a
sin

nπy

b
(Amn cos ωmnt + Bmn sin ωmnt) (13.64)

where Amn = CmnA and Bmn = CmnB are new constants. The general solution of
Eq. (13.64) is given by the sum of all the natural modes as

wmn(x, y, t) =
∞∑

m=1

∞∑
n=1

sin
mπx

a
sin

nπy

b
(Amn cos ωmnt + Bmn sin ωmnt) (13.65)

The constants Amn and Bmn in Eq. (13.65) can be determined using the initial conditions
stated in Eqs. (13.4) and (13.5). Substituting Eq. (13.65) into Eqs. (13.4) and (13.5),
we obtain

∞∑
m=1

∞∑
n=1

Amn sin
mπx

a
sin

nπy

b
= w0(x, y) (13.66)

∞∑
m=1

∞∑
n=1

Bmnωmn sin
mπx

a
sin

nπy

b
= ẇ0(x, y) (13.67)

Equations (13.66) and (13.67) denote the double Fourier sine series expansions of the
functions w0(x, y) and ẇ0(x, y), respectively. Multiplying Eqs. (13.66) and (13.67) by
sin(mπx/a) sin(nπy/b) and integrating over the area of the membrane leads to the
relations

Amn = 4

ab

∫ a

0

∫ b

0
w0(x, y) sin

mπx

a
sin

nπy

b
dx dy (13.68)

Bmn = 4

abωmn

∫ a

0

∫ b

0
ẇ0(x, y) sin

mπx

a
sin

nπy

b
dx dy (13.69)

Example 13.1 Find the free vibration response of a rectangular membrane when it
is struck such that the middle point experiences a velocity V0 at t = 0.



430 Vibration of Membranes

SOLUTION Assuming the initial conditions as

w0(x, y) = 0 (E13.1.1)

ẇ0(x, y) = V0δ
(
x − a

2

)
δ

(
y − b

2

)
(E13.1.2)

the constants Amn and Bmn given by Eqs. (13.68) and (13.69) can be evaluated as

Amn = 0 (E13.1.3)

Bmn = 4

abωmn

∫ a

0

∫ b

0
V0δ

(
x − a

2

)
δ

(
y − b

2

)
sin

mπx

a
sin

nπy

b
dx dy

= 4V0

abωmn

sin
mπ

2
sin

nπ

2
(E13.1.4)

Thus, the free vibration response of the membrane is given by Eq. (13.65):

w(x, y, t) = 4V0

ab

∞∑
m=1

∞∑
n=1

1

ωmn

sin
mπx

a
sin

nπy

b
sin

mπ

2
sin

nπ

2
sin ωmnt (E13.1.5)

The displacements of the membrane given by Eq. (E13.1.5) using values of each of m

and n up to 10 at different instants of time are shown in Fig. 13.3.

13.4.2 Mode Shapes

Equation (13.64) describes a possible displacement variation of a membrane clamped at
the boundary. Each point of the membrane moves harmonically with circular frequency
ωmn and amplitude given by the eigenfunction Wmn of Eq. (13.63). The following
observations can be made regarding the characteristics of mode shapes [8].

1. The fundamental or lowest mode shape of the membrane corresponds to m =
n = 1. In this modal pattern, the deflected surface of the membrane will consist
of one half of a sine wave in each of the x and y directions. The higher values
of m and n correspond to mode shapes with m and n half sine waves along
the x and y directions, respectively. Thus, for values of m and n larger than 1,
the deflection (mode) shapes will consist of lines within the membrane along
which the deflection is zero. The lines along which the deflection is zero during
vibration are called nodal lines. For specificity, the nodal lines corresponding
to m,n = 1, 2 are shown in Fig. 13.4. For example, for m = 2 and n = 1, the
nodal line will be parallel to the y axis at x = a/2, as shown in Fig. 13.5(a).
Note that a specific natural frequency is associated with each combination of m

and n values.
2. Equation (13.62) indicates that some of the higher natural frequencies (ωmn) are

integral multiples of the fundamental natural frequency (ωpp = pω11), where
p is an integer, whereas some higher frequencies are not integral multiples of
ω11. For example, ω12, ω21, ω13, and ω31 are not integral multiples of ω11.
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t = 0

t = 1

t =
4
1

t =
2
1

t =
4
3

Figure 13.3 Deflection of a membrane at different times, initial velocity at the middle. Times
given, t , are in terms of fractions of the fundamental natural period of vibration. (Source: Ref.
[10].)
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Figure 13.4 (a) modal patterns and nodal lines; (b) schematic illustration of mode shapes (+,
positive deflection; −, negative deflection).
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Figure 13.5 Modal patterns with m = 1, n = 1 and m = 2, n = 1.
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3. It can be seen that when a2 and b2 are incommensurable, no two pairs of values
of m and n can result in the same natural frequency. However, when a2 and b2

are commensurable, two or more values of ωmn may have the same magnitude.
If the ratio of sides K = a/b is a rational number, the eigenvalues ωmn and ωij

will have the same magnitude if

m2 + K2n2 = i2 + K2j 2 (13.70)

For example, ω35 = ω54, ω53 = ω46, etc. when K = 4
3 , and ω13,4 = ω12,5, etc.

when K = 5
3 .

4. If the membrane is square, a = b and Eq. (13.70) reduces to

m2 + n2 = i2 + j 2 (13.71)

and the magnitudes of ωmn and ωnm will be the same. This means that two
different eigenfunctions Wmn(x, y) and Wnm(x, y) correspond to the same fre-
quency ωmn(= ωnm); thus, there will be fewer frequencies than modes. Such
cases are called degenerate cases. If the natural frequencies are repeated with
ωmn = ωnm, any linear combination of the corresponding natural modes Wmn

and Wnm can also be shown to be a natural mode of the membrane. Thus, for
these cases a large variety of nodal patterns occur.

5. To find the modal patterns and nodal lines of a square membrane corresponding
to repeated frequencies, consider, as an example, the case of ωmn with m = 1
and n = 2. For this case, ω12 = ω21 = √

5πc/a and the corresponding distinct
mode shapes can be expressed as (with a = b)

w12(x, y, t) = sin
πx

a
sin

2πy

b

(
A12 cos

√
5πct

a
+ B12 sin

√
5πct

a

)

(13.72)

w21(x, y, t) = sin
2πx

a
sin

πy

b

(
A21 cos

√
5πct

a
+ B21 sin

√
5πct

a

)

(13.73)
Since the frequencies are the same, it will be of interest to consider a linear
combination of the maximum deflection patterns given by Eqs. (13.72) and
(13.73) as

w = A sin
πx

a
sin

2πy

b
+ B sin

2πx

a
sin

πy

b
(13.74)

where A and B are constants. The deflection shapes given by Eq. (13.74)
for specific combinations of values of A and B are shown in Fig. 13.6.
Figure 13.6(a) to 13.6(d) correspond to values of B = 0, A = 0, A = B, and
A = −B, respectively. When B = 0, the deflection shape given by Eq. (13.74)
consists of one-half sine wave along the x direction and two half sine waves
along the y direction with a nodal line at y = b/2. Similarly, when A = 0, the
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Figure 13.6 Deflection shapes given by Eq. (13.74): (a) B = 0; (b) A = 0; (c) A = B; (d)
A = −B; (e) A = B/2; (f ) A = 2B.

nodal line will be at x = a/2. When A = B, Eq. (13.74) becomes

w = A

(
sin

πx

a
sin

2πy

b
+ sin

2πx

a
sin

πy

b

)

= 2A sin
πx

a
sin

πy

b

(
cos

πx

a
+ cos

πy

b

)
(13.75)

It can be seen that w = 0 in Eq. (13.75) when

sin
πx

a
= 0 or sin

πy

b
= 0 (13.76)

or

cos
πx

a
+ cos

πy

b
= 0 (13.77)

The cases in Eq. (13.76) correspond to w = 0 along the edges of the membrane,
while the case in Eq. (13.77) gives w = 0 at which

πx

a
= π − πy

a
or x + y = a (13.78)

Equation (13.78) indicates that the nodal line is a diagonal of the square as
shown in Fig. 13.6(c). Similarly, the case A = −B gives the nodal line along
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the other diagonal of the square as indicated in Fig. 13.6(d). For arbitrary values
of A and B, Eq. (13.74) can be written as

w = A

(
sin

πx

a
sin

2πy

b
+ R sin

2πx

a
sin

πy

b

)
(13.79)

where R = B/A is a constant. Different nodal lines can be obtained based on
the value of R. For example, the nodal line [along which w = 0 in Eq. (13.79)]
corresponding to K = 2 is shown in Fig. 13.6(e) and (f ).
The following observations can be made from the discussion above:

(a) A large variety of nodal patterns can exist for any repeated frequency in
a square or rectangular membrane. Thus, it is not possible to associate a
mode shape uniquely with a frequency in a membrane problem.

(b) The nodal lines need not be straight lines. It can be shown that all the nodal
lines of a square membrane pass through the center, x = y = a/2, which
is called a pole.

6. For a square membrane, the modal pattern corresponding to m = n = 1 consists
of one-half of a sine wave along each of the x and y directions. For m = n = 2,
no other pair of integers i and j give the same natural frequency, ω22. In this
case the maximum modal deflection can be expressed as

w = sin
2πx

a
sin

2πy

b
= 4 sin

πx

a
cos

πx

a
sin

πy

b
cos

πy

b
(13.80)

The nodal lines corresponding to this mode are determined by the equation

sin
πx

a
cos

πx

a
sin

πy

b
cos

πy

b
= 0 (13.81)

Equation (13.81) gives the nodal lines as (in addition to the edges)

x = a

2
, y = a

2
(13.82)

which are shown in Fig. 13.7.

y

xa

a

0 a
2

a
2

Figure 13.7 Nodal lines corresponding to ω22 of a square mem-
brane.
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7. Next, consider the case of m = 3 and n = 1 for a square membrane. In this
case, ω31 = ω13 = √

10(πc/a) and the corresponding distinct mode shapes can
be expressed as

w31(x, y, t) = sin
3πx

a
sin

πy

b

(
A31 cos

√
10πct

a
+ B31 sin

√
10πct

a

)

(13.83)

w13(x, y, t) = sin
πx

a
sin

3πy

b

(
A13 cos

√
10πct

a
+ B13 sin

√
10πct

a

)

(13.84)
Since the frequencies are the same, a linear combination of the maximum deflec-
tion patterns given by Eqs. (13.83) and (13.84) can be represented as

w = A sin
3πx

a
sin

πy

a
+ B sin

πx

a
sin

3πy

a
(13.85)

where A and B are constants. The nodal lines corresponding to Eq. (13.85) are
defined by w = 0, which can be rewritten as

sin
πx

a
sin

πy

a

[
A

(
4 cos2 πx

a
− 1

)
+ B

(
4 cos2 πy

a
− 1

)]
= 0 (13.86)

Neglecting the factor sin(πx/a) sin(πy/a), which corresponds to nodal lines
along the edges, Eq. (13.86) can be expressed as

A
(

4 cos2 πx

a
− 1

)
+ B

(
4 cos2 πy

a
− 1

)
= 0 (13.87)

It can be seen from Eq. (13.87) that:

(a) When A = 0, y = a/3 and 2a/3 denote the nodal lines.
(b) When B = 0, x = a/3 and 2a/3 denote the nodal lines.
(c) When A = −B, Eq. (13.87) reduces to

cos
πx

a
= ± cos

πy

a
(13.88)

or
x = y and x = a − y (13.89)

denote the nodal lines.
(d) When A = B, Eq. (13.87) reduces to

cos2 πx

a
+ cos2 πy

a
= 1

2
or cos

2πx

a
+ cos

2πy

a
+ 1 = 0 (13.90)

which represents a circle. The nodal lines in each of these cases are shown
in Fig. 13.8.



13.4 Free Vibration of Rectangular Membranes 437

(a)

y

xa

a

0

2a
3

a
3

(b)

y

xa

a

0 2a
3

a
3

(c)

y

xa

a

0
(d)

y

xa

a

0

Figure 13.8 Nodal lines of a square membrane corresponding to ω31 = ω13: (a) A = 0; (b)
B = 0; (c) A = −B; (d) A = B.

8. Whenever, in a vibrating system, including a membrane, certain parts or points
remain at rest, they can be assumed to be absolutely fixed and the result may
be applicable to another system. For example, at a particular natural frequency
ω, if the modal pattern of a square membrane consists of a diagonal line as a
nodal line, the solution will also be applicable for a membrane whose boundary
is an isosceles right triangle. In addition, it can be observed that each possible
mode of vibration of the isosceles triangle corresponds to some natural mode of
the square. Accordingly, the fundamental natural frequency of vibration of an
isosceles right triangle will be equal to the natural frequency of a square with
m = 1 and n = 2:

ω =
√

5πc

a
(13.91)

The second natural frequency of the isosceles right triangle will be equal to the
natural frequency of a square plate with m = 3 and n = 1:

ω =
√

10πc

a
(13.92)

The mode shapes corresponding to the natural frequencies of Eqs. (13.91) and
(13.92) are shown in Fig. 13.9.
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(a) (b) Figure 13.9 (a) ω = √
5πc/a; (b) ω = √

10πc/a.

13.5 FORCED VIBRATION OF RECTANGULAR MEMBRANES

13.5.1 Modal Analysis Approach

The equation of motion governing the forced vibration of a rectangular membrane is
given by Eq. (13.1):

−P

[
∂2w(x, y, t)

∂x2
+ ∂2w(x, y, t)

∂y2

]
+ ρ

∂2w(x, y, t)

∂t2
= f (x, y, t) (13.93)

We can find the solution of Eq. (13.93) using the modal analysis procedure. Accord-
ingly, we assume the solution of Eq. (13.93) as

w(x, y, t) =
∞∑

m=1

∞∑
n=1

Wmn(x, y)ηmn(t) (13.94)

where Wmn(x, y) are the natural modes of vibration and ηmn(t) are the corresponding
generalized coordinates. For specificity we consider a membrane with clamped edges.
For this, the eigenfunctions are given by Eq. (13.63):

Wmn(x, y) = Cmn sin
mπx

a
sin

nπy

b
, m, n = 1, 2, . . . (13.95)

The eigenfunctions (or normal modes) can be normalized as∫ a

0

∫ b

0
ρW 2

mn(x, y) dx dy = 1 (13.96)

or ∫ a

0

∫ b

0
ρC2

mn sin2 mπx

a
sin2 nπy

b
dx dy = 1 (13.97)

The simplification of Eq. (13.97) yields

Cmn = 2√
ρab

(13.98)

Thus, the normal modes take the form

Wmn(x, y) = 2√
ρab

sin
mπx

a
sin

nπy

b
, m, n = 1, 2, . . . (13.99)
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Substituting Eq. (13.94) into Eq. (13.93), multiplying the resulting equation throughout
by Wmn(x), and integrating over the area of the membrane leads to the equation

η̈mn(t) + ω2
mnηmn(t) = Nmn(t), m, n = 1, 2, . . . (13.100)

where

ωmn = π

√
P

ρ

[(m

a

)2
+

(n

b

)2
]

(13.101)

Nmn(t) =
∫ a

0

∫ b

0
Wmn(x, y)f (x, y, t) dx dy

= 2√
ρab

∫ a

0

∫ b

0
f (x, y, t) sin

mπx

a
sin

nπy

b
dx dy (13.102)

The solution of Eq. (13.100) can be written as [see Eq. (2.109)]

ηmn(t) = 1

ωmn

∫ t

0
Nmn(τ) sin ωmn(t − τ) dτ + ηmn(0) cos ωmnt + η̇mn(0)

ωmn

sin ωmnt

(13.103)

The solution of Eq. (13.93) becomes, in view of Eqs. (13.94) and (13.103),

w(x, y, t) =
{

2√
ρab

∞∑
m=1

∞∑
n=1

sin
mπx

a
sin

nπy

b

[
ηmn(0) cos ωmnt + η̇mn(0)

ωmn

sin ωmnt

]}

+
[

2√
ρab

∞∑
m=1

∞∑
n=1

1

ωmn

sin
mπx

a
sin

nπy

b

×
∫ t

0
Nmn(τ) sin ωmn(t − τ) dτ

]
(13.104)

It can be seen that the quantity inside the braces represents the free vibration response
(due to the initial conditions) and the quantity in the second set of brackets denotes the
forced vibrations of the membrane.

Example 13.2 Find the forced vibration response of a rectangular membrane of sides
a and b subjected to a harmonic force F0 sin �t at the center of the membrane. Assume
all edges of the membrane to be fixed and the initial conditions to be zero.

SOLUTION The applied force can be described as (see Fig. 13.10)

f (x, y, t) = F0 sin �tδ

(
x − a

2
, y − b

2

)
(E13.2.1)

where F0 sin �t denotes the time-dependent amplitude of the concentrated force and
δ(x − a/2, y − b/2) is a two-dimensional spatial Dirac delta function defined as

δ

(
x − a

2
, y − b

2

)
= 0, x �= a

2
and/or y �= b

2∫ a

0

∫ b

0
δ

(
x − a

2
, y − b

2

)
dx dy = 1


 (E13.2.2)
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The normalized eigenfunctions or normal modes of the membrane, with all edges fixed,
are given by [see Eq. (13.99)]

Wmn(x, y) = 2√
ρab

sin
mπx

a
sin

nπy

b
, m, n = 1, 2, . . . (E13.2.3)

and the corresponding natural frequencies by [see Eq. (13.101)]

ωmn = π

√
P

ρ

[(m

a

)2
+

(n

b

)2
]
, m, n = 1, 2, . . . (E13.2.4)

The response or deflection of the membrane can be expressed, using Eq. (13.94), as

w(x, y, t) =
∞∑

m=1

∞∑
n=1

Wmn(x, y)ηmn(t) (E13.2.5)

where the generalized coordinates ηmn(t) can be determined using Eq. (13.103). For
zero initial conditions, Eq. (13.103) gives

ηmn(t) = 1

ωmn

∫ t

0
Nmn(τ) sin ωmn(t − τ) dτ (E13.2.6)

The generalized force Nmn(t) can be found as [see Eq. (13.102)]

Nmn(t) = 2√
ρab

∫ a

0

∫ b

0
f (x, y, t) sin

mπx

a
sin

nπy

b
dx dy (E13.2.7)

Using Eqs. (E13.2.1) and (E13.2.2) in Eq. (E13.2.7), we obtain

Nmn(t) = 2F0√
ρab

sin �t

∫ a

0

∫ b

0
sin

mπx

a
sin

nπy

b
δ

(
x − a

2
, y − b

2

)
dx dy

= 2F0√
ρab

sin �t sin
mπ

2
sin

nπ

2
(E13.2.8)

Equations (E13.2.6) and (E13.2.8) yield

ηmn(t) = 2F0

ωmn

√
ρab

sin
mπ

2
sin

nπ

2

∫ t

0
sin �τ sin ωmn(t − τ) dτ (E13.2.9)
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The integral in Eq. (E13.2.9) can be evaluated using a trigonometric identity for a
product as∫ t

0
sin �τ sin ωmn(t − τ) dτ

= 1

2

∫ t

0
{cos[(� + ωmn)τ − ωmnt] − cos[(� − ωmn)τ + ωmnt]} dτ

= 1

2

[
sin[(� + ωmn)τ − ωmnt]

� + ωmn

− sin[(� − ωmn)τ + ωmnt]

� − ωmn

]t

0

= 1

2

(
sin �t

� + ωmn

− sin �t

� − ωmn

+ sin ωmnt

� + ωmn

+ sin ωmnt

� − ωmn

)

= 1

ωmn[1 − (�/ωmn)2]

(
sin �t − �

ωmn

sin ωmnt

)
(E13.2.10)

Equations (E13.2.9) and (E13.2.10) give

ηmn(t) = 2F0√
ρabω2

mn(1 − �2/ω2
mn)

sin
mπ

2
sin

nπ

2

(
sin �t − �

ωmn

sin ωmnt

)
(E13.2.11)

Thus, the steady-state response of the membrane can be expressed as [see Eq. (E13.2.5)]

w(x, y, t) = 4F0

ρab

∞∑
m=1

∞∑
n=1

sin(mπ/2) sin(nπ/2) sin(mπx/a) sin(nπy/b)

ω2
mn(1 − �2/ω2

mn)

×
(

sin �t − �

ωmn

sin ωmnt

)
(E13.2.12)

with ωmn given by Eq. (E13.2.4).

13.5.2 Fourier Transform Approach

The governing equation can be expressed as [see Eqs. (13.1)–(13.3)]

1

c2

∂2w

∂t2
= ∂2w

∂x2
+ ∂2w

∂y2
+ f (x, y, t)

P
, 0 ≤ x ≤ a, 0 ≤ y ≤ b (13.105)

where w(x, y, t) is the transverse displacement. Let the membrane be fixed
along all the edges, x = 0, x = a, y = 0, and y = b. Multiplying Eq. (13.105) by
sin(mπx/a) sin(nπy/b) and integrating the resulting equation over the area of the
membrane yields

1

c2

d2W(m, n, t)

d t2
+ π2

(
m2

a2
+ n2

b2

)
W(m, n, t) = 1

P
F(m, n, t) (13.106)
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where W(m, n, t) and F(m, n, t) denote the double finite Fourier sine transforms of
w(x, y, t) and f (x, y, t), respectively:

W(m, n, t) =
∫ a

0

∫ b

0
w(x, y, t) sin

mπx

a
sin

nπy

b
dx dy (13.107)

F(m, n, t) =
∫ a

0

∫ b

0
f (x, y, t) sin

mπx

a
sin

nπy

b
dx dy (13.108)

The solution of Eq. (13.106) can be expressed as

W(m, n, t) = W0(m, n) cos πcαmnt + Ẇ0(m, n)

πcαmn

sin πcαmnt

+ c

π2Pαmn

∫ t

0
F(m, n, τ) sin πcαmn(t − τ) dτ (13.109)

where W0(m, n) and Ẇ0(m, n) are the double finite Fourier sine transforms of the initial
values of w and ∂w/∂t :

w(x, y, t = 0) = w0(x, y) (13.110)

∂w

∂t
(x, y, t = 0) = ẇ0(x, y) (13.111)

W0(m, n) =
∫ a

0

∫ b

0
w0(x, y) sin

mπx

a
sin

nπy

b
dx dy (13.112)

Ẇ0(m, n) =
∫ a

0

∫ b

0
ẇ0(x, y) sin

mπx

a
sin

nπy

b
dx dy (13.113)

where

αmn =
(

m2

a2
+ n2

b2

)1/2

(13.114)

The displacement of the membrane can be found by taking the double inverse finite
sine transform of Eq. (13.109). The procedure is illustrated for a simple case in the
following example.

Example 13.3 Find the response of a rectangular membrane subjected to an impulse
Ĝ applied at (x = ξ, y = η) in the transverse direction. Assume the initial displacement
of the membrane to be zero.

SOLUTION The initial conditions of the membrane can be expressed as

w0(x, y) = 0 (E13.3.1)

ẇ0(x, y) = Ĝ

ρ
δ(x − ξ)δ(y − η) (E13.3.2)
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where ρ is the mass per unit area of the membrane. The free vibration response of the
membrane can be obtained from Eq. (13.109) by setting F = 0:

W(m, n, t) = W0(m, n) cos πcαmnt + Ẇ0(m, n)

πcαmn

sin πcαmnt

= cos πcαmnt

∫ a

0

∫ b

0
w0(x, y, t) sin

mπx

a
sin

nπy

b
dx dy

+ sin πcαmnt

πcαmn

∫ a

0

∫ b

0
ẇ0(x, y) sin

mπx

a
sin

nπy

b
dx dy

(E13.3.3)

Taking the inverse transform of Eq. (E13.3.3), we obtain3

w(x, y, t) = 4

ab

∞∑
m=1

∞∑
n=1

sin
mπx

a
sin

nπy

b
cos πcαmnt

×
[∫ a

x′=0

∫ b

y′=0
w0(x

′, y′) sin
mπx′

a
sin

nπy′

b
dx′ dy′

]

+ 4

πc

∞∑
m=1

∞∑
n=1

sin
mπx

a
sin

nπy

b

sin πcαmnt

(m2b2 + n2a2)1/2

×
∫ a

x′=0

∫ b

y′=0
ẇ0(x

′, y′) sin
mπx′

a
sin

nπy′

b
dx′ dy′ (E13.3.4)

By substituting the initial conditions, Eqs. (E13.3.1) and (E13.3.2), and noting that∫ a

0

∫ b

0
ẇ0(x, y) sin

mπx

a
sin

nπy

b
dx dy = Ĝ

ρ
sin

mπξ

a
sin

nπη

b
(E13.3.5)

we find the response of the membrane as

w(x, y, t)

= 4Ĝ

πρc

∞∑
m=1

∞∑
n=1

1

(m2b2 + n2a2)1/2
sin

[
πc

(
m2

a2
+ n2

b2

)1/2

t

]

× sin
mπξ

a
sin

nπη

b
sin

mπx

a
sin

nπy

b
(E13.3.6)

3If p(x, y) denotes a function of the variables x and y that satisfies the Dirichlet’s condition over the region
0 ≤ x ≤ a, 0 ≤ y ≤ b, its finite double Fourier sine transform, P(m, n), is defined by

F(m, n) =
∫ a

x=0

∫ b

y=0
p(x, y) sin

mπx

a
sin

nπy

b
dx dy (a)

The inverse transform of F(m, n), given by Eq. (a), can be expressed as

p(x, y) = 4

ab

∞∑
m=1

∞∑
n=1

P(m, n) sin
mπx

a
sin

nπy

b
dx dy (b)
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13.6 FREE VIBRATION OF CIRCULAR MEMBRANES

13.6.1 Equation of Motion

Noting that the Laplacian operator in rectangular coordinates is defined by

∇2 = ∂2

∂x2
+ ∂2

∂y2
(13.115)

the equation of motion of a rectangular membrane, Eq. (13.1), can be expressed as

P∇2w(x, y, t) + f (x, y, t) = ρ
∂2w(x, y, t)

∂t2
(13.116)

For a circular membrane, the governing equation of motion can be derived using an
equilibrium approach by considering a differential element in the polar coordinates r

and θ (see Problem 13.1). Alternatively, a coordinate transformation using the relations

x = r cos θ, y = r sin θ (13.117)

can be used to express the Laplacian operator in polar coordinates as (see Problem
13.2)

∇ = 1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂θ2
= ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
(13.118)

Thus, the equation of motion for the forced vibration of a circular membrane can be
expressed as

P

[
∂2w(r, θ, t)

∂r2
+ 1

r

∂w(r, θ, t)

∂r
+ 1

r2

∂2w(r, θ, t)

∂θ2

]
+ f (r, θ, t) = ρ

∂2w(r, θ, t)

∂t2

(13.119)

For free vibration, Eq. (13.119) reduces to

c2
[
∂2w(r, θ, t)

∂r2
+ 1

r

∂w(r, θ, t)

∂r
+ 1

r2

∂2w(r, θ, t)

∂θ2

]
= ∂2w(r, θ, t)

∂t2
(13.120)

where c is given by Eq. (13.3). As the displacement, w, is now a function of r , θ , and
t , we use the method of separation of variables and express the solution as

w(r, θ, t) = R(r)
(θ)T (t) (13.121)

where R, 
, and T are functions of only r , θ , and t , respectively. By substituting
Eq. (13.121) into Eq. (13.120), we obtain

R

d2T

dt2
= c2

(
d2R

dr2

T + 1

r

dR

dr

T + 1

r2
R

d2


dθ2
T

)
(13.122)

which, upon division by R
T , becomes

1

c2

1

T

d2T

dt2
= 1

R

d2R

dr2
+ 1

rR

dR

dr
+ 1

r2


d2


dθ2
(13.123)
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Noting that each side of Eq. (13.123) must be a constant with a negative value (see
Problem 13.3), the constant is taken as −ω2, where ω is any number, and Eq. (13.123)
is rewritten as

d2T

dt2
+ c2ω2T = 0 (13.124)

1

R

(
r2 d2R

dr2
+ r

dR

dr

)
+ ω2r2 = − 1




d2


dθ2
(13.125)

Again, we note that each side of Eq. (13.125) must be a constant. Using α2 as the
constant, Eq. (13.125) is rewritten as

d2R(r)

dr2
+ 1

r

dR(r)

dr
+

(
ω2 − α2

r2

)
R(r) = 0 (13.126)

d2


dθ2
+ α2
 = 0 (13.127)

Since the constant α2 must yield the displacement w as a periodic function of θ with
a period 2π [i.e., w(r, θ, t) = w(r, θ + 2π, t)] α must be an integer:

α = m, m = 0, 1, 2, . . . (13.128)

The solutions of Eqs. (13.124) and (13.127) can be expressed as

T (t) = A1 cos ωt + A2 sin ωt (13.129)


(θ) = C1m cos mθ + C2m sin mθ, m = 0, 1, 2, . . . (13.130)

Equation (13.126) can be rewritten as

r2 d2R

dr2
+ r

dR

dr
+ (r2ω2 − m2)R = 0 (13.131)

which can be identified as Bessel’s equation of order m with the parameter ω. The
solution of Eq. (13.131) is given by [9]:

R(r) = B1Jm(ωr) + B2Ym(ωr) (13.132)

where B1 and B2 are constants to be determined from the boundary conditions, and Jm

and Ym are Bessel functions of first and second kind, respectively. The Bessel functions
are in the form of infinite series and are studied extensively and tabulated in the
literature [2],[3] because of their importance in the study of problems involving circular
geometry. For a circular membrane, w(r, θ, t) must be finite (bounded) everywhere.
However, Ym(ωr) approaches infinity at the origin (r = 0). Hence, the constant B2

must be zero in Eq. (13.132). Thus, Eq. (13.132) reduces to

R(r) = B1Jm(ωr) (13.133)

and the complete solution can be expressed as

w(r, θ, t) = Wm(r, θ)(A1 cos ωt + A2 sin ωt) (13.134)
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where

Wm(r, θ) = Jm(ωr)(C1m cos mθ + C2m sin mθ), m = 0, 1, 2, . . . (13.135)

with C1m and C2m denoting some new constants.

13.6.2 Membrane with a Clamped Boundary

If the membrane is clamped or fixed at the boundary r = a, the boundary conditions
can be stated as

Wm(a, θ) = 0, m = 0, 1, 2, . . . (13.136)

Using Eq. (13.136), Eq. (13.135) can be expressed as

Wm(a, θ) = C1mJm(ωa) cos mθ + C2mJm(ωa) sin mθ = 0, m = 0, 1, 2, . . .

(13.137)

The Bessel function of the first kind, Jm(ωr), is given by [2],[3]

Jm(ωr) =
∞∑
i=0

(−1)i

i!�(m + i + 1)

(ωr

2

)m+2i

(13.138)

Equation (13.137) has to be satisfied for all values of θ . It can be satisfied only if

Jm(ωa) = 0, m = 0, 1, 2, . . . (13.139)

This is the frequency equation, which has an infinite number of discrete solutions, ωmn,
for each value of m. Although ωa = 0 is a root of Eq. (13.139) for m ≥ 1, this leads
to the trivial solutions w = 0, and hence we need to consider roots with ωa ≥ 0. Some
of the roots of Eq. (13.139) are given below [2],[3].
For m = 0, J0(ωa) = 0:

γ = ωa = 2.405, 5.520, 8.654, 11.792, 14.931, 18.071,

21.212, 24.353, . . .

For m = 1, J1(ωa) = 0:

γ = ωa = 3.832, 7.016, 10.173, 13.323, 16.470,

19.616, 22.760, 25.903, . . .

For m = 2, J2(ωa) = 0:

γ = ωa = 5.135, 8.417, 11.620, 14.796, 17.960,

21.117, 24.270, 27.421, . . .

For m = 3, J3(ωa) = 0:

γ = ωa = 6.379, 9.760, 13.017, 16.224, 19.410,

22.583, 25.749, 28.909, . . .
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For m = 4, J4(ωa) = 0:

γ = ωa = 7.586, 11.064, 14.373, 17.616, 20.827,

24.018, 27.200, 30.371, . . .

For m = 5, J5(ωa) = 0:

γ = ωa = 8.780, 12.339, 15.700, 18.982, 22.220,

25.431, 28.628, 31.813, . . .

It can be seen from Eqs. (13.134) and (13.135) that the general solution of w(r, θ, t)

becomes complicated in view of the various combinations of Jm, sin mθ , cos mθ ,
sin ωmnt , and cos ωmnt involved for each value of m = 0, 1, 2, . . .. Hence, the solution
is usually expressed in terms of two characteristic functions W

(1)
mn(r, θ) and W

(2)
mn(r, θ)

as indicated below. If γmn denotes the nth solution or root of Jm(γ ) = 0, the natural
frequencies can be expressed as

ωmn = γmn

a
(13.140)

Two characteristic functions W
(1)
mn(r, θ) and W

(2)
mn(r, θ) can be defined for any ωmn as

W(1)
mn(r, θ) = C1mnJm(ωmnr) cos mθ

W(2)
mn(r, θ) = C2mnJm(ωmnr) sin mθ (13.141)

It can be seen that for any given values of m and n(m �= 0) the two characteristic
functions will have the same shape; they differ from one another only by an angular
rotation of 90◦. Thus, the two natural modes of vibration corresponding to ωmn are
given by

w(1)
mn(r, θ, t) = Jm(ωmnr) cos mθ [A(1)

mn cos ωmnt + A(2)
mn sin ωmnt]

w(2)
mn(r, θ, t) = Jm(ωmnr) sin mθ [A(3)

mn cos ωmnt + A(4)
mn sin ωmnt] (13.142)

The general solution of Eq. (13.120) can be expressed as

w(r, θ, t) =
∞∑

m=0

∞∑
n=0

[w(1)
mn(r, θ, t) + w(2)

mn(r, θ, t)] (13.143)

where the constants A
(1)
mn, . . . , A

(4)
mn can be determined from the initial conditions.

13.6.3 Mode Shapes

It can be seen from Eq. (13.141) that the characteristic functions or normal modes will
have the same shape for any given values of m and n, and differ from one another only
by an angular rotation of 90◦. In the mode shapes given by Eq. (13.141), the value of
m determines the number of nodal diameters. The value of n, indicating the order of
the root or the zero of the Bessel function, denotes the number of nodal circles in the
mode shapes. The nodal diameters and nodal circles corresponding to m, n = 0, 1, and
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Figure 13.11 Mode shapes of a clamped circular membrane.

2 are shown in Fig. 13.11. When m = 0, there will be no diametrical nodal lines but
there will be n circular nodal lines, including the boundary of the membrane. When
m = 1, there will be one diametrical node and n circular nodes, including the boundary.
In general, the mode shape Wmn has m equally spaced diametrical nodes and n circular
nodes (including the boundary) of radius ri = (ωmi/ωmn)a, i = 1, 2, . . . , n. The mode
shapes corresponding to a few combinations of m and n are shown in Fig. 13.11.

13.7 FORCED VIBRATION OF CIRCULAR MEMBRANES

The equation of motion governing the forced vibration of a circular membrane is given
by Eq. (13.119):

P

(
∂2w

∂r2
+ 1

r

∂w

∂r
+ 1

r2

∂2w

∂θ2

)
+ f = ρ

∂2w

∂t2
(13.144)

Using modal analysis, the solution of Eq. (13.144) is assumed in the form

w(r, θ, t) =
∞∑

m=0

∞∑
n=0

Wmn(r, θ)ηmn(t) (13.145)

whereWmn(r, θ) are the natural modes of vibration and ηmn(t) are the corresponding
generalized coordinates. For specificity we consider a circular membrane clamped at
the edge, r = a. For this, the eigenfunctions are given by Eq. (13.141), since two
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eigenfunctions are used for any ωmn, the modes will be degenerate except when m = 0,
and we rewrite Eq. (13.145) as

w(r, θ, t) =
∞∑

n=1

W
(1)
0n (r, θ)η

(1)
0n (t) +

∞∑
m=1

∞∑
n=1

W(1)
mn(r, θ)η(1)

mn(t)

+
∞∑

m=1

∞∑
n=1

W(2)
mn(r, θ)η(2)

mn(t) (13.146)

where the normal modes W
(1)
0n , W

(1)
mn , and W

(2)
mn are given by Eq. (13.141). The normal

modes can be normalized as

∫∫
A

ρ[W(1)
mn(r, θ)]2 dA =

2π∫
0

a∫
0

ρC2
1mnJ

2
m(ωmnr) cos2 mθr dr dθ

= π

2
ρC2

1mna
2J 2

m+1(ωmna) = 1 (13.147)

where A is the area of the circular membrane. Equation (13.147) yields

C2
1mn = 2

πρa2J 2
m+1(ωmna)

(13.148)

∫∫
A

ρ[W(2)
mn(r, θ)]2 dA =

2π∫
0

a∫
0

ρC2
2mnJ

2
m(ωmnr) sin2 mθr dr dθ

= π

2
ρC2

2mna
2J 2

m+1(ωmna) = 1 (13.149)

or

C2
2mn = 2

πρa2J 2
m+1(ωmna)

(13.150)

Thus, the normalized normal modes can be expressed as

W
(1)
mn

W
(2)
mn

}
=

√
2√

πρaJm+1(ωmna)
Jm(ωmnr)

cos mθ

sin nθ

}
,

m = 0, 1, 2, . . . , n = 1, 2, 3, . . . (13.151)

When Eq. (13.145) is used, Eq. (13.144) yields the equations

η̈mn(t) + ω2
mnηmn(t) = Nmn(t) (13.152)

where Nmn(t) denotes the generalized force given by

Nmn(t) =
∫ 2π

0

∫ a

0
Wmn(r, θ)f (r, θ, t)r dr dθ (13.153)
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Neglecting the contribution due to initial conditions, the generalized coordinates can
be expressed as [see Eq. (2.109)]

η0n(t) = 1

ω0n

∫ t

0
N

(1)
0n (τ ) sin ω0n(t − τ) dτ (13.154)

η(1)
mn(t) = 1

ωmn

∫ t

0
N(1)

mn(τ ) sin ωmn(t − τ) dτ (13.155)

η(2)
mn(t) = 1

ωmn

∫ t

0
N(2)

mn(τ ) sin ωmn(t − τ) dτ (13.156)

where the natural frequencies ωmn are given by Eq. (13.140), and the generalized forces
by Eq. (13.153).

Example 13.4 Find the steady-state response of a circular membrane of radius a

subjected to a harmonically varying uniform pressure all over the surface area, as
shown in Fig. 13.12. Assume that the membrane is fixed at the boundary, r = a.

a

f0

Figure 13.12 Circular membrane subjected to uniform pressure.

SOLUTION The load acting on the membrane can be described as

f (r, θ, t) = f0 cos �t, 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π (E13.4.1)

The transverse displacement of the membrane can be expressed in terms of the normal
modes,Wmn(r, θ), as

w(r, θ, t) =
∞∑

m=0

∞∑
n=1

Wmn(r, θ)ηmn(t) (E13.4.2)

where the Wmn(r, θ) for a circular membrane clamped at r = a are given by
Eq. (13.151). Equation (E10.4.2) can be rewritten in view of Eq. (13.141) as
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w(r, θ, t) =
∞∑

n=1

W
(1)
0n (r, θ)η

(1)
0n (t) +

∞∑
m=1

∞∑
n=1

W(1)
mn(r, θ)η(1)

mn(t)

+
∞∑

m=1

∞∑
n=1

W(2)
mn(r, θ)η(2)

mn (t) (E13.4.3)

where the generalized coordinates η
(1)
0n (t), η

(1)
mn(t), and η

(2)
mn(t) are given by

Eqs. (13.154)–(13.156). Using, from Eq. (13.151),

W
(1)
0n =

√
2√

πρaJ1(ω0na)
J0(ω0nr)) (E13.4.4)

W(1)
mn =

√
2√

πρaJm+1(ωmna)
Jm(ωmnr) cos mθ (E13.4.5)

W(2)
mn =

√
2√

πρaJm+1(ωmna)
Jm(ωmnr) sin nθ (E13.4.6)

the generalized forces can be evaluated as

N
(1)
0n (t) =

∫ 2π

0

∫ a

0
W

(1)
0n (r, θ)f (r, θ, t)r dr dθ =

∫ 2π

0

∫ a

0
W

(1)
0n (r, θ)f0 cos �tr dr dθ

=
∫ 2π

0

∫ a

0

√
2f0√

πρaJ1(ω0na)
J0(ω0nr) cos �tr dr dθ

= 2πf0 cos �t√
πρJ1(ω0na)

1

ω0n

J0(ω0na) (E13.4.7)

N(1)
mn(t) =

∫ 2π

0

∫ a

0
W(1)

mn(r, θ)f (r, θ, t)r dr dθ

=
∫ 2π

0

∫ a

0

√
2f0√

πρaJm+1(ωmna)
Jm(ωmnr) cos mθ cos �tr dr dθ = 0 (E13.4.8)

N(2)
mn(t) =

∫ 2π

0

∫ a

0
W(2)

mn(r, θ)f (r, θ, t)r dr dθ

=
∫ 2π

0

∫ a

0

√
2f0√

πρaJm+1(ωmna)
Jm(ωmnr) sin nθ cos �tr dr dθ = 0 (E13.4.9)

In view of Eqs. (E13.4.7)–(E13.4.9), Eqs. (13.154)–(13.156) become

η
(1)
0n (t) = 2πf0√

πρω2
0n

J0(ω0na)

J1(ω0na)

∫ t

0
cos �τ sin ω0n(t − τ) dτ

= 2πf0J0(ω0na)(cos ω0nt − cos �t)√
πρω0n(�

2 − ω2
0n)J1(ω0na)

(E13.4.10)
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η(1)
mn(t) = 0 (E13.4.11)

η(2)
mn(t) = 0 (E13.4.12)

Thus, the response of the membrane can be expressed, using Eqs. (13.145), (13.151),
and (E13.4.10)–(E13.4.12), as

w(r, θ, t) = 2
√

2f0

ρa

∞∑
n=1

J0(ω0na)J0(ω0nr)

J 2
1 (ω0na)ω0n(�2 − ω2

0n)
(cos ω0nt − cos �t) (E13.4.13)

13.8 MEMBRANES WITH IRREGULAR SHAPES

The known natural frequencies of vibration of rectangular and circular membranes can
be used to estimate the natural frequencies of membranes having irregular boundaries.
For example, the natural frequencies of a regular polygon are expected to lie in between
those of the inscribed and circumscribed circles. Rayleigh presented an analysis to find
the effect of a departure from the exact circular shape on the natural frequencies of
vibration of uniform membranes. The results of the analysis indicate that for membranes
of fairly regular shape, the fundamental or lowest natural frequency of vibration can
be approximated as

f = α

√
T

ρA
(13.157)

where T is the tension, ρ is the density per unit area, A is the surface area, and α is
a factor whose values are given in Table 13.1 for several irregular shapes. The factors
given in the table 13.1 indicate, for instance, that for the same values of tension, density,
and surface area, the fundamental natural frequency of vibration of a square membrane
is larger than that of a circular membrane by the factor 4.443/4.261 = 1.043.

Table 13.1 Values of the Factor α

in Eq. (13.157)

Shape of the membrane α

Square 4.443
Rectangle with b/a = 2 4.967
Rectangle with b/a = 3 5.736
Rectangle with b/a = 3/2 4.624
Circle 4.261
Semicircle 4.803
Quarter circle 4.551
60◦ sector of a circle 4.616
Equilateral triangle 4.774
Isosceles right triangle 4.967

Source:
Ref. [8]
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rr = a0
q = 0

q

q = g

Figure 13.13 Circular sector membrane.

13.9 PARTIAL CIRCULAR MEMBRANES

Consider a membrane in the form of a circular sector of radius a as shown in Fig. 13.13.
Let the membrane be fixed on all three edges. When the zero-displacement conditions
along the edges θ = 0 and θ = γ are used in the general solution of Eq. (13.134), we
find that the solution becomes

w(r, θ) = CJnπ/γ (λr) sin
nπθ

β
cos(cλt + δ) (13.158)

where C is a constant and n is an integer. To satisfy the boundary condition along
the edge r = a, Eq. (13.158) is set equal to zero at r = a. This leads to the frequency
equation

Jnπ/γ (λa) = 0 (13.159)

If λia denotes the ith root of Eq. (13.159), the corresponding natural frequency of
vibration can be computed as

ωi = λia

a
= λi (13.160)

For example, for a semicircular membrane, γ = π and for n = 1, Eq. (13.159) becomes

J1(λa) = 0 (13.161)

whose roots are given by λ1a = 3.832, λ2a = 7.016, λ3a = 10.173, and λ4a = 13.324,
. . .. Thus, the natural frequencies of vibration of the semicircular membrane will be
ω1 = 3.832/a, ω2 = 7.016/a, ω3 = 10.173/a, . . ..

13.10 RECENT CONTRIBUTIONS

Spence and Horgan [11] derived bounds on the natural frequencies of composite circular
membranes using an integral equation method. The membrane was assumed to have
a stepped radial density. Although such problems, involving discontinuous coefficients
in the differential equation, can be treated using the classical variational methods, it
was shown that an eigenvalue estimation technique based on an integral formulation
is more efficient. For a comparable amount of effort, the integral equation method is
expected to provide more accurate bounds on the natural frequencies.

The transient response of hanging curtains clamped at three edges was considered
by Yamada et al. [12]. A hanging curtain was replaced by an equivalent membrane
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for deriving the equation of motion. The free vibration of the membrane was analyzed
theoretically and its transient response when subjected to a rectangularly varying point
force was also studied by using Galerkin’s method. The forced vibration response of a
uniform membrane of arbitrary shape under an arbitrary distribution of time-dependent
excitation with arbitrary initial conditions and time-dependent boundary conditions was
found by Olcer [13]. Leissa and Ghamat-Rezaei [14] presented the vibration frequen-
cies and mode shapes of rectangular membranes subjected to shear stresses and/or
nonuniform tensile stresses. The solution is found using the Ritz method, with the
transverse displacement in the form of a double series of trigonometric functions.

The scalar wave equation of an annular membrane in which the motion is sym-
metrical about the origin was solved for arbitrary initial and boundary conditions
by Sharp [15]. The solution was obtained using a finite Hankel transform. A simple
example was given and its solution was compared with one given by the method of sep-
aration of variables. The vibration of a loaded kettledrum was considered by De [16].
In this work, the author discussed the effect of the applied mass load at a point on
the frequency of a vibrating kettledrum. In a method of obtaining approximations of
the natural frequencies of membranes was developed by Torvik and Eastep [17], an
approximate expression for the radius of the bounding curve is first written as a trun-
cated Fourier series. The deflection, expressed as a superposition of the modes of the
circular membrane, is forced to vanish approximately on the approximated boundary.
This leads to a system of linear homogeneous equations in terms of the amplitudes of
the modes of the circular membrane. By equating the determinant of coefficients to
zero, the approximate frequencies are found. Some exact solutions of the vibration of
nonhomogeneous membranes were presented by Wang [18], including the exact solu-
tions of a rectangular membrane with a linear density variation and a nonhomogeneous
annular membrane with inverse square density distribution.
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PROBLEMS
13.1 Starting from the free-body diagram of an element
of a membrane in polar coordinates, derive the equation
of motion of a vibrating membrane in polar coordinates
using the equilibrium approach.

13.2 Derive the expression for the Laplacian operator
in polar coordinates starting from the relation

∇2 = ∂2

∂x2
+ ∂2

∂y2

and using the coordinate transformation relations x =
r cos θ and y = r sin θ .

13.3 Show that each side of Eqs. (13.38) and (13.123)
is equal to a negative constant.

13.4 Consider a rectangular membrane with the ratio
of sides a and b equal to K = a/b = 4

3 . Find the distinct
natural frequencies ωmn and ωij that will have the same
magnitude.

13.5 Find the forced vibration response of a rectangu-
lar membrane of sides a and b subjected to a suddenly
applied uniformly distributed pressure f0 per unit area.
Assume zero initial conditions and the membrane to be
fixed around all the edges.

13.6 Find the steady-state response of a rectangular
membrane of sides a and b subjected to a harmonic force

F0 cos �t at the point (x = 2a/3, y = b/3). Assume the
membrane to be clamped on all four edges.

13.7 Derive the equation of motion of a membrane in
polar coordinates using a variational approach.

13.8 A thin sheet of steel of thickness 0.01 mm is
stretched over a rectangular metal framework of size
25 mm × 50 mm under a tension of 2 kN per unit length
of periphery. Determine the first three natural frequen-
cies of vibration and the corresponding mode shapes
of the sheet. Assume the density of steel sheet to be
76.5 kN/m3.

13.9 Solve Problem 13.8 by assuming the sheet to
be aluminum instead of steel, with a density of 26.5
kN/m3.

13.10 A thin sheet of steel of thickness 0.01 mm is
stretched over a circular metal framework of diameter
50 mm under a tension of 2 kN per unit length of
periphery. Determine the first three natural frequencies
of vibration and the corresponding mode shapes of
symmetric vibration of the sheet. Assume the density
of the steel sheet to be 76.5 kN/m3.

13.11 Solve Problem 13.10 by assuming the sheet to be
aluminum instead of steel, with a density of 26.5 kN/m3.
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13.12 Derive the frequency equation of an annular
membrane of inner radius r1 and outer radius r2 fixed at
both edges.

13.13 Find the free vibration response of a rectangular
membrane of sides a and b subjected to the following
initial conditions:

w(x, y, 0) = w0 sin
πx

a
sin

πy

b
,

∂w

∂t
, (x, y, 0) = 0

Assume that the membrane is fixed on all the sides.

13.14 Find the free vibration response of a rectangular
membrane of sides a and b subjected to the following
initial conditions:

w(x, y, 0) = 0,
∂w

∂t
(x, y, 0) = ẇ0

Assume that the membrane is fixed on all sides.

13.15 Find the steady-state response of a rectangular
membrane fixed on all sides subjected to the force
f (x, y, t) = f0 sin �t .

13.16 Find the free vibration response of a circular
membrane of radius a subjected to the following initial
conditions:

w(r, θ, 0) = w0r,
∂w

∂t
(r, θ, 0) = 0

Assume that the membrane is fixed at the outer edge,
r = a.

13.17 Find the response of a rectangular membrane of
sides a and b fixed on all four sides when subjected to
an impulse Ĝ at (x = x0, y = y0).

13.18 Find the steady-state response of a circular mem-
brane of radius a when subjected to the force F0 sin �t

at r = 0.

13.19 Derive the frequency equation of an annular
membrane of inner radius b and outer radius a assuming
a clamped inner edge and free outer edge.

13.20 Derive the frequency equation of an annular
membrane of inner radius b and outer radius a assuming
that it is free at both the inner and outer edges.
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Transverse Vibration of Plates

14.1 INTRODUCTION
A plate is a solid body bounded by two surfaces. The distance between the two surfaces
defines the thickness of the plate, which is assumed to be small compared to the lateral
dimensions, such as the length and width in the case of a rectangular plate and the
diameter in the case of a circular plate. A plate is usually considered to be thin when
the ratio of its thickness to the smaller lateral dimension (such as width in the case
of a rectangular plate and diameter in the case of a circular plate) is less than 1

20 .
The vibration of plates is important in the study of practical systems such as bridge
decks, hydraulic structures, pressure vessel covers, pavements of highways and airport
runways, ship decks, airplanes, missiles, and machine parts. The theory of elastic plates
is an approximation of the three-dimensional elasticity theory to two dimensions, which
permits a description of the deformation of every point in the plate in terms of only
the deformation of the midplane of the plate. The equations of motion of plates are
derived using the thin plate theory as well as Mindlin theory, which considers the
effects of rotary inertia and shear deformation. Free and forced vibration of rectangular
and circular plates are considered. The vibration of plates with variable thickness, of
plates on elastic foundation, and of plates subjected to in-plane loads is also outlined.

14.2 EQUATION OF MOTION: CLASSICAL PLATE THEORY
14.2.1 Equilibrium Approach

The small deflection theory of thin plates, called classical plate theory or Kirchhoff
theory, is based on assumptions similar to those used in thin beam or Euler–Bernoulli
beam theory. The following assumptions are made in thin or classical plate theory:

1. The thickness of the plate (h) is small compared to its lateral dimensions.
2. The middle plane of the plate does not undergo in-plane deformation. Thus, the

midplane remains as the neutral plane after deformation or bending.
3. The displacement components of the midsurface of the plate are small compared

to the thickness of the plate.
4. The influence of transverse shear deformation is neglected. This implies that

plane sections normal to the midsurface before deformation remain normal to the mid-
surface even after deformation or bending. This assumption implies that the transverse
shear strains, εxz and εyz, are negligible, where z denotes the thickness direction.

5. The transverse normal strain εzz under transverse loading can be neglected. The
transverse normal stress σzz is small and hence can be neglected compared to the other
components of stress.
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The equation of motion for the transverse vibration of a thin plate has been derived
using an equilibrium approach in Section 3.6. Some of the important relations and
equations are summarized below for a rectangular plate (see Fig. 3.3).

Moment resultant–transverse displacement relations:

Mx = −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
(14.1)

My = −D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
(14.2)

Mxy = Myx = −(1 − ν)D
∂2w

∂x ∂y
(14.3)

in which D represents the flexural rigidity of the plate:

D = Eh3

12(1 − ν2)
(14.4)

where h is the thickness, E is Young’s modulus, and ν is Poisson’s ratio of the plate.
Shear force resultants:

Qx = ∂Mx

∂x
+ ∂Mxy

∂y
= −D

∂

∂x

(
∂2w

∂x2
+ ∂2w

∂y2

)
(14.5)

Qy = ∂My

∂y
+ ∂Mxy

∂x
= −D

∂

∂y

(
∂2w

∂x2
+ ∂2w

∂y2

)
(14.6)

Equation of motion (force equilibrium in the z direction):

∂Qx

∂x
+ ∂Qy

∂y
+ f (x,y,t) = ρh

∂2w

∂t2
(14.7)

or

D

(
∂4w

∂x4
+ 2

∂4w

∂x2 ∂y2
+ ∂4w

∂y4

)
+ ρh

∂2w

∂t2
= f (x,y,t) (14.8)

where ρ is the density of the plate and f is the distributed transverse load acting on
the plate per unit area.

14.2.2 Variational Approach

Because of assumptions 4 and 5 in Section 14.2.1, the state of stress in a thin plate
can be assumed to be plane stress. Thus, the nonzero stresses induced in a thin plate
are given by σxx, σyy , and σxy . The strain energy density (π0) of the plate can be
expressed as

π0 = 1
2 (σxxεxx + σyyεyy + σxyεxy) (14.9)

The strain components can be expressed in terms of the transverse displacement of the
middle surface of the plate, w(x,y), as follows:

εxx = ∂u

∂x
= −z

∂2w

∂x2
(14.10)
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εyy = ∂v

∂y
= −z

∂2w

∂y2
(14.11)

εxy = ∂u

∂y
+ ∂v

∂x
= −2z

∂2w

∂x ∂y
(14.12)

εzz = ∂w

∂z
≈ 0, εxz = ∂u

∂z
+ ∂w

∂x
= 0, εyz = ∂v

∂z
+ ∂w

∂y
= 0 (14.13)

The stress–strain relations permit stresses to be expressed in terms of the transverse
displacement, w(x,y), a

σxx = E

1 − ν2
(εxx + νεyy) = − Ez

1 − ν2

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
(14.14)

σyy = E

1 − ν2
(εyy + vεxx) = − Ez

1 − ν2

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
(14.15)

σxy = Gεxy = E

2(1 + ν)
εxy = −2Gz

∂2w

∂x ∂y
= − Ez

1 + ν

∂2w

∂x ∂y
(14.16)

By substituting Eqs. (14.10)–(14.12) and Eqs. (14.14)–(14.16) into Eq. (14.9), the
strain energy density can be written in terms of w as

π0 = Ez2

2(1 − ν2)

[(
∂2w

∂x2

)2

+
(

∂2w

∂y2

)2

+ 2ν
∂2w

∂x2

∂2w

∂y2
+ 2(1 − ν)

(
∂2w

∂x ∂y

)2
]

(14.17)

Integrating Eq. (14.17) over the volume of the plate (V ), the strain energy of bending
can be obtained as

π =
∫∫∫

V

π0 dV =
∫∫
A

dA

∫ h/2

z=−h/2
π0 dz = E

2(1 − ν2)

∫∫
A

[(
∂2w

∂x2

)2

+
(

∂2w

∂y2

)2

+ 2ν
∂2w

∂x2

∂2w

∂y2
+ 2(1 − ν)

(
∂2w

∂x ∂y

)2
]

dA

∫ h/2

z=−h/2
z2dz (14.18)

where dV = dA dz denotes the volume of an infinitesimal element of the plate. Not-
ing that

E

1 − ν2

∫ h/2

z=−h/2
z2 dz = Eh3

12(1 − ν2)
(14.19)

is the flexural rigidity of the plate (D), Eq. (14.18) can be rewritten as

π = D

2

∫∫
A

{(
∂2w

∂x2
+ ∂2w

∂y2

)2

− 2(1 − ν)

[
∂2w

∂x2

∂2w

∂y2
−
(

∂2w

∂x ∂y

)2
]}

dx dy

(14.20)



460 Transverse Vibration of Plates

Considering only the transverse motion and neglecting the effect of rotary inertia, the
kinetic energy of the plate (T ) can be expressed as

T = ρh

2

∫∫
A

(
∂w

∂t

)2

dx dy (14.21)

If there is a distributed transverse load, f (x, y, t), acting on the plate, the work done
by the external load (W ) is given by

W =
∫∫
A

f w dx dy (14.22)

The generalized Hamilton’s principle can be used to derive the equations of motion:

δ

∫ t2

t1

L d t = δ

∫ t2

t1

(π − W − T ) d t = 0 (14.23)

Substituting Eqs. (14.20)–(14.22) into Eq. (14.23), Hamilton’s principle can be writ-
ten as

δ

∫ t2

t1


D

2

∫∫
A

{
(∇2w)2 − 2(1 − ν)

[
∂2w

∂x2

∂2w

∂y2

−
(

∂2w

∂x∂y

)2
]}

dx dy − ρh

2

∫∫
A

(
∂w

∂t

)2

dx dy −
∫∫
A

f w dx dy


 d t = 0

(14.24)

where ∇2 denotes the harmonic operator with

∇2w = ∂2w

∂x2
+ ∂2w

∂y2
(14.25)

Performing the variation of the first integral term in Eq. (14.24), we have

I1 = δ

∫ t2

t1

D

2

∫∫
A

(∇2w)2 dx dy d t = D

∫ t2

t1

∫∫
A

∇2w∇2δw dx dy d t (14.26)

By using the two-dimensional Green’s theorem [40], Eq. (14.26) can be written as

I1 = D

∫ t2

t1



∫∫
A

∇4wδw dx dy +
∫

C

[
∇2w

∂(δw)

∂n
− δw

∂(∇2w)

∂n

]
dC


 d t (14.27)

where C denotes the boundary of the plate, n indicates the outward drawn normal to
the boundary, and ∇4 represents the biharmonic operator, so that

∇4w = ∇2(∇2w) = ∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4
(14.28)

Note that the integration on the boundary,
∫
C

, extends all around the boundary of
the plate. Similarly, we can express the variation of the second integral term in
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Eq. (14.24) as

I2 = δ

∫ t2

t1

−D(1 − ν)

∫∫
A

[
∂2w

∂x2

∂2w

∂y2
−
(

∂2w

∂x ∂y

)2
]

dx dy d t

= −D(1 − ν)

∫ t2

t1

∫∫
A

[
∂2w

∂x2
δ

(
∂2w

∂y2

)
+ ∂2w

∂y2
δ

(
∂2w

∂x2

)

−2
∂2w

∂x ∂y
δ

(
∂2w

∂x ∂y

)]
dx dy d t

= −D(1 − ν)

∫ t2

t1

∫∫
A

[
∂2w

∂x2

∂2(δw)

∂y2
+ ∂2w

∂y2

∂2(δw)

∂x2
− 2

∂2w

∂x ∂y

∂2(δw)

∂x ∂y

]
dx dy d t

(14.29)

Noting that the quantity under the sign of the area integral in Eq. (14.29) can be
written as

∂

∂x

[
∂2w

∂y2

∂(δw)

∂x
− ∂2w

∂x ∂y

∂(δw)

∂y

]
+ ∂

∂y

[
∂2w

∂x2

∂(δw)

∂y
− ∂2w

∂x ∂y

∂(δw)

∂x

]

= ∂h1

∂x
+ ∂h2

∂y
(14.30)

where

h1 = ∂2w

∂y2

∂(δw)

∂x
− ∂2w

∂x ∂y

∂(δw)

∂y
(14.31)

h2 = ∂2w

∂x2

∂(δw)

∂y
− ∂2w

∂x ∂y

∂(δw)

∂x
(14.32)

Equation (14.29) can be expressed as

I2 = −D(1 − ν)

∫ t2

t1

∫∫
A

(
∂h1

∂x
+ ∂h2

∂y

)
dx dy d t (14.33)

Using the relations ∫∫
A

∂f

∂x
dx dy =

∫
C

f cos θ dC (14.34)

∫∫
A

∂f

∂y
dx dy =

∫
C

f sin θ dC (14.35)

Eq. (14.33) can be rewritten as

I2 = −D(1 − ν)

∫ t2

t1

∫
C

(h1 cos θ + h2 sin θ) dC (14.36)

where θ is the angle between the outward drawn normal to the boundary (n) and the
x axis as shown in Fig. 14.1. The quantities ∂(δw)/∂x and ∂(δw)/∂y appearing in h1
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Figure 14.1 Normal to the boundary of plate.

and h2 [Eqs. (14.31) and (14.32)] can be transformed into the new coordinate system
(n, s) as follows:

∂(δw)

∂x
= ∂(δw)

∂n

∂n

∂x
+ ∂(δw)

∂s

∂s

∂x
= ∂(δw)

∂n
cos θ − ∂(δw)

∂s
sin θ (14.37)

∂(δw)

∂y
= ∂(δw)

∂n

∂n

∂y
+ ∂(δw)

∂s

∂s

∂y
= ∂(δw)

∂n
sin θ + ∂(δw)

∂s
cos θ (14.38)

where s is the tangential direction to the boundary. In view of Eqs. (14.37) and (14.38),
Eqs. (14.31) and (14.32) can be expressed as

h1 = ∂2w

∂y2

[
∂(δw)

∂n
cos θ − ∂(δw)

∂s
sin θ

]
− ∂2w

∂x ∂y

[
∂(δw)

∂n
sin θ + ∂(δw)

∂s
cos θ

]
(14.39)

h2 = ∂2w

∂x2

[
∂(δw)

∂n
sin θ + ∂(δw)

∂s
cos θ

]
− ∂2w

∂x ∂y

[
∂(δw)

∂n
cos θ − ∂(δw)

∂s
sin θ

]
(14.40)

When Eqs. (14.39) and (14.40) are substituted, Eq. (14.36) becomes

I2 = −D(1 − ν)

∫ t2

t1

{∫
C

∂δw

∂n

(
∂2w

∂y2
cos2 θ + ∂2w

∂x2
sin2 θ − 2

∂2w

∂x ∂y
sin θ cos θ

)
dC

+
∫

C

∂δw

∂s

[(
∂2w

∂x2
− ∂2w

∂y2

)
cos θ sin θ + ∂2w

∂x ∂y
(sin2 θ − cos2 θ)

]
dC

}
d t

(14.41)

The second integral involving integration with respect to C can be integrated by parts
using the relation ∫

C

∂δw

∂s
g(x,y) dC = g(x,y)δw|C −

∫
C

δw
∂g

∂s
dC (14.42)
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where in the present case, g(x, y) is given by

g(x, y) =
(

∂2w

∂x2
− ∂2w

∂y2

)
cos θ sin θ + ∂2w

∂x ∂y
(sin2 θ − cos2 θ) (14.43)

Since the variation of displacement, δw, on the boundary is zero, Eq. (14.42) reduces to∫
C

∂δw

∂s
g(x,y) dC = −

∫
C

δw
∂g

∂s
dC (14.44)

Inserting Eq. (14.43) in (14.44) and the result in Eq. (14.41), we obtain

I2 = −D(1 − ν)

∫ t2

t1

{∫
C

∂(δw)

∂n

×
(

∂2w

∂y2
cos2 θ + ∂2w

∂x2
sin2 θ − 2

∂2w

∂x ∂y
sin θ cos θ

)
dC

+
∫

C

δw
∂

∂s

[(
∂2w

∂x2
− ∂2w

∂y2

)
cos θ sin θ + ∂2w

∂x ∂y
(sin2 θ − cos2 θ)

]
dC

}
d t

(14.45)

The variation of the third integral term in Eq. (14.24) can be expressed as

I3 = −δ

∫ t2

t1

ρh

2

∫∫
A

(
∂w

∂t

)2

dx dy d t = −ρh

2

∫∫
A

δ

∫ t2

t1

(
∂w

∂t

)2

dx dy d t (14.46)

By using integration by parts with respect to time, the integral I3 can be written as

I3 = −ρh

∫∫
A

∫ t2

t1

∂w

∂t

∂(δw)

∂t
dx dy d t

= −ρh

∫∫
A

[
∂w

∂t
δw

∣∣∣∣
t2

t1

−
∫ t2

t1

∂

∂t

(
∂w

∂t

)
δw d t

]
dx dy (14.47)

Since the variation of the displacement (δw) is zero at t1 and t2, Eq. (14.47) reduces to

I3 = ρh

∫∫
A

∫ t2

t1

ẅ δw d t dx dy (14.48)

where ẅ = ∂2w/∂t2. The variation of the last integral term in Eq. (14.24) yields

I4 = −δ

∫ t2

t1

∫∫
A

f w dx dy d t = −
∫ t2

t1

∫∫
A

f δw dx dy d t (14.49)
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Using Eqs. (14.27), (14.45), (14.48), and (14.49), Hamilton’s principle of Eq. (14.24)
can be expressed as

∫ t2

t1


∫∫

A

(D∇4w + ρhẅ − f )δw dx dy

+ D

∫
C

[
∇2w − (1 − ν)

(
∂2w

∂x2
sin2 θ − 2

∂2w

∂x ∂y
sin θ cos θ + ∂2w

∂y2
cos2 θ

)]
∂δw

∂n
dC

− D

∫
C

{
∂∇2w

∂n
− (1 − ν)

∂

∂s

[(
∂2w

∂x2
− ∂2w

∂y2

)
cos θ sin θ

+ ∂2w

∂x ∂y
(sin2 θ − cos2 θ)

]}
δw dC


 d t = 0 (14.50)

To satisfy Eq. (14.50), each of the three terms within the outside parentheses must be
zero. Furthermore, since δw is arbitrary, the expression inside the parentheses under
the area integral must be zero. This leads to the relations

D∇4w + ρhẅ − f = 0 in A (14.51){
∇2w − (1 − ν)

(
∂2w

∂x2
sin2 θ − 2

∂2w

∂x ∂y
sin θ cos θ + ∂2w

∂y2
cos2 θ

)}
∂δw

∂n
= 0 on C (14.52){

∂∇2w

∂n
− (1 − ν)

∂

∂s

[(
∂2w

∂x2
− ∂2w

∂y2

)
cos θ sin θ + ∂2w

∂x ∂y
(sin2 θ − cos2 θ)

]}
δw = 0 on C (14.53)

It can be seen that Eq. (14.51) is the equation of motion for the transverse vibration
of a plate and Eqs. (14.52) and (14.53) are the boundary conditions. Note that for a
clamped or fixed edge, the deflection and the slope of deflection normal to the edge
must be zero (Fig. 14.2):

w = 0,
∂w

∂n
= 0

Thus, δw = 0, ∂δw/∂n = 0 in Eqs. (14.52) and (14.53). For a simply supported edge,
the deflection is zero and the slope of deflection normal to the edge is not zero
(Fig. 14.2):

w = 0,
∂w

∂n
�= 0

Thus, δw = 0 in Eq. (14.53) and ∂δw/∂n is arbitrary in Eq. (14.52). Hence, the expres-
sion in braces, which will later be shown to be equal to the bending moment on the
edge, must be zero. For a free edge, there is no restriction on the values of w, and
∂w/∂n and hence δw and ∂δw/∂n are arbitrary. Hence, the expressions inside braces



14.3 Boundary Conditions 465

0

0

b

y

z

a

a

a

b

y

x

(a)

(b)

x

x

Fixed edge w(a,y,t) = 0

w (a, y, t) = 0

(a,y,t)
∂w
∂x

= 0

Mx = − D

(a,y,t)
∂2w
∂x2

∂2w
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or
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Figure 14.2 Boundary conditions: (a) fixed edge; (b) simply supported edge; (c) free edge;
(d ) edge supported on a linear elastic spring; (e) edge supported on a torsional elastic spring.

in Eqs. (14.53) and (14.52), which will later be shown to be equal to the effective shear
force and bending moment, respectively, on the edge, must be zero.

14.3 BOUNDARY CONDITIONS

The equation of motion governing the transverse vibration of a plate is a fourth-order
partial differential equation. As such, the solution of the equation requires two boundary
conditions on each edge for a rectangular plate. If the edges of the rectangular plate
are parallel to the x and y axes, the following boundary conditions are valid.

1. Clamped, fixed, or built-in edge. If the edge x = a is clamped, the deflection
and slope (normal to the edge) must be zero [Fig. 14.2(a)]:

w|x=a = 0 (14.54)

∂w

∂x

∣∣∣∣
x=a

= 0 (14.55)
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Figure 14.2 (continued )

2. Simply supported edge. If the edge x = a is simply supported, the deflection
and bending moment must be zero [Fig. 14.2(b)]:

w|x=a = 0 (14.56)

Mx = −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)∣∣∣∣
x=a

= 0 (14.57)
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Figure 14.3 Replacing the twisting moment Mxydy by an equivalent vertical force.
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Since w = 0 along the edge x = a, all the derivatives of w with respect to y are also
zero. Thus,

∂w

∂y

∣∣∣∣
x=a

= 0 (14.58)

∂2w

∂y2

∣∣∣∣
x=a

= 0 (14.59)

In view of Eq. (14.59), Eq. (14.57) can be rewritten as

∂2w

∂x2

∣∣∣∣
x=a

= 0 (14.60)

3. Free edge. If the edge x = a is free, there will be no stresses on the edge
[Fig. 14.2(c)]. Hence, it appears that all the force and moment resultants on the edge
are zero; that is,

Mx |x=a = 0 (14.61)

Qx |x=a = 0 (14.62)

Mxy

∣∣
x=a

= 0 (14.63)

Equations (14.61)–(14.63) represent three boundary conditions, whereas the equation
of motion requires only two. Although Poisson formulated Eqs. (14.61)–(14.63), Kirch-
hoff showed that the conditions on the shear force Qx and the twisting moment Mxy

given by Eqs. (14.62) and (14.63) are not independent and can be combined into only
one boundary condition.

To combine the two conditions given by Eqs. (14.62) and (14.63) into one con-
dition, consider two adjacent elements, each of length dy, along the edge x = a

as shown in Fig. 14.3(a). Because of the shear stresses τxy acting on the edge, a
twisting moment Mxydy is developed on the element cghd and a twisting moment
[Mxy + (∂Mxy/∂y)dy]dy is developed on the element ecdf . These moments can be
replaced by vertical forces of magnitude Mxy and Mxy + (∂Mxy/∂y)dy, respectively, on
the elements cghd and ecdf , each with a moment arm dy as indicated in Fig. 14.3(b).
Noting that such forces can be visualized for all elements of length dy along the entire
edge x = a, we find that an unbalanced force of magnitude (∂Mxy/∂y)dy exists at
the boundary between two adjacent elements, such as line cd [Fig. 14.3(c)]. When
this unbalanced force per unit length, ∂Mxy/∂y, is added to the shear force resultant
Qx that is present on the edge x = a, we obtain the effective shear force Vx per unit
length as

Vx = Qx + ∂Mxy

∂y
(14.64)

In a similar manner, the effective shear force Vy per unit length along the free edge
y = b can be expressed as

Vy = Qy + ∂Myx

∂x
(14.65)
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The effective shear force resultant, along with the bending moment Mx , is set equal
to zero along the free edge x = a. Thus, the two boundary conditions, also known as
Kirchhoff boundary conditions, valid for a free edge x = a are given by [Fig. 14.2(c)]

Mx = −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)∣∣∣∣
x=a

= 0 (14.66)

Vx = Qx + ∂Mxy

∂y
= −D

[
∂3w

∂x3
+ (2 − ν)

∂3w

∂x∂y2

]∣∣∣∣
x=a

= 0 (14.67)

4. Edge resting on a linear elastic spring. If the edge x = a, otherwise unloaded,
is supported on a linear elastic spring that offers resistance to transverse displacement,
the restoring force will be k2w, as shown in Fig. 14.2(d). The effective shear force
Vx at the edge must be equal to the restoring force of the spring. Also, the bending
moment on the edge must be zero. Thus, the boundary conditions can be stated as

Mx |x=a = −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)∣∣∣∣
x=a

= 0

V |x=a = Qx + ∂Mxy

∂y

∣∣∣∣
x=a

= −k2w|x=a

(14.68)

or

−D

[
∂3w

∂x3
+ (2 − ν)

∂3w

∂x ∂y2

]∣∣∣∣
x=a

= −k2w|x=a (14.69)

5 . Edge resting on an elastic torsional spring. If the edge x = a, otherwise
unloaded, is supported on a torsional spring that offers resistance to the rotation of
the edge, the restoring moment will be kt2(∂w/∂x), as shown in Fig. 14.2(e). The
bending moment, Mx , at the edge must be equal to the resisting moment of the spring.
Also, the effective shear force on the edge, Vx , must be zero. Thus, the boundary
conditions can be expressed as

Mx |x=a = −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)∣∣∣∣
x=a

= kt2

∂w

∂x

∣∣∣∣
x=a

(14.70)

Vx |x=a =
(

Qx + ∂Mxy

∂y

)∣∣∣∣
x=a

= −D

[
∂3w

∂x3
+ (2 − ν)

∂3w

∂x ∂y2

]∣∣∣∣
x=a

= 0 (14.71)

6. Boundary conditions on a skew edge. Let an edge of the plate be skewed with
its outward drawn normal (n) making an angle θ with the +x axis and s indicating the
tangential direction as shown in Fig. 14.4. The positive directions of the shear force
Qn, normal bending moment Mn, and twisting moment Mns acting on the edge are also
indicated in Fig. 14.4(a). Noting that the normal and twisting moments on the skew
edge are defined as

Mn =
∫ h/2

−h/2
σnz dz (14.72)

Mns =
∫ h/2

−h/2
τnsz dz (14.73)
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Figure 14.4 Skew edge of a plate: (a) shear force and moment resultants; (b) stresses acting
on the edges.

where σn and τns denote, respectively, the normal and shear stresses acting on the edge
as shown in Fig. 14.4(b). The stresses σn and τns acting on the skew edge (bc) can
be expressed in terms of the stresses acting on the edges ab and ac using the stress
transformation relations as [41]

σn = σx cos2 θ + σy sin2 θ + τxy sin 2θ (14.74)

τns = τxy cos 2θ − 1
2 (σx − σy) sin 2θ (14.75)

By substituting Eqs. (14.74) and (14.75) into Eqs. (14.72) and (14.73), respectively,
and carrying out the indicated integrations over the thickness of the plate, we obtain

Mn = Mx cos2 θ + My sin2 θ + Mxy sin 2θ (14.76)

Mns = Mxy cos 2θ − 1
2 (Mx − My) sin 2θ (14.77)

The vertical force equilibrium of the element of the plate shown in Fig. 14.4(a) yields

Qnds − Qxdy − Qy dx = 0

or

Qn = Qx

dy

ds
+ Qy

dx

ds
= Qx cos θ + Qy sin θ (14.78)

The effective shear force resultant on the skew edge Vn can be found as

Vn = Qn + ∂Mns

∂s
(14.79)
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The different boundary conditions on the skew edge can be stated as follows:

(a) Clamped, fixed, or built-in edge. The deflection and slope (normal to the edge)
must be zero:

w = 0 (14.80)

∂w

∂n
= 0 (14.81)

(b) Hinged or simply supported edge. The deflection and the normal bending
moment resultant on the edge must be zero:

w = 0 (14.82)

Mn = 0 (14.83)

(c) Free edge. The normal bending moment and effective shear force resultants
must be zero on the edge:

Mn = 0 (14.84)

Vn = Mn + ∂Mns

∂s
= 0 (14.85)

Note that the boundary conditions of Eqs. (14.83)–(14.85) can be expressed in
terms of deflection, w, using Eqs. (14.76)–(14.79) and the known expressions of Mx ,
My , Mxy , Qx , and Qy in terms of w from Eqs. (14.1)–(14.6).

14.4 FREE VIBRATION OF RECTANGULAR PLATES

Let the boundaries of the rectangular plate be defined by the lines x = 0, a and y = 0, b.
To find the solution of the free vibration equation, Eq. (14.8) with f = 0, we assume
the solution to be of the type

w(x,y,t) = W(x, y)T (t) (14.86)

and obtain the following equations from Eq. (14.8):

1

T (t)

d2T (t)

dt2
= −ω2 (14.87)

− β2
1

W(x, y)
∇4W(x, y) = −ω2 (14.88)

where ω2 is a constant and

β2
1 = D

ρh
(14.89)
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Equations (14.87) and (14.88) can be rewritten as

d2T (t)

dt2
+ ω2T (t) = 0 (14.90)

∇4W(x, y) − λ4W(x, y) = 0 (14.91)

where

λ4 = ω2

β2
1

= ρhω2

D
(14.92)

The general solution of Eq. (14.90) is

T (t) = A cos ωt + B sin ωt (14.93)

and Eq. (14.91) can be expressed as

(∇4 − λ4)W(x,y) = (∇2 + λ2)(∇2 − λ2)W(x,y) = 0 (14.94)

By the theory of linear differential equations, the complete solution of Eq. (14.94) can
be obtained by superposing the solutions of the following equations:

(∇2 + λ2)W1(x,y) = ∂2W1

∂x2
+ ∂2W1

∂y2
+ λ2W1(x,y) = 0 (14.95)

(∇2 − λ2)W2(x,y) = ∂2W2

∂x2
+ ∂2W2

∂y2
− λ2W2(x,y) = 0 (14.96)

Equation (14.95) is similar to the equation obtained in the case of free vibration of a
membrane [Eq. (c) of the footnote following Eq. (13.44)], whose solution is given by
the product of Eqs. (13.46) and (13.47) as

W1(x,y) = A1 sin αx sin βy + A2 sin αx cos βy

+ A3 cos αx sin βy + A4 cos αx cos βy (14.97)

where λ2 = α2 + β2. The solution of Eq. (14.96) can be obtained as in the case of
solution of Eq. (14.95) except that λ is to be replaced by iλ. Hence the solution of
Eq. (14.96) will be composed of products of sinh and cosh terms. Thus, the general
solution of Eq. (14.91) can be expressed as

W(x,y) = A1 sin αx sin βy + A2 sin αx cos βy

+ A3 cos αx sin βy + A4 cos αx cos βy

+ A5 sinh θx sinh φy + A6 sinh θx cosh φy

+ A7 cosh θx sinh φy + A8 cosh θx cosh φy (14.98)

where

λ2 = α2 + β2 = θ2 + φ2 (14.99)
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14.4.1 Solution for a Simply Supported Plate

For a plate simply supported on all the sides, the boundary conditions to be satisfied are

w(x,y,t) = Mx(x,y,t) = 0 for x = 0 and a

w(x,y,t) = My(x,y,t) = 0 for y = 0 and b

}
, t ≥ 0 (14.100)

These boundary conditions can be expressed in terms of W , using Eq. (14.86), as

W(0, y) = 0,

(
d2W

dx2
+ ν

d2W

dy2

)∣∣∣∣
(0,y)

= 0,

W(a, y) = 0,

(
d2W

dx2
+ ν

d2W

dy2

)∣∣∣∣
(a,y)

= 0,

W(x, 0) = 0,

(
d2W

dy2
+ ν

d2W

dx2

)∣∣∣∣
(x,0)

= 0,

W(x, b) = 0,

(
d2W

dy2
+ ν

d2W

dx2

)∣∣∣∣
(x,b)

= 0,

(14.101)

As W is a constant along the edges x = 0 and x = a, d2W/dy2 will be zero along
these edges. Similarly, d2W/dx2 will be zero along the edges y = 0 and y = b. Thus,
Eqs. (14.101) will be simplified as

W(0, y) = d2W

dx2
(0, y) = W(a, y) = d2W

dx2
(a, y) = 0

W(x, 0) = d2W

dy2
(x, 0) = W(x, b) = d2W

dy2
(x, b) = 0

(14.102)

When these boundary conditions are used, we find that all the constants Ai , except A1,
in Eq. (14.98) are zero; in addition, we obtain two equations that α and β must satisfy:

sin αa = 0
sin βb = 0

(14.103)

Equations (14.103) represent the frequency equations whose solution is given by

αma = mπ, m = 1, 2, . . .

βnb = nπ, n = 1, 2, . . .
(14.104)

Thus, we obtain from Eqs. (14.104), (14.99), and (14.92) the natural frequencies of the
plate as

ωmn = λ2
mn

(
D

ρh

)1/2

= π2
[(m

a

)2
+
(n

b

)2
](

D

ρh

)1/2

, m, n = 1, 2, . . .

(14.105)

The characteristic function Wmn(x,y) corresponding to ωmn can be expressed as

Wmn(x,y) = A1mn sin
mπx

a
sin

nπy

b
, m, n = 1, 2, . . . (14.106)

and the natural mode as

wmn(x,y,t) = sin
mπx

a
sin

nπy

b
(Amn cos ωmnt + Bmn sin ωmnt) (14.107)
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The general solution of Eq. (14.8) with f = 0 is given by the sum of the natural modes:

w(x,y,t) =
∞∑

m=1

∞∑
n=1

sin
mπx

a
sin

nπy

b
(Amn cos ωmnt + Bmn sin ωmnt) (14.108)

Let the initial conditions of the plate be given by

w(x,y,0) = w0(x,y)

∂w

∂t
(x,y,0) = ẇ0(x,y)

(14.109)

By substituting Eq. (14.108) into Eqs. (14.109), we obtain
∞∑

m=1

∞∑
n=1

Amn sin
mπx

a
sin

nπy

b
= w0(x,y)

∞∑
m=1

∞∑
n=1

Bmnωmn sin
mπx

a
sin

nπy

b
= ẇ0(x,y)

(14.110)

Multiplying each of the equations in Eq. (14.110) by sin(mπx/a) sin(nπy/b) and inte-
grating over the area of the plate leads to

Amn = 4

ab

∫ a

0

∫ b

0
w0(x,y) sin

mπx

a
sin

nπy

b
dx dy

Bmn = 4

abωmn

∫ a

0

∫ b

0
ẇ0(x,y) sin

mπx

a
sin

nπy

b
dx dy

(14.111)

The mode shape, Wmn(x,y), given by Eq. (14.106) consists of m half sine waves in the
x direction and n half sine waves in the y direction of the plate. The first few modes
of vibration corresponding to the natural frequencies ωmn, given by Eq. (14.105), are
shown in Fig. 14.5.

14.4.2 Solution for Plates with Other Boundary Conditions

To solve Eq. (14.91) for a plate with arbitrary boundary conditions, we use the
separation-of-variables technique as

W(x,y) = X(x)Y (y) (14.112)

Substitution of Eq. (14.112) into Eq. (14.91) leads to

X
′′′′

Y + 2X′′Y ′′ + XY
′′′′ − λ4XY = 0 (14.113)

where a prime indicates a derivative with respect to its argument. The functions X(x)

and Y (y) can be separated in Eq. (14.113) provided that either

Y ′′(y) = −β2Y (y), Y ′′′′(y) = −β2Y ′′(y)

or

X′′(x) = −α2X(x), X′′′′(x) = −α2X′′(x) (14.114)
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Figure 14.5 Mode shapes of a rectangular simply supported plate. Dashed lines denote nodal
lines other than the edges.

or both are satisfied. Equations (14.114) can be satisfied only by the trigonometric
functions {

sin αmx

cos αmx

}
or

{
sin βny

cos βny

}
(14.115)

with

αm = mπ

a
, m = 1, 2, . . . , βn = nπ

b
, n = 1, 2, . . . (14.116)

We assume that the plate is simply supported along edges x = 0 and x = a. This
implies that

Xm(x) = A sin αmx, m = 1, 2, . . . (14.117)
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where A is a constant. Equation (14.117) satisfies the conditions

Xm(0) = Xm(a) = X′′
m(0) = X′′

m(a) = 0 (14.118)

for any integer m, and hence the boundary conditions

w(0,y,t) = w(a,y,t) = ∇2w(0,y,t) = ∇2w(a,y,t) = 0 (14.119)

Using the solution of Eq. (14.117), Eq. (14.113) becomes

Y ′′′′(y) − 2α2
mY ′′(y) − (λ4 − α4

m)Y (y) = 0 (14.120)

It can be observed that there are six possible combinations of simple boundary con-
ditions when the edges x = 0 and x = a are simply supported. The various boundary
conditions can be stated, using the abbreviations SS, F, and C for simply supported,
free, and clamped edges, respectively, as SS–SS–SS–SS, SS–C–SS–C, SS–F–SS–F,
SS–C–SS–SS, SS–F–SS–SS, and SS–F–SS–C.

Assuming that λ4 > α4
m in Eq. (14.120), its solution is taken in the form

Y (y) = esy (14.121)

which yields the auxiliary equation:

s4 − 2s2α2
m − (λ4 − α4

m) = 0 (14.122)

The roots of Eq. (14.122) are given by

s1,2 = ±
√

λ2 + α2
m, s3,4 = ±i

√
λ2 − α2

m (14.123)

Thus, the general solution of Eq. (14.120) can be expressed as

Y (y) = C1 sin δ1y + C2 cos δ1y + C3 sinh δ2y + C4 cosh δ2y (14.124)

where

δ1 =
√

λ2 − α2
m, δ2 =

√
λ2 + α2

m (14.125)

Equation (14.124), when substituted into the boundary condition relations on the edges
y = 0 and y = b, we obtain four homogeneous algebraic equations for the coefficients
C1, C2, C3, and C4. By setting the determinant of the coefficient matrix equal to zero,
we can derive the frequency equation. The procedure is illustrated below for simply
supported and clamped boundary conditions.

1. When edges y = 0 and y = b are simply supported. The boundary conditions
can be stated as

W(x, 0) = 0 (14.126)

W(x, b) = 0 (14.127)

My(x, 0) = −D

(
∂2W

∂y2
+ ν

∂2W

∂x2

)∣∣∣∣
(x,0)

= 0 (14.128)

My(x, b) = −D

(
∂2W

∂y2
+ ν

∂2W

∂x2

)∣∣∣∣
(x,b)

= 0 (14.129)
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Since W = 0 along the edges y = 0 and y = b, ∂W/∂x = ∂2W/∂x2 = 0 will also be zero.
Thus, the boundary conditions of Eqs. (14.126)–(14.129) can be restated as follows:

Y (0) = 0 (14.130)

Y (b) = 0 (14.131)

d2Y (0)

dy2
= 0 (14.132)

d2Y (b)

dy2
= 0 (14.133)

Since Eqs. (14.132) and (14.133) involve the second derivative of Y , we find from
Eq. (14.124),

d2Y (y)

dy2
= −δ2

1C1 sin δ1y − δ2
1C2 cos δ1y + δ2

2C3 sinh δ2y + δ2
2C4 cosh δ2y (14.134)

Using Eqs. (14.124) and (14.134), the boundary conditions of Eqs. (14.130)–(14.133)
can be expressed as

C2 + C4 = 0 (14.135)

C1 sin δ1b + C2 cos δ1b + C3 sinh δ2b + C4 cosh δ2b = 0 (14.136)

−δ2
1C2 + δ2

2C4 = 0 (14.137)

−C1δ
2
1 sin δ1b − C2δ

2
1 cos δ1b + C3δ

2
2 sinh δ2b + C4δ

2
2 cosh δ2b = 0 (14.138)

Equations (14.135) and (14.137) yield

C2 = C4 = 0 (14.139)

In view of Eq. (14.139), Eqs. (14.136) and (14.138) reduce to

C1 sin δ1b + C3 sinh δ2b = 0

or

C3 sinh δ2b = −C1 sin δ1b (14.140)

and

−C1δ
2
1 sin δ1b + C3δ

2
2 sinh δ2b = 0 (14.141)

Using Eq. (14.140), Eq. (14.141) can be written as

C1(δ
2
1 + δ2

2) sin δ1b = 0 (14.142)

For a nontrivial solution, we should have

sin δ1b = 0

or

δ1 = nπ

b
, n = 1, 2, . . . . (14.143)
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with the corresponding mode shapes as

Yn(y) = C1 sin δ1y = C1 sin
nπy

b
(14.144)

Since δ1 = √
λ2 − α2

m, we have

λ2
mn = α2

m + β2
n, βn = nπ

b
(14.145)

This leads to the result

ωmn = λ2
mn

√
D

ρh
= (α2

m + β2
n)

√
D

ρh

= π2
[(m

a

)2
+
(n

b

)2
] √

D

ρh
, m, n = 1, 2, . . . (14.146)

The mode shapes Wmn(x,y) = Xm(x)Yn(y), corresponding to the natural frequencies
ωmn of Eq. (14.146), are given by

Wmn(x,y) = Cmn sin αmx sin βny, m, n = 1, 2, . . . (14.147)

where Cmn is a constant. This solution can be seen to be the same as the one given in
Section 14.4.1.

2. When edges y = 0 and y = b are clamped. The boundary conditions can be
stated as

Y (0) = 0 (14.148)

dY

dy
(0) = 0 (14.149)

Y (b) = 0 (14.150)

dY

dy
(b) = 0 (14.151)

Using Eq. (14.124) and

dY (y)

dy
= C1δ1 cos δ1y − C2δ1 sin δ1y + C3δ2 cosh δ2y + C4δ2 sinh δ2y (14.152)

the boundary conditions of Eqs. (14.148)–(14.151) can be expressed as

C2 + C4 = 0 (14.153)

C1δ1 + C3δ2 = 0 (14.154)

C1 sin δ1b + C2 cos δ1b + C3 sinh δ2b + C4 cosh δ2b = 0 (14.155)

C1δ1 cos δ1b − C2δ1 sin δ1b + C3δ2 cosh δ2b + C4δ2 sinh δ2b = 0 (14.156)
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Equations (14.153)–(14.156) can be written in matrix form as


0 1 0 1
δ1 0 δ2 0

sin δ1b cos δ1b sinh δ2b cosh δ2b

δ1 cos δ1b −δ1 sin δ1b δ2 cosh δ2b δ2 sinh δ2b






C1

C2

C3

C4


 =




0
0
0
0


 (14.157)

By setting the determinant of the matrix in Eq. (14.157) equal to zero, we obtain the
frequency equation, after simplification, as

2δ1δ2(cos δ1b cosh δ2b − 1) − α2
m sin δ1b sinh δ2b = 0 (14.158)

For any specific value of m, there will be successive values of λ and hence ω that
satisfy the frequency equation (14.158). The natural frequencies can be denoted as
ω11, ω12, ω13, . . . , ω21, ω22, ω23, . . ., whose values depend on the material properties
E, ν, and ρ and the geometry h and b/a of the plate. The mode shape corresponding
to the nth root of Eq. (14.158) can be expressed as

Yn(y) = Cn[(cosh δ2b − cos δ1b) (δ1 sinh δ2y − δ2 sin δ1y)

− (δ1 sinh δ2b − δ2 sin δ1b) (cosh δ2y − cos δ1y)] (14.159)

where Cn is an arbitrary constant. Thus, the complete mode shape Wmn = Xm(x)Yn(y),
corresponding to the natural frequency ωmn, becomes

Wmn(x,y) = CmnYn(y) sin αmx (14.160)

where Yn(y) is given by Eq. (14.159) and Cmn is a new (arbitrary) constant.

The frequency equations and the mode shapes for other cases (with other edge
conditions at y = 0 and y = b) can be derived in a similar manner. The results for the
six combinations of boundary conditions are summarized in Table 14.1.

14.5 FORCED VIBRATION OF RECTANGULAR PLATES

We consider in this section the response of simply supported rectangular plates sub-
jected to external pressure f (x,y,t) using a modal analysis procedure. Accordingly,
the transverse displacement of the plate, w(x,y,t), is represented as

w(x,y,t) =
∞∑

m=1

∞∑
n=1

Wmn(x,y)ηmn(t) (14.161)

where the normal modes are given by [Eq. (14.106)]

Wmn(x,y) = A1mn sin
mπx

a
sin

nπy

b
, m, n = 1, 2, . . . (14.162)

The normal modes are normalized to satisfy the normalization condition∫ a

0

∫ b

0
ρhW 2

mn dx dy = 1
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which yields A1mn = 2/
√

ρhab. By using the normalized normal modes in Eq. (14.161)
and substituting the result into the equation of motion, Eq. (14.8), we can derive the
equation governing the generalized coordinates ηmn(t) as

η̈mn(t) + ω2
mnηmn(t) = Nmn(t), m, n = 1, 2, . . . (14.163)

where the generalized force Nmn(t) is given by

Nmn(t) =
∫ a

0

∫ b

0
Wmn(x,y)f (x,y,t) dx dy (14.164)

and the natural frequencies by [Eq. (14.105)]

ωmn = π2
(

D

ρh

)1/2 [(m

a

)2
+
(n

b

)2
]

, m, n = 1, 2, . . . (14.165)

The solution of Eq. (14.163) can be expressed as [see Eq. (2.109)]

ηmn(t) = ηmn(0) cos ωmnt + η̇mn(0)

ωmn

sin ωmnt + 1

ωmn

∫ t

0
Nmn(τ) sin ωmn(t − τ) dτ

(14.166)

Thus, the final solution can be written as

w(x,y,t) =
∞∑

m=1

∞∑
n=1

ηmn(0) sin
mπx

a
sin

nπy

b
cos

[
π2

√
D

ρh

(
m2

a2
+ n2

b2

)
t

]

+
∞∑

m=1

∞∑
n=1

η̇mn(0)(ρh)1/2

π2(D)1/2

1

m2/a2 + n2/b2
sin

mπx

a
sin

nπy

b

sin

[
π2

√
D

ρh

(
m2

a2
+ n2

b2

)
t

]

+
∞∑

m=1

∞∑
n=1

(ρh)1/2

π2D1/2

1

m2/a2 + n2/b2
sin

mπx

a
sin

nπy

b

∫ t

0
Nmn(τ)

sin

[
π2

√
D

ρh

(
m2

a2
+ n2

b2

)
(t − τ)

]
dτ (14.167)

Example 14.1 Find the response of a simply supported uniform plate subjected to a
concentrated force F(t) at the point x = x0, y = y0. Assume the initial conditions to
be zero.

SOLUTION Since the initial conditions are zero, the response is given by the steady-
state solution:

w(x,y,t) =
∞∑

m=1

∞∑
n=1

Wmn(x,y)ηmn(t) (E14.1.1)
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where

ηmn(t) = 1

ωmn

∫ t

0
Nmn(τ) sin ωmn(t − τ) dτ (E14.1.2)

Nmn(τ) =
∫ a

0

∫ b

0
Wmn(x,y)f (x,y,t) dx dy (E14.1.3)

The concentrated force F(t) can be expressed as

f (x,y,t) = F(t)δ(x − x0, y − y0) (E14.1.4)

where δ(x − x0, y − y0) is a two-dimensional spatial Dirac delta function defined by

δ(x − x0, y − y0) = 0 for x �= x0 and/or y �= y0∫ a

0

∫ b

0
δ(x − x0, y − y0) dx dy = 1

(E14.1.5)

The natural frequencies ωmn and the normal modes Wmn(x,y) are given by
Eqs. (14.165) and (14.162), respectively. By substituting Eqs. (14.162) and (E14.1.5),
into Eq. (E14.1.3), we obtain

Nmn(τ) = 2√
ρhab

F (τ)

∫ a

0

∫ b

0
sin

mπx

a
sin

nπy

b
δ(x − x0, y − y0) dx dy

= 2F(τ)√
ρhab

sin
mπx0

a
sin

nπy0

b
(E14.1.6)

With the help of Eq. (E14.1.6), Eq. (E14.1.2) can be written as

ηmn(t) = 1

ωmn

∫ t

0

2F(τ)√
ρhab

sin
mπx0

a
sin

nπy0

b
sin ωmn(t − τ) dτ

= 2

ωmn

√
ρhab

sin
mπx0

a
sin

nπy0

b

∫ t

0
F(τ) sin ωmn(t − τ) dτ

(E14.1.7)

If F(t) = F0 = constant, Eq. (E14.1.7) becomes

ηmn(t) = 2F0

ω2
mn

√
ρhab

sin
mπx0

a
sin

nπy0

b
(1 − cos ωmnt) (E14.1.8)

If F(t) = F0 sin �t , Eq. (E14.1.7) becomes

ηmn(t) = 2F0

(ω2
mn − �2)

√
ρhab

sin
mπx0

a
sin

nπy0

b
(ωmn sin �t − � sin ωmnt)

(E14.1.9)

Once ηmn(t) is known, the response can be found from Eq. (E14.1.1).

Example 14.2 A rectangular plate simply supported along all the edges is subjected
to a harmonically varying pressure distribution given by

f (x,y,t) = f0(x,y) sin �t (E14.2.1)
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where � is the frequency of the applied force. Find the steady-state response of the
plate.

SOLUTION The equation of motion for the forced vibration of a rectangular plate
can be expressed as

D∇4w + ρh
∂2w

∂t2
= f (x,y,t) (E14.2.2)

where

f (x,y,t) = f0(x,y) sin �t (E14.2.3)

We assume the response of the plate, w(x,y,t), also to be harmonic with

w(x,y,t) = W(x,y) sin �t (E14.2.4)

where W(x,y) indicates the harmonically varying displacement distribution. Using
Eq. (E14.2.3), Eq. (E14.2.2) can be written as

∇4W − λ4W = f0(x,y)

D
(E14.2.5)

where

λ4 = �2ρh

D
(E14.2.6)

We express the pressure distribution f0(x,y) and the displacement distribution W(x,y)

in terms of the mode shapes or eigenfunctions of the plate Wmn(x,y) as

W(x,y) =
∞∑

m=1

∞∑
n=1

AmnWmn(x,y) (E14.2.7)

f0(x,y) =
∞∑

m=1

∞∑
n=1

BmnWmn(x,y) (E14.2.8)

where

Amn =
∫ a

0

∫ b

0
w(x,y) Wmn(x,y) dx dy (E14.2.9)

Bmn =
∫ a

0

∫ b

0
f0(x,y) Wmn(x,y) dx dy (E14.2.10)

The eigenvalue problem corresponding to Eq. (E14.2.2) can be expressed as

∇4Wmn − λ4
mnWmn = 0, m, n = 1, 2, . . . (E14.2.11)

where

λ4
mn = ω2

mnρh

D
(E14.2.12)
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Let the eigenfunctions of the plate Wmn(x,y) be normalized as∫ a

0

∫ b

0
W 2

mn(x,y) dx dy = 1 (E14.2.13)

Multiply both sides of Eq. (E14.1.4) by Wmn(x,y) and integrate over the area of the
plate to obtain ∫ a

0

∫ b

0
[∇4W(x,y) − λ4W(x,y)]Wmn(x,y) dx dy

= 1

D

∫ a

0

∫ b

0
f0(x,y) Wmn(x,y) dx dy (E14.2.14)

which upon integration by parts yields

Amn(λ
4
mn − λ4) = Bmn

D
or

Amn = Bmn

D(λ4
mn − λ4)

(E14.2.15)

By substituting Eqs. (E14.2.15) and (E14.2.10) into Eq. (E14.2.7), we obtain the dis-
placement distribution of the plate as

W(x,y) =
∞∑

m=1

∞∑
n=1

BmnWmn(x,y)

D(λ4
mn − λ4)

= 1

ρh

∞∑
m=1

∞∑
n=1

Wmn(x,y)
∫ a

0

∫ b

0 f0(x
′, y′) Wmn(x

′, y′) dx′ dy′

ω2
mn − �2

(E14.2.16)

Note that Eq. (E14.2.16) is applicable to plates with arbitrary boundary conditions. In
the case of a simply supported plate, the natural frequencies and normalized eigenfunc-
tions are given by

ωmn = π2

√
D

ρh

[(m

a

)2
+
(n

b

)2
]

, m, n = 1, 2, . . . (E14.2.17)

Wmn(x,y) = 2√
ρhab

sin
mπx

a
sin

nπy

b
(E14.2.18)

If f0(x,y) = f0 = constant, the double integral in Eq. (E14.2.16) can be evaluated as∫ a

0

∫ b

0
f0(x

′, y′) Wmn(x
′, y′) dx′ dy′ = 2f0√

ρhab

∫ a

0

∫ b

0
sin

mπx′

a
sin

nπy′

b
dx′ dy′

= 2f0√
ρhab

ab

π2mn
(1 − cos mπ) (1 − cos nπ)

=



0 if m is even or n is even

8f0
√

ab

π2m n
if m is odd and n is odd

(E14.2.19)
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Thus, the response of the simply supported plate can be expressed, using Eqs. (E14.2.19),
(E14.2.16) and (E14.2.4), as

w(x,y,t) = 16f0

π2

∞∑
m=1,3,...

∞∑
n=1,3,...

sin(mπx/a) sin(nπy/b) sin �t

mn {π4D [(m/a)2 + (n/b)2]2 − ρh�2} (E14.2.20)

14.6 CIRCULAR PLATES

14.6.1 Equation of Motion

Consider an infinitesimal element of the plate in polar coordinates as shown in Fig. 14.6.
In this figure the radial moment Mr , tangential moment Mθ , twisting moments Mrθ

and Mθr , and the transverse shear forces Qr and Qθ are shown on the positive and
negative edges of the element. The equations of motion of the plate can be derived
in polar coordinates by considering the dynamic equilibrium of the element shown in
Fig. 14.6 as follows (see Problem 14.9): Moment equilibrium about the tangential (θ )
direction:

∂Mr

∂r
+ 1

r

∂Mrθ

∂θ
+ Mr − Mθ

r
− Qr = 0 (14.168)

Y
(a)

(b)

dq

q

dr
d

r
a

b

X

a

c

Qq

dq

Mq

Mqr

Mqr + dMqr

Mrq + dMrq

Mr

Mrq
Qr

Mr + dMr

Qr + dQrQq + dQq

Mq + dMq

f

b

a

d

c

Figure 14.6 Element of plate in polar coordinates.
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Moment equilibrium about the radial (R) direction:

∂Mrθ

∂r
+ 1

r

∂Mθ

∂θ
+ 2

r
Mrθ − Qθ = 0 (14.169)

Force equilibrium in the z direction:

∂Qr

∂r
+ 1

r

∂Qθ

∂θ
+ Qr

r
+ f − ρh

∂2w

∂t2
= 0 (14.170)

Equations (14.168)–(14.170) can be combined to derive a single equation of motion
in terms of the moment resultants Mr , Mθ , and Mrθ . By substituting the moment
resultants in terms of the transverse displacement w, the final equation of motion,
shown in Eq. (14.183), can be obtained.

The coordinate transformation technique can also be used to derive the equation of
motion in polar coordinates from the corresponding equation in Cartesian coordinates,
as indicated below.

14.6.2 Transformation of Relations

The Cartesian and polar coordinates of a point P are related as (Fig. 14.7)

x = r cos θ, y = r sin θ (14.171)

r2 = x2 + y2 (14.172)

θ = tan−1 y

x
(14.173)

0

y

y

x x
q

r

(x,y)

Figure 14.7 Cartesian and polar coordinates.
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From Eqs. (14.172) and (14.171), we obtain

∂r

∂x
= x

r
= cos θ,

∂r

∂y
= y

r
= sin θ (14.174)

Similarly, Eqs. (14.173) and (14.171) give

∂θ

∂r
= − y

r2
= − sin θ

r
,

∂θ

∂y
= x

r2
= cos θ

r
(14.175)

Since the deflection of the plate w is a function of r and θ , the chain rule of differen-
tiation yields

∂w

∂x
= ∂w

∂r

∂r

∂x
+ ∂w

∂θ

∂θ

∂x
= ∂w

∂r
cos θ − 1

r

∂w

∂θ
sin θ (14.176)

∂w

∂y
= ∂w

∂r

∂r

∂y
+ ∂w

∂θ

∂θ

∂y
= ∂w

∂r
sin θ + ∂w

∂θ

cos θ

r
(14.177)

For the expressions ∂2w/∂x2, ∂2w/∂x ∂y and ∂2w/∂y2, the operations ∂/∂x and ∂/∂y

of Eqs. (14.176) and (14.177) are repeated to obtain

∂2w

∂x2
= ∂

∂x

(
∂w

∂x

)
= ∂

∂r

(
∂w

∂x

)
cos θ − 1

r

∂

∂θ

(
∂w

∂x

)
sin θ

= ∂2w

∂r2
cos2 θ − ∂2w

∂θ∂r

sin 2θ

r
+ ∂w

∂r

sin2 θ

r
+ ∂w

∂θ

sin 2θ

r2
+ ∂2w

∂θ2

sin2 θ

r2

(14.178)

∂2w

∂y2
= ∂

∂y

(
∂w

∂y

)
= ∂

∂r

(
∂w

∂y

)
sin θ + ∂

∂θ

(
∂w

∂y

)
cos θ

r

= ∂2w

∂r2
sin2 θ + ∂2w

∂r∂θ

sin 2θ

r
+ ∂w

∂r

cos2 θ

r
− ∂w

∂θ

sin 2θ

r2
+ ∂2w

∂θ2

cos2 θ

r2

(14.179)

∂2w

∂x ∂y
= ∂

∂x

(
∂w

∂y

)
= ∂

∂r

(
∂w

∂y

)
cos θ − 1

r

∂

∂θ

(
∂w

∂y

)
sin θ

= ∂2w

∂r2

sin 2θ

2
+ ∂2w

∂r∂θ

cos 2θ

r
− ∂w

∂θ

cos 2θ

r2
− ∂w

∂r

sin 2θ

2r
− ∂2w

∂θ2

sin 2θ

2r2

(14.180)

By adding Eqs. (14.178) and (14.179), we obtain

∇2w = ∂2w

∂x2
+ ∂2w

∂y2
= ∂2w

∂r2
+ 1

r

∂w

∂r
+ 1

r2

∂2w

∂θ2
(14.181)
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By repeating the operation ∇2 twice, we can express

∇4w = ∇2(∇2w) =
(

∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

) (
∂2w

∂r2
+ 1

r

∂w

∂r
+ 1

r2

∂2w

∂θ2

)

= ∂4w

∂r4
+ 2

r

∂3w

∂r3
− 1

r2

∂2w

∂r2
+ 1

r3

∂w

∂r
+ 2

r2

∂4w

∂r2∂θ2
− 2

r3

∂3w

∂θ2∂r

+ 4

r4

∂2w

∂θ2
+ 1

r4

∂4w

∂θ4
(14.182)

Using Eqs. (14.178), (14.179), and (14.180) in (14.8), the equation of motion for the
forced transverse vibration of a circular plate can be expressed as

D∇4w + ρh
∂2w

∂t2
= f

or

D

(
∂4w

∂r4
+ 2

r

∂3w

∂r3
− 1

r2

∂2w

∂r2
+ 1

r3

∂w

∂r
+ 2

r2

∂4w

∂r2∂θ2

− 2

r3

∂3w

∂r∂θ2
+ 4

r4

∂2w

∂θ2
+ 1

r4

∂4w

∂θ4

)
+ ρh

∂2w

∂t2
= f (r, θ, t) (14.183)

14.6.3 Moment and Force Resultants

Using the transformation procedure, the moment resultant–transverse displacement
relations can be obtained as (see Problem 14.17)

Mr = −D

[
∂2w

∂r2
+ ν

(
1

r

∂w

∂r
+ 1

r2

∂2w

∂θ2

) ]
(14.184)

Mθ = −D

(
1

r

∂w

∂r
+ 1

r2

∂2w

∂θ2
+ ν

∂2w

∂r2

)
(14.185)

Mrθ = Mθr = − (1 − ν)D
∂

∂r

(
1

r

∂w

∂θ

)
(14.186)

Similarly, the shear force resultants can be expressed as

Qr = 1

r

[
∂

∂r
(rMr) − Mθ + ∂Mrθ

∂θ

]
(14.187a)

= −D
∂

∂r

(
∂2w

∂r2
+ 1

r

∂w

∂r
+ 1

r2

∂2w

∂θ2

)
= −D

∂

∂r
(∇2w) (14.187b)

Qθ = 1

r

[
∂

∂r
(rMrθ ) + ∂Mθ

∂θ
+ Mrθ

]
(14.188a)

= −D
1

r

∂

∂θ

(
∂2w

∂r2
+ 1

r

∂w

∂r
+ 1

r2

∂2w

∂θ2

)
= −D

1

r

∂

∂θ
(∇2w) (14.188b)
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The effective transverse shear forces can be written as

Vr = Qr + 1

r

∂Mrθ

∂θ
= −D

[
∂

∂r
(∇2w) + 1 − ν

r

∂

∂θ

(
1

r

∂2w

∂r ∂θ
− 1

r2

∂w

∂θ

) ]
(14.189)

Vθ = Qθ + ∂Mrθ

∂r
= −D

[
1

r

∂

∂θ
(∇2w) + (1 − ν)

∂

∂r

(
1

r

∂2w

∂r ∂θ
− 1

r2

∂w

∂θ

) ]
(14.190)

Note that the Laplacian operator appearing in Eqs. (14.187)–(14.190) is given in polar
coordinates by Eq. (14.181).

14.6.4 Boundary Conditions

1. Clamped, fixed, or built-in edge. The deflection and slope (normal to the boundary)
must be zero:

w = 0 (14.191)

∂w

∂r
= 0 (14.192)

where r denotes the radial (normal) direction to the boundary.
2. Simply supported edge. The deflection and bending moment resultant must

be zero:

w = 0 (14.193)

Mr = −D

[
∂2w

∂r2
+ ν

(
1

r

∂w

∂r
+ 1

r2

∂2w

∂θ2

) ]
= 0 (14.194)

3. Free edge. The bending moment resultant and the effective shear force resultant
on the edge must be zero:

Mr = −D

[
∂2w

∂r2
+ ν

(
1

r

∂w

∂r
+ 1

r2

∂2w

∂θ2

) ]
= 0 (14.195)

Vr = Qr + 1

r

∂Mrθ

∂θ
= 0 (14.196)

or

−D

[
∂

∂r
(∇2w) + 1 − ν

r

∂

∂θ

(
1

r

∂2w

∂r ∂θ
− 1

r2

∂w

∂θ

) ]
= 0 (14.197)

4. Edge supported on elastic springs. If the edge is supported on linear and tor-
sional springs all around as shown in Fig. 14.8, the boundary conditions can be stated
as follows:

Mr = −kt0

∂w

∂r
or

−D

[
∂2w

∂r2
+ ν

(
1

r

∂w

∂r
+ 1

r2

∂2w

∂θ2

) ]
= −kt0

∂w

∂r
(14.198)
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kt0

+ w

k0

Figure 14.8 Edge supported on elastic springs.

Vr = −k0w

or

−D

[
∂

∂r
(∇2w) + 1 − ν

r

∂

∂θ

(
1

r

∂2w

∂r ∂θ
− 1

r2

∂w

∂θ

) ]
= −k0w (14.199)

14.7 FREE VIBRATION OF CIRCULAR PLATES

The equation of motion of a circular plate is given by Eq. (14.183):

D∇4w + ρh
∂2w

∂t2
= f (14.200)

where

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
(14.201)

For free vibrations of the plate, Eq. (14.200) gives, after separation of variables,

d2T (t)

dt2
+ ω2T (t) = 0 (14.202)

∇4W(r, θ) − λ4W(r, θ) = 0 (14.203)

where

λ4 = ρhω2

D
(14.204)

Using Eq. (14.201), Eq. (14.203) can be written as two separate equations:

∂2W

∂r2
+ 1

r

∂W

∂r
+ 1

r2

∂2W

∂θ2
+ λ2W = 0 (14.205)

∂2W

∂r2
+ 1

r

∂W

∂r
+ 1

r2

∂2W

∂θ2
− λ2W = 0 (14.206)
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By expressing W(r, θ) = R(r)�(θ), Eqs. (14.205) and (14.206) can be rewritten [after
dividing each equation by R(r)�(θ)/r2] as

r2

R(r)

[
d2R(r)

dr2
+ 1

r

dR(r)

dr
± λ2

]
= − 1

�(θ)

d2�

dθ2
= α2

where α2 is a constant. Thus,

d2�

dθ2
+ α2� = 0 (14.207)

d2R

dr2
+ 1

r

dR

dr
+
(

±λ2 − α2

r2

)
R = 0 (14.208)

The solution of Eq. (14.207) is

�(θ) = A cos αθ + B sin αθ (14.209)

Since W(r, θ) has to be a continuous function, �(θ) must be a periodic function with
a period of 2π so that W(r, θ) = W(r, θ + 2π). Thus, α must be an integer:

α = m, m = 0, 1, 2, . . . (14.210)

Equation (14.208) can be rewritten as two separate equations:

d2R

dr2
+ 1

r

dR

dr
+
(

λ2 − α2

r2

)
R = 0 (14.211)

d2R

dr2
+ 1

r

dR

dr
−
(

λ2 + α2

r2

)
R = 0 (14.212)

Equation (14.211) can be seen to be a Bessel differential equation [as in the case of a
circular membrane, (Eq. (13.131))] of order m (= α) with argument λr whose solution
is given by

R1(r) = C1Jm(λ r) + C2Ym(λr) (14.213)

where Jm and Ym are Bessel functions of order m of the first and second kind, respec-
tively. Equation (14.212) is a Bessel differential equation of order m (= α) with the
imaginary argument iλr whose solution is given by

R2(r) = C3Im(λr) + C4Km(λr) (14.214)

where Im and Km are the hyperbolic or modified Bessel functions of order m of the first
and second kind, respectively. The general solution of Eq. (14.203) can be expressed
as

W(r, θ) = [C(1)
m Jm(λr) + C(2)

m Ym(λr) + C(3)
m Im(λr)

+ C(4)
m Km(λr)](Am cos mθ + Bm sin mθ), m = 0, 1, 2, . . . (14.215)

where the constants C
(1)
m , . . . , C

(4)
m , Am,Bm, and λ depend on the boundary conditions

of the plate. The boundary conditions of the plate are given in Section 14.6.4.
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14.7.1 Solution for a Clamped Plate

For a clamped plate of radius a the boundary conditions, in terms of W(r, θ), are

W(a, θ) = 0 (14.216)

∂W

∂r
(a, θ) = 0 (14.217)

In addition, the solution W(r, θ) at all points inside the plate must be finite. For this,
the constants C

(2)
m and C

(4)
m must be zero as the Bessel functions of the second kind,

Ym(λr) and Km(λr), become infinite at r = 0. Thus, Eq. (14.215) reduces to

W(r, θ) = [C(1)
m Jm(λr) + C(3)

m Im(λr)](Am cos mθ + Bm sin mθ), m = 0, 1, 2, . . .

(14.218)

The boundary condition of Eq. (14.216) gives

C(3)
m = −Jm(λa)

Im(λa)
C(1)

m (14.219)

so that

W(r, θ) =
[
Jm(λr) − Jm(λa)

Im(λa)
Im(λr)

]
(Am cos mθ + Bm sin mθ), m = 0, 1, 2, . . .

(14.220)

where Am and Bm are new constants. Finally, Eqs. (14.217) and (14.220) give the
frequency equations:[

d

dr
Jm(λr) − Jm(λa)

Im(λa)

d

dr
Im(λr)

]
r=a

= 0, m = 0, 1, 2, . . . (14.221)

From the known relations [13, 36]

d

dr
Jm(λr) = λJm−1(λr) − m

r
Jm(λr) (14.222)

d

dr
Im(λr) = λIm−1(λr) − m

r
Im(λr) (14.223)

the frequency equations can be expressed as

Im(λa)Jm−1(λa) − Jm(λa)Im−1(λa) = 0, m = 0, 1, 2, . . . (14.224)

For a given value of m, we have to solve Eq. (14.224) and find the roots (eigenvalues)
λmn from which the natural frequencies can be computed, using Eq. (14.204), as

ωmn = λ2
mn

(
D

ρh

)1/2

(14.225)

As in the case of membranes, we find that for each frequency ωmn, there are two natural
modes (except for m = 0 for which there is only one mode). Hence, all the natural
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modes (except for m = 0) are degenerate. The two mode shapes are given by

W(1)
mn(r, θ) = [Jm(λr)Im(λa) − Jm(λa)Im(λr)] cos mθ (14.226)

W(2)
mn(r, θ) = [Jm(λr)Im(λa) − Jm(λa)Im(λr)] sin mθ (14.227)

The two natural modes of vibration corresponding to ωmn are given by

w(1)
mn(r, θ, t) = cos mθ [Im(λmna)Jm(λmnr) − Jm(λmna)Im(λmnr)]

· (A(1)
mn cos ωmnt + A(2)

mn sin ωmnt) (14.228)

w(2)
mn(r, θ, t) = sin mθ [Im(λmna)Jm(λmnr) − Jm(λmna)Im(λmnr)]

· (A(3)
mn cos ωmnt + A(4)

mn sin ωmnt) (14.229)

The general solution of Eq. (14.200) with f = 0 can be expressed as

w(r, θ, t) =
∞∑

m=0

∞∑
n=0

[w(1)
mn(r, θ, t) + w(2)

mn(r, θ, t)] (14.230)

and the constants A
(1)
mn, . . . , A

(4)
mn can be determined from the initial conditions. Some

of the first few roots of Eq. (14.224) are λ01a = 3.196, λ02a = 6.306, λ03a = 9.439,
λ11a = 4.611, λ12a = 7.799, λ13a = 10.958, λ21a = 5.906, λ22a = 9.197, and λ23a =
12.402. Note that the mode shape Wmn(r, θ) will have m nodal diameters and n nodal
circles, including the boundary of the circular plate. The first few mode shapes of the
clamped circular plate are shown in Fig. 14.9.

14.7.2 Solution for a Plate with a Free Edge

For a circular plate of radius a with a free edge, the boundary conditions are given by
Eqs. (14.195) and (14.197):

∂2W

∂r2
+ ν

r

∂W

∂r
+ ν

r2

∂2W

∂θ2
= 0 at r = a

(14.231)

∂

∂r

(
∂2W

∂r2
+ 1

r

∂W

∂r
+ 1

r2

∂2W

∂θ2

)
+ 1 − ν

r2

∂2

∂θ2

(
∂W

∂r
− W

r

)
= 0 at r = a

(14.232)

By substituting Eq. (14.215) into Eqs. (14.231) and (14.232), the frequency equation
can be derived as [1]

(λa)2Jm(λa) + (1 − ν)[λaJ ′
m(λa) − m2Jm(λa)]

(λa)2Im(λa) − (1 − ν)[λaI ′
m(λa) − m2Im(λa)]

= (λa)2I ′
m(λa) + (1 − ν)m2[λaJ ′

m(λa) − Jm(λa)]

(λa)2I ′
m(λa) − (1 − ν)m2[λaI ′

m(λa) − Im(λa)]
(14.233)
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Figure 14.9 Mode shapes of a clamped circular plate. Dashed lines denote nodal lines within
the plate.

where a prime denotes derivative with respect to the argument. When λa > m, the
frequency equation (14.233) can be approximated by the equation [16]

Jm(λa)

J ′
m(λa)

≈ [(λa)2 + 2(1 − ν)m2][Im(λa)/I ′
m(λa)] − 2λa(1 − ν)

(λa)2 − 2(1 − ν)m2
(14.234)

The first few roots of Eq. (14.234) are given in Table 14.2.
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Table 14.2 Natural Frequencies of Vibration of a Free Circular Plate with
ν = 0.33a

Number of nodal diameters, m

Number of
nodal circles,
n 0 1 2 3

0 — — 5.253 12.23
1 9.084 20.52 35.25 52.91
2 38.55 59.86 83.9 111.3
3 87.80 119.0 154.0 192.1

Source: Data from Refs. [1] and [16].
a Values of (λa)2 = ωa2√ρh/D.

14.8 FORCED VIBRATION OF CIRCULAR PLATES

We shall consider the axisymmetric vibrations of a circular plate in this section. The
equation of motion governing the axisymmetric vibrations of a circular plate is given by

p2
(

∂2

∂r2
+ 1

r

∂

∂r

)2

w(r, t) + ẅ(r, t) = 1

ρh
f (r, t) (14.235)

where

p2 = D

ρh
(14.236)

and a dot over w denotes a partial derivative with respect to time. The boundary
conditions for a plate simply supported around the boundary r = a are given by

w = 0 at r = a (14.237)

∂2w

∂r2
+ ν

r

∂w

∂r
= 0 at r = a (14.238)

To simplify the solution, the boundary condition of Eq. (14.238) is taken approximately
as [14]

∂2w

∂r2
+ 1

r

∂w

∂r
= 0 at r = a (14.239)

Equations (14.237) and (14.239) imply that the plate is supported at the boundary,
r = a, such that the deflection and the curvature are zero. Thus, Eq. (14.239) will be
satisfied to a greater extent for larger plates (with large values of a) than for smaller
plates (with small values of a).

14.8.1 Harmonic Forcing Function

The forcing function, f (r, t), is assumed to be harmonic, with frequency �, as

f (r, t) = F(r)ei�t (14.240)
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The solution of Eq. (14.235) is assumed to be of the form

w(x, t) = W(r)ei�t (14.241)

Using Eqs. (14.240) and (14.241), the equation of motion, Eq. (14.235), can be ex-
pressed as (

d2

dr2
+ 1

r

d

dr

)2

W(r) − λ4W(r) = 1

D
F(r) (14.242)

where

λ4 = �2

p2
= �2ρh

D
(14.243)

Equation (14.242) can be solved conveniently by applying Hankel transforms. For this,
we multiply both sides of Eq. (14.242) by rJ0(λr) and integrate with respect to r from
0 to a to obtain∫ a

0

(
d2

dr2
+ 1

r

d

dr

)2

W(r)rJ0(λr) dr − λ4W(λ) = 1

D
F(λ) (14.244)

where W(λ) and F(λ) are called the finite Hankel transforms of W(r) and F(r),
respectively, and are defined as

W(λ) =
∫ a

0
rW(r)J0(λr) dr (14.245)

F(λ) =
∫ a

0
rF (r)J0(λr) dr (14.246)

To simplify Eq. (14.244), first consider the integral

I =
∫ a

0
r

(
d2W

dr2
+ 1

r

dW

dr

)
J0(λr) dr (14.247)

Using integration by parts, this integral can be evaluated as

I =
[
r

dW

dr
J0(λr) − λrWJ ′

0(λr)

]a

0
− λ2

∫ a

0
rWJ0(λr) dr (14.248)

The expression in brackets in Eq. (14.248) will always be zero at r = 0 and will be
zero at r = a if λ is chosen to satisfy the relation

J0(λa) = 0 (14.249)

or

J0(λia) = 0, i = 1, 2, . . . (14.250)

where λia is the ith root of Eq. (14.249). Thus, Eq. (14.247) takes the form∫ a

0
r

(
d2W

dr2
+ 1

r

dW

dr

)
J0(λr) dr = −λ2

i W(λi) (14.251)
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When the result of Eq. (14.251) is applied twice, we obtain

∫ a

0
r

(
d2

dr2
+ 1

r

d

dr

)2

W(r)rJ0(λr) dr = λ4
i W(λi) (14.252)

In view of Eq. (14.252), Eq. (14.244) yields

W(λi) = 1

D

F(λi)

λ4
i − λ4

(14.253)

By taking the inverse Hankel transforms, we obtain [13–15]

W(r) = 2

a2

∑
i=1,2,···

W(λi)
J0(λir)

[J1(λia)]2
= 2

a2D

∑
i=1,2,...

J0(λir)F (λi)

[J1(λ1a)]2(λ4
i − λ4)

(14.254)

Note that as the forcing frequency � approaches the ith natural frequency of vibration of
the plate, λ2

i

√
D/ρh, the deflection of the plate W(r) → ∞, thereby causing resonance.

14.8.2 General Forcing Function

For a general forcing function f (r, t), the Hankel transforms of w(r, t) and f (r, t) are
defined as

W(λ) =
∫ a

0
rw(r, t)J0(λr) dr (14.255)

F(λ) =
∫ a

0
rf (r, t)J0(λr) dr (14.256)

Using a procedure similar to the one used in the case of a harmonic forcing function,
we obtain from Eq. (14.235),

d2W(λi)

d t2
+ λ4

i W(λi) = 1

D
F(λi) (14.257)

The solution of Eq. (14.257), after taking the inverse Hankel transforms, can be ex-
pressed as [14, 15]

w(r, t) = 2

a2

∑
i=1,2,...

J0(λir)

[J1(λia)]2

∫ a

0
rJ0(λir)

[
w0(r) cos ωit + ω̇0(r)

ωi

sin ωit

]
dr

+ 2

a2ρh

∑
i=1,2,...

J0(λir)

[J1(λia)]2

∫ a

0
rJ0(λir) dr

∫ t

0

f (r, τ )

ωi

sin ωi(t − τ) dτ

(14.258)
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where

w0(r) = w(r, t = 0) (14.259)

ẇ0(r) = ∂w

∂t
(r, t = 0) (14.260)

denote the known initial conditions of the plate and

ωi = pλ2
i =

√
D

ρh
λ2

i (14.261)

Note that the first term on the right-hand side of Eq. (14.258) denotes transient vibra-
tions due to the initial conditions, and the second term represents the steady-state
vibrations due to the forcing function specified.

To illustrate the use of Eq. (14.258) for free (transient) vibration response, consider
a plate subjected to the initial displacement

w0(r) = b

(
1 − r2

a2

)
, 0 ≤ r ≤ a (14.262)

where b indicates the displacement of the center of the plate (assumed to be small) and
ẇ0(r) = f (r, t) = 0. Using the initial condition of Eq. (14.262) and noting that∫ a

0
rw0(r)J0(λir) dr = b

a2

∫ a

0
(a2 − r2)rJ0(λir) dr = 4bJ1(λia)

aλ3
i

(14.263)

the free (transient) vibration response of the plate can be obtained from Eq. (14.258) as

w(r, t) = 8b

a3

∑
i=1,2,...

J0(λir)

J1(λ1a)

cos ωit

λ3
i

(14.264)

To illustrate the use of Eq. (14.258) for forced vibration response, consider the steady-
state response of a plate subjected to a constant distributed force of magnitude d0 acting
on a circle of radius c0 suddenly applied at t = 0. In this case,

f (r, t) = d0H(c0 − r)H(t) (14.265)

where H(x) denotes the Heaviside unit function defined by

H(x) =
{

0 for x < 0
1 for x ≥ 0

(14.266)

Using the relation∫ a

0
rJ0(λir) dr

∫ t

0

f (r, τ )

ωi

sin ωi(t − τ) dτ

= d0

∫ a

0
rJ0(λir)H(c0 − r) dr

∫ t

0

H(τ)

ωi

sin ωi(t − τ) dτ = d0
1 − cos ωit

ω2
i∫ c0

0
rJ0(λir) dr

= d0c0aJ1(λic0)

λiω
2
i

(1 − cos ωit) (14.267)
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the forced response of the plate, given by Eq. (14.258), can be expressed as

w(r, t) = 2d0c0

aD

∑
i=1,2,...

J0(λir)J1(λic0)

λ5
i [J1(λia)]2

(1 − cos pλ2
i t) (14.268)

14.9 EFFECTS OF ROTARY INERTIA AND SHEAR DEFORMATION

In the derivation of Eq. (14.8) we assumed that the thickness of the plate is small
compared to its other dimensions, and the effects of rotary inertia and shear deforma-
tion are small. In the case of beams a method of accounting for the effects of rotary
inertia and shear deformation, according to Timoshenko beam theory, was presented in
Section 11.15. Mindlin extended the Timoshenko beam theory and presented a method
of including the effects of rotary inertia and shear deformation in the dynamic analysis
of plates [3, 4]. We discuss the essential features of Mindlin plate theory in this section.

14.9.1 Equilibrium Approach

Strain–Displacement Relations We assume that the middle plane of the plate lies
in the xy plane before deformation and its deflection is given by w(x,y,t). A fiber
AB oriented in the z direction takes the positions A′B ′ and A′′B ′′ due to bending and
shear deformations, respectively, in the xz plane, as shown in Fig. 14.10. Thus, if φx

A

A

C

A′

C′
A′′

B
B′ B′′

C

Before deformation

After deformation

x

w

B

z

z

z

u = zfx

fx

Figure 14.10 Rotation of the normal AB.
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denotes the rotation in the xz plane of a line originally normal to the midplane before
deformation, the displacement of a point C located at a distance z from the midplane
in the direction of the x axis is +zφx . It can be seen that point C will not have any
x component of displacement due to shear deformation. Similarly, point C will have
a component of displacement parallel to the y axis, due to bending of the plate in the
yz plane. Its value is +zφy , where φy denotes the rotation in the yz plane of a line
originally normal to the midplane before deformation. Thus, the complete displacement
state of any point (like C) in the plate is given by

u(x,y,t) = +zφx(x,y,t)

v(x,y,t) = +zφy(x,y,t)

w(x,y,t) = w(x,y,t)

(14.269)

As in the case of a beam, the slope of the deflection surface in the xz and yz planes
(∂w/∂x and ∂w/∂y) will be increased by the shear angles γx and γy , respectively,
so that

γx = φx + ∂w

∂x
, γy = φy + ∂w

∂y
(14.270)

Note that the classical or Kirchhoff plate theory can be obtained by setting γx = γy = 0
or φx = −∂w/∂x and φy = −∂w/∂y. The linear strain–displacement relations can be
expressed as

εxx = ∂u

∂x
= ∂

∂x
(+zφx) = +z

∂φx

∂x

εyy = ∂v

∂y
= ∂

∂y
(+zφy) = +z

∂φy

∂y

εxy = ∂u

∂y
+ ∂v

∂x
= ∂

∂y
(+zφx) + ∂

∂x
(+zφy) = +z

(
∂φx

∂y
+ ∂φy

∂x

)

εyz = ∂v

∂z
+ ∂w

∂y
= ∂

∂z
(+zφy) + ∂w

∂y
= +φy + ∂w

∂y

εxz = ∂u

∂z
+ ∂w

∂x
= ∂

∂z
(+zφx) + ∂w

∂x
= +φx + ∂w

∂x
εzz = 0

(14.271)

Stress Resultants As in thin plates, the nonzero stress components are σxx , σyy , σxy ,
σyz, and σxz. The force and moment resultants per unit length, Qx , Qy , Mx , My , and
Mxy , are defined as in Eq. (3.27). Using the stress–strain relations

σxz = E

1 − ν2
(εxx + νεyy)

σyy = E

1 − ν2
(εyy + νεxx)

σxy = Gεxy (14.272)

σyz = Gεyz

σxz = Gεxz
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and the strain–displacement relations of Eq. (14.271), the force and moment resultants
can be written as

Qx =
∫ h/2

−h/2
σxz dz =

∫ h/2

−h/2
Gεxz dz = G

∫ h/2

−h/2

(
+φx + ∂w

∂x

)
dz

= k2Gh

(
+φx + ∂w

∂x

)

Qy =
∫ h/2

−h/2
σyz dz =

∫ h/2

−h/2
Gεyz dz = G

∫ h/2

−h/2

(
+φy + ∂w

∂y

)
dz

= k2Gh

(
+φy + ∂w

∂y

)

Mx =
∫ h/2

−h/2
σxxz dz =

∫ h/2

−h/2

E

1 − ν2
(εxx + νεyy)z dz

= E

1 − ν2

∫ h/2

−h/2
z2
(

∂φx

∂x
+ ν

∂φy

∂y

)
dz = +D

(
∂φx

∂x
+ ν

∂φy

∂y

)

My =
∫ h/2

−h/2
σyyz dz =

∫ h/2

−h/2

E

1 − ν2
(εyy + νεxx)z dz

= E

1 − ν2

∫ h/2

−h/2
z2
(

∂φy

∂y
+ ν

∂φx

∂x

)
dz = +D

(
∂φy

∂y
+ ν

∂φx

∂x

)

Mxy =
∫ h/2

−h/2
σxyz dz =

∫ h/2

−h/2
Gεxyz dz = +G

∫ h/2

−h/2
z2
(

∂φx

∂y
+ ∂φy

∂x

)
dz

= D(1 − ν)

2

(
∂φx

∂y
+ ∂φy

∂x

)
= Myx

(14.273)

where

G = E

2(1 + ν)
(14.274)

is the shear modulus of the plate. Note that the quantity k2 in the expressions of Qx and
Qy is similar to the Timoshenko shear coefficient k and is introduced to account for the
fact that the shear stresses σxz and σyz are not constant over the thickness of the plate,
−h/2 ≤ z ≤ h/2. The value of the constant k2 was taken as 5

6 by Reissner for static
problems, while Mindlin chose the value of k2 as π2/12 so as to make the dynamic
theory consistent with the known exact frequency for the fundamental “thickness shear”
mode of vibration.

Equilibrium Equations The equilibrium equations for the Mindlin plate can be deri-
ved with reference to Fig. 14.11 and by considering the effect of rotatory inertia as
follows:
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Figure 14.11 Moment and shear force resultants on an element of a plate.

1. Vertical force equilibrium in the z direction:(
Qx + ∂Qx

∂x
dx

)
dy +

(
Qy + ∂Qy

∂y
dy

)
dx + f dx dy − Qx dy − Qy dx

= inertia force in the z direction = ρh dx dy
∂2w

∂t2

or

∂Qx

∂x
+ ∂Qy

∂y
+ f = ρh

∂2w

∂t2
(14.275)

where ρ is the mass density of the plate and f (x,y,t) is the intensity of the external
distributed force.

2. Moment equilibrium about the x axis:

−
(

Qy + ∂Qy

∂y
dy

)
dx dy +

(
My + ∂My

∂y
dy

)
dx +

(
Mxy + ∂Mxy

∂x
dx

)
dy

− My dx − Mxy dy + f dx dy
dy

2

= inertia moment due to rotation φy = ρIx dx dy
∂2φy

∂t2
= ρh3

12

∂2φy

∂t2
dx dy

or

−Qy + ∂My

∂y
+ ∂Mxy

∂x
= ρh3

12

∂2φy

∂t2
(14.276)

where the terms involving products of small quantities are neglected, and (ρIx dx dy) is
the mass moment of inertia of the element about the x axis, with Ix = 1

12 (1)h3 = h3/12
denoting the area moment of inertia per unit width of the plate about the x axis.
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3. Moment equilibrium about the y axis:

−
(

Qx + ∂Qx

∂x
dx

)
dy dx +

(
Mx + ∂Mx

∂x
dx

)
dy +

(
Myx + ∂Myx

∂y
dy

)
dx

− Mx dy − Myx dx + f dx dy
dx

2

= inertia moment due to rotation φx = ρIy dx dy
∂2φx

∂t2
= ρh3

12

∂2φx

∂t2
dx dy

or

−Qx + ∂Mx

∂x
+ ∂Mxy

∂y
= ρh3

12

∂2φx

∂t2
(14.277)

by neglecting products of small quantities, and (ρIy dx dy) is the mass moment of
inertia of the element about the y axis, with Iy = 1

12 (1)h3 = h3/12 representing the
area moment of inertia of the plate per unit width about the y axis.

Substituting Eqs. (14.273) into Eqs. (14.275) to (14.277) yields the final equations
of motion in terms of the displacement unknowns w,φx , and φy as

k2Gh

(
∇2w + ∂φx

∂x
+ ∂φy

∂y

)
+ f = ρh

∂2w

∂t2

(14.278)

D

2

[
(1 − ν)∇2φx + (1 + ν)

∂

∂x

(
∂φx

∂x
+ ∂φy

∂y

)]
− k2Gh

(
φx + ∂w

∂x

)
= ρh3

12

∂2φx

∂t2

(14.279)

D

2

[
(1 − ν)∇2φy + (1 + ν)

∂

∂y

(
∂φx

∂x
+ ∂φy

∂y

)]
− k2Gh

(
φy + ∂w

∂y

)
= ρh3

12

∂2φy

∂t2

(14.280)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 is the Laplacian operator. Equations (14.278) to (14.280)
can be rewritten as

k2Gh(∇2w + �) + f = ρh
∂2w

∂t2
(14.281)

D

2

[
(1 − ν)∇2φx + (1 + ν)

∂�

∂x

]
− k2Gh

(
φx + ∂w

∂x

)
= ρh3

12

∂2φx

∂t2
(14.282)

D

2

[
(1 − ν)∇2φy + (1 + ν)

∂�

∂y

]
− k2Gh

(
φy + ∂w

∂y

)
= ρh3

12

∂2φy

∂t2
(14.283)

where

� = ∂φx

∂x
+ ∂φy

∂y
(14.284)
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We can eliminate φx and φy from Eqs. (14.282) and (14.283) by first differentiating
them with respect to x and y, respectively, and then adding them to obtain

D∇2� − k2Gh� − k2Gh∇2w = ρh3

12

∂2�

∂t2
(14.285)

By eliminating � from Eqs. (14.281) and (14.285), we obtain a single equation in
terms of w as (

∇2 − ρ

k2G

∂2

∂t2

)(
D∇2 − ρh3

12

∂2

∂t2

)
w + ρh

∂2w

∂t2

=
(

1 − D

k2Gh
∇2 + ρh2

12k2G

∂2

∂t2

)
f (14.286)

If shear deformation only is considered, the right-hand-side terms in Eqs. (14.279)
and (14.280) will be zero, and Eq. (14.286) reduces to

D

(
∇2 − ρ

k2G

∂2

∂t2

)
∇2w + ρh

∂2w

∂t2
=
(

1 − D

k2Gh
∇2
)

f (14.287)

If rotary inertia only is to be considered, terms involving k2 should be neglected in
Eqs. (14.278) to (14.280), in which case Eq. (14.286) becomes(

D∇2 − ρh3

12

∂2

∂t2

)
∇2w + ρh

∂2w

∂t2
= f (14.288)

If both the effects of rotary inertia and shear deformation are neglected, terms involving
k2 and ρh3/12 will be zero in Eqs. (14.278) to (14.280), and φx and φy will be replaced
by −∂w/∂x and −∂w/∂y, respectively, and Eq. (14.286) reduces to the classical thin
plate equation:

D∇4w + ρh
∂2w

∂t2
= f (14.289)

For a plate with constant thickness, the equation of motion, Eq. (14.286), can be
expressed as

D∇4w − ρD

k2G

∂2

∂t2
(∇2w) − ρh3

12
∇2 ∂2w

∂t2
+ ρ2h3

12k2G

∂4w

∂t4
+ ρh

∂2w

∂t2

= f − D

k2Gh
∇2f + ρh2

12k2G

∂2f

∂t2
(14.290)

For free vibration, Eq. (14.290) becomes

∇4w − ρh

k2Gh

∂2

∂t2
(∇2w) − ρh3

12D
∇2 ∂2w

∂t2
+ ρh

D

ρh3

12k2Gh

∂4w

∂t4
+ ρh

D

∂2w

∂t2
= 0

(14.291)

For harmonic motion at frequency ω,

w(x,y,t) = W(x,y)eiωt (14.292)

and Eq. (14.291) becomes

∇4W +
(

ρh

k2Gh
+ ρh3

12D

)
ω2∇2W + ρh

D

(
ρh3ω2

12k2Gh
− 1

)
ω2W = 0 (14.293)
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14.9.2 Variational Approach

To derive the equations of motion and the associated boundary conditions using the
variational approach, we first note that the displacement components are given by
Eq. (14.269). The strain–displacement relations are given by Eq. (14.271). The force
and moment resultants are given by Eq. (14.273). The strain energy due to the defor-
mation of the Mindlin plate is given by

π = 1

2

∫∫∫
V


σ T 
ε dV (14.294)

where


σ =




σxx

σyy

σxy

σyz

σzx




and 
ε =




εxx

εyy

εxy

εyz

εzx




(14.295)

The stress–strain relations of Eq. (14.272) can be expressed in matrix form as


σ = [B]
ε (14.296)

where (by using the factor k2 for σyz and σzx)

[B] =




E

1−ν2
νE

1−ν2 0 0 0
νE

1−ν2
E

1−ν2 0 0 0
0 0 G 0 0
0 0 0 k2G 0
0 0 0 0 k2G


 (14.297)

Using Eq. (14.296), Eq. (14.294) can be written as

π = 1

2

∫∫∫
V


εT[B]
ε dV (14.298)

Substitution of Eq. (14.297) into Eq. (14.298) leads to

π = 1

2

∫∫∫
V

(
E

1 − ν2
ε2
xx + νE

1 − ν2
ε2
yy + Gε2

xy + k2Gε2
yz + k2Gε2

zx

)
dV (14.299)

Using Eqs. (14.271), Eq. (14.299) can be rewritten as

π = 1

2

h/2∫
z=−h/2

dz

∫∫
A

[
E

1 − ν
z2
(

∂φx

∂x

)2

+ E

1 − ν2
z2
(

∂φy

∂y

)2

+ 2ν
E

1 − ν2

∂φx

∂x

∂φy

∂y

+Gz2
(

∂φx

∂y
+ ∂φy

∂x

)2

+ k2G

(
φy + ∂w

∂y

)2

+ k2G

(
φx + ∂w

∂x

)2
]

dA (14.300)
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where dA = dx dy denotes the area of a differential element of the plate. By car-
rying out integration with respect to z and using Eq. (14.274), Eq. (14.300) can be
expressed as

π = 1

2

∫∫
A

{
D

[(
∂φx

∂x
+ ∂φy

∂y

)2

− 2(1 − ν)

〈
∂φx

∂x

∂φy

∂y
− 1

4

(
∂φx

∂y
+ ∂φy

∂x

)2
〉]

+k2Gh

〈(
φx + ∂w

∂x

)2

+
(

φy + ∂w

∂y

)2
〉}

dA (14.301)

The kinetic energy T of the plate can be expressed as

T = 1

2

∫∫∫
V

ρ

[(
∂u

∂t

)2

+
(

∂v

∂t

)2

+
(

∂w

∂t

)2
]

dV (14.302)

where ρ is the mass density of the plate and t is the time. Substituting Eq. (14.269)
into Eq. (14.302), we obtain

T = ρh

2

∫∫
A

{(
∂w

∂t

)2

+ h2

12

[(
∂φx

∂t

)2

+
(

∂φy

∂t

)2
]}

dA (14.303)

The work done by the distributed transverse load f (x,y,t) (load per unit area of the
middle surfaces of the plate) can be expressed as

W =
∫∫
A

wf dA (14.304)

The equations of motion can be derived from Hamilton’s principle:

δ

t2∫
t1

(T − π + W) d t = 0 (14.305)

Substituting Eqs. (14.301), (14.303), and (14.304) into Eq. (14.305), we obtain

t2∫
t1

∫∫
A

{
−D

[
∂φx

∂x

∂(δφx)

∂x
+ ∂φy

∂y

∂(δφy)

∂y
+ ν

∂φx

∂x

∂(δφy)

∂y
+ ν

∂φy

∂y

∂(δφx)

∂x

]

−D(1 − ν)

2

(
∂φx

∂y
+∂φy

∂x

)[
∂(δφx)

∂y
+ ∂(δφy)

∂x

]
−k2Gh

[(
φx + ∂w

∂x

)(
δφx + ∂(δw)

∂x

)

+
(

φy + ∂w

∂y

)(
δφy + ∂(δw)

∂y

)]
+ ρh

∂w

∂t

∂(δw)

∂t
+ ρh3

12

[
∂φx

∂t

∂(δφx)

∂t

+∂φy

∂t

∂(δφy)

∂t

]
+ f δw

}
dA d t = 0 (14.306)
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By performing integration by parts, Eq. (14.306) yields

∫ t2

t1

∫∫
A

{[
D

(
∂2φx

∂x2
+ ν

∂2φy

∂x ∂y

)
+ D(1 − ν)

2

(
∂2φx

∂y2
+ ∂2φy

∂x ∂y

)

−k2Gh

(
φx + ∂w

∂x

)
− ρh3

12

∂2φx

∂t2

]
δφx

+
[
D

(
∂2φy

∂y2
+ ν

∂2φx

∂x ∂y

)
+ D(1 − ν)

2

(
∂2φy

∂x2
+ ∂2φx

∂x ∂y

)

− k2Gh

(
φy + ∂w

∂y

)
− ρh3

12

∂2φy

∂t2

]
δφy

+
[
k2Gh

(
∂φx

∂x
+ ∂2w

∂x2
+ ∂φy

∂y
+ ∂2w

∂y2

)
− ρh

∂2w

∂t2

]
δw + f δw

}
dA d t

−
∫ t2

t1

∮
C

{[
D

(
∂φx

∂x
dy + ν

∂φy

∂y
dy

)
− D(1 − ν)

2

(
∂φx

∂y
dx + ∂φy

∂x
dx

)]
δφx

+
[
−D

(
∂φy

∂y
dx + ν

∂φx

∂x
dx

)
+ D(1 − ν)

2

(
∂φx

∂y
dy + ∂φy

∂x
dy

)]
δφy

+k2Gh

[
φx dy + ∂w

∂x
dy − φy dx − ∂w

∂y
dx

]
δw

}
d t = 0 (14.307)

where C denotes the boundary of the plate.

Equations of Motion By equating the coefficients of the various terms involving δφx ,
δφy , and δw under the area integral in Eq. (14.307) to zero, we obtain

D

(
∂2φx

∂x2
+ν

∂2φy

∂x ∂y

)
+D(1 − ν)

2

(
∂2φx

∂y2
+ ∂2φy

∂x ∂y

)
− k2Gh

(
φx + ∂w

∂x

)
−ρh3

12

∂2φx

∂t2
= 0

(14.308)

D

(
∂2φy

∂y2
+ν

∂2φx

∂x ∂y

)
+D(1 − ν)

2

(
∂2φy

∂x2
+ ∂2φx

∂x ∂y

)
−k2Gh

(
φy + ∂w

∂y

)
−ρh3

12

∂2φy

∂t2
= 0

(14.309)

k2Gh

(
∂φx

∂x
+ ∂2w

∂x2
+ ∂φy

∂y
+ ∂2w

∂y2

)
+ f − ρh

∂2w

∂t2
= 0

(14.310)

Equations (14.308)–(14.310) can be rewritten as

D(1 − ν)

2
∇2φx + D(1 + ν)

2

∂

∂x

(
∂φx

∂x
+ ∂φy

∂y

)
− k2Gh

(
φx + ∂w

∂x

)
= ρh3

12

∂2φx

∂t2

(14.311)
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D(1 − ν)

2
∇2φy + D(1 + ν)

2

∂

∂y

(
∂φx

∂x
+ ∂φy

∂y

)
− k2Gh

(
φy + ∂w

∂y

)
= ρh3

12

∂2φy

∂t2

(14.312)

k2Gh

(
∇2w + ∂φx

∂x
+ ∂φy

∂y

)
+ f = ρh

∂2w

∂t2

(14.313)

Equations (14.311)–(14.313) denote the equations of motion of the Mindlin plate and
can be seen to be same as Eqs. (14.281)–(14.283), derived using the dynamic equilib-
rium approach.

It can be seen that Eqs. (14.311)–(14.313) are coupled in the variables w(x,y,t),
φx(x,y,t), and φy(x,y,t). The explicit functions φx and φy can be eliminated from
Eqs. (14.311)–(14.313), and a single equation of motion in terms of w can be derived
as indicated earlier [see Eqs. (14.281)–(14.286)]:(

∇2− ρ

k2G

∂2

∂t2

)(
D∇2− ρh3

12

∂2

∂t2

)
w+ρh

∂2w

∂t2
=
(

1 − D

k2Gh
∇2 + ρh2

12k2G

∂2

∂t2

)
f

(14.314)

Note that in the equations above, the terms containing k2G denote the effect of shear
deformation, and the terms containing (ρh3/12)(∂2/∂t2) represent the effect of rotary
inertia.

General Boundary Conditions The boundary conditions can be identified by setting
the line integral in Eq. (14.307) equal to zero:∮

C

[
D

(
∂φx

∂x
+ ν

∂φy

∂y

)
δφx dy − D

(
∂φy

∂y
+ ν

∂φx

∂x

)
δφy dx

− D(1 − ν)

2

(
∂φx

∂y
+ ∂φy

∂x

)
δφx dx

+ D(1 − ν)

2

(
∂φx

∂y
+ ∂φy

∂x

)
δφy dy + k2Gh

(
φx + ∂w

∂x

)
δw dy

−k2Gh

(
φy + ∂w

∂y

)
δw dx

]
= 0 (14.315)

Using the expressions for the force and moment resultants given in Eq. (14.273),
Eq. (14.315) can be expressed as∮
C

(Mxδφx dy − Myδφy dx − Mxyδφx dx + Mxyδφy dy + Qxδw dy − Qyδw dx) = 0

(14.316)

Boundary Conditions on an Inclined Boundary Consider an arbitrary boundary of
the plate whose normal and tangential directions are denoted n and s, respectively,
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Figure 14.12 (a) coordinate systems on a boundary; (b) bending rotations at a boundary; (c)
shear force and moment resultants on an inclined boundary.

as shown in Fig. 14.12(a). The (x,y) coordinates and the (n,s) coordinates on the
boundary are related as

dx = − sin θ ds (14.317)

dy = cos θ ds (14.318)

If φn denotes the rotation of the normal to the midplane in the plane nz (normal
plane) and φs the rotation of the normal to the midplane in the plane sz (tangent plane),
the bending rotations φx and φy can be related to φn and φs as shown in Fig. 14.12(b):

φx = φn cos θ − φs sin θ (14.319)

φy = φn sin θ + φs cos θ (14.320)
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The bending moment resultant normal to the boundary, Mn, and the twisting moment
resultant at the boundary, Mns , can be expressed in terms of Mx , My , and Mxy as [see
Fig. 14.12(c)]

Mn = Mx cos2 θ + My sin2 θ + 2Mxy cos θ sin θ (14.321)

Mns = (My − Mx) cos θ sin θ + Mxy(cos2 θ − sin2 θ) (14.322)

Similarly, the shear force resultant acting on the boundary in the z direction, Qn, can
be expressed in terms of Qx and Qy as

Qn = Qx cos θ + Qy sin θ (14.323)

Using Eqs. (14.317) and (14.318), Eq. (14.316) can be expressed as∮
C

(Mx cos θδφx + My sin θδφy + Mxy sin θδφx + Mxy cos θδφy

+ Qx cos θδw + Qy sin θδw) ds = 0 (14.324)

Substitution of Eqs. (14.319) and (14.320) into Eq. (14.324) results in∮
C

{(Mx cos2 θ + My sin2 θ + 2Mxy sin θ cos θ)δφn

[(−Mx cos θ sin θ + My cos θ sin θ) + Mxy(cos2 θ − sin2 θ)]δφs

+ (Qx cos θ + Qy sin θ)δw} ds = 0 (14.325)

In view of Eqs. (14.321), (14.322), and (14.323), Eq. (14.325) can be written as∮
C

(Mnδφn + Mnsδφs + Qnδw) ds = 0 (14.326)

Equation (14.326) will be satisfied when each of the terms under the integral is equal to
zero. This implies that the following conditions are to be satisfied along the boundary
of the plate:

Mn = 0 (14.327)

or

δφn = 0 (φn is specified) (14.328)

Mns = 0 (14.329)

or

δφs = 0 (φs is specified) (14.330)

Qn = 0 (14.331)

or

δw = 0 (w is specified) (14.332)

Thus, three boundary conditions are to be specified along a boundary or edge of the
plate in Mindlin theory. The boundary conditions corresponding to some common
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support conditions are as follows:

1. Fixed or clamped boundary:

φn = 0, φs = 0, w = 0 (14.333)

2. Simply supported or hinged boundary:

Mn = 0, φs = 0, w = 0 (14.334)

The support conditions of Eq. (14.334) are sometimes called hard-type simple support
conditions. In some cases, the following conditions, known as soft-type simple support
conditions, are used [7]:

Mn = 0, Mns = 0, w = 0 (14.335)

3. Free boundary:

Mn = 0, Mns = 0, Qn = 0 (14.336)

14.9.3 Free Vibration Solution

For free vibration, f (x,y,t) is set equal to zero and the variables φx(x,y,t), φy(x,y,t),
and w(x,y,t) are assumed to be harmonic as [3]

φx(x,y,t) = �x(x,y)eiωt

φy(x,y,t) = �y(x,y)eiωt (14.337)

w(x,y,t) = W(x,y)eiωt

so that Eqs. (14.311)–(14.313) become

D

2

[
(1 − ν)∇2�x + (1 + ν)

∂

∂x
�̃

]
− k2Gh

(
�x + ∂W

∂x

)
+ ρh3ω2

12
�x = 0 (14.338)

D

2

[
(1 − ν)∇2�y + (1 + ν)

∂

∂y
�̃

]
− k2Gh

(
�y + ∂W

∂y

)
+ ρh3ω2

12
�y = 0 (14.339)

k2Gh(∇2W + �̃) + ρhω2W = 0 (14.340)

where

�̃ = ∂�x

∂x
+ ∂�y

∂y
(14.341)

To find the solution of Eqs. (14.338)–(14.340), �x(x,y) and �y(x,y) are expressed in
terms of two potentials ψ(x,y) and H(x,y) such that

�x = ∂ψ

∂x
+ ∂H

∂y
(14.342)

�y = ∂ψ

∂y
− ∂H

∂x
(14.343)
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where ψ(x,y) and H(x,y) can be shown to correspond to the dilatational and
shear components of motion of the plate, respectively. By substituting Eqs. (14.342)
and (14.343) into Eqs. (14.338)–(14.340), we obtain

∂

∂x

[
∇2ψ +

(
Rk4

b − 1

S

)
ψ − W

S

]
+ 1 − ν

2

∂

∂y
(∇2 + δ2

3)H = 0 (14.344)

∂

∂y

[
∇2ψ +

(
Rk4

b − 1

S

)
ψ − W

S

]
− 1 − ν

2

∂

∂x
(∇2 + δ2

3)H = 0 (14.345)

∇2(ψ + W) + Sk4
bW = 0 (14.346)

where

R = I

h
= h2

12
(14.347)

represents the effect of rotary inertia and is equal to the square of the radius of gyration
of the cross-sectional area of a unit width of plate,

S = D

k2Gh
(14.348)

denotes the effect of shear deformation,

k4
b = ρhω2

D
(14.349)

indicates the frequency parameter in classical plate theory, and

δ2
3 = 2(Rk4

b − 1/S)

1 − ν
(14.350)

To uncouple Eqs. (14.344)–(14.346), first differentiate Eqs. (14.344) and (14.345) with
respect to x and y, respectively, and add the resulting equations to obtain

∇2
[
∇2ψ +

(
Rk2

b − 1

S

)
ψ − W

S

]
= 0 (14.351)

Next differentiate Eqs. (14.344) and (14.345) with respect to y and x, respectively, and
subtract the resulting equations to obtain

∇2(∇2 + δ2
3)H = 0 (14.352)

Equation (14.346) gives

∇2ψ = −∇2W − Sk4
bW (14.353)

By substituting Eq. (14.353) into Eq. (14.351), the resulting equation can be
expressed as

(∇2 + δ2
1)(∇2 + δ2

2)W = 0 (14.354)

where

δ2
1, δ

2
2 = 1

2
k4
b

[
R + S ±

√
(R − S)2 + 4

k4
b

]
(14.355)
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Thus, the solution of Eq. (14.354) is given by

W = W1 + W2 (14.356)

where Wj satisfies the equation

(∇2 + δ2
j )Wj = 0, j = 1, 2 (14.357)

It can be verified that Eqs. (14.346) and (14.351) are satisfied by

ψ = (µ − 1)W (14.358)

where µ is a constant. Substitution of Eq. (14.358) into Eqs. (14.346) and (14.351)
yields two values for µ as

µ1,2 = δ2
2,1

Rk4
b − 1/S

(14.359)

Using Eqs. (14.356) and (14.358), the terms in brackets on the left-hand sides of
Eqs. (14.344) and (14.345) can be seen to be zero, so that the equation governing
H becomes [from Eqs. (14.344), (14.345), and (14.352)]

(∇2 + δ2
3)H = 0 (14.360)

Thus, the solution of Eqs. (14.338)– (14.340) can be written as

�x = (µ1 − 1)
∂W1

∂x
+ (µ2 − 1)

∂W2

∂x
+ ∂H

∂y
(14.361)

�y = (µ1 − 1)
∂W1

∂y
+ (µ2 − 1)

∂W2

∂y
− ∂H

∂x
(14.362)

W = W1 + W2 (14.363)

where W1, W2, and H are governed by Eqs. (14.357) and (14.360).

14.9.4 Plate Simply Supported on All Four Edges

Let the origin of the coordinate system be located at the center of the plate as shown
in Fig. 14.13 so that the boundary conditions can be stated as [20]

W = Mx = �y = 0 at x = ±a

2
(14.364)

W = My = �x = 0 at y = ±b

2
(14.365)

The solutions of Eqs. (14.357) and (14.360) are assumed as

W1(x,y) = C1 sin α1x sin β1y (14.366)

W2(x,y) = C2 sin α2x sin β2y (14.367)

H(x,y) = C3 cos α3x cos β3y (14.368)

with the conditions

α2
i + β2

i = δ2
i , i = 1, 2, 3 (14.369)
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0b

y

x

a

2
a

2
b

Figure 14.13 Rectangular plate simply supported on all edges.

By substituting Eqs. (14.366)–(14.368) into (14.361)–(14.363), we obtain

�x = C1(µ1 − 1)α1 cos α1x sin β1y + C2(µ2 − 1)α2 cos α2x sin β2y

− C3β3 cos α3x sin β3y (14.370)

�y = C1(µ1 − 1)β1 sin α1x cos β1y + C2(µ2 − 1)β2 sin α2x cos β2y

+ C3α3 sin α3x cos β3y (14.371)

W = C1 sin α1x sin β1y + C2 sin α2x sin β2y (14.372)

Using Eqs. (14.370) and (14.371), the bending moments Mx and My [see Eqs. (14.273)]
can be expressed as

Mx = D[−C1(µ1 − 1)(α2
1 + νβ2

1 ) sin α1x sin β1y

− C2(µ2 − 1)(α2
2 + νβ2

2 ) sin α2x sin β2y+C3α3β3(1 − ν) sin α3x sin β3y]
(14.373)

My = D[−C1(µ1 − 1)(β2
1 + να2

1) sin α1x sin β1y

− C2(µ2 − 1)(β2
2 + να2

2) sin α2x sin β2y − C3α3β3(1 − ν) sin α3x sin β3y]
(14.374)

In view of Eqs. (14.370)–(14.374), the boundary conditions of Eqs. (14.364) and
(14.365) yield

αj = rjπ

2a
, j = 1, 2, 3 (14.375)

βj = sjπ

2b
, j = 1, 2, 3 (14.376)

where rj and sj are even integers. Thus, Eqs. (14.366) and (14.367) denote modes
or deflections odd in both x and y. The function H does not represent any mode or
deflection but produces rotations with the same type of symmetry obtained from W1

and W2. Hence, all the modes or solutions given by Eqs. (14.366)–(14.368) will be
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odd in both x and y. If we want the modes even in x, we need to interchange sin αjx

and cos αjx in all the three equations (14.366)–(14.368) and rj are to be taken as odd
integers. Similarly, for modes even in y, we need to interchange the terms sin βjy and
cos βjy, with sj taken as odd integers.

By substituting Eqs. (14.375) and (14.376) into Eqs. (14.369) and using the defi-
nitions of δj , j = 1, 2, 3 [Eqs. (14.355) and (14.350)], we obtain

(ωj

ω

)2 = 1

2

{
1 + 2

1 − ν

[
1 + k2(1 − ν)

2

]
ψ2

j + (−1)j�j

}
, j = 1, 2

(ω3

ω

)2 = 1 + ψ2
3 (14.377)

where

ψ2
j = h2

π2
(α2

j + β2
j ), j = 1, 2, 3 (14.378)

�j =
{[

1 + 2

1 − ν

(
1 + k2(1 − ν)

2

)
ψ2

j

]2

− 8k2

1 − ν
ψ4

j

}1/2

, j = 1, 2, 3

(14.379)

For any specific ratios a/b and a/h and the mode number j , the three frequencies
ωj , j = 1, 2, 3, satisfy the inequalities ω1 < ω3 < ω2, with ω2 and ω3 being much
larger than ω1 except for very thick plates. The mode corresponding to ω1 is associated
with W1 and is most closely related to the one given by the classical plate theory. The
mode associated with ω2 corresponds to W2 and denotes the thickness shear deformation
mode. The mode shape associated with ω3 contains no transverse deflection except for
two components of rotation which are related to one another so as to denote twist about
an axis normal to the plate. The types of modes or deflections generated by W1, W2,
and H are called flexural, thickness–shear, and thickness–twist modes, respectively.
The mode shapes corresponding to the three frequency ratios given by Eq. (14.377)
are shown in Fig. 14.14.

14.9.5 Circular Plates

Equations of Motion Considering the dynamic equilibrium of an infinitesimal ele-
ment shown in Fig. 14.6, the equations of motion of a circular plate, can be derived in
terms of the force and moment resultants as

∂Mr

∂r
+ 1

r

∂Mrθ

∂θ
+ Mr − Mθ

r
− Qr = ρh3

12

∂2φr

∂t2
(14.380)

∂Mr

∂r
+ 1

r

∂Mθ

∂θ
+ 2

r
Mrθ − Qθ = ρh3

12

∂2φθ

∂t2
(14.381)

∂Qr

∂r
+ 1

r

∂Qθ

∂θ
+ Qr

r
= ρh

∂2w

∂t2
(14.382)



516 Transverse Vibration of Plates
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h
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Figure 14.14 Modes of a rectangular plate: (a) flexural mode; (b) thickness–shear mode; (c)
thickness–twist mode. (From Ref. 20; reprinted with permission from the publisher.)

where the displacement components have been assumed to be of the form

u(r, θ, t) = zφr(r, θ, t) (14.383)

v(r, θ, t) = zφθ (r, θ, t) (14.384)

w(r, θ, t) = w(r, θ, t) (14.385)
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The moment and force resultants can be expressed in terms of φr , φθ and w as

Mr = D

[
∂φr

∂r
+ ν

r

(
φr + ∂φθ

∂θ

)]
(14.386)

Mθ = D

[
1

r

(
φr + ∂φθ

∂θ

)
+ ν

∂φr

∂r

]
(14.387)

Mrθ = D

2
(1 − ν

[
1

r

(
∂φr

∂θ
− φθ

)
+ ∂φθ

∂r

]
(14.388)

Qr = k2Gh

(
φr + ∂w

∂r

)
(14.389)

Qθ = k2Gh

(
φθ + 1

r

∂w

∂θ

)
(14.390)

The equations of motion, Eqs. (14.380)–(14.382), can be written as

D

2

[
(1 − ν)∇2φr + (1 + ν)

∂�

∂r

]
− k2Gh

(
φr + ∂w

∂r

)
= ρh3

12

∂2φr

∂t2
(14.391)

D

2

[
(1 − ν)∇2φθ + (1 + ν)

∂�

∂θ

]
− k2Gh

(
φθ + 1

r

∂w

∂θ

)
= ρh3

12

∂2φθ

∂t2
(14.392)

k2Gh(∇2w + �) = ρh
∂2w

∂t2
(14.393)

where

� = ∂φr

∂r
+ 1

r

∂φθ

∂θ
(14.394)

By assuming harmonic solution as

φr(r, θ, t) = �r(r, θ)eiωt (14.395)

φθ(r, θ, t) = �θ(r, θ)eiωt (14.396)

w(r, θ, t) = W(r, θ)eiωt (14.397)

Eqs. (14.391)–(14.393) can be expressed as

D

2

[
(1 − ν)∇2�r + (1 + ν)

∂�̃

∂r

]
− k2Gh

(
�r + ∂W

∂r

)
+ ρh3ω2

12
�r = 0

(14.398)

D

2

[
(1 − ν)∇2�θ + (1 + ν)

∂�̃

∂θ

]
− k2Gh

(
�θ + 1

r

∂W

∂θ

)
+ ρh3ω2

12
�θ = 0

(14.399)

k2Gh(∇2W + �̃) + ρhω2W = 0
(14.400)
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where

�̃ = ∂�r

∂r
+ 1

r

∂�θ

∂θ
(14.401)

Free Vibration Solution Using a procedure similar to that of a rectangular plate, the
solution of Eqs. (14.398)–(14.400) is expressed as

W(r, θ) = W1(r, θ) + W2(r, θ) (14.402)

�r(r, θ) = (µ1 − 1)
∂W1

∂r
+ (µ2 − 1)

∂W2

∂r
+ 1

r

∂H

∂θ
(14.403)

�θ(r, θ) = (µ1 − 1)
1

r

∂W1

∂θ
+ (µ2 − 1)

1

r

∂W2

∂θ
− ∂H

∂r
(14.404)

where W1, W2 and H are solutions of the equations

(∇2 + δ2
j )Wj = 0, j = 1, 2 (14.405)

(∇2 + δ2
3)H = 0 (14.406)

with

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
(14.407)

δ2
j , j = 1, 2, 3, given by Eqs. (14.355) and (14.350), and µ1 and µ2 by Eq. (14.359).

Note that if the effects of rotary inertia and shear deflection are neglected, Eqs. (14.405)
and (14.406) reduce to

(∇2 + δ2)W1 = 0 (14.408)

(∇2 − δ2)W2 = 0 (14.409)

where

δ2 = δ2
1

∣∣
R=S=0 = −δ2

2

∣∣
R=S=0 = k2

b =
(

ρhω2

D

)1/2

(14.410)

The solution of Eqs. (14.405) and (14.406) are expressed in product form as

Wj(r, θ) = Rj (r)�j (θ), j = 1, 2 (14.411)

H(r, θ) = R3(r)�3(θ) (14.412)

to obtain the following pairs of ordinary differential equations:

d2Rj(r)

dr2
+ 1

r

dRj (r)

dr
+
(

δ2
j − m2

r2

)
Rj(r) = 0, j = 1, 2, 3 (14.413)

d2�j(θ)

dθ2
+ m2�j(θ) = 0, j = 1, 2, 3 (14.414)
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where m2 is the separation constant. Noting that Eq. (14.413) is Bessel’s differential
equation, the solutions, Wj(r, θ) and H(r, θ), can be expressed as

Wj(r, θ) =
∞∑

m=0

Wjm(r, θ) =
∞∑

m=0

[A(m)
j Jm(δj r) + B

(m)
j Ym(δj r)] cos mθ, j = 1, 2

(14.415)

H(r, θ) =
∞∑

m=0

Hm(r, θ) =
∞∑

m=0

[A(m)
3 Jm(δ3r) + B

(m)
3 Ym(δ3r)] sin mθ (14.416)

where A
(m)
j and B

(m)
j , j = 1, 2, 3, are constants, Jm and Ym are Bessel functions of the

first and second kind, respectively, of order m, and m corresponds to the number of
nodal diameters.

In terms of the solutions given by Eqs. (14.415) and (14.416), the moments Mr

and Mrθ and the shear force Qr (for any particular value of m) can be expressed as

M(m)
r (r, θ) = D

[
2∑

i=1

A
(m)
i

{
(σi − 1)

[
J ′′

m(δir) + ν

r
J ′

m(δir) − νm2

r2
Jm(δir)

]}
cos mθ

+
2∑

i=1

B
(m)
i

{
(σi − 1)

[
Y ′′

m(δir) + ν

r
Y ′

m(δir) − νm2

r2
Ym(δir)

]}
cos mθ

+ A
(m)
3

{
(1 − ν)

[m
r

J ′
m(δ3r) − m

r2
Jm(δ3r)

]}
cos mθ

+B
(m)
3

{
(1 − ν)

[m
r

Y ′
m(δ3r) − m

r2
Ym(δ3r)

]}
cos mθ

]
(14.417)

M
(m)
rθ (r, θ) = D(1 − ν)

{
2∑

i=1

A
(m)
i

[
−m

r
J ′

m(δir) + m

r2
Jm(δir)

]
(σi − 1)

+
2∑

i=1

B
(m)
i

[
−m

r
Y ′

m(δir) + m

r2
Ym(δir)

]
(σi − 1)

+ A
(m)
3

[
−1

2
J ′′

m(δ3r) + 1

2r
J ′

m(δ3r) − m

2r2
Jm(δ3r)

]

+B
(m)
3

[
−1

2
Y ′′

m(δ3r) + 1

2r
Y ′

m(δ3r) − m2

2r2
Ym(δ3r)

]}
sin mθ (14.418)

Q(m)
r (r, θ) = k2Gh

{
2∑

i=1

[A(m)
i σ1J

′
m(δir) + B

(m)
i σiY

′
m(δir)]

+A
(m)
3

m

r
Jm(δ3r) + B

(m)
3

m

r
Ym(δ3r)

}
cos mθ (14.419)
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The transverse deflection of the plate can be expressed as

W(m)(r, θ) =
{

2∑
i=1

[A(m)
i Jm(δir) + B

(m)
i Ym(δir)]

}
cos mθ (14.420)

The boundary conditions can be stated as follows:

1. Clamped or fixed edge:

W = �r = �θ = 0 (14.421)

2. Simply supported edge (hard type):

W = �θ = Mr = 0 (14.422)

3. Simply supported edge (soft type):

W = Mr = Mrθ = 0 (14.423)

4. Free edge:

Mr = Mrθ = Qr = 0 (14.424)

14.9.6 Natural Frequencies of a Clamped Circular Plate

For a solid circular plate, the constants B
(m)
j , j = 1, 2, 3, are set equal to zero

in Eqs. (14.415) and (14.416) so as to avoid infinite displacements, slopes, and
bending moments at r = 0. The natural frequencies can be determined by substi-
tuting Eqs. (14.402)–(14.404), (14.415), and (14.416) into the appropriate equation
in Eqs. (14.421)–(14.424). If the plate is clamped at the outer boundary, r = a,
Eqs. (14.421) lead to the frequency equation in the form of a determinantal equation:

∣∣∣∣∣∣
C11 C12 C13

C21 C22 C23

C31 C32 C33

∣∣∣∣∣∣ = 0 (14.425)

where

C1j = (µj − 1)J ′
m(δj a), j = 1, 2

C2j = m(µj − 1)Jm(δj a), j = 1, 2
C3j = Jm(δja), j = 1, 2
C13 = m Jm(δ3a)

C23 = J ′
m(δ3a)

C33 = 0

(14.426)

Some of the natural frequencies given by Eq. (14.425) are shown in Table 14.3.
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Table 14.3 Natural Frequencies of a Clamped Circular Platea

h/a

Number
of nodal
diameters,
m

Number
of nodal
circles,
n 0.05 0.10 0.25

Thin
plate

theory

0 1 10.145 9.941 8.807 10.216
2 38.855 36.479 27.253 39.771

1 1 21.002 20.232 16.521 21.260
2 58.827 53.890 37.550 60.829

2 0 34.258 32.406 24.670 34.877
1 80.933 72.368 47.650 84.583

Source: Ref. [7].
aValues of a2

√
ρhω2/D, ν = 0.3, k2 = π2/12.

14.10 PLATE ON AN ELASTIC FOUNDATION

The problem of vibration of a plate on an elastic foundation finds application in several
practical situations, such as reinforced concrete pavements of highways and airport
runways and foundation slabs of heavy machines and buildings. By assuming a Winkler
foundation where the reaction force of the foundation is assumed to be proportional to
the deflection, we can express the reaction force, R(x,y,t), as (Fig. 14.15):

R = kw(x,y,t) (14.427)

where k, a constant known as the foundation modulus, can be interpreted as the reaction
force of the foundation per unit surface area of the plate per unit deflection of the
plate. Since the reaction force acts in a direction opposite to that of the external force
f (x,y,t), the equation of motion governing the vibration of a thin plate resting on an
elastic foundation can be expressed as

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4
= 1

D

[
f (x,y,t) − kw(x,y,t) − ρh

∂2w(x,y,t)

∂t2

]
(14.428)

For free vibration, f (x,y,t) = 0 and the solution is assumed to be harmonic:

w(x,y,t) = W(x,y) eiωt (14.429)

so that Eq. (14.428) becomes

∂4W

∂x4
+ 2

∂4W

∂x2∂y2
+ ∂4W

∂y4
= ρhω2 − k

D
W = 0 (14.430)

Defining

λ̃4 = ρhω2 − k

D
(14.431)

Eq. (14.430) can be expressed as

∇4W − λ̃4W = 0 (14.432)
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f(x,y,t)

h

dx

dy

f(x,y,t)

k

(a)

R = kw(x,y,t)

(b)

Figure 14.15 Plate on an elastic foundation.

Equation (14.432) can be seen to be similar to Eq. (14.91) and hence the solutions
obtained earlier (Section 14.4) are applicable to plates on elastic foundation provided
that λ̃ is used in place of λ. For example, for a plate on elastic foundation, simply
supported on all the edges, the natural frequencies of vibration and the natural modes
can be determined using Eqs. (14.105) and (14.107) as

λ̃2
mn =

√
ρhω2

mn − k

D
= π2

[(m

a

)2
+
(n

b

)2
]

(14.433)

or

ωmn =
[

Dπ4

ρ h

[ (m

a

)2
+
(n

b

)2
]2

+ k

ρ h

]1/2

(14.434)

and

wmn(x,y,t) = Wmn(x,y) (Amn cos ωmnt + Bmn sin ωmnt) (14.435)
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where

Wmn(x,y) = sin
mπx

a
sin

nπy

b
(14.436)

14.11 TRANSVERSE VIBRATION OF PLATES SUBJECTED TO
IN-PLANE LOADS

14.11.1 Equation of Motion

To derive the equation of motion governing the transverse vibration of a plate sub-
jected to in-plane loads (see Fig. 14.16) using the equilibrium approach, consider
an infinitesimal plate element of sides dx and dy. Let the element be subjected
to the time-independent (static) in-plane or membrane loads Nx(x,y), Ny(x,y), and
Nxy(x,y) = Nyx(x,y) per unit length as well as a time-dependent transverse load
f (x,y,t) per unit area. The in-plane loads acting on the various sides of the ele-
ment are shown in Fig. 14.17(a), and the transverse loads and moments acting on the
sides of the element are shown in Fig. 14.17(b). The transverse deformation, along
with the forces acting on the element, as seen in the xz and yz planes are shown in
Fig. 14.17(c) and (d), respectively. The force equilibrium equation in the x direction
gives [from Fig. 14.17(c)]

∑
Fx =

(
Nx + ∂Nx

∂x
dx

)
dy cos θ ′

1 +
(

Nyx + ∂Nyx

∂y
dy

)
dx cos

θ1 + θ ′
1

2

− Nx dy cos θ1 − Nyx dx cos
θ1 + θ ′

1

2
= 0 (14.437)

where

θ ′
1 = θ1 + dθ1 = θ1 + ∂θ1

∂x
dx

Nx

Nx

Ny
Ny

Nyx

Nxy

Nxy

Nyx

x

y

Figure 14.16 Rectangular plate subjected to in-plane loads.



524 Transverse Vibration of Plates

(a) (b)

dy
dx

h/2
h/2

Mx
My

Qy
Qx

Mx dx+
∂Mx

∂x

My dy+
∂My

∂y

Qx dx+
∂Qx

∂x

Qy dy+
∂Qy

∂y
Mxy dx+

∂Mxy

∂x

Myx dy+
∂Myx

∂y

Mxy Myx

xy
zNx

Ny

Nxy Nyx

dx
dy

f(x, y, t)

Nx dx+
∂Nx

∂x

Ny dy+
∂Ny

∂y

Nxy dx+
∂Nxy

∂x

Nyx dy+
∂Nyx

∂y

(c)

Nx

Nyx

dx
dy

q1

q′1

Nx dx+
∂Nx

∂x

Nyx dy+
∂Nyx

∂y

x

f

z

Qx

Nx
dx

q1

q′1

Qx dx+
∂Qx

∂x

Nx dx+
∂Nx

∂x

Nyx dy+
∂Nyx

∂y

Nxy

Ny

dy
dx

q2

q′2

Ny dy+
∂Ny

∂y
Nxy dx+

∂Nxy

∂x

z

f

y

Qy Ny

dy

q2

q′2

Qy dy+
∂Qy

∂y

Ny dy+
∂Ny

∂y

Nxy dx+
∂Nxy

∂x

(d)

Figure 14.17 (a) In-plane loads acting on the sides of an element of a plate; (b) moment and shear force resultants
acting on the sides on an element of the plate; (c) deformation in the xz plane; (d ) deformation in the yz plane.

Since the deflections are assumed to be small, θ1 will be small, so that

cos θ1 ≈ 1, cos θ ′
1 ≈ 1, cos

θ1 + θ ′
1

2
≈ 1 (14.438)

In view of Eq. (14.438) and the fact that Nyx = Nxy , Eq. (14.437) can be simplified as

∂Nx

∂x
+ ∂Ny

∂y
= 0 (14.439)



14.11 Transverse Vibration of Plates Subjected to In-Plane Loads 525

In a similar manner, the force equilibrium equation in the y direction yields [from
Fig. 14.17(d)]:

∑
Fy =

(
Ny + ∂Ny

∂y
dy

)
dx cos θ ′

2 +
(

Nxy + ∂Nxy

∂x
dx

)
dy cos

θ2 + θ ′
2

2

− Ny dx cos θ2 − Nxy dx cos
θ2 + θ ′

2

2
= 0 (14.440)

where

θ ′
2 = θ2 + dθ2 = θ2 + ∂θ2

∂y
dy

Since the deflections are assumed to be small, θ2 and θ ′
2 will also be small, so that

cos θ2≈1, cos θ ′
2≈1, cos

θ2 + θ ′
2

2
≈1 (14.441)

In view of Eq. (14.441), Eq. (14.440) reduces to

∂Ny

∂y
+ ∂Nxy

∂x
= 0 (14.442)

The force equilibrium equation in the z direction can be obtained by considering the
projections of all the in-plane and transverse forces as follows [from Fig. 14.17(b), (c),
and (d)]: ∑

Fz =
(

Nx + ∂Nx

∂x
dx

)
dy sin θ ′

1 − Nx dy sin θ1

+
(

Ny + ∂Ny

∂y
dy

)
dx sin θ ′

2 − Ny dx sin θ2

+
(

Nyx + ∂Nyx

∂y
dy

)
dx sin θ

′
1 − Nyx dx sin θ1

+
(

Nxy + ∂Nxy

∂x
dx

)
dy sin θ

′
2 − Nxy dy sin θ2

+
(

Qx + ∂Qx

∂x
dx

)
dy − Qx dy

+
(

Qy + ∂Qy

∂y
dy

)
dx + f dx dy = 0 (14.443)
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By using the assumption of small displacements and slopes, we can express

sin θ1 ≈ θ1 ≈ ∂w

∂x
, sin θ ′

1 ≈ θ ′
1 ≈ θ1 + ∂θ1

∂x
dx = ∂w

∂x
+ ∂2w

∂x2
dx

sin θ2 ≈ θ2 ≈ ∂w

∂y
, sin θ ′

2 ≈ θ ′
2 ≈ θ2 + ∂θ2

∂y
dy = ∂w

∂y
+ ∂2w

∂y2
dy

θ2 ≈ θ2 ≈ ∂w

∂y
, θ

′
2 ≈ θ2 + ∂θ2

∂x
dx ≈ ∂w

∂y
+ ∂2w

∂x ∂y
dx

θ1 ≈ θ1 ≈ ∂w

∂x
, θ

′
1 ≈ θ1 + ∂θ1

∂y
dy ≈ ∂w

∂x
+ ∂2w

∂x ∂y
dy

(14.444)

The first two terms in Eq. (14.443) can be rewritten as(
Nx + ∂Nx

∂x
dx

)
dy sin θ ′

1 − Nxdy sin θ1 ≈
(

Nx + ∂Nx

∂x
dx

)
dy

(
∂w

∂x
+ ∂2w

∂x2
dx

)

− Nx dy
∂w

∂x

≈ Nx

∂2w

∂x2
dx dy + ∂Nx

∂x

∂w

∂x
dx dy

(14.445)

by neglecting the higher-order term. Similarly, the next pair of terms in Eq. (14.443)
can be rewritten as(

Ny + ∂Ny

∂y
dy

)
dx sin θ ′

2 − Nydx sin θ2 ≈
(

Ny + ∂Ny

∂y
dy

)
dx

(
∂w

∂y
+ ∂2w

∂y2
dy

)

− Ny dx
∂w

∂y

≈ Ny

∂2w

∂y2
dx dy + ∂Ny

∂y

∂w

∂y
dx dy

(14.446)

The components of the in-plane shear forces Nxy and (∂Nxy/∂x) dx, acting on the x

edges (i.e ., edges whose normals lie parallel to the x axis) in the z direction can be
expressed as (

Nxy + ∂Nxy

∂x
dx

)
dy sin θ

′
2 − Nxy dy sin θ2 (14.447)

where the slopes of the deflection surface in the y direction on the x edges, θ2 and θ
′
2,

are given by Eq. (14.444):

θ2 ≈ θ2 ≈ ∂w

∂y
, θ

′
2 ≈ θ2 + ∂θ2

∂x
dx ≈ ∂w

∂y
+ ∂2w

∂x ∂y
dx
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Thus, Eq. (14.447) yields, by neglecting the higher-order term,

∂Nxy

∂x

∂w

∂y
dx dy + Nxy

∂2w

∂x ∂y
dx dy (14.448)

Similarly, the component of the in-plane shear forces Nyx and (∂Nyx/∂y) dy, acting
on the y edges (i.e ., edges whose normals lie parallel to the y axis) in the z direction
can be written as (

Nyx + ∂Nyx

∂y
dy

)
dx sin θ

′
1 − Nyx dx sin θ1 (14.449)

where the slopes of the deflection surface in the x direction on the y edges, θ1 and θ
′
1,

are given in Eq. (14.444):

θ1 ≈ θ1 ≈ ∂w

∂x
, θ

′
1 ≈ θ1 + ∂θ1

∂y
dy ≈ ∂w

∂x
+ ∂2w

∂x ∂y
dy

Thus, the expression (14.449) can be simplified as

Nyx

∂2w

∂x ∂y
dx dy + ∂Nyx

∂y

∂w

∂x
dx dy (14.450)

Thus, Eq. (14.443) can be expressed as

∂Qx

∂x
+ ∂Qy

∂y
+ f + Nx

∂2w

∂x2
+ Ny

∂2w

∂y2
+ 2Nxy

∂2w

∂x ∂y

+
(

∂Nx

∂x
+ ∂Nyx

∂y

)
∂w

∂x
+
(

∂Nxy

∂x
+ ∂Ny

∂y

)
∂w

∂y
= 0 (14.451)

The expressions within the parentheses of Eq.(14.451) are zero in view of Eqs. (14.439)
and (14.442) and hence Eq. (14.451) reduces to

∂Qx

∂x
+ ∂Qy

∂y
+ f + Nx

∂2w

∂x2
+ Ny

∂2w

∂y2
+ 2Nxy

∂2w

∂x ∂y
= 0 (14.452)

The in-plane forces do not contribute to any moment along the edges of the element.
As such, the moment equilibrium equations about x and y axes lead to Eqs. (3.29)
and (3.30). By substituting the shear force resultants in terms of the displacement w

[Eqs. (14.5) and (14.6)], Eq. (14.452) yields

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4
= 1

D

(
f + Nx

∂2w

∂x2
+ Ny

∂2w

∂y2
+ 2Nxy

∂2w

∂x ∂y

)
(14.453)

Finally, by adding the inertia force, the total external force is given by

f − ρh
∂2w

∂t2
(14.454)

and the equation of motion for the vibration of a plate subjected to combined in-plane
and transverse loads becomes

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4
= 1

D

(
f − ρh

∂2w

∂t2
+ Nx

∂2w

∂x2
+ Ny

∂2w

∂y2
+ 2Nxy

∂2w

∂x ∂y

)
(14.455)
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14.11.2 Free Vibration

For free vibration, f is set equal to zero in Eq. (14.455) and the solution of the resulting
equation is assumed to be harmonic with frequency ω:

w(x,y,t) = W(x,y)eiωt (14.456)

Substitution of Eq. (14.456) into Eq. (14.455) with f = 0 leads to

∂4W

∂x4
+ 2

∂4W

∂x2∂y2
+ ∂4W

∂y4
= 1

D

(
ρhω2W + Nx

∂2W

∂x2
+ Ny

∂2W

∂y2
+ 2Nxy

∂2W

∂x ∂y

)
(14.457)

Introducing

λ4 = ρhω2

D
(14.458)

Eq. (14.457) can be rewritten as

∇4W − λ4W = 1

D

(
Nx

∂2W

∂x2
+ Ny

∂2W

∂y2
+ 2Nxy

∂2W

∂x ∂y

)
(14.459)

14.11.3 Solution for a Simply Supported Plate

We consider the free vibration of a plate simply supported on all edges subjected to
the in-plane forces Nx = N1, Ny = N2 and Nxy = 0, where N1 and N2 are constants.
For this case, the equation of motion, Eq. (14.459), becomes

∇4W − λ4W = 1

D

(
N1

∂2W

∂x2
+ N2

∂2W

∂y2

)
(14.460)

As in the case of free vibration of a rectangular plate with no in-plane forces, the
following solution can be seen to satisfy the boundary conditions of the plate:

W(x, y) =
∞∑

m,n=1

Amn sin
mπx

a
sin

nπy

b
(14.461)

where Amn are constants. By substituting Eq. (14.461) into (14.460), we can obtain the
frequency equation as[(mπ

a

)2
+
(nπ

b

)2
]2

+ 1

D

[
N1

(mπ

a

)2
+ N2

(nπ

b

)2
]

= λ4 = ρhω2
mn

D
(14.462)

or

ω2
mn = D

ρh

[(mπ

a

)2
+
(nπ

b

)2
]2

+ 1

ρh

[
N1

(mπ

a

)2
+N2

(nπ

b

)2
]

, m, n = 1, 2, . . .

(14.463)

If N1 and N2 are compressive, Eq. (14.463) can be written as

ω2
mn = 1

ρh

{
D

[(mπ

a

)2
+
(nπ

b

)2
]2

−N1

(mπ

a

)2
−N2

(nπ

b

)2
}

, m, n = 1, 2, . . .

(14.464)
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It can be seen that ωmn reduces to zero as the magnitude of N1 and/or N2 increases.
For example, when N2 = 0, the value of N1 that makes ωmn = 0, called the critical or
buckling load, can be determined from Eq. (14.464) as

(N1)cri = −D
( a

mπ

)2
[(mπ

a

)2
+
(nπ

b

)2
]2

= −Dπ2

a2

[
m + n

( n

m

) (a

b

)2
]2

(14.465)

where the negative sign represents a compressive load. It is to be noted from Eq. (14.464)
that the fundamental natural frequency may not correspond to m = 1 and n = 1 but
depends on the values of N1, N2, and a/b. Using Eq. (14.465), the frequency given by
Eq. (14.463) can be expressed for N2 = 0 as

ω2
mn =

(mπ

a

)2
[N1 − (N1)cri] (14.466)

It can be shown that the fundamental frequency in this case always occurs when n = 1
and not necessarily when m = 1 [17]. By introducing

ω2
ref = 4Dπ4

ρha4
(14.467)

where ωref denotes the fundamental natural frequency of vibration of a square plate with
no in-plane loads, and the square of the frequency ratio, (ωmn/ωref)

2, can be written as

(
ωmn

ωref

)2

= (mπ/a)2[N1 − (N1)cri]

4Dπ4/ρha4
= (mπ/a)2(N1)cri{[N1/(N1)cri] − 1}

4Dπ4/ρha4
(14.468)

Using Eq. (14.465), Eq. (14.468) can be rewritten as

(
ωmn

ωref

)2

= −m4

4

[
1 +

(a

b

)2
]2 [

N1

(N1)cri
− 1

]
(14.469)

The variation of the square of the frequency ratio (ωmn/ωref)
2 with the load ratio

N1/(N1)cri is shown in Fig. 14.18 for different values of m and a/b (with n = 1).

14.12 VIBRATION OF PLATES WITH VARIABLE THICKNESS

14.12.1 Rectangular Plates

Let the thickness of the plate vary continuously with no abrupt changes so that it can
be represented as h = h(x, y). In this case the expressions given by Eqs. (14.1)–(14.3)
for the moment resultants can be used with sufficient accuracy. However, the shear
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Figure 14.18 Effect of the in-plane force N1 = Nx on the fundamental frequency of a rectan-
gular plate simply supported on all sides. (From Ref. [17].).

force resultants given by Eqs. (14.5) and (14.6) will be modified as

Qx = ∂

∂x

[
−D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)]
+ ∂

∂y

[
−(1 − ν)D

∂2w

∂x ∂y

]

= −D
∂

∂x

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
− ∂D

∂x

(
∂2w

∂x2
+ ν

∂2w

∂y2

)

− (1 − ν)D
∂3w

∂x ∂y2
− (1 − ν)

∂D

∂y

∂3w

∂x ∂y2
(14.470)

Qy = ∂

∂x

[
−D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)]
+ ∂

∂x

[
−(1 − ν)D

∂2w

∂x ∂y

]

= −D
∂

∂y

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
− ∂D

∂y

(
∂2w

∂y2
+ ν

∂2w

∂x2

)

− (1 − ν)D
∂3w

∂x2∂y
− (1 − ν)

∂D

∂x

∂2w

∂x ∂y
(14.471)

where

∂D

∂x
= ∂

∂x

[
Eh3(x,y)

12(1 − ν2)

]
= Eh2(x,y)

4(1 − ν2)

∂h(x,y)

∂x
(14.472)

∂D

∂y
= ∂

∂y

[
Eh3(x,y)

12(1 − ν2)

]
= Eh2(x,y)

4(1 − ν2)

∂h(x,y)

∂y
(14.473)
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Finally, by substituting Eqs. (14.470) and (14.471) into Eq. (14.7) yields the equation
of motion of a plate with variable thickness as

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4

)
+ 2

∂D

∂x

∂

∂x

(
∂2w

∂x2
+ ∂2w

∂y2

)
+ 2

∂D

∂y

∂

∂y

(
∂2w

∂x2
+ ∂2w

∂y2

)

+
(

∂2D

∂x2
+ ∂2D

∂y2

)(
∂2w

∂x2
+ ∂2w

∂y2

)

− (1 − ν)

(
∂2D

∂x2

∂2w

∂y2
− 2

∂2D

∂x ∂y

∂2w

∂x ∂y
+ ∂2D

∂y2

∂2w

∂y2

)
+ ρh(x,y)

∂2w

∂t2
= f (x,y,t)

(14.474)

Closed-form solutions of Eq. (14.474) are possible only for very simple forms of vari-
ation of thickness of the plate, h(x,y). In general, the solution of Eq. (14.474) can
be found using either approximate analytical methods such as the Rayleigh–Ritz and
Galerkin methods or numerical methods such as the finite element method.

14.12.2 Circular Plates

As in the case of rectangular plates, the variable thickness of the plate in the case of a
circular plate is denoted as h = h(r, θ) and the bending rigidity as

D = Eh3(r, θ)

12(1 − ν2)
(14.475)

By assuming the expressions of moment resultants given by Eqs. (14.184)–(14.186) to
be applicable with sufficient accuracy, the shear force resultants given by Eqs. (14.187a)
and (14.188a) will be modified by treating D as a function of r and θ . The resulting
expressions when substituted into Eq.(14.170) lead to the equation of motion for the
vibration of a circular plate of variable thickness. The resulting equation will be quite
lengthy and the closed-form solutions will be almost impossible for a general variation
of the thickness of the plate. However, if the plate is assumed to be axisymmetric, the
thickness of the plate will vary with r only, so that h = h(r). Although the equation of
motion can be derived as in the case of a rectangular plate with variable thickness, the
equilibrium approach is used directly in this section. For this, consider the free-body
diagram of an element of the circular plate of variable thickness, along with internal
force and moment resultants and external force, as shown in Fig. 14.19(a). Note that
the shear force resultant Qθ and the twisting moment resultant Mrθ are not indicated
in Fig. 14.19(a), as they will be zero, due to symmetry. The equilibrium of forces in
the z direction gives(

Qr + ∂Qr

∂r
dr

)
(r + dr) dθ − Qrr dθ + f r dθ dr = ρh

∂2w

∂t2
(14.476)

Noting that the component of Mθ in the tangential direction is given by [from
Fig. 14.19(b)]

Mθ sin
dθ

2
+ Mθ sin

dθ

2
≈ Mθ dθ (14.477)
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Figure 14.19 Circular plate element.

for small angles dθ , the moment equilibrium about the θ direction leads to(
Mr + ∂Mr

∂r
dr

)
(r + dr) dθ − Mrr dθ − Qrr dθ dr − Mθ dr dθ = 0 (14.478)

By dividing Eqs. (14.476) and (14.478) by dr dθ and neglecting small quantities of
higher order, we obtain

−1

r

∂

∂r
(rQr) + ρh

∂2w(r, t)

∂t2
= f (r, t) (14.479)

∂Mr

∂r
+ 1

r
(Mr − Mθ) − Qr = 0

or

Qr = ∂Mr

∂r
+ 1

r
(Mr − Mθ) (14.480)

For the axisymmetric vibration of plates with variable thickness, the bending moment
resultants of Eqs.(14.184) and (14.185) can be expressed as

Mr = −D(r)

(
∂2w

∂r2
+ ν

r

∂w

∂r

)
(14.481)

Mθ = −D(r)

(
1

r

∂w

∂r
+ ν

∂2w

∂r2

)
(14.482)

where

D(r) = Eh3(r)

12(1 − ν2)
(14.483)
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Substituting Eqs. (14.481) and (14.482) into Eq. (14.480), we obtain

Qr = −
[
D

∂3w

∂r3
+
(

∂D

∂r
+ D

r

)
∂2w

∂r2
+
(

ν

r

∂D

∂r
− D

r2

)
∂w

∂r

]
(14.484)

When Eq. (14.484) is substituted for Qr in Eq. (14.479), we can obtain the equation of
motion for the transverse axisymmetric vibration of a circular plate with axisymmetric
variation of thickness. An alternative but identical equation of motion can be derived
in a simple manner by first specifying Eq. (14.187b) for Qr for the axisymmetric
case as

Qr = −D(r)
∂

∂r

(
∂2w

∂r2
+ 1

r

∂w

∂r

)
≡ −D(r)

∂

∂r

[
1

r

∂

∂r

(
r
∂w

∂r

)]
(14.485)

and then substituting Eq. (14.485) into Eq. (14.479):

1

r

∂

∂r

{
rD(r)

∂

∂r

[
1

r

∂

∂r

(
r
∂w

∂r

)]}
+ ρh

∂2w

∂t2
= f (r, t) (14.486)

14.12.3 Free Vibration Solution

According to the procedure used by Conway et al. [12], the external force, f (r, t), is
set equal to zero and Eq. (14.486) is rewritten as

∂

∂r

{
rD(r)

∂

∂r

[
1

r

∂

∂r

(
r
∂w

∂r

)]}
= −ρhr

∂2w

∂t2
(14.487)

For a plate with thickness varying linearly with the radial distance, we have

h(r) = h0r (14.488)

where h0 is a constant. Equation (14.488) leads to

D(r) = D0r
3 (14.489)

where

D0 = Eh3
0

12(1 − ν2)
(14.490)

Using Eqs. (14.488)–(14.490), the equation of motion, Eq. (14.487), can be expressed
as

r4 ∂4w

∂r4
+ 8r3 ∂3w

∂r3
+ (11 + 3ν)r2 ∂2w

∂r2
− (2 − 6ν)

∂w

∂r
= −12(1 − ν2)ρ

Eh3
0

r2 ∂2w

∂t2

(14.491)

Assuming the value of ν as 1
3 , which is applicable to many materials, Eq. (14.491) can

be reduced to

∂2

∂r2

(
r4 ∂2w

∂r2

)
+ 32ρ

3Eh3
0

r2 ∂2w

∂t2
= 0 (14.492)
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Assuming a harmonic solution with frequency ω for free vibration as

w(r, t) = W(r)eiωt (14.493)

we can rewrite Eq. (14.492) as

d2

dz2

(
z4 d2W

dz2

)
= z2W (14.494)

where

z = pr (14.495)

with

p =
(

32ρω2

3Eh3
0

)1/2

(14.496)

The solution of Eq. (14.494) can be expressed as

W(z) = C1J2(2
√

z)

z
+ C2Y2(2

√
z)

z
+ C3I2(2

√
z)

z
+ C4K2(2

√
z)

z
(14.497)

where J2 and Y2 are Bessel functions of the second kind and I2 and K2 are modified
Bessel functions of the second kind. For specificity, we consider the axisymmetric plate
to be clamped at both the inner and outer radii as shown in Fig. 14.20, so that

W(z) = dW

dz
(z) = 0, z = z2 = pR2, z = z1 = pR1 (14.498)

Using the relations [13, 18]

d

dz
[z−m/2Jm(kz1/2)] = −1

2
kz−(m+1)/2Jm+1(kz1/2) (14.499)

d

dz
[z−m/2Ym(kz1/2)] = −1

2
kz−(m+1)/2Ym+1(kz1/2) (14.500)

d

dz
[z−m/2Im(kz1/2)] = −1

2
kz−(m+1)/2Im+1(kz1/2) (14.501)

d

dz
[z−m/2Km(kz1/2)] = −1

2
kz−(m+1)/2Km+1(kz1/2) (14.502)

r = R1

r = R2

h0R2

Figure 14.20 Linearly tapered axisymmetric plate.
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Table 14.4 Natural Frequencies of Vibration of Axisymmetric Annular Plates
Clamped at Both Edges

Value of the frequency parameter δ fora :
Mode R2/R1 = 2 R2/R1 = 3 R2/R1 = 4 R2/R1 = 10

1 16.5 8.04 5.84 3.32
2 45.2 21.9 15.8 8.71
3 88.4 42.6 30.6 16.7
4 146 70.3 50.4 27.3
5 211 104.8 75.0 40.5

Source: Ref. [12].
aδ = (ωR2/h0) (2ρ/3E)1/2 , ν = 1

3 .

application of the boundary conditions of Eq. (14.498) in Eq. (14.497) leads to the
frequency equation in the form of a determinantal equation:∣∣∣∣∣∣∣∣

J2(β) Y2(β) I2(β) K2(β)

J3(β) Y3(β) −I3(β) K3(β)

J2(α) Y2(α) I2(α) K2(α)

J3(α) Y3(α) −I3(α) K3(α)

∣∣∣∣∣∣∣∣
= 0 (14.503)

where

β2 = 4z2 = 4R2

(
32ρω2

3Eh3
0

)1/2

(14.504)

α2 = 4z1 = 4R1

(
32ρω2

3Eh3
0

)1/2

(14.505)

The natural frequencies of vibration given by Eq. (14.503) for different values of the
thickness ratio R2/R1 are given in Table 14.4.

14.13 RECENT CONTRIBUTIONS

Thin Plates A comprehensive review of the various aspects of plate vibration has been
given by Liessa [1]. A free vibration analysis of rectangular plates was presented by
Gorman [21]. Cote et al. [22] investigated the effects of shear deformation and rotary
inertia on the free vibration of a rotating annular plate. Kim and Dickinson studied the
flexural vibration of rectangular plates with point supports [23]. Vera et al. [24] dealt
with a theoretical analysis of the dynamic behavior of a system made up of a plate with
an elastically mounted two-degree-of-freedom system, a study based on an analytical
model with Lagrange multipliers.

Plates on Elastic Supports Gorman [25] conducted a comprehensive study of the
free vibration of rectangular plates resting on symmetrically distributed uniform elastic
edge supports. Xiang et al. [26] investigated the problem of free vibration of a mod-
erately thick rectangular plate with edges elastically restrained against transverse and
rotational displacements. The Ritz method, combined with a variational formulation
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and Mindlin plate theory was used. The applicability of the formulation was illustrated
using plates with different combinations of elastically restrained edges and classical
boundary conditions.

Plates with Variable Geometry and Properties Gupta and Sharma [27] analyzed the
forced motion of a plate of infinite length whose thickness, density, and elastic proper-
ties vary in steps along the finite breadth by the eigenfunction method. The numerical
results for transverse deflection computed for a clamped–clamped plate subjected to
constant or half-sine pulse load were plotted in graphs. Wang presented a power series
solution for the vibration of plates with generalized variable thickness [28]. These
solutions, represented by the recursive relations of the coefficients of the infinite power
series, can be applied to various boundary conditions to obtain the resonant frequency
spectra and mode shapes.

Plates on an Elastic Foundation Horvath described different subgrade models of
soil–structure interaction analysis [29]. In the Winkler model, the foundation was rep-
resented by continuous springs. In the Pasternak model, the shear deformation between
the spring elements was also considered by connecting the ends of the springs to the
plate with incompressible vertical elements that deform only by the transverse shear.
The exact relationship between the ith natural frequency of a simply supported polyg-
onal Mindlin plate resting on a Pasternak foundation and the corresponding natural
frequency of a Kirchhoff plate has been derived by Liew et al. [7]. The effect of
elastic foundation on the mode shapes in stability and vibration problems of simply
supported rectangular plates was considered by Raju and Rao [30]. The results of this
work are expected to be useful in the dynamic stability studies of plates resting on
elastic foundation.

Numerical solutions of the von Kármán partial differential equation governing
the nonlinear dynamic response of circular plates on Winkler, Pasternak, and nonlin-
ear Winkler elastic foundation and subjected to uniformly distributed step loading were
presented by Smaill [31]. The effect of the foundation parameters on the central deflec-
tion was presented for both clamped and simply supported immovable edge boundary
conditions. The nonlinear effects of Pasternak and nonlinear Winkler foundations on
the deflection of plates were also determined.

Plates with In-Plane Forces Devarakonda and Bert [32] considered the flexural
vibrations of rectangular plates subjected to sinusoidally distributed in-plane com-
pressive loading on two opposite edges. The procedure involves first finding a plane
elasticity solution for an in-plane problem satisfying all boundary conditions. Using this
solution, flexural vibration analysis was then carried out. The free lateral vibrations of
simply supported rectangular plates subject to both direct and shear in-plane forces
have been considered by Dickinson [33].

Thick Plates The best shear coefficient and validity of higher spectra in the Mindlin
plate theory has been discussed by Stephen [34]. The axisymmetric free vibrations of
moderately thick circular plates described by Mindlin theory were analyzed by the
differential quadrature method by Liew et al. [35]. The first 15 natural frequencies of
vibration were calculated for uniform circular plates with free, simply supported, and
clamped edges. A rigid point support at the plate center was also considered.
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Martincek [36] used a dynamic resonance method to estimate the elastic properties
of materials in a nondestructive manner. The method was based on measured frequen-
cies of natural vibration in test specimens in the shape of circular plates. Exact analytical
solutions for the free vibration of sectorial plates with simply supported radial edges
have been given by Huang et al. [37]. Wittrick [38] gave analytical, three-dimensional
elasticity solutions to some plate problems along with some observations on Mindlin
plate theory.
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PROBLEMS
14.1 Determine the fundamental frequency of a square
plate simply supported on all sides. Assume that the
side and thickness of the plate are 500 and 5 mm,
respectively, and the material is steel with E = 207 GPa,
ν = 0.291, and unit weight = 76.5 kN/m3.

14.2 Determine the first two natural frequencies of a
steel rectangular plate of sides 750 and 500 mm and
thickness 10 mm. Assume the values of E and ν as
207 GPa and 0.291, respectively, with a weight density
76.5 kN/m3 and the boundary conditions to be simply
supported on all sides.

14.3 Derive the frequency equation for the free vibra-
tions of a circular plate of radius a with a free edge.

14.4 Consider the static deflection of a simply sup-
ported rectangular plate subjected to a uniformly dis-
tributed load of magnitude f0. By assuming the solution
as

w(x,y) =
∞∑

m=1

∞∑
n=1

ηmnWmn(x,y)

whereWmn(x,y) are the normalized modes (eigenfunc-
tions), determine the values of the constants ηmn.

14.5 Derive the frequency equation for a uniform
annular plate of inner radius b and outer radius a when
both edges are clamped.

14.6 Consider the equation of motion of a simply
supported rectangular plate subjected to a harmonically
varying pressure distribution given by Eq. (E14.2.1).
Specialize the solution for the following cases: (a) static
pressure distribution; (b) when the forcing frequency is
very close to one of the natural frequencies of vibration
of the plate, � → ωmn; (c) static load, P , concentrated
at (x = x0, y = y0).

14.7 State the boundary conditions of a circular plate
of radius a supported by linear and torsional springs all
around the edge as shown in Fig. 14.21.

14.8 Derive the equation of motion of an infinite plate
resting on an elastic foundation that is subjected to a
constant force F that moves at a uniform speed c along
a straight line passing through the origin using Cartesian
coordinates. Assume the mass of the foundation to be
negligible.

14.9 Derive the equation of motion of a plate in polar
coordinates by considering the free body diagram of
an element shown in Fig. 14.6 using the equilibrium
approach.

kt

kl kl

kt
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r

a

Figure 14.21
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14.10 Skew plates find use in the swept wings of air-
planes and parallelogram slabs in buildings and bridges.
Derive the equation of motion for the vibration of the
skew plate shown in Fig. 14.22 using the transforma-
tion of coordinates. The oblique coordinates ξ and η are
related to x and y as

ξ = x − y tan θ, η = y

cos θ

Hint: Transform the Laplacian operator to the oblique
coordinate system and derive

∇2 = 1

cos2 θ

(
∂2

∂ξ2
− 2 sin θ

∂2

∂ξ∂η
+ ∂2

∂η2

)

14.11 Derive the frequency equation of an annular plate
with both the inner and outer edges simply supported.
Assume the inner and outer radii of the plate to be b and
a, respectively.

14.12 Find the response of a circular plate subjected to
a suddenly applied concentrated force F0 at r = 0 at
t = 0.

14.13 Derive the frequency equation of a rectangular
plate with SS–F–SS–F boundary conditions.

14.14 Derive the frequency equation of a circular plate
of radius a with a free edge including the effects of
rotary inertia and shear deformation.

14.15 Find the first four natural frequencies of vibration
of a rectangular plate resting on an elastic foundation
with all the edges simply supported. Compare the results
with the frequencies of a simply supported plate with
no elastic foundation. Size of the plate: a = 10, b = 20,
h = 0.2 in; unit weight: 0.283 lb/in3; E = 30 × 106 psi;
ν = 0.3, foundation modulus k = 1000 lb/in2-in.

14.16 Find the steady-state response of a simply sup-
ported uniform rectangular plate subjected to the force

f (x,y,t) = f0δ

(
x − a

4
, y − b

4

)
cos �t

14.17 Derive Eqs. (14.184)–(14.190) using the coordi-
nate transformation relations.



15

Vibration of Shells

15.1 INTRODUCTION AND SHELL COORDINATES
A thin shell is a three-dimensional body that is bounded by two curved surfaces that
are separated by a small distance compared to the radii of curvature of the curved sur-
faces. The middle surface of the shell is defined by the locus of points that lie midway
between the two bounding curved surfaces. The thickness of the shell is denoted by
the distance between the bounding surfaces measured along the normal to the middle
surface. The thickness of the shell is assumed to be constant. Shells and shell structures
find application in several areas of aerospace, architectural, civil, marine, and mechan-
ical engineering. Examples of shells include aircraft fuselages, rockets, missiles, ships,
submarines, pipes, water tanks, pressure vessels, boilers, fluid storage tanks, gas cylin-
ders, civil engineering structures, nuclear power plants, concrete arch dams, and roofs
of large span buildings.

15.1.1 Theory of Surfaces

The deformation of a thin shell can be described completely by the deformation of its
middle (neutral) surface. The undeformed middle surface of a thin shell can be described
conveniently by the two independent coordinates α and β shown in Fig. 15.1. In the
global Cartesian coordinate system OXYZ, the position vector of a typical point in the
middle surface, �r , can be expressed in terms of α and β as

�r = �r(α, β) (15.1)

which, in Cartesian coordinate system, can be written as

X = X(α, β)

Y = Y (α, β) (15.2)

Z = Z(α, β)

or

�r = X(α, β)�i + Y (α, β) �j + Z(α, β)�k (15.3)

where �i, �j , and �k denote the unit vectors along the X, Y , and Z axes, respectively.
The derivatives of the position vector with respect to α and β, denoted as

∂�r
∂α

= �r,α

∂�r
∂β

= �r,β (15.4)
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Figure 15.1 Curvilinear coordinates in the middle surface of a shell.

represent tangent vectors at any point of the surface to the α and β coordinate lines as
shown in Fig. 15.1.

15.1.2 Distance between Points in the Middle Surface before Deformation

The distance vector between the infinitesimally separated points P and Q lying in the
middle surface of the shell (before deformation) can be expressed as

d�r = ∂�r
∂α

dα + ∂�r
∂β

dβ = �r,α dα + �r,β dβ (15.5)

The magnitude of the distance vector (ds) is given by

(ds)2 = d�r · d�r = ∂�r
∂α

∂�r
∂α

(dα)2 + 2
∂�r
∂α

∂�r
∂β

dα dβ + ∂�r
∂β

∂�r
∂β

(dβ)2 (15.6)

which can be written as

(ds)2 = A2(dα)2 + 2AB cos γ dα dβ + B2(dβ)2 (15.7)

where A and B denote the lengths of the vectors �r,α and �r,β , respectively:

A2 = �r,α · �r,α = |�r,α|2 (15.8)

B2 = �r,β · �r,β = |�r,β |2 (15.9)

and γ indicates the angle between the coordinate curves α and β defined by

�r,α · �r,β

A B
= cos γ (15.10)
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Equation (15.7) is called the fundamental form or first quadratic form of the surface
defined by �r = �r(α, β) and the quantities A2, AB cos γ , and B2 are called the coeffi-
cients of the fundamental form. If the coordinates α and β are orthogonal, γ will be
90◦, so that

�r,α · �r,β = 0 (15.11)

and Eq. (15.7) reduces to

(ds)2 = A2(dα)2 + B2(dβ)2 (15.12)

where A and B are called the Lamé parameters. Equation (15.12) can be rewritten as

(ds)2 = ds2
1 + ds2

2 (15.13)

where

ds1 = A dα and ds2 = B dβ (15.14)

denote the lengths of the arc segments corresponding to the increments dα and dβ in
the curvilinear coordinates α and β. It can be seen that Lamé parameters relate a change
in the arc length in the middle surface to the changes in the curvilinear coordinates of
the shell.

Example 15.1 Determine the Lamé parameters and the fundamental form of the
surface for a cylindrical shell.

SOLUTION The curved surface of a shell is defined by the two lines of principal
curvature α and β and the thickness of the shell wall is defined along the z axis. Thus,
at each point in the middle surface of the shell, there will be two radii of curvature, one
a maximum value and the other a minimum value. In the case of a cylindrical shell, the
shell surface is defined by the curvilinear (cylindrical) coordinates α = x and β = θ ,
where α is parallel to the axis of revolution and β is parallel to the circumferential
direction as shown in Fig. 15.2. Any point S in the middle surface of the shell is
defined by the radius vector

�r = x�i + R cos θ · �j + R sin θ · �k (E15.1.1)

where R is the radius of the middle surface of the cylinder and �i, �j , and �k are unit
vectors along the Cartesian coordinates x, y, and z, respectively, as shown in Fig. 15.2.
The Lamé parameters can be obtained from Eq. (E15.1.1) as

∂�r
∂α

= ∂�r
∂x

= �i (E15.1.2)
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Figure 15.2 Cylindrical shell.

A =
∣∣∣∣ ∂�r
∂α

∣∣∣∣ = |�i| = 1 (E15.1.3)

∂�r
∂β

= ∂�r
∂θ

= −R sin θ �j + R cos θ �k (E15.1.4)

B =
∣∣∣∣ ∂�r
∂θ

∣∣∣∣ = [(−R sin θ)2 + (R cos θ)2]1/2 = R (E15.1.5)

The fundamental form of the surface is given by

(ds)2 = A2(dα)2 + B2(dβ)2 = (dx)2 + R2(dθ)2 (E15.1.6)

The interpretation of Eq. (E15.1.6) is shown in Fig. 15.2, where the distance between
two infinitesimally separated points P and Q in the middle surface of the shell can
be found as the hypotenuse of the right triangle PQT, where the infinitesimal sides
QT = dx and PT = R dθ are parallel to the surface coordinates of the shell.

Example 15.2 Determine the Lamé parameters and the fundamental form of the
surface for a conical shell.

SOLUTION Any point S in the middle surface of the shell is defined by the radius
vector �r taken from the top of the cone (origin O in Fig. 15.3) along its generator,
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Figure 15.3 Conical shell.

and angle θ formed by a meridional plane passing through the point S with some
reference meridional plane (the meridional plane passing through the Z axis is taken as
the reference meridional plane in Fig. 15.3). If the length of the vector �r is x and the
semi cone angle is α0, the radius vector can be expressed in the Cartesian coordinate
system XYZ as

�r = x cos α0�i + x sin α0 sin θ �j + x sin α0 cos θ �k (E15.2.1)

With α = x and β = θ , the Lamé parameters can be obtained from

∂�r
∂α

= ∂�r
∂x

= cos α0�i + sin α0 sin θ �j + sin α0 cos θ �k (E15.2.2)

A =
∣∣∣∣ ∂�r
∂x

∣∣∣∣ = (cos α2
0 + sin2 α0 sin2 θ + sin2 α0 cos2 θ)1/2 = 1 (E15.2.3)

∂�r
∂β

= ∂�r
∂θ

= x sin α0 cos θ �j − x sin α0 sin θ �k (E15.2.4)

B =
∣∣∣∣ ∂�r
∂θ

∣∣∣∣ = [(x sin α0 cos θ)2 + (−x sin α0 sin θ)2]1/2 = x sin α0 (E15.2.5)
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The fundamental form of the surface is given by

(ds)2 = A2(dα)2 + B2(dβ)2 = (dx)2 + x2 sin2 α0(dθ)2 (E15.2.6)

The interpretation of Eq. (E15.2.6) is shown in Fig. 15.3, where the distance between
two infinitesimally separated points P and Q in the middle surface of the shell can be
found as the hypotenuse of the right triangle PQT with the infinitesimal sides QT and
PT given by dx and x sin α0 dθ , respectively.

Example 15.3 Find the Lamé parameters and the fundamental form of the surface
for a spherical shell.

SOLUTION A typical point S in the middle surface of the shell is defined by the
radius vector �r as shown in Fig. 15.4. Using the spherical coordinates φ and θ shown
in the figure, the radius vector can be expressed as

�r = R cos φ�i + R sin φ cos θ �j + R sin φ sin θ �k (E15.3.1)

where �i, �j , and �k denote the unit vectors along the Cartesian coordinates X, Y , and Z,
respectively, and R is the radius of the spherical shell. Using α = φ and β = θ , the
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32 = R sin f cos q

Figure 15.4 Spherical shell.
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Lamé parameters can be determined as

∂�r
∂α

= ∂�r
∂φ

= −R sin φ�i + R cos φ cos θ �j + R cos φ sin θ �k (E15.3.2)

A =
∣∣∣∣ ∂�r
∂φ

∣∣∣∣ = [(−R sin φ)2 + (R cos φ cos θ)2 + (R cos φ sin θ)2]1/2 = R (E15.3.3)

∂�r
∂β

= ∂�r
∂θ

= −R sin φ sin θ �j + R sin φ cos θ �k (E15.3.4)

B =
∣∣∣∣ ∂�r
∂θ

∣∣∣∣ = [(−R sin φ sin θ)2 + (R sin φ cos θ)2]1/2 = R sin φ (E15.3.5)

The fundamental form of the surface is given by

(ds)2 = A2(dα)2 + B2(dβ)2 = R2(dφ)2 + R2 sin2 φ(dθ)2 (E15.3.6)

Equation (E15.3.6) implies that the distance between two infinitesimally separated
points P and Q in the middle surface of the shell is determined as the hypotenuse
of the right triangle PQT with the infinitesimal sides QT and PT given by R dφ and
R sin φ dθ , respectively (see Fig. 15.4).

15.1.3 Distance between Points Anywhere in the Thickness of a Shell before
Deformation

Consider two infinitesimally separated points P and Q in the middle surface of the
shell and two more points P ′ and Q′ that lie on the normals to the middle surface
of the shell, passing through points P and Q, respectively, as shown in Fig. 15.5.
Let �n denote the unit vector normal to the middle surface passing through the point
P and z indicate the distance between P and P ′. Then the point Q′ will be at a
distance of z + dz from the middle surface. The position vector of P ′( �R) can be
denoted as

�R(α, β, z) = �r(α, β) + z �n(α, β) (15.15)

Since the position vector of Q was assumed to be �r + d�r , the position vector of Q′
can be denoted as �R + d �R, where the differential vector d �R can be expressed, using
Eq. (15.15), as

d �R = d�r + z d �n(α, β) + dz�n (15.16)

with

d �n(α, β) = ∂ �n
∂α

dα + ∂ �n
∂β

dβ (15.17)

The magnitude ds′ of d �R is given by

(ds′)2 = d �R · d �R = (d�r + z d �n + dz �n) · (d�r + z d �n + dz �n)

= d�r · d�r + z2 d �n · d �n + (dz)2�n · �n
+ 2z d�r · d �n + 2 dz d�r · �n + 2z dz d �n · �n (15.18)
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Since �n is a unit vector, �n · �n = 1, and because of the orthogonality of the coordinate
system, d�r · �n = 0 and d �n · �n = 0. Thus, Eq. (15.18) reduces to

(ds′)2 = (ds)2 + z2 d �n · d �n + (dz)2 + 2z d�r · d �n (15.19)

The second term on the right-hand side of Eq. (15.19) can be expressed as

z2 d �n · d �n = z2
[

∂ �n
∂α

· ∂ �n
∂α

(dα)2 + ∂ �n
∂β

· ∂ �n
∂β

(dβ)2 + 2
∂ �n
∂α

· ∂ �n
∂β

dα dβ

]
(15.20)

Because of the orthogonality of the coordinates,

∂ �n
∂α

· ∂ �n
∂β

= 0 (15.21)

in Eq. (15.20). The quantities z (∂ �n/∂α) and z (∂ �n/∂β) can be expressed in terms of
the radii of curvature as

|∂�r/∂α|
Rα

= |z(∂ �n/∂α)|
z

,
|∂�r/∂β|

Rβ

= |z(∂ �n/∂β)|
z

(15.22)

where Ra and Rβ denote the radii of curvature of the α and β curves, respectively.
When the relations ∣∣∣∣ ∂�r

∂α

∣∣∣∣ = A,

∣∣∣∣ ∂�r
∂β

∣∣∣∣ = B (15.23)
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are used from Eqs. (15.8) and (15.9), Eqs. (15.22) yield∣∣∣∣z ∂ �n
∂α

∣∣∣∣ = zA

Rα

,

∣∣∣∣z ∂ �n
∂β

∣∣∣∣ = zB

Rβ

(15.24)

Thus, Eq. (15.20) can be rewritten as

z2 d �n · d �n = z2A2

R2
α

(dα)2 + z2B2

R2
β

(dβ)2 (15.25)

The fourth term on the right-hand side of Eq. (15.19) can be expressed as

2z d�r · d �n = 2z

(
∂�r
∂α

dα + ∂�r
∂β

dβ

)
·
(

∂ �n
∂α

dα + ∂ �n
∂β

dβ

)

= 2z

[
∂�r
∂α

· ∂ �n
∂α

(dα)2 + ∂�r
∂β

· ∂ �n
∂α

dα dβ+ ∂�r
∂α

· ∂ �n
∂β

dα dβ + ∂�r
∂β

· ∂ �n
∂β

(dβ)2
]

(15.26)

Because of the orthogonality of the coordinates, Eq. (15.26) reduces to

2z d�r · d �n = 2z
∂�r
∂α

· ∂ �n
∂α

(dα)2 + 2z
∂�r
∂β

· ∂ �n
∂β

(dβ)2 (15.27)

Using Eqs. (15.23) and (15.24), we can express

∂�r
∂α

· ∂ �n
∂α

(dα)2 =
∣∣∣∣ ∂�r
∂α

∣∣∣∣
∣∣∣∣ ∂ �n
∂α

∣∣∣∣ (dα)2 = A2

Rα

(dα)2

∂�r
∂β

· ∂ �n
∂β

(dβ)2 =
∣∣∣∣ ∂�r
∂β

∣∣∣∣
∣∣∣∣∂ �n
∂β

∣∣∣∣ (dβ)2 = B2

Rβ

(dβ)2 (15.28)

Using Eqs. (15.12), (15.25), (15.27) and (15.28) in Eq. (15.19), we obtain

(ds′)2 = A2
(

1 + z

Rα

)2

(dα)2 + B2
(

1 + z

Rβ

)2

(dβ)2 + (dz)2 (15.29)

15.1.4 Distance between Points Anywhere in the Thickness of a Shell after
Deformation

Equation (15.29), which gives the distance between two infinitesimally separated points
P ′ and Q′ (before deformation), can be rewritten as

(ds′)2 = h11(α, β, z) (dα)2 + h22(α, β, z) (dβ)2 + h33(α, β, z) (dz)2 (15.30)

where

h11(α, β, z) = A2
(

1 + z

Rα

)2

(15.31)

h22(α, β, z) = B2
(

1 + z

Rβ

)2

(15.32)

h33(α, β, z) = 1 (15.33)

Note that Eqs. (15.29) and (15.30) are applicable for a shell in the undeformed condi-
tion. When the shell deforms under external loads, a point P ′ with coordinates (α, β, z)
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in the undeformed condition will assume a new position P ′′ defined by the coordinates
(α + η1, β + η2, z + η3) after deformation. Similarly, if a point Q′ in the neighborhood
of P ′ has coordinates (α + dα, β + dβ, z + dz) in the undeformed condition, it will
assume a new position Q′′ with coordinates (α + dα + η1 + dη1, β + dβ + η2 + dη2,
z + dz + η3 + dη3) after deformation. Let the physical deflections of the point P ′
along the α, β, and z directions resulting from the deformation of the shell be given
by u, v and w, respectively. Since the coordinates of P ′ are given by (α, β, z) and of
P ′′ by (α + η1, β + η2, z + η3), ui and ηi are related by Eq. (15.30) as

u =
√

h11(α, β, z)η1, v =
√

h22(α, β, z)η2, w =
√

h33(α, β, z)η3 (15.34)

The distance (ds′′) between P ′′ and Q′′, after deformation, can be found as

(ds′′)2 = h11(α + η1, β + η2, z + η3)(dα + dη1)
2

+ h22(α + η1, β + η2, z + η3)(dβ + dη2)
2

+ h33(α + η1, β + η2, z + η3)(dz + dη3)
2 (15.35)

where, in general, h11, h22, and h33 are nonlinear functions of α + η1, β + η2, and
z + η3. For simplicity, we can linearize them using Taylor’s series expansion about the
point P ′(α, β, z) as

hii(α + η1, β + η2, z + η3) ≈ hii(α, β, z) + ∂hii(α, β, z)

∂α
η1

+ ∂hii

∂β
(α, β, z)η2 + ∂hii

∂z
(α, β, z)η3, i = 1, 2, 3

(15.36)

Similarly, we approximate the terms (dα + dη1)
2, (dβ + dη2)

2, and (dz + dη3)
2 in

Eq. (15.35) as

(dα + dη1)
2 ≈ (dα)2 + 2(dα)(dη1)

(dβ + dη2)
2 ≈ (dβ)2 + 2(dβ)(dη2)

(dz + dη3)
2 ≈ (dz)2 + 2(dz)(dη3) (15.37)

by neglecting the terms (dη1)
2, (dη2)

2, and (dη3)
2. Since ηi varies with the coordinates

α, β, and z, Eq. (15.37) can be expressed as

(dα + dη1)
2 ≈ (dα)2 + 2(dα)

(
∂η1

∂α
dα + ∂η1

∂β
dβ + ∂η1

∂z
dz

)

(dβ + dη2)
2 ≈ (dβ)2 + 2(dβ)

(
∂η2

∂α
dα + ∂η2

∂β
dβ + ∂η2

∂z
dz

)

(dz + dη3)
2 ≈ (dz)2 + 2(dz)

(
∂η3

∂α
dα + ∂η3

∂β
dβ + ∂η3

∂z
dz

)
(15.38)
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Using Eqs. (15.36) and (15.38), Eq. (15.35) can be expressed as

(ds′′)2 =
(

h11 + ∂h11

∂α
η1 + ∂h11

∂β
η2 + ∂h11

∂z
η3

)[
(dα)2 + 2(dα)

(
∂η1

∂α
dα

+ ∂η1

∂β
dβ + ∂η1

∂z
dz

)]

+
(

h22 + ∂h22

∂α
η1 + ∂h22

∂β
η2 + ∂h22

∂z
η3

)[
(dβ)2 + 2(dβ)

(
∂η2

∂α
dα

+ ∂η2

∂β
dβ + ∂η2

∂z
dz

)]

+
(

h33 + ∂h33

∂α
η1 + ∂h33

∂β
η2 + ∂h33

∂z
η3

)[
(dz)2 + 2(dz)

(
∂η3

∂α
dα

+ ∂η3

∂β
dβ + ∂η3

∂z
dz

)]

=
(

h11 + ∂h11

∂α
η1 + ∂h11

∂β
η2 + ∂h11

∂z
η3

)
(dα)2

+ 2h11(dα)

(
∂η1

∂α
dα + ∂η1

∂β
dβ + ∂η1

∂z
dz

)

+ 2(dα)

(
∂h11

∂α
η1 + ∂h11

∂β
η2 + ∂h11

∂z
η3

)(
∂η1

∂α
dα + ∂η1

∂β
dβ + ∂η1

∂z
dz

)

+
(

h22 + ∂h22

∂α
η1 + ∂h22

∂β
η2 + ∂h22

∂z
η3

)
(dβ)2

+ 2h22(dβ)

(
∂η2

∂α
dα + ∂η2

∂β
dβ + ∂η2

∂z
dz

)

+ 2(dβ)

(
∂h22

∂α
η1 + ∂h22

∂β
η2 + ∂h22

∂z
η3

)(
∂η2

∂α
dα + ∂η2

∂β
dβ + ∂η2

∂z
dz

)

+
(

h33 + ∂h33

∂α
η1 + ∂h33

∂β
η2 + ∂h33

∂z
η3

)
(dz)2

+ 2h33(dz)

(
∂η3

∂α
dα + ∂η3

∂β
dβ + ∂η3

∂z
dz

)

+ 2(dz)

(
∂h33

∂α
η1 + ∂h33

∂β
η2 + ∂h33

∂z
η3

)(
∂η3

∂α
dα + ∂η3

∂β
dβ + ∂η3

∂z
dz

)
(15.39)

The terms involving products of partial derivatives of hii and ηj on the right-hand
side of Eq. (15.39) can be neglected in most practical cases. Hence, Eq. (15.39) can
be expressed as

(ds′′)2 � H11(dα)2 + H22(dβ)2 + H33(dz)2

+ 2H12(dα)(dβ) + 2H23(dβ)(dz) + 2H13(dα)(dz) (15.40)
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where

H11 = h11 + ∂h11

∂α
η1 + ∂h11

∂β
η2 + ∂h11

∂z
η3 + 2h11

∂η1

∂α
(15.41)

H22 = h22 + ∂h22

∂α
η1 + ∂h22

∂β
η2 + ∂h22

∂z
η3 + 2h22

∂η2

∂β
(15.42)

H33 = h33 + ∂h33

∂α
η1 + ∂h33

∂β
η2 + ∂h33

∂z
η3 + 2h33

∂η3

∂z
(15.43)

H12 = H21 = h11
∂η1

∂β
+ h22

∂η2

∂α
(15.44)

H23 = H32 = h22
∂η2

∂z
+ h33

∂η3

∂β
(15.45)

H13 = H31 = h11
∂η1

∂z
+ h33

∂η3

∂α
(15.46)

Thus, Eq. (15.40) gives the distance between P ′′ and Q′′ after deformation. Points P ′′
and Q′′ indicate the deflected position of points P ′ and Q′ whose coordinates (in the
undeformed shell) are given by (α, β, z) and (α + dα, β + dβ, z + dz), respectively.

15.2 STRAIN–DISPLACEMENT RELATIONS

The distance between two arbitrary points after deformation, given by Eq. (15.40),
can also be used to define the components of strain in the shell. The normal strain
(εαα ≡ ε11) along the coordinate direction α is defined as

ε11 =
change in length of a fiber originally
oriented along the α direction

original length of the fiber
(15.47)

Since the fiber is originally oriented along the α direction, the coordinates of the end
points of the fiber, P ′ and Q′, are given by (α, β, z) and (α + dα, β, z), respectively,
and Eqs. (15.40) and (15.30) give

(ds ′′)2 ≡ (ds′′)2
11 = H11(dα)2 (15.48)

(ds′)2 ≡ (ds′)2
11 = h11(dα)2 (15.49)

Using a similar procedure, for fibers oriented originally along the β and z directions,
we can write

(ds′′)2
22 = H22(dβ)2 (15.50)

(ds′)2
22 = h22(dβ)2 (15.51)

(ds′′)2
33 = H33(dz)2 (15.52)

(ds′)2
33 = h33(dz)2 (15.53)
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Since the normal strain along the coordinate direction β(z), denoted by εββ ≡ ε22 (or
εzz ≡ ε33), is defined as

ε22(ε33) = change in length of a fiber originally oriented along the β(z) direction

original length of the fiber
(15.54)

the normal strains εii , i = 1, 2, 3, can be expressed as

εii = (ds′′)ii − (ds′)ii
(ds′)ii

= (ds′′)ii
(ds′)ii

− 1 =
√

Hii

hii

− 1 =
√

hii + Hii − hii

hii

− 1

=
√

1 + Hii − hii

hii

− 1 (15.55)

The quantity (Hii − hii)/hii is very small compared to 1 and hence the binomial
expansion of Eq. (15.55) yields

εii =
(

1 + 1

2

Hii − hii

hii

+ · · ·
)

− 1 ≈ 1

2

Hii − hii

hii

, i = 1, 2, 3 (15.56)

The shear strain in the αβ plane (denoted as εαβ ≡ ε12) is defined as

ε12 = change in the angle of two mutually perpendicular fibers originally

oriented along the α and β directions (15.57)

which from Fig. 15.6, can be expressed as,

ε12 = π

2
− θ12 (15.58)

where θ12 ≡ θαβ . To be specific, consider two fibers, one originally oriented along the
α direction [with endpoint coordinates R = (α, β, z) and P = (α + dα, β, z) and the

a

b

P′
P

Q′

Q

(d
s) 22

(ds)11

(ds″ )22

(ds″)11

R q1290°
(a, b, z)

Figure 15.6 Angular change of fibers.
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other originally oriented along the β direction (with endpoint coordinates R = (α, β, z)

and Q = (α, β + dβ, z)]. This implies that the distance PQ is given by

(ds′)2 ≡ (ds′)2
12 = h11(dα)2 + h22(dβ)2 (15.59)

By considering points P and Q to be originally located, equivalently, at (α, β, z) and
(α − dα, β + dβ, z) instead of at (α + dα, β, z) and (α, β + dβ, z), respectively, we
can obtain the distance P ′Q′ as

(ds′′)2 ≡ (ds′′)2
12 = H11(dα)2 + H22(dβ)2 − 2H12 dα dβ (15.60)

Using a similar procedure in the βz plane (for εβz ≡ ε23) and zα plane (for εzα ≡ ε31),
we can obtain

(ds′)2
23 = h22(dβ)2 + h33(dz)2 (15.61)

(ds′′)2
23 = H22(dβ)2 + H33(dz)2 − 2H23(dβ)(dz) (15.62)

(ds′)2
31 = h33(dz)2 + h11(dα)2 (15.63)

(ds′′)2
31 = H33(dz)2 + H11(dα)2 − 2H31(dz)(dα) (15.64)

In Fig. 15.6, the sides RQ′, Q′P ′, and RP ′ are related by the cosine law:

(ds′′)2
12 = (ds′′)2

11 + (ds′′)2
22 − 2(ds′′)11(ds′′)22 cos θ12 (15.65)

Equation (15.65) can be expressed in a general form as

(ds′′)2
ij = (ds′′)2

ii + (ds′′)2
jj − 2(ds′′)ii (ds′′)jj cos θij , ij = 12, 23, 31 (15.66)

Using Eqs. (15.60), (15.48), and (15.50), Eq. (15.65) can be expressed, as

H11(dα)2 + H22(dβ)2 − 2H12(dα)(dβ)

= H11(dα)2 + H22(dβ)2 − 2(
√

H11 dα)(
√

H22 dβ) cos θ12 (15.67)

which can be simplified to obtain

cos θ12 = H12√
H11H22

(15.68)

Equations (15.58) and (15.68) yield

cos θ12 = cos
(π

2
− ε12

)
= sin ε12 = H12√

H11H22
(15.69)

In most practical cases, shear strains are small, so that the following approximations
can be used:

sin ε12 ≈ ε12 = H12√
H11H22

≈ H12√
h11h22

(15.70)

A similar procedure can be used for the other shear strains, ε23 (in the βz plane) and
ε31 (in the zα plane). In general, the shear strains can be expressed as

εij = Hij√
hiihjj

, ij = 12, 23, 31 (15.71)
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Strains in Terms of Displacement Components The normal strains can be expressed
in terms of the displacement components, using Eqs. (15.56), (15.41)–(15.43) and
(15.31)–(15.34), as

ε11 = εαα = 1

2A2 (1 + z/Rα)2

{
∂

∂α

[
A2
(

1 + z

Rα

)2
]

u

A (1 + z/Rα)

+ ∂

∂β

[
A2
(

1 + z

Rα

)2
]

v

B
(
1 + z/Rβ

) + ∂

∂z

[
A2
(

1 + z

Rα

)2
]

w

}

+ ∂

∂α

[
u

A (1 + z/Rα)

]

= 1

A (1 + z/Rα)

{
∂

∂α

[
A

(
1 + z

Rα

)]
u

A (1 + z/Rα)

+ ∂

∂β

[
A

(
1 + z

Rα

)]
v

B
(
1 + z/Rβ

) + A

Rα

w

}

+ 1

A(1 + z/Rα)

∂u

∂α
− ∂

∂α

[
A

(
1 + z

Rα

)]
u

A2 (1 + z/Rα)2
(15.72)

The following partial derivatives, known as Codazzi conditions [9], are used to simplify
Eq. (15.72):

∂

∂β

[
A

(
1 + z

Rα

)]
=
(

1 + z

Rβ

)
∂A

∂β
(15.73)

∂

∂α

[
B

(
1 + z

Rβ

)]
=
(

1 + z

Rα

)
∂B

∂α
(15.74)

Thus, the normal strain ε11 can be expressed as

ε11 = εαα = 1

A (1 + z/Rα)

(
∂u

∂α
+ v

B

∂A

∂β
+ w

A

Rα

)
(15.75)

Using a similar procedure, the normal strains ε22 and ε33 can be determined as

ε22 = εββ = 1

B
(
1 + z/Rβ

) (∂v

∂β
+ u

A

∂B

∂α
+ w

B

Rβ

)
(15.76)

ε33 = εzz = ∂w

∂z
(15.77)
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Similarly, using Eqs. (15.71), (15.44)–(15.46), and (15.31)–(15.34), the shear strains
can be expressed in terms of displacement components as

ε12 = εαβ = A (1 + z/Rα)

B
(
1 + z/Rβ

) ∂

∂β

[
u

A (1 + z/Rα)

]

+ B
(
1 + z/Rβ

)
A (1 + z/Rα)

∂

∂α

[
v

B
(
1 + z/Rβ

)
]

(15.78)

ε23 = εβz = B

(
1 + z

Rβ

)
∂

∂z

[
v

B
(
1 + z/Rβ

)
]

+ 1

B
(
1 + z/Rβ

) ∂w

∂β
(15.79)

ε31 = εzα = A

(
1 + z

Rα

)
∂

∂z

[
v

B (1 + z/Rα)

]
+ 1

A (1 + z/Rα)

∂w

∂α
(15.80)

15.3 LOVE’S APPROXIMATIONS

In the classical or small displacement theory of thin shells, the following assump-
tions, originally made by Love [1], are universally accepted to be valid for a first
approximation shell theory :

1. The thickness of the shell is small compared to its other dimensions, such as
the radii of curvature of the middle surface of the shell.

2. The displacements and strains are very small, so that quantities involving
second- and higher-order magnitude can be neglected in the strain–displacement
relations.

3. The normal stress in the transverse (z) direction is negligibly small compared
to the other normal stress components.

4. The normals to the undeformed middle surface of the shell remain straight and
normal to the middle surface even after deformation, and undergo no extension
or contraction.

The first assumption basically defines a thin shell. For thin shells used in engineer-
ing applications, the ratio h/Rmin, where h is the thickness and Rmin is the smallest
radius of curvature of the middle surface of the shell, is less than 1

50 and thus the ratio
z/Rmin will be less than 1

100 . Hence, terms of the order h/Ri or z/Ri(i = α, β) can be
neglected compared to unity in the strain–displacement relations

z

Rα

<< 1,
z

Rβ

<< 1 (15.81)

The second assumption enables us to make all computations in the undeformed config-
uration of the shell and ensures that the governing differential equations will be linear.
The third assumption assumes that the normal stress σzz ≡ σ33 = 0 in the direction
of z. If the outer shell surface is unloaded, σ33 will be zero. Even if the outer shell
surface is loaded, σ33 can be assumed to be negligibly small in most cases. The fourth
assumption, also known as Kirchhoff’s hypothesis, leads to zero transverse shear strains
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and zero transverse normal strain:

ε13 = ε23 = 0 (15.82)

ε33 = 0 (15.83)

It is to be noted that assumptions 3 and 4 introduce the following inconsistencies:

(a) The transverse normal stress (σ33) cannot be zero theoretically, especially when
the outer surface of the shell is subjected to load.

(b) In thin shell theory, the resultant shear forces, Q13 ≡ Qαz (acting on a face
normal to the α curve) and Q23 ≡ Qβz (acting on a face normal to the β

curve), are assumed to be present. These resultants can be related to (caused
by) the transverse shear stresses, σ13 and σ23, in the shell. If transverse shear
stresses are present, the transverse shear strains cannot be zero. This violates
the assumption in Eq. (15.82).

Despite these inconsistencies, Love’s approximations are most commonly used in
thin shell theory.

Equations (15.82) imply, from Hooke’s law, that the transverse shear stresses are
also zero:

σ13 = σ23 = 0 (15.84)

To satisfy Kirchhoff’s hypothesis (fourth assumption), the components of displacement
at any point in the thickness of the shell are assumed to be of the following form:

u(α, β, z) = u(α, β) + zθ1(α, β) (15.85)

v(α, β, z) = v(α, β) + zθ2(α, β) (15.86)

w(α, β, z) = w(α, β) (15.87)

where u, v, and w denote the components of displacement in the middle surface of the
shell along α, β, and z directions and θ1 and θ2 indicate the rotations of the normal to
the middle surface about the β and α axes, respectively, during deformation:

θ1 = ∂u(α, β, z)

∂z
(15.88)

θ2 = ∂v(α, β, z)

∂z
(15.89)

Note that Eq. (15.83) will be satisfied by Eq. (15.87) since the transverse displacement
is completely defined by the middle surface component, w:

ε33 = ∂w

∂z
= ∂w

∂z
= 0 (15.90)
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Substituting Eqs. (15.85)–(15.87) into Eqs. (15.79) and (15.80), we obtain

ε13 = A

(
1 + z

Rα

)
∂

∂z

[
u

A (1 + z/Rα)

]
+ 1

A (1 + z/Rα)

∂w

∂α

= A
∂

∂z

[
u(α, β) + zθ1

A (1 + z/Rα)

]
+ 1

A

∂w(α, β)

∂α

= A

{
1

A (1 + z/Rα)

∂

∂z
( u + z θ1)− u + z θ1

A2(1 + z/Rα)2

∂

∂z

[
A

(
1 + z

Rα

) ]}

+ 1

A

∂w

∂α

= θ1 − u

Rα

+ 1

A

∂w

∂α
(15.91)

ε23 = B

(
1 + z

Rβ

)
∂

∂ z

[
v

B (1 + z/Rβ)

]
+ 1

B (1 + z/Rβ)

∂w

∂β

= B
∂

∂z

[
v(α, β) + z θ2

B (1 + z/Rβ)

]
+ 1

B

∂w(α, β)

∂β

= B

{
1

B (1 + z/Rβ)

∂

∂z
(v + zθ2) − v + z θ2

B2 (1 + z/Rβ)2

∂

∂z

[
B

(
1 + z

Rβ

) ]}

+ 1

B

∂w

∂β

= B

(
θ2

B
− v + z θ2

B2

B

Rβ

)
+ 1

B

∂w

∂β

= θ2 − v

Rβ

+ 1

B

∂w

∂β
(15.92)

To satisfy Eqs. (15.82), Eqs. (15.91) and (15.92) are set equal to zero. These give
expressions for θ1 and θ2:

θ1 = u

Rα

− 1

A

∂w

∂α
(15.93)

θ2 = v

Rβ

− 1

B

∂w

∂β
(15.94)

Using Eqs. (15.81), (15.85)–(15.87), (15.93) and (15.94), the strains in the shell,
Eqs. (15.75)–(15.80), can be expressed as

ε11 = 1

A

∂

∂α
(u + zθ1) + v + zθ2

AB

∂A

∂β
+ w

Rα

(15.95)

ε22 = 1

B

∂

∂β
(v + z θ2) + u + z θ1

AB

∂B

∂α
+ w

Rβ

(15.96)

ε33 = 0 (15.97)
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ε12 = A

B

∂

∂β

(
u + zθ1

A

)
+ B

A

∂

∂α

(
v + zθ2

B

)
(15.98)

ε23 = 0 (15.99)

ε31 = 0 (15.100)

The nonzero components of strain, Eqs. (15.95), (15.96), and (15.98) are commonly
expressed by separating the membrane strains (which are independent of z) and bending
strains (which are dependent on z) as

ε11 = ε0
11 + zk11 (15.101)

ε22 = ε0
22 + zk22 (15.102)

ε12 = ε0
12 + zk12 (15.103)

where the membrane strains, denoted by the superscript 0, are given by

ε0
11 = 1

A

∂u

∂α
+ v

AB

∂A

∂β
+ w

Rα

(15.104)

ε0
22 = 1

B

∂v

∂β
+ u

AB

∂B

∂α
+ w

Rβ

(15.105)

ε0
12 = A

B

∂

∂β

( u

A

)
+ B

A

∂

∂α

( v

B

)
(15.106)

and the parameters k11, k22, and k12 are given by

k11 = 1

A

∂θ1

∂α
+ θ2

AB

∂A

∂β
(15.107)

k22 = 1

B

∂ θ2

∂ β
+ θ1

AB

∂B

∂α
(15.108)

k12 = A

B

∂

∂β

(
θ1

A

)
+ B

A

∂

∂α

(
θ2

B

)
(15.109)

Notes

1. The parameters k11 and k22 denote the midsurface changes in curvature, and k12

denotes the midsurface twist.
2. The strain–displacement relations given by Eqs. (15.101)–(15.109) define the

thin shell theories of Love and Timoshenko. Based on the type of approxima-
tions used in the strain–displacement relations, other shell theories, those of
such as (a) Byrne, Flügge, Goldenveizer, Lurye, and Novozhilov; (b) Reissner,
Naghdi, and Berry; (c) Vlasov; (d) Sanders; and (e) Mushtari and Donnell have
also been used for the analysis of thin shells [5].

Example 15.4 Simplify the strain–displacement relations given by Eqs. (15.101)–
(15.109) for a circular cylindrical shell.
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SOLUTION Noting that α = x, β = θ , A = 1, B = R, and the subscripts 1 and 2
refer to x and θ , respectively. Rα = Rx = ∞, Rβ = Rθ = R, Eqs. (15.93) and (15.94)
can be expressed for a circular cylindrical shell as

θx = −∂w

∂x
(E15.4.1)

θθ = v

R
− 1

R

∂w

∂θ
(E15.4.2)

The membrane strains are given by Eqs. (15.104)–(15.106):

ε0
xx = ∂u

∂x
(E15.4.3)

ε0
θθ = 1

R

∂v

∂θ
+ w

R
(E15.4.4)

ε0
x θ = ∂v

∂x
+ 1

R

∂u

∂θ
(E15.4.5)

The parameters k11, k22, and k12 can be determined from Eqs. (15.107)–(15.109) as

kxx = ∂θx

∂x
= − ∂2w

∂x2
(E15.4.6)

kθθ = 1

R

∂θθ

∂θ
= 1

R2

∂v

∂θ
− 1

R2

∂2w

∂θ2
(E15.4.7)

kxθ = ∂θθ

∂x
+ 1

R

∂θx

∂θ
= 1

R

∂v

∂x
− 2

R

∂2w

∂x ∂θ
(E15.4.8)

The total strains in the shell are given by Eqs. (15.101)–(15.103):

εxx = ε0
xx + zkxx = ∂u

∂x
− z

∂2w

∂x2
(E15.4.9)

εθθ = ε0
θθ + zkθθ = 1

R

∂v

∂θ
+ w

R
+ z

R2

∂v

∂θ
− z

R2

∂2w

∂θ2
(E15.4.10)

εxθ = ε0
xθ + zkxθ = ∂v

∂x
+ 1

R

∂u

∂θ
+ z

R

∂v

∂x
− 2z

R

∂2w

∂x ∂θ
(E15.4.11)

In Eqs. (E15.4.1)–(E15.4.11), u, v and w denote the components of displacement along
the x, θ , and z directions, respectively, in the midplane of the shell.

Example 15.5 Simplify the strain–displacement relations given by Eqs. (15.101)–
(15.109) for a conical shell.

SOLUTION For a conical shell, α = x, β = θ , A = 1, B = x sin α0, Rα = Rx = ∞,
and Rβ = Rθ = x tan α0. Using x and θ for the subscripts 1 and 2, respectively, θx

and θθ can be obtained from Eqs. (15.93) and (15.94):

θx = −∂w

∂x
(E15.5.1)

θθ = v

x tan α0
− 1

x sin α0

∂ w

∂ θ
(E15.5.2)



15.3 Love’s Approximations 561

The strains in the shell are given by Eqs. (15.101)–(15.103):

εxx = ε0
xx + zkxx (E15.5.3)

εθθ = ε0
θθ + zkθθ (E15.5.4)

εxθ = ε0
xθ + zkxθ (E15.5.5)

where the membrane and bending parts of the strain are given by Eqs. (15.104)–
(15.109):

ε0
x x = ∂u

∂x
(E15.5.6)

ε0
θ θ = 1

x sin α0

∂v

∂ θ
+ u

x
+ w

x tan α0
(E15.5.7)

ε0
x θ = 1

x sin α0

∂u

∂ θ
+ ∂v

∂x
− v

x
(E15.5.8)

kx x = ∂ θx

∂ x
= − ∂2w

∂ x2
(E15.5.9)

kθ θ = 1

x sin α0

∂ θθ

∂ θ
+ 1

x
θx

= cos α0

x2 sin2 α0

∂v

∂ θ
− 1

x2 sin2 α0

∂2w

∂ θ2
− 1

x

∂w

∂x
(E15.5.10)

kx θ = x
∂

∂x

(
θθ

x

)
+ 1

x sin α0

∂ θx

∂ θ

= 1

x tan α0

∂v

∂x
− 2v

x2 tan α0
− 1

x sin α0

∂2w

∂ θ2
+ 2

x2 sin α0

∂w

∂θ
(E15.5.11)

Note that u,v, and w in Eqs. (E15.5.1)–(E15.5.11) denote the components of displace-
ment along x, θ , and z directions, respectively, in the midplane of the shell.

Example 15.6 Simplify the strain–displacement relations given by Eqs. (15.101)–
(15.109) for a spherical shell.

SOLUTION For a spherical shell, α = φ, β = θ , A = R, B = R sin φ, Rα = Rφ =
R, and Rβ = Rθ = R. Using φ and θ as subscripts in place of 1 and 2, respectively,
Eqs. (15.93) and (15.94) yield

θφ = 1

R

(
u − ∂w

∂ φ

)
(E15.6.1)

θθ = 1

R

(
v − 1

sin φ

∂w

∂ θ

)
(E15.6.2)



562 Vibration of Shells

The membrane strains are given by Eqs. (15.104)–(15.106):

ε0
φ φ = 1

R

∂u

∂ φ
+ w

R
(E15.6.3)

ε0
θ θ = 1

R sin φ

∂v

∂ θ
+ u cot φ

R
+ w

R
(E15.6.4)

ε0
φ θ = 1

R sin φ

∂u

∂ θ
+ 1

R

∂v

∂ φ
− v cot φ

R
(E15.6.5)

The total strains are given by Eqs. (15.101)–(15.103):

εφ φ = ε0
φ φ + zkφ φ (E15.6.6)

εθ θ = ε0
θ θ + zkθ θ (E15.6.7)

εφ θ = ε0
φ θ + zkφ θ (E15.6.8)

where kφφ , kθθ , and kφθ are given by Eqs. (15.107)–(15.109):

kφφ = 1

R2

∂u

∂ φ
− 1

R2

∂2w

∂ φ2
(E15.6.9)

kθθ = 1

R2 sin φ

∂v

∂ θ
− 1

R2 sin2 φ

∂2w

∂ θ2
+ cot φ

R2
u − cos φ

R2

∂w

∂ φ
(E15.6.10)

kφθ = 1

R2 sin φ

∂u

∂ θ
− 1

R2 sin φ

∂2w

∂φ ∂ θ
+ 1

R2

∂v

∂ φ

− 1

R2 sin φ

∂2w

∂φ ∂θ
+ cos φ

R2 sin2 φ

∂w

∂ θ
− cot φ

R2
v + cot φ

R2 sin φ

∂w

∂θ
(E15.6.11)

Note that u, v, and w denote the components of displacement along φ, θ , and z

directions, respectively, in the mid plane of the shell.

15.4 STRESS–STRAIN RELATIONS
In a three-dimensional isotropic body, such as a thin shell, the stresses are related to
the strains by Hooke’s law as

ε11 = 1

E
[ σ11 − ν ( σ22 + σ33) ] (15.110)

ε22 = 1

E
[ σ22 − ν ( σ11 + σ33) ] (15.111)

ε33 = 1

E
[ σ33 − ν ( σ11 + σ22) ] (15.112)

ε12 = σ12

G
(15.113)

ε23 = σ23

G
(15.114)

ε13 = σ13

G
(15.115)
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where σ11, σ22, and σ33 are normal stresses, σ12 = σ21, σ13 = σ31, and σ23 = σ32 are
shear stresses. Based on Kirchhoff’s hypothesis, we have

ε33 = 0 (15.116)

ε13 = ε23 = 0 (15.117)

Equations (15.112) and (15.116) yield

σ33 = ν(σ11 + σ22) (15.118)

But according to Love’s third assumption, σ33 = 0, which is in contradiction to
Eq. (15.118). As stated earlier, this is an unavoidable contradiction in thin shell the-
ory. Another contradiction is that σ13 and σ23 cannot be equal to zero because their
integrals must be able to balance the transverse shear forces needed for satisfying the
equilibrium conditions.

However, the magnitudes of σ13 and σ23 are usually very small compared to those
of σ11, σ22 and σ12. Thus, the problem reduces to one of plane stress, described by

ε11 = 1

E
(σ11 − νσ22) (15.119)

ε22 = 1

E
(σ22 − νσ11) (15.120)

ε12 = σ12

G
(15.121)

Inverting these equations, we are able to express stresses in terms of strains as

σ11 = E

1 − ν2
(ε11 + νε22) (15.122)

σ22 = E

1 − ν2
(ε22 + νε11) (15.123)

σ12 = E

2(1 + ν)
ε12 (15.124)

Substitution of Eqs. (15.101)–(15.103) into Eqs. (15.122)–(15.124) leads to

σ11 = E

1 − ν2
[ε0

11 + νε0
22 + z(k11 + νk22)] (15.125)

σ22 = E

1 − ν2
[ε0

22 + νε0
11 + z(k22 + νk11)] (15.126)

σ12 = E

2(1 + ν)
· (ε0

12 + zk12) (15.127)

15.5 FORCE AND MOMENT RESULTANTS

Consider a differential element of the shell isolated from the shell by using four sections
normal to its middle surface and tangential to the lines α, α + dα, β, and β + dβ as
shown in Fig. 15.7. Here the middle surface of the shell is defined by abco. The stresses
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a

a

a′

b

b

b′

c

c′

o

s11

s12

s13

s 21
= s 12

s22

s23

h/2

h/2

a face
b face

dz

z

a′b′ =ds
b = B

db

1 + z
R
b

b′c′ =

dsa= A

da

1 +
z
Ra

z

Figure 15.7 Differential element of shell. ab = ds0
β = B dβ, bc = ds0

α = A dα.

acting on the positive faces of the element are also shown in the figure. For the stresses,
the first subscript denotes the face on which it is acting (1 for the face normal to the α

curve and 2 for the face normal to the β curve), and the second subscript denotes the
direction along which it is acting (1 for the α direction and 2 for the β direction).

The force and moment resultants induced due to the various stresses are shown in
Figs. 15.8 and 15.9. These resultants can be seen to be similar to those induced for
a plate. To find the force resultants, first consider the face of the element shown in
Fig. 15.7 that is perpendicular to the α-axis (called the α face). The arc length ab of
the intercept of the middle surface with the face is given by

ds0
β = B dβ (15.128)

and the arc length a′b′ of intercept of a parallel surface located at a distance z from
the middle surface is given by

dsβ = B

(
1 + z

Rβ

)
dβ (15.129)

The stress σ11 multiplied by the elemental area dsβ dz gives the elemental force dN11.
Integration of the elemental force over the thickness of the shell gives the total in-plane
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Figure 15.8 Force resultants in a shell (positive directions are indicated).
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Figure 15.9 Moment resultants in a shell (positive directions are indicated).

normal force acting on the face along the α direction as

total force =
∫ h/2

−h/2
σ11 dsβ dz =

∫ h/2

−h/2
σ11B

(
1 + z

Rβ

)
dβ dz (15.130)

The force resultant N11 (force per unit length of the middle surface) can be obtained
by dividing the total force by the arc length ds0

β = B dβ:

N11 =
∫ h/2

−h/2
σ11

(
1 + z

Rβ

)
dz (15.131)
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By neglecting z/Rβ as a small quantity compared to 1, Eq. (15.131) gives

N11 =
∫ h/2

−h/2
σ11 dz (15.132)

Using Eq. (15.125) in Eq. (15.132), we obtain

N11 = E

1 − ν2

∫ h/2

−h/2
[ε0

11 + νε0
22 + z(k11 + νk22)] dz

= E

1 − ν2

[
(ε0

11 + νε0
22)(z)

h/2
−h/2 + (k11 + νk22)

(
z2

2

)h/2

−h/2

]
= Eh

1 − ν2
(ε0

11 + ν ε0
22)

(15.133)

By defining the middle surface or membrane stiffness of the shell (C) as

C = Eh

1 − ν2
(15.134)

Eq. (15.133) can be written as

N11 = C(ε0
11 + νε0

22) (15.135)

The stress σ12 acting on the α face multiplied by the elemental area dsβ dz (or the
stress σ21 = σ12 acting on the β face multiplied by the elemental area dsα dz) gives
the elemental force N12. Integration of the elemental force over the thickness of the
shell gives the total in-plane shear force, which when divided by the arc length ds0

β

for the α face and ds0
α for the β face, gives the force resultant N12 as

N12 = N21 = C

(
1 − ν

2

)
ε0

12 (15.136)

The transverse shear force resultant, Q13, acting on the α face due to the shear stress
σ13, can be found as

Q13 =
∫ h/2

−h/2
σ13 dz (15.137)

Similarly, by integrating σ22 on the β face, the force resultant N22 can be obtained as

N22 = C(ε0
22 + νε0

11) (15.138)

By integrating the shear stress σ23 on the β face, we can find the transverse shear force
resultant, Q23, acting on the β face as

Q23 =
∫ h/2

−h/2
σ23 dz (15.139)

To find the bending moment resultants, we again consider the α face of the element
in Fig. 15.7. The moment of the elemental force (σ11 dsβ dz) about the β line will be
zσ11 dsβ dz, and the bending moment resultant M11 (moment per unit length of the
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middle surface) can be found by integrating the elemental moment over the thickness
and dividing the result by the arc length ds0

β = B dβ. Thus, we obtain

total moment =
∫ h/2

−h/2
σ11zB

(
1 + z

Rβ

)
dβ dz (15.140)

M11 =
∫ h/2

−h/2
σ11z

(
1 + z

Rβ

)
dz (15.141)

By neglecting the quantity z/Rβ in comparison to unity, Eq. (15.141) gives

M11 =
∫ h/2

−h/2
σ11z dz (15.142)

By substituting Eq. (15.125) in Eq. (15.142), we obtain

M11 =
∫ h/2

−h/2

E

1 − ν2
[ε0

11 + νε0
22 + z(k11 + νk22)]z dz

= E

1 − ν2

[
(ε0

11 + νε0
22)

(
z2

2

)h/2

−h/2
+ (k11 + νk22)

(
z3

3

)h/2

−h/2

]

= Eh3

12(1 − ν2)
(k11 + νk22)

= D(k11 + νk22) (15.143)

where D, the bending stiffness of the shell, is defined by

D = Eh3

12(1 − ν2)
(15.144)

Using a similar procedure, the moment resultants due to the stresses σ22 and σ12 = σ21
can be found as

M22 = D(k22 + νk11) (15.145)

M12 = M21 = D

(
1 − ν

2

)
k12 (15.146)

Notes

1. Although the shear strains ε13 and ε23 are assumed to be zero (according to
Kirchhoff’s hypothesis), we still assume the presence of the transverse shear
stresses σ13 and σ23 and the corresponding shear force resultants, Q13 and Q23,
as given by Eqs. (15.137) and (15.139).

2. The expressions of the force and moment resultants given in Eqs. (15.132)–
(15.146) have been derived by neglecting the quantities z/Rα and z/Rβ in
comparison to unity. This assumption is made in the thin shell theories of
Love, Timoshenko, Reissner, Naghdi, Berry, Sanders, Mushtari, and Donnell.

3. If the quantities z/Rα and z/Rβ are not neglected, we will find that N12 	= N21
and M12 	= M21 (unless Rα = Rβ ), although the shear stresses causing them are
the same (i.e., σ12 = σ21).
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Example 15.7 Express the force and moment resultants in terms of displacements
for a circular cylindrical shell.

SOLUTION The force resultants are given in terms of membrane strains by
Eqs. (15.135), (15.136), and (15.138). Using the strain–displacement relations given
in Example 15.4, the force resultants can be expressed as1

Nxx = C(ε0
xx + νε0

θθ ) = C

(
∂u

∂x
+ ν

R

∂ν

∂θ
+ ν

R
w

)
(E15.7.1)

Nxθ = Nθx = C

(
1 − ν

2

)
ε0
xθ = C

(
1 − ν

2

)(
∂v

∂x
+ 1

R

∂u

∂θ

)
(E15.7.2)

Nθθ = C(ε0
θθ + νε0

xx) = C

(
1

R

∂v

∂θ
+ w

R
+ ν

∂u

∂x

)
(E15.7.3)

where C is given by Eq. (15.134). The moment resultants, given by Eqs. (15.143),
(15.145) and (15.146), can be expressed using the strain–displacement relations of
Example 15.4 as

Mxx = D(kxx + νkθθ ) = D

(
∂θx

∂x
+ ν

R

∂θθ

∂θ

)
(E15.7.4)

= D

(
−∂2w

∂x2
+ ν

R2

∂v

∂θ
− ν

R2

∂2w

∂θ2

)
(E15.7.5)

Mθθ = D(kθθ + νkxx) = D

(
1

R

∂θθ

∂θ
+ ν

∂θx

∂x

)
(E15.7.6)

= D

(
1

R2

∂v

∂θ
− 1

R2

∂2w

∂θ2
− v

∂2w

∂x2

)
(E15.7.7)

Mxθ = Mθx = D

(
1 − ν

2

)
kxθ = D

(
1 − ν

2

)(
∂θθ

∂x
+ 1

R

∂θx

∂θ

)
(E15.7.8)

= D

(
1 − ν

2

)(
1

R

∂v

∂x
− 2

R

∂2 w

∂x∂θ

)
(E15.7.9)

where D is given by Eq. (15.144).

Example 15.8 Express the force and moment resultants in terms of displacements
for a circular conical shell.

SOLUTION Equations (15.135), (15.136), and (15.138) give the force resultants in
terms of membrane strains. By using the strain–displacement relations of Example 15.5,

1For a cylindrical shell, u, v and w denote the components of displacement along the axial (x), circumfer-
ential (θ ), and radial (z) directions, respectively, as shown in Fig. 15.10.
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Figure 15.10 Coordinate system of a thin circular cylindrical shell.

the force resultants can be expressed as2

Nxx = C(ε0
xx + νε0

θθ )

= C

[
∂u

∂x
+ ν

(
1

x sin α0

∂v

∂θ
+ u

x
+ w

x tan α0

)]
(E15.8.1)

Nxθ = Nθx = C

(
1 − ν

2

)
ε0
xθ

= C

(
1 − ν

2

)(
1

x sin α0

∂u

∂θ
+ ∂v

∂x
− v

x

)
(E15.8.2)

Nθθ = C(ε0
θθ + νε0

xx)

= C

(
1

x sin α0

∂v

∂θ
+ u

x
+ w

x tan α0
+ ν

∂u

∂x

)
(E15.8.3)

where C is given by Eq. (15.134). The moment resultants are given by Eqs. (15.143),
(15.145), and (15.146). Using the strain–displacement relations of Example 15.5, the
moment resultants can be expressed as

Mxx = D(kxx + νkθθ )

= D

[
−∂2w

∂x2
+ ν

(
cos α0

x2 sin2 α0

∂v

∂θ
− 1

x2 sin2 α0

∂2w

∂θ2
− 1

x

∂w

∂x

)]
(E15.8.4)

Mθθ = D(kθθ + νkxx)

= D

(
cos α0

x2 sin2 α0

∂v

∂θ
− 1

x2 sin2 α0

∂2w

∂θ2
− 1

x

∂w

∂x
−ν

∂2w

∂x2

)
(E15.8.5)

Mxθ = Mθx = D

(
1 − ν

2

)
kxθ

= D

(
1 − ν

2

)(
1

x tan α0

∂v

∂x
− 2v

x2 tan α0
− 1

x sin α0

∂2w

∂θ2
+ 2

x2 sin α0

∂w

∂θ

)
(E15.8.6)

where D is given by Eq. (15.144).

2For a circular conical shell, u, v, and w denote the components of displacement along the generator (x),
circumferential (θ ), and radial (z) directions, respectively, as shown in Fig. 15.11.
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Figure 15.11 Components of displacement in a circular
conical shell. u, v, and w are along the x, θ , and z directions.

Example 15.9 Express the force and moment resultants in terms of displacements
for a spherical shell.

SOLUTION Using the force resultant–membrane strain relations given by Eqs.
(15.135), (15.136) and (15.138), and the strain–displacement relations given in Exam-
ple 15.6, the force resultants can be expressed as

Nφφ = C(ε0
φφ + νε0

θθ )

= C

[
1

R

∂u

∂φ
+ w

R
+ ν

(
1

R sin φ

∂v

∂θ
+ u cot φ

R
+ w

R

)]
(E15.9.1)

Nφθ = Nθφ = C

(
1 − ν

2

)
εφθ

= C

(
1 − ν

2

)(
1

R sin φ

∂u

∂θ
+ 1

R

∂v

∂φ
− v cot φ

R

)
(E15.9.2)

Nθθ = C(ε0
θθ + νε0

φφ)

= C

[
1

R sin φ

∂u

∂θ
+ 1

R

∂v

∂φ
− v cot φ

R
+ ν

(
u

R
− 1

R

∂w

∂φ

)]
(E15.9.3)

where C is given by Eq. (15.134). Using the moment resultant–bending strain relations
given by Eqs. (15.143), (15.145), and (15.146) and the strain–displacement relations
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given in Example 15.6, the moment resultants can be expressed as3

Mφφ = D(kφφ + νkθθ )

= D

[
1

R2

∂u

∂φ
− 1

R2

∂2w

∂φ2
+ ν

(
1

R2 sin φ

∂v

∂θ
− 1

R2 sin2 φ

∂2w

∂θ2

+ cot φ

R2
u − cos φ

R2

∂w

∂φ

)]
(E15.9.4)

Mθθ = D(kθθ + νkφφ)

= D

[
1

R2 sin φ

∂v

∂θ
− 1

R2 sin2 φ

∂2w

∂θ2
+ cot φ

R2
u

− cot φ

R2

∂w

∂φ
+ ν

(
1

R2

∂u

∂φ
− 1

R2

∂2w

∂φ2

)]
(E15.9.5)

Mφθ = Mθφ = D

(
1 − ν

2

)
kφθ

= D

(
1 − ν

2

)(
1

R2 sin φ

∂u

∂θ
− 1

R2 sin φ

∂2 w

∂φ ∂θ

+ 1

R2

∂v

∂φ
− 1

R2 sin φ

∂2 w

∂φ ∂θ
+ cos φ

R2 sin2 φ

∂w

∂θ
−cot φ

R2
v + cot φ

R2 sin φ

∂w

∂θ

)
(E15.9.6)

where D is given by Eq. (15.144).

15.6 STRAIN ENERGY, KINETIC ENERGY, AND WORK DONE
BY EXTERNAL FORCES

To derive the equations of motion of the shell using Hamilton’s principle, the expres-
sions for strain energy, kinetic energy, and work done by the external forces are
required. These expressions are derived in this section.

15.6.1 Strain Energy

The strain energy density or strain energy per unit volume of an elastic body is given by

π0 = 1
2 (σ11ε11 + σ22ε22 + σ33ε33 + σ12ε12 + σ23ε23 + σ31ε31) (15.147)

The strain energy (π) of the shell can be found by integrating the strain energy density
over the volume of the shell:

π = 1

2

∫∫∫
V

(σ11ε11 + σ22ε22 + σ33ε33 + σ12ε12 + σ23ε23 + σ31ε31) dV (15.148)

3For a spherical shell, u, v, and w denote the components of displacement along the φ, θ , and z directions,
respectively, as shown in Fig. 15.12.
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Figure 15.12 Components of displacement in a
spherical shell. u, v, and w are along the φ, θ , and
z directions.

where the volume of an infinitesimal shell element is given by

dV = dsα dsβ dz =
[
A

(
1 + z

Rα

)
dα

] [
B

(
1 + z

Rβ

)
dβ

]
dz (15.149)

By neglecting the quantities z/Rα and z/Rβ in comparison to 1, Eq. (15.149) can be
expressed as

dV = AB dα dβ dz (15.150)

Note that the transverse normal stress σ33 is assumed to be zero according to Love’s
third assumption in Eq. (15.148). At the same time, the transverse shear strains ε23

and ε31 are retained in Eq. (15.148) although they were assumed to be zero earlier
[Eqs. (15.99) and (15.100)]. By substituting Eqs. (15.91), (15.92), (15.95), (15.96) and
(15.98), respectively, for the strains ε13, ε23, ε11, ε22, and ε12, and Eq. (15.150) for dV

into Eq. (15.148), we obtain the strain energy of the shell as

π = 1

2

∫
α

∫
β

∫
z

{
σ11

[
1

A

(
∂u

∂α
+ z

∂θ1

∂α

)
+ 1

AB

∂A

∂β
(v + zθ2) + w

Rα

]

+ σ22

[
1

B

(
∂v

∂β
+ z

∂θ2

∂β

)
+ 1

AB

∂B

∂α
(u + zθ1) + w

Rβ

]

+ σ12

[
1

B

∂u

∂β
− u

AB

∂A

∂β
+ z

B

∂θ1

∂β
− zθ1

AB

∂A

∂β

+ 1

A

∂v

∂α
− v

AB

∂B

∂α
+ z

A

∂θ2

∂α
− zθ2

AB

∂B

∂α

]
+ σ23

(
θ2 − v

Rβ

+ 1

B

∂w

∂β

)

+ σ31

(
θ1 − u

Rα

+ 1

A

∂w

∂α

)}
AB dα dβ dz (15.151)

Performing the integration with respect to z and using the definitions of the force and
moment resultants given in Eqs. (15.135)–(15.139), (15.143), (15.145), and (15.146),
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the strain energy [Eq. (15.151)] can be expressed as

π = 1

2

∫
α

∫
β

(
N11B

∂u

∂α
+ M11B

∂θ1

∂α
+ N11

∂A

∂β
v + M11

∂A

∂β
θ2 + N11AB

w

Rα

+ N22A
∂v

∂β
+ M22A

∂θ2

∂β
+ N22

∂B

∂α
u + M22

∂B

∂α
θ1 + N22AB

w

Rβ

+ N12A
∂u

∂β
− N12

∂A

∂β
u + M12A

∂θ1

∂β
− M12

∂A

∂β
θ1

+ N12B
∂v

∂α
− N12

∂B

∂α
v + M12B

∂θ2

∂α
− M12

∂B

∂α
θ2

+ Q23ABθ2 − Q23AB
v

Rβ

+ Q23A
∂w

∂β

+ Q13ABθ1 − Q13AB
u

Rα

+ Q13B
∂w

∂α

)
dα dβ (15.152)

15.6.2 Kinetic Energy

The kinetic energy of an infinitesimal element of the shell can be expressed as

dT = 1

2
ρ(u̇

2 + v̇
2 + ẇ

2
) dV (15.153)

where ρ indicates the density of the shell and a dot over a symbol denotes the deriva-
tive with respect to time. By substituting Eqs. (15.85)–(15.87) for u, v, and w into
Eq. (15.153), and integrating the resulting expression over the volume of the shell, we
obtain the total kinetic energy of the shell as

T = 1

2
ρ

∫
α

∫
β

∫
z

[u̇2 + v̇2 + ẇ2 + α2
3(θ̇

2
1 + θ̇2

2 )

+ 2α3(u̇θ̇1 + v̇θ̇2) ]AB

(
1 + z

Rα

)(
1 + z

Rβ

)
dα dβ dz (15.154)

By neglecting the terms z/Rα and z/Rβ in comparison to 1 in Eq. (13.154) and per-
forming the integration with respect to z between the limits −h/2 to h/2 yields

T = 1

2
ρ

∫
α

∫
β

[
h(u̇2 + v̇2 + ẇ2) + h3

12
(θ̇2

1 + θ̇2
2 )

]
AB dα dβ (15.155)

15.6.3 Work Done by External Forces

The work done by external forces (W ) indicates the work done by the components
of the distributed loads fα, fβ , and fz along the α, β, and z directions, respectively,
(shown in Fig. 15.13), and the force and moment resultants acting on the boundaries of
the shell defined by constant values of α and β (shown in Fig. 15.14). All the external
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Figure 15.13 Distributed loads fα , fβ , and fz acting along the α, β, and z directions in the
middle surface of a shell.
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Figure 15.14 Prescribed force and moment resultants at the boundary of a shell.

loads are assumed to act in the middle surface of the shell. The work done (Wd ) by
the components of the distributed load is given by

Wd =
∫

α

∫
β

(fαu + fβv + fzw) ds0
α ds0

β

=
∫

α

∫
β

(fαu + fβv + fzw)AB dα dβ (15.156)

The work done by the boundary force and moment resultants (Wb) can be expressed as

Wb =
∫

α

(N22v + N21u + Q23w + M22θ2 + M21θ1)A dα

+
∫

β

(N11u + N12v + Q13w + M11θ1 + M12θ2)B dβ (15.157)
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where a bar over a symbol denotes a prescribed or specified quantity. Thus, the total
work done (W ) by the external forces is given by

W = Wd + Wb (15.158)

15.7 EQUATIONS OF MOTION FROM HAMILTON’S PRINCIPLE
The generalized Hamilton’s principle can be stated as

δ

∫ t2

t1

L d t = δ

∫ t2

t1

(T − π + W) d t = 0 (15.159)

where L denotes the Lagrangian, and the kinetic energy T , strain energy π , and work
done by external forces, W , are given by Eqs. (15.155), (15.152), and (15.158), respec-
tively. Equation (15.159) is rewritten as∫ t2

t1

(δT − δπ + δW) d t = 0 (15.160)

For convenience, integrals of the variations of T , π , and W are evaluated individually
as described next.

15.7.1 Variation of Kinetic Energy

From Eq. (15.155),
∫ t2
t1

δT d t can be written as∫ t2

t1

δT d t = ρh

∫ t2

t1

∫
α

∫
β

[u̇ δu̇ + v̇ δv̇ + ẇ δẇ

+ h2

12
(θ̇1 δθ̇1 + θ̇2 δθ̇2)

]
AB dα dβ d t (15.161)

The integration of individual terms on the right-hand side of Eq. (15.161) can be carried
by parts. For example, the first term can be evaluated as∫ t2

t1

∫
α

∫
β

u̇δu̇ dα dβ d t =
∫

α

∫
β

dα dβ

∫ t2

t1

∂u

∂t

∂(δu)

∂t
d t

=
∫

α

∫
β

dα dβ

(
−
∫ t2

t1

∂2u

∂t2
δu d t + ∂u

∂t
δu

∣∣∣∣
t2

t1

)
(15.162)

Since the displacement component, u, is specified at the initial and final times (t1 and
t2), its variation is zero at t1 and t2, and hence Eq. (15.162) becomes∫ t2

t1

∫
α

∫
β

u̇δu̇ dα dβ d t = −
∫ t2

t1

∫
α

∫
β

ü δu dα dβ d t (15.163)

Thus, Eq. (15.161) can be expressed as∫ t2

t1

δT d t = −ρh

∫ t2

t1

∫
α

∫
β

[ü δu + v̈ δv + ẅ δw

+ h2

12
(θ̈1 δθ1 + θ̈2 δθ2)

]
AB dα dβ d t (15.164)
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Note that the terms involving θ̈1 and θ̈2 denote the effect of rotatory inertia. By
neglecting the effect of rotatory inertia (as in the case of Euler–Bernoulli or thin
beam theory), Eq. (15.164) can be expressed as∫ t2

t1

δT d t = −ρh

∫ t2

t1

∫
α

∫
β

(ü δu + v̈ δv + ẅ δw)AB dα dβ d t (15.165)

15.7.2 Variation of Strain Energy

From Eq. (15.152),
∫ t2
t1

δπ d t can be written as∫ t2

t1

δπ d t =
∫ t2

t1

∫
α

∫
β

[
N11B

∂(δu)

∂α
+ M11B

∂(δθ1)

∂α

+ N11
∂A

∂β
δv + M11

∂A

∂β
δθ2 + N11

AB

Rα

δw

+ N22A
∂(δv)

∂β
+ M22A

∂(δθ2)

∂β
+ N22

∂B

∂α
δu

+ M22
∂B

∂α
δθ1 + N22

AB

Rβ

δw

+ N12A
∂(δu)

∂β
− N12

∂A

∂β
δu + M12A

∂(δθ1)

∂β

− M12
∂A

∂β
δθ1 + N12B

∂(δv)

∂α
− N12

∂B

∂α
δv

+ M12B
∂(δθ2)

∂α
− M12

∂B

∂α
δθ2 + Q23ABδθ2

− Q23
AB

Rβ

δv + Q23A
∂(δw)

∂β
+ Q13ABδθ1

− Q13
AB

Rα

δu + Q13B
∂(δw)

∂α

]
dα dβ d t (15.166)

The terms involving partial derivatives of variations, δu, δv, δw, δθ1, and δθ2, in
Eq. (15.166) can be evaluated using integration by parts. For example, the first term
can be evaluated as∫ t2

t1

∫
α

∫
β

N11B
∂(δu)

∂α
dα dβ d t

=
∫ t2

t1

[
−
∫

α

∫
β

∂

∂α
(N11B) δu dα dβ +

∫
β

N11Bδu dβ

]
d t (15.167)

where the second term on the right-hand side of Eq. (15.167) denotes the contribution
to the boundary condition. Thus, Eq. (15.166) can be expressed as∫ t2

t1

δπ d t =
∫ t2

t1

∫
α

∫
β

[
− ∂

∂α
(N11B) δu − ∂

∂α
(M11B)δθ1

+ N11
∂A

∂β
δv + M11

∂A

∂β
δθ2 + N11

AB

Rα

δw
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− ∂

∂β
(N22A) δv − ∂

∂β
(M22A) δθ2 + N22

∂B

∂α
δu

+ M22
∂B

∂α
δθ1 + N22

AB

Rβ

δw − ∂

∂β
(N12A) δu

− N12
∂A

∂β
δu − ∂

∂β
(M12A) δθ1 − M12

∂A

∂β
δθ1

− ∂

∂α
(N12B) δv − N12

∂B

∂α
δv − ∂

∂α
(M12B) δθ2

− M12
∂B

∂α
δθ2 + Q23AB δθ2 − Q23

AB

Rβ

δv − ∂

∂β
(Q23A) δw

+Q13AB δθ1 − Q13
AB

Rα

δu − ∂

∂α
(Q13B) δw

]
dα dβ d t

+
∫ t2

t1

∫
α

(N22A δv + M22A δθ2 + N12A δu + M12A δθ1 + Q23Aδw) dα d t

+
∫ t2

t1

∫
β

(N11B δu + M11B δθ1 + N12B δv + M12B δθ2 + Q13B δw) dβ d t

(15.168)

15.7.3 Variation of Work Done by External Forces

From Eq. (15.158),
∫ t2
t1

δW d t can be expressed as

∫ t2

t1

δW d t =
∫ t2

t1

(δWd + δWb) d t =
∫ t2

t1

[∫
α

∫
β

(fα δu + fβ δv + fz δw) AB dα dβ

+
∫

α

(N22 δv + N21 δu + Q23 δw + M22 δθ2 + M21 δθ1)A dα

+
∫

β

(N11 δu + N12 δv + Q13 δw + M11 δθ1 + M12 δθ2)B dβ

]
d t

(15.169)

15.7.4 Equations of Motion

Finally, by substituting Eqs. (15.165), (15.168) and (15.169) into Eq. (15.160), Hamil-
ton’s principle can be expressed as follows:∫ t2

t1

∫
α

∫
β

{[
∂

∂α
(N11B) + ∂

∂β
(N21A) + N12

∂A

∂β

−N22
∂B

∂α
+ Q13

AB

Rα

+ (fα − ρhü)AB

]
δu

+
[
∂(N12B)

∂α
+ ∂(N22A)

∂β
+ N21

∂B

∂α
− N11

∂A

∂β
+ Q23

AB

Rβ

+ (fβ − ρhv̈)AB

]
δv
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+
[
∂(Q13B)

∂α
+ ∂(Q23A)

∂β
− N11

Rα

AB − N22AB

Rβ

+ (fz − ρhẅ)AB

]
δw

+
[

∂

∂α
(M11B) + ∂

∂β
(M21A) − M22

∂B

∂α
+ M12

∂A

∂β
− Q13AB

]
δθ1

+
[

∂

∂α
(M12B) + ∂

∂β
(M22A) − M11

∂A

∂β
+ M21

∂B

∂α
− Q23AB

]
δθ2

}
dα dβ d t

+
∫ t2

t1

∫
α

[(N21 − N21) δu + (N22 − N22) δv + (Q23 − Q23) δw

+ (M22 − M22) δθ2 + (M21 − M21) δθ1]A dα d t

+
∫ t2

t1

∫
β

[(N11 − N11)δu + (N12 − N12) δv + (Q13 − Q13) δw

+ (M11 − M11) δθ1 + (M12 − M12) δθ2]B dβ d t = 0 (15.170)

To satisfy Eq. (15.170), the terms involving the triple and double integrals must be set
equal to zero individually. By setting the term involving the triple integral equal to
zero, we can obtain the equations of motion of the shell. When the terms involving
the double integrals are set equal to zero individually, we can derive the boundary
conditions of the shell. First we set the triple integral term equal to zero.∫ t2

t1

∫
α

∫
β

{[
∂

∂α
(N11B) + ∂

∂β
(N21A) + N12

∂A

∂β

−N22
∂B

∂α
+ Q13

AB

Rα

+ (fα − ρhü)AB

]
δu

+
[
∂(N12B)

∂α
+ ∂(N22A)

∂β
+ N21

∂B

∂α
− N11

∂A

∂β
+ Q23

AB

Rβ

+ (fβ − ρhv̈)AB

]
δv

+
[
∂(Q13B)

∂α
+ ∂(Q23A)

∂β
− N11

Rα

AB − N22AB

Rβ

+ (fz − ρhẅ)AB

]
δw

+
[

∂

∂α
(M11B) + ∂

∂β
(M21A) − M22

∂B

∂α
+ M12

∂A

∂β
− Q13AB

]
δθ1

+
[

∂

∂α
(M12B) + ∂

∂β
(M22A) − M11

∂A

∂β
+ M21

∂B

∂α

− Q23AB

]
δθ2

}
dα dβ d t = 0 (15.171)

In Eq. (15.171), the variations of displacements, δu, δv, δw, δθ1, and δθ2, are arbitrary
and hence their coefficients must be equal to zero individually. This yields the following
equations, also known as Love’s equations:

−∂(N11B)

∂α
− ∂(N21A)

∂β
− N12

∂A

∂β
+ N22

∂B

∂α
− AB

Q13

Rα

+ ABρhü = ABfα

(15.172)
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−∂(N12B)

∂α
− ∂(N22A)

∂β
− N21

∂B

∂α
+ N11

∂A

∂β
− AB

Q23

Rβ

+ ABρhv̈ = ABfβ (15.173)

−∂(Q13B)

∂α
− ∂(Q23A)

∂β
+ AB

(
N11

Rα

+ N22

Rβ

)
+ ABẅ = ABfz (15.174)

∂(M11B)

∂α
+ ∂(M21A)

∂β
+ M12

∂A

∂β
− M22

∂B

∂α
− Q13AB = 0 (15.175)

∂(M12B)

∂α
+ ∂(M22A)

∂β
+ M12

∂B

∂α
− M11

∂A

∂β
− Q23AB = 0 (15.176)

Here Eqs. (15.172)–(15.174) denote the equations of motion of the shell for motions
in the α, β, and z directions, respectively, and Eqs. (15.175) and (15.176) indicate how
the transverse shear force resultants Q13 and Q23 are related to the various moment
resultants.

15.7.5 Boundary Conditions

Next, each of the terms involving the double integral is set equal to zero in Eq. (15.170)
to obtain ∫ t2

t1

∫
α

[(N21 − N21) δu + (N22 − N22) δv + (Q23 − Q23) δw

+ (M21 − M21) δθ1 + (M22 − M22) δθ2]A dα d t = 0 (15.177)∫ t2

t1

∫
β

[(N11 − N11) δu + (N12 − N12) δv + (Q13 − Q13) δw

+ (M11 − M11) δθ1 + (M12 − M12) δθ2]B dβ d t = 0 (15.178)

It appears that Eqs. (15.177) and (15.178) will be satisfied only if either the variation
of the displacement component (δu, δv, δw, δθ1, or δθ2) or its coefficient is zero in
each of these equations:

N21 − N21 = 0 or δu = 0
N22 − N22 = 0 or δv = 0
Q23 − Q23 = 0 or δw = 0
M21 − M21 = 0 or δθ1 = 0
M22 − M22 = 0 or δθ2 = 0




at β = β = constant (15.179)

N11 − N11 = 0 or δu = 0
N12 − N12 = 0 or δv = 0
Q13 − Q13 = 0 or δw = 0
M11 − M11 = 0 or δθ1 = 0
M12 − M12 = 0 or δθ2 = 0




at α = α = constant (15.180)

Equations (15.179) and (15.180) indicate that there are 10 boundary conditions for
the problem. However, from the force resultant/moment resultant–stress relations,
stress–strain relations, and strain-displacement relations, we can find that the three
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equations of motion, Eqs. (15.172)–(15.174), together involve partial derivatives of
order 8 involving spatial variables. This indicates that we can have only four boundary
conditions on any edge. Before developing the actual boundary conditions, we assume
that the boundaries coincide with the coordinate curves, that is, the α and β coordinates.

Let a boundary of the shell be defined by the line β = β = constant. The five force
resultants (including the moment resultants) acting on this boundary are given by N21,
N22, Q23, M21, and M22. The deformation on this boundary is characterized by the five
displacements (including the slopes), u,v,w,θ1, and θ2, which correspond to N21, N22,
Q23, M21, and M22, respectively. Equations (15.179) indicate that either one of the five
force resultants or its corresponding displacement must be prescribed on the boundary,
β = β = constant. However, this is not true because the five quantities indicated (either
force resultants or the displacements) are not independent. For example, the slope θ2

is related to the displacements w and v in order to preserve the normal to the middle
surface after deformation to satisfy Kirchhoff’s hypothesis (Love’s fourth assumption).
Thus, the number of independent displacements (and hence the corresponding gen-
eralized forces) will only be four. Hence, only four boundary conditions need to be
prescribed on each edge of the shell. To identify the four boundary conditions for the
edge, β = β = constant, we rewrite Eq. (15.177) by expressing θ1 in terms of u and
w using Eq. (15.93) as

∫ t2

t1

∫
α

{(N21 − N21) δu + (N22 − N22) δv + (Q23 − Q23) δw

+ (M21 − M21)

[
δu

Rα

− 1

A

∂

∂α
(δw)

]
+ (M22 − M22) δθ2

}
A dα d t = 0 (15.181)

The term involving ∂(δw)/∂α can be integrated by parts as

∫ t2

t1

∫
α

(M21 − M21)
∂(δw)

∂α
dα d t

=
∫ t2

t1

[
(M21 − M21) δw|α −

∫
α

∂

∂α
(M21 − M21) δw dα

]
d t (15.182)

where the first term on the right-hand side is equal to zero since M21 = M21 along
the edge on which α varies. Using the resulting equation (15.182) in Eq. (15.181) and
collecting the coefficients of the variations δu, δv, δw, and δθ2, we obtain

∫ t2

t1

∫
α

{[(
N21 + M21

Rα

)
−
(

N21 + M21

Rα

)]
δu + (N22 − N22) δv

+
[(

Q23 + 1

A

∂M21

∂α

)
−
(

Q23 + 1

A

∂M21

∂α

)]
δw

+(M22 − M22) δθ2

}
A dα d t = 0 (15.183)
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A similar procedure can be used with Eq. (15.178) by expressing θ2 in terms of v and
w using Eq. (15.94) to obtain∫ t2

t1

∫
β

{
(N11 − N11) δu +

[(
N12 + M12

Rβ

)
−
(

N12 + M12

Rβ

)]
δv

+
[(

Q13 + 1

B

∂M12

∂β

)
−
(

Q13 + 1

B

∂M12

∂β

)]
δw

+ (M11 − M11) δθ1

}
B dβ d t = 0 (15.184)

Defining the effective inplane shear force resultants F12 and F21 as

F12 = N12 + M12

Rβ

(15.185)

F21 = N21 + M21

Rα

(15.186)

and the effective transverse shear force resultants V13 and V23 as

V13 = Q13 + 1

B

∂M12

∂β
(15.187)

V23 = Q23 + 1

A

∂M21

∂α
(15.188)

Eqs. (15.183) and (15.184) can be expressed as∫ t2

t1

∫
α

[(F 21 − F21) δu + (N22 − N22) δv

+ (V 23 − V23) δw + (M22 − M22) δθ2]A dα d t = 0 (15.189)∫ t2

t1

∫
β

[(N11 − N11) δu + (F 12 − F12) δv + (V 13 − V13) δw

+ (M11 − M11) δθ1]B dβ d t = 0 (15.190)

Equations (15.189) and (15.190) will be satisfied only when each of the displacement
variations or its coefficient will be zero. Noting that the variation in a displacement
will be zero only when the displacement is prescribed, the boundary conditions can be
stated as follows:

F21 = F 21 or u = u

N22 = N22 or v = v

V23 = V 23 or w = w

M22 = M22 or θ2 = θ2


 at β = β = constant (15.191)

N11 = N11 or u = u

F12 = F 12 or v = v

V13 = V 13 or w = w

M11 = M11 or θ1 = θ1


 at α = α = constant (15.192)
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where u, v, w, θ1, and θ2 denote the prescribed values of u, v, w, θ1, and θ2, respec-
tively. Equations (15.191) and (15.192) represent the four independent boundary con-
ditions to be satisfied in solving the equations of motion of shells. The boundary
conditions for some of the commonly encountered edges can be stated as follows:

1. For the edge defined by β = β = constant:

(a) Clamped or fixed edge:

u = 0 v = 0, w = 0, θ2 = 0 (15.193)

(b) Hinged or simply supported edge with the support free to move in the
normal direction:

u = 0, v = 0, M22 = 0, V23 = 0 (15.194)

(c) Hinged or simply supported edge with no motion permitted in the normal
direction:

u = 0, v = 0, w = 0, M22 = 0 (15.195)

(d) Free edge:

N22 = 0, F21 = 0, V23 = 0, M22 = 0 (15.196)

2. For the edge defined by α = α = constant:

(a) Clamped or fixed edge:

u = 0, v = 0, w = 0, θ1 = 0 (15.197)

(b) Hinged or simply supported edge with the support free to move in the
normal direction:

u = 0, v = 0, M11 = 0, V13 = 0 (15.198)

(c) Hinged or simply supported edge with no motion permitted in the normal
direction:

u = 0, v = 0, w = 0, M11 = 0 (15.199)

(d) Free edge:

N11 = 0, F12 = 0, V13 = 0, M11 = 0 (15.200)

15.8 CIRCULAR CYLINDRICAL SHELLS

For a cylindrical shell, x, θ , and z are used as the independent coordinates, as shown
in Fig. 15.10. The components of displacement parallel to the x, θ and z directions are
denoted as u, v and w, respectively. The radius of the shell is assumed to be R. The
parameters of the shell are given by (see Example 15.1):

α = x, A = 1, β = θ, B = R (15.201)

The radius of curvatures of the x and θ lines are given by

Rα = Rx = ∞, Rβ = Rθ = R (15.202)
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15.8.1 Equations of Motion

The equations of motion, Eqs. (15.172)–(15.174) reduce to

∂Nx,x

∂x
+ 1

R

∂Nθx

∂θ
+ fx = ρhü (15.203)

∂Nxθ

∂x
+ 1

R

∂Nθθ

∂θ
+ Qθz

R
+ fθ = ρhv̈ (15.204)

∂Qxz

∂x
+ 1

R

∂Qθz

∂θ
− Nθθ

R
+ fz = ρhẅ (15.205)

The relations between the transverse shear force resultants and the moment resultants,
Eqs. (15.175) and (15.176), reduce to

Qxz = ∂Mxx

∂x
+ 1

R

∂Mθx

∂θ
(15.206)

Qθz = ∂Mxθ

∂x
+ 1

R

∂Mθθ

∂θ
(15.207)

Using Eqs. (E15.7.5)–(E15.7.7), Qxz and Qθz [Eqs. (15.206) and (15.207)] can be
expressed as

Qxz = D

(
∂2θx

∂x2
+ 1 − ν

2R2

∂2θx

∂θ2
+ 1 + ν

2R

∂2θθ

∂x ∂θ

)
(15.208)

Qθz = D

(
1 − ν

2

∂2θθ

∂x2
+ 1

R2

∂2θθ

∂θ2
+ 1 + ν

2R

∂2θx

∂x ∂θ

)
(15.209)

Substituting Eqs. (E15.4.1) and (E15.4.2) into Eqs. (15.208) and (15.209) leads to

Qxz = D

(
−∂3w

∂x3
+ 1 + ν

2R2

∂2v

∂x∂θ
− 1

R2

∂3w

∂x∂θ2

)
(15.210)

Qθz = D

(
1 − ν

2R

∂2v

∂x2
+ 1

R3

∂2v

∂θ2
− 1

R3

∂3w

∂θ3
− 1

R

∂3w

∂x2 ∂θ

)
(15.211)

Finally, using Eqs. (E15.7.1)–(E15.7.3) and (E15.7.5)–(E15.7.7) and Eqs. (15.210)
and (15.211), the equations of motion, Eqs. (15.203)–(15.205), can be expressed in
terms of the displacement components u,v, and w as

C

(
∂2u

∂x2
+ 1 − ν

2R2

∂2u

∂θ2
+ ν

R

∂w

∂x
+ 1 + ν

2R

∂2v

∂x ∂θ

)
+ fx = ρhü (15.212)

C

(
1 − ν

2

∂2v

∂x2
+ 1

R2

∂2v

∂θ2
+ 1

R2

∂w

∂θ
+ 1 + ν

2R

∂2u

∂x ∂θ

)

+ D

(
1 − ν

2R2

∂2v

∂x2
+ 1

R4

∂2v

∂θ2
− 1

R4

∂3w

∂θ3
− 1

R2

∂3w

∂x2 ∂θ

)
+ fθ = ρhv̈ (15.213)

D

(
−∂4w

∂x4
+ 1

R2

∂3v

∂x2 ∂θ
− 2

R2

∂4w

∂x2 ∂θ2
− 1

R4

∂4w

∂θ4
+ 1

R4

∂3v

∂θ3

)

− C

(
1

R2

∂v

∂θ
+ w

R2
+ ν

R

∂u

∂x

)
+ fz = ρhẅ (15.214)
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15.8.2 Donnell–Mushtari–Vlasov Theory

The equations of motion of a cylindrical shell, Eqs. (15.212)–(15.214), can be simpli-
fied using the Donnell–Mushtari–Vlasov (DMV) theory. The following assumptions
are made in the DMV theory in the context of vibration of cylindrical shells:

1. The contribution of in-plane displacements u and v to the bending strain param-
eters k11, k22, and k12 [in Eqs. (E15.4.6)–(E15.4.8)] is negligible.

2. The effect of the shear term (1/R)Qθz in the equation of motion correspond-
ing to v [Eq. (15.204)] is negligible. This is equivalent to neglecting the term
involving D in Eq. (15.213).

The equations of motion corresponding to the DMV theory can be expressed as
follows:

∂2u

∂x2
+ 1 − ν

2R2

∂2u

∂θ2
+ ν

R

∂w

∂x
+ 1 + ν

2R

∂2v

∂x ∂θ
= (1 − ν2)ρ

E

∂2u

∂t2
(15.215)

1 − ν

2

∂2v

∂x2
+ 1

R2

∂2v

∂θ2
+ 1

R2

∂w

∂θ
+ 1 + ν

2R

∂2u

∂x ∂θ
= (1 − ν2)ρ

E

∂2v

∂t2
(15.216)

−
(

ν

R

∂u

∂x
+ 1

R2

∂v

∂θ
+ w

R2

)

− h2

12

(
∂4w

∂x4
+ 2

R2

∂4w

∂x2 ∂θ2
+ 1

R4

∂4w

∂θ4

)
= (1 − ν2)ρ

E

∂2w

∂t2
(15.217)

15.8.3 Natural Frequencies of Vibration According to DMV Theory

Let the circular cylindrical shell, of length l, be simply supported on its edges as shown
in Fig. 15.15(a). The boundary conditions of the shell, simply supported at x = 0 and
x = l, can be stated as follows:

v(0, θ, t) = 0 (15.218)

w(0, θ, t) = 0 (15.219)

Nxx(0, θ, t) = C

(
∂u

∂x
+ ν

R

∂v

∂θ
+ ν

R
w

)
(0, θ, t) = 0 (15.220)

Mxx(0, θ, t) = D

(
−∂2w

∂x2
+ ν

R2

∂v

∂θ
− ν

R2

∂2w

∂θ2

)
(0, θ, t) = 0 (15.221)

v(l, θ, t) = 0 (15.222)

w(l, θ, t) = 0 (15.223)

Nxx(l, θ, t) = C

(
∂u

∂x
+ ν

R

∂v

∂θ
+ ν

R
w

)
(l, θ, t) = 0 (15.224)

Mxx(l, θ, t) = D

(
−∂2w

∂x2
+ ν

R2

∂v

∂θ
− ν

R2

∂2w

∂θ2

)
(l, θ, t) = 0 (15.225)
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m = 4 n = 6

l

R

(a)

(b)

Figure 15.15 (a) Cylindrical shell (simply supported); (b) Displacement pattern during
vibration.

The solution of the equations of motion corresponding to DMV theory, Eqs. (15.215)–
(15.217), is assumed to be in the following form:

u(x, θ) =
∑
m

∑
n

Amn cos
mπx

l
cos nθ cos ωt (15.226)

v(x, θ) =
∑
m

∑
n

Bmn sin
mπx

l
sin nθ cos ωt (15.227)

w(x, θ) =
∑
m

∑
n

Cmn sin
mπx

l
cos nθ cos ωt (15.228)

where m is the number of half-waves of displacement in the length of shell, n is
the number of half-waves of displacement in the circumference of the shell [see
Fig. 15.15(b)], and Amn, Bmn, and Cmn are constants. Note that the assumed solution
[Eqs. (15.226)–(15.228)] satisfies the boundary conditions [Eqs. (15.218)–(15.225)]
as well as the periodicity condition in the circumferential (θ ) direction. Substituting
Eqs. (15.226)–(15.228) into the equations of motion, Eqs. (15.215)–(15.217), yields
the following equations:

(−λ2 − a1n
2 + �)Amn + (a2λn)Bmn + (νλ)Cmn = 0 (15.229)

(a2λn)Amn + (−a1λ
2 − n2 + �)Bmn + (−n)Cmn = 0 (15.230)

(νλ)Amn + (−n)Bmn + (−1 − λ4µ − 2λ2n2µ − n4µ + �)Cmn = 0 (15.231)

where

λ = mπR

l
(15.232)

µ = h2

12R2
(15.233)
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� = (1 − ν2)R2ρ

E
ω2 (15.234)

a1 = 1 − ν

2
(15.235)

a2 = 1 + ν

2
(15.236)

For a nontrivial solution of the constants Amn, Bmn, and Cmn, the determinant of their
coefficient matrix in Eqs. (15.229)–(15.231) must be zero. This leads to∣∣∣∣∣∣

−λ2 − a1n
2 + � a2λn νλ

a2λn −a1λ
2 − n2 + � −n

νλ −n −1 − λ4µ − 2λ2n2µ − n4µ + �)

∣∣∣∣∣∣ = 0

(15.237)

The expansion of Eq. (15.237) leads to the frequency equation

�3 + b1�
2 + b2� + b3 = 0 (15.238)

where

b1 = −λ2(1 + a1 + 2n2µ) − n2(1 + a1) − λ4µ − n4µ − 1 (15.239)

b2 = λ6µ(1 + a1) + λ4(a1 + 3n2µ + 3a1n
2µ)

+ λ2(1 + n2 + a2
1n

2 − a2
2n

2 − ν2 + a1 + 3a1n
4µ + 3n4µ)

+ n6µ(1 + a1) + n4a1 + n2a1 (15.240)

b3 = −λ8a1µ − λ6n2µ(1 + 2a1 − a2
2 + a2

1)

− λ4(a1 + 2a1n
4µ + 2a2

1n
4µ + 2n4µ − 2a2

2n
4µ − a2ν

2)

− λ2[n6µ(1 + a2
1 + 2a1 − a2

2) + n2(−a2
2 + a2

1 + 2a2ν − ν2)] − n8a1µ (15.241)

It can be seen that Eq. (15.238) is a cubic equation in � and that the coefficients b1, b2,
and b3 depend on the material properties (E, ν and ρ), geometry (R, l, and h), and the
vibration mode (m and n). It can be shown that all the roots of Eq. (15.238) are always
real and the positive square roots of � can be used to find the natural frequencies of
the shell. Thus, there will be three values of the natural frequency (ω) for any specific
combination of values of m and n. For any specific natural frequency of vibration
(ω), the ratio between the amplitudes, (e.g., Bmn/Amn and Cmn/Amn) can be computed
from any two of the equations among Eqs. (15.229)–(15.231). These ratios provide the
ratios between the amplitudes of the longitudinal, tangential, and normal displacements
of the shell for any specific natural frequency ω.

15.8.4 Natural Frequencies of Transverse Vibration According to DMV Theory

It has been observed that, of the three natural frequencies given by Eq. (15.238), the
frequency corresponding to the transverse mode of vibration will have the smallest
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Table 15.1 Natural Frequencies of Transverse Vibration of a
Cylindrical Shell (h = 0.1in.)

Mode shape Natural frequency (rad/s)

m n From Eq. (15.238) From Eq. (15.243)

1 1 5, 187.4575 6, 567.4463
1 2 2, 298.6262 2, 494.8096
1 3 1, 295.3844 1, 360.8662
2 1 11, 446.168 13, 839.495
2 2 6, 632.3569 7, 386.4487
2 3 3, 984.2207 4, 267.3979
3 1 15, 160.400 16, 958.043
3 2 10, 466.346 11, 527.878
3 3 7, 072.3271 7, 612.5889

value. Hence the square and cubic terms of � will be comparatively small and can be
neglected in Eq. (15.238). This gives the approximate value of � as

� ≈ −b3

b2
(15.242)

or

ω2 = E�

(1 − ν2)R2ρ
≈ − Eb3

(1 − ν2)R2ρb2
(15.243)

Example 15.10 Find the natural frequencies of vibration of a circular cylindrical
shell simply supported at x = 0 and x = l, using DMV theory for the following data:
E = 30 × 106 psi, ν = 0.3, ρ = 7.324 × 10−4 lb-sec2/in4, R = 10 in, l = 40 in, and
h = 0.1 in

SOLUTION The natural frequencies computed using DMV theory [Eqs. (15.238)
and (15.243)] are given in Table 15.1. Only the smallest natural frequency given by
Eq. (15.238), corresponding to the transverse mode, is given. It can be seen that the
natural frequencies given by Eq. (15.243) are slightly larger than the corresponding
values given by the DMV theory.

15.8.5 Natural Frequencies of Vibration According to Love’s Theory

Consider a cylindrical shell of radius R, length l, and simply supported at both ends,
x = 0 and x = l. The boundary conditions are given by Eqs. (13.218)–(13.225). In
the absence of external forces (fx = fθ = fz = 0), the equations of motion, Eqs.
(13.212)–(13.214), reduce to

C

(
∂2u

∂x2
+ 1 − ν

2R2

∂2u

∂θ2
+ ν

R

∂w

∂x
+ 1 + ν

2R

∂2v

∂x ∂θ

)
= ρhü (15.244)

C

(
1 − ν

2

∂2v

∂x2
+ 1

R2

∂2v

∂θ2
+ 1

R2

∂w

∂θ
+ 1 + ν

2R

∂2u

∂x ∂θ

)

+ D

R2

(
1 − ν

2

∂2v

∂x2
+ 1

R2

∂2v

∂θ2
− 1

R2

∂3w

∂θ3
− ∂3w

∂x2 ∂θ

)
= ρhv̈ (15.245)
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C

(
− 1

R2

∂v

∂θ
− w

R2
− ν

R

∂u

∂x

)

+ D

R2

(
−R2 ∂4w

∂x4
+ ∂3v

∂x2 ∂θ
− 2

∂4w

∂x2 ∂θ2
− 1

R2

∂4w

∂θ4
+ 1

R2

∂3v

∂θ3

)
= ρhẅ (15.246)

The solution is assumed to be harmonic during free vibration as

u(x, θ, t) = U(x, θ)eiωt (15.247)

v(x, θ, t) = V (x, θ)eiωt (15.248)

w(x, θ, t) = W(x, θ)eiωt (15.249)

where ω is the frequency of vibration. In view of Eqs. (15.247)–(15.249), the boundary
conditions, Eqs. (15.218)–(15.225), can be stated as

V (0, θ) = 0 (15.250)

W(0, θ) = 0 (15.251)(
−∂2W

∂x2
+ ν

R2

∂V

∂θ
− ν

R2

∂2W

∂θ2

)
(0, θ) = 0 (15.252)

(
∂U

∂x
+ ν

R

∂V

∂θ
+ ν

R
W

)
(0, θ) = 0 (15.253)

V (l, θ) = 0 (15.254)

W(l, θ) = 0 (15.255)(
−∂2W

∂x2
+ ν

R2

∂V

∂θ
− ν

R2

∂2W

∂θ2

)
(l, θ) = 0 (15.256)

(
∂U

∂x
+ ν

R

∂V

∂θ
+ ν

R
W

)
(l, θ) = 0 (15.257)

Substitution of Eqs. (15.247)–(15.249) into Eqs. (15.244)–(15.246) leads to

C

(
∂2U

∂x2
+ 1 − ν

2R2

∂2U

∂θ2
+ ν

R

∂W

∂x
+ 1 + ν

2R

∂2V

∂x ∂θ

)
+ ρhω2U = 0 (15.258)

C

(
1 − ν

2

∂2V

∂x2
+ 1

R2

∂2V

∂θ2
+ 1

R2

∂W

∂θ
+ 1 + ν

2R

∂2U

∂x ∂θ

)

+ D

R2

(
1 − ν

2

∂2V

∂x2
+ 1

R2

∂2V

∂θ2
− 1

R2

∂3W

∂θ3
− ∂3W

∂x2 ∂θ

)
+ ρhω2V = 0 (15.259)

C

(
− 1

R2

∂V

∂θ
− W

R2
− ν

R

∂U

∂x

)
+ D

R2

(
−R2 ∂4W

∂x4
+ ∂3V

∂x2 ∂θ
− 2

∂4W

∂x2 ∂θ2

− 1

R2

∂4W

∂θ4
+ 1

R2

∂3V

∂θ3

)
+ ρhω2W = 0 (15.260)
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The following solutions are assumed to satisfy the boundary conditions of Eqs. (15.250)
–(15.257):

U(x, θ) = C1 cos
mπx

l
cos n(θ − φ0) (15.261)

V (x, θ) = C2 sin
mπx

l
sin n(θ − φ0) (15.262)

W(x, θ) = C3 sin
mπx

l
cos n (θ − φ0) (15.263)

where C1, C2, and C3 are constants and φ0 is the phase angle. Using Eqs. (15.261)–
(15.263), Eqs. (15.258)–(15.260) can be expressed as

C1

[
−C

(mπ

l

)2
− C

1 − ν

2R2
(n2) + ρhω2

]

+ C2

(
C

1 + ν

2R

mπ

l
n

)
+ C3

(
C

ν

R

mπ

l

)
= 0 (15.264)

C1

(
C

1 + ν

2

mπ

l

n

R

)

+ C2

[
−C

1 − ν

2

(mπ

l

)2
− C

n2

R2
− D

R2

1 − ν

2

(mπ

l

)2
− D

R2

n2

R2
+ ρhω2

]

+ C3

[
−C

n

R2
− D

R2

n3

R2
− D

R2

(mπ

l

)2
n

]
= 0 (15.265)

C1

(
C

ν

R

mπ

l

)
+ C2

[
−C

n

R2
− D

R2

(mπ

l

)2
n − D

R2

n3

R2

]

+ C3

[
− C

R2
− D

(mπ

l

)4
− D

R2
(2)

(mπ

l

)2
n2

− D

R2

n4

R2
+ ρhω2

]
= 0 (15.266)

Equations (15.264)–(15.266) can be written in matrix form as
 ρhω2 − d11 d12 d13

d21 ρhω2 − d22 d23

d31 d32 ρhω2 − d33






C1

C2

C3


 =




0
0
0


 (15.267)

where

d11 = C
(mπ

l

)2
+ C

1 − ν

2

( n

R

)2
(15.268)

d12 = d21 = C
1 + ν

2

mπ

l

n

R
(15.269)

d13 = d31 = C
ν

R

mπ

l
(15.270)

d22 = C
1 − ν

2

(mπ

l

)2
+ C

( n

R

)2
+ D

R2

1 − ν

2

(mπ

l

)2
+ D

R2

( n

R

)2
(15.271)
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d23 = d32 = −Cn

R2
− Dn

R2

(mπ

l

)2
− Dn

R2

( n

R

)2
(15.272)

d33 = C

R2
+ D

(mπ

l

)4
+ 2D

(mπ

l

)2 ( n

R

)2
+ D

( n

R

)4
(15.273)

For a nontrivial solution of C1, C2, and C3, the determinant of their coefficient matrix
in Eq. (15.267) must be equal to zero. This leads to the frequency equation:∣∣∣∣∣∣

ρhω2 − d11 d12 d13

d12 ρhω2 − d22 d23

d13 d23 ρhω2 − d33

∣∣∣∣∣∣ = 0 (15.274)

or

ω6 + p1ω
4 + p2ω

2 + p3 = 0 (15.275)

where

p1 = 1

ρh
(d11 + d22 + d33) (15.276)

p2 = 1

ρ2h2
(d11d22 + d22d33 + d11d33 − d2

12−d2
23 − d2

13) (15.277)

p3 = 1

ρ3h3
(d11d

2
23 + d22d

2
13 + d33d

2
12 + 2d12d23d13−d11d22d33) (15.278)

It can be seen that the frequency equation, Eq. (15.275) is a cubic equation in ω2 (as
in the case of DMV theory).

Example 15.11 Find the natural frequencies of transverse vibration of a circular
cylindrical shell simply supported at x = 0 and x = l using Love’s theory for the
following data: E = 30 × 106 psi, ν = 0.3, ρ = 7.324 × 10−4lb-sec2/in4, R = 10 in.,
l = 40 in., and h = 0.1 in.

SOLUTION The natural frequencies corresponding to transverse vibration of the
shell are given by the smallest roots of Eq. (15.275). The values of ω obtained from
Eq. (15.275) for different combinations of m and n are given in Table 15.2. These
results can be compared with the values given by the DMV theory in Example 15.10.

Table 15.2 Natural Frequencies of Transverse Vibration of a Cylindrical Shell (h = 0.1 in.)

Mode shape Natural frequency Mode shape Natural frequency
m n from Eq. (15.275) (rad/s) m n from Eq. (15.275) (rad/s)

1 1 4,958.2515 2 3 4,105.0059
1 2 2,375.8223 3 1 12,989.213
1 3 1,321.9526 3 2 10,086.031
2 1 9,878.3359 3 3 7,181.8760
2 2 6,595.9062
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15.9 EQUATIONS OF MOTION OF CONICAL AND SPHERICAL
SHELLS

In this section, the general equations of motion of a shell are specialized for circular
conical and spherical shells. The equations of motion are obtained by substituting
the proper values of α, β, A, B, Rα , and Rβ into Love’s equations of motion,
Eqs. (15.172)–(15.176).

15.9.1 Circular Conical Shells
Using α = x, β = θ , A = 1, B = x sin α0, Rα = Rx = ∞, and Rβ = Rθ = x tan α0

(see Example 15.5) and Nx x , Nx θ , Nθ x , Nθ θ , Mx x , Mx θ , Mθ x , Mθ θ , Qx z, and
Qθ z for N11, N12, N21, N22, M11, M12, M21, M22, Q13, and Q23, respectively, in
Eqs. (15.172)–(15.176), we obtain the equations governing the vibration of a conical
shell as follows:

∂Nxx

∂x
+ 1

x sin α0

∂Nθx

∂θ
+ 1

x
(Nxx − Nθθ ) + fx = ρh

∂2u

∂t2
(15.279)

∂Nxθ

∂x
+ 2

x
Nθx + 1

x sin α0

∂Nθθ

∂θ
+ 1

x tan α0
Qθz + fθ = ρh

∂2v

∂t2
(15.280)

∂Qxz

∂x
+ 1

x
Qxz + 1

x sin α0

∂Qθz

∂θ
− 1

x tan α0
Nθθ + fz = ρh

∂2w

∂t2
(15.281)

∂Mxx

∂x
+ Mxx

x
+ 1

x sin α0

∂Mθx

∂θ
− Mθθ

x
− Qxz = 0 (15.282)

∂Mxθ

∂x
+ 2

x
Mθx + 1

x sin α0

∂Mθθ

∂θ
− Qθz = 0 (15.283)

where u, v, and w denote the components of displacement along the x, θ , and z direc-
tions, respectively. By using the expressions of Nxx , Nxθ = Nθx , Nθθ , Mxx , Mxθ = Mθx ,
and Mθθ in terms of the displacements u, v, and w given by Eqs. (E15.8.1)–(E15.8.8) the
equations of motion, Eqs. (15.279)–(15.281) can be expressed in terms of u, v, and w (see
Problem 15.1).

15.9.2 Spherical Shells
Using α = φ, β = θ , A = R, B = R sin φ, Rα = Rφ = R, and Rβ = Rθ = R (see
Example 15.6) and Nφφ , Nφθ , Nθφ , Nθθ , Mφφ , Mφθ , Mθφ , Mθθ , Qφz, and Qθz for N11,
N12, N21, N22, M11, M12, M21, M22, Q13, and Q23, respectively, in Eqs. (15.172)–
(15.176), we obtain the equations governing the vibration of a spherical shell as follows:

∂

∂φ
(Nφφ sin φ) + ∂ Nθφ

∂θ
− Nθθ cos φ + Qφz sin φ

+ Rfφ sin φ = R sin φ ρh
∂2u

∂t2
(15.284)

∂

∂ φ
(Nφθ sin φ) + ∂Nθθ

∂θ
+ Nθφ cos φ + Qθz sin φ

+ Rfθ sin φ = R sin φ ρh
∂2v

∂t2
(15.285)
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∂

∂φ
(Qφz sin φ) + ∂Qθz

∂θ
− (Nφφ + Nθθ ) sin φ

+ Rfz sin φ = R sin φρh
∂2w

∂t2
(15.286)

∂

∂φ
(Mφφ sin φ) + ∂Mθφ

∂θ
− Mθθ cos φ − Qφz R sin φ = 0 (15.287)

∂

∂φ
(Mφθ sin φ) + ∂Mθθ

∂θ
+ Mθφ cos φ − Qθz R sin φ = 0 (15.288)

where u, v, and w denote the components of displacement along the φ, θ , and z direc-
tions, respectively. By using the expressions of Nφφ , Nφθ = Nθφ , Nθθ , Mφφ , Mφθ = Mθφ ,
and Mθθ in terms of the displacements u, v, and w given by Eqs. (E15.9.1)–(E15.9.8) the
equations of motion, Eqs. (15.284)–(15.286), can be expressed in terms of u, v, and w

(see Problem 15.2).

15.10 EFFECT OF ROTARY INERTIA AND SHEAR DEFORMATION
In the vibration of thick shells, the effects of shear deformation and rotary inertia
play an important role. In this section, the equations of motion of a shell are derived
by including the effects of shear deformation and rotary inertia using an approach
similar to that of Timoshenko beams and Mindlin plates [5,14,15]. The effects of shear
deformation and rotary inertia become increasingly important as the thickness of the
shell (or the value of h/Rα or h/Rβ) increases. These effects can be significant even for
thin shells in higher modes. Thus, the effects of shear deformation and rotary inertia can
be significant when dealing with short wavelengths, especially those that have the same
order as the thickness of the shell or less. As in the case of beams and plates, the effect
of shear deformation is incorporated through generalization of the strain–displacement
relations, and the effect of rotary inertia is incorporated through the basic equations of
motion (in the dynamic equilibrium approach).

15.10.1 Displacement Components

The displacement components of an arbitrary point in the shell are assumed to be
given by

u(α, β, z) = u(α, β) + zψ1(α, β) (15.289)

v(α, β, z) = v(α, β) + zψ2(α, β) (15.290)

w(α, β, z) = w(α, β) (15.291)

where ψ1 and ψ2 denote the total angular rotations, including the angular rotations due
to shear, of the normal to the middle surface about the β and α axes, respectively. Note
that ψ1 and ψ2 are different from θ1 and θ2 used in Eqs. (15.85) and (15.86). θ1 and θ2

were used to denote the rotations, with no shear deformation, of the normal to the middle
surface, about the β and α axes, during deformation. Equations (15.289)–(15.291)
assume that straight lines normal to the middle surface remain straight lines after
deformation, even if they no longer are normal. This assumption is consistent with the
Timoshenko beam and Mindlin plate theories.
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15.10.2 Strain–Displacement Relations

When shear deformation is considered, the fourth assumption in Love’s theory (Kirch-
hoff’s hypothesis), which states that normals remain normal, will not be considered.
This implies that Eq. (15.82) is to be dropped and the shear strains εαz and εβz will
no longer be zero. Thus, ψ1 and ψ2 will no longer be related to u, v, and w [as
in Eqs. (15.93) and (15.94)]; they need to be treated as independent variables in
addition to u, v, and w. At the same time, Love’s third assumption, which states
that the transverse normal stress σz z is negligible, is included. Thus, the normal
stress σz z is ignored and the transverse shear strains ε13 and ε23 are retained in the
analysis. The strain–displacement relations in curvilinear coordinates are given by
Eqs. (15.75)–(15.80).

By substituting Eqs. (15.289)–(15.291) into Eqs. (15.75)–(15.80), and imposing
the assumption of Eq. (15.81), the strain–displacement relations can be expressed as

ε11 = ε0
11 + zk11 (15.292)

ε22 = ε0
22 + zk22 (15.293)

ε12 = ε0
12 + zk12 (15.294)

ε23 = ψ2 − v

Rβ

+ 1

B

∂w

∂β
(15.295)

ε13 = ψ1 − u

Rα

+ 1

A

∂w

∂α
(15.296)

ε33 = 0 (15.297)

where ε0
11, ε0

22, and ε0
12 denote membrane strains (which are independent of z) and k11,

k22, and k12 indicate curvatures given by

ε0
11 = 1

A

∂u

∂α
+ v

AB

∂A

∂β
+ w

Rα

(15.298)

ε0
22 = 1

B

∂v

∂β
+ u

AB

∂B

∂α
+ w

Rβ

(15.299)

ε0
12 = B

A

∂

∂α

( v

B

)
+ A

B

∂

∂β

( u

A

)
(15.300)

k11 = 1

A

∂ψ1

∂α
+ ψ2

AB

∂A

∂β
(15.301)

k22 = 1

B

∂ψ2

∂β
+ ψ1

AB

∂B

∂α
(15.302)

k12 = B

A

∂

∂α

(
ψ2

B

)
+ A

B

∂

∂β

(
ψ1

A

)
(15.303)

Notes

1. The shear strains ε23 and ε13 denote the shear strains in the middle surface of
the shell.
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2. Equations (15.295) and (15.296) are set equal to zero in Love’s shell theory,
and ψ1 and ψ2 (θ1 and θ2 in the notation of Love’s shell theory) are expressed in terms
of u, v, and w.

15.10.3 Stress–Strain Relations

The stress–strain relations are given by Eqs. (15.122)–(15.124) and (15.113)–(15.115).
The transverse shear stresses given by Eqs. (15.114) and (15.115) are valid only at the
middle surface of the shell. These stresses must diminish to zero at the free surface of
the shell (at z = ±h/2). The average values of the transverse shear stresses, denoted
σ 13 and σ 23, are defined as

σ 13 = kσ13 = kGε13 (15.304)

σ 23 = kσ23 = kGε23 (15.305)

where k is a constant less than unity, called the shear coefficient.

15.10.4 Force and Moment Resultants

Force and moment resultants due to σ11, σ22, and σ12 are given by Eqs. (15.135),
(15.136), (15.138), (15.143), (15.145), and (15.146):

N11 = C(ε0
11 + νε0

22) (15.306)

N22 = C(ε0
22 + νε0

11) (15.307)

N12 = N21 = 1 − ν

2
Cε0

12 (15.308)

M11 = D(k11 + νk22) (15.309)

M22 = D(k22 + νk11) (15.310)

M12 = M21 = 1 − ν

2
Dk12 (15.311)

where ε0
11, ε0

22, ε0
12, k11, k22, and k12, are given by Eqs. (15.298)–(15.303). The trans-

verse shear force resultants Q13 and Q23 due to σ13 and σ23, respectively, are defined
by [see Eqs. (15.137) and (15.139)]

Q13 =
∫ h/2

−h/2
σ13 dz (15.312)

Q23 =
∫ h/2

−h/2
σ23 dz (15.313)

In view of Eqs. (15.304) and (15.305), Eqs. (15.312) and (15.313) can be written as

Q13 = σ 13h = kGhε13 (15.314)

Q23 = σ 23h = kGhε23 (15.315)
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Noting that the shear strains ε13 and ε23 can be expressed in terms of u,v,w,ψ1 and
ψ2, using Eqs. (15.295) and (15.296), Eqs. (15.314) and (15.315) can be expressed as

Q13 = kGh

(
ψ1 − u

Rα

+ 1

A

∂w

∂α

)
(15.316)

Q23 = kGh

(
ψ2 − v

Rβ

+ 1

B

∂w

∂β

)
(15.317)

15.10.5 Equations of Motion
The generalized Hamilton’s principle is used to derive the equations of motion:

δ

∫ t2

t1

L d t = δ

∫ t2

t1

(T − π + W) d t = 0 (15.318)

The variation of the kinetic energy term in Eq. (15.318), including the effect of rotary
inertia, is given by Eq. (15.164) by replacing θi by ψi(i = 1, 2):∫ t2

t1

δT d t = −ρh

∫ t2

t1

∫
α

∫
β

[ü δu + v̈ δv + ẅ δw

+ h2

12
(ψ̈1 δψ1 + ψ̈2 δψ2)

]
AB dα dβ d t (15.319)

The strain energy term in Eq. (15.318) can be obtained from Eq. (15.168), by replac-
ing θi by ψi(i = 1, 2) and expressing Q13 and Q23 in terms of ε13 and ε23 using
Eqs. (15.314) and (15.315), as∫ t2

t1

δπ d t =
∫ t2

t1

∫
α

∫
β

[
− ∂

∂α
(N11B) δu − ∂

∂α
(M11B) δψ1

+ N11
∂A

∂β
δv + M11

∂A

∂β
δψ2 + N11

AB

Rα

δw

− ∂

∂β
(N22A) δv − ∂

∂β
(M22A) δψ2 + N22

∂B

∂α
δu

+ M22
∂B

∂α
δψ1 + N22

AB

Rβ

δw − ∂

∂β
(N12A) δu

− N12
∂A

∂β
δu − ∂

∂β
(M12A) δψ1 − M12

∂A

∂β
δψ1

− ∂

∂α
(N12B) δv − N12

∂B

∂α
δv − ∂

∂α
(M12B) δψ2

− M12
∂B

∂α
δψ2 + kGhε23AB δψ2 − kGhε23

AB

Rβ

δv

− ∂

∂β
(kGhε23A) δw + kGhε13AB δψ1

−kGhε13
AB

Rα

δu − ∂

∂α
(kGhε13B) δw

]
dα dβ d t
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+
∫ t2

t1

∫
α

(N22A δv + M22Aδψ2 + N21A δu + M21A δψ1

+ kGhε23Aδw) dα d t

+
∫ t2

t1

∫
β

(N11B δu + M11B δψ1 + N12B δv + M12 Bδψ2

+ kGhε13B δw) dβ d t (15.320)

The term related to the work done by the external forces in Eq. (15.318) can be obtained
from Eq. (15.169) by replacing θi by ψi(i = 1, 2). By substituting Eqs. (15.319), (15.320)
and the modified Eq. (15.169) into Eq. (15.318), the equations of motion corresponding
to the variables u, v, w, ψ1, and ψ2 can be identified as [14]

− ∂

∂α
(N11B) − ∂

∂β
(N21A) − N12

∂A

∂β
+ N22

∂B

∂α

− AB

Rα

ε13kGh + ABρhü = ABfα (15.321)

− ∂

∂α
(N12B) − ∂

∂β
(N22A) − N21

∂B

∂α
+ N11

∂A

∂β

− AB

Rβ

ε23kGh + ABρhv̈ = ABfβ (15.322)

− kGh
∂

∂α
(ε13B) − kGh

∂

∂β
(ε23A)

+ AB

(
N11

Rα

+ N22

Rβ

)
+ ABρhẅ = ABfz (15.323)

∂

∂α
(M11B) + ∂

∂β
(M21A) + M12

∂A

∂β
− M22

∂B

∂α

− kGhε13AB − AB
ρh3

12
ψ̈1 = 0 (15.324)

∂

∂α
(M12B) + ∂

∂β
(M22A) + M21

∂B

∂α
− M11

∂A

∂β

− kGhε23AB − AB
ρh3

12
ψ̈2 = 0 (15.325)

15.10.6 Boundary Conditions

The boundary conditions of the shell on the edges α = α = constant and β = β =
constant can be identified as follows:

N22 = N22 or v = v

M22 = M22 or ψ2 = ψ2
N21 = N21 or u = u

Q23 = kGhε23 = Q23 or w = w

M21 = M21 or ψ1 = ψ1




at β = β = constant (15.326)
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N11 = N11 or u = u

N12 = N12 or v = v

Q13 = kGhε13 = Q13 or w = w

M11 = M11 or ψ1 = ψ1
M12 = M12 or ψ2 = ψ2




at α = α = constant (15.327)

15.10.7 Vibration of Cylindrical Shells

For a cylindrical shell, x, θ , and z are used as the independent coordinates. From
the fundamental form of the surface, we find that α = x, β = θ, A = 1, B = R,Rα =
Rx = ∞, and Rβ = Rθ = R(see Example 15.4). In this case, the equations of motion,
Eqs. (15.321)–(15.325), become (using the notation ψx for ψ1 and ψθ for ψ2)

R
∂Nxx

∂x
+ ∂Nθx

∂θ
= Rρhü − Rfx (15.328)

R
∂Nxθ

∂x
+ ∂Nθθ

∂θ
+ Qθz = Rρhv̈ − Rfθ (15.329)

R
∂Qxz

∂x
+ ∂Qθz

∂θ
− Nθθ = Rρhẅ − Rfz (15.330)

R
∂Mxx

∂x
+ ∂Mθx

∂θ
− RQxz = R

ρh3

12
ψ̈x (15.331)

R
∂Mxθ

∂x
+ ∂Mθθ

∂θ
− RQθz = R

ρh3

12
ψ̈θ (15.332)

The force and moment resultants can be expressed in terms of the displacement com-
ponents, from Eqs. (15.306)–(15.311), (15.316) and (15.317), as:

Nx = C

[
∂u

∂x
+ ν

(
1

R

∂v

∂θ
+ w

R

)]
(15.333)

Nθ = C

(
1

R

∂v

∂θ
+ w

R
+ ν

∂u

∂x

)
(15.334)

Nxθ = Nθx = 1 − ν

2
C

(
1

R

∂u

∂θ
+ ∂v

∂x

)
(15.335)

Mx = D

(
∂ψx

∂x
+ ν

R

∂ψθ

∂θ

)
(15.336)

Mθ = D

(
1

R

∂ψθ

∂θ
+ ν

∂ψx

∂x

)
(15.337)

Mxθ = Mθx = 1 − ν

2
D

(
1

R

∂ψx

∂θ
+ ∂ψθ

∂x

)
(15.338)

Qx = kGh

(
∂w

∂x
+ ψx

)
(15.339)

Qθ = kGh

[
1

R

∂w

∂θ
−
( v

R
− ψθ

)]
(15.340)
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where C and D are given by Eqs. (15.134) and (15.144). By substituting Eqs. (15.333)–
(15.340) into Eqs. (15.328)–(15.332), we obtain the equations of motion in terms of
the displacement components as

∂2u

∂x2
+ 1 − ν

2

1

R2

∂2u

∂θ2
+ 1 + ν

2

1

R

∂2v

∂x ∂θ
+ ν

R

∂w

∂x
= ρ(1 − ν2)

E

∂2u

∂t2
(15.341)

1

R2

∂2v

∂θ2
+ 1 − ν

2

∂2v

∂x2
+ 1 + ν

2

1

R

∂2u

∂x ∂θ
+ 1

R2

∂w

∂θ
+ k

R

(
ψθ − v

R
+ 1

R

∂w

∂θ

)

= ρ(1 − ν2)

E

∂2v

∂t2
(15.342)

k

(
∇2w + ∂ψx

∂x
+ 1

R

∂ψθ

∂θ
− 1

R2

∂v

∂θ

)
− 1

R

(
1

R

∂v

∂θ
+ w

R
+ ν

∂u

∂x

)

= ρ(1 − ν2)

E

∂2w

∂t2
(15.343)

(
∂2ψx

∂x2
+ 1 − ν

2R2

∂2ψx

∂θ2
+ 1 + ν

2R

∂2ψθ

∂x ∂θ

)
− 12k

h2

(
∂w

∂x
+ ψx

)

= ρ(1 − ν2)

E

∂2ψx

∂t2
(15.344)

(
1

R2

∂2ψθ

∂θ2
+ 1 − ν

2

∂2ψθ

∂x2
+ 1 + ν

2R

∂2ψx

∂x ∂θ

)
− 12k

h2

(
1

R

∂w

∂θ
+ ψθ − v

R

)

= ρ(1 − ν2)

E

∂2ψθ

∂t2
(15.345)

where

k = 1 − ν

2
k (15.346)

∇2w = ∂2w

∂x2
+ 1

R2

∂2w

∂θ2
(15.347)

15.10.8 Natural Frequencies of Vibration of Cylindrical Shells

Consider a cylindrical shell of radius R, length l, and simply supported at both ends,
x = 0 and x = l. The boundary conditions of the shell can be expressed as

v(0, θ, t) = 0 (15.348)

w(0, θ, t) = 0 (15.349)

Mxx(0, θ, t) = D

(
∂ψx

∂x
+ ν

R

∂ψθ

∂θ

)
(0, θ, t) = 0 (15.350)

Nxx(0, θ, t) = C

[
∂u

∂x
+ ν

(
1

R

∂v

∂θ
+ w

R

)]
(0, θ, t) = 0 (15.351)

ψθ(0, θ, t) = 0 (15.352)
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v(l, θ, t) = 0 (15.353)

w(l, θ, t) = 0 (15.354)

Mxx(l, θ, t) = D

(
∂ψx

∂x
+ ν

R

∂ψθ

∂θ

)
(l, θ, t) = 0 (15.355)

Nxx(l, θ, t) = C

[
∂u

∂x
+ ν

(
1

R

∂v

∂θ
+ w

R

)]
(l, θ, t) = 0 (15.356)

ψθ(l, θ, t) = 0 (15.357)

For free vibration, the solution is assumed to be harmonic as

u(x, θ, t) = U(x, θ)eiωt (15.358)

v(x, θ, t) = V (x, θ)eiωt (15.359)

w(x, θ, t) = W(x, θ)eiωt (15.360)

ψx(x, θ, t) = �x(x, θ)eiωt (15.361)

ψθ(x, θ, t) = �θ(x, θ)eiωt (15.362)

where ω is the frequency of vibration. In view of Eqs. (15.358)–(15.362), the boundary
conditions of Eqs. (15.348)–(15.357) can be restated as

V (0, θ) = 0 (15.363)

W(0, θ) = 0 (15.364)(
∂�x

∂x
+ ν

R

∂�θ

∂θ

)
(0, θ) = 0 (15.365)

[
∂U

∂x
+ ν

(
1

R

∂V

∂θ
+ W

R

)]
(0, θ) = 0 (15.366)

�θ(0, θ) = 0 (15.367)

V (l, θ) = 0 (15.368)

W(l, θ) = 0 (15.369)(
∂�x

∂x
+ ν

R

∂�θ

∂θ

)
(l, θ) = 0 (15.370)

[
∂U

∂x
+ ν

(
1

R

∂V

∂θ
+ W

R

)]
(l, θ) = 0 (15.371)

�θ(l, θ) = 0 (15.372)

The following solutions are assumed to satisfy the boundary conditions of Eqs. (15.363)
–(15.372):

U(x, θ) = C1 cos
mπx

l
cos n(θ − φ) (15.373)

V (x, θ) = C2 sin
mπx

l
sin n(θ − φ) (15.374)
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W(x, θ) = C3 sin
mπx

l
cos n(θ − φ) (15.375)

�x(x, θ) = C4 cos
mπx

l
cos n(θ − φ) (15.376)

�θ (x, θ) = C5 sin
mπx

l
sin n(θ − φ) (15.377)

Substituting Eqs. (15.358)–(15.362) and (15.373)–(15.377) into the equations of motion,
Eqs. (15.341)–(15.345), we obtain




d11 − �2 d12 d13 0 0

d21 d22 − �2 d23 0 d25

d31 d32 d33 − �2 d34 d35

0 0 d43 d44 − �2 d45

0 d52 d53 d54 d55 − �2







C1

C2

C3

C4

C5




=




0
0
0
0
0




(15.378)

where

d11 =
(mπ

l

)2
+ 1 − ν

2

( n

R

)2
(15.379)

d12 = d21 = − 1 + ν

2

n

R

mπ

l
(15.380)

d13 = d31 = − ν

R

mπ

l
(15.381)

d22 = 1 − ν

2

(mπ

l

)2
+
( n

R

)2
+ k

R2
(15.382)

d23 = d32 = 1

R

n

R
+ n

R

k

R
(15.383)

d25 = d52 = − k

R
(15.384)

d33 = k

{ (mπ

l

)2
+
( n

R

)2
}

+ 1

R2
(15.385)

d34 = d43 = k
mπ

l
(15.386)

d35 = d53 = −k
n

R
(15.387)

d44 = 12k

h2
+ 1 − ν

2

( n

R

)2
+
(mπ

l

)2
(15.388)

d45 = d54 = − 1 − ν

2

n

R

mπ

l
(15.389)

d55 = 12k

h2
+ 1 − ν

2

(mπ

l

)2
+
( n

R

)2
(15.390)
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where

�2 = ρ(1 − ν2)

E
ω2 (15.391)

and k is given by Eq. (15.346).
For a nontrivial solution of C1, C2, . . . , C5, the determinant of the coefficient matrix

in Eq. (15.378) must be zero. This yields the frequency equation as a fifth-degree
polynomial equation in �2. The roots of this polynomial equation give the natural
frequencies of the cylindrical shell ω2. For every combination of m and n, there will
be five distinct natural frequencies. The mode shapes of the shell can be determined
by first substituting each natural frequency into the matrix equations (15.378), and
then solving for any four constants among C1, C2, . . . , C5 in terms of the remaining
constant. For example, by selecting C5 as the independent constant, we can find the
values of C1/C5, C2/C5, C3/C5, and C4/C5.

15.10.9 Axisymmetric Modes

In the particular case of axisymmetric modes (n = 0), the five equations of motion will
be uncoupled into two sets: one consisting of three equations involving u, w, and θx

and the other consisting of two equations involving v and θθ . Thus, the first set of
equations leads to a cubic frequency equation and describes flexural or radial modes
and the second set leads to a quadratic frequency equation and describes circumferential
modes. For n = 0, Eqs. (15.379)–(15.390) reduce to

d11 =
(mπ

l

)2
(15.392)

d12 = d21 = 0 (15.393)

d13 = d31 = − ν

R

mπ

l
(15.394)

d22 = 1 − ν

2

(mπ

l

)2
+ k

R2
(15.395)

d23 = d32 = 0 (15.396)

d25 = d52 = − k

R
(15.397)

d33 = k
(mπ

l

)2
+ 1

R2
(15.398)

d34 = d43 = k
mπ

l
(15.399)

d35 = d53 = 0 (15.400)

d44 = 12k

h2
+
(mπ

l

)2
(15.401)

d45 = d54 = 0 (15.402)

d55 = 12k

h2
+ 1 − ν

2

(mπ

l

)2
(15.403)
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In this case, Eq. (15.378) can be written as


d11 − �2 0 d13 0 0
0 d22 − �2 0 0 d25

d31 0 d33 − �2 d34 0
0 0 d43 d44 − �2 0
0 d52 0 0 d55 − �2







C1

C2

C3

C4

C5




=




0
0
0
0
0




(15.404)

This equation can be rewritten as a system of two uncoupled matrix equations as
 d11 − �2 d13 0

d31 d33 − �2 d34

0 d43 d44 − �2






C1

C3

C4


 =




0
0
0


 (15.405)

[
d22 − �2 d25

d52 d55 − �2

] {
C2

C5

}
=
{

0
0

}
(15.406)

Equations (15.405) and (15.406) lead to the following cubic and quadratic frequency
equations, respectively:

�6 − (d11 + d33 + d44)�
4 + (d11d33 + d11d44 + d33d44 − d2

13 − d2
34)�

2

+ ( d11d33d44 − d11d
2
34 − d44d

2
13 ) = 0 (15.407)

�4 − (d22 + d55)�
2 + (d22d55 − d2

25) = 0 (15.408)

Notes

1. The equations of motion of a circular cylindrical shell, considering the effects
of rotary inertia and shear deformation, were derived by several investigators [15–17,
23]. Naghdi and Cooper derived a set of equations that are more general than those
presented in Sections 15.10.8 and 15.10.9 (see Problem 15.14).

2. The equations of motion for the axisymmetric vibration of cylindrical shells and
resulting equations for free vibration, Eq. (15.406), were derived as a special case of
the more general equations by Naghdi and Cooper [15] and from general shell theory
equations by Soedel [14].

Example 15.12 Find the natural frequencies of axisymmetric vibration of a circular
cylindrical shell simply supported at x = 0 and x = l, considering the effects of rotary
inertia and shear deformation for the following data: E = 30 × 106 psi, G = 12 ×
106 psi, ν = 0.3, ρ = 7.32 × 10−4 lb-sec2/in.4, R = 10 in., l = 40 in., h = 0.1 in., and
k = 5

6 .

SOLUTION The natural frequencies of axisymmetric vibration of the cylindrical shell
can be determined from the roots of Eqs. (15.407) and (15.408). The smallest values
of the natural frequencies found for different modes (m = 1, 2, . . . , 10) are given in
Table 15.3. If the smallest natural frequencies of the cylindrical shell are to be deter-
mined by neglecting the effect of shear deformation, we need to set the value of k

equal to 0 in Eqs. (15.407) and (15.408)
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Table 15.3 Smallest Values of Natural Frequencies
Given by Eqs. (15.407) and (15.408)

Smallest value of natural frequency, ω1 (rad/sec)

m With shear deformation and rotary inertia

1 24,057.074
2 29,503.338
3 36,832.332
4 45,135.996
5 53,966.332
6 63,102.639
7 72,429.156
8 81,880.961
9 91,419.211

10 101,019.41

15.11 RECENT CONTRIBUTIONS

A complete solution for the dynamic response due to time-dependent mechanical and/or
thermal loading of spherical and cylindrical shells with arbitrary time-dependent bound-
ary conditions was presented by Pilkey [19]. The solution was obtained in the form
of a series expansion of the products of modes of free vibration and a generalized
coordinate. The generalized Fourier transform was used to determine the generalized
coordinate which contains all physically admissible boundary conditions. The free flexu-
ral vibrations of cylindrical shells stiffened by equidistant ring frames was investigated
by Wah [20] using finite difference calculus. The theory accounts for both in-plane
flexural and torsional vibration of the ring stiffeners.

Tables of natural frequencies and graphs of representative mode shapes of harmonic
elastic waves propagating in an infinitely long isotropic hollow cylinder have been
presented by Armenakas et al. [21]. The free vibration problem of a homogeneous
isotropic thick cylindrical shell or panel subjected to a certain type of simply supported
edge conditions was investigated by Soldatos and Hadjigeorgiou [22]. The governing
equations of three-dimensional linear elasticity were employed and solved using an
iterative approach, which in practice leads to the prediction of the exact frequencies
of vibration. In the case of a flat or a complete shell, excellent agreement was found
between the results given by this approach and those given by other exact analysis
methods.

The role of median surface curvature in large-amplitude flexural vibrations of
thin shells was studied by Prathap and Pandalai [23]. It was shown that whereas the
nonlinear behavior of flat plates and straight bars is generally of a hardening type,
the behavior of thin structural elements involving finite curvature of the undeformed
median surface in one or both principal axis directions may be of the hardening or
softening type, depending on the structural parameters as well as on whether the shell
is open or closed.

The free vibration of circular cylindrical shells with axially varying thickness
was considered by Sivadas and Ganesan [24]. The free vibration of noncircular cylin-
drical shells with circumferentially varying thickness was discussed by Suzuki and
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Leissa [25]. Soedel summarized the vibration analysis of shells in Ref. [26]. The free
vibration of thin cylindrical shells, consisting of two sections of different thicknesses
but with a common mean radius, was investigated by Warburton and Al-Najafi [27].
They determined the natural frequencies and mode shapes using two types of ring finite
elements as well as by solving the shell equations using the boundary conditions and the
continuity condition at the intersection of the two thicknesses. Sharma and Johns [28]
determined the circumferential mode vibration characteristics of clamped-free circular
cylindrical shells experimentally.

A two-dimensional higher-order shell theory was applied to the free vibration prob-
lem of simply supported cylindrical shell subjected to axial stresses by Matsunaga [29].
Using a power series expansion of displacement components, the dynamical equations
were derived, including the effects of rotary inertia and shear deformation, from Hamil-
ton’s principle. Thin-walled regular polygonal prismatic shells were used in several
practical applications, such as honeycomb cores of sandwich plates, guide supports of
welding frameworks, and high piers of highway bridges. The free vibration of regular
polygonal prismatic shells has been presented by Liang et al. [30] using a novel plate
model and beam model on the basis of geometric symmetry. Analytical solutions were
obtained by combining the vibration theories of Euler beams and thin-walled plates.
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PROBLEMS
15.1 Derive the equations of motion of a conical shell
in terms of the components of displacement u, v, and w

from Eqs. (15.279)–(15.281).

15.2 Derive the equations of motion of a spherical shell
in terms of the components of displacement u, v, and w

from Eqs. (15.284)–(15.286).
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15.3 Specialize the equations of motion of a cylindrical
shell given in Section 15.8.1 to the case of a rectangular
plate. [Hint: Use R dθ = y and 1/R = 0.]

15.4 Specialize the equations of motion of a cylindrical
shell given in Section 15.8.1 to the case of a circu-
lar ring.

15.5 Derive the frequency equation (15.238) using
the solution given by Eqs. (15.226)–(15.228) in the
equations of motion, Eqs. (15.215)– (15.217).

15.6 Using Donnell–Mushtari–Vlasov theory, find the
natural frequencies of vibration corresponding to m,
n = 1, 2, 3 for an aluminum circular cylindrical shell
with simple supports at x = 0 and x = l. E = 71 GPa,
ν = 0.334, unit weight = 26.6 kN/m3, R = 0.2 m, l =
2 m, and h = 2 mm.

15.7 Derive the frequency equation (15.275) using
the solution given by Eqs. (15.261)–(15.263) in the
equations of motion, Eqs. (15.258)–(15.260).

15.8 Using Love’s theory, find the natural frequen-
cies of vibration of the cylindrical shell described in
Problem 15.6.

15.9 Solve Problem 15.6 considering the material
of the shell as steel with E = 207 GPa, ν = 0.292,
unit weight = 76.5 kN/m3, R = 0.2 m, l = 2 m, and
h = 2 mm.

15.10 Using Love’s theory, find the natural frequen-
cies of vibration corresponding to m, n = 1, 2, 3 for
a steel circular cylindrical shell with simple supports
at x = 0 and x = l. E = 207 GPa, ν = 0.292, unit
weight = 76.5 kN/m3, R = 0.2 m, l = 2 m, and h =
2 mm.

15.11 (a) Derive the equation of motion for the
axisymmetric vibrations of a thin cylindrical shell from
the general equations.

(b) Assuming the transverse deflection w(x, t) to be

w(x, t) =
∞∑

m = 1

Cn sin
nπx

l
sin ω t

where x is the axial direction, l is the length, and ω is
the frequency of axisymmetric vibration of a cylindrical
shell simply supported at x = 0 and x = l, find an
expression for the natural frequency ω.

15.12 Consider a cylindrical shell simply supported at
x = 0 and x = l, with radius 6 in., length 15 in., wall

thickness 0.025 in., Poisson’s ratio 0.3, Young’s mod-
ulus 30 × 106 psi, and unit weight 0.283 lb/in3. Find
the number of half-waves in the circumference corre-
sponding to the minimum natural frequency of vibration
according to DMV theory.

15.13 Show that the solution given by Eqs. (15.373)–
(15.377) satisfies the boundary conditions of Eqs.
(15.363) –(15.372).

15.14 According to Naghdi and Cooper [15], the force
and moment resultants in a cylindrical shell, by consid-
ering the effects of rotary inertia and shear deformation,
are given by

Nx = C

[
∂u

∂x
+ ν

(
1

R

∂v

∂θ
+ w

R

)
+ h2

12R

∂ψx

∂x

]

Nθ = C

[
1

R

∂v

∂θ
+ w

R
+ ν

∂u

∂x
− h2

12R2

∂ψθ

∂θ

]

Nxθ = 1 − ν

2
C

(
1

R

∂u

∂θ
+ ∂v

∂x
+ h2

12R

∂ψx

∂θ

)

Nθx =1−ν

2
C

[
1

R

∂u

∂θ
+ ∂v

∂x
+ h2

12R

(
1

R2

∂u

∂θ
− 1

R

∂ψx

∂θ

)]

Mx = D

(
∂ψx

∂x
+ ν

R

∂ψθ

∂θ
+ 1

R

∂u

∂x

)

Mθ = D

[
1

R

∂ψθ

∂θ
+ ν

∂ψx

∂x
− 1

R2

(
∂v

∂θ
+ w

)]

Mxθ = 1 − ν

2
D

(
1

R

∂ψx

∂θ
+ ∂ψθ

∂x
+ 1

R

∂v

∂x

)

Mθx = 1 − ν

2
D

(
1

R

∂ψx

∂θ
+ ∂ψθ

∂x
− 1

R2

∂u

∂θ

)

Qx = kGh

(
∂w

∂x
+ ψx

)

Qθ = kGh

[
1

R

∂w

∂θ
−
( v

R
− ψθ

)]

Express the equations of motion, Eqs. (15.328)–(15.332),
in terms of the displacement components u, v, w, ψx ,
and ψθ .

15.15 A cylindrical shell is loaded by a concentrated
harmonic force f (x, θ, t) = f0 sin �t in the radial direc-
tion at the point x = x0 and θ = θ0. Determine the
amplitude of the resulting forced vibration.
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Elastic Wave Propagation

16.1 INTRODUCTION

Any localized disturbance in a medium will be transmitted to other parts of the medium
through the phenomenon of wave propagation. The spreading of ripples in a water pond,
the transmission of sound in air, and the propagation of seismic tremors in Earth are
examples of waves in different media. We consider wave propagation only in solid
bodies in this chapter. Although the propagation of a disturbance in a solid takes place
at a microscopic level, through the interaction of atoms of the solid, we consider only
the physics of wave propagation by treating properties such as density and elastic
constants of the solid body to be continuous functions that represent the averages of
microscopic quantities.

In solid bodies, compression and shear waves can occur. In compression waves,
the compressive and tensile stresses are transmitted through the motion of particles in
the direction of the wave motion. In shear waves, shear stress is transmitted through
the motion of particles in a direction transverse to the direction of wave propagation.
Three types of waves can occur in a solid body: elastic waves, viscoelastic waves,
and plastic waves. In elastic waves, the stresses in the material obey Hooke’s law. In
viscoelastic waves, viscous as well as elastic stresses act, and in plastic waves, the
stresses exceed the yield stress of the material. We consider only elastic waves in this
chapter.

Elastic waves in deformable bodies play an important role in many practical appli-
cations. For example, oil and gas deposits are detected and Earth’s geological structure
is studied with the help of waves transmitted through the soil. The waves generated
by Earth’s tremors are used to detect and study earthquakes. Properties of materials
are determined by measuring the behavior of waves transmitted through them. Some
recent medical diagnosis and therapy procedures are based on a study of elastic waves
transmitted through the human body.

16.2 ONE-DIMENSIONAL WAVE EQUATION

The one-dimensional wave equation is given by

c2 ∂2φ

∂x2
= ∂φ

∂t2
(16.1)

where φ = φ(x, t) is the dependent variable and x and t are the independent variables.
Equation (16.1) represents the equation of motion for the free lateral vibration of strings,

607

Vibration of Continuous Systems. Singiresu S. Rao
© 2007 John Wiley & Sons, Inc. ISBN: 978-0-471-77171-5



608 Elastic Wave Propagation

Table 16.1 Physical Significance of φ and c in Eq. (16.1)

Type of problem Significance of φ Significance of c a

Lateral vibration of strings Lateral or transverse dis-
placement of a string

c = √
P/ρ

P = tension
ρ = mass per unit length

Longitudinal vibration of bars Longitudinal or axial dis-
placement of the cross
section of a bar

c = √
E/ρ

E = Young’s modulus
ρ = mass density

Torsional vibration of rods Angular rotation of the
cross section of a rod

c = √
G/ρ

G = shear modulus
ρ = mass density

a c has dimensions of linear velocity.

longitudinal vibration of bars, and torsional vibration of rods. The study of propagation
of waves in a taut string is useful in the manufacture of thread and in understanding the
characteristics of many musical instruments and the dynamics of electrical transmission
lines. The longitudinal waves in a bar have application in seismic studies. Waves
transmitted through the Earth are used to detect and study earthquakes. The physical
significances of φ and c in different problems are given in Table 16.1.

16.3 TRAVELING-WAVE SOLUTION

16.3.1 D’Alembert’s Solution

D’Alembert derived the solution of Eq. (16.1) in 1747 in a form that provides consid-
erable insight into the phenomenon of wave propagation. According to his approach,
the general solution of Eq. (16.1) is obtained by introducing two new independent
variables, ξ and η as

ξ = x − ct (16.2)

η = x + ct (16.3)

By expressing the dependent variable w1 in terms of ξ and η (instead of x and t), we
can obtain the following relationships using Eqs. (16.2) and (16.3):

∂ξ

∂ξ
= 1,

∂ξ

∂t
= −c,

∂η

∂x
= 1,

∂η

∂t
= c (16.4)

∂w

∂x
= ∂w

∂ξ

∂ξ

∂x
+ ∂w

∂η

∂η

∂x
= ∂w

∂ξ
+ ∂w

∂η
(16.5)

∂2w

∂x2
= ∂2w

∂ξ 2

∂ξ

∂x
+ ∂2w

∂ξ ∂η

∂η

∂x
+ ∂2w

∂ξ ∂η

∂ξ

∂x
+ ∂2w

∂η2

∂η

∂x
= ∂2w

∂ξ 2
+ 2

∂2w

∂ξ ∂η
+ ∂2w

∂η2

(16.6)

1The dependent variable, φ, in Eq. (16.1) is denoted as w in this section.
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∂w

∂t
= ∂w

∂ξ

∂ξ

∂t
+ ∂w

∂η

∂η

∂t
= −c

∂w

∂ξ
+ c

∂w

∂η
(16.7)

∂2w

∂t2
= −c

(
∂2w

∂ξ 2

∂ξ

∂t
+ ∂2w

∂ξ ∂η

∂η

∂t

)
+ c

(
∂2w

∂ξ ∂η

∂ξ

∂t
+ ∂2w

∂η2

∂η

∂t

)

= c2 ∂2w

∂ξ 2
− 2c2 ∂2w

∂ξ ∂η
+ c2 ∂2w

∂η2
(16.8)

Substituting Eqs. (16.6) and (16.8) into Eq. (16.1), we obtain the one-dimensional wave
equation in the form

∂2w

∂ξ∂η
= 0 (16.9)

This equation can be integrated twice to obtain its general solution. Integration of
Eq. (16.9) with respect to η gives

∂w

∂ξ
= h(ξ) (16.10)

where h(ξ) is an arbitrary function of ξ . Integration of Eq. (16.10) with respect to ξ

yields

w =
∫

h(ξ) dξ + g(η) (16.11)

where g(η) is an arbitrary function of η. By defining

f (ξ) =
∫

h(ξ) dξ (16.12)

the solution of the one-dimensional wave equation can be expressed as

w(ξ, η) = f (ξ) + g(η)

= f (x − ct) + g(x + ct) (16.13)

The solution given by Eq. (16.13) is D’Alembert’s solution [see Eq. (8.35)]. Note that
f and g in Eq. (16.13) are arbitrary functions of integration which can be determined
from the known initial conditions of the problem. To interpret the solution given by
Eq. (16.13), assume that the term g(x + ct) is zero and the term f (x − ct) is nonzero.
Assume that at t = 0, the function f (x − ct) = f (x) denotes a triangular profile as
shown in Fig. 16.1 with the peak of f (x), equal to f (0), occurring at x = 0. At
a later time, the peak f (0) occurs when the value of the argument of the function
f (x − ct) is zero. Thus, the peak occurs when x2 − ct2 = 0 or t2 = x2/c, as shown
in Fig. 16.1. Using a similar argument, every point in the triangular profile can be
shown to propagate in the positive x direction with a constant velocity c. It follows
that the function f (x − ct) represents a wave that propagates undistorted with velocity
c in the positive direction of the x axis. In a similar manner, the function g(x + ct)

can be shown to represent a wave that propagates undistorted with velocity c in the
negative direction of the x axis. Note that the shape of the disturbances, f (x − ct)

and g(x + ct), which is decided by the initial conditions specified, remains the same
during wave propagation.
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f(0)

f(x − ct)

0
At t1 = 0

x2 = ct2 (x3 − x2) = c(t3 − t2)

At t2 At t3

x2 x3

Wave velocity, c c

x

Figure 16.1 Propagation of the wave f (x − ct) with no distortion.

16.3.2 Two-Dimensional Problems

For a two-dimensional problem (membrane), the equation of motion is given by [see
Eq. (13.2)]

c2
(

∂2w

∂x2
+ ∂2w

∂y2

)
= ∂2w

∂t2
(16.14)

where w(x, y, t) denotes the transverse displacement of the membrane. The solution
of Eq. (16.14) is given by [3]

w(x, y, t) = f (lx + my − ct) + g(lx + my + ct) (16.15)

where f and g denote plane waves propagating in a direction whose direction cosines
are given by l and m. The transverse displacement w can be shown to be constant
along the line lx + my = constant at each instant of time t .

16.3.3 Harmonic Waves

By redefining the variables ξ and η as

ξ = −1

c
(x − ct) = t − x

c
, η = 1

c
(x + ct) = t + x

c
(16.16)

the solution of the one-dimensional wave equation can be expressed as

w(x, t) = f
(
t − x

c

)
+ g

(
t + x

c

)
(16.17)

where f and g denote, respectively, the forward- and backward-propagating waves.
A wave whose profile (or shape or displacement configuration) is sinusoidal is called
a harmonic wave. In general, harmonic waves moving in the positive and negative x

directions can be represented, respectively, as

A sin ω
(
t − x

c

)
or A cos ω

(
t − x

c

)
(16.18)

w(x, t) =

A sin ω

(
t + x

c

)
or A cos ω

(
t + x

c

)
(16.19)
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where A denotes the amplitude of the wave. By defining the wavelength λ as

λ = 2πc

ω
(16.20)

we note that

sin ω

(
t ± x + λ

c

)
= sin

[
ω

(
t ± x

c

)
+ 2π

]
= sin ω

(
t ± x

c

)
(16.21)

cos ω

(
t ± x + λ

c

)
= cos

[
ω

(
t ± x

c

)
+ 2π

]
= cos ω

(
t ± x

c

)
(16.22)

Thus, the wave profile given by Eq. (16.18) or (16.19) repeats itself at regular inter-
vals of the wavelength (x = λ). The reciprocal of the wavelength, known as the wave
number (n),

n = 1

λ
(16.23)

denotes the number of cycles of the wave per unit length. The period of the wave
(τ ) denotes the time required for a complete cycle to pass through a fixed point x

so that

τ = λ

c
= 2π

ω
(16.24)

The frequency of the wave (f̂ ) is defined as the reciprocal of the period:

f̂ = 1

τ
= c

λ
(16.25)

It can be seen that the frequency (f̂ ) and the wavelength (λ) are related as

f̂ λ = c (16.26)

16.4 WAVE MOTION IN STRINGS

16.4.1 Free Vibration and Harmonic Waves

The boundaries of a string of finite length invariably introduce complications in wave
propagation due to the phenomenon of reflections. Hence, we first consider a long,
infinite or semi-infinite string, where the problem of boundary reflections need not
be considered. Using the separation-of-variables approach, the solution of the wave
equation (free vibration solution of the string) can be obtained as [see Eq. (8.87)]

w(x, t) =
(
A cos

ω

c
x + B sin

ω

c
x
)

(C cos ωt + D sin ωt)

= A1 cos
ω

c
x cos ωt + A2 cos

ω

c
x sin ωt + A3 sin

ω

c
x cos ωt

+ A4 sin
ω

c
x sin ωt (16.27)



612 Elastic Wave Propagation

w(x,t)

A1

t1
t2 t3 t4 =

−A1

0

w
p

Antinodes

Nodes

x

Figure 16.2 Vibration pattern of a string given by Eq. (16.28) (standing wave).

where A1 = AC, A2 = AD, A3 = BC, and A4 = BD are the new constants. Consider
a typical term in Eq. (16.27):

w1(x, t) = A1 cos
ω

c
x cos ωt (16.28)

The deflections of the string at successive instants of time, given by Eq. (16.28), are
shown in Fig. 16.2. It can be seen that certain points (called nodes) on the string
undergo zero vibration amplitude, whereas other points (called antinodes) will attain
maximum amplitude. The nodes and antinodes occur at regular spacings along the
string and remain fixed in that position for all time as indicated in Fig. 16.2. This type
of vibration is called a stationary or standing wave. The solution given by Eq. (16.27)
can also be expressed, using trigonometric identities, as

w(x, t) = B1 sin
(ωx

c
+ ωt

)
+ B2 sin

(ωx

c
− ωt

)
+ B3 cos

(ωx

c
+ ωt

)
+ B4 cos

(ωx

c
− ωt

)
(16.29)

where B1, B2, B3, and B4 are constants. The term

w1(x, t) = B4 cos
(ωx

c
− ωt

)
= B4 cos ω

(x

c
− t

)
(16.30)

can be seen to denote a wave propagating in the positive x direction. We can see that
as time (t) progresses, larger values of x are needed to maintain a constant (e.g., zero)
value of the argument ω[(x/c) − t]. In this case, the deflection pattern of the string at
successive instants of time, given by Eq. (16.30), appears as shown in Fig. 16.3. It can
be observed that the constant (ω/2πc) is the wave number, the argument ω[(x/c) − t]
is the phase φ, 2πc/ω is the wavelength, and c is the phase velocity, which indicates
the propagation velocity of the constant phase φ. Note that Eq. (16.30), with a constant
value of φ, indicates a wave of infinite length that has no wavefront or beginning.

A propagation velocity (in the positive x direction) can be associated with motion
only when the phase is considered. Consider another term in Eq. (16.29) to represent
w1(x, t) [instead of Eq. (16.30)]:

w1(x, t) = B3 cos ω
(x

c
+ t

)
(16.31)
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Figure 16.3 Vibration pattern of a string given by Eq. (16.30) (propagating wave).

We can see that Eq. (16.31) represents a wave propagating in the negative direction. The
solutions given by the other terms of Eq. (16.29) are similar in nature. Thus, the solution
given by Eq. (16.29) denotes a propagating wave solution, whereas the solution given
by Eq. (16.27) represents a standing-wave solution. In fact, the standing-wave solution
of Eq. (16.27) can be obtained from constructive and destructive interference of waves
propagating to the right and left. The validity of this aspect can be seen by considering
the sum of two waves of equal amplitude propagating in different directions as

w(x, t) = A cos ω
(x

c
+ t

)
+ A cos ω

(x

c
− t

)
= 2A cos

ωx

c
cos ωt (16.32)

where the term on the right-hand side represents a standing wave.

16.4.2 Solution in Terms of Initial Conditions

If the initial displacement and velocity of the string are specified as U(x) and V (x),
respectively, we have

w(x, 0) = U(x)

∂w

∂t
(x, 0) = V (x)

(16.33)

Using the general solution of Eq. (16.13) at t = 0, we obtain

f (x) + g(x) = U(x)

(16.34)
∂w

∂t
(x, 0) = ∂f

∂(x − ct)

∂(x − ct)

∂t
+ ∂g

∂(x + ct)

∂(x + ct)

∂t
= V (x)

or

−cf ′(x) + cg′(x) = V (x) (16.35)

where a prime denotes differentiation with respect to the argument. Integration of
Eq.(16.35) yields

f (x) − g(x) = −1

c

∫ x

x0

V (y) dy (16.36)
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where x0 denotes an arbitrary lower limit introduced to eliminate the constant of inte-
gration. The solution of Eqs. (16.34) and (16.36) yields

f (x) = 1

2
U(x) − 1

2c

∫ x

x0

V (y) dy (16.37)

g(x) = 1

2
U(x) + 1

2c

∫ x

x0

V (y) dy (16.38)

To express the general solution for t �= 0, we replace x by x − ct in Eq. (16.37) and
x + ct in Eq. (16.38) and add the results to obtain

w(x, t) = f (x − ct) + g(x + ct)

= 1

2
U(x − ct) − 1

2c

∫ x−ct

x0

V (y) dy + 1

2
U(x + ct) + 1

2c

∫ x+ct

xo

V (y) dy

(16.39)

Noting that

−
∫ x−ct

x0

V (y) dy +
∫ x+ct

x0

V (y) dy =
∫ x+ct

x−ct

V (y) dy (16.40)

and defining ∫ x+ct

x−ct

V (y) dy = R(x + ct) − R(x − ct) (16.41)

the displacement solution can be expressed as

w(x, t) = 1

2
[U(x − ct) + U(x + ct)] + 1

2c
[R(x − ct) + R(x + ct)] (16.42)

It can be seen that the motion, given by Eq. (16.42), consists of identical disturbances
propagating to the left and the right with separate contributions from the initial dis-
placement and initial velocity.

16.4.3 Graphical Interpretation of the Solution

To interpret the solution given by Eq. (16.42) graphically, consider a simple case with
zero initial velocity [with V (x) = 0 so that R(x − ct) = R(x + ct) = 0]:

w(x, t) = 1
2 [U(x − ct) + U(x + ct)] (16.43)

This solution denotes the sum of waves propagating to the right and left which have
the same shape as the initial displacement U(x) but have one-half its magnitude. Let
the initial displacement, at t = 0, be assumed as

w(x, t) = 1
2 [U(x) + U(x)] = U(x) ≡ p(x) (16.44)

with a peak value of 2p0 as shown in Fig. 16.4(a). The displacement distribution at
any particular time can be obtained by superposing the waves propagating to the right
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Figure 16.4 Propagation of displacement disturbance with time: (a) at ct = 0; (b) at ct = a/3;
(c) at ct = 2

3a; (d ) at ct = a; (e) at ct = 4
3 a.

and left as shown in Fig. 16.4(b)(d). Notice that the separation of the two waves at
any value of ct would be twice the distance traveled by one wave in the time ct. As
such, for all values of ct > a, the two waves will not overlap and travel with the same
shape as the initial disturbance but with one–half its magnitude (see Fig. 16.4e).

Next, consider the case with initial velocity, V (x), and zero initial displacement
[U(x) = 0], so that the solution becomes

w(x, t) = 1

2c
[−R(x − ct) + R(x + ct)] = 1

2c

∫ x+ct

x−ct

V (y) dy (16.45)
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Figure 16.4 (continued )

The graphical interpretation of Eq. (16.45) is based on the integral of the initial velocity
distribution. At any specific position x and time t , the solution given by Eq. (16.45)
depends on the initial velocity distribution from x − ct to x + ct . For example, if the
initial velocity is assumed to be a constant as

∂w

∂t
(x, 0) = V0 ≡ q0 (16.46)

the displacement given by Eq. (16.45) at different instants of time will appear as shown
in Fig. 16.5. It can be seen that when t < a/c, the maximum displacement is given
by V0t in the interval |x| ≤ a − ct . In the ranges a − ct ≤ x ≤ a + ct and −(a −
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Figure 16.5 Displacement given by Eq. (16.45) at (a) t = 0, (b) ct = a
3 , (c) ct = 2

3a, (d )
ct = a and (e) ct = 4

3a.

ct) ≤ x ≤ −(a + ct), the displacement decreases linearly to zero. When t > a/c, the
maximum displacement is given by V0a/c in the interval −(ct − a) ≤ x ≤ (ct − a). As
ct → ∞, the string gets displaced at a uniform distance V0a/c from its original position.

16.5 REFLECTION OF WAVES IN ONE-DIMENSIONAL
PROBLEMS

The investigation of propagation of waves in one-dimensional problems such as strings
and bars with infinite domain does not require consideration of interaction of waves
at boundaries. We consider the reflection of waves at fixed and free boundaries in this
section. For simplicity, an intuitive approach is presented instead of a mathematical
approach.

16.5.1 Reflection at a Fixed or Rigid Boundary

Consider a semi-infinite bar fixed at x = 0. The boundary condition at the fixed end is
given by

u(0, t) = 0 (16.47)
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Figure 16.5 (continued )

where u is the axial displacement. An image displacement pulse system is introduced
to satisfy the boundary condition of Eq. (16.47). Consider a wave approaching the rigid
boundary at x = 0 from the right as shown in Fig. 16.6(a). Imagine the rigid boundary
at x = 0 as removed and extend the bar to infinity. Now assume an “image” wave
to the original propagating wave as shown in Fig. 16.6(b). The image wave is placed
symmetrically with respect to x = 0, is opposite in sense to the original propagating
wave, and propagates to the right. As the original and image waves approach x = 0, they
interact as shown in Fig. 16.6(c). As they pass, their displacements will mutually cancel
at x = 0, yielding u(0, t) = 0 always. Thus, the rigid boundary condition of the semi-
infinite bar is always satisfied by the image wave system in the infinite bar. After some
time, the interaction stage will be completed and the image wave propagates into x > 0,
while the original “real” wave propagates into x < 0 as shown in Fig. 16.6(d). Thus, the
reflected wave propagates along the positive x axis with the sign of the wave reversed.

16.5.2 Reflection at a Free Boundary

Consider a semi-infinite bar free at x = 0. Since the longitudinal stress at a free end is
zero, the boundary condition is given by

σxx(0, t) = E
∂u

∂x
(0, t) = 0

or
∂u

∂x
(0, t) = 0 (16.48)
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Figure 16.6 Sequence of events during reflection of a wave at a rigid boundary. (From Refs. [1]
and [4].)

Consider a wave approaching a free boundary from the right as shown in Fig. 16.7(a).
Imagine the free boundary at x = 0 as removed and extend the bar to negative infinity.
Now assume a “mirror image” wave to the original propagating wave as shown in
Fig. 16.7(b). The image wave is symmetrically placed with respect to x = 0 and prop-
agates to the right. As the original and image waves approach x = 0, they interact as
shown in Fig. 16.7(c). As they pass, their slopes will mutually cancel at x = 0 yield-
ing always. ∂u(0, t)/∂x = 0. Thus, the free boundary condition of the semi-infinite bar
is always satisfied by the image wave system in the infinite bar. As time passes, the
interaction stage will be completed and the image wave propagates into x > 0 while
the original real wave propagates into x < 0 as shown in Fig. 16.7(d). Note that the
sign of the original wave remains unchanged after completion of the reflection process.

16.6 REFLECTION AND TRANSMISSION OF WAVES
AT THE INTERFACE OF TWO ELASTIC MATERIALS

Consider two elastic half-spaces made of two different materials bonded together at
their bounding surfaces as shown in Fig. 16.8(a), where the plane x = 0 denotes the
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Figure 16.7 Sequence of events during reflection of a wave at a free boundary. (From Refs. [1]
and [4].)

interface between the two materials. The two materials are designated 1 and 2. Let
a specified incident wave propagate in the positive x direction in the half-space 1.
When the wave reaches the interface between the two materials, it gives rise to a
reflected wave propagating in material 1 in the negative x direction and a transmitted
wave propagating in material 2 in the positive x direction as shown in Fig. 16.8(b).
Denoting the incident wave as

p(ξ1) ≡ p

(
t − x

c1

)
(16.49)

and the reflected wave as

r(η1) ≡ r

(
t + x

c1

)
(16.50)

the displacement in material 1 can be expressed as

u1 = p(ξ1) + r(η1) = p

(
t − x

c1

)
+ r

(
t + x

c1

)
(16.51)
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Figure 16.8 Reflection and transmission of waves at the interface of materials: (a) Incident
wave; (b) reflected and transmitted waves; (c) reflection at a rigid boundary; (d ) reflection at a
free boundary.

By considering only the transmitted wave (s), the displacement in material 2 can be
written as

u2 = s(ξ2) ≡ s

(
t − x

c2

)
(16.52)

Since the incident wave is specified, the function r is known. However, the functions s

and p corresponding to the reflected and transmitted waves are to be determined using
the following conditions:

1. The displacements in the two half-spaces must be equal at the interface:

u1(0, t) = u2(0, t) (16.53)

2. The normal stress in the two materials must be equal at the interface:

σxx1(0, t) = σxx2(0, t) (16.54)

Using Eq. (A.16), Eq. (16.54) can be rewritten as

(λ + 2µ)1
∂u1

∂x
(0, t) = (λ + 2µ)2

∂u2

∂x
(0, t)

or, equivalently,

ρ1c
2
1
∂u1

∂x
(0, t) = ρ2c

2
2
∂u2

∂x
(0, t) (16.55)
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where ρ1 and ρ2 are the densities and c1 and c2 are the velocities of dilatational
(compressional) wave propagation in materials 1 and 2, respectively. Equations (16.51)
and (16.52) yield

∂u1

∂x
= ∂p(ξ1)

∂ξ1

∂ξ1

∂x
+ ∂r(η1)

∂η1

∂η1

∂x
= − 1

c1

dp(ξ1)

dξ1
+ 1

c1

dr(η1)

dη1
(16.56)

∂u2

∂x
= ∂s(ξ2)

∂ξ2

∂ξ2

∂x
= − 1

c2

ds(ξ2)

dξ2
(16.57)

The boundary conditions, Eqs. (16.53) and (16.54), can be expressed, using Eqs. (16.51),
(16.52), (16.56), and (16.57), as

p(t) + r(t) = s(t) (16.58)

−dp(t)

d t
+ dr(t)

d t
= −a

ds(t)

d t
(16.59)

where

a = ρ2c2

ρ1c1
(16.60)

depends on the properties of the two materials. Equation (16.59) can be integrated to
obtain

−p(t) + r(t) = −as(t) + A (16.61)

where A is an integration constant. By neglecting A, Eqs. (16.58) and (16.61) can be
solved to obtain r(t) and s(t) in terms of the known function p(t) as

r

(
t + x

c1

)
= 1 − a

1 + a
p

(
t + x

c1

)
(16.62)

s

(
t − x

c2

)
= 2

1 + a
p

(
t − x

c2

)
(16.63)

Note that if the two materials are the same, a = 1 and there will be no reflected wave,
but there will be a transmitted wave that is identical to the incident wave.

16.6.1 Reflection at a Rigid Boundary

Consider an elastic material 1 (first half-space) bonded to a rigid material 2 (second
half-space) as shown in Fig. 16.8(c). Let a specified incident wave propagate in the
positive x direction in the half-space 1. The wave reflected from the rigid boundary
(interface) can be found from Eq. (16.62) using the relation ρ2c2 → ∞ for material 2
so that a → ∞:

r

(
t + x

c1

)
= −p

(
t + x

c1

)
(16.64)

Equation (16.63) shows that there will be no transmitted wave in material 2, and
Eq. (16.64) indicates that the reflected wave is identical in form to the incident wave
but propagates in the negative x direction. The reflection process at a rigid boundary
is shown graphically in Fig. 16.8(c).
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16.6.2 Reflection at a Free Boundary

Consider an elastic half-space 1 (material 1) with a free boundary at x = 0 as shown
in Fig. 16.8(d). Let a specified incident wave propagate in the positive x direction in
material 1. The wave reflected from the free boundary can be found from Eq. (16.62)
using the relation ρ2c2 → 0 for material 2 so that a → 0:

r

(
t + x

c1

)
= p

(
t + x

c1

)
(16.65)

Equation (16.65) indicates that the reflected wave is identical in form to the incident
wave and propagates in the positive direction. The reflection process at a free boundary
is shown graphically in Fig. 16.8(d). Note that the processes of reflection at fixed and
free boundaries are similar to those shown for a bar in Figs. 16.6 and 16.7.

16.7 COMPRESSIONAL AND SHEAR WAVES
16.7.1 Compressional or P Waves

Consider a half-space with the x axis pointing into the material and the yz plane
forming the boundary of the half-space as shown in Fig. 16.9(a). The half-space can
be disturbed and compressional waves can be generated by either a displacement or a
normal stress boundary condition, as indicated in Fig. 16.9(b) and (c). In Fig. 16.9(b),
the half-space is assumed to be initially undisturbed with u(x, t) = 0 for t ≤ 0, and
the boundary is then given a uniform displacement in the x direction so that

u(0, t) = r(t) (16.66)

where r(t) is a known function of time that is zero for t ≤ 0. The motion resulting
from this displacement boundary condition (with no motion of the material in the y

and z directions) can be described by the components of displacement:

u = u(x, t)

v = 0 (16.67)

w = 0

For this one-dimensional motion, the equation of motion, Eq. (A.31), reduces to

∂2u

∂t2
(x, t) = α2 ∂2u(x, t)

∂x2
(16.68)

where

α =
(

λ + 2µ

ρ0

)1/2

(16.69)

ρ0 is the density of the material in the reference state, and λ and µ are Lamé constants,
related to Young’s modulus E and Poisson’s ratio ν of an isotropic linear elastic
material, as

λ = νE

(1 + ν)(1 − 2ν)
(16.70)

µ = E

2(1 + ν)
≡ G (16.71)
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Figure 16.9 (a) Undisturbed half-space; (b) displacement boundary condition; (c) normal stress
boundary condition.

and G is the shear modulus. Equation (16.68) is known as a one-dimensional wave
equation and α, in Eq. (16.69), denotes the wave velocity. Thus, the one-dimensional
motion of the material, given by Eq. (16.67), is governed by Eq. (16.68). The solution
or waves given by Eq. (16.68) are called compressional or P waves and α is called the
compressional or P wave speed [1, 4]. The displacements of a set of material points
due to a compressional wave at a specific time t are shown in Fig. 16.10. Note that
the material points move only in the x direction and their motions depend on x and
t only. In Fig. 16.9(c), the boundary of the initially undisturbed half-space is given a
uniform normal stress in the x direction so that

σxx(0, t) = s̃(t) (16.72)

where s̃(t) is a known function of time that is zero for t ≤ 0. Equation (16.72), called
the normal stress boundary condition, can be expressed in terms of the displacement
u, using the stress–strain and strain–displacement relations, as

σxx(0, t) = (λ + 2µ)εxx(0, t) = (λ + 2µ)
∂u(0, t)

∂x
= s̃(t) (16.73)

or
∂u

∂x
(0, t) = s(t) (16.74)
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Figure 16.10 (a) Set of material points in the undisturbed half-space; (b) displacements of the
set of material points due to a compressional wave.

where

s(t) = 1

λ + 2µ
s̃(t) (16.75)

In this case also, compressional waves are generated.

16.7.2 Shear or S Waves

The half-space shown in Fig. 16.11(a) can be disturbed and shear waves can be gen-
erated either by a displacement or a shear stress boundary condition, as indicated in



626 Elastic Wave Propagation

x

y

0

(a)

x

y

0

(b)

v 
(0

,t)
=

r 
(t

)

(c)

x

y

0

t x
y

(0
,t)

=
s 

(t
)

~

Figure 16.11 (a) Undisturbed half-space; (b) displacement boundary condition; (c) shear stress
boundary condition.

Fig. 16.11(b) and (c). In Fig. 16.11(b), the initially undisturbed half-space is given a
uniform displacement in the y direction, so that

v(0, t) = r(t) (16.76)

where r(t) is a known function of time that is zero for t ≤ 0. The motion resulting from
this displacement boundary condition (with no motions along the x and z directions)
can be described by

u = 0

v = v(x, t) (16.77)

w = 0

For this one-dimensional motion, the equation of motion, Eq. (A.33), reduces to

∂v(x, t)

∂t2
= β2 ∂2v(x, t)

∂x2
(16.78)

where

β =
(

µ

ρ0

)1/2

(16.79)



16.7 Compressional and Shear Waves 627

Equation (16.78) is also called a one-dimensional wave equation, and β, given by
Eq. (16.79), denotes the wave speed. The solution or waves given by Eq. (16.78) are
called shear or S waves and β is called the shear or S-wave speed [1, 4]. The dis-
placements of a set of material points due to a shear wave at a specific time t are
shown in Fig. 16.12. Note that the material points move only in the y direction and
their motions depend on x and t only. In Fig. 16.11(c), the boundary of the initially
undisturbed half-space is given a uniform shear stress in the y direction, so that

τxy(0, t) = s̃(t) (16.80)
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boundary condition
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0

Figure 16.12 (a) Set of material points in the undisturbed half-space; (b) displacements of the
set of material points due to a shear wave.
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where s̃(t) is a known function of time that is zero for t ≥ 0. Equation (16.80), called
the shear stress boundary condition, can be expressed in terms of the displacement v,
using the stress–strain and strain–displacement relations, as

τxy(0, t) = µεxy(0, t) = µ

[
∂u

∂y
(0, t) + ∂v

∂x
(0, t)

]

= µ
∂v

∂x
(0, t) = s̃(t) (16.81)

or

∂v

∂x
(0, t) = s(t) (16.82)

where

s(t) = 1

µ
s̃(t) (16.83)

In this case also, shear waves are generated.

16.8 FLEXURAL WAVES IN BEAMS

The equation of motion for the transverse motion of a thin uniform beam, according
to Euler–Bernoulli theory, is given by

∂4w(x, t)

∂x4
+ 1

c2

∂2w(x, t)

∂t2
= 0 (16.84)

where

c =
√

EI

ρA
(16.85)

It can be observed that Eq. (16.84) differs from the one-dimensional wave equation,
Eq. (16.1), studied earlier in terms of the following:

1. Equation (16.84) contains a fourth derivative with respect to x instead of the
second derivative.

2. The constant c does not have the dimensions of velocity; its dimensions are
in2/sec and not the in./sec required for velocity.

Thus, the general solution of the wave equation,

w(x, t) = f (x − ct) + g(x + ct) (16.86)

will not be a solution of Eq. (16.84). As such, we will not be able to state that the
motion given by Eq. (16.84) consists of waves traveling at constant velocity and without
alteration of shape. Consider the solution of Eq. (16.84) for an infinitely long beam in
the form of a harmonic wave traveling with velocity v in the positive x direction:

w(x, t) = A cos
2π

λ
(x − vt) ≡ A cos(kx − ωt) (16.87)
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where A is a constant, λ is the wavelength, v is the phase velocity, k is the wave number,
and ω is the circular frequency of the wave, with the following interrelationships:

ω = 2πf = kv (16.88)

k = 2π

λ
(16.89)

Substitution of Eq. (16.87) into Eq. (16.84) yields the velocity, also called the wave
velocity or phase velocity, as

v = 2π

λ
c = 2π

λ

√
EI

ρA
(16.90)

Thus, unlike in the case of transverse vibration of a string, the velocity of propagation
of a harmonic flexural wave is not a constant but varies inversely as the wavelength.
The material or medium in which the wave velocity v depends on the wavelength is
called a dispersive medium. Physically, it implies that a nonharmonic flexural pulse (of
arbitrary shape) can be considered as the superposition of a number of harmonic waves
of different wavelengths. Since each of the component harmonic waves has different
phase velocity, a flexural pulse of arbitrary shape cannot propagate along the beam
without dispersion, which results in a change in the shape of the pulse.

A pulse composed of several or a group of harmonic waves is called a wave packet,
and the velocity with which the group of waves travel is called the group velocity [4, 5].
The group velocity, denoted by vg , is the velocity with which the energy is propagated,
and its physical interpretation can be seen by considering a wave packet composed
of two simple harmonic waves of equal amplitude but slightly different frequencies
ω + �ω and ω − �ω. The waves can be described as

w1(x, t) = A cos(k1x − ω1t) (16.91)

w2(x, t) = A cos(k2x − ω2t) (16.92)

where A denotes the amplitude and

k1 = k + �k (16.93)

k2 = k − �k (16.94)

ω1 = ω + �ω (16.95)

ω2 = ω − �ω (16.96)

�ω = 1
2 (ω1 − ω2) (16.97)

�k = 1
2 (k1 − k2) (16.98)

The wave packet can be represented by adding the two waves:

wp = w1(x, t) + w2(x, t) = A [cos(k1x − ω1 t) + cos(k2 x − ω2 t)]
(16.99)
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Figure 16.13 Wave packet and group velocity.

Equation (16.99) can be rewritten as

wp(x, t) = 2A cos(�kx − �ωt) cos(kx − ωt) (16.100)

The wave packet, given by Eq. (16.100), is shown graphically in Fig. 16.13. It can be
seen that it contains a high-frequency cosine term (at frequency ω) and a low-frequency
cosine term (at frequency �ω). The high-frequency oscillatory motion is called the
carrier wave and moves at a velocity v, known as the phase velocity, given by

v = ω

k
(16.101)

while the low-frequency oscillatory motion propagates at a velocity vg , known as the
group velocity, given by

vg = �ω

�k
(16.102)

The wave motion given by Eq. (16.100) is called an amplitude-modulated carrier and is
shown in Fig. 16.13. It can be seen that the low-frequency term acts as a modulator on
the carrier (denoted by the high-frequency term). Accordingly, the factor cos (kx − ωt)
represents the carrier wave and the factor cos (�kx − �ωt) indicates the envelope
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moving at the group velocity. The behavior is similar to that of beats observed in
coupled oscillators (see Section 1.9.2).

The group velocity can be represented in an alternative form using the basic relation
ω = kv as

vg = lim
�k→0

�ω

�k
= dω

dk
= d(kv)

dk
= v + k

dv

dk
(16.103)

where v is considered a function of k. Noting that k = 2π/λ, Eq. (16.103) can also
be expressed in terms of the wavelength λ as

vg = v − λ
dv

dλ
(16.104)

In the case of propagation of flexural waves in beams, the group velocity is given by

vg = v − λ
dv

dλ
= v − λ

(
− 2πc

λ2

)
= v + 2πc

λ
= 2 v = 4π

λ

√
EI

ρA
(16.105)

Equation (16.105) shows that for flexural waves in beams, the group velocity is twice
the wave velocity.

16.9 WAVE PROPAGATION IN AN INFINITE ELASTIC MEDIUM

In this section the elastic wave propagation in solid bodies is considered. Since the
body is infinite, boundary interactions of waves need not be considered. The equations
governing waves in infinite media are derived from the basic equations of elasticity.
Two basic types of waves, dilatational and distortional waves, can propagate in an
infinite medium. These two types of waves can exist independent of one another.

16.9.1 Dilatational Waves

To see the simplest types of waves generated in the solid body, differentiate the
equations of motion (A.31), (A.33), and (A.34) with respect to x, y, and z, respectively,
and add the resulting equations to obtain

(λ + 2µ)∇2� = ρ
∂2�

∂t2
(16.106)

or

∂2�

∂t2
= c2

1∇2� (16.107)

where c1, called the velocity of wave propagation, is given by

c1 =
(

λ + 2µ

ρ

)1/2

(16.108)

Equation (16.106) is called a wave equation that governs propagation of the dilatation
� through the medium with a velocity c.
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16.9.2 Distortional Waves

The dilatation (�) can be eliminated from the equations of motion (A.31), (A.33),
and (A.34) to obtain the equation governing distortional waves. For this, differentiate
Eqs. (A.31) and (A.34) with respect to z and y, respectively, and subtract the resulting
equations one from the other to obtain

µ∇2
(

−∂v

∂z
+ ∂w

∂y

)
= ρ

∂2

∂t2

(
−∂v

∂z
+ ∂w

∂y

)
(16.109)

Noting that the quantity in parentheses denotes twice the rotation ωx , Eq. (16.109) can
be rewritten as

µ∇2ωx = ρ
∂2ωx

∂t2
(16.110)

By using a similar procedure, the other two equations of motion can be written in terms
of rotations ωy and ωz as

µ∇2ωy = ρ
∂2ωy

∂t2
(16.111)

µ∇2ωz = ρ
∂2ωz

∂t2
(16.112)

Each of Eqs. (16.110)–(16.112) denotes a wave equation that governs the propagation
of rotational or equivoluminal or distortional or shear waves through the elastic medium
with a velocity of wave propagation given by

c2 =
(

µ

ρ

)1/2

(16.113)

It can be seen from Eqs. (16.108) and (16.113) that the velocity of rotational waves is
smaller than the velocity of dilatational waves. The dilatational and rotational waves
denote the two basic types of wave motion possible in an infinite elastic medium.

16.9.3 Independence of Dilatational and Distortional Waves

In general, a wave consists of dilatation and rotation simultaneously [2, 4]. The dilata-
tion propagates with velocity c1 and the rotation propagates with velocity c2. By setting
dilatation � equal to zero in Eqs. (A.31), (A.33), and (A.34) one obtains the equations
of motion:

µ∇2u = ρ
∂2u

∂t2
(16.114)

µ∇2v = ρ
∂2v

∂t2
(16.115)

µ∇2w = ρ
∂2w

∂t2
(16.116)
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Equations (16.114)–(16.116) describe distortional waves that propagate with a velocity
c2 given by Eq. (16.113). In fact, the motion implied by Eqs. (16.114)–(16.116) is
that of rotation. Thus, the wave equations (A.31), (A.33), and (A.34), in the absence
of dilatation, reduce to those obtained for rotation, Eqs. (16.110)–(16.112). Next, we
eliminate rotations ωx , ωy and ωz from the equations of motion. For this, we set
ωx = ωy = ωz = 0:

∂w

∂y
− ∂v

∂z
= ∂u

∂z
− ∂w

∂x
= ∂v

∂x
− ∂u

∂y
= 0 (16.117)

and define a potential function φ such that

u = ∂φ

∂x
, v = ∂φ

∂y
, w = ∂φ

∂z
(16.118)

Using Eq. (16.118), the rotation ωx , for example, can be seen to be zero:

ωx = 1

2

(
∂w

∂y
− ∂v

∂z

)
= 1

2

(
∂2φ

∂y∂z
− ∂2φ

∂z∂y

)
= 0 (16.119)

Using Eq. (16.118), the dilatation can be written as

� = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= ∇2φ (16.120)

Differentiation of Eq. (16.120) with respect to x gives

∂�

∂x
= ∂

∂x
(∇2φ) = ∇2

(
∂φ

∂x

)
= ∇2u (16.121)

and using a similar procedure leads to

∂�

∂y
= ∇2v (16.122)

∂�

∂z
= ∇2w (16.123)

Substitution of Eqs. (16.121), (16.122), and (16.123) into the equations of motion,
(A.31), (A.33), and (A.34) respectively, yields

(λ + 2µ)∇2u = ρ
∂2u

∂t2
(16.124)

(λ + 2µ)∇2v = ρ
∂2v

∂t2
(16.125)

(λ + 2µ)∇2w = ρ
∂2w

∂t2
(16.126)

Equations (16.124)–(16.126) describe dilatational waves that propagate with a velocity
c1 given by Eq. (16.108).
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Notes

1. If the displacement components u, v, and w depend only on one coordinate,
such as x, instead of x, y, and z, the resulting waves are called plane waves that
propagate in the direction of x. Assuming that

u = u(x, t), v = v(x, t) w = w(x, t) (16.127)

the dilatation is given by

� = ∂u

∂x
(16.128)

and the equations of motion (A.31), (A.33) and (A.34) reduce to

(λ + 2µ)
∂2u

∂x2
= ρ

∂2u

∂t2
(16.129)

µ
∂2v

∂x2
= ρ

∂2v

∂t2
(16.130)

µ
∂2w

∂x2
= ρ

∂2w

∂t2
(16.131)

Equations (16.129) describes a longitudinal wave in which the direction of motion is
parallel to the direction of propagation of the wave. This wave is a dilatational wave
and propagates with a velocity c1. Each of Eqs. (16.130) and (16.131) describes a
transverse wave in which the direction of motion is perpendicular to the direction of
propagation of the wave. These are distortional waves and propagate with a velocity c2.

2. Dilatational waves are also called irrotational, longitudinal, or primary (P)
waves, and distortional waves are also known as equivoluminal, rotational, shear or
secondary (S) waves.

3. All the wave equations derived in this section have the general form

c2∇2η = ρ
∂2η

∂t2
(16.132)

Consider a specific case in which the deformation takes place along the x coordinate
so that Eq. (16.132) can be written as

c2 ∂2η

∂x2
= ∂2η

∂t2
(16.133)

The general solution (or D’Alembert’s solution) of Eq. (16.133) can be expressed as

η(x, t) = f (x − ct) + g(x + ct) (16.134)

where f denotes the wave traveling in the +x direction and g indicates the wave
traveling in the −x direction. If the disturbance occurs only at one point in the elastic
medium, the deformation depends only on the radial distance (r) from the point. The
radial distance r can be expressed in terms of the Cartesian coordinates x, y, and z as

r =
√

x2 + y2 + z2 (16.135)
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and hence the derivatives of η with respect to x, y and z can be expressed as

∂2η

∂x2
= x2

r2

∂2η

∂r2
+ r2 − x2

r3

∂η

∂r
(16.136)

∂2η

∂y2
= y2

r2

∂2η

∂r2
+ r2 − y2

r3

∂η

∂r
(16.137)

∂2η

∂z2
= z2

r2

∂2η

∂r2
+ r2 − z2

r3

∂η

∂r
(16.138)

Addition of Eqs. (16.136)–(16.138) yields

∇2η = ∂2η

∂r2
+ 2

r

∂η

∂r
(16.139)

and hence Eq. (16.132) can be written as

c2
(

∂2η

∂r2
+ 2

r

∂η

∂r

)
= ∇2η (16.140)

or

c2 ∂2(rη)

∂r2
= ∂2(rη)

∂t2
(16.141)

Equation (16.141) is known as the spherical wave equation, whose general solution
can be expressed as

rη = f (r − ct) + g(r + ct) (16.142)

In Eq. (16.142), f denotes a diverging spherical wave and g indicates a converging
spherical wave from the point of disturbance. The amplitude of the wave (η) is, in
general, inversely proportional to the radial distance r from the point of disturbance.

16.10 RAYLEIGH OR SURFACE WAVES

As seen earlier, two types of waves, dilatational and distortional waves, can exist in an
isotropic infinite elastic medium. When there is a boundary, as in the case of an elastic
half-space, a third type of waves, whose effects are confined close to the bounding
surface, may exist. These waves were first investigated by Rayleigh [7] and hence are
called Rayleigh or surface waves. The effect of surface waves decreases rapidly along
the depth of the material, and their velocity of propagation is smaller than those of P and
S waves. The discovery of surface waves was closely related to seismological studies,
where it is observed that earthquake tremors usually consist of two minor disturbances,
corresponding to the arrival of P and S waves followed closely by a third tremor that
causes significant damage. The third wave (surface wave) is found to be associated with
significant energy that is dissipated less rapidly than the P and S waves and is essentially
confined to the ground surface. To study these surface waves, consider a semi-infinite
elastic medium bounded by the xy plane, with the z axis pointing into the material,
as shown in Fig. 16.14. Assume a wave that is propagating on the bounding surface
along the x direction with its crests parallel to the y axis. Hence, all the components of
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Figure 16.14 Semi-infinite medium.

displacement u, v, and w are independent of y. For this case, the equations of motion
(A.31), (A.33) and (A.34) can be written as

(λ + µ)
∂�

∂x
+ µ∇2u = ρ

∂2u

∂t2
(16.143)

µ∇2v = ρ
∂2v

∂t2
(16.144)

(λ + µ)
∂�

∂z
+ µ∇2w = ρ

∂2w

∂t2
(16.145)

where

� = ∂u

∂x
+ ∂w

∂z
(16.146)

∇2 = ∂2

∂x2
+ ∂2

∂z2
(16.147)

Note that Eq. (16.144) describes distortional waves that are not confined just to the
bounding surface. Also, Eqs. (16.143) and (16.145) do not contain v. Hence, we assume
that v = 0 and consider only Eqs. (16.143) and (16.145) in the analysis. Define two
potential functions φ and ψ such that

u = ∂φ

∂x
+ ∂ψ

∂z
(16.148)

w = ∂φ

∂z
− ∂ψ

∂x
(16.149)

Since v and y are not considered, dilatation � and rotation ωy are given by

� = ∂u

∂x
+ ∂w

∂z
= ∇2φ (16.150)

ωy = 1

2

(
∂u

∂z
− ∂w

∂x

)
= 1

2
∇2ψ (16.151)



16.10 Rayleigh or Surface Waves 637

ωx = 1

2

(
∂w

∂y
− ∂v

∂z

)
= 0 (16.152)

ωz = 1

2

(
∂v

∂x
− ∂u

∂y

)
= 0 (16.153)

It can be seen that the definitions of φ and ψ given by Eqs. (16.148) and (16.149)
separated the effects of dilatation and rotation since φ is associated with dilatation only
and ψ with rotation only in Eqs. (16.150)–(16.153). Substitution of Eqs. (16.148),
(16.149), and (16.150) into Eqs. (16.153) and (16.145) permits the equations of motion
to be written in terms of φ and ψ as

(λ + 2µ)
∂

∂x
(∇2φ) + µ

∂

∂z
(∇2ψ) = ρ

∂

∂x

(
∂2φ

∂t2

)
+ ρ

∂

∂z

(
∂2ψ

∂t2

)
(16.154)

(λ + 2µ)
∂

∂z
(∇2φ) − µ

∂

∂x
(∇2ψ) = ρ

∂

∂z

(
∂2φ

∂t2

)
− ρ

∂

∂x

(
∂2ψ

∂t2

)
(16.155)

Equations (16.154) and (16.155) will be satisfied if φ and ψ are the solutions of the
equations (can be verified by direct substitution):

(λ + 2µ)∇2φ = ρ
∂2φ

∂t2
or c2

1∇2φ = ∂2φ

∂t2
(16.156)

µ∇2ψ = ρ
∂2ψ

∂t2
or c2

2∇2ψ = ∂2ψ

∂t2
(16.157)

where c1 and c2 denote the velocities of dilatational and distortional waves given by
Eqs. (16.108) and (16.113), respectively. Next, the wave described by Eqs. (16.156)
and (16.157) is assumed to be harmonic or sinusoidal propagating in the positive x

direction with velocity c at a frequency ω. The velocity can be expressed as

c = ω

n
≡ ωλ (16.158)

where n is the wave number and λ is the wavelength (n = 1/λ). The solutions of
Eqs. (16.156) and (16.157) are assumed to be of the following complex harmonic form:

φ = Z1(z)e
i(ωt−nx) (16.159)

ψ = Z2(z)e
i(ωt−nx) (16.160)

where the functions Z1(z) and Z2(z) indicate the dependence of the amplitudes of φ

and ψ on the coordinate z. When Eq. (16.159) is used in Eq. (16.156), we obtain

c2
1

(
∂2

∂x2
+ ∂2

∂z2

)
Z1(z)e

i(ωt−nx) = ∂2

∂t2
[Z1(z)e

i(ωt−nx)]

or

d2Z1

dz2
−

(
n2 − ω2

c2
1

)
Z1 = 0 (16.161)
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The solution of this second-order ordinary differential equation can be expressed as

Z1(z) = c̃1e
−αz + c̃2e

αz (16.162)

where

α =
(

n2 − ω2

c2
1

)1/2

(16.163)

For real values of the amplitude of φ, α must be positive. For positive values of α,
the second term of Eqs. (16.162), and hence the amplitude of the wave, increases
with increasing values of z. This is not physically possible from the point of view of
conservation of energy. Hence, c̃2 must be zero in Eq. (16.162) for a surface wave.
By substituting Eq. (16.160) into Eq. (16.157) and proceeding as in the case of φ, we
obtain the solution of Z2(z) as

Z2(z) = c3e
−βz + c4e

βz (16.164)

where c4 = 0 and

β =
(

n2 − ω2

c2
2

)1/2

(16.165)

Using Eqs. (16.162) and (16.164) in Eqs. (16.159) and (16.160), the solutions of φ

and ψ of Eqs. (16.156) and (16.157) representing a harmonic wave propagating in the
positive z direction with frequency ω and wave number n and decaying with increasing
values of z can be expressed as

φ = c̃1e
−αz+i(ωt−nx) (16.166)

ψ = c3e
−βz+i(ωt−nx) (16.167)

where α and β are given by Eqs. (16.163) and (16.165), respectively, and c̃1 and c3 are
constants to be determined from the boundary conditions. The free surface conditions
applicable to the boundary surface (z = 0) of the elastic half-space are

σzz = σxz = σyz = 0 (16.168)

Using the stress–strain relations of Eq. (A.16) and the strain–displacement relations
of Eq. (A.2), the normal stress σzz can be expressed as

σzz = λ� + 2µ
∂u

∂x
(16.169)

where � is given by Eq. (16.150). Using Eqs. (16.148) and (16.149) for u and w,
Eq. (16.169) can be written as

σzz = λ

(
∂2φ

∂x2
+ ∂2ψ

∂x∂z
+ ∂2φ

∂z2
− ∂2ψ

∂x∂z

)
+ 2µ

(
∂2φ

∂z2
− ∂2ψ

∂x∂z

)
or

σzz = (λ + 2µ)
∂2φ

∂z2
+ λ

∂2φ

∂x2
− 2µ

∂2ψ

∂x∂z
(16.170)
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Substitution of Eqs. (16.166) and (16.167) into Eq. (16.170) gives

σzz = [(λ + 2µ)α2 − λn2]c̃1e
−αz+i(ωt−nx) − (2µiβn)c3e

−βz+i(ωt−nx) (16.171)

The condition σzz(z = 0) = 0 can be written as

[(λ + 2µ)α2 − λn2]c̃1 − (2µiβn)c3 = 0 (16.172)

The shear stress σxz can be expressed using Eqs. (A.16) and (A.8) as

σxz = µεxz = µ

(
∂u

∂z
+ ∂w

∂x

)
(16.173)

Using Eqs. (16.148) and (16.149) for u and w, Eq. (16.173) can be written as

σxz = µ

(
2

∂2φ

∂x∂z
+ ∂2ψ

∂z2
− ∂2ψ

∂x2

)
(16.174)

Substitution of Eqs. (16.166) and (16.167) into Eq. (16.174) yields

σxz = µ[2inαc̃1e
−αz+i(ωt−nx) + (β2 + n2)c3e

−βz+i(ωt−nx)] (16.175)

The condition σxz(z = 0) = 0 can be expressed as

(2inα)c̃1 + (β2 + n2)c3 = 0 (16.176)

Finally the shear stress σyz can be expressed, using Eq. (A.16), as

σyz = µεyz = µ

(
∂w

∂y
+ ∂v

∂z

)
(16.177)

Nothing that u and w are independent of y and v is assumed to be zero, Eq. (16.177)
gives σyz = 0 throughout the elastic half-space. Hence, the boundary condition σyz(z =
0) = 0 is satisfied automatically. Equations (16.172) and (16.176) represent two simul-
taneous homogeneous algebraic equations with c̃1 and c3 as unknowns. For a nontrivial
solution of c̃1 and c3, the determinant of their coefficient matrix is set equal to zero to
obtain

[(λ + 2µ)α2 − λn2](β2 + n2) + 2µiβn · 2inα = 0

or

[(λ + 2µ)α2 − λn2](β2 + n2) = 4αβµn2 (16.178)

Squaring both sides of Eq. (16.178) and using Eqs. (16.163) and (16.165) for α and β,
respectively, we obtain

[
−(λ + 2µ)

ω2

c2
1

+ 2µn2
]2 (

2n2 − ω2

c2
2

)2

= 16µ2n4
(

n2 − ω2

c2
1

)(
n2 − ω2

c2
2

)
(16.179)
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Dividing both sides of Eq. (16.179) by µ2n8 leads to

(
2 − λ + 2µ

µ

ω2

c2
1n

2

)2 (
2 − ω2

c2
2n

2

)2

= 16

(
1 − ω2

c2
1n

2

) (
1 − ω2

c2
2n

2

)
(16.180)

Note the following relationship from Eqs. (16.108) and (16.113) and Eqs. (A.22) and
(A.23):

c2
2

c2
1

= µ

λ + 2µ
= E

2(1 + ν)

{
1

[νE/(1 + ν)(1 − 2ν)] + 2E/2(1 + ν)

}
= 1 − 2ν

2 − 2ν

(16.181)

Introducing the notation

c2
2

c2
1

= 1 − 2ν

2 − 2ν
= γ 2 (16.182)

p2 = ω2

c2
2n

2
(16.183)

we can express

ω2

c2
1n

2
= γ 2 ω2

c2
2n

2
= γ 2p2 (16.184)

Substituting Eqs. (16.181)–(16.184) into Eq. (16.180) gives

(2 − p2)2(2 − p2)2 = 16(1 − γ 2p2)(1 − p2)

or

p2[p6 − 8p4 + (24 − 16γ 2)p2 + (16γ 2 − 16)] = 0 (16.185)

Since p2 �= 0, Eq. (16.185) leads to

p6 − 8p4 + 8(3 − 2γ 2)p2 + 16(γ 2 − 1) = 0 (16.186)

To investigate the roots of Eq. (16.186), we first note that it is a cubic equation in
p2, and second, that the roots depend on Poisson’s ratio [see Eq. (16.182)]. Since p is
defined as the ratio of the velocity of the surface wave to that of the distortion wave
in Eq. (16.183), the velocity of propagation of the surface wave will be a constant
for any given material. The roots of Eq. (16.186) can be real, imaginary, or complex,
depending on the range of Poisson’s ratio [1, 4]:

1. For ν less than about 0.263; all three roots (p2) are real.
2. For ν about 0.263; one root is real and two roots are complex conjugates.
3. Complex roots will not be valid in the present case since this will result in the

attenuations of φ and ψ with respect to time, as if damping were present, which
is not the case in the present problem [1, 4].
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Example 16.1 Investigate the variation of the velocity of propagation of surface waves
for different values of the Poisson’s ratio (ν).

SOLUTION First we consider the values of ν = 0.25. It can be verified that this
value of ν corresponds to a surface wave with λ = µ and is often used for rock. For
ν = 0.25, Eq. (16.182) gives

γ 2 = 1 − 2ν

2 − 2ν
= 1

3
(E16.1.1)

and Eq. (16.186) becomes

p6 − 8p4 − 56

3
p2 − 32

3
= 0 (E16.1.2)

The roots of Eq. (E16.1.2) are given by

p2 = 4, 2 + 2√
3
, 2 − 2√

3
(E16.1.3)

and the corresponding values of α and β, given by Eqs. (16.163) and (16.165), can be
found as follows:

α2

n2
= 1 − ω2

c2
1n

2
= 1 − ω2

c2
2n

2

c2
2

c2
1

= 1 − γ 2p2 = 1 − p2

3
(E16.1.4)

β2

n2
= 1 − ω2

c2
2n

2
= 1 − p2 (E16.1.5)

For p2 = 4:

α2

n2
= 1 − 4

3
= −1

3
,

α

n
= imaginary

β2

n2
= 1 − 4 = −3,

β

n
= imaginary

For p2 = 2 + 2/
√

3:

α2

n2
= 1 − 2

3
− 2

3
√

3
≈ −0.051567,

α

n
= imaginary

β2

n2
= 1 − 2 − 2√

3
≈ −2.15470,

β

n
= imaginary

For p2 = 2 − 2/
√

3:

α2

n2
= 1 − 2

3
+ 2

3
√

3
≈ 0.71823,

α

n
≈ 0.84748

β2

n2
= 1 − 2 + 2√

3
≈ 0.15470,

β

n
≈ 0.39332
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It can be seen that the larger two values of p2 in Eq. (E16.1.3) give imaginary values
of α/n and β/n which violate the requirement of α/n > 0 and β/n > 0. Hence, the
only valid value of p2 yields

ω

c2n
= p =

(
2 − 2√

3

)1/2

= 0.91940

or
ω

n
= 0.91940c2 (E16.1.6)

The variations of ω/c2n (and c2/c1 = 1/γ ) for different values of Poisson’s ratio (ν)
are shown graphically in Fig. 16.15. Since the velocity of propagation, c = ω/n, is
independent of the frequency for any given material, the surface wave propagates with
no dispersion at a velocity slightly smaller than the velocity of propagation of distortion
or S waves.

Example 16.2 Derive expressions for the variations of u and w with the depth of
material (z).

SOLUTION The displacement components u and w can be expressed, using
Eqs. (16.148), (16.149), (16.166), and (16.167) as

u = −c̃1ine−αz+i(ωt−nx) − c3βe−βz+i(ωt−nx) (E16.2.1)

w = −c̃1αe−αz+i(ωt−nx) − c3ine−βz+i(ωt−nx) (E16.2.2)

Equation (16.176) gives

c3 = − 2inα

β2 + n2
c̃1 (E16.2.3)

u = c̃1

(
−ine−αz + 2inαβ

β2 + n2
e−βz

)
ei(ωt−nx) (E16.2.4)

w = c̃1α

(
−e−αz + 2n2

β2 + n2
e−βz

)
ei(ωt−nx) (E16.2.5)

The physical displacements u and w are given by the real parts of Eqs. (E16.2.4) and
(E16.2.5) as

u = c̃1n

(
−e−αz − 2αβ

β2 + n2
e−βz

)
sin(ωt − nx) (E16.2.6)

w = c̃1α

(
−e−αz + 2n2

β2 + n2
e−βz

)
cos(ωt − nx) (E16.2.7)
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Figure 16.15 Variations of c2/c1, ω/nc1, and ω/nc2 with ν. (From Ref. [8].)

16.11 RECENT CONTRIBUTIONS

Comprehensive Studies A brief history of the study of wave propagation in solids
and a presentation of wave motion in elastic strings, rods, beams, membranes, plates,
shells, semi-infinite media, and infinite media have been given by Graff [4]. Kolsky
summarized the basic developments in the field of stress waves in Ref. [9].
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Longitudinal Waves A theory of propagation of longitudinal stress waves in a cylin-
drical rod with several step changes in the cross-sectional area was developed by
Beddone [10]. The analysis obtained a transient solution of the one-dimensional wave
equation by means of Laplace transform methods based on the concepts of traveling
waves and reflection and transmission coefficients.

Wave Propagation in Periodic Structures The problem of free coupled longitudinal
and flexural waves of a periodically supported beam was studied by Lee and Yeen [11].
It was shown that the characteristic or dispersion equation can be factorized into product
form, which simplifies the analysis and classification of the dynamic nature of the
system. Sen Gupta [12] studied the propagation of flexural waves in doubly periodic
structures consisting of the repetition of a basic unit that is a periodic structure in
itself. The analysis is simplified by introducing a direct and a cross-chain receptance
for multispan structures and by utilizing the concept of the equivalent internal restraint.

Wave Propagation Under Moving Loads Ju used the three-dimensional finite element
method to simulate the soil vibrations due to high-speed trains moving across bridges in
Ref. [13]. He first analyzed a bridge system passed by trains. Then the pier forces and
moments calculated were applied to a pile cap to simulate wave propagation in the soil.

Waves Through Plate or Beam Junctions In a study of elastic wave transmission
through plate–beam junctions by Langley and Heron [14], a generic plate–beam junc-
tion was considered to be composed of an arbitrary number of plates either coupled
through a beam or coupled directly along a line. The effects of shear deformation, rotary
inertia, and warping were included in the analysis of the beam, and due allowance was
made for offsets between the plate attachment lines and the shear axis of the beam.

Vibration Analysis Using a Wave Equation Langley showed that the vibrations
of beams and plates may be analyzed in the frequency domain by using a wave
equation instead of the conventional differential equations of motion provided that
certain assumptions are made regarding the response of the system in the vicinity of a
structural discontinuity [15].

Measurement of Wave Intensity Halkyard and Mace [16] presented a Fourier series
approach to the measurement of flexural wave intensity in plates. The approach is based
on the fact that in regions sufficiently remote from excitation and discontinuities, the
flexural motion of a plate can be expressed as the sum of plane propagating waves.

Lamb Waves With the aim of clarifying the manner in which the dispersion curves
for real- and imaginary-valued Lamb modes in a free, isotropic, elastic plate vary with
the Poisson ratio, Freedman presented a set of Lamb mode spectra at fixed values of
the Poisson ratio covering its full range [17].
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PROBLEMS
16.1 Determine the velocity of propagation of lon-
gitudinal, torsional, and bending waves in a steel bar
with E = 207 GPa, G = 79.3 GPa, and a unit weight
of 76.5 kN/m3.

16.2 Consider a bar with density 7500 kg/m3 and
Lamé constants λ = 1.15 × 1011 Pa and µ = 0.75 ×
1011 Pa. Determine the compressional and shear wave
velocities.

16.3 Consider the following initial conditions for a
long, transversely vibrating string:

w(x, 0) =
{

2, −1 < x < 1
0, |x| > 1

ẇ(x, 0) = 0

Show graphically the propagation of the wave along the
string at different instants of time.

16.4 (a) Derive the equation of motion of a taut string
resting on a foundation of elastic modulus k.

(b) Derive the condition to be satisfied between γ and ω

for the propagation of a wave of the form w(x, t) =
Aeγx−ωt in the string.

16.5 Derive the equation of motion for the longitudinal
vibration of an inhomogeneous bar for which Young’s
modulus E and density ρ are given by E = E0(1 +
ε1x

3)and ρ = ρ0(1 + ε2x).

16.6 The initial conditions of an unbounded elastic
material are given by

u(x, 0) =



0, x < 0
A sin πx, 0 ≤ x ≤ 1
0, x > 1

u̇(x, 0) = 0
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where A is a constant. Plot the displacement of the mate-
rial at t = 0, t = 1/(2c), t = 1/c, t = 2/c, and t = 4/c.

16.7 (a) Show that the ratio of velocities of P and
S waves depends only on Poisson’s ratio of the
material.

(b) Determine the ratio of velocities of P and S waves
for the following materials:

Aluminum, ν = 0.334 Copper, ν = 0.326
Brass, ν = 0.324 Glass, ν = 0.245
Carbon steel, ν = 0.292 Stainless steel, ν = 0.305
Cast iron, ν = 0.211

16.8 Consider a thin steel beam of circular cross
section with Young’s modulus 207 GPa, radius 1 cm,
and unit weight 76.5 kN/m3. Determine the flexural
wave velocity and the group velocity in the beam.

16.9 Consider a thick beam for which the equation of
motion, according to Timoshenko theory, is given by

EI

ρA

∂4w

∂x4
− I

A

(
1+ E

kG

)
∂4w

∂x2∂t2
+ ∂2w

∂t2
+ ρI

kAG

∂4w

∂t4
=0

(P16.1)

Assuming the propagation of harmonic waves in an
infinite beam with solution

w(x, t) = Aei(γ x−ωt) (P16.2)

where A is a constant and γ is the wave number, the
substitution of Eq. (P16.2) into Eq. (P16.1) leads to

EI

ρA
γ 4 − I

A

(
1 + E

kG

)
γ 4c2 − γ 2c2 + ρI

kAG
γ 4c4 = 0

(P16.3)

with

ω = γ c (P16.4)

By considering the cases γ → ∞ and γ → 0 in
Eq. (P16.3) separately, derive expressions for deter-
mining the wave velocity c.

16.10 The potential and kinetic energy densities of a
string are given by

v(x, t) = P

2

(
∂w

∂x

)2

, k(x, t) = ρ

2

(
∂w

∂t

)2

The wave propagating in the positive x direction can be
expressed as

w(x, t) = f (x − ct)

where c = √
P/ρ is the phase velocity. Show that the

potential and kinetic energy densities are equal for a
propagating wave.



17

Approximate Analytical Methods

17.1 INTRODUCTION

The exact solutions of problems associated with the free and forced vibration of con-
tinuous systems have been considered in earlier chapters. Exact solutions are usually
represented by an infinite series expressed in terms of the normal or principal modes of
vibration. In many practical applications, the solution of the vibration problem is dom-
inated by the first few low-frequency modes, and the effect of high-frequency modes is
negligible. In such cases the solution may be expressed in terms of a finite number of
normal modes or in terms of assumed polynomials that describe the deformation shape
of the continuous system. Exact solutions are possible only in relatively few simple
cases of continuous systems. The exact solutions are particularly difficult to find for
two- and three-dimensional problems. Exact solutions are often desirable because they
provide valuable insight into the behavior of the system through ready access to the
natural frequencies and mode shapes.

Most of the continuous systems considered in earlier chapters have uniform mass
and stiffness distributions and simple boundary conditions. However, some vibration
problems may pose insurmountable difficulties either because the governing differential
equation is difficult to solve or the boundary conditions may be extremely difficult or
impossible to satisfy. In such cases we may be satisfied with an approximate solution
of the vibration problem. Several methods are available for finding the approximate
solutions of vibration problems. The approximate methods can be classified into two
categories. The first category is based on the expansion of the solution in the form of a
finite series consisting of known functions multiplied by unknown coefficients. Depend-
ing on the particular method used, the known functions can be comparison functions,
admissible functions, or functions that satisfy the differential equation but not the
boundary conditions. If a series is assumed to consist of n functions, the corresponding
eigenvalue problem will yield n eigenvalues and the corresponding eigenfunctions.

The second category of methods is based on a simple lumping of system properties.
For example, the mass of a system can be assumed to be concentrated at certain points,
known as stations, and the segments between consecutive stations, called fields, are
assumed to be massless with uniform stiffness distribution. This model, with n stations,
can be used to derive an algebraic eigenvalue problem of size n whose solution yields
n eigenvalues and the corresponding eigenvectors.

The first class of methods is more analytical in nature and the second is more
intuitive in nature. All the approximate methods basically convert a problem described
by partial differential equations into a problem described by a set of ordinary dif-
ferential equations. This essentially converts a differential eigenvalue problem into
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an algebraic eigenvalue problem. There are two classes of methods that are based
on series expansions: Rayleigh–Ritz methods and weighted residual methods. In this
chapter we consider the Rayleigh and Rayleigh–Ritz method and the closely related
assumed modes method as well as several weighted residual methods, including the
Galerkin, collocation, and least squares methods.

17.2 RAYLEIGH’S QUOTIENT

The expression for Rayleigh’s quotient and the stationary property of Rayleigh’s quo-
tient can be discussed conveniently by considering a specific system. Consider the
torsional vibration of a shaft. In the absence of external torque, the expressions for the
potential and kinetic energies of the shaft are given by

πp(t) = 1

2

∫ l

0
GIp(x)

[
∂θ(x, t)

∂x

]2

dx (17.1)

T (t) = 1

2

∫ l

0
ρIp(x)

[
∂θ(x, t)

∂t

]2

dx (17.2)

The angular displacement is given by

θ(x, t) = X(x)f (t) (17.3)

where X(x) is a trial function used to denote the maximum angular displacement at
point x and f (t) indicates the harmonic time dependence,

f (t) = eiωt (17.4)

where ω is the frequency of vibration. Substituting Eqs. (17.3) and (17.4) into
Eqs. (17.1) and (17.2), the potential and kinetic energies can be expressed as

πp(t) = eiωt

2

∫ l

0
GIp(x)

[
dX(x)

dx

]2

dx (17.5)

T (t) = eiωt

2
(−ω2)

∫ l

0
ρIp(x)[X(x)]2 dx (17.6)

Equating the maximum values of potential and kinetic energies leads to πpmax = Tmax or∫ l

0
GIp(x)

[
dX(x)

dx

]2

dx = ω2
∫ l

0
ρIp(x)[X(x)]2 dx (17.7)

Rayleigh’s quotient, R, is defined as

R(X(x)) = λ = ω2 =
∫ l

0 GIp(x)[dX(x)/dx]2 dx∫ l

0 ρIp(x)[X(x)]2 dx
(17.8)

It can be seen that the value of Rayleigh’s quotient depends on the trial function X(x)

used. To investigate the variation of R with different trial functions X(x), the trial
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function X(x) is expressed as a combination of the normal modes of the shaft, �i(x),
using the expansion theorem as

X(x) =
∞∑
i=1

ci�i(x) (17.9)

where ci are unknown coefficients. Substituting Eq. (17.9) into Eq. (17.8) gives

R(c1, c2, · · ·) = λ = ω2 =
∫ l

0 GIp(x)
∑∞

i=1 ci[d�i(x)/ dx]
∑∞

j=1 cj [d�j(x)/ dx] dx∫ l

0 ρIp(x)
∑∞

i=1 ci�i(x)
∑∞

j=1 cj�j (x) dx

=
∑∞

i=1

∑∞
j=1 cicj

∫ l

0 GIp(x)[d�i(x)/ dx][d�j(x)/ dx] dx∑∞
i=1

∑∞
j=1 cicj

∫ l

0 �i(x)�j (x) dx
(17.10)

The orthogonality conditions of the normal modes of the shaft are given by [similar to
Eqs. (E10.3.8) and (E10.3.9)]∫ l

0
ρIp(x)�i(x)�j (x) dx = δij , i, j = 1, 2, . . . (17.11)

∫ l

0
GIp(x)

d�i(x)

dx

d�j(x)

dx
dx = λiδij , i, j = 1, 2, . . . (17.12)

where λi = ω2
i is the ith eigenvalue of the shaft. Using Eqs. (17.11) and (17.12),

Eq. (17.10) can be expressed as

R(c1, c2, . . .) =
∑∞

i=1

∑∞
j=1 cicjλiδij∑∞

i=1

∑∞
j=1 cicj δij

=
∑∞

i=1 c2
i λi∑∞

i=1 c2
i

= c2
kλk +∑∞

i=1,i �=k c2
i λi

c2
k +∑∞

i=1,i �=k c2
i

(17.13)

If the trial function X(x) closely resembles any of the eigenfunctions �k(x), it implies
that all the coefficients ci other than ck are small compared to ck, so that we can write

ci = εick, i = 1, 2, . . . , k − 1, k + 1, . . . (17.14)

where εi are small numbers. By substituting Eq. (17.14) into Eq. (17.13) and dividing
the numerator and denominator by c2

k and neglecting terms in εi of order greater than
2, we obtain

R(c1, c2, . . .) = λk +∑∞
i=1,i �=k ε2

i λi

1 +∑∞
i=1,i �=k ε2

i

=


λk +

∞∑
i=1
i �=k

ε2
i λi




1 +

∞∑
i=1
i �=k

ε2
i




−1

≈


λk +

∞∑
i=1
i �=k

ε2
i λi




1 −

∞∑
i=1
i �=k

ε2
i


 ≈ λk +

∞∑
i=1
i �=k

(λi − λk)ε
2
i (17.15)
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Note that if the trial function X(x) differs from the kth normal mode �k(x) by a small
quantity of order 1 in ε [i.e., X(x) = �k(x) + O(ε)], Rayleigh’s quotient differs from
the kth eigenvalue by a small quantity of order 2 in ε [i.e., R(c1, c2, . . .) = λk + O(ε2)].
This implies that Rayleigh’s quotient has a stationary value at an eigenfunction �k(x),
and the stationary value is the corresponding eigenvalue λk . The stationary value is
actually a minimum value at the fundamental or first eigenvector, �1(x). To see this,
let k = 1 in Eq. (17.15) and write

R(X(x)) = λ1 +
∞∑
i=2

(λi − λ1)ε
2
i (17.16)

Since the eigenvalues satisfy the relation

λ1 ≤ λ2 ≤ λ3 ≤ · · · (17.17)

Eq. (17.16) leads to

R(X(x)) ≥ λ1 (17.18)

which shows that Rayleigh’s quotient is never smaller than the first eigenvalue.
Equation (17.18) can also be interpreted as follows:

λ1 = ω2
1 = min R(X(x)) = R(�1(x)) (17.19)

which implies that the lowest eigenvalue is the minimum value that Rayleigh’s quotient
can assume and that the minimum value of R occurs at the fundamental eigenfunction,
X(x) = �1(x). Equation (17.19) denotes Rayleigh’s principle, which can be stated
as follows: The frequency of vibration of a conservative system vibrating about an
equilibrium position has a stationary value in the neighborhood of a natural mode. This
stationary value, in fact, is a minimum value in the neighborhood of the fundamental
natural mode.

17.3 RAYLEIGH’S METHOD

In most structural and mechanical systems, the fundamental or lowest natural frequency
is the most important. For a quick estimate of the dynamic response of the system,
especially during the preliminary design studies, the fundamental natural frequency
is used. In such cases, Rayleigh’s method can be used most conveniently to find the
approximate fundamental natural frequency of vibration of a system without having to
solve the governing differential equation of motion. The method is based on Rayleigh’s
principle. It can be used for a discrete or continuous conservative system.

In Rayleigh’s method, we choose a trial function, X(x), that resembles closely
the first natural mode, �1(x), substitute it into the Rayleigh’s quotient of the sys-
tem, similar to Eq. (17.10), carry out the integrations involved, and find the value of
R = λ = ω2. Because of the fact that Rayleigh’s quotient has a minimum at the fun-
damental or lowest eigenfunction, the fundamental natural frequency of the system can
be taken as ω = √

R. Because of the stationarity of Rayleigh’s quotient, the method
gives remarkably good estimates of the fundamental frequency even if the trial function
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does not resemble the true fundamental eigenfunction too closely. In fact, the natural
frequency thus computed will be one order of magnitude closer to the true fundamental
natural frequency ω1 than the trial function X(x) is to the true fundamental natural
mode �1(x). Of course, the closer the trial function resembles the first eigenfunction,
the better the estimate of the fundamental frequency.

Usually, selecting a suitable trial function for use in Rayleigh’s quotient is not
difficult. For example, the static deflection curve under self-weight can be used for
bar, beam, plate, or shell structures. Even if the system has nonuniform mass and
stiffness distributions, the static deflection curve of the system found by assuming a
uniform mass and stiffness distributions can be used in Rayleigh’s quotient. Similarly,
even if the system has complex boundary conditions, the static deflection curve, found
with simple boundary conditions, can be used in Rayleigh’s quotient. For example, for
simplicity, a free end condition can be used instead of a spring-supported end condition
of a beam. The strain and kinetic energies required in defining Rayleigh’s quotient are
given in Table 17.1 for some uniform structural elements.

Example 17.1 Determine the fundamental frequency of transverse vibration of a uni-
form beam fixed at both ends (Fig. 17.1) using Rayleigh’s method. Use the following
trial functions for approximating the fundamental mode shape:

(a)

X(x) = C

(
1 − cos

2πx

l

)
(E17.1.1)

where C is a constant. This function is selected to satisfy the boundary condi-
tions of the beam: X(0) = 0, dX(0)/ dx = 0, X(l) = 0, and dX(l)/ dx = 0.

(b)
X(x) = C(x2)(l − x)2 (E17.1.2)

with C = w0/24EI . This function is the static deflection curve of a fixed–fixed
beam under a self-weight of w0 per unit length.

SOLUTION The expressions for the strain and kinetic energies of a uniform beam
are given by

π = 1

2
EI

∫ l

0

[
∂2w(x, t)

∂x2

]2

dx (E17.1.3)

T = 1

2
ρA

∫ l

0

[
∂w(x, t)

∂t

]2

dx (E17.1.4)

l

x

Figure 17.1 Fixed–fixed beam.
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where the transverse deflection function, w(x, t), can be assumed to be harmonic:

w(x, t) = X(x) cos ωt (E17.1.5)

where ω is the frequency of vibration. Rayleigh’s quotient for a beam bending is
defined by

maximum strain energy = maximum kinetic energy

Substitution of Eq. (E17.1.5) into Eqs. (E17.1.3) and (E17.1.4) leads to

πmax = 1

2
EI

∫ l

0

[
d2X(x)

dx2

]2

dx (E17.1.6)

Tmax = 1

2
ρAω2

∫ l

0
[X(x)]2 dx (E17.1.7)

Equating πmax and Tmax, Rayleigh’s quotient can be derived as

R(X(x)) = ω2 =
1
2EI

∫ l

0

(
d2X/ dx2

)2
dx

1
2ρA

∫ l

0 [X(x)]2 dx
(E17.1.8)

(a) In this case,

X(x) = C

(
1 − cos

2πx

l

)
(E17.1.9)

d2X(x)

dx2
= C

(
2π

l

)2

cos
2πx

l
(E17.1.10)

∫ l

0

(
d2X

dx2

)2

dx = C2
(

2π

l

)4 ∫ l

0
cos2 2πx

l
dx = C2

(
2π

l

)4
l

2
= 8C2π4

l3

(E17.1.11)∫ l

0
[X(x)]2 = C2

∫ l

0

(
1 − cos

2πx

l

)2

dx = 3C2l

2
(E17.1.12)

Thus, Eq. (E17.1.8) gives

R = ω2 =
1
2EI (8C2π4/l3)

1
2ρA(3C2l/2)

= 16π4

3

EI

ρAl4

or

ω = 22.792879

√
EI

ρAl4
(E17.1.13)

(b) In this case,

X(x) = Cx2(l − x)2 (E17.1.14)

d2X(x)

dx2
= 2C(6x2 − 6lx + l2) (E17.1.15)
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∫ l

0

(
d2X

dx2

)2

dx = 4C2
∫ l

0
(6x2 − 6lx + l2)2 dx = 4

5C2l5 (E17.1.16)

∫ l

0
(X(x))2 dx = C2

∫ l

0
(x4 − 2lx3 + x2l2)2 dx = 1

630C2l9 (E17.1.17)

Thus, Eq. (E17.1.8) gives

R = ω2 =
1
2EI

( 4
5C2l5

)
1
2ρA

( 1
630C2l9

) = 504
EI

ρAl4

or

ω = 22.449944

√
EI

ρAl4
(E17.1.18)

The exact fundamental natural frequency of the beam is given by (see Fig. 11.3)

ω2
1 = (β1l)

2

√
EI

ρAl4
= (4.730041)2

√
EI

ρAl4
= 22.373288

√
EI

ρAl4

(E17.1.19)

and the exact fundamental natural mode is given by [see Eq. (11.70)]

W1(x) = C

[
sinh β1x − sin β1x + sinh β1l − sin β1l

cos β1l − cosh β1l
(cosh β1x − cos β1x)

]
(E17.1.20)

where C is a constant. It can be seen that the fundamental natural frequencies
given by Rayleigh’s method are very close to the exact value and larger than
the exact value by only 1.875410% in the first case [with Eq. (E17.1.9)] and
0.342623% in the second case [with (Eq. (E17.1.14))].

Example 17.2 Determine the fundamental frequency of transverse vibration of the
uniform beam shown in Fig. 17.2. The beam is fixed at x = 0 and carries a concentrated
mass m and rests on a linear spring of stiffness k at x = l. Use Rayleigh’s method with

x

l

m

k

Figure 17.2 Beam fixed at one end and carrying a spring-supported mass at the other.
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the trial function X(x) = Cx2(3l − x), where C = F/6EI , which corresponds to the
deflection shape of a cantilever beam fixed at x = 0 and subjected to a concentrated
force F and x = l.

SOLUTION Considering the strain energy due to the deflection of the spring and the
kinetic energy due to the motion of the end mass, the strain and kinetic energies of a
uniform beam can be expressed as

π = 1

2
EI

∫ l

0

[
∂2w(x, t)

∂x2

]2

dx + 1

2
k[w(l, t)]2 (E17.2.1)

T = 1

2
ρA

∫ l

0

[
∂w(x, t)

∂t

]2

dx + 1

2
m

[
∂w(l, t)

∂t

]2

(E17.2.2)

where the transverse deflection function, w(x, t), is assumed to be harmonic:

w(x, t) = X(x) cos ωt (E17.2.3)

where ω is the frequency of vibration. Substitution of Eq. (E17.2.3) into Eqs. (E17.2.1)
and (E17.2.2) yields

πmax = 1

2
EI

∫ l

0

[
d2X(x, t)

dx2

]2

dx + 1

2
kX2(l) (E17.2.4)

Tmax = 1

2
ρAω2

∫ l

0
[X(x)]2 dx + 1

2
mω2X2(l) (E17.2.5)

By equating πmax and Tmax, Rayleigh’s quotient can be derived as

R(X(x)) = ω2 =
1
2EI

∫ l

0

(
d2X/ dx2

)2
dx + 1

2kX2(l)

1
2ρA

∫ l

0 [X(x)]2 dx + 1
2mX2(l)

(E17.2.6)

Using

X(x) = Cx2(3l − x) (E17.2.7)

d2X(x)

dx2
= 6C(l − x) (E17.2.8)

we can find∫ l

0

(
d2X

dx2

)2

dx =
∫ l

0
[6C(l − x)]2 dx = 12C2l3 (E17.2.9)

1
2kX2(l) = 1

2kC2(2l3)2 = 2kC2l6 (E17.2.10)∫ l

0
X2(x) dx =

∫ l

0
C2x4(3l − x)2 dx = 33C2l7

35
(E17.2.11)

1
2mX2(l) = 1

2mC2(2l3)2 = 2mC2l6 (E17.2.12)
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Thus, Eq. (E17.2.6) gives

R = ω2 =
1
2EI (12C2l3) + 2kC2l6

1
2ρA

(
33C2l7/35

)+ 2mC2l6
= 6EI + 2kl3

33
70ρAl4 + 2 ml3

(E17.2.13)

Thus, the fundamental frequency of vibration is given by

ω =
(

420EI + 140kl3

33ρAl4 + 140 ml3

)1/2

(E17.2.14)

Note: If k and m are set equal to zero, the beam becomes a cantilever beam and
the fundamental frequency given by Rayleigh’s method, Eq. (E17.2.14), reduces to

ω = 3.567530

√
EI

ρAl4
(E17.2.15)

This value can be compared with the exact value

ω1 = (1.875104)2

√
EI

ρAl4
= 3.516150

√
EI

ρAl4

Thus, the frequency given by Rayleigh’s method is larger than the exact value by
1.461257%.

Example 17.3 Find the fundamental natural frequency of longitudinal vibration of the
tapered bar fixed at x = 0 and connected to a linear spring of stiffness k at x = l shown
in Fig. 17.3 using Rayleigh’s method. Assume the variation of the cross-sectional area
of the bar to be A(x) = A0 (1 − x/2l) and use the trail function X(x) = C sin(πx/2l)

for the mode shape.

SOLUTION The expressions for the strain and kinetic energies of a uniform bar,
including the strain energy due to the deformation of the spring at x = l, can be

l

k

0 x

A0

A0

2

Figure 17.3
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expressed as

π = 1

2
E

∫ l

0
A(x)

[
∂u(x, t)

∂x

]2

dx + 1

2
ku2(l, t) (E17.3.1)

T = 1

2
ρ

∫ l

0
A(x)

[
∂u(x, t)

∂t

]2

dx (E17.3.2)

where the longitudinal deflection function, u(x, t), is assumed to be harmonic:

u(x, t) = X(x) cos ωt (E17.3.3)

where ω is the frequency of vibration. Substitution of Eq. (E17.3.3) into Eqs. (E17.3.1)
and (E17.3.2) leads to

πmax = 1

2
E

∫ l

0
A0

(
1 − x

2l

) [dX(x)

dx

]2

dx + 1

2
kX2(l) (E17.3.4)

T ∗
max = 1

2
ρ

∫ l

0
A0

(
1 − x

2l

)
X2(x) dx (E17.3.5)

Using

X(x) = C sin
πx

2l
(E17.3.6)

dX

dx
(x) = Cπ

2l
cos

πx

2l
(E17.3.7)

we can obtain∫ l

0
A0

(
1 − x

2l

)(Cπ

2l

)2

cos2 πx

2l
dx + 1

2
k(C)2 = A0C

2π2

8l

(
3

4
+ 1

π2

)
+ k

2
C2

(E17.3.8)∫ l

0
A0

(
1 − x

2l

)
C2 sin2 πx

2l
dx = A0C

2 l

2

(
3

4
− 1

π2

)
(E17.3.9)

Rayleigh’s quotient is given by

R = ω2 = πmax

T ∗
max

= (EA0C
2π2/16l)

( 3
4 + 1/π2

)+ kC2/2

(ρA0C
2l/4)

( 3
4 − 1/π2

)
= 1

ρA0l2
(3.238212EA0 + 3.063189kl) (E17.3.10)

Thus, the natural frequency of vibration is given by

ω =
[

1

ρA0l2
(3.238212EA0 + 3.063189kl)

]1/2

(E17.3.11)
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Example 17.4 Estimate the fundamental frequency of axisymmetric transverse vibra-
tion of a circular plate of radius a fixed along the edge r = a using Rayleigh’s method
with the trial function

W(r) = c

(
1 − r2

a2

)2

(E17.4.1)

where c is a constant.

SOLUTION The trial solution of Eq. (E17.4.1) satisfies the boundary conditions of
the plate at the edge r = a. The strain and kinetic energies of a circular plate of
thickness h in axisymmetric vibration are given by (from Table 17.1)

V = πD

∫ a

0

[(
∂2w

∂r2
+ 1

r

∂w

∂r

)2

− 2(1 − ν)
∂2w

∂r2

1

r

∂w

∂r

]
r dr (E17.4.2)

T = πρh

∫ a

0

(
∂w

∂t

)2

r dr (E17.4.3)

If the plate is fixed at r = a, the integral of the second term on the right-hand side of
Eq. (E17.4.2) will be zero and hence the equation reduces to

V = πD

∫ a

0

(
∂2w

∂r2
+ 1

r

∂w

∂r

)2

r dr (E17.4.4)

Assuming harmonic variation of w(r, t) as

w(r, t) = W(r) cos ωt (E17.4.5)

where ω is the frequency of vibration, we can obtain

Vmax = πD

∫ a

0

(
d2 W

dr2
+ 1

r

dW

dr

)2

r dr (E17.4.6)

T ∗
max = πρh

∫ a

0
[W(r)]2r dr (E17.4.7)

Rayleigh’s quotient, R(W(r)), is given by

R(W(r)) = ω2 = Vmax

T ∗
max

(E17.4.8)

From Eq. (E17.4.1), we have

dW

dr
= c

(
−4r

a2
+ 4r3

a4

)
(E17.4.9)

d2W

dr2
= c

(
− 4

a2
+ 12r2

a4

)
(E17.4.10)
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Equations (E17.4.6) and (E17.4.7) can be evaluated as

Vmax = πD

∫ a

0

[
c

(
− 4

a2
+ 12r2

a4

)
+ c

r

(
−4r

a2
+ 4r3

a4

)]2

r dr

= 32πDc2

3a2
(E17.4.11)

T ∗
max = πρh

∫ a

0

[
c

(
1 − r2

a2

)2
]2

r dr = πρha2c2

10
(E17.4.12)

Thus, the estimate of the fundamental natural frequency of the plate can be found from
Eqs. (E17.4.8), (E17.4.11), and (E17.4.12) as

ω2 � Vmax

T ∗
max

= 32πDc2/3a2

πρha2c2/10
= 106.6667

D

ρha4

or

ω � 10.3279

√
D

ρ ha4
(E17.4.13)

17.4 RAYLEIGH–RITZ METHOD

As stated earlier, exact solution of eigenvalue problems of many continuous systems
is difficult, sometimes impossible, either because of nonuniform stiffness and mass
distributions or because of complex boundary conditions. At the same time, information
about the natural frequencies of the system may be required for the dynamic analysis
and design of the system. For most systems, only the first few natural frequencies and
associated natural modes greatly influence the dynamic response, and the contribution
of higher natural frequencies and the corresponding mode shapes is negligible. If only
the fundamental natural frequency of the system is required, Rayleigh’s method can
be used conveniently. If a small number of lowest natural frequencies of the system is
required, the Rayleigh–Ritz method can be used. The Rayleigh–Ritz method can be
considered as an extension of Rayleigh’s method. The method is based on the fact that
Rayleigh’s quotient gives an upper bound for the first eigenvalue, λ1 = ω2

1:

R(X(x)) ≥ λ1 (17.20)

where the equality sign holds if and only if the trial function X(x) coincides with the
first eigenfunction of the system. In the Rayleigh–Ritz method, the shape of deforma-
tion of the continuous system, X(x), is approximated using a trial family of admissible
functions that satisfy the geometric boundary conditions of the problem:

X(x) =
n∑

i=1

ciφi(x) (17.21)

where c1, c2, . . . , cn are unknown (constant) coefficients, also called Ritz coefficients,
and φ1(x), φ2(x), . . . , φn(x) are the known trial family of admissible functions. The
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functions φi(x) can be a set of assumed mode shapes, polynomials, or even eigenfunc-
tions. When Eq. (17.21) is substituted into the expression for Rayleigh’s quotient, R,
Rayleigh’s quotient becomes a function of the unknown coefficients c1, c2, . . . , cn:

R = R(c1, c2, . . . , cn) (17.22)

The coefficients c1, c2, . . . , cn are selected to minimize Rayleigh’s quotient using the
necessary conditions:

∂R

∂ci

= 0, i = 1, 2, . . . , n (17.23)

Equation (17.23) denotes a system of n algebraic homogeneous linear equations in the
unknowns c1, c2, . . . , cn. For the coefficients c1, c2, . . . , cn to have a nontrivial solution,
the determinant of the coefficient matrix is set equal to zero. This yields the frequency
equation in the form of a polynomial in ω2 of order n. The roots of the frequency
equation provide the approximate natural frequencies of the system ω1, ω2, . . . , ωn.
Using the approximate natural frequency ωi in Eq. (17.23), the corresponding approx-
imate mode shape c

(i)
1 , c

(i)
2 , . . . , c

(i)
n can be determined (for i = 1, 2, . . . , n). It can be

seen that a continuous system which has an infinite number of degrees of freedom is
represented by a discrete model, through Eq. (17.21), having only n degrees of free-
dom. The accuracy of the method depends on the value of n and the choice of the
trial functions, φi(x), used in the approximation, Eq. (17.21). By using a larger value
of n, the approximation can be made more accurate. Similarly, by using the trial func-
tions φi(x), which are closer to the true eigenfunctions of the continuous system, the
approximation can be improved.

The fundamental natural frequency given by the Rayleigh–Ritz method will be
higher than the true natural frequency. The reason is that the approximation of a con-
tinuous system with infinitely many degrees of freedom by an n-degree-of-freedom
system amounts to imposing the constraints

cn+1 = cn+2 = · · · = 0 (17.24)

on the system [in Eq. (17.21)]. The addition of constraints is equivalent to increasing
the stiffness of the system, and hence the estimated frequency will be higher than the
true fundamental frequency, When a larger number of trial functions are used, the
number of constraints will be less and hence the fundamental natural frequency given
by the Rayleigh–Ritz method, although higher than the true value, will be closer to
the true value.

If Rayleigh’s quotient is expressed as

R = ω2 = πmax

T ∗
max

= N

D
(17.25)

where N = πmax and D = T ∗
max denote, respectively, the maximum strain energy and

reference kinetic energy of the system. The reference kinetic energy (T ∗
max) is related

to the maximum kinetic energy (Tmax) as

Tmax = ω2T ∗
max (17.26)
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The maximum strain energy and the reference kinetic energy can be expressed as

πmax = N = 1

2

n∑
i=1

n∑
j=1

cicj kij = 1

2
	c T[k]	c (17.27)

T ∗
max = D = 1

2

n∑
i=1

n∑
j=1

cicjmij = 1

2
	c T[m]	c (17.28)

where [k] = [kij ] is the stiffness matrix, [m] = [mij ] is the mass matrix,

	c =




c1

c2
...

cn




(17.29)

and the stiffness and mass coefficients kij and mij can be evaluated in terms of the
stiffness and mass distributions of the system. For example, in the case of longitudinal
vibration of bars, kij and mij are given by

kij =
∫ l

0
EA

dφi

dx

dφj

dx
dx (17.30)

mij =
∫ l

0
ρAφiφj dx (17.31)

and in the case of transverse vibration of beams, kij and mij are given by

kij =
∫ l

0
EI

d2φi

dx2

d2φj

dx2
dx (17.32)

mij =
∫ l

0
ρAφiφj dx (17.33)

Using Eqs. (17.27) and (17.28), Eq, (17.25) can be expressed as

R(c1, c2, . . . , cn) = N(c1, c2, . . . , cn)

D(c1, c2, . . . , cn)
(17.34)

since the numerator N and denominator D depend on the coefficients c1, c2, . . . , cn.
The necessary conditions for the minimum of Rayleigh’s quotient are

∂R

∂ci

= D(∂N/∂ci) − N(∂D/∂ci)

D2
= 0, i = 1, 2, . . . , n

or

1

D

(
∂N

∂ci

− N

D

∂D

∂ci

)
= 1

D

(
∂N

∂ci

− λ(n) ∂D

∂ci

)
= 0, i = 1, 2, . . . , n (17.35)
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where λ(n) is the eigenvalue and the superscript n indicates that the eigenvalue problem
corresponds to a series of n terms in Eq. (17.21). Equation (17.35) can be written in
matrix form as

∂R

∂ 	c = 1

D

(
∂N

∂ 	c − λ(n) ∂D

∂ 	c
)

= 	0 (17.36)

where ∂N/∂ 	c and ∂D/∂ 	c can be expressed, using Eqs. (17.27) and (17.28), as

∂N

∂c
= 	cT[k] (17.37)

∂D

∂c
= 	cT[m] (17.38)

and hence Eq. (17.36) leads to

∂N

∂ 	c − λ(n) ∂D

∂ 	c = 0

or

[[k] − λ(n)[m]] 	c = 	0 (17.39)

Equation (17.39) denotes an algebraic eigenvalue problem of order n. For a nontrivial
solution of the vector 	c, the determinant of the coefficient matrix must be zero:

|[k] − λ(n)[m]| = 0 (17.40)

Equation (17.40) denotes the frequency equation, which upon expansion results in a
polynomial in λ(n) of order n. The roots of the polynomial, λ

(n)
i , i = 1, 2, . . . , n, give

the natural frequencies as

ωi =
√

λ
(n)
i , i = 1, 2, . . . , n (17.41)

For each natural frequency ωi , the corresponding vector of Ritz coefficients 	c(i) can be
determined to within an arbitrary constant by solving the linear simultaneous homoge-
neous equations:

[[k] − λ
(n)
i [k]] 	c(i) = 	0 (17.42)

which can be written in scalar form as


k11 − λ
(n)
i m11 k12 − λ

(n)
i m12 · · · k1n − λ

(n)
i m1n

k21 − λ
(n)
i m21 k22 − λ

(n)
i m22 · · · k2n − λ

(n)
i m2n

...

kn1 − λ
(n)
i mn1 kn2 − λ

(n)
i mn2 · · · knn − λ

(n)
i mnn






c
(i)
1

c
(i)
2
...

c
(i)
n




=




0
0
...

0




,

i = 1, 2, . . . , n (17.43)
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Once 	c(i) =




c
(i)
1

c
(i)
2
...

c
(i)
n




is determined, the eigenvector or normal mode associated with the

frequency i can be determined using Eq. (17.21) as

X(i)(x) =
n∑

j=1

c
(i)
j φj (x) = c

(i)
1 φ1(x) + c

(i)
2 φ2(x) + · · · + c(i)

n φn(x), i = 1, 2, . . . , n

(17.44)

Note Once the natural frequencies and the corresponding mode shapes are deter-
mined using Eqs. (17.41) and (17.44), the dynamic or vibration response of the con-
tinuous system (with an infinite number of degrees of freedom) can be represented by
an equivalent n-degree-of-freedom system. The vibration response of the continuous
system can be expressed, using the separation-of-variables technique, as

u(x, t) =
n∑

i=1

X(i)(x)ηi(t) (17.45)

where ηi(t), i = 1, 2, . . . , n, are the time-dependent coefficients or generalized coordi-
nates.

Example 17.5 Determine the first three natural frequencies of longitudinal vibration
of the tapered bar fixed at x = 0 and free at x = l shown in Fig. 17.4 using the
Rayleigh–Ritz method. Assume the variation of the cross-sectional area of the bar as
A(x) = A0(1 − x/2l). Use the following functions as trial functions:

φ1(x) = x

l
, φ2(x) = x2

l2
, φ3(x) = x3

l3
(E17.5.1)

SOLUTION For the fixed–free bar, the geometric boundary condition is given by

u(0) = 0 (E17.5.2)

l

x0

A0

A(x) = A0 A0
1− x

2l

2

Figure 17.4
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and the natural boundary condition by

∂u

∂x
(l) = 0 (E17.5.3)

Note that the trial functions in Eq. (E17.5.1) are admissible functions since they satisfy
only the geometric boundary condition, Eq. (E17.5.2), but not the natural boundary
condition, Eq. (E17.5.3). Assuming the longitudinal deflection function, u(x, t), to be
harmonic as

u(x, t) = X(x) cos ωt (E17.5.4)

where ω is the frequency of vibration, the Rayleigh quotient of the bar can be
expressed as

R = πmax

T ∗
max

≡
1
2

∫ l
0 EA(x)[dX(x)/ dx]2 dx

1
2

∫ l

0 ρA(x)[X(x)]2 dx
(E17.5.5)

Using

X(x) =
3∑

i=1

ciφi(x) = c1
x

l
+ c2

x2

l2
+ c3

x3

l3
(E17.5.6)

dX(x)

dx
= c1

l
+ 2c2x

l2
+ 3c3x

2

l3
(E17.5.7)

πmax and T ∗
max can be evaluated as follows:

πmax = E

2

∫ l

0
A0

(
1 − x

2l

)(c1

l
+ 2c2x

l2
+ 3c3x

2

l3

)2

dx

= EA0

2l

(
3

4
c2

1 + 5

6
c2

2 + 21

20
c2

3 + 4

3
c1c2 + 5

4
c1c3 + 9

5
c2c3

)
(E17.5.8)

T ∗
max = ρ

2

∫ l

0
A0

(
1 − x

2l

) (c1

l
x + c2

l2
x2 + c3

l3
x3
)2

dx

= ρA0l

2

(
5

24
c2

1 + 7

60
c2

2 + 9

112
c2

3 + 3

10
c1c2 + 4

21
c2c3 + 7

30
c1c3

)
(E17.5.9)

Rayleigh’s quotient is given by

R = ω2 = πmax(c1, c2, c3)

T ∗
max(c1, c2, c3)

(E17.5.10)

The necessary conditions for the minimization of R are given by

∂R

∂ci

= T ∗
max(∂πmax/∂ci) − πmax(∂T ∗

max/∂ci)

T ∗2
max

= 0
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or

∂πmax

∂ci

− πmax

T ∗
max

∂T ∗
max

∂ci

= ∂πmax

∂ci

− ω2 ∂T ∗
max

∂ci

= 0, i = 1, 2, 3 (E17.5.11)

Using

∂πmax

∂c1
= EA0

2l

(
3

2
c1 + 4

3
c2 + 5

4
c3

)
(E17.5.12)

∂πmax

∂c2
= EA0

2l

(
5

3
c2 + 4

3
c1 + 9

5
c3

)
(E17.5.13)

∂πmax

∂c3
= EA0

2l

(
21

10
c3 + 5

4
c1 + 9

5
c2

)
(E17.5.14)

∂T ∗
max

∂c1
= ρA0l

2

(
5

12
c1 + 3

10
c2 + 7

30
c3

)
(E17.5.15)

∂T ∗
max

∂c2
= ρA0l

2

(
7

30
c2 + 3

10
c1 + 4

21
c3

)
(E17.5.16)

∂T ∗
max

∂c3
= ρA0l

2

(
9

56
c3 + 4

21
c2 + 7

30
c1

)
(E17.5.17)

Eq. (E17.5.11) can be expressed as

EA0

2l




3
2

4
3

5
4

4
3

5
3

9
5

5
4

9
5

21
10






c1

c2

c3


 = ω2 ρA0l

2




5
12

3
10

7
30

3
10

7
30

4
21

7
30

4
21

9
56






c1

c2

c3


 (E17.5.18)

or

[k] 	c = λ [m]	c (E17.5.19)

where

[k] =




3
2

4
3

5
4

4
3

5
3

9
5

5
4

9
5

21
10


 (E17.5.20)

[m] =




5
12

3
10

7
30

3
10

7
30

4
21

7
30

4
21

9
56


 (E17.5.21)

λ = ρl2ω2

E
(E17.5.22)

The solution of Eq. (E17.5.19) is given by

	λ =



3.2186
24.8137

100.8460


 (E17.5.23)
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The mode shapes can be found as

	c(1) =



−0.8710
−0.2198
0.4394


 , 	c(2) =




0.3732
−0.8370
0.4001


 , 	c(3) =




−0.2034
0.7603

−0.6170


 (E17.5.24)

Example 17.6 Solve Example 17.5 using the following as trial functions:

φ1(x) = sin
πx

2l
, φ2(x) = sin

3πx

2l
, φ3(x) = sin

5πx

2l
(E17.6.1)

SOLUTION It can be seen that the trial functions in Eq. (E17.6.1) are comparison
functions since they satisfy both the geometric boundary condition, Eq. (E17.5.2), and
the natural boundary condition, Eq. (E17.5.3). As in Example 17.5, the longitudinal
deflection function, u(x, t), is assumed to be harmonic as

u(x, t) = X(x) cos ωt (E17.6.2)

where ω denotes the natural frequency of vibration. Rayleigh’s quotient of the bar can
be expressed as

R = πmax

T ∗
max

≡
1
2

∫ l

0 EA(x)[dX(x)/ dx]2 dx

1
2

∫ l

0 ρA(x)[X(x)]2 dx
(E17.6.3)

Using

X(x) =
3∑

i=1

ciφi(x) = c1 sin
πx

2l
+ c2 sin

3πx

2l
+ c3 sin

5πx

2l
(E17.6.4)

dX(x)

dx
= c1π

2l
cos

πx

2l
+ c23π

2l
cos

3πx

2l
+ c35π

2l
cos

5πx

2l
(E17.6.5)

πmax and T ∗
max can be evaluated as follows:

πmax = E

2

∫ l

0
A0

(
1 − x

2l

)(c1π

2l
cos

πx

2l
+ c23π

2l
cos

3πx

2l
+ c35π

2l
cos

5πx

2l

)2

dx

= EA0

2

[
c2

1

(
3π2

32l
+ 1

8l

)
+ c2

2

(
27π2

32l
+ 1

8l

)
+ c2

3

(
75π2

32l
+ 1

8l

)

+c1c2

(
3

4l

)
+ c2c3

(
15

4l

)
+ c1c3

(
5

36l

)]
(E17.6.6)

T ∗
max = ρ

2

∫
A0

(
1 − x

2l

)(
c1 sin

πx

2l
+ c2 sin

3πx

2l
+ c3 sin

5πx

2l

)2

dx

= ρA0l

2

[
c2

1

(
3

8
− 1

2π2

)
+ c2

2

(
3

8
− 1

18π2

)

+c2
3

(
3

8
− 1

50π2

)
+ c1c2

(
1

π2

)
− c1c3

(
1

9π2

)
+ c2c3

(
1

π2

)]
(E17.6.7)
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The Rayleigh’s quotient is given by

R = ω2 = πmax(c1, c2, c3)

T ∗
max(c1, c2, c3)

(E17.6.8)

The necessary conditions for the minimization of R are given by

∂R

∂ci

= T ∗
max(∂πmax/∂ci) − πmax(∂T ∗

max/∂ci)

T ∗
max

2 = 0 (E17.6.9)

or
∂πmax

∂ci

− ω2 ∂T ∗
max

∂ci

= 0, i = 1, 2, 3 (E17.6.10)

Using

∂πmax

∂c1
= EA0

2

[
c1

(
3π2

16l
+ 1

4l

)
+ c2

(
3

4l

)
+ c3

(
5

36l

)]
(E17.6.11)

∂πmax

∂c2
= EA0

2

[
c2

(
27π2

16l
+ 1

4l

)
+ c1

(
3

4l

)
+ c3

(
15

4l

)]
(E17.6.12)

∂πmax

∂c3
= EA0

2

[
c3

(
75π2

16l
+ 1

4l

)
+ c2

(
15

4l

)
+ c1

(
5

36l

)]
(E17.6.13)

∂T ∗
max

∂c1
= ρA0l

2

[
c1

(
3

4
− 1

π2

)
+ c2

(
1

π2

)
− c3

(
1

9π2

)]
(E17.6.14)

∂T ∗
max

∂c2
= ρA0l

2

[
c2

(
3

4
− 1

9π2

)
+ c1

(
1

π2

)
+ c3

(
1

π2

)]
(E17.6.15)

∂T ∗
max

∂c3
= ρA0l

2

[
c3

(
3

4
− 1

25π2

)
− c1

(
1

9π2

)
+ c2

(
1

π2

)]
(E17.6.16)

Eqs. (E17.6.9) can be expressed as

EA0

2l




3π2

16
+ 1

4

3

4

5

36

3

4

27π2

16
+ 1

4

15

4

5

36

15

4

75π2

16
+ 1

4







c1

c2

c3




= ω2ρA0l

2




3

4
− 1

π2

1

π2
− 1

9π2

1

π2

3

4
− 1

9π2

1

π2

− 1

9π2

1

π2

3

4
− 1

25π2






c1

c2

c3


 (E17.6.17)



670 Approximate Analytical Methods

or

[k]	c = λ[m]	c (E17.6.18)

where

[k] =




3π2

16
+ 1

4

3

4

5

36

3

4

27π2

16
+ 1

4

15

4

5

36

15

4

75π2

16
+ 1

4




(E17.6.19)

[m] =




3

4
− 1

π2

1

π2
− 1

9π2

1

π2

3

4
− 1

9π2

1

π2

− 1

9π2

1

π2

3

4
− 1

25π2




(E17.6.20)

λ = ω2ρl2

E
(E17.6.21)

The solution of Eq. (E17.6.17) is given by

	λ =



3.2189
23.0627
62.7291


 (E17.6.22)

The mode shapes can be computed as

	c(1) =



−0.9996
0.0288
0.0017


 , 	c(2) =




0.1237
−0.9912
0.0461


 , 	c(3) =




−0.0356
0.0948

−0.9949


 (E17.6.23)

17.5 ASSUMED MODES METHOD

The assumed modes method is closely related to the Rayleigh–Ritz method. In fact,
the discrete model obtained with the assumed modes method is identical to the one
obtained with the Rayleigh–Ritz method. The main difference between the two methods
is that the Rayleigh–Ritz method is commonly used to solve the eigenvalue problem,
whereas the assumed modes method is generally used to solve the forced vibration
problem. In the assumed modes method, the solution of the vibration problem of the
continuous system is assumed in the form of a series composed of a linear combination
of admissible functions φi , which are functions of the spatial coordinates, multiplied by
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time-dependent generalized coordinates, ηi(t). Thus, for a one-dimensional continuous
system, the displacement solution is assumed to be

w(x, t) =
n∑

i=1

φi(x)ηi(t) (17.46)

where φi(x) are known trial functions that satisfy the geometric boundary conditions
(admissible functions) and ηi(t) are unknown functions of time, also called generalized
coordinates. For a forced vibration problem, the expressions of strain energy (π), kinetic
energy (T ), and virtual work of nonconservative forces, δWnc, are expressed in terms
of the assumed modes solution, Eq. (17.46), and then Lagrange’s equations are used to
derive the equations of motion of the equivalent n-degree-of-freedom discrete system
of the continuous system. For specificity, consider a tapered bar under longitudinal
vibration subjected to the distributed load, f (x, t) per unit length. The strain energy,
kinetic energy, and virtual work of nonconservative forces of the system are given by

π(t) = 1

2

∫ l

0
EA(x)

[
∂u(x, t)

∂x

]2

dx (17.47)

T (t) = 1

2

∫ l

0
ρA(x)

[
∂u

∂t
(x, t)

]2

dx (17.48)

δWnc =
∫ l

0
f (x, t)δu(x, t) dx (17.49)

By substituting Eq. (17.46) into Eqs. (17.47)–(17.49), we obtain

π(t) = 1

2

∫ l

0
EA(x)

n∑
i=1

dφi(x)

dx
ηi(t)

n∑
j=1

dφj (x)

dx
ηj (t) dx

= 1

2

n∑
i=1

n∑
j=1

ηi(t)ηj (t)

[∫ l

0
EA(x)

dφi(x)

dx

dφj (x)

dx
dx

]
= 1

2

n∑
i=1

n∑
j=1

kij ηi(t)ηj (t)

(17.50)

where kij denote the symmetric stiffness coefficient, given by

kij = kji =
∫ l

0
EA(x)

dφi(x)

dx

dφj (x)

dx
dx, i, j = 1, 2, . . . , n (17.51)

T (t) =
∫ l

0
ρA(x)

n∑
i=1

φi(x)η̇i (t)

n∑
j=1

φj (x)η̇j (t) dx

= 1

2

n∑
i=1

n∑
j=1

η̇i(t)η̇j (t)

[∫ l

0
ρA(x)φi(x)φj (x) dx

]
= 1

2

n∑
i=1

n∑
j=1

mij η̇i(t)η̇j (t)

(17.52)
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where η̇i (t) = dηi(t)/ d t and mij indicate the symmetric mass coefficients, given by

mij = mji =
∫ l

0
ρA(x)φi(x)φj (x) dx, i, j = 1, 2, . . . , n (17.53)

δWnc(t) =
∫ l

0
f (x, t)

n∑
i=1

φi(x)δηi(t) dx =
n∑

i=1

Qinc(t)δηi(t) (17.54)

where Qinc(t) denotes the generalized nonconservative force corresponding to the gen-
eralized coordinate ηi(t), given by

Qinc(t) =
∫ l

0
f (x, t)φi(x) dx, i = 1, 2, . . . , n (17.55)

The Lagrange equations can be expressed as

d

d t

(
∂T

∂η̇i

)
− ∂T

∂ηi

+ ∂π

∂ηi

= Qinc, i = 1, 2, . . . , n (17.56)

Substituting Eqs. (17.50), (17.52), and (17.55) into Eq. (17.56), and noting that
∂T /∂ηi = 0, i = 1, 2, . . . , n, we can derive the equations of motion of the discretized
system as

n∑
j=1

mij η̈j (t) +
n∑

j=1

kij ηj (t) = Qinc(t), i = 1, 2, . . . , n (17.57)

Equations (17.57) can be expressed in matrix form as

[m] 	̈η(t) + [k]	η(t) = 	Q(t) (17.58)

where

	η(t) =




η1(t)

η2(t)
...

ηn(t)




, 	̈η(t) =




d2η1(t)

dt2

d2η2(t)

dt2
...

d2ηn(t)

dt2




, 	Q(t) =




Q1nc(t)

Q2nc(t)
...

Qnnc(t)




Notes

1. If 	Q(t) is set equal to 	0, Eq. (17.58) denotes the equivalent n-degree-of-freedom
free vibration equation of the continuous system:

[m] 	̈η(t) + [k]	η(t) = 	0 (17.59)

If all ηi(t) are assumed to be harmonic in Eq. (17.59) as

ηi(t) = Xi cos ωt (17.60)
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where Xi denotes the amplitude of ηi(t) and ω indicates the frequency of vibration,
the resulting equations define the eigenvalue problem of the discretized system:

ω2[m] 	X = [k] 	X (17.61)

2. If the same trial functions φi(t) used in Eq. (17.46) are used, the eigenvalue
problem, Eq. (17.39), given by the Rayleigh–Ritz methods will be identical to the one
given by the assumed modes methods, Eq. (17.61).

17.6 WEIGHTED RESIDUAL METHODS

The Rayleigh and Rayleigh–Ritz methods of solving the eigenvalue problem are based
on the stationarity of Rayleigh’s quotient. These methods can be classified as variational
methods because Rayleigh’s quotient is related to the variational methods. There is
another class of methods, known as weighted residual methods, for solving vibration
problems. The Galerkin, collocation, subdomain collocation, and least squares methods
fall into the category of weighted residual methods. The weighted residual methods
work directly with the governing differential equation and boundary conditions of a
problem.

Let the eigenvalue problem of the continuous system be stated by the differential
equation

AW = λBW inD (17.62)

with the boundary conditions

EjW = 0, j = 1, 2, . . . , p onS (17.63)

where A, B, and Ej are linear differential operators, W is the eigenfunction or normal
mode (or displacement pattern), λ is the eigenvalue, p is the number of boundary
conditions, D is the domain, and S is the boundary of the system. In all the weighted
residual methods, a trial solution, φ, is assumed for the problem. In general, the trial
solution does not satisfy the governing equation, Eq. (17.62), and hence a measure of
error is defined: for example, for a one-dimensional problem involving x as

R(φ, x) = Aφ − λBφ (17.64)

where R(φ, x) is called the residual. It can be observed that if the trial function φ(x)

happens to be an eigenfunction Wi(x) and λ the eigenvalue λi , the residual will be zero.

17.7 GALERKIN’S METHOD

The Galerkin method is the most widely used weighted residual method. In this method,
solution of the eigenvalue problem is assumed in the form of a series of n comparison
functions which satisfy all the boundary conditions of the problem:

φ
(n)

(x) =
n∑

i=1

ciφi(x) (17.65)

where the ci are coefficients to be determined and the φi(x) are known comparison
functions. When Eq. (17.65) is substituted into the differential equation (17.62), the
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resulting error or residual is defined as
R = Aφ

(n) − λ(n)Bφ
(n)

(17.66)

where λ(n) is the estimate of the eigenvalue obtained with an n-term trial solu-
tion, Eq. (17.65). Note that the residual will be zero from the boundary conditions,
Eqs. (17.63), since the trial solution is composed of comparison functions which sat-
isfy all the boundary conditions. In the Galerkin method, the selection of the coefficients
of the trial solution is based on the criterion of making the residual small.

Specifically, we multiply the residual by the comparison functions
φ1(x), φ2(x), . . . , φn(x), in sequence, integrate the product over the domain of
the system, and equate the result to zero:∫ l

0
R(φ

(n)
)φi(x) dx = 0, i = 1, 2, . . . , n (17.67)

It can be seen that in Eq. (17.67), the integral of the weighted residual is set equal
to zero, with the functions φi(x) serving as weighting functions. Upon integration,
Eqs. (17.67) denote a set of linear homogeneous algebraic equations in the unknown
coefficients c1, c2, . . . , cn, and the eigenvalue, λ(n). These equations are known as
Galerkin equations. They represent an algebraic eigenvalue problem of order n. The
solution of the algebraic eigenvalue problem yields n eigenvalues λ1, λ2, . . . , λn and the
corresponding eigenvectors 	c(1), 	c(2), . . . , 	c(n) (each within a multiplicative constant),
where

	c(i) =




c
(i)
1

c
(i)
2
...

c
(i)
n




, i = 1, 2, . . . , n (17.68)

The Rayleigh and Rayleigh–Ritz methods are applicable to only conservative systems.
However, the Galerkin method is more general and is applicable to both conservative
and nonconservative systems.

Example 17.7 Find the natural frequencies of vibration of a fixed–fixed beam of
length L, bending stiffness EI, and mass per unit length m (Fig. 17.1) using the Galerkin
method with the following trial (comparison) functions:

φ1(x) = cos
2πx

L
− 1 (E17.7.1)

φ2(x) = cos
4πx

L
− 1 (E17.7.2)

SOLUTION The equation governing the free vibration of a beam is given by

d4W

dx4
− β4W = 0 (E17.7.3)

where

β4 = mω2

EI
(E17.7.4)
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with ω denoting the natural frequency of vibration of the beam. Using the trial functions
of Eqs. (E17.7.1) and (E17.7.2), the approximate solution of the beam vibration problem
is assumed as

W(x) = c1φ1(x) + c2φ2(x) = c1

(
cos

2πx

L
− 1

)
+ c2

(
cos

4πx

L
− 1

)
(E17.7.5)

Substitution of Eq. (E17.7.5) into Eq. (E17.7.3) gives the residual as

R(c1, c2) = c1

[(
2π

L

)4

− β4

]
cos

2πx

L
+ c1β

4 + c2

[(
4π

L

)4

− β4

]
cos

4πx

L
+ c2β

4

(E17.7.6)

The Galerkin method gives ∫ L

x=0
Rφi dx = 0, i = 1, 2 (E17.7.7)

which can be expressed, using Eqs. (E17.7.6), (E17.7.1), and (E17.7.2), as

∫ L

x=0

(
cos

2πx

L
− 1

){
c1

[(
2π

L

)4

− β4

]
cos

2πx

L
+ c1β

4

+ c2

[(
4π

L

)4

− β4

]
cos

4πx

L
+ c2β

4

}
dx = 0 (E17.7.8)

∫ L

x=0

(
cos

4πx

L
− 1

){
c1

[(
2π

L

)4

− β4

]
cos

2πx

L
+ c1β

4

+ c2

[(
4π

L

)4

− β4

]
cos

4πx

L
+ c2β

4

}
dx = 0 (E17.7.9)

or

c1

{
1

2

[(
2π

L

)4

− β4

]
− β4

}
− c2β

4 = 0 (E17.7.10)

−c1β
4 + c2

{
1

2

[(
4π

L

)4

− β4

]
− β4

}
= 0 (E17.7.11)

For a nontrivial solution of Eqs. (E17.7.10) and (E17.7.11), the determinant of the
coefficient matrix of c1 and c2 must be zero. This gives∣∣∣∣∣∣∣∣∣∣

1

2

[(
2π

L

)4

− β4

]
− β4 −β4

−β4 1

2

[(
4π

L

)4

− β4

]
− β4

∣∣∣∣∣∣∣∣∣∣
= 0 (E17.7.12)
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Simplification of Eq. (E17.7.12) yields the frequency equation:

(βL)8 − 15, 900(βL)4 + 7, 771, 000 = 0 (E17.7.13)

The solution of Eq. (E17.7.13) is

βL = 4.741 or 11.140 (E17.7.14)

Thus, the first two natural frequencies of the beam are given by

ω1 = 22.48

L2

√
EI

m

ω2 = 124.1

L2

√
EI

m
(E17.7.15)

The eigenvectors corresponding to ω1 and ω2 can be obtained by solving Eq. (E17.7.10)
or (E17.7.11) with the appropriate value of β. The results are as follows. For ω1:

{
c1

c2

}(1)

=
{

23.0
1.0

}
(E17.7.16)

For ω2: {
c1

c2

}(2)

=
{−0.69

1.00

}
(E17.7.17)

Example 17.8 Derive the equations of motion for the free vibration of a viscously
damped tapered beam using the Galerkin method. The governing equation is given by

ρA(x)
∂2w(x, t)

∂t2
+ d(x)

∂w(x, t)

∂t
+ ∂2

∂x2

[
EI (x)

∂2w(x, t)

∂x2

]
= 0, 0 < x < l

(E17.8.1)

with two boundary conditions at x = 0 as well as at x = l. In Eq. (E17.8.1), the term
d(x)[∂w(x, t)/∂t] denotes the viscous damping force per unit length of the beam.

SOLUTION The transverse deflection function w(x, t) is assumed to be of the form

w(x, t) = W(x)eλt (E17.8.2)

where λ is complex and W(x) is the deflection shape (or mode shape). When
Eq. (E17.8.2) is substituted into Eq. (E17.8.1), we obtain

ρA(x)λ2W(x) + d(x)λW(x) + d2

dx2

[
EI (x)

d2W(x)

dx2

]
= 0, 0 < x < l

(E17.8.3)
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with two boundary conditions at each end. We assume the solution, W(x), in the form
of a series of n comparison functions φ1(x), φ2(x), . . . , φn(x), to be

W(x) =
n∑

i=1

ciφi(x) (E17.8.4)

where each function φi(x) satisfies all the boundary conditions of the beam. Since the
assumed function W(x) does not satisfy the differential equation (E17.8.3), the residual
is defined as

R = λ2ρA(x)

n∑
i=1

ciφi(x) + λ d(x)

n∑
i=1

ciφi(x) +
n∑

i=1

ci

d2

dx2

[
EI (x)

d2φi(x)

dx2

]
(E17.8.5)

Multiplying Eq. (E17.8.5) by φj (x), integrating the product Rφj (x) from 0 to l, and
setting the result equal to zero, we obtain

λ2
n∑

i=1

ci

∫ l

0
ρA(x)φi(x)φj (x) dx + λ

n∑
i=1

ci

∫ l

0
d(x)φi(x)φj (x) dx

+
n∑

i=1

ci

∫ l

0

d2

dx2

[
EI (x)

d2φi(x)

dx2

]
φj (x) dx = 0, j = 1, 2, . . . , n

(E17.8.6)

Defining the symmetric stiffness, damping, and mass coefficients kij , dij , and mij ,
respectively, as

kij =
∫ l

0

d2

dx2

[
EI (x)

d2φi(x)

dx2

]
φj (x) dx (E17.8.7)

dij =
∫ l

0
d(x)φi(x)φj (x) dx (E17.8.8)

mij =
∫ l

0
ρA(x)φi(x)φj (x) dx (E17.8.9)

Eq. (E17.8.6) can be written as

λ2
n∑

i=1

mijci + λ

n∑
i=1

dij ci +
n∑

i=1

kij ci = 0, j = 1, 2, . . . , n (E17.8.10)

or in matrix form as

λ2[m]
→
c + λ[ d ]

→
c + [k]

→
c =

→
0 (E17.8.11)

Solution of Eq. (E17.8.11) Three approaches can be used for solving Eq. (E11.8.11).
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Approach 1: Direct solution: For a nonzero solution of 	c in Eq. (E17.8.11), we
must have

| λ2[m] + λ[ d ] + [k] | = 0 (E17.8.12)

Equation (E17.8.12) leads to a polynomial equation in λ of order 2n, whose solution
yields the roots λi, i = 1, 2, . . . , 2n. For each λi , Eq. (E11.8.11) can be solved to find
the corresponding vector 	c(i). This procedure is, in general, tedious and inconvenient
to handle; hence the following procedures are commonly used to solve Eq. (E17.8.11).

Approach 2: Proportional damping: In this approach, the damping matrix is
assumed to be given by a linear combination of the mass and stiffness matrices:

[ d ] = α[m] + β[k] (E17.8.13)

where α and β are known constants. This type of damping is known as proportional
damping because [c] is proportional to [m] and [k]. As in the case of a multidegree-of-
freedom system, the modal matrix of the corresponding undamped discretized system,
[X], is defined as

[X] = [	c1	c2 · · · 	cn

]
(E17.8.14)

where 	c(i), i = 1, 2, . . . , n, denote the modal vectors that satisfy the undamped eigen-
value problem:

[k]	c = λ[m]	c (E17.8.15)

where λ = ω2 and ω is the natural frequency of the discretized undamped system.
Assuming that the modal vectors are normalized with respect to the mass matrix,

we have

[X]T [m] [X] = [I ] (E17.8.16)

[X]T[k][X] = [�] =




λ1 0
λ2

· · ·
0 λn


 (E17.8.17)

where λi = ω2
i , i = 1, 2, . . . , n. Substituting Eq. (E17.8.13) into Eq. (E17.8.11) and

using the transformation

	c = [X] 	p (E17.8.18)

we obtain

λ2[m][X] 	p + λ(α[m] + β[k])[X] 	p + [k][X] 	p = 	0 (E17.8.19)

Premultiplication of Eq. (E17.8.19) by [X]T and use of Eqs. (E17.8.16) and (E17.8.17)
results in

λ2 	p + λ(α[I ] + β[�]) 	p + [�] 	p = 	0 (E17.8.20)
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Defining

α[I ] + β[�] = [γ ] ≡




2ζ1ω1 0
2ζ2ω2

· · ·
0 2ζnωn


 (E17.8.21)

where ζi is called the damping ratio in mode i, Eq. (E17.8.20) can be written as

(λ2[I ] + λ[γ ] + [�]) 	p = 	0 (E17.8.22)

or, in scalar form,

λ2 + 2ζiωiλ + ω2
i = 0, i = 1, 2, . . . , n (E17.8.23)

Each equation in (E17.8.23) denotes a quadratic equation in the eigenvalue λ which can
be solved to find the ith eigenvalue, λi , of the proportionally damped continuous sys-
tem. Substituting this eigenvalue λi along with Eq. (E17.8.13), into Eq. (E17.8.11) and
solving the resulting linear equations gives the eigenvectors 	c(i) of the proportionally
damped system. In general, the eigenvalues and the eigenvectors of the proportionally
damped system occur in complex-conjugate pairs.

Approach 3: General viscous damping: In the case of general viscous damping,
damping will not be proportional and hence the undamped modal matrix [X] will
not diagonalize the damping matrix [d]. In such a case, we transform the eigenvalue
problem, Eq. (E17.8.11), as indicated by the following steps:

(a) Define the identity

λ	c = λ	c (E17.8.24)

(b) Rewrite Eq. (E17.8.11) as

λ2	c = −λ[m]−1[ d ]	c − [m]−1[k]	c (E17.8.25)

(c) Define a vector 	y of dimension 2n as:

	y =
{ 	c
λ	c
}

(E17.8.26)

(d) Combine Eqs. (E17.8.24) and (E17.8.25) as

λ

{ 	c
λ	c
}

=
[

[0] [I ]
−[m]−1[k] −[m]−1[d ]

]{ 	c
λ	c
}

(E17.8.27)

or

λ	y = [B]	y (E17.8.28)
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where [B] denotes a 2n × 2n matrix:

[B] =
[

[0] [I ]

−[m]−1[k] −[m]−1[d ]

]
(E17.8.29)

The transformed algebraic eigenvalue problem of order 2n defined by
Eq. (E17.8.28), is solved to find the eigenvalues λi and the corresponding
mode shapes 	y(i), i = 1, 2, . . . , 2n.

17.8 COLLOCATION METHOD

In the Galerkin method, the integral of the weighted residual over the domain of the
problem is set equal to zero where the weighting function is the same as one of the
comparison functions used in the series solution. The collocation method is similar
to the Galerkin method except that the weighting functions are spatial Dirac delta
functions. Thus, for a one-dimensional eigenvalue problem, an approximate solution is
assumed in the form of a linear sum of trial functions φi(x) as

φ
(n)

(x) =
n∑

i=1

ciφi(x) (17.69)

where the ci are unknown coefficients and the φi(x) are the trial functions. Depending
on the nature of the trial functions used, the collocation method may be classified in
one of the following three types:

1. Boundary method: used when the functions φi(x) satisfy the governing dif-
ferential equation over the domain but not all the boundary conditions of the
problem.

2. Interior method: used when the functions φi(x) satisfy all the boundary condi-
tions but not the governing differential equation of the problem.

3. Mixed method: used when the functions φi(x) do not satisfy either the governing
differential equation or the boundary conditions of the problem.

When the integral of the weighted residual is set equal to zero, the collocation
method yields ∫ l

0
δ(x − xi)R(φ

(n)
(x)) dx = 0, i = 1, 2, . . . , n (17.70)

where δ is the Dirac delta function and xi , i = 1, 2, . . . , n, are the known collocation
points where the residual is specified to be equal to zero. Due to the sampling prop-
erty of the Dirac delta function, Eqs. (17.70) require no integration and hence can be
expressed as

R(φ
(n)

(xi)) = 0, i = 1, 2, . . . , n (17.71)

This amounts to setting the residue at x1, x2, . . . , xn equal to zero. Equations (17.71)
denote a system of n homogeneous algebraic equations in the unknown coefficients
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c1, c2, . . . , cn and the parameter λ. In fact, they represent an algebraic eigenvalue prob-
lem of order n. It can be seen that the selection of the collocation points x1, x2, . . . , xn

is important in obtaining a well-conditioned system of equations and a convergent solu-
tion. The locations of the collocation points should be selected as evenly as possible
in the domain and/or boundary of the system to avoid ill-conditioning of the resulting
equations.

To see the nature of the eigenvalue problem, consider the problem of longitudi-
nal vibration of a tapered bar. The governing differential equation is given by [see
Eq. (9.14) with harmonic variation of u(x, t)]:

d

dx

[
EA(x)

dU(x)

dx

]
− λρA(x)U(x) = 0 (17.72)

By assuming the trial functions φi(x) in Eq. (17.69) as comparison functions, substi-
tuting the assumed solution into Eq. (17.72), and setting the residual equal to zero at
xi , we obtain

n∑
j=1

cj

{
d

dx

[
EA(x)

dφj (x)

dx

]
− λρA(x)φj (x)

}∣∣∣∣∣∣
x=xi

= 0, i = 1, 2, . . . , n

(17.73)

or
n∑

j=1

kij cj = λ

n∑
j=1

mij cj , i = 1, 2, . . . , n (17.74)

where λ is the eigenvalue of the problem and kij and mij denote the stiffness and mass
coefficients, respectively, defined by

kij = d

dx

[
EA(xi)

dφj (xi)

dx

]
(17.75)

mij = ρA(xi)φj (xi) (17.76)

Equations (17.74) denote an algebraic eigenvalue problem which can be expressed in
matrix form as

[k]	c = λ[m]	c (17.77)

where

	c =




c1

c2
...

cn




is an n-dimensional vector of the coefficients, and [k] = [kij ] and [m] = [mij ] are the
stiffness and mass matrices of order n × n.

It can be seen that the main advantage of the collocation method is its simplic-
ity. Evaluation of the stiffness and mass coefficients involves no integrations. The
main disadvantage of the method is that the stiffness and mass matrices, defined by
Eqs. (17.75) and (17.76), are not symmetric although the system is conservative. Hence,
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the solution of the nonsymmetric eigenvalue problem, Eq. (17.77), is not simple. In
general, we need to find both the right and left eigenvectors of the system in order to
find the system response.

Example 17.9 Find the natural frequencies of transverse vibration of a uniform
fixed–fixed beam shown in Fig. 17.1 using the collocation method with the approximate
solution

W(x) ≡ X(x) = c1φ1(x) + c2φ2(x) (E17.9.1)

where

φ1(x) = 1 − cos
2πx

l
(E17.9.2)

φ2(x) = 1 − cos
4πx

l
(E17.9.3)

SOLUTION It can be seen that the trial functions satisfy all the boundary (geometric)
conditions of the beam:

φi(x = 0) = φi(x = l) = 0, i = 1, 2 (E17.9.4)

dφi

dx
(x = 0) = dφi

dx
(x = l) = 0, i = 1, 2 (E17.9.5)

Since the assumed solution has two unknown coefficients, we need to use two colloca-
tion points. The collocation points are chosen as x1 = l/4 and x2 = l/2. The eigenvalue
problem is defined by the differential equation

EI
d4W(x)

dx4
− ρAω2W(x) = 0 (E17.9.6)

When Eq. (E17.9.1) is substituted in Eq. (E17.9.6), the residual is given by

R(X(x)) = d4X(x)

dx4
− λX(x) (E17.9.7)

where

λ = ρAω2

EI
(E17.9.8)

Using Eqs. (E17.9.1)–(E17.9.3), the residual can be expressed as

R = d4

dx4

[
c1

(
1 − cos

2πx

l

)
+ c2

(
1 − cos

4πx

l

)]

− λ

[
c1

(
1 − cos

2πx

l

)
+ c2

(
1 − cos

4πx

l

)]

= − c1

(
2π

l

)4

cos
2πx

l
− c2

(
4π

l

)4

cos
4πx

l

− λ

[
c1

(
1 − cos

2πx

l

)
+ c2

(
1 − cos

4πx

l

)]
(E17.9.9)
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By setting the residual equal to zero at x1 = l/4 and x2 = l/2, Eq. (E17.9.9) gives

c1

[
−
(

2π

l

)4

cos
π

2
− λ

(
1 − cos

π

2

)]
+ c2

[
−
(

4π

l

)4

cos π − λ(1 − cos π)

]
= 0

(E17.9.10)

c1

[
−
(

2π

l

)4

cos π − λ(1 − cos π)

]
+ c2

[
−
(

4π

l

)4

cos 2π − λ(1 − cos 2π)

]
= 0

(E17.9.11)

Equations (E17.9.10) and (E17.9.11) can be simplified as

c1(−λ) + c2

[(
4π

l

)4

− 2λ

]
= 0 (E17.9.12)

c1

[(
2π

l

)4

− 2λ

]
+ c2

[
−
(

4π

l

)4
]

= 0 (E17.9.13)

By setting the determinant of the coefficient matrix in Eqs. (E17.9.12) and (E17.9.13)
equal to zero, we obtain the frequency equation as∣∣∣∣∣∣∣∣

−λ

(
4π

l

)4

− 2λ(
2π

l

)4

− 2λ −
(

4π

l

)4

∣∣∣∣∣∣∣∣
= 0 (E17.9.14)

which can be simplified as

λ2 − λ
(π

l

)4
(200) + 1024

(
π2

l2

)4

= 0 (E17.9.15)

The roots of Eq. (E17.9.15) are given by

λ1,2 = 5.258246
(π

l

)4
, 194.741754

(π

l

)4
(E17.9.16)

Using Eqs (E17.9.8) and (E17.9.16), the natural frequencies can be obtained as

ω1 = 22.6320

√
EI

ρAl4
, ω2 = 137.730878

√
EI

ρAl4
(E17.9.17)

The exact values of the first two natural frequencies of a fixed–fixed beam are given by

ω1 = 22.3729

√
EI

ρAl4
and ω2 = 61.6696

√
EI

ρAl4
(E17.9.18)

It can be seen that the first and the second natural frequencies given by the collocation
method are larger by 1.1581% and 123.3367%, respectively.
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Note: If we use the points x1 = l/4 and x2 = 3l/4 or x1 = l/3 and x2 = 2l/3
as collocation points, it would not be possible to compute the natural frequencies.
Because of symmetry, use of the points x1 = l/4 and x2 = l/2 in the half-beam would
be sufficient.

The mode shapes can be determined, using (E17.9.12), as

c2 =
{

λ( 4π
l

)4 − 2λ

}
c1 (E17.9.19)

Thus, the first mode shape, corresponding to λ1 = 5.258246(π4/l4), is given by

c
(1)
2 = 0.0214199c

(1)
1

or {
c1

c2

}(1)

=
{

1
0.0214199

}
c
(1)
1 (E17.9.20)

The second mode shape, corresponding to λ = 194.741754(π4/l4), is given by

c
(2)
2 = −1.458920c

(2)
1

or {
c1

c2

}(2)

=
{

1
−1.458920

}
c
(2)
1 (E17.9.21)

17.9 SUBDOMAIN METHOD

In this method, the domain of the problem, D, is subdivided into n smaller subdomains
Di(i = 1, 2, . . . , n), so that

D =
n∑

i=1

Di (17.78)

and the integral of the residual over each subdomain is set equal to zero:∫
Di

R(φ(x)) dx = 0, i = 1, 2, . . . , n (17.79)

where φ(x) denotes the assumed solution in the form of a linear sum of trial functions
(such as comparison functions), Eq. (17.69). Equations (17.79) indicate that the average
value of the residual in each subdomain is zero. Obviously, in this method, negative
errors can cancel positive errors to give least net error, although the sum of the absolute
value of the errors is very large. The subdomain method can be interpreted as a weighted
residual method where the weighting functions, ψi(x), are defined as

ψi(x) =
{

1, if x is in Di

0, otherwise
(17.80)

The stiffness and mass matrices given by the subdomain method are also nonsymmetric,
and hence the resulting algebraic eigenvalue problem is difficult to solve.
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Example 17.10 Find the natural frequencies of transverse vibration of a uniform
fixed–fixed beam using the subdomain method with the approximate solution

X(x) = c1φ1(x) + c2φ2(x) (E17.10.1)

where

φ1(x) = 1 − cos
2πx

l
(E17.10.2)

φ2(x) = 1 − cos
4πx

l
(E17.10.3)

SOLUTION As seen in Example 17.9, the trial functions satisfy all the (geometric)
boundary conditions of the beam. Since the assumed solution has two unknown coef-
ficients, we need to use two subdomains. Because of the symmetry, we choose the
subdomains in the first half of the beam as D1 = (0, l/4) and D2 = (l/4, l/2). For the
approximate solution given by Eq. (E17.10.1), the residual is given by [Eq. (E17.9.9)]:

R = −c1

(
2π

l

)4

cos
2πx

l
− c2

(
4π

l

)4

cos
4πx

l

− λ

[
c1

(
1 − cos

2πx

l

)
+ c2

(
1 − cos

4πx

l

)]
(E17.10.4)

By setting the integral of the residual over the two subdomains equal to zero, we obtain∫ l/4

0
R dx =

∫ l/4

0

[
−c1

(
2π

l

)4

cos
2πx

l
− c2

(
4π

l

)4

cos
4πx

l

− λc1 + λc1 cos
2πx

l
− λc2 + λc2 cos

4πx

l

]
dx = 0

or

c1

[(
2π

l

)3

− λ
l

4
− λ

l

2π

]
+ c2

(
−λ

l

4

)
= 0 (E17.10.5)

and ∫ l/2

l/4
R dx =

∫ l/2

l/4

[
− c1

(
2π

l

)4

cos
2πx

l
− c2

(
4π

l

)4

cos
4πx

l

− λc1 + λc1 cos
2πx

l
− λc2 + λc2 cos

4πx

l

]
dx = 0

or

c1

[
−
(

2π

l

)3

− λ
l

4
+ λ

l

2π

]
+ c2

(
−λ

l

4

)
= 0 (E17.10.6)
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For a nontrivial solution of c1 and c2 in Eqs. (E17.10.5) and (E17.10.6), the determinant
of the coefficient matrix must be zero:∣∣∣∣∣

( 2π
l

)3 − λ l
4 − λ l

2π
−λ l

4

− ( 2π
l

)3 − λ l
4 + λ l

2π
−λ l

4

∣∣∣∣∣ = 0 (E17.10.7)

Equation (E17.10.7) can be simplified as

λ2
(

l2

4π

)
− λ

[(
2π

l

)3
l

2

]
= 0 (E17.10.8)

The roots of Eq. (E17.10.8) are

λ1 = 0, λ2 = 16π4

l4
(E17.10.9)

The mode shapes corresponding to λ1 and λ2 can be determined using Eq. (E17.10.5) as

c2 = (2π/l)3 − λ (l/4 + l/2π)

λ (l/4)
c1 (E17.10.10)

Thus, for λ1 = 0, the mode shape is given by

	c(1) =
{

c1

c2

}(1)

=
{

0
1

}
c
(1)
2 (E17.10.11)

For λ2 = 16π4/l4, the mode shape is given by

	c(2) =
{

c1

c2

}(2)

=



1.0

183.4405/l3


 c

(2)
1 (E17.10.12)

17.10 LEAST SQUARES METHOD

The least squares method can be considered as a variational method as well as a
weighted residual method. Because the method is also applicable to problems for which
a classical variational principle does not exist, it is considered more as a weighted
residual method. Basically, the least squares method minimizes the integral of the
square of the residual over the domain:∫

D

R2 dD = minimum (17.81)

where R is the residual of the governing differential equation and D is the domain of
the problem. Assuming the approximate solution in the form of Eq. (17.69), Eq. (17.81)
can be expressed as∫ l

0
R2(φ(x)) dx =

∫ l

0
R2(c1, c2, . . . , cn) dx = minimum (17.82)
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The minimization is carried with respect to the unknown coefficients c1, c2, . . . , cn.
The necessary conditions for the minimum of the integral in Eq. (17.82) are given by

∂

∂ci

(∫ l

0
R2 dx

)
= 2

∫ l

0
R

∂R

∂ci

dx = 0

or ∫ l

0
R

∂R

∂ci

dx = 0, i = 1, 2, . . . , n (17.83)

Equation (17.83) indicates that the least squares method is a weighted residual method
where the weighting functions, ψi(x), are given by

ψi(x) = ∂R

∂ci

, i = 1, 2, . . . , n (17.84)

To see the nature of the algebraic eigenvalue problem given by the method of least
squares, consider the problem of the longitudinal vibration of a tapered bar:

d

dx

[
EA(x)

dU(x)

dx

]
− λρA(x)U(x) = 0 (17.85)

When the approximate solution given by Eq. (17.69) is used, the residual of Eq. (17.85)
can be expressed as

R =
n∑

j=1

cj

{
d

dx

[
EA(x)

dφj (x)

dx

]
− λρA(x)φj (x)

}
(17.86)

and hence
∂R

∂ci

= d

dx

[
EA(x)

dφi(x)

dx

]
− λρA(x)φi(x) (17.87)

Using Eqs. (17.86) and (17.87), Eq. (17.83) can be expressed as∫ l

0

n∑
j=1

cj

{
d

dx

[
EA(x)

dφj (x)

dx

]
− λρA(x)φj (x)

}

·
{

d

dx

[
EA(x)

dφi(x)

dx

]
− λρA(x)φi(x)

}
dx = 0

or
n∑

j=1

cj

{∫ l

0

d

dx

[
EA(x)

dφj (x)

dx

]
d

dx

[
EA(x)

dφi(x)

dx

]
dx

− λ

∫ l

0

d

dx

[
EA(x)

dφj (x)

dx

]
ρA(x)φi(x) dx

− λ

∫ l

0
ρA(x)φj (x)

d

dx

[
EA(x)

dφi(x)

dx

]
dx

+ λ2
∫ l

0
ρ2A2(x)φi(x)φj (x) dx

}
= 0, i = 1, 2, · · · , n (17.88)
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Defining the n × n matrices

kij =
∫ l

0

d

dx

[
EA(x)

dφi(x)

dx

]
d

dx

[
EA(x)

dφj (x)

dx

]
dx (17.89)

mij =
∫ l

0
ρ2A2(x)φi(x)φj (x) dx (17.90)

hij =
∫ l

0
ρA(x)φi(x)

d

dx

[
EA(x)

dφj

dx

]
dx (17.91)

Eq. (17.88) can be expressed as

n∑
j=1

kij cj − λ

n∑
j=1

hij cj − λ

n∑
j=1

hjicj + λ2
n∑

j=1

mijcj = 0, i = 1, 2, . . . , n

(17.92)

or, equivalently, in matrix form as

[[k] − λ([h] + [h]T ) + λ2[m]]	c = 	0 (17.93)

Equation (17.93) denotes a quadratic eigenvalue problem because it involves both λ and
λ2. This equation can be seen to be similar to the one corresponding to the eigenvalue
problem of a damped system, Eq. (E17.8.11).

To reduce Eq. (17.93) to the form of a standard eigenvalue problem, define the
following vectors and matrices:

	b2n×1 =
{

λ	c
	c
}

(17.94)

[A]2n×2n =
[

[h] + [h]T −[k]
−[k] [0]

]
(17.95)

[B]2n×2n =
[

[m] [0]
[0] −[k]

]
(17.96)

Using Eqs. (17.94), (17.95), and (17.96), Eq. (17.93) can be rewritten as

[A]	b = λ[B]	b (17.97)

which can be seen to be a standard matrix eigenvalue problem of order 2n. Thus, the
least squares method requires the solution of an eigenvalue problem of twice the order
of that required by other methods, such as the Rayleigh–Ritz and Galerkin methods.

Example 17.11 Find the first two natural frequencies and mode shapes of a fixed–
fixed uniform beam using the least squares method. The free vibration equation of a
uniform beam is given by

d4W

dx4
− λW = 0, 0 ≤ x ≤ l (E17.11.1)
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where

λ = β4 = mω2

EI
(E17.11.2)

Assume an approximate solution for W(x) as

W̃(x) = c1

(
1 − cos

2πx

l

)
+ c2

(
1 − cos

4πx

l

)
(E17.11.3)

SOLUTION The least squares method requires that

∫ l

0
R2(W̃ (x)) dx → minimum (E17.11.4)

where R(W̃(x)) is the residual. The conditions for the minimum in Eq. (E17.11.4) are
given by

∫ l

0
R(W̃ (x))

∂R

∂ci

(W̃ (x)) dx = 0, i = 1, 2 (E17.11.5)

With the assumed solution, the residual becomes

R(W̃(x)) = d4W̃

dx4
− λW̃ = −c1

(
2π

l

)4

cos
2πx

l
− c2

(
4π

l

)4

cos
4πx

l

− β4
[
c1

(
1 − cos

2πx

l

)
+ c2

(
1 − cos

4πx

l

)]
(E17.11.6)

The necessary conditions, given by Eq. (E17.11.5), can be expressed as follows.
For i = 1:

∫ l

0
R(W̃ (x))

∂R(W̃ (x))

∂c1
dx =

∫ l

0

[
c1

(
2π

l

)4

cos
2πx

l
+ c2

(
4π

l

)4

cos
4πx

l

+ c1β
4
(

1 − cos
2πx

l

)
+ c2β

4
(

1 − cos
4πx

l

)]

·
[(

2π

l

)4

cos
2πx

l
+ β4

(
1 − cos

2πx

l

)]
dx = 0

(E17.11.7)

Upon integration and simplification, Eq. (E17.11.7), yields

c1

(
128π8

l7
− 16π4β4

l3
+ 3

2
lβ8
)

+ c2(lβ
8) = 0 (E17.11.8)
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For i = 2:∫ l

0
R(W̃(x))

∂R(W̃ (x))

∂c2
dx =

∫ l

0

[
c1

(
2π

l

)4

cos
2πx

l
+ c2

(
4π

l

)4

cos
4πx

l

+ c1β
4
(

1 − cos
2πx

l

)
+ c2β

4
(

1 − cos
4πx

l

)]

·
[(

4π

l

)4

cos
4πx

l
+ β4

(
1 − cos

4πx

l

)]
dx = 0

(E17.11.9)

Upon integration and simplification, Eq. (E17.11.9), yields

c1(lβ
8) + c2

(
215π8

l7
− 44π4β4

l3
+ 3

2
lβ8
)

= 0 (E17.11.10)

For a nontrivial solution of c1 and c2 in Eqs. (E17.11.8) and (E17.11.10), the determi-
nant of their coefficient matrix must be equal to zero. This gives


128π8

l7
− 16π4β4

l3
+ 3

2
lβ8 lβ8

lβ8 215π8

l7
− 44π4β4

l3
+ 3

2
lβ8



{
c1

c2

}
=
{

0
0

}

(E17.11.11)

which upon simplification gives the frequency equation

5l16β16 − 1632π4l12β12 + 213, 760π8l8β8 − 2, 228, 224π12l4β4 + 224π16 = 0
(E17.11.12)

Defining

λ̃ = l4β4

24π4
(E17.11.13)

Eq. (E17.11.12) can be rewritten as

5λ̃4 − 102λ̃3 + 835λ̃2 − 544λ̃ + 256 = 0 (E17.11.14)

The roots of Eq. (E17.11.14) are given by (using MATLAB)

λ̃1,2 = 9.8671 ± 7.4945i, λ̃3,4 = 0.3329 ± 0.4719i (E17.11.15)

The natural frequencies can be computed using Eqs. (E17.11.2) and (E17.11.13) as

λ̃i = l4β4
i

24π4
= ml4 ω2

i

EI · 24π4

or

ωi = 39.478602
√

λ̃i

(
EI

ml4

)1/2

, i = 1, 2, 3, 4 (E17.11.16)
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Noting that √
λ̃1,2 = 3.3360 ± 1.1233i (E17.11.17)√
λ̃3,4 = 0.6747 ± 0.3497i (E17.11.18)

Eq. (E17.11.16) gives natural frequencies as

ω1 = (131.700617 + 44.346314i)

(
EI

ml4

)1/2

(E17.11.19)

ω2 = (131.700617 − 44.346314i)

(
EI

ml4

)1/2

(E17.11.20)

ω3 = (26.636213 + 13.805667i)

(
EI

ml4

)1/2

(E17.11.21)

ω4 = (26.636213 − 13.805667i)

(
EI

ml4

)1/2

(E17.11.22)

To find the mode shapes, Eq. (E17.11.11), is rewritten in terms of λ̃ as[
1
2 − λ̃ + 3

2 λ̃2 λ̃2

λ̃2 128 − 16λ̃ + 3
2 λ̃2

]{
c1

c2

}
=
{

0
0

}
(E17.11.23)

The first equation of (E17.11.23) can be written in scalar form as

c1

(
1

2
− λ̃ + 3

2
λ̃2
)

+ c2(λ̃
2) = 0 (E17.11.24)

or

c2 =
(

−3

2
+ 1

λ̃
− 1

2λ̃2

)
c1 (E17.11.25)

By substituting the value of λ̃i given by Eq. (E17.11.15) into Eq. (E17.11.25), the
corresponding eigenvector 	c(i) can be expressed as

	c(i) =
{

c
(i)
1

c
(i)
2

}
=
{

1.0 + 0.0i

− 3
2 + 1

∼
λ

− 1

2
∼
λ

2

}
c
(i)
1 , i = 1, 2, 3, 4 (E17.11.26)

Thus, the eigenvectors are as follows: For λ̃1 = 9.8671 + 7.4945i,

	c(1) =
{

c
(1)
1

c
(1)
2

}
=
{

1.0 + 0.0i

−1.4366 − 0.0457i

}
c
(1)
1 (E17.11.27)

For λ̃2 = 9.8671 − 7.4945i,

	c(2) =
{

c
(2)
1

c
(2)
2

}
=
{

1.0 + 0.0i

−1.4366 + 0.0457i

}
c
(2)
1 (E17.11.28)
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For λ̃3 = 0.3329 + 0.4719i,

	c(3) =
{

c
(3)
1

c
(3)
2

}
=
{

1.0 + 0.0i

0.0010 − 0.0026i

}
c
(3)
1 (E17.11.29)

For λ̃4 = 0.3329 − 0.4719i,

	c(4) =
{

c
(4)
1

c
(4)
2

}
=
{

1.0 + 0.0i

0.0010 + 0.0026i

}
c
(4)
1 (E17.11.30)

Thus, the natural frequencies of the beam are given by Eqs. (E17.11.19)–(E17.11.22)
and the corresponding mode shapes by Eqs. (E17.11.27)–(E17.11.30)

Notes
1. The eigenvalues (and the natural frequencies) and the corresponding eigenvec-

tors in the least squares method will be complex conjugates. Although it is difficult
to interpret the complex eigenvalues and eigenvectors, usually the imaginary parts are
small and can be neglected.

2. The least squares method leads to a quadratic eigenvalue problem. That is, the
size of the eigenvalue problem will be twice that of the problem in the Rayleigh–Ritz
method.

3. The matrices involved in the least squares method are more difficult to compute.
4. In view of the foregoing features, the least squares method is not as popular

as the other methods, such as the Rayleigh–Ritz and Galerkin methods for solving
eigenvalue problems. However, the least squares method works well for equilibrium
problems, as indicated in the following example.

Example 17.12 Find the deflection of a fixed–fixed uniform beam subject to a uni-
formly distributed load f0 per unit length using the least squares method. The governing
differential equation for the deflection of a beam is given by

d4 w

dx4
− f0 = 0, 0 ≤ x ≤ l (E17.12.1)

where
f0 = p0

EI
(E17.12.2)

Assume an approximate solution for w(x), using comparison functions, as

w̃(x) = c1x
2(x − l)2 + c2x

3(x − l)2 (E17.12.3)

SOLUTION The least squares method requires the minimization of the function

I =
∫ l

0
R2(w̃(x)) dx (E17.12.4)

The necessary conditions for the minimum of I are given by∫ l

0
R(w̃(x))

∂R(w̃(x))

∂ci

dx = 0, i = 1, 2 (E17.12.5)
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With the assumed solution of Eq. (E17.12.3), the residual and its partial derivatives are
given by

R(w̃(x)) = 24c1 + (120x − 48l)c2 − f0 (E17.12.6)

∂R

∂c1
= 24 (E17.12.7)

∂R

∂c2
= 120x − 48l (E17.12.8)

Thus, Eq. (E17.12.5) can be expressed as∫ l

0
[24c1 + (120x − 48l)c2 − f0](24) dx = 0 (E17.12.9)

∫ l

0
[24c1 + (120x − 48l)c2 − f0](120x − 48l) dx = 0 (E17.12.10)

Equations (E17.12.9) and (E17.12.10) can be evaluated to obtain

24c1 + 12lc2 = f0 (E17.12.11)

24c1 − 80lc2 = f0 (E17.12.12)

The solution of Eqs. (E17.12.11) and (E17.12.12) gives

c1 = f0

24
, c2 = 0 (E17.12.13)

Thus, the deflection of the beam, in view of Eqs. (E17.12.3) and (E17.12.13), becomes

w̃(x) = c1x
2(x − l)2 = f0

24
x2(x − l)2 (E17.12.14)

It can be seen that this solution coincides with the exact solution.

17.11 RECENT CONTRIBUTIONS

Dunkerley’s Method The basic idea behind Dunkerley’s method of finding the small-
est natural frequency of a multidegree-of-freedom elastic system was extended by
Levy [6]. to determine all the frequencies of the system simultaneously. The method is
found to converge fast when the frequencies are not close to each other. The method is
demonstrated with the help of several lumped-parameter systems. Badrakhan presented
the application of Rayleigh’s method to an unconstrained system [7].

Frequency in Terms of Static Deflection Radhakrishnan et al. [8] developed a
method to estimate the fundamental frequency of a plate through the finite element
solution of its static deflection under a uniformly distributed load without the associ-
ated eigenvalue problem. The results computed in the case of a clamped rectangular
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plate with a central circular hole were found to be in reasonable agreement with exper-
imental results. The method is useful for determining the fundamental frequency of
elastic plates of arbitrary geometry and boundary conditions. Bert [9] proposed the
simple relation

ω = C
(g

δ

)1/2
(17.98)

where C is a dimensionless constant and g is the acceleration due to gravity for
estimating the natural frequency (ω) in terms of the static deflection (δ) of a linear
system. Nagaraj [10] showed that Eq. (17.98) also holds for a rotating Timoshenko
beam if C is selected properly. A variational formulation of the Rayleigh–Ritz method
was presented by Bhat [11]. The stationarity of the natural frequencies was investigated
with respect to coefficients in the linear combination of the assumed deflection shape
as well as natural modes.

Beams The frequencies of beams carrying multiple masses using Rayleigh’s method
were considered by Low [12]. The solution methods for frequencies of three mass-
loaded beams are presented with both the transcendental characteristic equation and
Rayleigh estimation. Gladwell [13] presented a method of finding the natural frequen-
cies and principal modes of undamped free vibration of a plane frame consisting of a
rectangular grid of uniform beams. A general method of finding a set of assumed modes
for use in the Rayleigh–Ritz method was given. The resulting equations, expressed in
matrix form, were solved for the case of a simple frame, to illustrate the method.

Membranes The dynamic stability of a flat sag cable subjected to an axial periodic
load was investigated by Takahashi using the Galerkin method [14]. The results include
unstable regions for various sag-to-span ratios and ratios of wave speeds. The transient
response of hanging curtains clamped at three edges was considered by Yamada and
his associates [15]. A hanging curtain was replaced by an equivalent membrane for
deriving the equation of motion. The free vibration of the membrane was analyzed
theoretically, and its transient response when subjected to a rectangularly varying point
force was studied using Galerkin’s method.

Plates The use of two-dimensional orthogonal plate functions as admissible deflec-
tion functions in the study of flexural vibration of skew plates by the Rayleigh–Ritz
method was presented by Liew and Lam [16]. Free vibration analysis of triangular and
trapezoidal plates was considered by the superposition technique [17, 18]. The super-
position method was extended by Gorman for the free vibration solution of rectangular
plates resting on uniform elastic edge supports [19]. The elastic edge supports were
assumed to be uniform elastic rotational and translational supports of any stiffness
magnitudes in terms of eight stiffness coefficients. The vibrations of circular plates
with thickness varying in a discontinuous fashion were studied by Avalos et al. [20].
The free vibration of a solid circular plate free at its edge and attached to a Winkler
foundation was considered by Salari et al. [21]. The free vibrations of a solid circular
plate of linearly varying thickness attached to a Winkler foundation were considered
by Laura et al. [22] using linear analysis and the Rayleigh–Schmidt method.
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Avalos et al. [20] presented general approximate solution for vibrating circular
plates with stepped thickness over a concentrated circular region. Approximate values of
the fundamental frequencies of vibration of circular plates with discontinuous variations
of thickness in a nonconcentric fashion were determined by Laura et al. [23]. The Ritz
method and Rayleigh’s optimization procedure were used in finding the solution of
plates whose edges are elastically restrained against rotation.
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PROBLEMS
17.1 The eigenvalue problem for finding the natu-
ral frequencies of vibration of a taut string, shown in
Fig. 17.5, is given by

d2 W

dy2
+ λW = 0, 0 < y < 1

with the boundary conditions

W(y) = 0 at y = 0 and y = 1

where

λ = ρL2 ω2

P

ρ is the mass per unit length, L is the length, P

is the tension, ω is the natural frequency, y is the
nondimensional length = x/L, and W is the transverse
deflection shape of the string. Find the natural frequency
of vibration of the string using the Galerkin method with
the following trial solution:

W(y) = c1y(1 − y)

17.2 Solve Problem 17.1 and find the natural frequen-
cies of the string using the trial solution

W(y) = c1y(1 − y) + c2y(1 − y)2

17.3 Solve Problem 17.1 and find the natural frequen-
cies of the string using the trial solution

W(y) = c1y(1 − y) + c2y(1 − y)2 + c3y(1 − y)3

17.4 Find the natural frequency of vibration of the
string described in Problem 17.1 using the subdomain
collocation method with the trial solution

W(y) = c1y(1 − y)

Assume that the subdomain is defined by y = 0 to 1
8 .

W(y)

y
L

r, P

Figure 17.5
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17.5 Find the natural frequencies of vibration of the
string described in Problem 17.1 using the subdomain
collocation method with the trail solution

W(y) = c1y(1 − y) + c2y(1 − y)2

Assume that the subdomains are defined by y1 = (
0, 1

8

)
and y2 = ( 3

8 , 5
8

)
.

17.6 Find the natural frequencies of vibration of the
string described in Problem 17.1 using the subdomain
collocation method with the trail solution

W(y) = c1y(1 − y) + c2y(1 − y)2 + c3y(1 − y)3

Assume that the subdomains are defined as y1 =(
0, 1

8

)
, y2 = ( 3

8 , 5
8

)
, and y3 = ( 7

8 , 1
)
.

17.7 Consider the eigenvalue problem of the taut string
described in Problem 17.1. Find the natural frequency
of vibration of the string using the least squares method
with the trial solution

W(y) = c1y(1 − y)

17.8 Solve Problem 17.7 and find the natural frequen-
cies of the string with the trial solution

W(y) = c1y(1 − y) + c2y(1 − y)2

17.9 Solve Problem 17.7 and find the natural frequen-
cies of the string with the trial solution

W(y) = c1y(1 − y) + c2y(1 − y)2 + c3y(1 − y)3

17.10 Find the natural frequency of vibration of the
string described in Problem 17.1 using the collocation
method with the trail solution

W(y) = c1y(1 − y)

Assume the collocation point to be y1 = 1
8 .

17.11 Find the natural frequencies of vibration of the
string described in Problem 17.1 using the collocation
method with the trail solution

W(y) = c1y(1 − y) + c2y(1 − y)2

Assume the collocation points to be y1 = 1
8 and y2 = 1

2 .

17.12 Find the natural frequencies of vibration of the
string described in Problem 17.1 using the collocation
method with the trail solution

W(y) = c1y(1 − y) + c2y(1 − y)2 + c3y(1 − y)3

Assume the collocation points to be y1 = 1
8 , y2 = 1

2 , and
y3 = 5

8 .

17.13 Rayleigh’s quotient corresponding to the trans-
verse vibration of a string, shown in Fig. 17.5, is
given by

R(W(x)) = λ =
∫ 1

0 (dW/ dy)2 dy∫ 1
0 W 2 dy

where

λ = ρl2 ω2

P

ρ is the mass per unit length, l is the length, P is the ten-
sion, ω is the natural frequency, y is the nondimensional
length = x/l, and W is the transverse deflection shape
of the string. Find the natural frequencies of vibration
of the string using the Rayleigh–Ritz method with the
following trial solution:

W(y) = c1y(1 − y) + c2y(1 − y)2

17.14 Solve Problem 17.13 with the trial solution

W(y) = c1y(1 − y) + c2y(1 − y)2 + c3y(1 − y)3

17.15 Find the natural frequency of the transverse vibra-
tion of the string described in Problem 17.13 using
Rayleigh’s method with the trial solution

W(y) = c1y(1 − y)

17.16 The natural frequencies of vibration of a tapered
bar in axial vibration are governed by the equation

d

dx

[
EA(x)

dU(x)

dx

]
+ m(x)U(x)ω2 = 0

where E is Young’s modulus, A(x) is the cross-
sectional, area, U(x) is the axial displacement shape,
m(x) is the mass per unit length, and ω is the natural
frequency. Find the natural frequencies of axial vibra-
tion of the bar shown in Fig. 17.6 using the Galerkin
method with the trial solution

U(x) = c1 sin
πx

2l
+ c2 sin

3πx

2l
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l

x
d(x) d0

d(x) = d0 1 − x
l

0

Figure 17.6

17.17 Rayleigh’s quotient corresponding to the axial
vibration of a nonuniform bar is given by

R(U(x)) = ω2 =
∫ l

0 EA(x)[dU(x)/ dx]2 dx∫ l

0 m(x)[U(x)]2 dx

Find the natural frequency of vibration of the tapered
bar shown in Fig. 17.6 using Rayleigh’s method with
the trial solution

U(x) = c1 sin
πx

2l

17.18 Rayleigh’s quotient corresponding to the axial
vibration of a nonuniform bar is given by

R(U(x)) = ω2 =
∫ l

0 EA(x)[dU(x)/ dx]2 dx∫ l

0 m(x)[U(x)]2 dx

Find the natural frequencies of vibration of the tapered
bar shown in Fig. 17.6 using the Rayleigh–Ritz method
with the trial solution

U(x) = c1 sin
πx

2l
+ c2 sin

3πx

2l

17.19 Find the natural frequencies of axial vibration of
the tapered bar described in Problem 17.16 and shown
in Figure 17.6 using the subdomain collocation method
with the trial solution

U(x) = c1 sin
πx

2l
+ c2 sin

3πx

2l

Assume the subdomains for collocation as y1 = (0, l/4)

and y2 = (l/4, l/2).

17.20 Find the natural frequencies of axial vibration of
the tapered bar described in Problem 17.16 and shown in
Figure 17.6 using the collocation method with the trial
solution

U(x) = c1 sin
πx

2l
+ c2 sin

3πx

2l

Assume the collocation points to be y1 = l/4 and y2 =
l/2.

17.21 The natural frequencies of transverse vibration of
a tapered beam are governed by the equation

d2

dx2

[
EI (x)

d2 W(x)

dx2

]
− ρA(x)W(x)ω2 = 0

where W(x) is the deflection shape, E is the Young’s
modulus, I (x) is the area moment of inertia of the cross
section, ρ is the density, A(x) is the cross-sectional
area, and ω is the natural frequency. Find the natural
frequencies of vibration of the tapered beam shown
in Fig. 17.7 using the Galerkin method with the trial
solution

W(x) = c1

(
1 − x

l

)4 + c2
x

l

(
1 − x

l

)4

l

x

W(x)

W(x)

d(x) d0

d(x) =

0
Free
end

Fixed
end

d0x

l

Figure 17.7

17.22 Find the natural frequencies of transverse vibra-
tion of the tapered beam described in Problem 17.21 and
shown in Figure 17.7 using the collocation method with
the trial solution

W(x) = c1

(
1 − x

l

)4
+ c2

x

l

(
1 − x

l

)4

Assume the collocation points to be x1 = l/4 and x2 =
l/2.

17.23 Find the natural frequencies of transverse vibra-
tion of the tapered beam described in Problem 17.21 and
shown in Figure 17.7 using the subdomain collocation
method with the trial solution

W(x) = c1

(
1 − x

l

)4
+ c2

x

l

(
1 − x

l

)4

Assume the subdomains to be (0, l/4) and (l/4, l/2).
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17.24 Rayleigh’s quotient corresponding to the trans-
verse vibration of a nonuniform beam is given by

R(W(x)) = ω2 =
∫ l

0 EI (x)[ d2 W(x)

dx2 ]2 dx∫ l

0 ρA(x)[W(x)]2 dx

Find the natural frequency of the tapered beam shown in
Fig. 17.7 using Rayleigh’s method with the trial solution

W(x) = c1

(
1 − x

l

)4

17.25 Find the natural frequencies of transverse vibra-
tion of the tapered beam shown in Fig. 17.7 using the
Rayleigh–Ritz method with the trial solution

W(x) = c1

(
1 − x

l

)4 + c2
x

l

(
1 − x

l

)4

17.26 Consider a fixed–free beam in the form of a
wedge with width b, maximum depth d , and length l,
as shown in Fig. 17.8. Estimate the fundamental natural
frequency of vibration of the beam using Rayleigh’s
method with the following function for transverse
deflection:

W(x) = c
(

1 − cos
πx

2l

)

l

b

d

x 0

Fixed
end

Free
end

Figure 17.8

17.27 Estimate the fundamental natural frequency
of vibration of a uniform fixed–fixed beam using
Rayleigh’s method. Assume the deflection function to be
the same as the static deflection shape under self-weight:

W(x) = c(x4 − 2lx3 + l2x2)

where c = ρA/24EI .

17.28 Find the natural frequencies of axisymmetric
transverse vibration of a circular plate of thickness h

and radius R clamped at the edge r = R using the
Rayleigh–Ritz method with the trial solution

W(r) = c1

(
1 − r2

R2

)2

+ c2

(
1 − r2

R2

)3

where c1 and c2 are constants.

17.29 Estimate the fundamental natural frequency of
transverse vibration of a rectangular plate of thickness h

and dimensions a and b clamped on all four edges using
Rayleigh’s method with the trial solution

W(x, y) = c sin
πx

a
sin

πy

b

where c is a constant.

17.30 Estimate the fundamental natural frequency of
transverse vibration of a rectangular membrane of
dimensions a and b under uniform tension P clamped
at the edges using Rayleigh’s method with the trial
solution

W(x, y) = c sin
πx

a
sin

πy

b

where c is a constant.



A

Basic Equations of Elasticity

A.1 STRESS

The state of stress at any point in a loaded body is defined completely in terms of the
nine components of stress: σxx, σyy, σzz, σxy, σyx, σyz, σzy, σzx , and σxz, where the first
three are the normal components and the latter six are the components of shear stress.
The equations of internal equilibrium in terms of the nine components of stress can be
derived by considering the equilibrium of moments and forces acting on the elemental
volume shown in Fig. A.1. The equilibrium of moments about the x, y, and z axes,
assuming that there are no body moments, leads to the relations

σyx = σxy, σzy = σyz, σxz = σzx (A.1)

Equations (A.1) show that the state of stress at any point can be defined completely by
the six components σxx, σyy, σzz, σxy, σyz, and σzx .

A.2 STRAIN–DISPLACEMENT RELATIONS

The deformed shape of an elastic body under any given system of loads can be described
completely by the three components of displacement u, v, and w parallel to the direc-
tions x, y, and z, respectively. In general, each of these components u, v, and w is
a function of the coordinates x, y, and z. The strains and rotations induced in the
body can be expressed in terms of the displacements u, v, and w. We shall assume the
deformations to be small in this work. To derive the expressions for the normal strain
components εxx and εyy and the shear strain component εxy , consider a small rectan-
gular element OACB whose sides (of lengths dx and dy) lie parallel to the coordinate
axes before deformation. When the body undergoes deformation under the action of
external load and temperature distribution, the element OACB also deforms to the shape
O ′A′C′B ′, as shown in Fig. A.2. We can observe that the element OACB has two basic
types of deformation, one of change in length and the other of angular distortion.

Since the normal strain is defined as change in length divided by original length,
the strain components εxx and εyy can be found as

εxx = change in length of the fiber OA which lies in the x direction before deformation

original length of the fiber

= {dx + [u + (∂u/∂x)dx] − u} − dx

dx
= ∂u

∂x
(A.2)
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z
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∂szz
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∂sxy

∂x
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∂sxx

∂x
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∂y
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∂y
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∂z
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∂z

Figure A.1 Stresses on an element of size dxdydz.
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Figure A.2 Deformation of an element.
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εyy = change in length of the fiber OB which lies in the y direction before deformation

original length of the fiber OB

= {dy + [v + (∂v/∂y)dy] − v} − dy

dy
= ∂v

∂y
(A.3)

The shear strain is defined as the decrease in the right angle between fibers OA and
OB, which were at right angles to each other before deformation. Thus, the expression
for the shear strain εxy can be obtained as

εxy = θ1 + θ2 ≈ [v + (∂v/∂x)dx] − v

dx + [u + (∂u/∂x)dx] − u
+ [u + (∂u/∂y)dy] − u

dy + [v + (∂v/∂y)dy] − v
(A.4)

If the displacements are assumed to be small, εxy can be expressed as

εxy = ∂u

∂y
+ ∂v

∂x
(A.5)

The expressions for the remaining normal strain component εzz and shear strain com-
ponents εyz and εzx can be derived in a similar manner as

εzz = ∂w

∂z
(A.6)

εyz = ∂w

∂y
+ ∂v

∂z
(A.7)

εzx = ∂u

∂z
+ ∂w

∂x
(A.8)

A.3 ROTATIONS
Consider the rotation of a rectangular element of sides dx and dy as a rigid body by a
small angle, as shown in Fig. A.3. Noting that A′D and C′E denote the displacements
of A and C along the y and −x axes, the rotation angle α can be expressed as

α = ∂v

∂x
= −∂u

∂y
(A.9)

Of course, the strain in the element will be zero during rigid-body movement. If both
rigid-body displacements and deformation or strain occur, the quantity

ωz = 1

2

(
∂v

∂x
− ∂u

∂y

)
(A.10)

can be seen to represent the average of angular displacement of dx and the angular
displacement of dy, and is called rotation about the z axis. Thus, the rotations of an
elemental body about the x, y, and z axes can be expressed as

ωx = 1

2

(
∂w

∂y
− ∂v

∂z

)
(A.11)

ωy = 1

2

(
∂u

∂z
− ∂w

∂x

)
(A.12)

ωz = 1

2

(
∂v

∂x
− ∂u

∂y

)
(A.13)
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Figure A.3 Rotation of an element.

A.4 STRESS–STRAIN RELATIONS

The stress–strain relations, also known as the constitutive relations, of an anisotropic
elastic material are given by the generalized Hooke’s law, based on the experimental
observation that strains are linearly related to the applied load within the elastic limit.
The six components of stress at any point are related to the six components of strain
linearly as




σxx

σyy

σzz

σyz

σzx

σxy




=




C11 C12 C13 · · · C16

C21 C22 C23 · · · C26

C31 C32 C33 · · · C36

· · · · · · ·
· · · · · · ·

C61 C62 C63 · · · C66







εxx

εyy

εzz

εyz

εzx

εxy




(A.14)

where the Cij denote one form of elastic constants of the particular material.
Equation (A.14) has 36 elastic constants. However, for real materials, the condition
for the elastic energy to be a single-valued function of the strain requires the con-
stants Cij to be symmetric; that is, Cij = Cji . Thus, there are only 21 different elastic
constants in Eq. (A.14) for an anisotropic material.

For an isotropic material, the elastic constants are invariant, that is, independent of
the orientation of the x, y, and z axes. This reduces to two the number of independent
elastic constants in Eq. (A.14). The two independent elastic constants, called Lamé’s
elastic constants, are commonly denoted as λ and µ. The Lamè constants are related
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to Cij as follows:

C11 = C22 = C33 = λ + 2µ

C12 = C21 = C31 = C13 = C32 = C23 = λ

C44 = C55 = C66 = µ

all other Cij = 0

(A.15)

Equation (A.14) can be rewritten for an elastic isotropic material as

σxx = λ� + 2µεxx

σyy = λ� + 2µεyy

σzz = λ� + 2µεzz

σyz = µεyz

σzx = µεzx

σxy = µεxy

(A.16)

where
� = εxx + εyy + εzz (A.17)

denotes the dilatation of the body and denotes the change in the volume per unit volume
of the material. Lamé’s constants λ and µ are related to Young’s modulus E, shear
modulus G, bulk modulus K , and Poisson’s ratio ν as follows:

E = µ(3λ + 2µ)

λ + µ
(A.18)

G = µ (A.19)

K = λ + 2
3µ (A.20)

ν = λ

2(λ + µ)
(A.21)

or

λ = νE

(1 + ν)(1 − 2ν)
(A.22)

µ = E

2(1 + ν)
= G (A.23)

A.5 EQUATIONS OF MOTION IN TERMS OF STRESSES
Due to the applied loads (which may be dynamic), stresses will develop inside an
elastic body. If we consider an element of material inside the body, it must be in
dynamic equilibrium due to the internal stresses developed. This leads to the equations
of motion of a typical element of the body. The sum of all forces acting on the element
shown in Fig. A.1 in the x direction is given by
∑

Fx =
(

σxx + ∂σxx

∂x
dx

)
dy dz − σxx dy dz +

(
σxy + ∂σxy

∂y
dy

)
dx dz − σxy dy dz

+
(

σzx + ∂σzx

∂z
dz

)
dx dy − σzx dx dy

= ∂σxx

∂x
dx dy dz + ∂σxy

∂y
dx dy dz + ∂σzx

∂z
dx dy dz (A.24)
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According to Newton’s second law of motion, the net force acting in the x direction
must be equal to mass times acceleration in the x direction:

∑
Fx = ρ dx dy dz

∂2u

∂t2
(A.25)

where ρ is the density, u is the displacement, and ∂2u/∂t2 is the acceleration parallel
to the x axis. Equations (A.24) and (A.25) lead to the equation of motion in the x

direction. A similar procedure can be used for the y and z directions. The final equations
of motion can be expressed as

∂σxx

∂x
+ ∂σxy

∂y
+ ∂σzx

∂z
= ρ

∂2u

∂t2
(A.26)

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σyz

∂z
= ρ

∂2v

∂t2
(A.27)

∂σzx

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
= ρ

∂2w

∂t2
(A.28)

where u, v, and w denote the components of displacement parallel to the x, y, and z

axes, respectively. Note that the equations of motion are independent of the stress–strain
relations or the type of material.

A.6 EQUATIONS OF MOTION IN TERMS OF DISPLACEMENTS

Using Eqs. (A.16), the equation of motion, Eq. (A.26), can be expressed as

∂

∂x
(λ � + 2µεxx) + ∂

∂y
(µ εxy) + ∂

∂z
(µεxz) = ρ

∂2u

∂t2
(A.29)

Using the strain–displacement relations given by Eqs. (A.2), (A.4), and (A.8),
Eq. (A.29) can be written as

∂

∂x

(
λ� + 2 µ

∂u

∂x

)
+ ∂

∂y

[
µ

(
∂v

∂x
+ ∂u

∂y

)]
+ ∂

∂z

[
µ

(
∂w

∂x
+ ∂u

∂z

)]
= ρ

∂2u

∂t2

(A.30)

which can be rewritten as

(λ + µ)
∂�

∂x
+ µ∇2u = ρ

∂2u

∂t2
(A.31)

where � is the dilatation and ∇2 is the Laplacian operator:

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(A.32)
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Using a similar procedure, the other two equations of motion, Eqs. (A.27) and (A.28),
can be expressed as

(λ + µ)
∂�

∂y
+ µ∇2v = ρ

∂2v

∂t2
(A.33)

(λ + µ)
∂�

∂z
+ µ∇2w = ρ

∂2w

∂t2
(A.34)

The equations of motion, Eqs. (A.31), (A.33), and (A.34), govern the propagation of
waves as well as the vibratory motion in elastic bodies.



B

Laplace and Fourier Transforms

Table B.1 Laplace Transforms

Serial number f (t)

F (s) = L[f (t)]

=
∫ ∞

0
e−st f (t)d t

1 1
1

s

2 t
1

s2

3 tn, n = 1, 2, . . .
n!

sn + 1

4 ta , a > − 1
�(a + 1)

sa + 1
, s > a

5 eat
1

s − a
, s > a

6 tneat , n = 1, 2, . . .
n!

(s − a)n + 1
, s > a

7 sin at
a

s2 + a2

8 cos at
s

s2 + a2

9 t sin at
2as

(s2 + a2)2

10 t cos at
s2 − a2

(s2 + a2)2

11 eat sin bt
b

(s − a)2 + b2

12 eat cos bt
s − a

(s − a)2 + b2

13 sinh at
a

s2 − a2

14 cosh at
s

s2 − a2
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Table B.1 (continued )

Serial number f (t)

F (s) = L[f (t)]

=
∫ ∞

0
e−st f (t)d t

15 t sinh at
2as

(s2 − a2)2

16 t cosh at
s2 + a2

(s2 − a2)2

17 H(t − a)
e− a s

s
, s ≥ a

18 δ (t − a) e− a s

19 af1(t) + bf2(t) aF1(s) + bF2(s)

20 f (at)
1

a
F

( s

a

)

21 eatf (t) F (s − a)

22 f ′(t) sF (s) − f (0)

23 f (n)(t)

snF (s) − sn−1f (0) − sn−2f ′(0)

− · · · − f (n−1)(0)

24
∫ t

0
f (u) du

F(s)

s

25
∫ t

0
f (u)g(t − u) du F(s)G(s)

26

f(t)

1

0 t 2t 3t
t

πτ

τ 2s2 + π2
coth

τs

2

27

f(t)

1

0 t 2t 3t
t

1

τs2
tanh

τs

2
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Table B.1 (continued )

Serial number f (t)

F (s) = L[f (t)]

=
∫ ∞

0
e−st f (t)d t

28

f(t)

1

−1

0
t 5t4t3t2t 6t

t
1

s
tanh

τs

2

29

f(t)

1

0 t 2t 3t
t

1

τs2
− e−τs

s(1 − e−τs )

30

f(t)

1

0 a
t

e−as

s

31

f(t)

1

0 a a+τ
t

e−as

s
(1 − e−τs )

32

0 ≤ t ≤ a

t > a
f(t) =

1

0 a
t

sin
a
pt

0,

,

πa(1 + e−as)

a2s2 + π2
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Table B.2 Fourier Transform Pairs

Serial number f (x) F (ω) = 1√
2 π

∫ ∞

−∞
f (x)e−iωxdx

1

{
1, |x| < a

0, |x| > a
(a > 0)

√
2

π

sin aω

ω

2

{
1, a < x < b

0, otherwise
1√
2 π

e−iaω − e−ibω

iω

3

{
e−ax, x > 0
0, x < 0

(a > 0)
1√
2 π

1

a + iω

4

{
eax, b < x < c

0, otherwise
(a > 0)

1√
2 π

e(a+iω)c − e(a+iω)b

a − iω

5 e−a|x|, a > 0

√
2

π

a

a2 + ω2

6 xe−a|x|, a > 0 −
√

2

π

2iaω

(a2 + ω2)2

7

{
eiax, |x| < b

0, |x| > b

√
2

π

sin b(ω − a)

ω − a

8 e−a2,x2
, a > 0

1√
2 a

e−(ω2/4 a2)

9 J0(ax), a > 0

√
2

π

H(a − |ω|)
(a2 − ω2)1/2

10 δ (x − a), a real
1√
2 π

e−iaω

11
sin ax

x

√
π

2
H(a − |ω|)

12 ei a x
√

2 π δ(ω − a)

13 H(x)

√
π

2

[
1

iπω
+ δ(ω)

]

14 H(x − a)

√
π

2

[
e− iωa

iπω
+ δ(ω)

]

15 H(x) − H(−x)

√
2

π
− i

ω

16
1

x
−i

√
π

2
sgn ω

17
1

xn
−i

√
π

2

[
(−iω)n−1

(n − 1)!
sgn ω

]

18
1

x − a
−i

√
π

2
e−i ω a sgn ω

19
1

(x − a)n
−i

√
π

2
e−iaω

(−iω)n−1

(n − 1)!
sgn ω
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Table B.3 Fourier Cosine Transforms

Serial number f(x) F(ω) =
√

2

π

∫ ∞

0
cos(ωx) f (x)dx

1 e−ax , a > 0

√
2

π

a

a2 + ω2

2 xe−ax

√
2

π

a2 − ω2

(a2 + ω2)2

3 e−a2x2 1√
2 a

e−ω2/4a2

4 H(a − x)

√
2

π

sin a ω

ω

5 xa−1, 0 < a < 1

√
2

π
�(a)

1

ωa
cos

aπ

2

6 cos ax2 1

2
√

a

(
cos

ω2

4a
+ sin

ω2

4a

)

7 sin ax2 1

2
√

a

(
cos

ω2

4a
− sin

ω2

4a

)

Table B.4 Fourier Sine Transforms

Serial number f(x) F(ω) =
√

2

π

∫ ∞

0
sin(ωx) f (x)dx

1 e−ax , a > 0

√
2

π

ω

a2 + ω2

2 xe−ax , a > 0

√
2

π

2aω

(a2 + ω2)2

3 xa−1, 0 < a < 1

√
2

π

�(a)

ωa
sin

π a

2

4
1√
x

1√
ω

, ω > 0

5 x−1e−ax , a > 0

√
2

π
tan−1 ω

a
, ω > 0

6 xe−a2x2
2−3/2 ω

a3
e−ω2/4 a2

7
x

a2 + x2

√
π

2
e−aω
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A
Admissible function, 163
Amplification factor, 36
Amplitude, 1, 22
Amplitude-modulated carrier, 630
Amplitude ratio, 36
Antinodes, 612
Approximate analytical methods, 647
Assumed modes method, 139, 670
Axial force in beams, 352
Axisymmetric modes of shells, 601

B
Bar in axial vibration, 69, 234
Basic equations of elasticity, 700
Beam in transverse vibration, 71, 317

under axial force, 352
bending–torsional vibration, 380
boundary conditions, 323
continuous, 359
on elastic foundation, 364
Euler–Bernoulli theory, 317
flexural waves, 628
free vibration, 185, 197
infinite length, 385
under moving loads, 350
Rayleigh’s theory, 369
Timoshenko theory, 371
transform method, 385

Beat, 23
Beat frequency, 23
Bessel functions, 445, 491
Bessel’s differential equation, 445, 491
Bishop’s theory, 260
Boundary conditions

bar in axial vibration, 71, 239
beam in transverse vibration, 73, 323
circular plate, 489
extremization of functional, 100
forced, 101
free, 101
geometric, 101
kinematic, 101
Kirchhoff, 469

membrane, 421
natural, 101
plate, 79, 465
shaft, 281
shell, 579, 596
skew edge of a plate, 469, 508
string, 209,211
thick plate, 508

C
Calculus of a single variable, 85
Calculus of variations, 86
Cauchy-residue theorem, 193
Characteristic equation, 46, 219
Characteristic vector, 46
Circular frequency, 22
Circular membrane, 444

forced vibration, 448
free vibration, 444
mode shapes, 447

Circular plate, 485
equation of motion, 485
forced vibration, 495
free vibration, 490, 533
mode shapes, 494, 516
variable thickness, 531

Circular rings, 393
classification of vibration, 397
equations of motion, 393
extensional vibration, 407
in-plane flexural vibrations,

398
torsional vibration, 406
twist–bending vibration, 402

Classical plate theory, 457
Collocation method, 144, 680

boundary method, 680
interior method, 680
mixed method, 680

Comparison function, 163
Complementary energy, 105
Complex frequency response, 41
Complex number representation, 20
Compressional waves, 623
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Concept of vibration, 1
Conical shell, 544, 560, 591
Constitutive relations, 703
Constraints, 96
Continuous beams, 359
Continuous systems

general, 132
history, 8
literature, 29
notable contributions, 12

Convolution integral, 42
Convolution theorem, 190
Coupled bending–torsional vibration, 380
Critical damping constant, 35
Curved beams, 393

thick, 414
thin, 408

Cylindrical shell, 543, 559, 582
axisymmetric modes, 601
Donnell–Mushtari–Vlasov theory, 584
equations of motion, 583
natural frequencies, 584, 598
rotary inertia and shear deformation, 592

D
D’Alembert force, 69
D’Alembert’s principle, 69
D’Alembert’s solution, 210, 608
Damped harmonic response, 40
Damped vibration, 15
Damping matrix, 43
Damping ratio, 35, 171
Definitions, 21
Degree of freedom, 11
Derivation of equations, 85, 123, 125
Dilatational waves, 631
Dirac delta function, 152, 680
Discrete systems, 11, 13, 33
Dispersive medium, 629
Distortional waves, 632
Distributed systems, 14
Donnell–Mushtari–Vlasov theory of shells,

584
natural frequencies, 584

Duhamel’s integral, 42

E
Eigenfunctions

orthogonality, 133, 161, 165, 246
properties, 160

Eigenvalue problem, 45, 163

formulation, 130
positive definite, 164
self-adjoint, 163
semidefinite, 164

Eigenvalues, 46
properties, 160

Eigenvector, 46, 55
Elastic element, 1
Elastic foundation, 364, 521
Elasticity, 700

basic equations, 700
constitutive relations, 703
equations of motion, 704
Lamé’s elastic constants, 703
rotations, 702
strain–displacement relations, 700
stress, 700
stress–strain relations, 703

Elastic wave propagation, 607
in infinite elastic medium, 631
traveling-wave solution, 608

Equation(s) of motion, 704
beam in transverse vibration, 71, 371
circular cylindrical shell, 583
circular plate, 485, 515
circular ring, 393, 398, 402
conical shell, 591
coupled bending–torsional vibration of

beams, 380
curved beam, 408
integral, 127
longitudinal vibration of bars, 69, 235, 236,

258, 260
membrane, 420, 444
plate with in-plane loads, 523
plate in transverse vibration, 73, 457
shell, 575
spherical shell, 591
thick beam, 371
thick shell, 595
thin beam, 317
torsional vibration of shafts, 271
transverse vibration of string, 205

Equilibrium approach, 68
bar in axial vibration, 69, 234
beam in transverse vibration, 71
D’Alembert’s principle, 69
membrane, 420
Newton’s second law, 68
plate with in-plane loads, 523
plate in transverse vibration, 73 457
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shaft vibration, 271
string vibration, 205
thick plate, 499
thin ring, 393

Equivoluminal waves, 634
Euler–Lagrange equation, 89, 92. 95, 96, 109
Exceptional part, 123
Excitations, 17
Expansion theorem, 48, 151, 161, 166
Extensional vibration of circular rings, 407
Extremization of functional, 86, 96

F
Finite-dimensional systems, 13
First approximation shell theory, 556
Flexural rigidity of plate, 78, 458
Flexural waves, 628
Forced response, 169
Forced vibration

beam, 198, 344
beam on elastic foundation, 366
circular plate, 495
definition, 16
finite string, 183
longitudinal vibration of bar, 254, 264
membrane, 438, 448
under moving load, 367
multidegree-of-freedom system, 52, 53, 54
plate, 479
shaft in torsional vibration, 292
single-degree-of-freedom system, 36
string, 227

Foundation modulus, 364, 521
Fourier integral, 26
Fourier series, 24, 175
Fourier transform pair, 27

sine and cosine, 178
Fourier transforms, 175, 707

membrane vibration, 441
string vibration, 213

Free vibration
beam, 185, 325
beam on elastic foundation, 364
circular plate, 490
definition, 16
finite string, 181, 194, 217
infinite beam, 385
longitudinal vibration of bar, 236, 249
membrane, 426, 444
Mindlin plate, 511
multidegree-of-freedom system, 47, 52

plate with in-plane loads, 528
plate with variable thickness, 533
rectangular plates, 471
shaft in torsional vibration, 276, 288
single-degree-of-freedom system, 33
string of infinite length, 210
transverse vibration of beams, 341

Frequency, 1
Frequency equation, 46

plate, 480
string, 219

Frequency ratio, 39
Frequency spectrum, 25
Functional, 86, 91, 93, 95
Fundamental frequency, 24, 46

G
Galerkin equations, 674
Galerkin method, 143, 673
Gauss points, 146
General force, 41
Generalized coordinates, 48, 109
General viscous damping, 54, 679
Green’s function, 126, 131, 132
Group velocity, 629

H
Hamilton’s principle, 107

applications, 115
conservative systems, 109
continuous systems, 111
discrete systems, 108
generalized, 111
longitudinal vibration of bars, 235
nonconservative systems, 110
shell, 575
system of masses, 110
Timoshenko beam, 371
torsional vibration of a shaft, 115
transverse vibration of a thin beam, 116, 317
use of generalized coordinates, 109

Harmonic analysis, 24
Harmonic force, 36
Harmonic functions, 18
Harmonic motion

definition, 1
representation, 18

Harmonics, 25
Harmonic waves, 610
Heaviside, 174
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Homogeneous equations, 153
solution, 153

I
Importance of vibration, 4
Impulse response function, 126
Inertial element, 1
Infinite beam, 385
Infinite-dimensional systems, 14
Infinite elastic medium, 631
Initial conditions, 48

beam, 341
membrane, 421
shaft, 289
string, 209, 613

Initial excitation
longitudinal vibration of bars, 249

In-plane flexural vibrations of rings, 398
In-plane loads on a plate, 523
Integral equation, 123

approach, 123
assumed modes method, 139
classification, 124
collocation method, 144
first kind, 124
Fredholm type, 124
Galerkin method, 143
homogeneous, 124
iterative method, 134
linear, 124
nonlinear, 123
normal, 125
numerical integration method, 146
Rayleigh–Ritz method, 139
second kind, 124
singular, 125
solution, 133
third kind, 124
Volterra type, 124

Integral transform, 174
Integral transform methods, 174
Integrodifferential equation, 123
Inverse transforms, 42, 193
Irrotational waves, 634
Isoperimetric problem, 96
Iterative method, 134

K
Kernel, 123, 174
Kinetic energies of structural elements,

652

Kirchhoff boundary condition, 469
Kirchhoff’s hypothesis, 556

L
Lagrange equations, 109, 140, 672
Lagrangian, 107, 109
Lamé parameters, 543, 703
Lamé’s elastic constants, 543, 703
Laplace equation, 303
Laplace transforms, 41, 188, 707

convolution theorem, 190
partial fraction method, 191
properties, 189
shifting property, 189
string vibration, 215

Least squares method, 686
Left eigenvector, 55
Linear frequency, 22
Linear vibration, 16
Literature on vibration, 29
Longitudinal vibration of bars, 234

Bishop’s theory, 260
boundary conditions, 236, 238, 239
equation of motion, 235, 236
forced vibration, 254
free vibration, 236, 237
initial excitation, 249
mode shapes, 247, 259, 262
natural frequencies, 236, 259, 262
orthogonality of eigenfunctions, 246
Rayleigh theory, 258
support motion, 257
wave solution, 237

Longitudinal waves, 634
Love’s approximations, 556
Lumped-parameter systems, 13

M
Magnification factor, 36
Mass element, 1
Mass matrix, 43
Membrane analogy, 308
Membranes, 420

circular, 444
forced vibration, 438, 448
Fourier transform approach, 441
free transverse vibration, 130
irregular shape, 452
mode shapes, 430
partial circular, 453
rectangular, 426

Method of undetermined coefficients, 134
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Mindlin theory of plates, 499
circular plate, 515
free vibration, 511

Modal analysis
approach, 151, 167
forced vibration, 292
forced vibration of bars, 264
free vibration, 289
membranes, 438, 448
multidegree-of-freedom system, 52, 54
in state space, 54
torsional vibration of shafts, 289, 292

Modal coordinates, 48
Modal vector, 46
Mode shapes

beam, 326
circular plate, 494
cylindrical shell, 601
longitudinal vibration of bar, 259, 262
membrane, 430, 447
rectangular plate, 480
string, 220

Moving load on a beam, 350, 367
Multidegree-of-freedom system, 43

eigenvalue problem, 45
equations of motion, 43
expansion theorem, 48
forced vibration analysis, 52, 53, 54
free vibration analysis, 47
generalized coordinates, 48
modal analysis, 47, 54
modal coordinates, 48
modal matrix, 47
orthogonality of modal vectors, 46

N
Natural frequency

beams, 326
circular plate, 520
circular rings, 398
cylindrical shell, 584, 598
definition, 23
Donnell–Mushtari–Vlasov theory of shells,

584
longitudinal vibration of bars, 259, 262
Love’s theory of shells, 587
rotating beam, 359
shaft in torsional vibration, 277
single-degree-of-freedom system, 33
thick beams, 377
thick rings, 401

n-degree-of-freedom system, 44
Newton’s second law of motion, 68

longitudinal vibration of bars, 234
Nodal lines, 430
Nodes, 612
Noncircular shafts, 295

torsional rigidity, 303
Nonhomogeneous equation, 167
Nonlinear vibration, 16
Nonperiodic function, 26
Nonperiodic motion, 1
Normalization, 46
Normal modes, 46

orthogonality, 339
Nucleus, 123
Numerical integration method, 146

O
Orthogonality of eigenfunctions, 162, 165

in integral formulation, 133
longitudinal vibration of bars, 246
torsional vibration of shafts, 286
transverse vibration of beams, 339

Orthogonality of modal vectors, 46

P
Partial fraction method, 191
Period, 22
Periodic functions, 24
Periodic motion, 1
Phase angle, 22, 41
Phase difference, 23
Phase velocity, 612
Plate in transverse vibration, 73, 457

additional contributions, 80
boundary conditions, 79
circular plate, 485
equations of motion, 78
flexural rigidity, 78, 458
forced vibration, 495
free vibration, 471, 490
initial conditions, 79
with in-plane loads, 523
Mindlin theory, 499
mode shapes, 480, 494
moment–displacement relations, 78
on elastic foundation, 521
rotary inertia and shear deformation, 499
state of stress, 75
strain–displacement relations, 76
variable thickness, 529
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Potential energy, 104
Prandtl’s membrane analogy, 308
Prandtl stress function, 303
Primary (P) waves, 634
Principle of minimum complementary energy,

105
Principle of minimum potential energy, 104
Principle of stationary Reissner energy, 106
Properties

eigenfunctions, 160
eigenvalues, 160

Proportional damping, 53, 678
P waves, 623

R
Random vibration, 1
Rayleigh–Ritz method, 139, 661
Rayleigh’s method, 650
Rayleigh’s principle, 650
Rayleigh’s quotient, 648
Rayleigh theory, 258, 369
Rayleigh waves, 635
Recent contributions

approximate analytical methods, 693
circular rings and curved beams, 416
elastic wave propagation, 643
integral equation approach, 147
integral transform methods, 201
longitudinal vibration of bars, 267
membrane vibration, 453
modal analysis approach, 171
multidegree-of-freedom systems, 60
vibration of plates, 535
torsional vibration of shafts, 313
transverse vibration of beams, 387
variational approach, 119
vibration of shells, 603
vibration of strings, 231

Rectangular plate, 471
boundary conditions, 465
on elastic foundation, 521
equation of motion, 457
forced vibration, 479
free vibration, 471
frequency equations, 480
with in-plane loads, 523
mode shapes, 480
rotary inertia and shear deformation, 499
subjected to in-plane loads, 523
variable thickness, 529

Reference kinetic energy, 662

Reflection of waves, 617, 619, 622
Regular part, 123
Reissner energy, 106
Residual, 144, 673
Resonance, 38
Right eigenvector, 55
Ritz coefficients, 661
Rotary inertia,

beams, 369
circular rings, 399, 403
plates, 499
shells, 592

Rotational waves, 634
Rotations, 702

S
Saint-Venant’s theory, 295
Scotch yoke mechanism, 19
Self-adjoint eigenvalue problem, 163
Separation of variables, 153

bar vibration, 237
beam vibration, 325
membrane vibration, 426, 444
rectangular plate, 471
string vibration, 217

Shafts
torsional properties, 310
in torsional vibration, 271

Shear correction factor, 372
Shear deformation

beams, 371
circular rings, 399, 403
curved beams, 414
plates, 499
shells, 592

Shear waves, 623, 625
Shell coordinates, 541
Shells, 541

boundary conditions, 579
conical shell, 544, 560, 568, 591
cylindrical shell, 543, 559, 568, 582
Donnell–Mushtari–Vlasov theory, 584
first quadratic form of surface, 543
force and moment resultants, 563
kinetic energy, 573
Kirchhoff’s hypothesis, 556
Lamé parameters, 543
Love’s approximations, 556
rotary inertia and shear deformation, 592
spherical shell, 546, 561, 570, 591
strain–displacement relations, 552
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strain energy, 571
stress–strain relations, 562
theory of surfaces, 541

Single-degree-of-freedom system, 33
critically damped, 36
damped harmonic response, 40
forced vibration, 36, 41
free vibration, 33
under general force, 41
under harmonic force, 36
overdamped, 36
underdamped, 35

Skew plate, 540
Solid mechanics. 104
Spectral diagram, 25
Spherical shell, 546, 561, 591
Spring element, 1
Standing wave, 612
State space, 54
State vector, 54
Static deflection, 39
Stiffness matrix, 43
Strain–displacement relations, 700
Strain energies of structural elements, 652
Strain energy, 104
Stress, 700
Stress–strain relations, 703
String

boundary conditions, 211
finite length, 194
forced vibration, 183
free vibration, 181
harmonic waves, 611
infinite, 210
transverse vibration, 205
traveling wave solution, 210
wave motion, 611

Sturm–Liouville problem, 154
classification, 155
periodic, 155
regular, 155
singular, 155

Subdomain method, 684
Support motion

longitudinal vibration of bars, 257
Surface waves, 635
S waves, 625
Synchronous motion, 23

T
Terminology, 21
Theory of surfaces, 541

Three-dimensional vibration of circular ring,
393

Timoshenko–Gere theory, 300
Torsional properties of shafts, 310
Torsional rigidity, 303
Torsional vibration of circular rings, 406
Torsional vibration of shafts, 115, 271

elementary theory, 271
forced vibration, 292
free vibration, 276, 289
noncircular shafts, 295, 299
Timoshenko–Gere theory, 300

Transformation of relations, 486
Transform method in beams, 385
Transform pair, 175
Transient motion, 1, 4
Transients, 42
Transmission of waves, 619
Transverse vibration of plates, 457

boundary conditions, 465, 489
circular plates, 485
on elastic foundation, 521
equation of motion, 457
forced vibration, 479
free vibration, 471, 511
frequency equations, 480
Mindlin theory, 499
mode shapes, 475, 480
rotary inertia and shear deformation, 499
with variable thickness, 529

Transverse vibration of strings, 205
Transverse vibration of thin beams, 71, 116,

185, 317
under axial force, 352
coupled bending–torsional vibration, 380
on elastic foundation, 364
equation of motion, 317
Euler–Bernoulli theory, 317
flexural waves, 628
forced vibration, 344
frequencies and mode shapes, 326
infinite length, 385
with in-plane loads, 523
on many supports, 359
under moving load, 350, 367
orthogonality of normal modes, 339
Rayleigh’s theory, 369
response due to initial conditions, 341
rotating, 357
Timoshenko theory, 371
transformation methods, 385
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Traveling wave solution, 210,
608

U
Uncoupled equations, 48
Undamped system, 47, 52
Undamped vibration, 15
Underdamped system, 35

V
Variational approach, 85

membrane, 423
plate, 458
shaft, 272
string, 235
thick plate, 505

Variational methods, 85
in solid mechanics, 104

Variation operator, 89
Vibration

analysis, 16
beams, 317, 369, 371
beams on elastic foundation, 364
circular cylindrical shell, 582
circular rings, 393, 406
concept, 1
continuous beam, 359
curved beams, 393, 408
developments, 5
forced, 52, 53
free, 47
history, 8
importance, 4
membranes, 420
multidegree-of-freedom system, 43
origins, 5
plates, 457, 485, 499
problems, 15
rotating beam, 357
shafts, 271
shells, 541
single-degree-of-freedom system, 33
string, 205
thick beams, 371

Viscous damping coefficient, 170
Viscously damped system, 34, 54,

169

W
Warping function, 296

Wave equation
D’Alembert’s solution, 608
membrane, 421
one-dimensional, 607
string, 207
traveling-wave solution, 608
two-dimensional, 610

Wavelength, 612
Wave number, 612
Wave packet, 629
Wave propagation, 607

in infinite elastic medium, 631
traveling wave, 608

Waves
compressional, 623
dilatational, 631
distortional, 631
equivoluminal, 634
flexural, 628
harmonic, 611
irrotational, 634
longitudinal, 634
primary, 634
P, 623, 634
Rayleigh, 635
rotational, 634
shear, 623, 625
standing, 612
surface, 635
S, 625
traveling, 210, 608

Wave solution
compressional waves, 623
dilatational waves, 631
distortional waves, 632
flexural waves, 628
graphical interpretation, 614
group velocity, 629
interface of two materials, 619
membrane, 425
P waves, 623
Rayleigh waves, 635
reflection of waves, 617, 622
shear waves, 623, 625
string, 210, 611
surface waves, 635
S waves, 625
transmission of waves, 619
wave packet, 629

Weighted residual methods, 673


