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Preface

This document is companion to the text: Mechanical Vibration: Analysis, Un-
certainties and Control, by Haym Benaroya and Mark Nagurka, CRC Press
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Chapter 1

Introduction

This document is intended as a companion to Mechanical Vibration: Analy-
sis, Uncertainties, and Control by Haym Benaroya and Mark Nagurka. This
companion draws heavily upon the Matlab software package, produced by the
MathWorks, Inc. We do not intend to teach Matlab in this work; rather, we
wish to show how a vizualization tool like Matlab can be used to aid in solution
of vibration problems, and hopefully to provide both the novice and the experi-
enced Matlab programmer a few new tricks with which to attack their problems
of interest.
Matlab (Matrix Laboratory) was born from the LINPACK routines written

for use with C and Fortran. The Matlab package provides both command-line
and programming language interfaces, allowing the user to test simple state-
ments at the command prompt, or to run complicated codes by calling a func-
tion name. Matlab is excellent for handling matrix quantities because it as-
sumes every variable is an array. Thus, calling on the multiplication operator
alone causes Matlab to attempt matrix, not scalar multiplication. Also, Mat-
lab includes special “array operators”that allow multiplication of arrays on an
element-by-element basis. For example, if we set the variable a = [1 2 3] and
b = [4 5 6], we can perform the matrix multiplications:

c = a ∗ b′ (1.1)

d = a′ ∗ b (1.2)

(Note that the apostrophe is the transpose operator in Matlab.) The result
c would be a scalar (specifically, 32). The variable d would contain a 3-by-3
matrix, whose rows would be scalar multiples of b. However, what if the values
stored in a are three masses, and those in b their corresponding accelerations?
If we wished to find the force on each mass, we would need to multiply the
first element of a by the first element of b, and so on for the second and third
elements. Matlab provides “array multiplication”for such an instance:

e = a. ∗ b (1.3)
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2 CHAPTER 1 INTRODUCTION

Take special note of the period between a and the asterisk. This tells Matlab
to ignore its usual matrix multiplication rules, and instead create e by multi-
plying the corresponding elements of a and b. The result here would be e = [4
10 18]. This is one of the more useful specialized commands in Matlab, and one
we will use frequently. Other commands will be discussed as they arise.
The vast majority of these examples will use Matlab in its programming

mode. The general format is to introduce a problem, with reference to the
text where applicable, and to show the analytic solution (if derivable). Several
figures follow each example, showing results of each vibration problem under
different sets of parameters and making use of Matlab’s integrated graphics
capabilities. Finally, the Matlab code used to generate the figures is presented,
with comments explaining what was done, why it was done, and other ways
it could have been done in Matlab. The code should look somewhat familiar
to those who have used C and Fortran in the past; Matlab’s language shares
several common structures with both of these languages, making it relatively
easy for an experienced C or Fortran programmer to learn Matlab.
One distinction to make with Matlab programming is between script m-files

and function m-files. Both are sets of commands that are saved in a file. The
differences are that variables used in a script file are retained in the Matlab
workspace and can be called upon after the script completes. Variables within a
function m-file cannot be used outside of the function unless they are returned
(much like C functions or Fortran subroutines). Additionally, a function must
begin with the line function output = function_name(var1, var2, ...varN).
This line tells the Matlab interpreter that this file is a function separate from
the workspace. (Again, the form should look familiar to Fortran and C pro-
grammers.)



Chapter 2

SDOF Undamped
Oscillation

The simplest form of vibration that we can study is the single degree of freedom
system without damping or external forcing. A sample of such a system is shown
in Figure 2.1. A free-body analysis of this system in the framework of Newton’s
second law, as performed in Chapter 2 of the textbook, results in the following
equation of motion:

m
..
x+ kx = 0. (2.1)

(In general, we would have the forcing function F (t) on the right-hand side;
it’s assumed zero for this analysis.) Dividing through by m, and introducing
the parameter ωn =

√
k/m, we obtain a solution of the form

x(t) = A sin(ωnt+ φ), (2.2)

or, in terms of the physical parameters of the system, we have

x(t) =

√
ω2nx

2
o + ẋ

2
o

ωn
cos(ωnt− tan−1

ẋo
ωnxo

). (2.3)

From this, we see that the complete response of an undamped, unforced, one
degree of freedom oscillator depends on three physical parameters: ωn, xo, and
ẋo: the natural frequency, initial velocity, and initial displacement, respectively.
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Figure 2.1: Typical single degree of freedom free oscillator.

From the definition of the natural frequency, we see that it is inversely pro-
portional to

√
m, and is directly proportional to

√
k. Variation of mass or

stiffness, then, will cause a variation in the frequency of vibration. The graphs
on the following pages demonstrate these sensitivities. Figure 2.2 shows the
variation of the vibrational characteristics for an increasing mass while stiffness
remains constant. Figure 2.3 shows how the oscillatory behavior changes for
increasing stiffness with mass constant. For both Figures 2.2 and 2.3, the initial
velocity used was ẋo = 1, and the initial displacement x0 = 3. Note that the
frequency decreases with increasing mass, but increases with increasing stiffness,
as expected.
Looking at Equation 2.3, it is evident that the phase angle and maximum

amplitude are also functions of the natural frequency. Again, referring to Figure
2.2, the maximum amplitude decreases with increasing mass, due to the corre-
sponding reduction in natural frequency. As a result, the phase shift diminishes,
with the peak of oscillation becoming nearer to t = 0. Note that the maximum
displacement would occur at t = 0 if the initial velocity were zero. It is easily
verified that, for this case, the parameter A (from Equation 2.2, above) reduces
to xo, and the phase angle becomes tan−1(0/x2o), or 0

◦.
In Figure 2.3, the maximum amplitude increases with increasing stiffness,

due to the increase in natural frequency. The phase angle also increases with
the stiffness, so the maximum amplitude of oscillation occurs at an increasingly
later time with increasing stiffness.
The MATLAB code used to produce the graphs follows. The input state-

ments in the first few lines demonstrate one type of interactive programming
available in MATLAB. The portion of the statement inside the quotation marks
will appear on the screen when the program is run, so user prompts are easily
added and explained. The initialization and use of the mass matrix is demon-
strated in two ways. If the variable matflag is set to zero, then the masses are
each given scalar values. If this flag is set to one, then the masses are initialized
as part of an array. This is done to demonstrate the use of MATLAB array
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variables and to show how they can help streamline your code. Note also that
the if..then structure in MATLAB is similar to that of Fortran in that these
statements must be closed with an end statement, as must any other loop (for
or do, for example). We also demonstrate MATLAB’s plotting routines via the
subplot command, allowing plots for all three masses to be placed on the same
axes. The second figure below was produced by modifying the code below to
take three stiffnesses and one mass. The modifications necessary are left as an
exercise for the reader.
Finally, those unfamiliar with MATLAB are probably wondering what all

the semicolons are after each line. By default, MATLAB prints the results
of each operation to the screen. However, placing a semicolon at the end of
a line suppresses this output. Since printing to screen takes time and mem-
ory for MATLAB to perform, suppressing screen output of intermediate results
increases computational speed. (The reader is invited to remove all the semi-
colons from the program to see the difference!) This feature is also a very useful
debugging tool. Instead of inserting and removing print statements to check
intermediate calculations, the programmer can insert and delete semicolons.
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Program 1-1: varym.m
% The first few lines obtain the desired parameter values.
% This could also be done by using assignment statements in
% the program, but then the program would need to be
% edited to change the parameters. As written, parameters
% can be changed by re-running the program.
%
matflag=0; % Set to 1 to activate mass array, zero for mass scalars.
k=input(’Enter the stiffness value. ’);
x0=input(’Enter the initial displacement. ’);
v0=input(’Enter the initial velocity. ’);
tf=input(’Enter the time duration to test, in seconds. ’);
if (matflag)

for i=1:3
m(i)=input([’Enter mass value ’, num2str(i),’. ’]);
% More about the ’num2str’command below.

end
else

m1=input(’Enter the first mass value. ’);
m2=input(’Enter the second mass value. ’);
m3=input(’Enter the third mass value. ’);

end
%
% This loop initializes the natural frequency values. This
% is more streamline by making a mass matrix [m(1) instead
% of m1, etc.], as shown. Note that the natural frequency is stored
% in a matrix.
%
if (matflag)

wn=sqrt(k./m);
%
% Array division, akin to the array
% multiplication described above. This one line produces a three-
% element array of natural frequencies. Compare to
% the machinations below.
%
else

for i=1:3
switch i % Analogous to the C command; saves a lot of “if”state-

ments.
case 1

m=m1;
case 2

m=m2;
case 3

m=m3;
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end
wn(i)=sqrt(k/m);
end

end
%
% Now, the values for A and phi in the expression
% x(t)=Asin(wn*t + phi) are evaluated. Notice that, in
% order for the cosine function to evaluate properly in
% MATLAB, the wn vector is used element by element
% (thus, the loop).
%
t=0:tf/1000:tf; % We need only initialize the time increment once.
for j=1:3

a=sqrt(wn(j)^2*x0^2+v0^2)/wn(j); % The caret is the power operator.
phi=atan2(v0,wn(j)*x0); % atan2 is the four-quadrant arctangent.

x(j,:)=a*cos(wn(j)*t-phi);
end
%
% Since this program was made to compare different
% parameters, a subplot format makes sense. If the number
% of varied masses is changed, the subplot statement must
% also be.
%
subplot(3,1,1)
plot(t,x(1,:))
%
% This line demonstrates the use of the num2str command.
% This command allows the value of a variable to be used
% in a title or other text. Note that the command doesn’t
% work unless the text intended as a title is enclosed in
% brackets as well as parentheses.
%
if (matflag)

title([’Response for m=’,num2str(m(1)), ’, k=’, num2str(k)])
else

title([’Response for m=’,num2str(m1), ’, k=’, num2str(k)])
end
ylabel(’Response x’)
grid
subplot(3,1,2)
plot(t,x(2,:))
if (matflag)

title([’Response for m=’,num2str(m(2)), ’, k=’, num2str(k)])
else

title([’Response for m=’,num2str(m2), ’, k=’, num2str(k)])
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end
ylabel(’Response x’)
grid subplot(3,1,3)
plot(t,x(3,:))
if (matflag)

title([’Response for m=’,num2str(m(3)), ’, k=’, num2str(k)])
else

title([’Response for m=’,num2str(m3), ’, k=’, num2str(k)])
end
ylabel(’Response x’)
xlabel(’Time, seconds’)
grid
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Figure 2.2: Responses for three different masses.
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Figure 2.3: Responses for three different stiffnesses.





Chapter 3

A Damped SDOF System

In the previous example, we examined the response of an undamped single
degree of freedom oscillator subject to varied mass and stiffness parameters.
Here we will do the same for a damped single degree of freedom system.
Again, we begin with the equation of motion, given the system of Figure 3.1.

A simple static analysis finds that our equation is:

m
..
x+ c

.
x+ k x = 0. (3.1)

If we divide through by m, we introduce the dimensionless parameters ω and
ζ:

..
x+ 2ζωn

.
x+ ω2n x = 0. (3.2)

In the above, ωn represents the undamped natural frequency, and ζ is the
viscous damping ratio. For the purposes of this example, we will assume the
underdamped case (ζ < 1). The solution to this equation is:

x(t) = Ae−ζωnt sin(ωdt+ φ). (3.3)

In Equation 3.3, ωd is the damped natural frequency, equal to ωn
√
1− ζ2.

This equation is more useful if we write all of the terms as functions of
parameters ωn and ζ:

11
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Figure 3.1: Typical damped single degree of freedom oscillator.

x(t) =

√√√√√√ (vo + ζωnxo)
2
+
(
xoωn

√
1− ζ2

)2
(
ωn
√
1− ζ2

)2 e(−ζωnt)

× sin
[(

ωn

√
1− ζ2

)
t+ tan−1

(
xoωn

√
1− ζ2

vo + ζωnxo

)]
. (3.4)

In this expression, the term ωn
√
1− ζ2 has been substituted for ωd.

While this equation admittedly looks intimidating, note that it only depends
on four quantities: xo, vo, ωn, and ζ. Note the similarity between the parameters
identified here and the ones relevant to the undamped case; the only difference
is the addition of the viscous damping coeffi cient. So, we have already seen the
effects of changing all of the parameters except the damping coeffi cient. Figure
3.2 gives the variation of the response with increasing viscous damping coeffi cient
for xo = 3, vo = 1, and ωn = 7. Note how quickly the response becomes virtually
zero; this occurs within ten seconds, even for a damping coeffi cient as small as
0.05!
The MATLAB code used to generate the figure follows. This code is, in

many ways, similar to the code used earlier for the mass and stiffness parameter
studies. However, since both the exponential term and the sine term in our
solution (Equation 3.3) depend on time, they are both vector quantities. To
multiply them properly, we must use the array multiplication operator, ’.*’.
The code again makes use of input statements to initialize the parameters.
This time, however, the damping ratios are entered in array form only. The
algorithm chosen to produce the plots works only for the underdamped case;

since we have the term ωd =
(
ωn
√
1− ζ2

)
in the denominator of our response

equation, ζ = 1 will cause division by zero, and ζ > 1 will give an imaginary
damped natural frequency. We employ some defensive programming to ensure
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allowable values for the damping ratio are entered. Conveniently, this gives us a
reason to introduce the while loop, analogous to the “do while”loop in Fortran.
The code checks each value zeta(zi) to see if it lies between zero and one. If
not, a somewhat abrupt reminder is sent to the screen, and the loop asks for a
new entry. Otherwise, it continues to the next damping ratio value. The logical
and relational operators in MATLAB are for the most part intuitive. Thus,
if a>0 simply means “if a is greater than zero.”A full list can be found by
typing help ops at the MATLAB prompt; we will explain the ones we use in
comments.
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Program 2-1: varyzeta.m
%Initial value entry.
%The while loop in the zeta initialization section prevents
%certain values for zeta from being entered, since such
%values would crash the program.
%
wn=input(’Enter the natural frequency. ’);
x0=input(’Enter the initial displacement. ’);
v0=input(’Enter the initial velocity. ’);
tf=input(’Enter the time duration to test, in seconds. ’);
for zi=1:3

zeta(zi)=12;
while(zeta(zi)<0 | zeta(zi)>=1) % The pipe (|) means “or”.

zeta(zi)=input([’Enter damping coeffi cient value ’, num2str(zi),’.
’]);

if (zeta(zi)>=1 | zeta(zi)<0)
fprintf(’Zeta must be between 0 and 1!’);
zeta(zi)=12;

end
end

end
%
%Now, having ωn and ζ, the ωd values can be found.
%
for i=1:3

wd(i)=wn*sqrt(1-zeta(i)^2);
end
%
%Solving for the response. Note the use of the array
%multiplication command (.*) in the expression for x(t).
%This command is necessary, else the program gives a
%multiplication error.
%
t=0:tf/1000:tf;
for j=1:3

a=sqrt((wn*x0*zeta(j)+v0)^2+(x0*wd(j))^2)/wd(j);
phi=atan2(wd(j)*x0,v0+zeta(j)*wn*x0);
x(j,:)=a*exp(-zeta(j)*wn*t).*sin(wd(j)*t+phi);

end
%
%Now, the program plots the results in a subplot format.
%
subplot(3,1,1)
plot(t,x(1,:))
title([’Response for zeta=’,num2str(zeta(1))])
ylabel(’Response x’)
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grid
subplot(3,1,2)
plot(t,x(2,:))
title([’Response for zeta=’, num2str(zeta(2))])
ylabel(’Response x’)
grid
subplot(3,1,3)
plot(t,x(3,:))
title([’Response for zeta=’, num2str(zeta(3))])
ylabel(’Response x’)
xlabel(’Time, seconds’)
grid
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Figure 3.2: Responses for various zeta values.
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Overdamped SDOF
Oscillation

The previous example is valid only for the underdamped case, ζ < 1. But what
happens when this condition is not met? There are two cases to explore: ζ > 1
(the overdamped case), and ζ = 1 (the critically damped case). First, we need
to see how these cases arise in order to understand what the results will be. The
equation of motion of a damped single degree of freedom oscillator is:

..
x+ 2ζωn

.
x+ ω2nx = 0. (4.1)

Assume a solution of the form Aeλt, substitute it appropriately into Equation
4.1, and obtain the quadratic formula defining possible values for λ:

λ = −ζωn ± ωn
√
ζ2 − 1. (4.2)

Note that the quantity inside the radical is always greater than zero, since
we have assumed ζ > 1. Therefore, the solution of the equation of motion is

x(t) = e−ζωnt(a1e
ωnt
√
ζ2−1 + a2e

−ωnt
√
ζ2−1). (4.3)

If we again take our initial displacement as xo and initial velocity vo, the
constants a1, a2 become

a1 =
−vo + (−ζ +

√
ζ2 − 1)ωnxo

2ωn
√
ζ2 − 1

, a2 =
vo + (ζ +

√
ζ2 − 1)ωnxo

2ωn
√
ζ2 − 1

. (4.4)

17
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Equation 4.3 is a decaying exponential and the system will simply return to
its initial position instead of oscillating about the equilibrium. This is shown
in Figure 4.1. Note that if ζ = 1, a singularity exists in the constants; a
second independent solution must be found. From our knowledge of ordinary
differential equations, we can find

x(t) = (a1 + a2t)e
−ωnt, (4.5)

where a1 = xo, and a2 = vo + ωnxo.
Figure 4.1 was generated for ωn = 7, xo = 3, and νo = 1. Notice how the

critically damped response returns to equilibrium faster than the others. For
the plots in the figure, the motion with critical damping is stopped after about
two seconds, while the others do not reach equilibrium until more than eight
seconds. This is the distinguishing characteristic of the critically damped case.
Note also that the motion of the masses is, as expected, purely exponential;
there is no oscillation, only a decay of the response to equilibrium.
The MATLAB code is again presented below. The astute reader may ask

why the codes for underdamped, critically damped, and overdamped vibration
could not be combined into a single code. Certainly they can be; the modifi-
cations are left to the reader. The resulting code should reject negative values
for the damping ratio. (Hint: You may find the switch command to be useful,
especially when used with its otherwise case.)
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Program 3-1: overdamp.m
%Initial value entry. The while loop in the zeta initialization
%section prevents illegal values for zeta from being entered,
%since such values would crash the program.
%
wn=input(’Enter the natural frequency. ’);
x0=input(’Enter the initial displacement. ’);
v0=input(’Enter the initial velocity. ’);
tf=input(’Enter the time duration to test, in seconds. ’);
for zi=1:3

zeta(zi)=0.12;
while(zeta(zi)<1)

zeta(zi)=input(’Enter a damping coeffi cient value. ’);
if zeta(zi)<1

fprintf(’Zeta must be greater than 1!’);
zeta(zi)=0.12;

end
end

end
%
%Solving for the response. Notice that the variable den is used
%for the denominator of the constants, as well as the exponent
%values. If a variable can be created that will serve several
%purposes, it will save time and typing. (imagine typing the
%expression for den three times and you’ll understand).
%
t=0:tf/1000:tf;
for j=1:3

if zeta(j)>1
a1n=-v0+(-zeta(j)+(zeta(j)^2-1)^0.5)*wn*x0;
a2n=v0+(zeta(j)+(zeta(j)^2-1)^0.5)*wn*x0;
den=wn*(zeta(j)^2-1)^0.5;
a1=a1n/(2*den);
a2=a2n/(2*den);
x(j,:)=(a1*exp(-den*t)+a2*exp(den*t)).*exp(-zeta(j)*wn*t);

elseif zeta(j)==1
a1=x0;
a2=v0+wn*x0;
x(j,:)=(a1+a2*t).*exp(-wn*t);

end
end
%Now, the program plots the results in a subplot format.
%
subplot(3,1,1)
plot(t,x(1,:))
title([’Response for zeta=’,num2str(zeta(1))])
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ylabel(’Response x’)
grid
subplot(3,1,2)
plot(t,x(2,:))
title([’Response for zeta=’, num2str(zeta(2))])
ylabel(’Response x’)
grid
subplot(3,1,3)
plot(t,x(3,:))
title([’Response for zeta=’, num2str(zeta(3))])
ylabel(’Response x’)
xlabel(’Time, seconds’)
grid
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Figure 4.1: Response of three overdamped systems.





Chapter 5

Harmonic Excitation of
Undamped SDOF Systems

In the previous examples, we examined the responses of single degree of freedom
systems which were not subjected to an external force. Now, we will examine
the effects of an external force on the system. We begin with the simplest form
of external forcing: the harmonic load.
The system under consideration is shown in Figure 5.1. The forcing function

is assumed to be of the form F (t) = Fo cosωt, where ω is the driving frequency.
For the case with no damping, Newton’s Second Law gives us the equation of
motion m

..
x+ kx = Fo cosωt, or

..
x+ ω2nx = fo cosωt, (5.1)

where fo = Fo/m. We know the solution for the response x(t) to be:

x(t) = A1 sinωnt+A2 cosωnt+
fo

ω2n − ω2
cosωt, (5.2)

where

A1 =
vo
ωn

, A2 = xo −
fo

ω2n − ω2
. (5.3)

The key parameters which define the response are the natural and driving
frequencies, or more precisely, their ratio ω/ωn. Figure 5.2 shows the effect of
varying driving frequency ω for a given natural frequency, and Figure 5.3 does

23
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Figure 5.1: Model of a single degree of freedom subject to an external force.

the same for various natural frequencies ωn. In these calculations, vo = 0, xo =
0, Fo = 6. Making the initial conditions zero allows us to better see the effects
of varying frequencies.
Note that two of the three constants in the expression for x(t) involve the

difference between the frequencies. This gives rise to two interesting phenomena:
beats and resonance. Beats occur when the natural frequency and the driving
frequency are close but not equal. The result is then a rapid oscillation with a
slowly varying amplitude, as shown in Figure 5.4. Note how the both the rapid
oscillation and the slow change of the amplitude both vary along a sinusoid.
When the driving and natural frequencies are equal, ω = ωn, resonance is

the result. The third term in Equation 5.2 is not valid as a particular solution
of the governing equation of motion. Instead, the particular solution is

xp(t) =
fo
2ωn

t sinωnt. (5.4)

This term is the heart of the resonance problem; the amplitude of oscillation
will increase without limit. In a real system, the stiffness element has a certain
yield point which will be met and exceeded by a resonant vibration. Figure 5.5
shows resonant vibration.
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The MATLAB code below uses the subplot command more elegantly than
we had in earlier examples. Instead of typing out three separate sets of plotting
commands, the subplots are done in a loop. A simple (and natural) modification
to this program would be to change the number of plots in the subplot. This
could be done by introducing an integer variable nplot and changing the loops
to run from one to nplot instead of one to three. From a practical point of
view, though, introducing too many plots to the figures would make the plot
unreadable, so care must be taken. Also, we’ve changed the parameter values
from dynamic inputs to static values. They can easily be changed back to user
inputs.
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Program 4-1 - varywdr.m
%This program is very straightforward. The program takes
%the necessary input values to solve Equation
%5.3 for three different driving
%frequencies, checks for resonance (since we don’t want to
%handle that problem yet), and plots.
%
%This file varies driving frequency of a single degree
%of freedom undamped oscillator at a set natural
%frequency. The initial displacement is 3, the velocity is
%1, the force magnitude per unit mass is 6, and the
%natural frequency is 7.
wn=7;
x0=0;
v0=0;
f0=6;
tf=10;
wdr=zeros(3,1);
x=zeros(3,1001);
for i=1:3;

wdr(i)=wn; % This is how we initialize our while loop.
while wdr(i)==wn;

wdr(i)=input(’Enter the driving frequency. ’);
if wdr(i)==wn;

fprintf(’This will produce resonance!!’)
end

end
end
t=0:tf/1000:tf;
for j=1:3

A1=v0/wn;
A2=x0-(f0/(wn^2-wdr(j)^2));
A3=f0/(wn^2-wdr(j)^2);
x(j,:)=A1*sin(wn*t)+A2*cos(wn*t)+A3*cos(wdr(j)*t);

end
for k=1:3 % We could have used subplot this way all along.

subplot(3,1,k)
plot(t,x(k,:))
title([’Response for wdr=’,num2str(wdr(k)),’,
wn=’,num2str(wn)])
ylabel(’Response x’)
grid

end
xlabel(’Time, seconds’)
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Program 4-2: varywn.m
%This program is similar in form to varywdr.m, except that
%now the natural frequency is the variable.
%
%This file varies natural frequency of a single degree
%of freedom undamped oscillator at a set driving
%frequency. The initial displacement is 3, the velocity is
%1, the force magnitude per unit mass is 6, and the
%driving frequency is 7.
wdr=7;
x0=0;
v0=0;
f0=6;
tf=10;
wn=zeros(3,1);
x=zeros(3,1001);
for i=1:3;

wn(i)=wdr; % Analagous to the initialization above.
while wn(i)==wdr;

wn(i)=input(’Enter the natural frequency. ’);
if wn(i)==wdr;

fprintf(’This will produce resonance!!’)
end

end
end
t=0:tf/1000:tf;
for j=1:3

A1=v0/wn(j);
A2=x0-(f0/(wn(j)^2-wdr^2));
A3=f0/(wn(j)^2-wdr^2);
x(j,:)=A1*sin(wn(j)*t)+A2*cos(wn(j)*t)+A3*cos(wdr*t);

end
for k=1:3

subplot(3,1,k)
plot(t,x(k,:))
title([’Response for wdr=’,num2str(wdr),’,
wn=’,num2str(wn(k))])
ylabel(’Response x’)
grid

end
xlabel(’Time, seconds’)



28CHAPTER 5 HARMONIC EXCITATION OF UNDAMPED SDOF SYSTEMS

Program 4-3: beatres.m
%The main feature of note for this code is the use of the
%if-then-else protocol in MATLAB to allow solutions other
%than “Inf”for the resonant case. By changing the values
%of the initial conditions, wn, and f0 to input
%statements, this program would become a general solver
%for the single-degree of freedom undamped oscillator,
%subject to harmonic forcing.
%
%This program shows beats and resonance in undamped
%systems. Again, in order to better see the effects, the
%initial velocity and displacement are zero.
x0=0;
v0=0;
wn=3;
wdr=input(’Enter the driving frequency. ’);
f0=6;
tf=120;
%This section chooses the proper response formula for
%the given situation.
t=0:tf/1000:tf;
if wdr==wn

A1=v0/wn;
A2=x0;
A3=f0/2*wn;
x=A1*sin(wn*t)+A2*cos(wn*t)+A3*t.*cos(wdr*t);

else
A1=v0/wn;
A2=x0-(f0/(wn^2-wdr^2));
A3=f0/(wn^2-wdr^2);
x=A1*sin(wn*t)+A2*cos(wn*t)+A3*cos(wdr*t);

end
plot(t,x);
if wdr==wn

title(’Example of Resonance Phenomenon’);
else

title(’Example of Beat Phenomenon’);
end
xlabel(’Time, seconds’)
ylabel(’Response x’)
grid
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Figure 5.2: Vibration response for different driving frequencies.
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Chapter 6

Harmonic Forcing of
Damped SDOF Systems

Now, we will examine how the behavior of the system changes when we add
damping. As with the unforced case, the equations of motion change when
damping is added. They become:

mẍ+ cẋ+ kx = F cos(ωt), (6.1)

or with ζ = c/2mωn,

ẍ+ 2ζωnẋ+ ω
2
nx = f cos(ωt), (6.2)

where f = F/m. The homogeneous solution to this equation is of the form

xh(t) = Ae−ζωt sin(ωdt+ θ), (6.3)

where ωd = ωn
√
1− ζ2, and constants A, θ depend on initial conditions. The

particular solution to the external force is

xp(t) = A0 cos(ωt− φ), (6.4)

where

A0 =
f√

(ω2n − ω2) + (2ζωnω)
2
, φ = tan−1

2ζωnω

ω2n − ω2
. (6.5)
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The complete solution, x(t) = xh(t)+xp(t) is then used to evaluate constants
A and θ. These constants were found for zero initial conditions using Maple;
this solution is reflected in the code that follows.
The addition of damping causes the response of the system to differ slightly,

as shown in Figures 6.1 and 6.2. In Figure 6.1, the damping ratio ζ was varied.
This shows that the transient period of vibration varies inversely with damping
ratio. The length of the transient period varies from about 4.5 seconds for ζ =
0.05 to about 2 seconds for ζ = 0.3, showing that, in many cases, the transient
response can be ignored due to its short time period. However, for some cases,
the transient period may be much longer or may have a very large amplitude,
so it is always important to examine the transient effects of a system before
neglecting them. Notice also that the damping ratio affects the amplitude of
the steady-state vibration, also in an inverse relationship. That is, the amplitude
of the response for ζ = 0.05 is almost 2, while that for ζ = 0.3 is less than 1.
Figure 6.2 shows the effects of changing the natural frequency. Notice how,

for the two frequencies that are near the driving frequency, the transient period
is quite long, almost 10 seconds. However, for the large natural frequency,
the transient period is less than 4 seconds, which shows that the length of the
transient period also depends on the natural frequency.
In the damped system, resonance also takes on a different meaning. Notice

how, for ω = ωn, the amplitude does not become infinite; the introduction
of damping introduces a term that keeps the denominator of the steady-state
amplitude from becoming zero. However, at this point, the phase angle becomes
90◦. For a damped system, this condition defines resonance, since it is also at
this point that the denominator of the amplitude is a minimum. To prove this
last assertion to yourself, look at the denominator of the amplitude constant,
A0. The amplitude will be maximized when the denominator is minimized. Both
terms are never negative, so the minimum will occur when the two frequencies
are equal (making the first term of the denominator zero). Also, as the driving
frequency increases greatly, the amplitude nears zero.
The MATLAB code below was used to produce the figures. Instead of insert-

ing a while statement to control the range of damping ratios used, we use an if
statement, in tandem with an error statement. If the damping ratio is outside
the allowed range, MATLAB will halt execution of the program, printing the
statement found inside the quotation marks to the screen. Controlling input in
this manner is more drastic than the method used in the previous programs.
However, those programs had many more values to input. Forcing the user of
a program to reenter several values because of a typo seems a harsh penalty to
this programmer. Also, this program introduces MATLAB’s method for con-
tinuing lines. To continue an expression onto the next line, simply type three
periods in succession (ellipsis) and move to the next line. This is helpful for long
mathematical expressions, like the constants of integration below. This ellipsis
can be placed anywhere a space would be allowed, so continuing in the middle
of a variable name, for example, is not recommended.
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Program 5-1: harmzeta.m
%This program solves for the response of
%a damped single degree of freedom system subject to
%a harmonic external force. The expressions used for the
%constants were found by using MAPLE.
%
wdr=3;
wn=3.5;
fo=4;
tf=10;
t=0:tf/1000:tf;
for k=1:3

zeta(k)=input(’Enter a damping ratio (zeta). ’);
if (zeta(k)<0 | zeta(k)>=1)

error(’Zeta out of range for this program!’)
end

end
for k=1:3

wd=wn*sqrt(1-zeta(k)^2);
Ao=fo/sqrt((wn^2-wdr^2)^2+(2*zeta(k)*wn*wdr)^2);
phi=atan2(2*zeta(k)*wn*wdr,(wn^2-wdr^2));
Z1=-zeta(k)*wn-wdr*tan(phi);
Z2=sqrt((zeta(k)*wn)^2+2*zeta(k)*wn*wdr*tan(phi)+ ... % Continu-

ation.
(wdr*tan(phi))^2+wd^2); % The extra tab is not necessary, but

helpful.
Z=(Z1+Z2)/wd;
Anum=Ao*((zeta(k)*wn*Z-wd)*cos(phi)+wdr*Z*sin(phi));
Aden=Z*wd;
A=Anum/Aden;
theta=2*atan(Z);
x(k,:)=A*exp(-zeta(k)*wn*t).*sin(wd*t+theta)+Ao*cos(wdr*t-phi);

end
for k=1:3

subplot(3,1,k)
plot(t,x(k,:))
title([’Response for zeta=’,num2str(zeta(k)),’, wn=’, ...

num2str(wn),’, and wdr=’, num2str(wdr)])
ylabel(’Response x’)
grid

end
xlabel(’Time, seconds’)
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Figure 6.1: Damped response for three different damping ratios.
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Chapter 7

Base Excitation of SDOF
Systems

The base excitation problem is illustrated in Figure 7.1. Let the motion of the
base be denoted by y(t) and the response of the mass by x(t), and assuming
that the base has harmonic motion of the form y(t) = Y sin(ωbt). The equation
of motion for this system is:

m
..
x+ c(

.
x− .

y) + k(x− y) = 0. (7.1)

Using the assumed form for the motion, we can substitute for y and its deriva-
tive, resulting in:

m
..
x+ c

.
x+ kx = cY ωb cosωbt+ kY sinωbt, (7.2)

which when divided through by the mass, yields

..
x+ 2ζω

.
x+ ω2x = 2ζωωb cosωbt+ ω

2Y sinωbt. (7.3)

The homogeneous solution is of the form:

xh = Ae−ζωt sin(ωdt+ θ). (7.4)

The expression for each part of the particular solution is similar to that for
the general sinusoidal forcing function; the sine term produces a sine solution,
and the cosine term produces a cosine solution. If we find these solutions and
combine their sum into a single sinusoid, we obtain:

39
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Figure 7.1: Typical single degree of freedom system subject to base excitation.

xp = Ao cos(ωbt− φ1 − φ2), (7.5)

where

Ao = ωY

√
ω2 + (2ζωb)2

(ω2 − ω2b)2 + (2ζωωb)2
, φ1 = tan

−1 2ζωωb
ω2 − ω2b

, φ2 = tan
−1 ω

2ζωb
.

Thus, the complete solution is the sum of the homogeneous and particular
solutions, or:

x(t) = Ae−ζωt sin(ωdt+ θ) +Ao cos(ωbt− φ1 − φ2). (7.6)

This equation tells us a great deal about the motion of the mass. First, we
can see that the particular solution represents the steady-state response, while
the homogeneous solution is the transient response, since the particular solution
is independent of the initial displacement and velocity. Using MAPLE to solve
the initial value problem (with given initial velocity and displacement not nec-
essarily equal to zero), we find that both are dependent upon the initial velocity
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and displacement. However, the expression for the constants A and θ is, in gen-
eral, very diffi cult to solve, even for MAPLE. So, for the sake of programming
in MATLAB, the initial velocity and displacement were both assumed to be
zero. This assumption yielded simpler equations, which were used in the base
excitation programs which follow.
Figure 7.2 shows the effects of changing the excitation frequency while hold-

ing all other parameters constant. In the steady state, from about three seconds
forward, note that the frequency of vibration increases with the base frequency.
This is expected, since the base excitation portion dominates the steady state.
Of particular note is the bottom plot, with ωb = 20. In the transient portion,
the response has the shape of a sum of two sinusoids; these are, of course, the
transient and steady-state functions. Since the base excitation is of such high
frequency, this graph shows best what is happening between the transient and
steady responses. Note that, if a line was drawn through the upper or lower
peaks of the motion, the result would be a curve similar to that exhibited by
a damped free response. The midpoint of the oscillation caused by the steady
response becomes exponentially closer to zero with increasing time, as the tran-
sient response diminishes.
Figure 7.3 gives plots for three different vibration amplitudes. The differ-

ences caused by changing the amplitude is what would be expected; the maxi-
mum amplitude of the overall vibration and of the steady-state response both
increase with increasing input amplitude.
The plots in Figure 7.4 for various damping ratios show two effects of chang-

ing the damping ratio. First, the change in damping ratio causes the length
of the transient period to vary; an increase in ζ causes the transient period to
decrease, as the plots show. Also, the change in damping ratio causes a change
in the frequency of the transient vibration. Again, an increase in ζ causes a
decrease in the damped natural frequency, although the decrease is not entirely
evident from just looking at the plots. This is because the plots also include the
base excitation (steady-state) terms, whose frequency has not changed.
The MATLAB code for this situation is much more complex than the code

used in previous examples. This is mainly due to the increased diffi culty en-
countered when the external load is applied to a part of the structure. When
this approach is used, the relative displacement of the two parts of the struc-
ture becomes the important factor, instead of the displacement of the structure
relative to some ground. The code for this example uses a solution obtained
from the MAPLE solve routine to produce a plot of the response. An impor-
tant consideration to note is that the answer given by MAPLE results in two
possible solutions; the MATLAB code attempts to locate the correct one. The
way in which MATLAB chooses the correct solution is to check which of them
matches the initial displacement condition. Note from the plots that the initial
displacements are zero for all plots, as are the initial velocities, so we can be
confident in the plotted solutions. The three programs given below show the
changes that need to be made in a program in order to test different parameters.
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Program 6-1: varywb.m
%This program solves the base excitation problem. The
%code assumes a sinusoidal base function. Also, the
%program tests three different natural frequencies.
%
y0=input(’Enter the base excitation magnitude. ’);
zeta=input(’Enter the damping ratio (zeta). ’);
if (zeta<0 | zeta>=1) % The usual test on damping ratio.

error(’Damping ratio not in acceptable range!’)
end
wn=4;
tf=10;
t=0:tf/1000:tf;
for k=1:3

wb(k)=input(’Enter a base excitation frequency. ’);
end
for m=1:3
%
%This section solves the transient response, using the
%equations obtained from MAPLE.
%

wd=wn*sqrt(1-zeta^2);
phi1=atan2(2*zeta*wn*wb(m),(wn^2-wb(m)^2));
phi2=atan2(wn,2*zeta*wb(m));
xi=phi1+phi2;

%These constants are what produces the two possible
%solutions discussed above. Notice the way by which
%the extraordinarily long expressions for the constants
%are broken into parts, to keep the expressions from
%spreading over several lines.

Z1=(-zeta*wn-wb(m)*tan(xi)+sqrt((zeta*wn)^2+2*zeta* ...
wn*wb(m)*tan(xi)+(wb(m)*tan(xi))^2+wd^2))/wd;

Z2=(-zeta*wn-wb(m)*tan(xi)-sqrt((zeta*wn)^2+2*zeta* ...
wn*wb(m)*tan(xi)+(wb(m)*tan(xi))^2+wd^2))/wd;

Anum=sqrt((wn^2+(2*zeta*wb(m))^2)/((wn^2-wb(m)^2)^2+(2* ...
zeta*wb(m)*wn)^2))*wn*y0;

Bnum1=(-wd*cos(xi)+Z1*zeta*wn*cos(xi)+Z1*wb(m)*sin(xi));
Bnum2=(-wd*cos(xi)+Z2*zeta*wn*cos(xi)+Z2*wb(m)*sin(xi));
Aden1=wd*Z1;
Aden2=wd*Z2;
A1=Anum*Bnum1/Aden1;
A2=Anum*Bnum2/Aden2;
th1=2*atan(Z1);
th2=2*atan(Z2);
y1(m,:)=A1*exp(-zeta*wn*t).*sin(wd*t+th1);
y2(m,:)=A2*exp(-zeta*wn*t).*sin(wd*t+th2);
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end
%This portion solves the steady-state response.

for j=1:3
A=sqrt((wn^2+(2*zeta*wb(j))^2)/((wn^2-wb(j)^2)^2+(2*zeta* ...
wn*wb(j))^2));
phi1=atan2(2*zeta*wn*wb(j),(wn^2-wb(j)^2));
phi2=atan2(wn,(2*zeta*wb(j)));
xp(j,:)=wn*y0*A*cos(wb(j)*t-phi1-phi2);

end
if (xp(1,1)+y1(1,1)==xp(2,1)+y1(2,1)==xp(3,1)+y1(3,1)==0)

x=xp+y1;
else

x=xp+y2;
end
for i=1:3

subplot(3,1,i)
plot(t,x(i,:))
ylabel(’Response x’);
title([’Base Excitation with wb=’,num2str(wb(i)), ...
’and wn=’,num2str(wn)]);
grid

end
xlabel(’Time, seconds’)
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Program 6-2: varyyobe.m
%This program solves the base excitation problem. The
%code assumes a sinusoidal base function. Also, the
%program tests three different base amplitudes.
%Notice that the natural frequency is now given as
%a set variable, and the variable ’y0’is a user-input matrix.
%
wb=input(’Enter the base excitation frequency. ’);
zeta=input(’Enter the damping ratio (zeta). ’);
if (zeta<0 | zeta>=1) % The usual test on damping ratio.

error(’Damping ratio not in acceptable range!’)
end
wn=4;
tf=10;
t=0:tf/1000:tf;
for k=1:3

y0(k)=input(’Enter a base excitation magnitude. ’);
end
for m=1:3

wd=wn*sqrt(1-zeta^2);
phi1=atan2(2*zeta*wn*wb,(wn^2-wb^2));
phi2=atan2(wn,2*zeta*wb);
xi=phi1+phi2;
Z1=(-zeta*wn-wb*tan(xi)+sqrt((zeta*wn)^2+2*zeta* ...

wn*wb*tan(xi)+(wb*tan(xi))^2+wd^2))/wd;
Z2=(-zeta*wn-wb*tan(xi)-sqrt((zeta*wn)^2+2*zeta* ...

wn*wb*tan(xi)+(wb*tan(xi))^2+wd^2))/wd;
Anum=sqrt((wn^2+(2*zeta*wb)^2)/((wn^2-wb^2)^2+(2* ...

zeta*wb*wn)^2))*wn*y0(m);
Bnum1=(-wd*cos(xi)+Z1*zeta*wn*cos(xi)+Z1*wb*sin(xi));
Bnum2=(-wd*cos(xi)+Z2*zeta*wn*cos(xi)+Z2*wb*sin(xi));
Aden1=wd*Z1; Aden2=wd*Z2;
A1=Anum*Bnum1/Aden1;
A2=Anum*Bnum2/Aden2;
th1=2*atan(Z1);
th2=2*atan(Z2);
y1(m,:)=A1*exp(-zeta*wn*t).*sin(wd*t+th1);
y2(m,:)=A2*exp(-zeta*wn*t).*sin(wd*t+th2);

end
for j=1:3

A=sqrt((wn^2+(2*zeta*wb)^2)/((wn^2-wb^2)^2+(2*zeta* ...
wn*wb)^2));

phi1=atan2(2*zeta*wn*wb,(wn^2-wb^2));
phi2=atan2(wn,(2*zeta*wb));
xp(j,:)=wn*y0(j)*A*cos(wb*t-phi1-phi2);

end
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if (xp(1,1)+y1(1,1)==xp(2,1)+y1(2,1)==xp(3,1)+y1(3,1)==0)
x=xp+y1;

else
x=xp+y2;

end
for i=1:3

subplot(3,1,i)
plot(t,x(i,:))
ylabel(’Response x’);
title([’Base Excitation with wb=’,num2str(wb), ...
’, wn=’,num2str(wn),’, and y0=’,num2str(y0(i))]);
grid

end
xlabel(’Time, seconds’)
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Program 6-3: varyzbe.m
%This program solves the base excitation problem. The
%code assumes a sinusoidal base function. Also, the
%program tests three different damping ratios. Again, note
%the changes between this program and the previous one.
%
y0=input(’Enter the base excitation magnitude. ’);
wb=input(’Enter the base excitation frequency. ’);
wn=4;
tf=10;
t=0:tf/1000:tf;
for k=1:3

zeta(k)=input(’Enter a damping ratio (zeta). ’);
if (zeta(k)<0 | zeta(k)>=1) % The usual test on damping ratio.

error(’Damping ratio not in acceptable range!’)
end

end
for m=1:3

wd=wn*sqrt(1-zeta(m)^2);
phi1=atan2(2*zeta(m)*wn*wb,(wn^2-wb^2));
phi2=atan2(wn,2*zeta(m)*wb);
xi=phi1+phi2;
Z1=(-zeta(m)*wn-wb*tan(xi)+sqrt((zeta(m)*wn)^2+2*zeta(m)* ...

wn*wb*tan(xi)+(wb*tan(xi))^2+wd^2))/wd;
Z2=(-zeta(m)*wn-wb*tan(xi)-sqrt((zeta(m)*wn)^2+2*zeta(m)* ...

wn*wb*tan(xi)+(wb*tan(xi))^2+wd^2))/wd;
Anum=sqrt((wn^2+(2*zeta(m)*wb)^2)/((wn^2-wb^2)^2+(2* ...

zeta(m)*wb*wn)^2))*wn*y0;
Bnum1=(-wd*cos(xi)+Z1*zeta(m)*wn*cos(xi)+Z1*wb*sin(xi));
Bnum2=(-wd*cos(xi)+Z2*zeta(m)*wn*cos(xi)+Z2*wb*sin(xi));
Aden1=wd*Z1;
Aden2=wd*Z2;
A1=Anum*Bnum1/Aden1;
A2=Anum*Bnum2/Aden2;
th1=2*atan(Z1);
th2=2*atan(Z2);
y1(m,:)=A1*exp(-zeta(m)*wn*t).*sin(wd*t+th1);
y2(m,:)=A2*exp(-zeta(m)*wn*t).*sin(wd*t+th2);

end
for j=1:3

A=sqrt((wn^2+(2*zeta(j)*wb)^2)/((wn^2-wb^2)^2+(2*zeta(j)* ...
wn*wb)^2));

phi1=atan2(2*zeta(j)*wn*wb,(wn^2-wb^2));
phi2=atan2(wn,(2*zeta(j)*wb));
xp(j,:)=wn*y0*A*cos(wb*t-phi1-phi2);

end
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if (xp(1,1)+y1(1,1)==xp(2,1)+y1(2,1)==xp(3,1)+y1(3,1)==0)
x=xp+y1;

else
x=xp+y2;

end
for i=1:3

subplot(3,1,i)
plot(t,x(i,:))
ylabel(’Response x’);
title([’Base Excitation with wb=’,num2str(wb), ...

’and zeta=’,num2str(zeta(i))]);
grid
end
xlabel(’Time, seconds’)
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Figure 7.2: Response of a base-excited system subject to three different excita-
tion frequencies.
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Figure 7.3: Results obtained for three different base excitation magnitudes.
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Figure 7.4: Response of a base-excited system for different damping ratios.



Chapter 8

SDOF Systems with a
Rotating Unbalance

A rotating unbalance is depicted in Figure 8.1. Assume that the guides are
frictionless. The radius e is measured from the center of mass of the mass m. To
construct the equation of motion, we need an expression for the motion of the
rotating unbalance in terms of x. If the mass rotates with a constant angular
velocity ωr, then the circle it defines can be described parametrically as:

x(t) = e sinωrt, y(t) = e cosωrt. (8.1)

Note that the sine defines the x coordinate because in our chosen coordinates,
x is vertical. Having this expression for x, we can then construct the equations
of motion. The position coordinate of the rotating unbalance is x+sinωrt, and
the acceleration is the second derivative of this expression with respect to time.
The acceleration of the mass without the unbalance is

..
x. Adding in the effects

of the stiffness and damper, we get:

(m−mo)
..
x+mo

d2

dt2
(x+ e sinωrt) = −kx− c

.
x, (8.2)

or

(m−mo)
..
x+mo

(..
x− eω2r sinωrt

)
= −kx− c .x. (8.3)

Finally, collecting x and its derivatives, moving the sine term to the other
side of the expression, and dividing by the system mass gives the final equation
of motion:
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Figure 8.1: Schematic of the system in question (note the coordinate axes cho-
sen).

..
x+ 2ζωn

.
x+ ω2nx = moeω

2
r sinωrt. (8.4)

Note that this is identical to the harmonic forcing function case we encoun-
tered earlier, except that now our force is in the form of a sine rather than a
cosine. For that reason, the particular solution is of the form:

xp(t) = X sin(ωrt− φ), (8.5)

where, with r = ωr/ωn,

X =
moe

m

r2√
(1− r2)2 + (2ζr)2

, φ = tan−1
2ζr

1− r2 . (8.6)

As before, the homogenous solution for this expression is:

xh(t) = Ae−ζωnt sin(ωdt+ θ), (8.7)

where A and θ are determined from the initial conditions. The final solution is
then x(t) = xp(t) + xh(t).
For the purpose of creating a program in MATLAB, the initial conditions

were assumed to be zero. Then, MAPLE was used to solve the resulting initial
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value problem. The solution to this is not reproduced here, due to the com-
plexity of the expression; the solution for A and θ depend on the solution to
a quadratic equation. The MATLAB code that follows contains the expression
(in a few parts) for the constants in question.
Figures 8.2 through 8.4 show different varying parameter sets for the system.

Unless otherwise specified, m = 7, mo = 3, and e = 0.1. For Figure 8.2, the
natural frequency was varied while holding all other parameters constant. Notice
how, when ωn is not a multiple of ωr, the motion is the sum of two sinusoids; this
is shown best by the top plot, where ωn = 2. For the highest natural frequency
tested, the oscillation occurs along a single sinusoid. This is because the natural
frequency of the system is too high to be excited by the relatively slow rotation
frequencies. The first two plots have natural frequencies small enough to be
excited by the slow rotation of the eccentric mass.
In Figure 8.3, the system damping is varied. The result is that the tran-

sient portion (the portion with the curve that looks like the sum of sinusoids)
becomes smaller, to the point where it disappears at ζ = 0.3. A difference in
the magnitude of oscillation, as would be predicted from the expression we have
derived for the parameter X, is not present because the frequency ratio we are
testing is in the range where oscillation magnitude shows little variation with
damping ratio. This consideration is important in the design of machinery; if
the machine can be designed to have a much higher natural frequency than the
oscillating mass, then the level of damping can be made low without increasing
the amplitude past acceptable levels.
Finally, Figure 8.4 shows the variation of vibration with increasing system

mass. Notice how the amplitude of the vibration decreases with increasing mass;
this is due to the dependence of X on mo/m. As the mass ratio decreases, so
does the amplitude of vibration.
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Program 7-1: vrywnrot.m
%This program solves for the response of a single
%degree of freedom system having a rotating unbalance.
%The equations of motion were derived using MAPLE and
%are valid only for zero initial conditions.
%
mo=3;
m=7;
e=0.1;
wr=4;
zeta=0.05;
tf=10;
t=0:tf/1000:tf;
for i=1:3
wn(i)=input(’Enter a natural frequency. ’);
wd(i)=wn(i)*sqrt(1-zeta^2);
end
for j=1:3
r=wr/wn(j);
X=mo*e/m*(r^2/sqrt((1-r^2)^2+(2*zeta*r)^2));
phi=atan2(2*zeta*r,(1-r^2));
Z1=(-zeta*wn(j)+wr*cot(phi))/wd(j);
Z2=sqrt((zeta*wn(j))^2-2*zeta*wn(j)*wr*cot(phi)+ ...
(wr*cot(phi))^2+wd(j)^2)/wd(j);
Z=Z1+Z2;
theta=2*atan(Z);
Anum=X*(wd(j)*sin(phi)-Z*zeta*wn(j)*sin(phi)+Z*wr*cos(phi));
Aden=Z*wd(j);
A=Anum/Aden;
xh(j,:)=A*exp(-zeta*wn(j)*t).*sin(wd(j)*t+theta);
xp(j,:)=X*sin(wr*t-phi);
end
x=xp+xh;
for k=1:3
subplot(3,1,k)
plot(t,x(k,:))
title([’Rotating Unbalance with wr=’,num2str(wr),’wn=’, ...
num2str(wn(k)),’and zeta=’,num2str(zeta)]);
grid
end
xlabel(’Time, seconds’)
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Program 7-2: vryzrot.m
%This program solves for the response of a single
%degree of freedom system having a rotating unbalance.
%The equations of motion were derived using MAPLE and
%are valid only for zero initial conditions.
%
mo=3;
m=7;
e=0.1;
wr=4;
wn=12;
tf=10;
t=0:tf/1000:tf;
for i=1:3
zeta(i)=input(’Enter a damping ratio (zeta). ’);
end
for j=1:3
wd=wn*sqrt(1-zeta(j)^2);
r=wr/wn;
X=mo*e/m*(r^2/sqrt((1-r^2)^2+(2*zeta(j)*r)^2));
phi=atan2(2*zeta(j)*r,(1-r^2));
Z1=(-zeta(j)*wn+wr*cot(phi))/wd;
Z2=sqrt((zeta(j)*wn)^2-2*zeta(j)*wn*wr*cot(phi)+ ...
(wr*cot(phi))^2+wd^2)/wd;
Z=Z1+Z2;
theta=2*atan(Z);
Anum=X*(wd*sin(phi)-Z*zeta(j)*wn*sin(phi)+Z*wr*cos(phi));
Aden=Z*wd;
A=Anum/Aden;
xh(j,:)=A*exp(-zeta(j)*wn*t).*sin(wd*t+theta);
xp(j,:)=X*sin(wr*t-phi);
end
x=xp+xh;
for k=1:3
subplot(3,1,k)
plot(t,x(k,:))
title([’Rotating Unbalance with wr=’,num2str(wr),’wn=’, ...
num2str(wn),’and zeta=’,num2str(zeta(k))]);
ylabel(’Response x’)
grid
end
xlabel(’Time, seconds’)
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Program 7-3: vrymrot.m
%This program solves for the response of a single
%degree of freedom system having a rotating unbalance.
%The equations of motion were derived using MAPLE and
%are valid only for zero initial conditions.
%
mo=3;
zeta=0.05;
e=0.1;
wr=4;
wn=12;
tf=10;
t=0:tf/1000:tf;
for i=1:3
m(i)=input(’Enter a system mass. ’);
end
for j=1:3
wd=wn*sqrt(1-zeta^2);
r=wr/wn;
X=mo*e/m(j)*(r^2/sqrt((1-r^2)^2+(2*zeta*r)^2));
phi=atan2(2*zeta*r,(1-r^2));
Z1=(-zeta*wn+wr*cot(phi))/wd;
Z2=sqrt((zeta*wn)^2-2*zeta*wn*wr*cot(phi)+ ...
(wr*cot(phi))^2+wd^2)/wd;
Z=Z1+Z2;
theta=2*atan(Z);
Anum=X*(wd*sin(phi)-Z*zeta*wn*sin(phi)+Z*wr*cos(phi));
Aden=Z*wd;
A=Anum/Aden;
xh(j,:)=A*exp(-zeta*wn*t).*sin(wd*t+theta);
xp(j,:)=X*sin(wr*t-phi);
end
x=xp+xh;
for k=1:3
subplot(3,1,k)
plot(t,x(k,:))
title([’Rotating Unbalance with wr=’,num2str(wr),’, wn=’, ...
num2str(wn),’, mass=’,num2str(m(k)),’, and rotating mass=’, ...
num2str(mo)]);
grid
end
xlabel(’Time, seconds’)
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Chapter 9

Impulse Response of SDOF
Systems

In the previous few examples, we have discussed the response of single degree
of freedom systems to different forms of sinusoidal inputs. In the following
examples, we will examine the effects of non-sinusoidal inputs on single degree
of freedom systems. The simplest of these is the impulse response.
An impulse is a force which is applied over a very short time when compared

to the period of vibration. The period over which the impulse is applied is
assumed to be 2ε. If the impulse is centered about time t, then it is applied
from t− ε to t+ ε. If the force has a total value of Fo, then the average value is
Fo/2ε. So, for all time except the interval around t, the value of the impulse is
0; within the interval, it is Fo/2ε.
Using the definition of impulse as force multiplied by time, and noting that

impulse is the change in momentum, we see that:

(Fo/2ε) · 2ε = mvo, (9.1)

where vo is the initial velocity of the system. This is because the velocity of the
system before the impulse is zero, and it is vo after the impulse. So, this problem
reduces to a single degree of freedom free vibration with zero initial displacement
and initial velocity equal to Fo/m. Recall that for a damped oscillator, the
response is of the form:

x(t) = Ae−ζωt sin(ωdt+ φ). (9.2)

Since

A =
√
(vo + ζωxo)2 + (xoωd)2/ωd,

φ = tan−1 (xoωd/ (vo + ζωxo)) ,
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we note that, for xo = 0, A = vo/ωd, and φ = 0. Thus, Equation 9.2 becomes

x(t) =
Fo
ωd
e−ζωt sin(ωdt). (9.3)

This response, as noted above, is simply a single degree of freedom oscillator
subject to an initial velocity. The behavior with changing Fo is similar to
changing vo in a single degree of freedom oscillator. For that reason, a program
and plots for this situation are not included; they would be the same as those
in Example 2. Included in this example is a program which simulates the Dirac
delta function (an impulse with Fo = 1), for an impulse around a given time and
with a given total time interval. The program simply takes the entire interval
and sets the function equal to zero for all times other than the one specified,
and equal to one for the specified time.
Program 8-2 gives an example of how this delta function can be used inside

of another program, by plotting the function over a specified time interval. This
program makes use of subfunctions as well. This is more handy for single-use
functions, such as several of the unwieldy constants we derived for some of our
earlier examples. A subfunction is called just like any other MATLAB function.
The subfunction is written after the main code, and is internal to the code.
The variables used inside the subfunction stay in the subfunction; they are not
introduced to the MATLAB workspace. Thus, if we tried to use the variable
“int”in the main code of Program 8-2, we would generate an error. One more
item of note is the “\delta” in the ylabel function call. That is a LaTEX
tag, which is usable inside of a MATLAB string. Notice the results when the
program is run; the y-axis reads “δ (td) , ” substituting the value entered for td.
Superscripts, subscripts, Greek characters, and other useful effects are available
in this manner; “help latex”at the MATLAB prompt can give you a start on
using these.
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Program 8-1: delta.m
function delta=delta(td,tf)
%This function simulates the delta function.
%The user must input the time at which the
%nonzero value is desired, td, and the ending time, tf.
%
int=tf*td;
%The variable int ensures that a value in the time vector
%will match the desired time. The strategy is to subdivide
%the interval into at least 500 steps (this ensures the
%interval over which the function is nonzero is small).
%
while int<500
int=int*10;
end
t=0:tf/int:tf;
for i=1:int
if t(i)==td
delta(i)=1;
else
delta(i)=0;
end
end



64 CHAPTER 9 IMPULSE RESPONSE OF SDOF SYSTEMS

%Program 8-2: subdemo.m
function [t,y]=subdemo(td,tf)
%
% A simple routine to demonstrate use of subfunctions,
% making use of the delta function as an example.
% Inputs are the time of the delta function, td,
% and the overall timespan, tf.
% Note that subfunctions cannot be used
% inside of script m-files. If we were to
% write Program 8-2 as a script (like most of
% our m-files to this point), the delta function
% would have to be external.
%
y=subdelta(td,tf);
% Calling the subfunction version “subdelta”
% guarantees we’ll be calling the subfunction,
% not the function from Program 8-1.
% Now that we have the value of the delta function,
% we need to create a time vector that goes from
% zero to tf, and has the same number of points
% as the vector y (else we will get a plotting
% error). For this, we use the “max”and
% “size”commands.
len=max(size(y));
% “size”returns the vector [nrows ncols], corresponding
% to the number of rows and columns in y. Taking the
% maximum will return the longer dimension, and is a
% shortcut usable for both row and column vectors.
t=linspace(0,tf,len);
% “linspace”is much more natural a command for this
% instance than the colon operator. This will generate
% a vector with len equally-spaced elements between
% 0 and tf.
plot(t,y)
title(’Delta Function Sample’);
ylabel([’\delta(’,num2str(td),’)’]);
xlabel(’Time, seconds’);
grid
function delta=subdelta(td,tf)
% This function is Program 8-1.
% Note that a subfunction is included
% with a “function”call, just like an
% external function.
int=tf*td;
while int<500
int=int*10;
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end
t=0:tf/int:tf;
for i=1:int
if t(i)==td
delta(i)=1;
else
delta(i)=0;
end
end





Chapter 10

Step Response of a SDOF
System

In this example, the force is assumed to be applied instantaneously, but it will
be sustained out to infinity. This is essentially an on-function. If a force of this
sort is plotted versus time, the force looks like a step up. So then, the behavior
of the system under this type of load is considered the step response of the single
degree of freedom system. We assume the system is underdamped and will have
zero initial conditions. We already know the equation of motion,

..
x+ 2ζωn

.
x+ ω2nx = F (t)/m, (10.1)

where

F (t) =

 0 if 0 < t < to

Fo if t ≥ to
. (10.2)

In order to solve the differential equation, we will use the convolution integral

x(t) =

∫ t

0

F (τ)g(t− τ)dτ. (10.3)

Recall that the convolution integral is derived by treating the force as an in-
finite series of impulse forces. The first fundamental theorem of calculus then
allows the infinite series to be treated as the integral given above. The impulse
response, just discussed, given by

x(t) =
Fo
mωd

e−ζωnt sinωdt = Fog(t), (10.4)
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where we know that

g(t) =
1

mωd
e−ζωt sinωdt. (10.5)

Therefore,

x(t) =
1

mωd
e−ζωnt

∫ t

0

F (τ)eζωnτ sinωd(t− τ)dτ. (10.6)

Now, since we have a general expression for x(t), we can substitute our F (t)
into Equation 10.6 to give:

x(t) =
1

mωd
e−ζωnt

{∫ to

0

(0)eζωnτ sinωd(t− τ)dτ +
∫ t

to

Foe
ζωnτ sinωd(t− τ)dτ

}
.

(10.7)

Note that the first term inside the braces is zero. For that reason, for t < to,
the response of the system is zero. To find the response for all other times, we
must evaluate the second integral (by parts):

x(t) =
Fo
k

{
1− 1√

1− ζ2
e−ζωn(t−to) cos [ωd(t− to)− φ]

}
, t ≥ to, (10.8)

where φ = tan−1 ζ√
1−ζ2

. It is important to remember that this equation is

only valid for the time after the force is applied; the response is zero before
application of the force.
Figure 10.1 shows the variation of the response with the force magnitude. As

might be expected, the only difference that results from changing the magnitude
of the external force is that the magnitude of the response changes. That is,
the magnitude of the response is directly proportional to the magnitude of the
external force. The magnitude of the external force also causes a second differ-
ence: note that when the oscillatory motion begins, it is not centered around
zero. Instead, the mass oscillates around a displacement greater than zero. The
value of this center point is also dependent on the magnitude of the external
force (from the term 1 in the Equation 10.8).
In Figure 10.2, we vary the natural frequency. This causes two changes in

the response. First, the rate of exponential decrease in the response (the effect
of damping) is increased; that is, the response stabilizes more quickly. Second,
the oscillation frequency decreases, since the natural frequency also dictates the
damped frequency.
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Finally, Figure 10.3 shows the changes caused by changing the damping ratio.
With increasing damping ratio, the amount of time to damp out all vibration
decreases. For the third ratio tested, ζ = 0.3, the damping is suffi cient to allow
no oscillation around the new center point (x = 1.5). A second result, which is
not immediately evident from the figure but follows from the mathematics, is
that the phase angle changes with the damping ratio (note that φ is a function
of only ζ.)
The three programs used for this example follow below. The way in which

the force array is created in Program 9-1 illustrates the convenience afforded the
programmer by MATLAB. In Fortran or C programming, we would be forced to
use a loop to compare whether the time at each point of the time vector exceeded
the step time, and then adjust the force vector appropriately. In MATLAB, the
greater-than operator applied to a vector will produce a vector with zeros where
the relation is false, and ones where it is true. So if we create a matrix having
the results of t > to in each row, and array-multiply this matrix by the three-
by-npts force matrix, we will produce a matrix having step forcing in each row
of the appropriate magnitude, activated at t = to.
The reader may then wonder if the loop calculating the response could have

been removed in a similar manner. The answer is “yes,”and the programming is
left to the reader. The for loop is one of the more time-consuming constructions
inside MATLAB; thus, for more complicated calculations, it is advantageous to
remove these loops from the code; this process is called vectorization of code.
Using the calculation below as an example, note first that the parameters phi
and wd are calculated outside the loop. These quantities are constant for all
forces. Thus, the time-dependent part of all three responses is independent
of the forcing parameters. We could then create a matrix that has the time
response in each row, and use array multiplication to include the force-dependent
parameters. (This is the algorithm for the reader exercise described above.)
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Program 9-1: stepfm.m
%This program calculates the step response
%of a single degree of freedom system. This
%version tests three different force magnitudes.
%The program assumes a system mass of 1.
%
zeta=0.05;
tf=10;
npts=1000;
t=linspace(0,tf,npts);
to=2;
wn=12;
k=(wn)^2;
for i=1:3

Fm(i,1)=input(’Enter a force magnitude. ’); % Forcing Fm to be a
column vector.
end
Fint=Fm*ones(1,npts); % Fint is thus 3-by-npts.
%
% Now, we perform the logical operation t>to,
% and make a 3-by-npts matrix of the result.
%
qtest=t>to;
fmult=[qtest;qtest;qtest]; % Three rows of qtest.
Fo=Fint.*fmult; % The force matrix.
wd=wn*sqrt(1-zeta^2);
phi=atan2(zeta,sqrt(1-zeta^2));
for n=1:3

A=Fo(n,:)/k;
B=Fo(n,:)/(k*sqrt(1-zeta^2));
x(n,:)=A-B.*exp(-zeta*wn*t).*cos(wd*t-phi);

end
for l=1:3

subplot(3,1,l)
plot(t,x(l,:))
title([’Response for wn=’,num2str(wn),’, Fmax=’, ...
num2str(Fm(l)),’, and time=’, num2str(to)]);
ylabel(’Response x’)
grid

end
xlabel(’Time, seconds’)
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Program 9-2: stepwn.m
%This program calculates the step response
%of a single degree of freedom system. This
%version tests three different natural frequencies.
%The program assumes a system mass of 1.
%
Fm=5;
npts=1000;
zeta=0.05;
tf=10;
t=linspace(0,tf,npts);
to=2;
qtest=t>to; % Only one force vector here, so we can do this here.
Fo=Fm*qtest; % Scalar Fm * 1-by-npts vector.
for i=1:3

wn(i)=input(’Enter a natural frequency. ’);
k(i)=wn(i)^2;

end
%
% This could also be vectorized.
%
for n=1:3

wd=wn(n)*sqrt(1-zeta^2);
A=Fo/k(n);
B=Fo/(k(n)*sqrt(1-zeta^2));
phi=atan2(zeta,sqrt(1-zeta^2));
x(n,:)=A-B.*exp(-zeta*wn(n)*t).*cos(wd*t-phi);

end
for l=1:3

subplot(3,1,l)
plot(t,x(l,:))
title([’Response for wn=’,num2str(wn(l)),’, Fmax=’, ...

num2str(Fm),’, and time=’, num2str(to)]);
ylabel(’Response x’)
grid

end
xlabel(’Time, seconds’)
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Program 9-3: stepzeta.m
%This program calculates the step response
%of a single degree of freedom system. This
%version tests three different natural frequencies.
%The program assumes a system mass of 1.
%
npts=1000;
Fm=5;
tf=10;
t=linspace(0,tf,npts);
to=2;
qtest=t>to;
Fo=Fm*qtest;
wn=12;
k=(wn)^2;
for i=1:3

zeta(i)=input(’Enter a damping ratio (zeta). ’);
end
%
% This could also be vectorized.
%
for n=1:3

wd=wn*sqrt(1-zeta(n)^2);
A=Fo/k;
B=Fo/(k*sqrt(1-zeta(n)^2));
phi=atan2(zeta(n),sqrt(1-zeta(n)^2));
x(n,:)=A-B.*exp(-zeta(n)*wn*t).*cos(wd*t-phi);

end
for l=1:3

subplot(3,1,l)
plot(t,x(l,:))
title([’Response for wn=’,num2str(wn),’, zeta=’, ...

num2str(zeta(l)),’, and time=’, num2str(to)]);
ylabel(’Response x’)
grid

end
xlabel(’Time, seconds’)
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Figure 10.1: Step response of a single degree of freedom system to different step
magnitudes.
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Chapter 11

Response of SDOF Systems
to Square Pulse Inputs

A square pulse is a single pulse of constant magnitude and finite duration. To
analyze the response of systems to a square wave input, we will treat the square
wave as the sum of two equal and opposite step inputs applied at different times.
The time interval between application of the step inputs is the duration of the
square wave.
Let us assume that the magnitude of the square wave is Fo, and its duration

is t1 seconds. To simulate the wave using step inputs, we begin with a step
input of magnitude Fo from time t = 0, and add to it at time t1 a step input of
magnitude −Fo. By superposition, the total response is the sum of the response
of the system to each step input.
Recall that the response of a single degree of freedom system to a step input

of magnitude Fm applied at time to is:

x(t) =
Fm
k

{
1− 1√

1− ζ2
e−ζωn(t−to) cos [ωd (t− to)− φ]

}
, t ≥ to, (11.1)

where φ = arctan ζ/
√
1− ζ2. If we now consider the two step inputs separately,

denoting the response of the system to the input at time t = 0 as x1(t) and the
response to the input at time t = t1 as x2(t), we find that:

x1(t) =
Fo
k

{
1− 1√

1− ζ2
e−ζωt cos [ωdt− φ]

}
, t ≥ 0 (11.2)

and
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x2(t) = −
Fo

k

{
1− 1√

1− ζ2
e−ζω(t−t1) cos [ωd (t− t1)− φ]

}
, t ≥ t1. (11.3)

The total response is then:

x(t) =
Fo
k

{
1− 1√

1− ζ2
e−ζωnt cos [ωdt− φ]

}
, 0 ≤ t < t1, (11.4)

x(t) =
Foe
−ζωnt

k
√
1− ζ2

{
eζωnt1 cos [ωd (t− t1)− φ]− cos (ωdt− φ)

}
, t ≥ t1. (11.5)

Notice how, for the time interval after t1, the response no longer includes a
“1 − ” term; the addition of the two responses has removed this term entirely.
Again recalling a previous example, the “1− ” term caused the oscillation to be
about a new equilibrium (i.e., x = Fo/k). Now, since the term has disappeared,
the oscillation is centered around zero.
The movement of the center point of the oscillation is best shown in Figure

11.1, which tests three different values of Fo. The oscillation begins about a
center point at x = Fo/k. When the square wave ends, or, when the equal
and opposite step is added, the center point returns to zero. Assume, for a
moment, that the magnitude of the second step is not equal to that of the
first; call it F1. In this case, the center point of the oscillation after adding
the second step input would be at x = (Fo − F1) /k. To prove this to yourself,
perform the superposition used to obtain Equation 11.5, above (remember that
F1 is negative!). A constant term will remain, and this term will be equal to
(Fo − F1) /k. Another result which is evident from Figure 10.1 is that the change
in Fo causes the magnitude of the oscillations to increase, as would be expected
from Equation 11.5.
Figure 11.2 shows the effects of changing the natural frequency. Notice that

a transition point occurs when the second step input is added. The sudden shift
in vibration characteristics is expected, since we have a piecewise expression for
x(t). But note that while the transition becomes more abrupt as the natural
frequency increases, it is never discontinuous. Since the motion of the mass
remains continuous, we can infer that the approach is correct; if we had obtained
a discontinuity in the motion, we would know the expression is incorrect. This
is because a discontinuous expression would imply that the mass moved from
one point to another nonadjacent point without passing through the points in
between, a physically impossible situation.
Finally, Figure 11.3 demonstrates the response behavior for three different

damping ratios. Again, notice how the high damping ratio (ζ = 0.3) causes all
of the vibration to be damped out quickly, so that the mass is practically at rest
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when the second step input is applied. Again, we see that the transient period
decreases with increasing damping ratio.
The MATLAB code to produce these figures demonstrates the vectorization

discussed in the previous example. Note how the logical operation t < to is used
to create a matrix of zeros and ones, where the ones correspond to times before
to. Then the MATLAB “not”operator (the tilde, ~) is used to arrive at times
after to. The reader is encouraged to rewrite the vectorized calculation as a loop
(in any of the three codes) and see for himself the difference in time expenditure
as the number of points is increased by a few orders of magnitude. While there
are no fewer actual calculations performed in the vectorized code, the difference
is that MATLAB’s vector/matrix calculations are highly optimized, and so the
code is faster when handling one matrix calculation instead of many scalar
calculations.
One more difference between these codes and the previous is that we’ve

inserted another use of the colon operator. As explained in Program 10-1, the
statement a = b(:); has a particular meaning in MATLAB. For a vector b,
MATLAB will return a column vector a that is equal to a column vector b or
the transpose of a row vector b. That is, if we wish to be certain whether a vector
we are working with is a column vector, then we can use the colon operator in
this manner to force it to be so; the output of a = b(:) is a column vector for
any vector b.
Another interesting consequence of this use of the colon operator is the result

for a matrix b. The colon operator would return a column vector a consisting of
the rows of b stacked on top of each other. The reader is encouraged to try this,
and see the results. Additionally, what would we do if we wanted to force a to be
a row vector? Finally, what if we wished to make these script instead functions,
taking the number of points in the time vector as inputs? How would we modify
the code then? The advantage would be that all the variables from the function
would not become part of our workspace. Often, this is a disadvantage from a
debugging perspective, but is very nice to have in working code.
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% Program 10-1: sqrewn.m
% This program finds the response of a single
% degree of freedom system to a square wave input.
% The wave is assumed to begin at t=0, and lasts until
% t=to. The system mass is again assumed to be equal to 1.
%
npts=1000;
Fm=5;
zeta=0.05;
to=3;
tf=10;
t=linspace(0,tf,npts);
for i=1:3
wn(i)=input(’Enter a natural frequency. ’);
k(i)=sqrt(wn(i));
end
% Demonstrating another use of the colon operator.
% In this sense, wn(:) turns wn into a column
% vector if it was a row vector, and leaves it as
% a column vector if it was one already. Either
% way, we know the result will be a column vector wn.
wn=wn(:);
k=k(:);
%
% To use the logical operators, we need to create a vector
% that is one for t<to, and turn it into a matrix.
%
qtest=t<to;
qpiece=[qtest;qtest;qtest]; % 3-by-npts matrix.
% Now, we need a similar sized matrix for the force magnitude.
Fo=Fm*ones(3,npts); % 3-by-npts, again.
q=sqrt(1-zeta^2);
% In order to calculate the response in a vectorized manner,
% we’ll need a wn, k, and wd for each point in time and each
% different value. That can be done by multiplying the
% 3-by-1 matrices we get from our input and calculation
% by ones(1,npts).
%
wd=wn*q; % 3-by-1 matrix.
wnmat=wn*ones(1,npts);
wdmat=wd*ones(1,npts);
kmat=k*ones(1,npts);
phi=atan2(zeta,q);
A=Fm./kmat; % We need a stiffness for each force/time point.
tmat=[t;t;t]; % And a 3-by-npts time matrix.
x1=A.*(1-exp(-zeta*wnmat.*tmat).*cos(wdmat.*tmat-phi)/q);
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x2=A.*exp(-zeta*wnmat.*tmat).*(exp(zeta*wnmat.*to).*cos(wdmat.*(tmat-
to)-phi)-cos(wdmat.*tmat-phi))/q;
x=x1.*qpiece+x2.*(~qpiece); % “not”qpiece.
for l=1:3
subplot(3,1,l)
plot(t,x(l,:))
title([’Square Wave Response for wn=’, num2str(wn(l)), ...
’, to=’,num2str(to),’,and Fm=’, num2str(Fm)])
ylabel(’Response x’)
grid
end
xlabel(’Time, seconds’)
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%Program 10-2: sqrefm.m
%This program finds the response of a single
%degree of freedom system to a square wave input.
%The wave is assumed to begin at t=0, and lasts until
%t=to. The system mass is again assumed to be equal to 1.
%
npts=1000;
wn=11;
k=(wn)^2;
zeta=0.05;
to=3;
tf=10;
t=linspace(0,tf,npts);
for i=1:3
Fm(i)=input(’Enter a force magnitude. ’);
end
Fm=Fm(:); % See above.
% As with the step response example earlier,
% we can use MATLAB’s logical operators to
% create a piecewise function without resorting
% to a loop. This can be done with the
% statement: qtest=(t>t1)-(t>t2), when
% the square wave begins at t=t1 and ends at
% t=t2. For the case of t1=0, a simpler
% statement is valid:
qtest=(t<to);
Fo=Fm*ones(1,npts); % Since solution is piecewise, we need Fm throughout.
% This code demonstrates vectorization of this
% piecewise expression. We’ll be making use of
% the qtest vector above to tell the code when
% to activate each solution.
%
qpiece=[qtest;qtest;qtest]; % One row for each Fm value.
q=sqrt(1-zeta^2);
wd=wn*q;
phi=atan2(zeta,q);
A=Fo/k; % 3-by-npts matrix.
tmat=[t;t;t]; % Again, 3-by-npts.
x1=A.*(1-exp(-zeta*wn*tmat).*cos(wd*tmat-phi)/q); % Solution for t<to.
x2=A.*exp(-zeta*wn*tmat).*(exp(zeta*wn*to).*cos(wd*(tmat-to)-phi)-cos(wd*tmat-

phi))/q;
x=x1.*qpiece+x2.*(~qpiece); % ~is the “not”operator.
for l=1:3
subplot(3,1,l)
plot(t,x(l,:))
title([’Square Wave Response for wn=’, num2str(wn), ...
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’, to=’,num2str(to),’,and Fm=’, num2str(Fm(l))])

ylabel(’Response x’)

grid

end

xlabel(’Time, seconds’)
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% Program 10-3: sqrez.m
% This program finds the response of a single
% degree of freedom system to a square wave input.
% The wave is assumed to begin at t=0, and lasts until
% t=to. The system mass is again assumed to be equal to 1.
%
npts=1000;
wn=11;
k=(wn)^2;
Fm=7;
to=3;
tf=10;
t=linspace(0,tf,npts);
for i=1:3
zeta(i)=input(’Enter a damping ratio (zeta). ’);
end
zeta=zeta(:); % Once more.
% Again we will vectorize the code by using the logical operators
% on t and to. This time it will be somewhat easier, since the
% stiffness and force are scalar. We will need matrices for any
% quantities derived from the damping ratio, and for time.
%
qtest=t<to;
qpiece=ones(3,1)*qtest; % Another way to create the matrix.
tmat=ones(3,1)*t;
zmat=zeta*ones(1,npts); % 3-by-npts.
q=sqrt(1-zmat.^2); % 3-by-npts. Note the array square operator.
wd=wn*q; % wd is 3-by-npts.
phi=atan2(zmat,q); % MATLAB will handle this on an element-by-element

basis.
A=Fm/k; % Scalar.
x1=A*(1-exp(-zmat*wn.*tmat).*cos(wd.*tmat-phi)./q);
x2=A*exp(-zmat*wn.*tmat).*(exp(zmat*wn*to).*cos(wd.*(tmat-to)-phi)-cos(wd.*tmat-

phi))./q;
x=x1.*qpiece+x2.*(~qpiece);
for l=1:3
subplot(3,1,l)
plot(t,x(l,:))
title([’Square Wave Response for wn=’, num2str(wn), ...
’, to=’,num2str(to),’,and zeta=’, num2str(zeta(l))])
ylabel(’Response x’)
grid
end
xlabel(’Time, seconds’)
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Figure 11.1: Plot of responses for three different force magnitudes.
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Chapter 12

Response of SDOF System
to Ramp Input

Another common form of input encountered in real applications is the ramp
input. To examine the response of a single degree of freedom system to this sort
of input, we must again apply the convolution integral. Assuming that the load
is increased uniformly at a rate of fo per second and reaches its maximum at
time td, then the expression for the external force is:

F (t) =

 fot for 0 ≤ t < td,

fotd for t ≥ td.
(12.1)

Substituting the expression for F (t) into the convolution integral yields:

x(t) =


fo
mωd

e−ζωnt
∫ t
0
τeζωnτ sinωd(t− τ)dτ for 0 ≤ t < td,

fo
mωd

e−ζωnt
[∫ td
0
τeζωnτ sinωd(t− τ)dτ + td

∫ t
td
eζωnτ sinωd(t− τ)dτ

]
for t ≥ td.

(12.2)

This expression is best evaluated using MAPLE or a table of integrals.

x(t) =
fo
mωd

e−ζωnt
(

1(
ζ2ω2n + ω

2
d

)2){ωdeζωnt [tζ2ω2n + tω2d − 2ζωn]+ 2ζωnωd cos(ωdt)

+
(
ζ2ω2n − ω2d

)
sin (ωdt)

}
, 0 ≤ t < td,
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x(t) =
fo
mωd

e−ζωnt
(

1(
ζ2ω2n + ω

2
d

)2){ωdeζωnt [tζ2ω2n + tω2d − 2ζωn]+ 2ζωnωd cos(ωdt)

+
(
ζ2ω2n − ω2d

)
sin (ωdt)

}
+
fotd
k
− fotd

k
√
1− ζ2

e−ζωn(t−td) cos(ωd(t−td)−φ), t ≥ td.

(12.3)

Note that k represents the system stiffness. This solution is reflected in the
MATLAB code that follows. An important note about the solution for this
expression is that there is no equilibrium position, as seen for the step and
square wave responses, until after the input has levelled off. This is because the
constant that creates the new center point is the result of an integration that
does not start at zero, and no such integration exists in this solution until after
td.

From Figure 12.1, one would infer that the transition to the new equilibrium
of vibration is discontinuous, as it was in the step and square wave responses.
Notice how the response seems to be nonexistent for the first few seconds, until
the load is fully applied, and then begins oscillating, as in the step response.
So, at this point, it is reasonable to assume that the ramp response and step
response of a single degree of freedom system are similar.
However, Figure 12.2 shows that this is not the case. This figure only shows

the response during the transient loading period. Notice how the system is
oscillating during this period, around a constantly increasing equilibrium. That
is, if a line was drawn through the identical point on each period of the sinusoid,
the result would be a line of positive slope. This shows that the ramp response
does have a subtle difference from the step response; the ramp response has
less deflection at the point in time that the full load is applied than the step
response.
The Matlab code below follows the same general structure we have seen

previously. We vectorize the code, so that we apply Matlab’s strength (vector
math) to the problem, avoiding the slower loops. Note that both portions
of the piecewise solution for x(t) are multiplied by the same constant factor.
Thus, we initialize the variable a1 in Program 10-1 once. Also, we use vector
multiplication to construct two solution matrices over the entire time interval.
Finally, we make use of Matlab’s logical operators to assemble the full piecewise
solution.



91

% Program 11-1: rampfo.m
%This program solves the ramp response of a
%single degree of freedom system. The external
%force is assumed of the form F(t)=fo*t, and
%is assumed to last for te seconds, after which
%it levels off at F=fo*te until infinity.
%Again, a unit system mass is assumed.
npts=1000;
wn=5;
zeta=.05;
wd=wn*sqrt(1-zeta^2);
k=wn^2;
te=4;
for kr=1:3
fo(kr)=input(’Enter a force magnitude (fo). ’);
end
fo=fo(:); % Force fo to be a column vector.
tf=10;
t=linspace(0,tf,npts);
qtest1=t<te;
qtest2=t>te;
% This time, we need two conditional matrices.
amult1=[qtest1;qtest1;qtest1];
amult2=[qtest2;qtest2;qtest2];
% This constant is used for both parts.
a1=fo/(k*(zeta^2*wn^2+wd^2)^2);
% The solution for t<te.
num1=t*(zeta*wn)^2+t*wd^2-2*zeta*wn;
num2=exp(-zeta*wn*t).*(2*zeta*wd*wn*cos(wd*t)+ ...
((zeta*wn)^2-wd^2)*sin(wd*t));
x1=a1*(num1+num2); % (3-by-1)*(1-by-npts)=(3-by-npts).
% Now, the solution for t>te.
num3=te*(zeta*wn)^2+te*wd^2-2*zeta*wn;
num4=exp(-zeta*wn*te)*(2*zeta*wd*wn*cos(wd*te)+ ...
((zeta*wn)^2-wd^2)*sin(wd*te));
a=fo*te/k;
q=sqrt(1-zeta^2);
phi=atan2(zeta,q);
r=a/q*(1-exp(-zeta*wn*(t-te)).*cos(wd*(t-te)-phi));
s=a1*(num3+num4)*ones(1,npts); % num3 and num4 are scalars, so we

must vectorize this.
x2=r+s;
x=x1.*amult1+x2.*amult2; % This gives a matrix of three 1-by-npts solution

vectors.
for i=1:3
subplot(3,1,i)
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plot(t,x(i,:))
title([’Response for wn=’,num2str(wn),’, fo=’, ...
num2str(fo(i)),’zeta=’,num2str(zeta)])
ylabel(’Response x’)
grid
end
xlabel(’Time, seconds’)
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Figure 12.1: Response of a single degree of freedom system to different rates of
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Response of SDOF Systems
to Arbitrary Periodic Input

An arbitrary periodic input can be thought of as any periodic input that cannot
be expressed as a single sine or cosine function. For example, a sum of sines
and cosines is an arbitrary periodic input. The most straightforward method to
analyze the response to a periodic input is the Fourier series. A Fourier series
representation of an arbitrary periodic function can take the form:

F (t) =
ao
2
+

∞∑
n=1

(an cosnωT t+ bn sinnωT t) , (13.1)

where T is the period of the function, and ωT = 2π
T . The coeffi cients are obtained

by using the orthogonality properties of harmonic functions:

an =
2

T

∫ T

0

F (t) cosnωT tdt, n = 0, 1, 2, ...

bn =
2

T

∫ T

0

F (t) sinnωT tdt, n = 1, 2, ....

These coeffi cients can be easily evaluated using the well-known integrals:

∫ T

0

sinnωT t sinmωT tdt =

 0 if m 6= n,

T/2 if m = n,
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Figure 13.1: Sawtooth wave to be defined by a Fourier series. One period is
shown.
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∫ T

0

cosnωT t cosmωT tdt =

 0 if m 6= n,

T/2 if m = n,

∫ T

0

cosnωT t sinmωT tdt = 0.

Using these relationships, the evaluation of the Fourier coeffi cients will be-
come reasonable. As a demonstration, Figure 13.1 shows a plot of the sawtooth
wave for T = 5. The wave is defined by:

F (t) =

 4
T t− 1 for 0 ≤ t ≤ T

2 ,

1− 4
T

(
t− T

2

)
for T

2 ≤ t ≤ T.
(13.2)

The Fourier coeffi cients which define this function are a0 = 0,

bn =
2

T

{∫ T/2

0

(
4

T
t− 1

)
sinnωT t dt+

∫ T

T/2

[
1− 4

T

(
t− T

2

)]
sinnωT t dt

}
.

(13.3)

Using Maple, we find that this reduces to:

bn =
4 sin(nπ)− 2 sin(2nπ) + nπ cos(2nπ)

n2π2
− 1

nπ
,

where n is an integer, sin(nπ) = sin(2nπ) = 0, and cos(2nπ) = 1. Thus, we
obtain:

bn =
nπ

n2π2
− 1

nπ
= 0.

The only nonzero terms that describe this wave are the an terms:

an =
2

T

{∫ T/2

0

(
4

T
t− 1

)
cosnωT t dt+

∫ T

T/2

[
1− 4

T

(
t− T

2

)]
cosnωT t dt

}
,

or
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an =
4 cosnπ − 2 cos 2nπ − nπ sin 2nπ − 2

n2π2
. (13.4)

Note that since n is an integer, sin(2nπ) = 0 for all n. For even n, an = 0.
However, for odd n, an = −8/n2π2. Therefore,

F (t) = − 8
π2

[
cos

2π

T
t+

1

9
cos

6π

T
t+

1

25
cos

10π

T
t+ ...

]
. (13.5)

To evaluate this expression using Matlab, we would need to perform two
simple steps. First, we would need to find a point where the terms of the series
become negligible, to our desired level of accuracy. Then, we would need to
solve the vibrating system for each term of the infinite series and superpose
these results. This process is not compatible with Matlab; the program needed
to perform this would be too long. For this reason, no such program is included
here. The program below shows that a few terms of the infinite series can
provide a very close approximation to the total series.
This program is written as a function, taking as input the desired number of

terms in the Fourier series. The time span is presumed to be 5 seconds. In Figure
13.2, we plot the results for several numbers of terms to show the convergence.
To get different sawtooth waves, one would have to either change T (to get a
different period) or add a premultiplying factor (to change the amplitude). Such
improvements are left to the reader.
function [t,F]=foursaw(nterm)
% Program 1: foursaw.m
% This function returns the
% Fourier representation for
% a sawtooth wave having nterm
% number of nonzero Fourier coeffi cients,
% as well as a corresponding time
% vector (for ease in plotting).
%
t=linspace(0,5,500);
T=5; % Period of 5 seconds.
F=zeros(size(t));
if nterm<1
error(’Number of terms must be a positive integer!’)
end
for i=1:nterm
n=2*i-1; % Getting odd values only.
F=F+(-8/pi^2)*cos(2*pi*n/T*t)/n^2;
end
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Chapter 14

Free Vibration of MDOF
Systems

The simplest multi-degree of freedom system is, of course, the two degree of
freedom system, for which we will consider free vibration in this example. As-
sume that the system is as pictured in Figure 14.1. Note that we need two
coordinates to define this system’s motion. Applying Newton’s second law to
each mass results in two governing equations

m1
..
x1 + (k1 + k2)x1 − k2x2 = 0 (14.1)

m2
..
x2 − k2x1 + (k2 + k3)x2 = 0. (14.2)

The motion of the masses are coupled. To solve these equations, it would be
advantageous if we could find a coordinate system in which the equations were
not coupled. Then, the problem would reduce to two single degree of freedom

Figure 14.1: Typical two degree of freedom free oscillator.
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systems, which we have already solved. The procedure of decoupling can be
shown in matrix notation:

 m1 0

0 m2

 ..
x+

 k1 + k2 −k2
−k2 k2 + k3

 x = 0. (14.3)

where x =

 x1

x2

 , and
..
x =


..
x1
..
x2

 . Let us denote the matrix multiplying

..
x by M (the mass matrix) and the matrix multiplying x by K. The modal
analysis procedure may then be summarized as follows:
1. Find the eigenvalues and matrix of eigenvectors for the matrix K − λM .

Let this matrix of eigenvectors be U , and denote its columns (the eigenvectors)
by {u}i .

2. Normalize the eigenvectors with respect to the mass matrix through the
products {u}Ti M {u}i = 1, {u}Ti K {u}i = ω2i = λi, where ωi is the natural
frequency of mode i.
3. From the solution of the motion in the decoupled modal coordinates, we

arrive at:

x(t) =

2∑
i=1

{u}i
(
{u}Ti Mx(0) cosωit+

1

ωi
{u}Ti M

.
x(0) sinωit

)
(14.4)

The main benefit of this procedure (from a MATLAB standpoint) is that it is
easily extended to n degrees of freedom by changing the limit of the summation
in Equation 14.4 from 2 to n. Of course, we would also have n natural frequencies
and eigenvectors, but the procedures for finding them (i.e., solving the eigenvalue
problem) and normalizing the eigenvectors with respect to the mass matrix are
unchanged. The following program, modfree.m, is capable of solving n degree
of freedom free vibration through the modal analysis procedure outlined above.
The following five figures show the results of different masses, stiffnesses, and

initial conditions on the motion. Recall that this is free vibration; zero initial
conditions will lead to zero motion. For the first three figures, m1 = 1, m2 = 4,
k1 = k3 = 10, and k2 = 2. Since the masses and stiffnesses are not changing, the
natural frequencies for these cases will be identical: ω1 = 3.480, and ω2 = 1.700.
For Figure 14.2, the initial displacement of each degree of freedom is 1. Notice
how the second mode of vibration seems to show little evidence of the first
mode; it looks like a single sinusoid, instead of a sum of sinusoids. This is due
to the difference in mass between the two degrees of freedom; remember that
the second mass is four times the first.
As validation for this assertion, look at Figure 14.3. This figure has zero

initial velocity as well, but the initial displacements are now 3 and —2, respec-
tively. Again, the second mode is vibrating along a single sinusoid; since the
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mass ratio is unchanged, the mode behavior is as well. If we eliminated an initial
displacement from the second degree of freedom, we would expect the system
to vibrate in both modes, at least in the second degree of freedom. As Figure
14.4 shows, this is the case. Notice that the first mode only vibrates in one
frequency this time; this is because the displacement of the second mass and its
velocity are too small to impart any appreciable force on the first mass.
As a final proof of the effects of the mass on the mode shapes, look at Figure

14.5. This figure was created by interchanging the masses; the mass of 4 units
is in the first degree of freedom, and the mass of 1 unit is in the second. Notice
how the first mode shape is now a single sinusoid, and the second is a sum. A
peculiarity to this case is that the system is symmetric; that is, the response of
the first mode in Figure 14.2 matches that of the second mode in Figure 14.5,
and vice versa. This is due to the symmetric stiffness matrix. If we change the
value of either k1 or k3, the symmetric behavior would no longer exist.

Figure 14.6 shows the effects of adding an initial velocity to the system.
As expected from a single degree of freedom system, the initial velocity affects
the slope of the response curve at the starting point, but has no effect on the
qualitative aspects of the mode shapes, or on the natural frequencies. Also, the
maximum amplitude of vibration is increased for both modes.

Figure 14.7 shows the result of changing the mass matrix to m =

 3 0
0 9

 .
As a result, ω1 = 2.014, and ω2 = 1.131. These reduced natural frequencies are
reflected in the figure; when compared to Figure 14.2, the curves of Figure 14.7
have a lower frequency. The curves look a little more “spread out”than those
in Figure 14.2. However, the second mode shape is still a single sinusoid, not a
sum like the first shape. Note that both initial displacements were again 1.
Finally, Figure 14.8 shows the result of changing k1 and k3 to 1 unit, and

k2 to 3 units. The natural frequencies become ω1 = 2.150, and ω2 = 0.6154.
Again, the difference between Figure 14.2 and Figure 14.8 is readily apparent.
A peculiarity that develops is that the first mass’s vibration comes in more
distinct peaks; one peak reaches 1, and the next is about 0.7. In Figure 14.2,
the difference is 1 to less than 0.5.
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Program 13-1: modfree.m
% This code solves n-degree of freedom free
% vibration using the modal analysis techniques
% of Section 7.6.1.
%
clear;
M=input(’Enter the mass matrix: ’);
[n,o]=size(M);
if n~=o then
error(’M matrix must be square!’);
end
K=input(’Enter the stiffness matrix: ’);
[n,o]=size(K);
if n~=o then
error(’K matrix must be square!’);
end
qu=0;
[u,l]=eig(K,M);
% Using “eig”in this way allows us to subtract M*w^2
% from K, instead of I*w^2 (where I is the n by n identity
% matrix).
% The output from “eig”gives unit-length eigenvectors.
% We need to scale them with respect to M.
%
for s=1:n
alfa=sqrt(u(:,s)’*M*u(:,s));
u(:,s)=u(:,s)/alfa;
end
x0=input(’Enter the initial displacement column vector: ’);
xd0=input(’Enter the initial velocity column vector: ’);
tf=input(’Enter the final time: ’);
t=0:0.1:tf;
q=tf/0.1;
x=zeros(size(n,q));
% Applying Equation 7.183.
%
for j=1:n
w(j)=sqrt(l(j,j));
xt=u(:,j)*(u(:,j)’*M*x0*cos(w(j).*t)+u(:,j)’*M*xd0/...
w(j)*sin(w(j).*t));
x=x+xt;
end
% Plotting the modes in a subplot format.
% Note that, for more than 3 or 4 degrees
% of freedom, the plots will become nearly
% unreadable.
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%
for r=1:n
subplot(n,1,r)
plot(t,x(r,:))
xlabel(’Time, seconds’);
ylabel([’Response x’,num2str(r)]);
end
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Figure 14.2: Response to initial displacement vector of [1 1].
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Figure 14.3: Response after changing initial displacement to [3 —2].
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Figure 14.4: Response after changing initial displacement to [1 0].
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Figure 14.5: Response after interchanging system masses.
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Figure 14.6: Response with initial velocity [4 2] and initial displacement [1 1].
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Figure 14.7: Response with increased system masses.
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Figure 14.8: Response with reduced system stiffnesses.



Chapter 15

Damping of MDOF Systems

In the previous example, the free response of systems having more than one de-
gree of freedom was discussed. Now, viscous damping is added to the system, as
shown in Figure 15.1, and we will examine the changes caused by this addition.
The equations of motion become:

m1
..
x1 + (c1 + c2)

.
x1 − c2

.
x2 + (k2 + k1)x1 − k2x2 = 0 (15.1)

m2
..
x1 + c2

( .
x2 −

.
x1
)
+ k2 (x2 − x1) = 0. (15.2)

In matrix form, we obtain:

M
..
x+ C

.
x+Kx = 0,

where M =

 m1 0

0 m2

 , C =
 c1 + c2 −c2
−c2 c2

 , K =

 k1 + k2 −k2
−k2 k2

.

As we know, with damping present, there is no guarantee that the equations
will decouple by the procedure used earlier. However, for proportional damping,
i.e., C = CmM + CkK, it is possible to follow the previous decoupling proce-
dure. This is because both K and M are diagonalized through the matrix of
eigenvectors U . Thus, a scalar multiplied by M or K will also be diagonalized,
and the sum of two diagonal matrices is also diagonal.
While proportional damping is something of a savior for modal analysis, it

presents a headache when programming. The only way to assure decoupled
equations in a program is to specify Cm and Ck instead of entering the matrix
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C into the program, or to take the matrix C, go through the first two steps of
modal analysis with it, and then check it for diagonality. Both of these methods
have flaws; in the first case, the person using the program may not know Cm
and Ck at all, and they may be diffi cult to calculate. For the second algorithm,
the program may run through a significant amount of calculation to deduce that
the given data is invalid. This wastes time and effort, especially if the data is
invalid due to an error in entry of values. So, when programming, the most
effi cient way to handle damping is through the modal damping ratios (though
the program given below retains some flexibility by allowing entry of the modal
damping ratios or the factors Cm and Ck).
The modal damping ratios are simply an analogue for the damping ratios

we saw earlier in our study of single degree of freedom systems. They are called
modal damping ratios because they are applied independently to each modal
(decoupled) equation; the modal damping ratios are automatically decoupled.
Calling the modal damping ratios ζi, where i is the number of the mode being
examined, the equations of motion in the modal coordinates become:

..
qi + 2ζiωi

.
qi + ω

2
i qi = 0, i = 1, 2, . . . , (15.3)

where q is the modal coordinate variable, and ωi represent the natural frequen-
cies of each mode. This is the same as for the damped single degree of freedom
oscillator, whose solution was:

qi(t) = Aie
−ζiωit sin(ωdit+ φi), (15.4)

where ωdi is the damped natural frequency of that mode (ωi
√
1− ζ2i ), and

Ai =

[( .
qio + ζiωdiqio

)2
+ (qioωdi)

2

ω2di

]1/2
(15.5)

Figure 15.1: Two degree of freedom damped oscillator under consideration here.



115

φi = tan
−1 qioωdi

.
qio + ζiωdiqio

, (15.6)

noting that qio and
.
qiorefer to the initial displacement and velocity in the modal

coordinate, respectively. Having obtained the solution for q(t), we then use the
last step of the modal analysis procedure to find x(t). Note that this method
uses the entire modal analysis procedure as if damping did not exist, and then
adds in the damping when solving for qi(t). The program at the end of this
example, used to generate the figures that follow, demonstrates this approach.
Figures 15.2 through 15.4 use m1 = 9, m2 = 1, k1 = 24, k2 = 3, ζ1 = 0.05,

and ζ2 = 0.1. Figure 15.2 uses an initial displacement vector of x0 = [1 0], and
the results show the effect of the damping; the response gradually dies out. In
Figure 15.3, an initial velocity of [3 2] is added, and the result is no increase
in the transient period (as expected), but an increase in amplitude. Finally,
Figure 15.4 removes the velocity and changes the initial displacement to [2 1],
and the result is a greater amplitude, but the same length of transient period
as Figure 15.3. In all three figures, note that both responses show the effects of
multiple sinusoids, even though the first mass is much greater than the second.
This is because the first stiffness is very large; this stiffness keeps the mass from
gaining too much velocity, and so the smaller mass can effectively transfer its
momentum to the larger.
Finally, Figure 15.5 changes the damping ratios to ζ1 = 0.07 and ζ2 = 0.03.

The difference between this figure and Figure 15.2 is that here the responses have
a greater amplitude and a larger transient period, due to the smaller damping
ratios.
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Program 14-1: moddamp.m
% This code solves n-degree of freedom damped
% vibration using the modal analysis techniques
% of Section 7.6.3.
%
clear;
M=input(’Enter the mass matrix: ’);
[n,o]=size(M);
if n~=o
error(’M matrix must be square!’);
end
K=input(’Enter the stiffness matrix: ’);
[n,o]=size(K);
if n~=o
error(’K matrix must be square!’);
end
% Giving the option to input damping via
% modal damping ratios or through the multiplying
% factors Cm and Ck.
%
fprintf(’Press 1 to enter modal damping ratios, ’)
qz=input(’or anything else to enter Cm and Ck. ’);
if qz==1
for iz=1:n
zeta(iz)=input([’Enter the damping for mode ’,num2str(iz),’: ’]);
end
else
fprintf(’Given that [c]=Cm[M]+Ck[K], ’);
Cm=input(’Enter the factor Cm: ’);
Ck=input(’Enter the factor Ck: ’);
end
qu=0;
[u,l]=eig(K,M);
% Using “eig”in this way allows us to subtract M*w^2
% from K, instead of I*w^2 (where I is the n by n identity
% matrix).
% The output from “eig”gives unit-length eigenvectors.
% We need to scale them with respect to M.
%
for s=1:n
alfa=sqrt(u(:,s)’*M*u(:,s));
u(:,s)=u(:,s)/alfa;
end
x0=input(’Enter the initial displacement column vector: ’);
xd0=input(’Enter the initial velocity column vector: ’);
tf=input(’Enter the final time: ’);



117

t=0:0.1:tf; q=tf/0.1;
x=zeros(size(n,q));
for j=1:n
w(j)=sqrt(l(j,j));
% If modal damping ratios were entered, we already have
% a zeta vector. If not, we need to calculate from Cm
% and Ck.
%
if qz~=1
zeta(j)=0.5*(Cm/w(j)+Ck*w(j));
end
wd(j)=w(j)*sqrt(1-zeta(j)^2);
xt=u(:,j)*(u(:,j)’*M*x0*cos(w(j).*t)/sqrt(1-zeta(j)^2)+u(:,j)’*M*xd0/...
w(j)*sin(w(j).*t)/wd(j));
x=x+xt;
end
for i=1:n
x(i,:)=x(i,:).*exp(-zeta(i)*w(i).*t);
end
for r=1:n
subplot(n,1,r)
plot(t,x(r,:))
xlabel(’Time, seconds’);
ylabel([’Response x’,num2str(r)]);
end
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Figure 15.2: Damped response of a two degree of freedom system.
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Figure 15.3: Response of a damped 2-DOF oscillator after adding an initial
velocity.
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Figure 15.4: Response of the same system to a different initial displacement.
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Figure 15.5: Response of the 2-DOF system with different modal damping ratios.





Chapter 16

A Universal Vibration
Solver

The next logical step in this sequence of examples would now be to introduce
forcing functions of different types (as seen earlier with the single degree of
freedom cases), and create several different programs. While this method is
effective, it is not effi cient by any stretch of the imagination. The best way to
proceed from here would be to create a program that solves all vibration cases,
no matter what the forcing function or number of degrees of freedom.
The simplest way to go about this is to begin with a general program that

does not include the external force. Program 1, ndofold.m, demonstrates this
method. Some techniques used in this program demonstrate ways to make a
program modular. We need a general program to be as modular as possible
so that any changes that need to be made between runs of the program (like
changing the masses or the stiffnesses) can be done without editing the code.
The first major step in achieving this goal is the first line of the code. This line
assigns a variable to the number of degrees of freedom. This way, in any loops
or assignment statements made afterward, this variable can be referred to, and
can represent any number of degrees of freedom.
The next several lines initialize the variables needed later. This is done in

lieu of a clear statement, because the clear statement will remove some variable
that will be needed later. Additionally, not using the clear command has the
advantage of allowing the user to assign variable names to the desired mass,
stiffness, and other matrices. This way, when the program prompts for these
later, the user need only enter the variable name, not the entire matrix. If clear
is used, the matrices cannot be created beforehand. The trade-off in not using
clear is that MATLAB must be told how large the matrices are to be; if these
sizes are not specified, MATLAB will think the variables are to be the size that
they are already. If we are now solving a three degree of freedom problem,
and we had just previously solved a 2-DOF system, MATLAB will think the
mass matrix is to be 2 by 2. The fifth element entered would set off an error
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message. The command used fills each matrix with zeros; this is a harmless way
to initialize variables. Note how the variable n is used throughout this portion;
imagine the headache that would be involved if the program had not prompted
for n earlier. Each time an n appears, a change would have to be made to allow
a different number of degrees of freedom to be analyzed.
After the initialization section, the program prompts for each matrix that

will be needed. Having the necessary information, the program then solves the
system by modal analysis, and prints out the output. Note how each calculation
is done in loops that run from 1 to n. This maintains the generality of the
program, allowing the user to specify with the first input how large the matrices
will be. Notice also that the plots are put up one at a time. This is done
because there is no way to guarantee a subplot of any number of columns will
be readable. Imagine a forty degree of freedom system, and you will understand
why a subplot cannot be guaranteed. So, the pause command is implemented
after each plot to allow the user to examine each plot to his satisfaction and
to get a printout of the plot before the next one comes up (a printout can
be obtained from the graphics window in MATLAB for Windows only). The
program does not automatically print the graphs because they may be incorrect
or uninteresting, and to print them in such a case would be a waste of time and
paper. However, modifying the program to specify printing would take a few
seconds (replace pause with print in the code). Also, a loop could be created at
the beginning of the program to allow the user to specify whether output goes
to the screen only, to a file, to the printer, or to a combination of the three. A
sample of such a loop follows here:

%This loop allows the user to specify the nature of the output.
%Notice how the loop assumes that the user will enter the
%wrong response; this is to correct for any mistakes, and
%to thwart those who love to crash programs.
%Also, the program initializes the variable right before the loop
%to the value necessary to continue the loop.
outp=8;
while outp==8

fprintf(’Enter 1 to print to the screen only, 2 to print to a file, \n’)
outp=input(’or 3 to print to the printer. ’);

%Notice how the text was split across two lines by using
%the fprintf statement. This allows the text for input
%statements to be as long as needed.
%

if outp~=1&outp~=2&outp~=3
%Translation: “If outp isn’t equal to 1, 2, or 3.”
%“~”means “not”for a MATLAB logical statement,
%and the ampersand (&) is “and”, as usual.
%This is where we let the user know he’s made a mistake.

fprintf(’Enter 1, 2, or 3!!!’)
%Direct and to the point.
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%Now, outp is reset to the value needed to continue the
%loop, since we need the loop to continue.
%

outp=8;
end

end
%One “end”for the “if”, and one for the “for”.
%A common mistake is to leave one out, and then
%MATLAB tells you that it came to the end of the
%file in the middle of a loop. (Not a pleasant feeling.)

So, there’s the loop! It’s not long (without the comments), and it’s effective.
It can be expanded as much as necessary to allow for any combination of printing
options. One more thing: to get this to work, you need to put the following into
the printout loop (where the pause is now):

if outp==2
%“==”in MATLAB is “equals”to you and me.
print -dps file1.ps
elseif outp==3
print
elseif outp==1
pause
end

Note that if you type “else if”instead of “elseif”, MATLAB reads the “else
if”as a new if statement, needing its own end. Another common mistake.
Now, it’s just a matter of adding forcing functions to the mix. This task,

however, is nearly impossible to do in a general way with the algorithm selected.
So, we need to go back to the drawing board and find a simpler method. The
first thing to realize is that the differences among the several possible vibration
cases occur in solving the differential equations. Every problem in vibrations
begins as a set of second-order differential equations, possibly coupled, possibly
not. Fortunately, MATLAB has the ode45 command, which solves differential
equations numerically for a given time interval and initial conditions. Unfortu-
nately, this command requires that the differential equations exist in a function
M-file which defines the system of differential equations. Also, these differential
equations must be first-order.
The problem of order is really not a diffi culty at all; there is a method by

which a second-order differential equation can be transformed into a system of 2
first-order equations. However, unless a general M-file can be created, the user
would have to create his own function M-file each time, which would then be
used for ode45. So then where would be the use of a program?
The answer lies in automating the process of creating an M-file. MATLAB

has file transfer protocols, like any other programming language. We can write a
program that tells MATLAB to create a specific M-file from a general procedure
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we write into the program, and then solve the resulting system of differential
equations with ode45. Program 2, ndof.m, performs this task.

Again, the program begins by specifying the number of degrees of freedom
for the run. The necessary matrices are initialized, and the inputs are obtained.
After this, the program performs the first few steps of modal analysis, in order
to find the natural frequencies. We can do this because the natural frequencies
only depend on the mass and stiffness matrices; we know that these can be
decoupled.
The next set of commands are initiated if a damping ratio matrix was en-

tered. This loop changes the damping ratios into damping coeffi cients, by re-
versing the modal analysis procedure. This can be done because the damping
ratio vector that the user enters is related to the diagonal of the decoupled
damping coeffi cient matrix. Since this damping coeffi cient matrix is decoupled,
it can be transformed from the modal coordinate system (the decoupled coor-
dinate) back to the original coordinate system by applying the reverse of the
modal analysis procedure.
Now that the program has the original values of the mass, stiffness, and

damping coeffi cient matrices, the M-file can be created. The program first
opens the file with the fopen command. The strings in parentheses by the
command specify the filename, and the read/write privilege desired (‘w+’means
’write and overwrite,’which allows a user of this program to make several runs
in succession without erasing the M-file previously created; the previous M-file
is lost). The fopen command is set equal to a variable because the command
specifies an arbitrary number by which MATLAB identifies the file. The only
way to get this number is by setting fopen equal to a variable, so that this
number will be stored in an accessible place.
The reason that we need this identification number is shown by the fprintf

statements that follow the fopen command. Each statement begins with the
file identification number, so that MATLAB knows to write the text to the file
specified earlier, not to the screen. If the file identification number was not set
equal to a variable, we would have no way to access it, and no way to write to
the file.
Next, the functions defining the external forces on each degree of freedom

are entered individually. This is necessary because a text string entered into
a MATLAB variable is stored one character per matrix element. So, if all the
external forces were entered at once, there would be no way of telling how long
the force variable would be, or how many elements the matrix would have. The
method used in the program avoids these diffi culties.
Notice the use of the num2str command within the fprintf statements. This

command allows the value of a variable to be used in a text statement as text;
it is possible to use the value of a variable in an fprintf statement, but not as
text. Note that to use the num2str command, the text to be printed must be
within brackets as well as parentheses; this is because, if the brackets are not
included, MATLAB thinks the statement ends when the quotes are closed, and
will produce an error instead of including the desired value of the variable.
Finally, the program uses an fclose statement to tell MATLAB that nothing
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else is to be entered into the file. This is set equal to a variable, because
MATLAB indicates a successful write transfer through the fclose statement;
a user can tell if the file was written successfully by seeing the value of this
variable.
Now, the program takes initial values necessary for ode45, and solves. The

plots come printed individually; a print loop similar to the one described above
can be inserted into this code to allow printing to a printer or to files.
Figures 16.1 and 16.2 show the results of using ndof.m. Each figure represents

a degree of freedom of the system, whose parameters are as follows: m1 = 9,
m2 = 1, c1 = 2.7, c2 = 0.3, k1 = 27, k2 = 3, F1 = 0, F2 = 3 cos 2t. Notice how
each degree of freedom shows the transient response over the first two seconds,
and then settles into a steady-state response based on the single forcing function.
The natural frequencies calculated by the program are ω1 = 1.41 and ω2 = 2.00,
which match those calculated by hand. Also, the responses of each mode are
found through manual calculation to be:

x1(t) = 0.2451 cos(2t+ 0.1974)− 0.6249 sin(2t) (16.1)

x2(t) = 0.7354 cos(2t+ 0.1974) + 1.8749 sin(2t). (16.2)

Looking at the maximum magnitudes of the responses shown in Figures 16.1
and 16.2, we see that they are approximately equal to the sum of the coeffi cients
of the sine and cosine terms in the expression above, as we would expect. So,
from this example, we see the power of the program and, more importantly,
verify that the program works.
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Program 16-1: ndofold.m
%This program calculates the damped response of
%multi-degree of freedom systems without external forcing.
%The user must enter the modal damping ratios; no other
%method of describing damping is supported.
n=input(’How many degrees of freedom are present? ’);
m=zeros(n,n);
k=zeros(n,n);
s=zeros(n,n);
p=zeros(n,n);
l=zeros(n,n);
ac=zeros(1,n);
phi=zeros(1,n);
m=input(’Enter the mass matrix. ’);
ko=input(’Enter the stiffness matrix. ’);
zeta=input(’Enter the damping ratio (zeta) matrix. ’);
x0=input(’Enter the initial displacements. ’);
xp0=input(’Enter the initial velocities. ’);
ti=input(’Enter the initial time. ’);
tf=input(’Enter the final time. ’);
t=ti:(tf-ti)/1000;tf;
[b1,b2]=size(t);
x=zeros(n,b2);
r=zeros(n,b2);
a=m^(-1/2);
kt=a*ko*a;
[p,l]=eig(kt);
s=a*p;
si=inv(s);
r0=zeros(n,1);
rp0=zeros(n,1);
r0=si*x0’;
rp0=si*xp0’;
w=sqrt(l);
wd=zeros(size(w));
for k=1:n

wd(k,k)=w(k,k)*sqrt(1-zeta(k)^2);
end
%Note that the same loop control variable can be used for
%every loop, so long as the loops are not nested within
%each other.
for k=1:n

ac(k)=sqrt(wd(k,k)^2*r0(k)^2+(rp0(k)+zeta(k)*w(k,k)*r0(k))^2)/wd(k,k);
phi(k)=atan2(wd(k,k)*r0(k),(rp0(k)+zeta(k)*w(k,k)*r0(k)));
r(k,:)=ac(k)*exp(-zeta(k)*w(k,k)*t).*sin(wd(k,k)*t+phi(k));

end
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x=s*r;
clg
for k=1:n

plot(t,x(k,:))
o=num2str(k);
title([’Response x’,o])
xlabel(’Time, seconds’)
ylabel(’Displacement’)
grid
figure(gcf)
pause

end
for k=1:n

fprintf(’Natural frequency w%g=%g \n’,k,w(k,k))
end
Program 16-2: ndof.m
%This program, as stated above, writes its own
%M-file to use in ode45. This algorithm allows
%any external force combination to be examined,
%and also allows the external force to be
%a user-defined function.
n=input(’How many degrees of freedom are present? ’);
x=zeros(1,2*n);
ct=zeros(n,n);
m=input(’Enter the mass matrix. ’);
aw=2;
while aw==2

fprintf(’Press 0 to enter a damping coeffi cient matrix, or’)
aw=input(’press 1 to enter a damping ratio (zeta) matrix. ’);
if aw==0

c=input(’Enter the damping coeffi cient matrix. ’);
elseif aw==1

zeta=input(’Enter the damping ratio matrix. ’);
else

fprintf(’Please enter 0 or 1.’)
aw=2;

end
end
k=input(’Enter the stiffness matrix. ’);
a=m^(-0.5);
kt=a*k*a;
[p,q]=eig(kt);
omega=sqrt(q);
if aw==1

for zt=1:n
ct(zt,zt)=zeta(zt)*2*omega(zt,zt);



130 CHAPTER 16 A UNIVERSAL VIBRATION SOLVER

end
af=a^(-1);
c=af*ct*af;

end
fid=fopen(’pdx.m’, ’w+’);
fprintf(fid,’function pdx=pdx(t,x)\n’);
for i=1:n

fprintf(fid,[’pdx(’,num2str(i), ’)=(-(’]);
for j=1:n

if k(i,j)==0
else

fprintf(fid,[’(’,num2str(k(i,j)),’)*x(’,num2str(j+n),’)’]);
end
if c(i,j)==0
else

fprintf(fid,[’+(’,num2str(c(i,j)),’)*x(’,num2str(j),’)’]);
end

end
f=input([’Enter F’,num2str(i), ’(t) in quotes, like ‘3*cos(2*t)‘. ’]);
fprintf(fid,[’)+(’,num2str(f),’))/(’,num2str(m(i,i)),’);\n’]);

end
for i2=1:n

fprintf(fid,[’pdx(’,num2str(i2+n),’)=x(’,num2str(i2),’);\n’]);
end
status=fclose(fid);
v0=input(’Enter the initial velocities as a row vector. ’);
x0=input(’Enter the initial displacements as a row vector. ’);
ti=input(’What is your initial time? ’);
tf=input(’What is your final time? ’);
init=[v0,x0];
[t,ny]=ode45(’pdx’,ti,tf,init);
for kl=1:n

plot(t,ny(:,kl+n),’b’);
title([’Response x’,num2str(kl)]);
xlabel(’Time, seconds’);
ylabel(’Displacement, m’);
grid
figure(gcf)
pause

end
for l=1:n

fprintf(’Natural frequency w%g=%g. \n’,l,omega(l,l))
end
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Figure 16.1: Response of the first mode.
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Figure 16.2: Response of the second mode.



Chapter 17

Modeling a van der Pol
Oscillator

The next several examples will examine how we can use Matlab to solve for
more real-world vibratory systems. The first such system we will look at is
the oscillatory motion of a structure surrounded by a fluid. Examples of such
structures include the support pylons of offshore oil platforms and antennae
attached to the exterior surfaces of aircraft. These structures exhibit vibratory
motion due to the creation of vortices in the fluid by viscous interaction between
the structure and the particles comprising the fluid. Several investigators have
applied the van der Pol equation,

ẍ+ e
(
x2 − 1

)
ẋ+ x = 0, e > 0 (17.1)

as a model for the motion of such a structure. Note that this equation, given
the positive parameter e, exhibits the usual form of damping when |x| < 1. How-
ever, when |x| > 1, the term multiplying ẋ will become negative. If we were to
solve for ẍ, then, the damping term would add energy to the system, instead
of removing it. This negative damping approximates some of the phenomena
observed in such fluid-structure interactions, and so is an attractive (and nec-
essary) feature of the model. (The text gives a brief discussion of this problem
as well, in Section 2.4.2.)
We will demonstrate how we can use Matlab to help us visualize the solution

to such a problem. First, we must solve the nonlinear ordinary differential
equation given above. Unfortunately, we will not be able to arrive at an analytic
solution, as we did with several of the earlier problems we examined. What
we will be forced to do, then, is to integrate the equation analytically over a
particular time interval.
At first glance, it appears that we should be able to use a program like

the general solver in the previous example. This impression is correct, but to
use such a program would be wasteful. Why would we use a program that
was designed for a general case, having many varied inputs, when the only
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parameters we will have to use here are the parameter e, the initial conditions,
and the time step?
The trouble then becomes, how are we going to allow the parameter e to

be dynamically assigned to the function in question? Our answer will come
from Matlab’s global variable capability. We will also define our van der Pol
oscillator solver as a function, so we can demonstrate another useful technique
to generalize Matlab functions. We will make e_g into a global variable, so that
it can be passed freely between the main function and the function evaluating
the van der Pol equation. (We will explain why we do not simply make e into
a global variable in a moment.) This is illustrated in the code below; Program
1 is the main function, and Program 2 is the function used by ode45 to solve
the equation. We also introduce the nargin statement with this program. This
command reads the input to the function, evaluating how many input arguments
have been passed into it (you can think of it as Number of ARGuments INput).
We define the function to take three inputs, but by using nargin, we allow as
few as zero inputs to be passed to the function, providing default values for
each input parameter. This allows our function to be quite flexible; if we’re
only interested in looking at the effects of changing the parameter e, we need
not remember to pass in the same initial conditions and time span. We can use
the default values provided by the function in each case.
To assign these default values, we test the value of nargin three times. If

this value is zero, the three if statements provide all of the default input data.
If it is one, the function uses the default values for the initial state and the time
span. If the number of arguments is two, the function uses only the default time
span. (Experienced C programmers may be wondering why we chose three if
statements instead of a switch statement. The reader is invited to recast the
nargin processing portion of this program to use the switch operator, and see
how the program changes.)
Our trick to make this function work is to declare the parameter e_g as

global. Note that there are two global statements in the programs below;
one at the start of the main function, and one at the beginning of the function
used by ode45. Also note that there are no semicolons at the end of these
statements; there is no output to suppress, so semicolons are unnecessary. We
are then able to use e_g in the subfunction as if it was assigned there, and not in
the parent function, after initializing e_g to the value of e. This construction is
needed because the function to be evaluated by ode45 must be a function of the
state and the time; adding in an extraneous third parameter will lead to errors.
We could define every variable we use as global, but that would uneccessarily
clutter the workspace with variables, and is considered poor technique. Global
variables should be used with caution, as they allow parameters inside of a
function to be changed transparently (for example, we could write Program 2
to adjust the value of e, effectively defeating the input value). The benefit of
creating this van der Pol solver as a function is that the only variables created in
the workspace are the outputs t and x; not even the global variable e_g remains
in the workspace after function termination.
Now, why did we go to the trouble of introducing a spare parameter e_g to



135

be our global variable? The answer comes from how Matlab handles its global
variables. If you were to change e_g to e in the given code, you would find
no trouble for the default case (no input arguments). However, if you called
the function with a specific value of e, Matlab would print a warning statement
saying that the value of your local variable (e) “may have been changed to
match the global.” This is because Matlab sees the variable e that is input to
the function as a variable local to the function, and then sees the same variable
declared as global later. Since the tail end of the warning includes the ominous
statement “Future versions of Matlab will require that you declare a variable to
be global before you use that variable,” this author thinks it prudent to write
his code in a way that will be forward-compatible, where possible. That means
that our global variables will not be used before they are declared. In general,
we will set apart our global variables with a trailing “g,” like in the program
below. The curious reader is encouraged to rewrite the code to use e as a global
parameter, generating the Matlab warning.
The two figures below show some results for the default case (as defined

in Program 1). Figure 17.1 shows a simple comparison of displacement versus
time; we see oscillatory behavior. The other two figures that follow are phase
diagrams1 , which are plots with the velocity on the y-axis and displacement on
the x-axis. These diagrams are often used in studies of nonlinear and chaotic
systems, since they can clearly show the effects of initial conditions on the
response.
The key feature of Figure 17.2 is the closed loop. Note that the initial lo-

cation is denoted by a circle, and the final state by a triangle. The closed loop
means that the van der Pol system eventually settled down into oscillatory be-
havior. We can prove to ourselves that a closed loop in phase space corresponds
to an oscillating response by considering the function x = sin (t) . If we take
this (obviously oscillating) function as our displacement, then the velocity is
described by y = cos (t) . If we were to plot this result in phase space, we would
arrive at a circle; these functions x (t) , y (t) are parametric equations for a circle.
The van der Pol oscillator’s loop is not precisely circular, so it is not periodic
in the same regular way as the sine or cosine function. However, it will repeat
the same sets of positions and velocities.
Figure 17.3 is the same default system with different initial conditions;

we used the command [t, x] = solvevdp (0.5, [−1, 5]) . Again, this initial point
([−1, 5]) is denoted by a circle, and the final point by a triangle. Note that, in
spite of the different initial conditions, the motion settles into the same limit
cycle. Thus, the limit cycle is determined by the parameter e, and not by the
initial conditions. This limit cycle behavior is similar to a phenomenon seen in
the vibration of structures in a moving fluid; thus, several investigators have
used the van der Pol equation to describe these systems. The reader is encour-
aged to try different initial conditions to see that the limit cycle is indeed a
universal of the system.2

1Also called phase portraits by some authors.
2However, changing the parameter e will certainly change the form of the limit cycle in
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function [t,x]=solvevdp(e,x0,tspan)
% Program 1: solvevdp.m
% This function takes in a value for e in the
% van der Pol oscillator expression,
% x”+e(x^2-1)x’+x=0, where primes denote
% differentiation in time. The function
% will automatically assume x(0)=1, x’(0)=0
% and a thirty-second time interval (tspan=[0 30])
% if these values are not provided. Also, a
% value of e=0.5 is assumed if none is given.
global e_g
if nargin<1 e=0.5; end % An “if”statement on a single line.
if nargin<2 x0=[1 0]; end
if nargin<3 tspan=[0 30]; end
e_g=e;
%
% Off to the ode solver.
%
[t,x]=ode45(’dxvdp’,tspan,x0);
function dx=dxvdp(t,x);

global e_g
% Program 2: dxvdp.m
% This is the function called on by ode45 to provide the
% derivative of our state vector x. We need to set up the
% second-order differential equation as a system of two
% first-order equations. Our state vector x consists of
% the variable x and its time derivative.
%
dx(1,1)=x(2);
dx(2,1)=-(e_g*(x(1)^2-1)*x(2)+x(1));

phase space.
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Chapter 18

Random Vibration and
Matlab

The focus in the text is probabilistic modeling of forces in vibrating systems.
Our aim here is to show how Matlab can be used as an aid in modeling random
processes, and thus in visualizing the response of systems subjected to random
forcing.1 The logical starting point for this effort is to show how we can create
random forcing histories to apply to a deterministic model. Unlike the problems
posed in the text, we will not be looking for the response statistics at this time;
instead, we will arrive at sample response realizations, which we will later use to
arrive at the response statistics numerically, contrasting the analytic approach
taken in the chapter.
To illustrate some of the challenges associated with a random forcing input,

let us look at a sinusoidal forcing input of the form F (t) = A cos (ωt) . We first
need to determine how we will introduce randomness to this system. That is,
will we apply a random force amplitude, a random frequency, or both? If we are
modeling a given physical system, we will find that this question often answers
itself. For example, we may have derived the power spectral density of a typical
input to our system, and found that the vast majority of the energy input to
the system comes at one particular frequency. For this case, we could then (as
a first approximation) treat the forcing frequency as deterministic, and use a
random distribution for the amplitude.2

Having determined the parameter we will consider to be random, we need to
arrive at a probability density function for our this parameter. That is, will we
use a uniform distribution, a Gaussian distribution, or some other description?
Before we decide this, let us have a look at the distributions available inside
Matlab.

1Following the example of the textbook, we will limit ourselves mainly to random forcing
of deterministic systems.

2 In general, we would also have a random phase angle associated with this forcing. We
omit the phase angle here for simplicity of analysis.
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The uniform and Gaussian distributions are built into Matlab through the
rand and randn commands, respectively.3 Typing a=rand(n) at the Matlab
prompt will return an n × n array of randomly-generated numbers in a, using
a uniform distribution on the interval [0.0,1.0]. The randn command returns
a random number from a Gaussian distribution having a mean of zero and
standard deviation of one. Note that Matlab’s random numbers are actually
“pseudo-random”; that is, they depend on an initial state vector. For some
applications, we will want to compare the results of several different systems to
a random loading. For instances like this, we can use the state of the random
number generator to subject each comparison case to the same realization of the
random loading process. If we want to ensure that we get a different realization
each time, we can use the suggestion available in the Matlab help for rand,
and initialize the state to sum(100*clock). This will reset the random number
generator based on the current time.4 Both methods are useful for different
cases. Any other probability distributions would have to be derived from the
two described above or created from scratch by the user.
Following the lead of Section 4.8, let us look at the system described by

ẍ+ 2ζωnẋ+ ω
2
nx = F (t) (18.1)

where we will take F (t) to be the sinusoid above having random amplitude
A (t) . It will be convenient for us to apply the condition of ergodicity to this
system. Thus, we will solve for the steady-state response only, neglecting the
transient response. (This also eliminates the need to specify initial conditions.)
We can solve for the steady-state response in two ways using Matlab. We can
use the results of the analysis we did earlier, giving an analytic solution, or we
can use the numerical integration routines. We’ll do the latter in this case, to
show how we can transport the amplitude values back and forth where they are
needed, and to show how we can handle the discrete datapoint set.
Again, we use the nargin function to allow any number of input parameters

from zero to the maximum of five. Recall from the last example that we used less
than statements instead of a switch expression to define parameters. This is
because expression cases of a switch in Matlab do not require a break statement
to end each expression set, unlike the C analogue. Thus, we cannot allow cases
for lower numbers of input arguments to “fall through”to higher numbers, like
we could in C. We also set the length of the amplitude vector A to be the
same as the length of the tspan vector, or 1000 elements if the input tspan is
shorter. We do this to make interpolation of A based on values of t simpler.
When Matlab integrates our differential equation, the values of t that it will test
are not necessarily the same as the values in tspan. Thus, we will interpolate
linearly between neighboring values of A corresponding to the two elements

3There also exist three other commands, two of which produce sparse matrices, while the
third gives a vector with a random permutation of the first n integers. These are not useful
to us here.

4Specifically, the clock command returns a six-element vector, containing the current year,
month, day, hour, minute, and second.
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of tspan that surround the current time value t.5 In order to ensure that the
amplitude is always greater than zero, we multiply each element of A by its
sign. This leads to a distribution that is not rigorously Gaussian. We could
improve our odds of not getting negative values for A by changing the standard
deviation such that 3σ in each direction is positive. The coding for this is left
to the reader. The error expression in the default (otherwise) case of our
switch expression will print the message in quotes to the screen, informing the
user of the function that the allowed values of the flag are zero and one.
We are confronted with one more problem if we wish to use the differential

equation solver. That is, how do we remove the transient response? It is not as
simple as setting the initial conditions to zero, of course, since the position and
velocity imparted by the forcing function at time zero are not necessarily zero.
What we must do is solve the differential equation at time t = t0, and then
substitute into the relation the values of the forcing and the forced response at
that time, to solve for the initial position and velocity required to match the
forced response. Recall our earlier analysis, showing that x (t) = xp (t)+xh (t) ,
where:

xh(t) = Ahe
−ζωt sin(ωdt+ θ), (18.2)

and
xp(t) = A0 (t) cos(ωt− φ), (18.3)

where we found that the constants A0 and φ are:

A0 =
A (t)√

(ω2n − ω2) + (2ζωnω)
2
, φ = tan−1

2ζωnω

ω2n − ω2
. (18.4)

We need to specify the initial conditions x (t0) and ẋ (t0) so that we can have
Ah = 0, eliminating the transient response xh (t) . This is as straightforward as
specifying x (t0) = xp (t0) and ẋ (t0) = ẋp (t0) , or:

x (t0) = A0 (t0) cos (ωt0 − φ)
ẋ (t0) = −ωA0 (t0) sin (ωt0 − φ) . (18.5)

This is easily coded into Matlab, using the initial value of the force amplitude
in the random array A. We neglect the time derivative of the randomly-varying
amplitude A as a first approximation. Figure 18.1 is the displacement versus
time curve for the oscillation. The oscillation remains periodic even with the
random forcing amplitude, albeit with an irregular amplitude. The force ampli-
tude is shown in Figure 18.2. The plot only shows the first five seconds to give
a flavor for the variations in the force.

function [t,x,A]=randamp(tspan,wn,zeta,distflag,omega);
% Program 1: randamp.m
% This program solves a single degree

5This is a coarse approximation, to be sure, but has the benefit of being simple to imple-
ment. The reader is welcome to devise other refinements.
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% of freedom oscillator given an
% input of the form F(t)=Acos(omega*t+phi),
% where A is a random variable.
% distflag should be zero for uniform,
% and 1 for Gaussian distribution.
%
global A_g tspan_g zeta_g wn_g omega_g phi_g % needed by the ode

definition.
if nargin<1 tspan=linspace(0,30,1000); end
if nargin<2 wn=1; end
if nargin<3 zeta=0.05; end
if nargin<4 distflag=0; end
if nargin<5 omega=3.5; end
%
% Assigning global values.
%
tspan_g=tspan; zeta_g=zeta;
wn_g=wn; omega_g=omega; phi_g=0; % Zero phase angle.
% Since we’ve got to have an amplitude for each
% time step (ease of interpolation), we need to be specific
% about how many time steps we’ve been given. We’ll say that if
% tspan has fewer than 1000 elements, then we make
% it a 1000-element vector.
m=max(size(tspan));
if m<1000
tspan=linspace(t(1),t(m),1000);
end
%
% Now, we define the amplitude A, between 0 and 5 for
% the uniform distribution, and as a distribution with
% mean of 2.5 for the Gaussian. We will force A>=0,
% so the Gaussian distribution will need a little
% bit of tweaking (and it won’t be rigorously Gaussian).
%
switch distflag
case 0
A=5*rand(size(tspan)); % A now has a range from 0 to 5.
case 1
A=2.5+randn(size(tspan)); % One standard deviation will span [1.5,3.5].
A=A.*sign(A); % Multiplying A by the signum function of itself.
otherwise
error(’Distribution flag must be zero or one.’);
end
%
% Next, we define the initial conditions to remove transients.
%
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phi=atan(2*zeta*omega*wn/(wn^2-omega^2));
x0=A(1)*cos(omega*tspan(1)-phi);
xd0=-A(1)*omega*sin(omega*tspan(1)-phi);
xv0=[x0,xd0];
%
% Storing A in the global value.
%
A_g=A;
%
% Now we’re ready to solve the ODE.
%
[t,x]=ode45(’randdx’,tspan,xv0);
function dx=randdx(t,x)
%
% Program 2: randdx.m
% Differential equation definition for
% the randomly-varied amplitude case.
%
global A_g tspan_g zeta_g wn_g omega_g phi_g % Need these for the

interpolation.
At=interp1(tspan_g,A_g,t); % Finding the correct value of A.
% interp1 is a built-in function.
%
dx(1,1)=x(2,1);
dx(2,1)=At*cos(omega*t-phi)-(2*zeta*wn*x(2,1)+wn^2*x(1,1));
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Figure 18.1: Displacement versus time plot for the random Duffi ng oscillator.
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Figure 18.2: Amplitude versus time curve for five seconds, to show variations.





Chapter 19

Randomly-Excited Duffi ng
Oscillator

This example expands on some of the ideas of the previous, in that now we will
apply a random forcing input to a nonlinear oscillator. We could call upon the
van der Pol oscillator of a few examples ago, but instead we will introduce the
Duffi ng equation:

ẍ+ cẋ+ kx+ εg (x) = A cosωt (19.1)

where the parameters c and k are assumed to be positive, and |ε| � 1. Note that
ε is not restricted to solely positive nor negative values. This equation allows
us to choose the parameter ε and the function g (x) to model nearly-linear
springs, for example. Also, this equation retains some attractive quasi-linear
qualities. Specifically, if we set A = 0 and c = 0, we would expect roughly
oscillatory motion for small amplitudes x, and that if we further introduce a
small damping coeffi cient c, these small-amplitude oscillations would reduce to
zero. If we assume a function g (x) such that sgn(g (x)) = sgn(x), then the
sign of the parameter ε determines the character of the stiffness element being
modeled.1 If ε < 0, then we see that the restoring force will be smaller in
extension, and arrive at a soft spring. Conversely, if we take ε > 0, the spring
gains stiffness in extension over the purely linear case, and is called a hard
spring.
Of course, we are not limited to the class of functions g (x) described above.

For example, if we choose the parameter ε > 0 and select g (x) = −x2, we then
get a net restoring force kx + εg (x) that is negative for x < 0 and positive
for x > 0. In other words, the spring will be soft in extension but hard in
compression, meaning that the center of oscillation (equilibrium point) will be
shifted slightly away from zero, where the magnitude of the shift depends on
the relative values of k and ε.

1Recall from an earlier example that sgn(x) is the signum function, which returns −1 if x
is negative, 1 if x is positive, and 0 if x is zero.
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Let us use the Duffi ng oscillator as a model for response to a harmonic input.
Programs 1 and 2 below use the differential equation solver suite inside Matlab
to calculate a numerical solution to a Duffi ng equation, given the input values
of c, k, ε, A, and ω. The function uses g (x) = −x2; this can be readily changed
by editing the differential equation definition function (Program 2). Also, the
time span and initial conditions are fixed inside the code, to keep the number
of inputs manageable. Program 1 can be quickly edited to take a different time
increment or initial conditions, or to take them as function inputs. Figure shows
the results of the hard-coded default case.
Having arrived at a solution for the Duffi ng equation, our next step is to

introduce a random forcing function. Unlike the previous example (and in
preparation for the next) we will select a random forcing frequency and am-
plitude, which will remain constant for the duration of the oscillation. If we
design this function properly, we will not need to write a new program to pro-
vide the differential equation; we will send the same set of global variables. This
implementation is given in Program 3 below. Again, we leave the time interval
and initial conditions defined within the function. (The reader is encouraged to
rewrite the function to take the time increment, initial conditions, or both as
inputs, providing default values via nargin.) We use the uniform distribution
generator inside Matlab to provide a forcing amplitude between zero and 5, and
a forcing frequency between zero and 2π. Note that the function returns four
arrays: the time vector t, the state vector x, the random amplitude A, and
the random frequency w. This is for ease of comparison between runs, and also
makes for a useful check on our random solution. Knowing the values of A and
w used by the code, we can run our deterministic solver (Program 1) using the
default values for e, c and k, and the random values for A and w. The results
for a few default runs are plotted below, along with the random frequency and
amplitude used. Of special note is the third run in Figure 19.3. It happened
that we got lucky (or unlucky, depending on the point of view) on this run, and
got a random forcing frequency very close to the system’s natural frequency
of one. Hence, we see a nearly-resonant condition in this undamped oscillator.
The phase diagram in Figure 19.4 corresponds to this run. The response traces
out arcs in the phase plane that are circular, but by no means closed. Exam-
ining the plot point by point shows that the oscillation travels back and forth
through the phase plane, meaning that the mean point of the oscillation does
not move one way or the other; it is stationary at zero. The interested reader
is encouraged to look at this behavior for himself. A simple way to accomplish
this is to run the Duffi ng oscillator function with the given parameters, and then
type the following at the Matlab prompt:

for i=1:max(size(x))
plot(x(i,1),x(i,2),’o’)
hold on
pause
end

Matlab will execute this loop as if it was inside a function or script, and you
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will be able to track the movement in the phase plane.2

function [t,x]=simpduff(e,c,k,A,w)
% Program 1: simpduff.m
% Function to set up and implement the ode45
% solution of a Duffi ng oscillator. The
% time increment is hard-coded to be
% [0,30], and the initial conditions
% set to [0,0].
%
global c_g k_g e_g A_g w_g % Will be used in ode solution.
tspan=[0 30];
xinit=[0 0]’;
% The customary nargin check.
if nargin<1 e=0.01; end
if nargin<2 c=0.05; end
if nargin<3 k=1; end
if nargin<4 A=3; end
if nargin<5 w=2.7; end % w chosen to prevent resonance.
[t,x]=ode45(’duffdx’,tspan,xinit);
function dx=duffdx(t,x)
% Program 2: duffdx.m
% Function to return the updated state
% vector for a Duffi ng oscillator.
%
global c_g k_g e_g A_g w_g
g=-x(1,1)^2; % Explicitly stating g(x).
dx(1,1)=x(2,1);
dx(2,1)=A_g*cos(w_g*t)-(c_g*x(2,1)+k_g*x(1,1)+e_g*g);
% Since we stated g(x) above, the equation for x”
% looks like the Duffi ng equation. Also, we need
% only change that one line of code above to use
% a different function g(x).
function [t,x,A,w]=randduff(e,c,k)
%
% Program 3: randduff.m
% This function provides random force amplitude
% and frequency to a Duffi ng oscillator. Both values
% are taken from a uniform distribution.
%
global e_g c_g k_g A_g w_g % Tagging these with “_g”for consistency.
tspan=[0 30];
xinit=[0 0]’;
if nargin<1 e=0.01; end
if nargin<2 c=0.05; end

2You may also have to sit through many pauses; the x array we computed was 2-by-457.
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if nargin<3 k=1; end
rand(’state’,sum(clock*100)); % Resetting random generator state.
A=5*rand(1);
w=2*pi*rand(1);
e_g=e; c_g=c; k_g=k; A_g=A; w_g=w;
[t,x]=ode45(’duffdx’,tspan,xinit);
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Figure 19.1: Response of the randomly-excited Duffi ng oscillator with ω =
3.7960 and A = 3.7999.
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Figure 19.2: Response of the Duffi ng oscillator to amplitude A = 4.4531 and
forcing frequency ω = 1.7404.
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Figure 19.3: Response to A = 1.0062 and ω = 1.0115.
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Chapter 20

Monte Carlo Simulation of
a Random System

In the previous example, we looked at a system under random excitation, where
we modeled the amplitude of a harmonic input force as a time-varying ran-
dom process, using a normal or uniform distribution. Consider now a related
problem, where we again have a harmonically-excited single degree of freedom
oscillating system, where the excitation is of the form:

F (t) = A cos (ωt) , (20.1)

where the parameters A and ω are random variables. As with the previous
analysis, we assume that the forcing will be applied in a certain range, that is:

A1 ≤ A ≤ A2,
ω1 ≤ ω ≤ ω2 (20.2)

where A1, A2, ω1, ω2 are known constants. One approach would be to model the
results with A and ω at mean values, which could form a good basis to estimate
the behavior of a linear system. However, let us address the more interesting
(and diffi cult) problem of estimating the behavior of a nonlinear system, such as
the Duffi ng oscillator from the previous example. There is no longer a guarantee
that the mean values for the inputs will correspond to the mean values of the
response, so we need an alternate method to arrive at some response statistics.1

To approximate the statistics of our nonlinear system, we choose to em-
ploy the Monte Carlo methodology, developed systematically by Metropolis and
Ulam (1949). In general, the Monte Carlo method has two forms: the proba-
bilistic form, where actual random variable distributions are available, and the

1 In addition to the numerical approach presented here, one can apply perturbation theory
to a nonlinear system to estimate the response. For more, see Nonlinear Ordinary Diff erential
Equations, by D.W. Jordan and P. Smith (Oxford University Press), or A First Look at
Perturbation Theory, by J. G. Simmonds and J. E. Mann, Jr. (Dover Books).
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deterministic form, where such distributions are unknown. Here, we follow a
deterministic algorithm, though adaptation of the method as described here to
its probabilistic form is a matter of substituting the known random distributions
for the ones we will presume here.
The method in both of its forms can be broken down into three steps:

1. Simulation of the random variable(s);

2. Solution of the deterministic problem for a large number of random vari-
able realizations;

3. Statistical analysis of results.

We have already performed most of the work for the first step above. Since
we have ranges over which we presume the random variables A and ω will vary,
we can describe both as uniformly-distributed between their extreme values. We
could also use a Gaussian distribution, using for the mean the midpoint of the
given ranges. Our standard deviation would then be selected so the endpoint
values given correspond to three standard deviations from the mean value in
either direction. In this way, about 99.7% of the randomly-generated values
would fall between the prescribed extreme values. We will demonstrate the pro-
cedure for uniformly-distributed variables, and leave the Gaussian distribution
as an exercise for the reader.
In order to solve the deterministic problem, we will use the differential equa-

tions definition function we presented in the previous example. What we need
to create is a separate driver for this function, a code that will run several real-
izations and return our desired quantities. Of course, this means that we need
to determine which output quantities interest us. For the purpose of demonstra-
tion, we will track the maximum displacement and maximum velocity for each
realization. If it was necessary, we could retain the entire history of oscillation
for each realization, but a simple demonstration will capture the spirit of the
Monte Carlo methodology. The reader is encouraged to modify the given code
to add whatever complication he wishes.2

We will only arrive at useful statistics for our system if we can apply the
conditions of ergodicity to the system. Thus, we will again define the system
initial conditions so that the transients are removed, like we did with our first
example of a random forcing input. These values can either be computed as
needed, right before sending to the ODE solver, or they can be computed in
advance. We choose the former for our demonstration. (The reader may be
wondering if this calculation can be vectorized. It can; the programming is left
as an exercise.) Also, with the manner in which we have chosen to specify global
variables, we can set the value of the global amplitude and frequency right before
calling for the ODE solution. We specify the random variables as row vectors
(arbitrarily) and we force them to lie on the desired domains. Then, we set up

2A word of warning, however: Reduce the value of the damping coeffi cient c at your own
risk. Our initial value for this parameter was 0.05, and the integrator did not complete any
attempted run of the code at that value of c.
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a for loop to run the ODE solver the specified number of times, solving for the
appropriate initial displacement and velocity for each. After the ode solution is
found, the maximum displacement and velocity is found and stored, as are the
input amplitude and frequency, and the time span used. We may then perform
whatever statistical analyses we wish on this data.
The four histograms below show the variations in several parameters for a set

of 100 random realizations of the Duffi ng oscillator. Figure 20.1 is the histogram
of force amplitudes, and Figure 20.2 is the set of forcing frequencies. Since we
chose uniform distributions for both of these quantities, we expect the number
of values in each range to be about the same. This is the case; the difference
between the most and least common force amplitude range is eight occurrences,
and the difference between the most and least common frequency range is ten
occurrences. For a larger sample size, we would expect these numbers to reduce
on a percentage basis.3

Our results, however, are not uniformly distributed. Figure 20.3 shows the
variation of maximum displacement values. The vast majority (65%) had max-
imum displacement under 10. The shape of the distribution is akin to a one-
sided Gaussian distribution, implying that our normally-distributed inputs led
to Gaussian output. Figure 20.4 also shows a one-sided Gaussian distribution,
with 85% of the resulting maximum velocities falling under 10. One can readily
see how this information could be applied to a design procedure; if we wanted
to have 90% certainty of a displacement less than 10, we would see that the
default system is inadequate.
It is also possible to do more complicated analyses involving other aspects

of the data. The reader is invited to rewrite the routine to return all of the
displacement and velocity histories (hint: three-dimensional matrices will be
helpful). Also, if we had a nonlinear model for, say, a vibrating beam, we could
use the displacement and velocity information to derive the maximum stress at
some point in the beam for each run. The possible applications of this analysis
are limited only by the systems we wish to apply it to.

function [xout,xdout,Aout,wout]=montduff(nruns,e,tspan)
%
% Program 1: montduff.m
% This code performs a Monte Carlo simulation of the
% Duffi ng oscillator. The random parameters are the
% forcing amplitude and frequency, presumed to be
% described by uniform distributions. Also, the
% stiffness is presumed to be one and the damping
% presumed to be 0.1. These values can be changed
% by editing the code.
%
global c_g k_g A_g w_g e_g % For compatibility with the existing duffdx.m.

3A test performed with 1,000 simulations showed that the difference in amplitude oc-
curences was 30 of 1000 between most and least common, or 3%. The difference in number
of occurences for the most and least common frequency was also around 30 out of 1000.



160CHAPTER 20MONTE CARLO SIMULATION OF A RANDOM SYSTEM

% Parameter check.
%
if nargin<1 nruns=50; end
if nargin<2 e=0.01; end
if nargin<3 tspan=[0 30]; end
%
% Stiffness and damping coeffi cient.
%
c_g=0.1; k_g=1; e_g=e;
wlo=0; whi=2*pi; % Extreme values for the frequency.
Alo=0.1; Ahi=10; % Extreme values for the amplitude.
A=Alo+(Ahi-Alo)*rand(1,nruns);
w=wlo+(whi-wlo)*rand(1,nruns);
%
% Initializing the t and x vectors. This is why we want
% to specify the length of the time vector.
%
xout=zeros(1,nruns);
xdout=zeros(1,nruns);
for i=1:nruns
A_g=A(1,i); w_g=w(1,i); % Set global parameters.
x0=A_g*cos(w_g*tspan(1));
xd0=-A_g*w_g*sin(w_g*tspan(1)); % Choose initial conditions to remove

transient.
xinit=[x0, xd0];
[trecv,xrecv]=ode45(’duffdx’,tspan,xinit); % The run.
xout(1,i)=max(xrecv(:,1)); % Here we could perform a more complex analy-

sis
xdout(1,i)=max(xrecv(:,2)); % of our data.
end
wout=w;
Aout=A;



161

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

Force Amplitudes

N
um

be
r o

f O
cc

ur
en

ce
s

Figure 20.1: Histogram showing the force magnitudes among the 100 random
runs.
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Figure 20.2: Histogram showing the various frequencies applied to the Duffi ng
oscillator.
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Figure 20.3: Histogram of maximum displacement values.
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Figure 20.4: Histogram showing maximum velocities of the simulated responses.



Chapter 21

Conclusion

This primer on MATLAB as applied to vibration problems, simple and not so
simple, can be an valuable tool to the student and the practitioner. The basic
elements are here to study a variety of vibration problems and to “play”with
the equations and the parameters. You will find it interesting and fun doing
this. Best of luck.
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