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Introduction

1.1 Active versus passive

Consider a precision structure subjected to varying thermal conditions;
unless carefully designed, it will distort as a result of the thermal gradi-
ents. One way to prevent this is to build the structure from a thermally
stable composite material; this is the passive approach. An alternative way
is to use a set of actuators and sensors connected by a feedback loop; such
a structure is active. In this case, we exploit the main virtue of feedback,
which is to reduce the sensitivity of the output to parameter variations
and to attenuate the effect of disturbances within the bandwidth of the
control system. Depending on the circumstances, active structures may
be cheaper or lighter than passive structures of comparable performances;
or they may offer performances that no passive structure could offer, as
in the following example.

Until a few years ago, the general belief was that atmospheric turbu-
lence would constitute an important limitation to the resolution of earth
based telescopes; this was one of the main reasons for developing the
Hubble space telescope. Nowadays, it is possible to correct in real time
the disturbances produced by atmospheric turbulence on the optical wave
front coming from celestial objects; this allows us to improve the ultimate
resolution of the telescope by one order of magnitude, to the limit im-
posed by diffraction. The correction is achieved by a deformable mirror
coupled to a set of actuators (Fig.1.1). A wave front sensor detects the
phase difference in the turbulent wave front and the control computer
supplies the shape of the deformable mirror which is required to correct
this error. Adaptive optics has become a standard feature in ground-based
astronomy.
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Fig. 1.1. Principle of adaptive optics for the compensation of atmospheric turbulence
(by courtesy of G.Rousset-ONERA).

The foregoing example is not the only one where active structures have
proved beneficial to astronomy; another example is the primary mirror of
large telescopes, which can have a diameter of 8 m or more. Large primary
mirrors are very difficult to manufacture and assemble. A passive mirror
must be thermally stable and very stiff, in order to keep the right shape
in spite of the varying gravity loads during the tracking of a star, and
the dynamic loads from the wind. There are two alternatives to that,
both active. The first one, adopted on the Very Large Telescope (VLT)
at ESO in Paranal, Chile, consists of having a relatively flexible primary
mirror connected at the back to a set of a hundred or so actuators. As
in the previous example, the control system uses an image analyzer to
evaluate the amplitude of the perturbation of the optical modes; next,
the correction is computed to minimize the effect of the perturbation and
is applied to the actuators. The influence matrix J between the actuator
forces f and the optical mode amplitudes w of the wave front errors can
be determined experimentally with the image analyzer:

w = Jf (1.1)

J is a rectangular matrix, because the number of actuators is larger than
the number of optical modes of interest. Once the modal errors w∗ have
been evaluated, the correcting forces can be calculated from

f∗ = JT (JJT )−1w∗ (1.2)
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where JT (JJT )−1 is the pseudo-inverse of the rectangular matrix J . This
is the minimum norm solution to Equ.(1.1) (Problem 1.1).

The second alternative, adopted on the Keck observatory at Mauna
Kea, Hawaii, consists of using a segmented primary mirror. The potential
advantages of such a design are lower weight, lower cost, ease of fabrica-
tion and assembly. Each segment has a hexagonal shape and is equipped
with three computer controlled degrees of freedom (tilt and piston) and
six edge sensors measuring the relative displacements with respect to the
neighboring segments; the control system is used to achieve the optical
quality of a monolithic mirror (by cophasing the segments), to compen-
sate for gravity and wind disturbances, and minimize the impact of the
telescope dynamics on the optical performance (Aubrun et al.). Active
and adaptive optics will be discussed more deeply in chapter 16.

As a third example, also related to astronomy, consider the future in-
terferometric missions. The aim is to use a number of smaller telescopes
as an interferometer to achieve a resolution which could only be achieved
with a much larger monolithic telescope. One possible spacecraft archi-
tecture for such an interferometric mission is represented in Fig.1.2; it
consists of a main truss supporting a set of independently pointing tele-
scopes. The relative positions of the telescopes are monitored by a sophis-
ticated metrology and the optical paths between the individual telescopes
and the beam combiner are accurately controlled with optical delay lines,
based on the information coming from a wave front sensor. Typically, the
distance between the telescopes could be 50 m or more, and the order
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Fig. 1.2. Schematic view of a future interferometric mission.
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of magnitude of the error allowed on the optical path length is a few
nanometers; the pointing error of the individual telescopes is as low as
a few nanoradians (i.e. one order of magnitude better than the Hubble
space telescope). Clearly, such stringent geometrical requirements in the
harsh space environment cannot be achieved with a precision monolithic
structure, but rather by active means as suggested in Fig.1.2. The main
requirement on the supporting truss is not precision but stability, the ac-
curacy of the optical path being taken care of by the wide-band vibration
isolation/steering control system of individual telescopes and the optical
delay lines (described below). Geometric stability includes thermal stabil-
ity, vibration damping and prestressing the gaps in deployable structures
(this is a critical issue for deployable trusses). In addition to these ge-
ometric requirements, this spacecraft would be sent in deep space (e.g.
at the Lagrange point L2 ) rather than in low orbit, to ensure maximum
sensitivity; this makes the weight issue particularly important.

Another interesting subsystem necessary to achieve the stringent spec-
ifications is the six d.o.f. vibration isolator at the interface between the
attitude control module and the supporting truss; this isolator allows the
low frequency attitude control torque to be transmitted, while filtering
out the high frequency disturbances generated by the unbalanced cen-
trifugal forces in the reaction wheels. Another vibration isolator may be
used at the interface between the truss and the independent telescopes,
possibly combined with the steering of the telescopes. The third compo-
nent relevant to active control is the optical delay line; it consists of a
high precision single degree of freedom translational mechanism support-
ing a mirror, whose function is to control the optical path length between
every telescope and the beam combiner, so that these distances are kept
identical to a fraction of the wavelength (e.g. λ/20).

These examples were concerned mainly with performance. However,
as technology develops and with the availability of low cost electronic
components, it is likely that there will be a growing number of applications
where active solutions will become cheaper than passive ones, for the same
level of performance.

The reader should not conclude that active will always be better and
that a control system can compensate for a bad design. In most cases, a
bad design will remain bad, active or not, and an active solution should
normally be considered only after all other passive means have been ex-
hausted. One should always bear in mind that feedback control can com-
pensate for external disturbances only in a limited frequency band that
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is called the bandwidth of the control system. One should never forget
that outside the bandwidth, the disturbance is actually amplified by the
control system.

1.2 Vibration suppression

Mechanical vibrations span amplitudes from meters (civil engineering) to
nanometers (precision engineering). Their detrimental effect on systems
may be of various natures:

Failure: vibration-induced structural failure may occur by excessive
strain during transient events (e.g. building response to earthquake), by
instability due to particular operating conditions (flutter of bridges under
wind excitation), or simply by fatigue (mechanical parts in machines).

Comfort: examples where vibrations are detrimental to comfort are
numerous: noise and vibration in helicopters, car suspensions, wind-
induced sway of buildings.

Operation of precision devices: numerous systems in precision en-
gineering, especially optical systems, put severe restrictions on mechanical
vibrations. Precision machine tools, wafer steppers,1 telescopes are typi-
cal examples. The performances of large interferometers such as the VLTI
are limited by microvibrations affecting the various parts of the optical
path. Lightweight segmented telescopes (space as well as earth-based) will
be impossible to build in their final shape with an accuracy of a fraction
of the wavelength, because of the various disturbance sources such as the
thermal gradient (which dominates the space environment). Such systems
will not exist without the capability to control actively the reflector shape.

Vibration reduction can be achieved in many different ways, depending
on the problem; the most common are stiffening, damping and isolation.
Stiffening consists of shifting the resonance frequency of the structure
beyond the frequency band of excitation. Damping consists of reducing
the resonance peaks by dissipating the vibration energy. Isolation consists
of preventing the propagation of disturbances to sensitive parts of the
systems.

1 Moore’s law on the number of transistors on an integrated circuit could not hold
without a constant improvement of the accuracy of wafer steppers and other precision
machines (Taniguchi).
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Damping may be achieved passively, with fluid dampers, eddy cur-
rents, elastomers or hysteretic elements, or by transferring kinetic energy
to Dynamic Vibration Absorbers (DVA). One can also use transducers
as energy converters, to transform vibration energy into electrical en-
ergy that is dissipated in electrical networks, or stored (energy harvest-
ing). Recently, semi-active devices (also called semi-passive) have become
available; they consist of passive devices with controllable properties. The
Magneto-Rheological (MR) fluid damper is a famous example; piezoelec-
tric transducers with switched electrical networks is another one. Since
they behave in a strongly nonlinear way, semi-active devices can transfer
energy from one frequency to another, but they are inherently passive
and, unlike active devices, cannot destabilize the system; they are also
less vulnerable to power failure. When high performance is needed, active
control can be used; this involves a set of sensors (strain, acceleration,
velocity, force,. . .), a set of actuators (force, inertial, strain,...) and a con-
trol algorithm (feedback or feedforward). Active damping is one of the
main focuses of this book. The design of an active control system involves
many issues such as how to configurate the sensors and actuators, how
to secure stability and robustness (e.g. collocated actuator/sensor pairs);
the power requirements will often determine the size of the actuators, and
the cost of the project.

1.3 Smart materials and structures

An active structure consists of a structure provided with a set of actuators
and sensors coupled by a controller; if the bandwidth of the controller in-
cludes some vibration modes of the structure, its dynamic response must
be considered. If the set of actuators and sensors are located at discrete
points of the structure, they can be treated separately. The distinctive
feature of smart structures is that the actuators and sensors are often dis-
tributed, and have a high degree of integration inside the structure, which
makes a separate modelling impossible (Fig.1.3). Moreover, in some appli-
cations like vibroacoustics, the behaviour of the structure itself is highly
coupled with the surrounding medium; this also requires a coupled mod-
elling. From a mechanical point of view, classical structural materials are
entirely described by their elastic constants relating stress and strain, and
their thermal expansion coefficient relating the strain to the temperature.
Smart materials are materials where strain can also be generated by dif-
ferent mechanisms involving temperature, electric field or magnetic field,
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Fig. 1.3. Smart structure.

etc... as a result of some coupling in their constitutive equations. The
most celebrated smart materials are briefly described below:

• Shape Memory Alloys (SMA) allow one to recover up to 5 % strain
from the phase change induced by temperature. Although two-way
applications are possible after education, SMA are best suited to one-
way tasks such as deployment. In any case, they can be used only at
low frequency and for low precision applications, mainly because of the
difficulty of cooling. Fatigue under thermal cycling is also a problem.
The best known SMA is called NITINOL; SMA are little used in active
vibration control, and will not be discussed in this book.2

• Piezoelectric materials have a recoverable strain of 0.1 % under electric
field; they can be used as actuators as well as sensors. There are two
broad classes of piezoelectric materials used in vibration control: ce-
ramics and polymers. The piezopolymers are used mostly as sensors,
because they require extremely high voltages and they have a lim-
ited control authority; the best known is the polyvinylidene fluoride
(PV DF or PV F2). Piezoceramics are used extensively as actuators
and sensors, for a wide range of frequency including ultrasonic appli-
cations; they are well suited for high precision in the nanometer range
(1nm = 10−9m). The best known piezoceramic is the Lead Zirconate
Titanate (PZT); PZT patches can be glued or co-fired on the support-
ing structure.

• Magnetostrictive materials have a recoverable strain of 0.15 % under
magnetic field; the maximum response is obtained when the material

2 The superelastic behavior of SMA may be exploited to achieve damping, for low
frequency and low cycle applications, such as earthquake protection.
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is subjected to compressive loads. Magnetostrictive actuators can be
used as load carrying elements (in compression alone) and they have
a long lifetime. They can also be used in high precision applications.
The best known is the TERFENOL-D; it can be an alternative to PZT
in some applications (sonar).

• Magneto-rheological (MR) fluids consist of viscous fluids containing
micron-sized particles of magnetic material. When the fluid is sub-
jected to a magnetic field, the particles create columnar structures
requiring a minimum shear stress to initiate the flow. This effect is re-
versible and very fast (response time of the order of millisecond). Some
fluids exhibit the same behavior under electrical field; they are called
electro-rheological (ER) fluids; however, their performances (limited by
the electric field breakdown) are currently inferior to MR fluids. MR
and ER fluids are used in semi-active devices.

This brief list of commercially available smart materials is just a flavor of
what is to come: phase change materials are currently under development
and are likely to become available in a few years time; they will offer a re-
coverable strain of the order of 1 % under an electric or magnetic field, one
order of magnitude more than the piezoceramics. Electroactive polymers
are also slowly emerging for large strain low stiffness applications.

The range of available devices to measure position, velocity, acceler-
ation and strain is extremely wide, and there are more to come, partic-
ularly in optomechanics. Displacements can be measured with inductive,
capacitive and optical means (laser interferometer); the latter two have a
resolution in the nanometer range. Piezoelectric accelerometers are very
popular but they cannot measure a d.c. component. Strain can be mea-
sured with strain gages, piezoceramics, piezopolymers and fiber optics.
The latter can be embedded in a structure and give a global average mea-
sure of the deformation; they offer a great potential for health monitoring
as well. Piezopolymers can be shaped to react only to a limited set of
vibration modes (modal filters).

1.4 Control strategies

There are two radically different approaches to disturbance rejection:
feedback and feedforward. Although this text is entirely devoted to feed-
back control, it is important to point out the salient features of both
approaches, in order to enable the user to select the most appropriate one
for a given application.
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1.4.1 Feedback

The principle of feedback is represented in Fig.1.4; the output y of the
system is compared to the reference input r, and the error signal, e =
r− y, is passed into a compensator H(s) and applied to the system G(s).
The design problem consists of finding the appropriate compensator H(s)
such that the closed-loop system is stable and behaves in the appropriate
manner.

r e
d

y
H(s) G(s)

-

Fig. 1.4. Principle of feedback control.

In the control of lightly damped structures, feedback control is used
for two distinct and somewhat complementary purposes: active damping
and model based feedback.

The objective of active damping is to reduce the effect of the resonant
peaks on the response of the structure. From

y(s)
d(s)

=
1

1 + GH
(1.3)

(Problem 1.2), this requires GH À 1 near the resonances. Active damping
can generally be achieved with moderate gains; another nice property
is that it can be achieved without a model of the structure, and with
guaranteed stability, provided that the actuator and sensor are collocated
and have perfect dynamics. Of course actuators and sensors always have
finite dynamics and any active damping system has a finite bandwidth.

The control objectives can be more ambitious, and we may wish to
keep a control variable y (a position, or the pointing of an antenna) to
a desired value r in spite of external disturbances d in some frequency
range. From the previous formula and

F (s) =
y(s)
r(s)

=
GH

1 + GH
(1.4)

we readily see that this requires large values of GH in the frequency range
where y ' r is sought. GH À 1 implies that the closed-loop transfer
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Fig. 1.5. Effect of the control bandwidth on the net damping of the residual modes.

function F (s) is close to 1, which means that the output y tracks the
input r accurately. From Equ.(1.3), this also ensures disturbance rejection
within the bandwidth of the control system. In general, to achieve this,
we need a more elaborate strategy involving a mathematical model of the
system which, at best, can only be a low-dimensional approximation of
the actual system G(s). There are many techniques available to find the
appropriate compensator, and only the simplest and the best established
will be reviewed in this text. They all have a number of common features:

• The bandwidth ωc of the control system is limited by the accuracy of
the model; there is always some destabilization of the flexible modes
outside ωc (residual modes). The phenomenon whereby the net damp-
ing of the residual modes actually decreases when the bandwidth in-
creases is known as spillover (Fig.1.5).

• The disturbance rejection within the bandwidth of the control system
is always compensated by an amplification of the disturbances outside
the bandwidth.

• When implemented digitally, the sampling frequency ωs must always
be two orders of magnitude larger than ωc to preserve reasonably the
behaviour of the continuous system. This puts some hardware restric-
tions on the bandwidth of the control system.

1.4.2 Feedforward

When a signal correlated to the disturbance is available, feedforward adap-
tive filtering constitutes an attractive alternative to feedback for distur-
bance rejection; it was originally developed for noise control (Nelson &
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Elliott), but it is very efficient for vibration control too (Fuller et al.).
Its principle is explained in Fig.1.6. The method relies on the availability
of a reference signal correlated to the primary disturbance; this signal is
passed through an adaptive filter, the output of which is applied to the
system by secondary sources. The filter coefficients are adapted in such
a way that the error signal at one or several critical points is minimized.
The idea is to produce a secondary disturbance such that it cancels the
effect of the primary disturbance at the location of the error sensor. Of
course, there is no guarantee that the global response is also reduced at
other locations and, unless the response is dominated by a single mode,
there are places where the response can be amplified; the method can
therefore be considered as a local one, in contrast to feedback which is
global. Unlike active damping which can only attenuate the disturbances
near the resonances, feedforward works for any frequency and attempts
to cancel the disturbance completely by generating a secondary signal of
opposite phase.

The method does not need a model of the system, but the adaption
procedure relies on the measured impulse response. The approach works
better for narrow-band disturbances, but wide-band applications have
also been reported. Because it is less sensitive to phase lag than feedback,
feedforward control can be used at higher frequency (a good rule of thumb
is ωc ' ωs/10); this is why it has been so successful in acoustics.

The main limitation of feedforward adaptive filtering is the availabil-
ity of a reference signal correlated to the disturbance. There are many
applications where such a signal can be readily available from a sensor
located on the propagation path of the perturbation. For disturbances in-
duced by rotating machinery, an impulse train generated by the rotation
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Type of control Advantages Disadvantages

Feedback

Active damping • no model needed • effective only near
• guaranteed stability resonances

when collocated

Model based • global method • limited bandwidth (ωc ¿ ωs)
(LQG,H∞...) • attenuates all • disturbances outside ωc

disturbances within ωc are amplified
• spillover

Feedforward

Adaptive filtering • no model necessary • reference needed
of reference • wider bandwidth • local method

(x-filtered LMS) (ωc ' ωs/10) (response may be amplified
in some part of the system)

• works better for • large amount of real time
narrow-band disturb. computations

Table 1.1. Comparison of feedback and feedforward control strategies.

of the main shaft can be used as reference. Table 1.1 summarizes the main
features of the two approaches.

1.5 The various steps of the design

The various steps of the design of a controlled structure are shown in
Fig.1.7. The starting point is a mechanical system, some performance ob-
jectives (e.g. position accuracy) and a specification of the disturbances
applied to it; the controller cannot be designed without some knowledge
of the disturbance applied to the system. If the frequency distribution of
the energy of the disturbance (i.e. the power spectral density) is known,
the open-loop performances can be evaluated and the need for an active
control system can be assessed (see next section). If an active system
is required, its bandwidth can be roughly specified from Equ.(1.3). The
next step consists of selecting the proper type and location for a set of
sensors to monitor the behavior of the system, and actuators to control
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Fig. 1.7. The various steps of the design.

it. The concept of controllability measures the capability of an actuator
to interfere with the states of the system. Once the actuators and sen-
sors have been selected, a model of the structure is developed, usually
with finite elements; it can be improved by identification if experimental
transfer functions are available. Such models generally involve too many
degrees of freedom to be directly useful for design purposes; they must be
reduced to produce a control design model involving only a few degrees
of freedom, usually the vibration modes of the system, which carry the
most important information about the system behavior. At this point, if
the actuators and sensors can be considered as perfect (in the frequency
band of interest), they can be ignored in the model; their effect on the
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control system performance will be tested after the design has been com-
pleted. If, on the contrary, the dynamics of the actuators and sensors may
significantly affect the behavior of the system, they must be included in
the model before the controller design. Even though most controllers are
implemented in a digital manner, nowadays, there are good reasons to
carry out a continuous design and transform the continuous controller
into a digital one with an appropriate technique. This approach works
well when the sampling frequency is two orders of magnitude faster than
the bandwidth of the control system, as is generally the case in structural
control.

1.6 Plant description, error and control budget

Consider the block diagram of (Fig.1.8), in which the plant consists of the
structure and its actuator and sensor. w is the disturbance applied to the
structure, z is the controlled variable or performance metrics (that one
wants to keep as close as possible to 0), u is the control input and y is
the sensor output (they are all assumed scalar for simplicity). H(s) is the
feedback control law, expressed in the Laplace domain (s is the Laplace
variable). We define the open-loop transfer functions :

Gzw(s): between w and z
Gzu(s): between u and z
Gyw(s): between w and y
Gyu(s): between u and y

From the definition of the open-loop transfer functions,

y = Gyww + GyuHy (1.5)

or

Plant

Disturbance

Control input

Performance metric

Output measurement

H(s)

w z

yu

Fig. 1.8. Block diagram of the control system.
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y = (I −GyuH)−1Gyww (1.6)

It follows that

u = Hy = H(I −GyuH)−1Gyww = Tuww (1.7)

On the other hand
z = Gzww + Gzuu (1.8)

Combining the two foregoing equations, one finds the closed-loop trans-
missibility between the disturbance w and the control metrics z :

z = Tzww = [Gzw + GzuH(I −GyuH)−1Gyw]w (1.9)

The frequency content of the disturbance w is usually described by
its Power Spectral Density (PSD), Φw(ω) which describes the frequency
distribution of the mean-square (MS) value

σ2
w =

∫ ∞

0
Φw(ω)dω (1.10)

[the unit of Φw is readily obtained from this equation; it is expressed in
units of w squared per (rad/s)]. From(1.9), the PSD of the control metric
z is given by :

Φz(ω) = |Tzw|2Φw(ω) (1.11)

Φz(ω) gives the frequency distribution of the mean-square value of the
performance metric. Even more interesting for design is the cumulative
MS response, defined by the integral of the PSD in the frequency range
[ω,∞[

σ2
z(ω) =

∫ ∞

ω
Φz(ν)dν =

∫ ∞

ω
|Tzw|2Φw(ν)dν (1.12)

It is a monotonously decreasing function of frequency and describes the
contribution of all the frequencies above ω to the mean-square value of
z. σz(ω) is expressed in the same units as the performance metric z and
σz(0) is the global RMS response; a typical plot is shown in Fig.1.9 for
an hypothetical system with 4 modes. For lightly damped structures, the
diagram exhibits steps at the natural frequencies of the modes and the
magnitude of the steps gives the contribution of each mode to the error
budget, in the same units as the performance metric; it is very helpful
to identify the critical modes in a design, at which the effort should be
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Fig. 1.9. Error budget distribution in open-loop and in closed-loop for increasing gains.

targeted. This diagram can be used to assess the control laws and compare
different actuator and sensor configurations. In a similar way, the control
budget can be assessed from

σ2
u(ω) =

∫ ∞

ω
Φu(ν)dν =

∫ ∞

ω
|Tuw|2Φw(ν)dν (1.13)

σu(ω) describes how the RMS control input is distributed over the various
modes of the structure and plays a critical role in the actuator design.

Clearly, the frequency content of the disturbance w, described by
Φw(ω), is essential in the evaluation of the error and control budgets
and it is very difficult, even risky, to attempt to design a control system
without prior information on the disturbance.

1.7 Readership and Organization of the book

Structural control and smart structures belong to the general field of
Mechatronics; they consist of a mixture of mechanical and electrical en-
gineering, structural mechanics, control engineering, material science and
computer science. This book has been written primarily for structural
engineers willing to acquire some background in structural control, but
it will also interest control engineers involved in flexible structures. It
has been assumed that the reader is familiar with structural dynamics
and has some basic knowledge of linear system theory, including Laplace
transform, root locus, Bode plots, Nyquist plots, etc... Readers who are
not familiar with these concepts are advised to read a basic text on linear
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system theory (e.g. Cannon, Franklin et al.). Some elementary background
in signal processing is also assumed.

Chapter 2 recalls briefly some concepts of structural dynamics; chapter
3 to 5 consider the transduction mechanisms, the piezoelectric materials
and structures and the damping via passive networks. Chapter 6 and 7
consider collocated (and dual) control systems and their use in active
damping. Chapter 8 is devoted to vibration isolation. Chapter 9 to 13
cover classical topics in control: state space modelling, frequency domain,
optimal control, controllability and observability, and stability. Various
structural control applications (active damping, position control of a flex-
ible structure, vibroacoustics) are covered in chapter 14; chapter 15 is
devoted to cable-structures and chapter 16 to the wavefront control of
large optical telescopes. Finally, chapter 17 is devoted to semi-active con-
trol. Each chapter is supplemented by a set of problems; it is assumed
that the reader is familiar with MATLAB-SIMULINK or some equivalent
computer aided control engineering software.

Chapters 1 to 9 plus part of Chapter 10 and some applications of
chapter 14 can constitute a one semester graduate course in structural
control.
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1.9 Problems

P.1.1 Consider the underdeterminate system of equations

Jx = w

Show that the minimum norm solution, i.e. the solution of the minimiza-
tion problem

min
x

(xT x) such that Jx = w

is
x = J+w = JT (JJT )−1w

J+ is called the pseudo-inverse of J . [hint: Use Lagrange multipliers to
remove the equality constraint.]
P.1.2 Consider the feedback control system of Fig.1.4. Show that the
transfer functions from the input r and the disturbance d to the output
y are respectively

y(s)
r(s)

=
GH

1 + GH

y(s)
d(s)

=
1

1 + GH

P.1.3 Based on your own experience, describe one application in which
you feel an active structure may outclass a passive one; outline the system
and suggest a configuration for the actuators and sensors.
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Some concepts in structural dynamics

2.1 Introduction

This chapter is not intended to be a substitute for a course in structural
dynamics, which is part of the prerequisites to read this book. The goal
of this chapter is twofold: (i) recalling some of the notations which will be
used throughout this book, and (ii) insisting on some aspects which are
particularly important when dealing with controlled structures and which
may otherwise be overlooked. As an example, the structural dynamic
analysts are seldom interested in antiresonance frequencies which play a
capital role in structural control.

2.2 Equation of motion of a discrete system

Consider the system with three point masses represented in Fig.2.1. The
equations of motion can be established by considering the free body dia-
grams of the three masses and applying Newton’s law; one easily gets:

Mẍ1 + k(x1 − x2) + c(ẋ1 − ẋ2) = f

mẍ2 + k(2x2 − x1 − x3) + c(2ẋ2 − ẋ1 − ẋ3) = 0

mẍ3 + k(x3 − x2) + c(ẋ3 − ẋ2) = 0

or, in matrix form,




M 0 0
0 m 0
0 0 m







ẍ1

ẍ2

ẍ3


+




c −c 0
−c 2c −c
0 −c c







ẋ1

ẋ2

ẋ3


+




k −k 0
−k 2k −k
0 −k k







x1

x2

x3


 =




f
0
0




(2.1)
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Fig. 2.1. Three mass system and its free body diagram.

The general form of the equation of motion governing the dynamic
equilibrium between the external, elastic, inertia and damping forces act-
ing on a non-gyroscopic, discrete, flexible structure with a finite number
n of degrees of freedom (d.o.f.) is

Mẍ + Cẋ + Kx = f (2.2)

where x and f are the vectors of generalized displacements (translations
and rotations) and forces (point forces and torques) and M , K and C are
respectively the mass, stiffness and damping matrices; they are symmetric
and semi positive definite. M and K arise from the discretization of the
structure, usually with finite elements. A lumped mass system such as
that of Fig.2.1 has a diagonal mass matrix. The finite element method
usually leads to non-diagonal (consistent) mass matrices, but a diagonal
mass matrix often provides an acceptable representation of the inertia in
the structure (Problem 2.2).

The damping matrix C represents the various dissipation mechanisms
in the structure, which are usually poorly known. To compensate for this
lack of knowledge, it is customary to make assumptions on its form. One
of the most popular hypotheses is the Rayleigh damping:

C = αM + βK (2.3)

The coefficients α and β are selected to fit the structure under consider-
ation.
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2.3 Vibration modes

Consider the free response of a undamped (conservative) system of order
n. It is governed by

Mẍ + Kx = 0 (2.4)

If one tries a solution of the form x = φi e
jωit, φi and ωi must satisfy the

eigenvalue problem
(K − ω2

i M)φi = 0 (2.5)

Because M and K are symmetric, K is positive semi definite and M is
positive definite, the eigenvalue ω2

i must be real and non negative. ωi is the
natural frequency and φi is the corresponding mode shape; the number of
modes is equal to the number of degrees of freedom, n. Note that Equ.(2.5)
defines only the shape, but not the amplitude of the mode which can be
scaled arbitrarily. The modes are usually ordered by increasing frequencies
(ω1 ≤ ω2 ≤ ω3 ≤ ...). From Equ.(2.5), one sees that if the structure is
released from initial conditions x(0) = φi and ẋ(0) = 0, it oscillates at
the frequency ωi according to x(t) = φi cosωit, always keeping the shape
of mode i.

Left multiplying Equ.(2.5) by φT
j , one gets the scalar equation

φT
j Kφi = ω2

i φ
T
j Mφi

and, upon permuting i and j, one gets similarly,

φT
i Kφj = ω2

j φ
T
i Mφj

Substracting these equations, taking into account that a scalar is equal
to its transpose, and that K and M are symmetric, one gets

0 = (ω2
i − ω2

j )φ
T
j Mφi

which shows that the mode shapes corresponding to distinct natural fre-
quencies are orthogonal with respect to the mass matrix.

φT
j Mφi = 0 (ωi 6= ωj)

It follows from the foregoing equations that the mode shapes are also
orthogonal with respect to the stiffness matrix. The orthogonality condi-
tions are often written as

φT
i Mφj = µi δij (2.6)
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φT
i Kφj = µi ω

2
i δij (2.7)

where δij is the Kronecker delta (δij = 1 if i = j, δij = 0 if i 6= j),
µi is the modal mass (also called generalized mass) of mode i. Since the
mode shapes can be scaled arbitrarily, it is usual to normalize them in
such a way that µi = 1. If one defines the matrix of the mode shapes
Φ = (φ1, φ2, ..., φn), the orthogonality relationships read

ΦT MΦ = diag(µi) (2.8)

ΦT KΦ = diag(µiω
2
i ) (2.9)

To demonstrate the orthogonality conditions, we have used the fact
that the natural frequencies were distinct. If several modes have the same
natural frequency (as often occurs in practice because of symmetry), they
form a subspace of dimension equal to the multiplicity of the eigenvalue.
Any vector in this subspace is a solution of the eigenvalue problem, and
it is always possible to find a set of vectors such that the orthogonality
conditions are satisfied. A rigid body mode is such that there is no strain
energy associated with it (φT

i Kφi = 0). It can be demonstrated that this
implies that Kφi = 0; the rigid body modes can therefore be regarded as
solutions of the eigenvalue problem (2.5) with ωi = 0.

2.4 Modal decomposition

2.4.1 Structure without rigid body modes

Let us perform a change of variables from physical coordinates x to modal
coordinates according to

x = Φz (2.10)

where z is the vector of modal amplitudes. Substituting into Equ.(2.2),
we get

MΦz̈ + CΦż + KΦz = f

Left multiplying by ΦT and using the orthogonality relationships (2.8)
and (2.9), we obtain

diag(µi)z̈ + ΦT CΦż + diag(µiω
2
i )z = ΦT f (2.11)

If the matrix ΦT CΦ is diagonal, the damping is said classical or normal.
In this case, the modal fraction of critical damping ξi (in short modal
damping) is defined by
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ΦT CΦ = diag(2ξiµiωi) (2.12)

One can readily check that the Rayleigh damping (2.3) complies with this
condition and that the corresponding modal damping ratios are

ξi =
1
2
(
α

ωi
+ βωi) (2.13)

The two free parameters α and β can be selected in order to match the
modal damping of two modes. Note that the Rayleigh damping tends to
overestimate the damping of the high frequency modes.

Under condition (2.12), the modal equations are decoupled and Equ.(2.11)
can be rewritten

z̈ + 2ξ Ω ż + Ω2z = µ−1ΦT f (2.14)

with the notations
ξ = diag(ξi)

Ω = diag(ωi) (2.15)

µ = diag(µi)

The following values of the modal damping ratio can be regarded as
typical: satellites and space structures are generally very lightly damped
(ξ ' 0.001− 0.005), because of the extensive use of fiber reinforced com-
posites, the absence of aerodynamic damping, and the low strain level.
Mechanical engineering applications (steel structures, piping,...) are in the
range of ξ ' 0.01−0.02; most dissipation takes place in the joints, and the
damping increases with the strain level. For civil engineering applications,
ξ ' 0.05 is typical and, when radiation damping through the ground is
involved, it may reach ξ ' 0.20, depending on the local soil conditions.
The assumption of classical damping is often justified for light damping,
but it is questionable when the damping is large, as in problems involving
soil-structure interaction. Lightly damped structures are usually easier to
model, but more difficult to control, because their poles are located very
near the imaginary axis and they can be destabilized very easily.

If one accepts the assumption of classical damping, the only difference
between Equ.(2.2) and (2.14) lies in the change of coordinates (2.10).
However, in physical coordinates, the number of degrees of freedom of a
discretized model of the form (2.2) is usually large, especially if the ge-
ometry is complicated, because of the difficulty of accurately representing
the stiffness of the structure. This number of degrees of freedom is unnec-
essarily large to represent the structural response in a limited bandwidth.
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If a structure is excited by a band-limited excitation, its response is dom-
inated by the modes whose natural frequencies belong to the bandwidth
of the excitation, and the integration of Equ.(2.14) can often be restricted
to these modes. The number of degrees of freedom contributing effectively
to the response is therefore reduced drastically in modal coordinates.

2.4.2 Dynamic flexibility matrix

Consider the steady state harmonic response of Equ.(2.2) to a vector
excitation f = Fejωt. The response is also harmonic, x = Xejωt, and the
amplitude of F and X are related by

X = [−ω2M + jωC + K]−1F = G(ω)F (2.16)

Where the matrix G(ω) is called the dynamic flexibility matrix ; it is a
dynamic generalization of the static flexibility matrix, G(0) = K−1. The
modal expansion of G(ω) can be obtained by transforming (2.16) into
modal coordinates x = Φz as we did earlier. The modal response is also
harmonic, z = Zejωt and one finds easily that

Z = diag{ 1
µi(ω2

i + 2jξiωiω − ω2)
}ΦT F

leading to

X = ΦZ = Φ diag{ 1
µi(ω2

i + 2jξiωiω − ω2)
}ΦT F

Comparing with (2.16), one finds the modal expansion of the dynamic
flexibility matrix:

G(ω) = [−ω2M + jωC + K]−1 =
n∑

i=1

φiφ
T
i

µi(ω2
i + 2jξiωiω − ω2)

(2.17)

where the sum extends to all the modes. Glk(ω) expresses the complex
amplitude of the structural response of d.o.f. l when a unit harmonic force
ejωt is applied at d.o.f. k. G(ω) can be rewritten

G(ω) =
n∑

i=1

φiφ
T
i

µiω2
i

Di(ω) (2.18)

where
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Excitation bandwidth

!!b

!i !k

1

Di

Mode outside

the bandwidth

0

2øi

1

!!b

F

Fig. 2.2. Fourier spectrum of the excitation F with a limited frequency content ω < ωb

and dynamic amplification Di of mode i such that ωi < ωb and ωk À ωb.

Di(ω) =
1

1− ω2/ω2
i + 2jξiω/ωi

(2.19)

is the dynamic amplification factor of mode i. Di(ω) is equal to 1 at ω = 0,
it exhibits large values in the vicinity of ωi, |Di(ωi)| = (2ξi)−1, and then
decreases beyond ωi (Fig.2.2).

According to the definition of G(ω) the Fourier transform of the re-
sponse X(ω) is related to the Fourier transform of the excitation F (ω)
by

X(ω) = G(ω)F (ω)

This equation means that all the frequency components work indepen-
dently, and if the excitation has no energy at one frequency, there is no
energy in the response at that frequency. From Fig.2.2, one sees that when
the excitation has a limited bandwidth, ω < ωb, the contribution of all the
high frequency modes (i.e. such that ωk À ωb) to G(ω) can be evaluated
by assuming Dk(ω) ' 1. As a result, if ωm > ωb,
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G(ω) '
m∑

i=1

φiφ
T
i

µiω2
i

Di(ω) +
n∑

i=m+1

φiφ
T
i

µiω2
i

(2.20)

This approximation is valid for ω < ωm. The first term in the right hand
side is the contribution of all the modes which respond dynamically and
the second term is a quasi-static correction for the high frequency modes.
Taking into account that

G(0) = K−1 =
n∑

i=1

φiφ
T
i

µiω2
i

(2.21)

G(ω) can be rewritten in terms of the low frequency modes only:

G(ω) '
m∑

i=1

φiφ
T
i

µiω2
i

Di(ω) + K−1 −
m∑

i=1

φiφ
T
i

µiω2
i

(2.22)

The quasi-static correction of the high frequency modes is often called the
residual mode, denoted by R. Unlike all the terms involving Di(ω) which
reduce to 0 as ω →∞, R is independent of the frequency and introduces a
feedthrough (constant) component in the transfer matrix. We will shortly
see that R has a strong influence on the location of the transmission zeros
and that neglecting it may lead to substantial errors in the prediction of
the performance of the control system.

2.4.3 Structure with rigid body modes

The approximation (2.22) applies only at low frequency, ω < ωm. If the
structure has r rigid body modes, the first sum can be split into rigid
and flexible modes; however, the residual mode cannot be used any more,
because K−1 no longer exists. This problem can be solved in the follow-
ing way. The displacements are partitioned into their rigid and flexible
contributions according to

x = xr + xe = Φrzr + Φeze (2.23)

where Φr and Φe are the matrices whose columns are the rigid body
modes and the flexible modes, respectively. Assuming no damping, to
make things formally simpler, and taking into account that the rigid body
modes satisfy KΦr = 0, we obtain the equation of motion

MΦrz̈r + MΦez̈e + KΦeze = f (2.24)
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f

f

f

System loaded with f

Self-equilibrated load

System with dummy constraints,
loaded with P fT

− M x r
&&

P f f M xT

r= − &&

Fig. 2.3. Structure with rigid body modes.

Left multiplying by ΦT
r and using the orthogonality relations (2.6) and

(2.7), we see that the rigid body modes are governed by

ΦT
r MΦr z̈r = ΦT

r f

or
z̈r = µ−1

r ΦT
r f (2.25)

Substituting this result into Equ.(2.24), we get

MΦez̈e + KΦeze = f −MΦrz̈r

= f −MΦrµ
−1
r ΦT

r f = (I −MΦrµ
−1
r ΦT

r )f

or
MΦez̈e + KΦeze = P T f (2.26)

where we have defined the projection matrix

P = I − Φrµ
−1
r ΦT

r M (2.27)

such that P T f is orthogonal to the rigid body modes. In fact, we can
easily check that

PΦr = 0 (2.28)

PΦe = Φe (2.29)

P can therefore be regarded as a filter which leaves unchanged the flexible
modes and eliminates the rigid body modes.
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If we follow the same procedure as in the foregoing section, we need
to evaluate the elastic contribution of the static deflection, which is the
solution of

Kxe = P T f (2.30)

Since KΦr = 0, the solution may contain an arbitrary contribution from
the rigid body modes. On the other hand, P T f = f −Mẍr is the super-
position of the external forces and the inertia forces associated with the
motion as a rigid body; it is self-equilibrated, because it is orthogonal to
the rigid body modes. Since the system is in equilibrium as a rigid body, a
particular solution of Equ.(2.30) can be obtained by adding dummy con-
straints to remove the rigid body modes (Fig.2.3). The modified system
is statically determinate and its stiffness matrix can be inverted. If we
denote by Giso the flexibility matrix of the modified system, the general
solution of (2.30) is

xe = GisoP
T f + Φrγ

where γ is a vector of arbitrary constants. The contribution of the rigid
body modes can be eliminated with the projection matrix P , leading to

xe = PGisoP
T f (2.31)

PGisoP
T is the pseudo-static flexibility matrix of the flexible modes. On

the other hand, left multiplying Equ.(2.24) by ΦT
e , we get

ΦT
e MΦez̈e + ΦT

e KΦeze = ΦT
e f

where the diagonal matrix ΦT
e KΦe is regular. It follows that the pseudo-

static deflection can be written alternatively

xe = Φeze = Φe(ΦT
e KΦe)−1ΦT

e f (2.32)

Comparing with Equ.(2.31), we get

PGisoP
T = Φe(ΦT

e KΦe)−1ΦT
e =

n∑

r+1

φiφ
T
i

µiω2
i

(2.33)

This equation is identical to Equ.(2.20) when there are no rigid body
modes. From this result, we can extend Equ.(2.22) to systems with rigid
body modes:

G(ω) '
r∑

i=1

φiφ
T
i

−µiω2
+

m∑

i=r+1

φiφ
T
i

µi(ω2
i − ω2 + 2jξiωiω)

+ R (2.34)
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where the contribution from the residual mode is

R =
n∑

m+1

φiφ
T
i

µiω2
i

= PGisoP
T −

m∑

r+1

φiφ
T
i

µiω2
i

(2.35)

Note that Giso is the flexibility matrix of the system obtained by adding
dummy constraints to remove the rigid body modes. Obviously, this can
be achieved in many different ways and it may look surprising that they all
lead to the same result (2.35). In fact, different boundary conditions lead
to different displacements under the self-equilibrated load P T f , but they
differ only by a contribution of the rigid body modes, which is destroyed
by the projection matrix P , leading to the same PGisoP

T . Let us illustrate
the procedure with an example.

2.4.4 Example

Consider the system of three identical masses of Fig.2.4. There is one rigid
body mode and two flexible ones:

Φ = (Φr, Φe) =




1 1 1
1 0 −2
1 −1 1




and
ΦT MΦ = diag(3, 2, 6) ΦT KΦ = k.diag(0, 2, 18)

Fig. 2.4. Three mass system: (a) self-equilibrated forces associated with a force f
applied to mass 1; (b) dummy constraints.
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From Equ.(2.27), the projection matrix is

P =




1 0 0
0 1 0
0 0 1


−




1
1
1


 .

1
3
.(1, 1, 1) =




1 0 0
0 1 0
0 0 1


− 1

3




1 1 1
1 1 1
1 1 1




or

P =
1
3




2 −1 −1
−1 2 −1
−1 −1 2




We can readily check that

PΦ = P (Φr, Φe) = (0, Φe)

and the self-equilibrated loads associated with a force f applied to mass
1 is, Fig.2.4.a

P T f =
1
3




2 −1 −1
−1 2 −1
−1 −1 2







f
0
0


 =




2/3
−1/3
−1/3


 f

If we impose the statically determinate constraint on mass 1, Fig.2.4.b,
the resulting flexibility matrix is

Giso =
1
k




0 0 0
0 1 1
0 1 2




leading to

PGisoP
T =

1
9k




5 −1 −4
−1 2 −1
−4 −1 5




The reader can easily check that other dummy constraints would lead to
the same pseudo-static flexibility matrix (Problem 2.3).

2.5 Collocated control system

A collocated control system is a control system where the actuator and
the sensor are attached to the same degree of freedom. It is not sufficient
to be attached to the same location, but they must also be dual, that is
a force actuator must be associated with a translation sensor (measuring
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displacement, velocity or acceleration), and a torque actuator with a ro-
tation sensor (measuring an angle or an angular velocity), in such a way
that the product of the actuator signal and the sensor signal represents the
energy (power) exchange between the structure and the control system.
Such systems enjoy very interesting properties. The open-loop Frequency
Response Function (FRF) of a collocated control system corresponds to
a diagonal component of the dynamic flexibility matrix. If the actuator
and sensor are attached to d.o.f. k, the open-loop FRF reads

Gkk(ω) =
m∑

i=1

φ2
i (k)

µiω2
i

Di(ω) + Rkk (2.36)

If one assumes that the system is undamped, the FRF is purely real

Gkk(ω) =
m∑

i=1

φ2
i (k)

µi(ω2
i − ω2)

+ Rkk (2.37)

All the residues are positive (square of the modal amplitude) and, as a
result, Gkk(ω) is a monotonously increasing function of ω, which behaves
as illustrated in Fig.2.5. The amplitude of the FRF goes from −∞ at the
resonance frequencies ωi (corresponding to a pair of imaginary poles at
s = ±jωi in the open-loop transfer function) to +∞ at the next resonance
frequency ωi+1. Since the function is continuous, in every interval, there
is a frequency zi such that ωi < zi < ωi+1 where the amplitude of the

static

response

residual

mode

resonance

anti-

resonance

Gkk(!)

zi

Gkk(0) = K
à1
kk

Rkk

!i+1!i

!

Fig. 2.5. Open-loop FRF of an undamped structure with a collocated actuator/sensor
pair (no rigid body modes).
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FRF vanishes. In structural dynamics, such frequencies are called anti-
resonances; they correspond to purely imaginary zeros at ±jzi, in the
open-loop transfer function. Thus, undamped collocated control systems
have alternating poles and zeros on the imaginary axis. The pole / zero
pattern is that of Fig.2.6.a. For a lightly damped structure, the poles
and zeros are just moved a little in the left-half plane, but they are still
interlacing, Fig.2.6.b.

Re(s) Re(s)

Im(s) Im(s)

x x

x x

x x

(a) (b)

Fig. 2.6. Pole/Zero pattern of a structure with collocated (dual) actuator and sensor;
(a) undamped; (b) lightly damped (only the upper half of the complex plane is shown,
the diagram is symmetrical with respect to the real axis).

If the undamped structure is excited harmonically by the actuator at
the frequency of the transmission zero, zi, the amplitude of the response of
the collocated sensor vanishes. This means that the structure oscillates at
the frequency zi according to the shape shown in dotted line on Fig.2.7.b.
We will establish in the next section that this shape, and the frequency
zi, are actually a mode shape and a natural frequency of the system
obtained by constraining the d.o.f. on which the control system acts. We
know from control theory that the open-loop zeros are asymptotic values
of the closed-loop poles, when the feedback gain goes to infinity.

The natural frequencies of the constrained system depend on the d.o.f.
where the constraint has been added (this is indeed well known in control
theory that the open-loop poles are independent of the actuator and sensor
configuration while the open-loop zeros do depend on it). However, from
the foregoing discussion, for every actuator/sensor configuration, there
will be one and only one zero between two consecutive poles, and the
interlacing property applies for any location of the collocated pair.

Referring once again to Fig.2.5, one easily sees that neglecting the
residual mode in the modelling amounts to translating the FRF diagram
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(a)

(b)

(c)

g

u

y

Fig. 2.7. (a) Structure with collocated actuator and sensor; (b) structure with addi-
tional constraint; (c) structure with additional stiffness along the controlled d.o.f.

vertically in such a way that its high frequency asymptote becomes tan-
gent to the frequency axis. This produces a shift in the location of the
transmission zeros to the right, and the last one even moves to infinity
as the feedthrough (constant) component Rkk disappears from the FRF.
Thus, neglecting the residual modes tends to overestimate the frequency
of the transmission zeros. As we shall see shortly, the closed-loop poles
which remain at finite distance move on loops joining the open-loop poles
to the open-loop zeros; therefore, altering the open-loop pole/zero pattern
has a direct impact on the closed-loop poles.

The open-loop transfer function of a undamped structure with a col-
located actuator/sensor pair can be written

G(s) = G0

∏
i(s

2/z2
i + 1)∏

j(s2/ω2
j + 1)

(ωi < zi < ωi+1) (2.38)

For a lightly damped structure, it reads

G(s) = G0

∏
i(s

2/z2
i + 2ξis/zi + 1)∏

j(s2/ω2
j + 2ξjs/ωj + 1)

(2.39)

The corresponding Bode and Nyquist plots are represented in Fig 2.8.
Every imaginary pole at ±jωi introduces a 1800 phase lag and every
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imaginary zero at±jzi a 1800 phase lead. In this way, the phase diagram is
always contained between 0 and−1800, as a consequence of the interlacing
property. For the same reason, the Nyquist diagram consists of a set
of nearly circles (one per mode), all contained in the third and fourth
quadrants. Thus, the entire curve G(ω) is below the real axis (the diameter
of every circle is proportional to ξ−1

i ).

Im(G)

Re(G)w = 0

G

f

0°

-90°

-180°

w

w

dB

iw
!= zi

zi

! = !i

Fig. 2.8. Nyquist diagram and Bode plots of a lightly damped structure with collocated
actuator and sensor.

2.5.1 Transmission zeros and constrained system

We now establish that the transmission zeros of the undamped system
are the poles (natural frequencies) of the constrained system. Consider
the undamped structure of Fig.2.7.a (a displacement sensor is assumed
for simplicity). The governing equations are

Structure:
Mẍ + Kx = b u (2.40)

Output sensor :
y = bT x (2.41)

u is the actuator input (scalar) and y is the sensor output (also scalar).
The fact that the same vector b appears in the two equations is due to
collocation. For a stationary harmonic input at the actuator, u = u0e

jω0t;
the response is harmonic, x = x0e

jω0t, and the amplitude vector x0 is
solution of
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(K − ω2
0M)x0 = b u0 (2.42)

The sensor output is also harmonic, y = y0e
jω0t and the output amplitude

is given by
y0 = bT x0 = bT (K − ω2

0M)−1b u0 (2.43)

Thus, the transmission zeros (antiresonance frequencies) ω0 are solutions
of

bT (K − ω2
0M)−1b = 0 (2.44)

Now, consider the system with the additional stiffness g along the same
d.o.f. as the actuator/sensor, Fig 2.7.c. The stiffness matrix of the modified
system is K + gbbT . The natural frequencies of the modified system are
solutions of the eigenvalue problem

[K + gbbT − ω2M ]φ = 0 (2.45)

For all g the solution (ω, φ) of the eigenvalue problem is such that

(K − ω2M)φ + gbbT φ = 0 (2.46)

or
bT φ = −bT (K − ω2M)−1gbbT φ (2.47)

Since bT φ is a scalar, this implies that

bT (K − ω2M)−1b = −1
g

(2.48)

Taking the limit for g →∞, one sees that the eigenvalues ω satisfy

bT (K − ω2M)−1b = 0 (2.49)

which is identical to (2.44). Thus, ω = ω0; the imaginary zeros of the
undamped collocated system, solutions of (2.44), are the poles of the
constrained system (2.45) at the limit, when the stiffness g added along
the actuation d.o.f. increases to ∞:

lim
g→∞[(K + gbbT )− ω2

0M ]x0 = 0 (2.50)

This is equivalent to placing a kinematic constraint along the control d.o.f.
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2.6 Continuous structures

Continuous structures are distributed parameter systems which are gov-
erned by partial differential equations. Various discretization techniques,
such as the Rayleigh-Ritz method, or finite elements, allow us to ap-
proximate the partial differential equation by a finite set of ordinary dif-
ferential equations. In this section, we illustrate some of the features of
distributed parameter systems with continuous beams. This example will
be frequently used in the subsequent chapters.

The plane transverse vibration of a beam is governed by the following
partial differential equation

(EIw′′)′′ + mẅ = p (2.51)

This equation is based on the Euler-Bernoulli assumptions that the neu-
tral axis undergoes no extension and that the cross section remains per-
pendicular to the neutral axis (no shear deformation). EI is the bending
stiffness, m is the mass per unit length and p the distributed external load
per unit length. If the beam is uniform, the free vibration is governed by

wIV +
m

EI
ẅ = 0 (2.52)

The boundary conditions depend on the support configuration: a simple
support implies w = 0 and w′′ = 0 (no displacement, no bending moment);
for a clamped end, we have w = 0 and w′ = 0 (no displacement, no
rotation); a free end corresponds to w′′ = 0 and w′′′ = 0 (no bending
moment, no shear), etc...

A harmonic solution of the form w(x, t) = φ(x) ejωt can be obtained if
φ(x) and ω satisfy

d4φ

dx4
− m

EI
ω2φ = 0 (2.53)

with the appropriate boundary conditions. This equation defines a eigen-
value problem; the solution consists of the natural frequencies ωi (infinite
in number) and the corresponding mode shapes φi(x). The eigenvalues
are tabulated for various boundary conditions in textbooks on mechani-
cal vibrations (e.g. Geradin & Rixen, 1993, p.187). For the pinned-pinned
case, the natural frequencies and mode shapes are

ω2
n = (nπ)4

EI

ml4
(2.54)
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φn(x) = sin
nπx

l
(2.55)

Just as for discrete systems, the mode shapes are orthogonal with respect
to the mass and stiffness distribution:

∫ l

0
mφi(x)φj(x) dx = µiδij (2.56)

∫ l

0
EI φ′′i (x)φ′′j (x) dx = µiω

2
i δij (2.57)

The generalized mass corresponding to Equ.(2.55) is µn = ml/2. As with
discrete structures, the frequency response function between a point force
actuator at xa and a displacement sensor at xs is

G(ω) =
∞∑

i=1

φi(xa)φi(xs)
µi(ω2

i − ω2 + 2jξiωiω)
(2.58)

where the sum extends to infinity. Exactly as for discrete systems, the
expansion can be limited to a finite set of modes, the high frequency modes
being included in a quasi-static correction as in Equ.(2.34) (Problem 2.5).

2.7 Guyan reduction

As already mentioned, the size of a discretized model obtained by finite
elements is essentially governed by the representation of the stiffness of
the structure. For complicated geometries, it may become very large, es-
pecially with automated mesh generators. Before solving the eigenvalue
problem (2.5), it may be advisable to reduce the size of the model by
condensing the degrees of freedom with little or no inertia and which are
not excited by external forces, nor involved in the control. The degrees of
freedom to be condensed, denoted x2 in what follows, are often referred
to as slaves; those kept in the reduced model are called masters and are
denoted x1.

To begin with, consider the undamped forced vibration of a structure
where the slaves x2 are not excited and have no inertia; the governing
equation is

(
M11 0
0 0

) (
ẍ1

ẍ2

)
+

(
K11 K12

K21 K22

) (
x1

x2

)
=

(
f1

0

)
(2.59)

or
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M11ẍ1 + K11x1 + K12x2 = f1 (2.60)

K21x1 + K22x2 = 0 (2.61)

According to the second equation, the slaves x2 are completely determined
by the masters x1:

x2 = −K−1
22 K21x1 (2.62)

Substituting into Equ.(2.60), we find the reduced equation

M11ẍ1 + (K11 −K12K
−1
22 K21)x1 = f1 (2.63)

which involves only x1. Note that in this case, the reduced equation has
been obtained without approximation.

The idea in the so-called Guyan reduction is to assume that the master-
slave relationship (2.62) applies even if the degrees of freedom x2 have
some inertia (i.e. when the sub-matrix M22 6= 0) or applied forces. Thus,
one assumes the following transformation

x =

(
x1

x2

)
=

(
I

−K−1
22 K21

)
x1 = Lx1 (2.64)

The reduced mass and stiffness matrices are obtained by substituting the
above transformation into the kinetic and strain energy:

T =
1
2
ẋT Mẋ =

1
2
ẋT

1 LT MLẋ1 =
1
2
ẋT

1 M̂ẋ1

U =
1
2
xT Kx =

1
2
xT

1 LT KLx1 =
1
2
xT

1 K̂x1

with
M̂ = LT ML K̂ = LT KL (2.65)

The second equation produces K̂ = K11 −K12K
−1
22 K21 as in Equ.(2.63).

If external loads are applied to x2, the reduced loads are obtained by
equating the virtual work

δxT f = δxT
1 LT f = δxT

1 f̂1

or
f̂1 = LT f = f1 −K12K

−1
22 f2 (2.66)

Finally, the reduced equation of motion reads

M̂ẍ1 + K̂x1 = f̂1 (2.67)
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Usually, it is not necessary to consider the damping matrix in the re-
duction, because it is rarely known explicitly at this stage. The Guyan
reduction can be performed automatically in commercial finite element
packages, the selection of masters and slaves being made by the user. In
the selection process the following should be kept in mind:

• The degrees of freedom without inertia or applied load can be con-
densed without affecting the accuracy.

• Translational degrees of freedom carry more information than rota-
tional ones. In selecting the masters, preference should be given to
translations, especially if large modal amplitudes are expected (Prob-
lem 2.7).

• It can be demonstrated that the error in the mode shape φi associated
with the Guyan reduction is a increasing function of the ratio

ω2
i

ν2
1

where ωi is the natural frequency of the mode and ν1 is the first natural
frequency of the constrained system, where all the degrees of freedom
x1 (masters) have been blocked [ν1 is the smallest solution of det(K22−
ν2M22) = 0]. Therefore, the quality of a Guyan reduction is strongly
related to the natural frequencies of the constrained system and ν1

should be kept far above the frequency band ωb where the model is
expected to be accurate. If this is not the case, the model reduction
can be improved as follows.

2.8 Craig-Bampton reduction

Consider the finite element model
(

M11 M12

M21 M22

) (
ẍ1

ẍ2

)
+

(
K11 K12

K21 K22

) (
x1

x2

)
=

(
f1

0

)
(2.68)

where the degrees of freedom have been partitioned into the masters x1

and the slaves x2. The masters include all the d.o.f. with a specific in-
terest in the problem: those where disturbance and control loads are ap-
plied, where sensors are located and where the performance is evaluated
(controlled d.o.f.). The slaves include all the other d.o.f. which have no
particular interest in the control problem and are ready for elimination.
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The Craig-Bampton reduction is conducted in two steps. First, a
Guyan reduction is performed according to the static relationship (2.62).
In a second step, the constrained system is considered:

M22ẍ2 + K22x2 = 0 (2.69)

(obtained by setting x1 = 0 in the foregoing equation). Let us assume
that the eigen modes of this system constitute the column of the matrix
Ψ2, and that they are normalized according to ΨT

2 M22Ψ2 = I. We then
perform the change of coordinates

(
x1

x2

)
=

(
I 0

−K−1
22 K21 Ψ2

) (
x1

α

)
= T

(
x1

α

)
(2.70)

Comparing with (2.64), one sees that the solution has been enriched with
a set of fixed boundary modes of modal amplitude α. Using the transfor-
mation matrix T , the mass and stiffness matrices are obtained as in the
previous section:

M̂ = T T MT K̂ = T T KT (2.71)

leading to
(

M̂11 M̂12

M̂12 I

) (
ẍ1

α̈

)
+

(
K̂11 0
0 Ω2

) (
x1

α

)
=

(
f1

0

)
(2.72)

In this equation, the stiffness matrix is block diagonal, with K̂11 = K11−
K12K

−1
22 K21 being the Guyan stiffness matrix and Ω2 = ΨT

2 K22Ψ2 being a
diagonal matrix with entries equal to the square of the natural frequencies
of the fixed boundary modes. Similarly, M̂11 = M11 − M12K

−1
22 K21 −

K12K
−1
22 M21 + K12K

−1
22 M22K

−1
22 K21 is the Guyan mass matrix [the same

as that given by (2.65)]. K̂11 and M̂11 are fully populated but do not
depend on the set of constrained modes Ψ2. The off-diagonal term of the
mass matrix is given by M̂12 = (M12 − K12K

−1
22 M22)Ψ2. Since all the

external loads are applied to the master d.o.f., the right hand side of this
equation is unchanged by the transformation. The foregoing equation may
be used with an increasing number of constrained modes (increasing the
size of α), until the model provides an appropriate representation of the
system in the requested frequency band.



2.9 References 43

2.9 References

BATHE, K.J. & WILSON, E.L. Numerical Methods in Finite Element
Analysis, Prentice-Hall, 1976.
CANNON, R.H. Dynamics of Physical Systems, McGraw-Hill, 1967.
CLOUGH, R.W. & PENZIEN, J. Dynamics of Structures, McGraw-Hill,
1975.
CRAIG, R.R. Structural Dynamics, Wiley, 1981.
CRAIG, R.R., BAMPTON, M.C.C. Coupling of Substructures for Dy-
namic Analyses, AIAA Journal, Vol.6(7), 1313-1319, 1968.
GAWRONSKI, W.K. Advanced Structural Dynamics and Active Control
of Structures, Springer, 2004.
GERADIN, M. & RIXEN, D. Mechanical Vibrations, Theory and Appli-
cation to Structural Dynamics, Wiley, 1993.
HUGHES, P.C. Attitude dynamics of three-axis stabilized satellite with
a large flexible solar array, J. Astronautical Sciences, Vol.20, 166-189,
Nov.-Dec. 1972.
HUGHES, P.C. Dynamics of flexible space vehicles with active attitude
control, Celestial Mechanics Journal, Vol.9, 21-39, March 1974.
HUGHES, T.J.R. The Finite Element Method, Linear Static and Dynamic
Finite Element Analysis, Prentice-Hall, 1987.
INMAN, D.J. Vibration, with Control, Measurement, and Stability. Prentice-
Hall, 1989.
MEIROVITCH, L. Computational Methods in Structural Dynamics, Si-
jthoff & Noordhoff, 1980.
MODI, V.J. Attitude dynamics of satellites with flexible appendages - A
brief review. AIAA J. Spacecraft and Rockets, Vol.11, 743-751, 1974.
ZIENKIEWICZ, O.C., & TAYLOR, R.L. The Finite Element Method,
Fourth edition (2 vol.), McGraw-Hill, 1989.



44 2 Some concepts in structural dynamics

2.10 Problems

P.2.1 Using a finite element program, discretize a simply supported
uniform beam with an increasing number of elements (4,8,etc...). Compare
the natural frequencies with those obtained with the continuous beam
theory. Observe that the finite elements tend to overestimate the natural
frequencies. Why is that so?
P.2.2 Using the same stiffness matrix as in the previous example and a
diagonal mass matrix obtained by lumping the mass of every element at
the nodes (the entries of the mass matrix for all translational degrees of
freedom are ml/nE , where nE is the number of elements; no inertia is at-
tributed to the rotations), compute the natural frequencies. Compare the
results with those obtained with a consistent mass matrix in Problem 2.1.
Notice that using a diagonal mass matrix usually tends to underestimate
the natural frequencies.
P.2.3 Consider the three mass system of section 2.4.4. Show that chang-
ing the dummy constraint to mass 2 does not change the pseudo-static
flexibility matrix PGisoP

T .
P.2.4 Consider a simply supported beam with the following properties:
l = 1m, m = 1kg/m, EI = 10.266 10−3Nm2. It is excited by a point
force at xa = l/4.
(a) Assuming that a displacement sensor is located at xs = l/4 (collo-
cated) and that the system is undamped, plot the transfer function for an
increasing number of modes, with and without quasi-static correction for
the high-frequency modes. Comment on the variation of the zeros with
the number of modes and on the absence of mode 4.
Note: To evaluate the quasi-static contribution of the high-frequency
modes, it is useful to recall that the static displacement at x = ξ cre-
ated by a unit force applied at x = a on a simply supported beam is

δ(ξ, a) =
(l − a)ξ
6lEI

[a(2l − a)− ξ2] (ξ ≤ a)

δ(ξ, a) =
a(l − ξ)
6lEI

[ξ(2l − ξ)− a2] (ξ > a)

The symmetric operator δ(ξ, a) is often called ”flexibility kernel” or
Green’s function.
(b) Including three modes and the quasi-static correction, draw the
Nyquist and Bode plots and locate the poles and zeros in the complex
plane for a uniform modal damping of ξi = 0.01 and ξi = 0.03.



2.10 Problems 45

(c) Do the same as (b) when the sensor location is xs = 3l/4. Notice that
the interlacing property of the poles and zeros no longer holds.
P.2.5 Consider the modal expansion of the transfer function (2.58) and
assume that the low frequency amplitude G(0) is available, either from
static calculations or from experiments at low frequency. Show that G(ω)
can be approximated by the truncated expansion

G(ω) = G(0) +
m∑

i=1

φi(xa)φi(xs)
µiω2

i

(ω2 − 2jξiωiω)
(ω2

i − ω2 + 2jξiωiω)

P.2.6 Show that the impulse response matrix of a damped structure with
rigid body modes reads

g(τ) =
[ r∑

i=1

φiφ
T
i

µi
τ +

n∑

r+1

φiφ
T
i

µiωdi
e−ξiωiτ sinωdiτ

]
1(τ)

where ωdi = ωi

√
1− ξ2

i and 1(τ) is the Heaviside step function.
P.2.7 Consider a uniform beam clamped at one end and free at the
other end; it is discretized with six finite elements of equal size. The
twelve degrees of freedom are numbered w1, θ1 to w6, θ6 starting from the
clamped end. We perform various Guyan reductions in which we select
x1 according to:
(a) all wi, θi (12 degrees of freedom, no reduction);
(b) all wi (6 d.o.f.);
(c) all θi (6 d.o.f.);
(d) w2, θ2, w4, θ4, w6, θ6 (6 d.o.f.);
(e) w2, w4, w6 (3 d.o.f.);
(f) θ2, θ4, θ6 (3 d.o.f.);
For each case, compute the natural frequency ωi of the first three modes
and the first natural frequency ν1 of the constrained system. Compare the
roles of the translations and rotations.
P.2.8 Consider a spacecraft consisting of a rigid main body to which one
or several flexible appendages are attached. Assume that there is at least
one axis about which the attitude motion is uncoupled from the other
axes. Let θ be the (small) angle of rotation about this axis and J be the
moment of inertia (of the main body plus the appendages). Show that
the equations of motion read

Jθ̈ −
m∑

i=1

Γiz̈i = T0
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µiz̈i + µiΩ
2
i zi − Γiθ̈ = 0 i = 1, ..., m

where T0 is the torque applied to the main body, µi and Ωi are the modal
masses and the natural frequencies of the constrained modes of the flexible
appendages and Γi are the modal participation factors of the flexible
modes [i.e. Γi is the work done on mode i of the flexible appendages by
the inertia forces associated with a unit angular acceleration of the main
body] (Hughes, 1974). [Hint: Decompose the motion into the rigid body
mode and the components of the constrained flexible modes, express the
kinetic energy and the strain energy, write the Lagrangian in the form

L = T − V =
1
2
Jθ̇2 −

∑

i

Γiżiθ̇ +
1
2

∑

i

µiż
2
i −

1
2

∑

i

µiΩ
2
i zi

and write the Lagrange equations.]
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Electromagnetic and piezoelectric transducers

3.1 Introduction

The transducers are critical in active structures technology; they can play
the role of actuator, sensor, or simply energy converter, depending on the
applications. In many applications, the actuators are the most critical part
of the system; however, the sensors become very important in precision
engineering where sub-micron amplitudes must be detected.

Two broad categories of actuators can be distinguished: ”grounded”
and ”structure borne” actuators. The former react on a fixed support;
they include torque motors, force motors (electrodynamic shakers) or
tendons. The second category, also called ”space realizable”, include jets,
reaction wheels, control moment gyros, proof-mass actuators, active mem-
bers (capable of both structural functions and generating active control
forces), piezo strips, etc... Active members and all actuating devices in-
volving only internal, self-equilibrating forces, cannot influence the rigid
body motion of a structure.

This chapter begins with a description of the voice-coil transducer and
its application to the proof-mass actuator and the geophone (absolute ve-
locity sensor). Follows a brief discussion of the single axis gyrostabilizer.
The remaining of the chapter is devoted to the piezoelectric materials and
the constitutive equations of a discrete piezoelectric transducer. Integrat-
ing piezoelectric elements in beams, plates and trusses will be considered
in the following chapter.
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(b)

Fig. 3.1. Voice-coil transducer: (a) Physical principle. (b) Symbolic representation.

3.2 Voice coil transducer

A voice coil transducer is an energy transformer which converts electri-
cal power into mechanical power and vice versa. The system consists of
a permanent magnet (Fig.3.1) which produces a uniform magnetic flux
density B normal to the gap, and a coil which is free to move axially
within the gap. Let v be the velocity of the coil, f the external force act-
ing to maintain the coil in equilibrium against the electromagnetic forces,
e the voltage difference across the coil and i the current into the coil.
In this ideal transducer, we neglect the electrical resistance and the self
inductance of the coil, as well as its mass and damping (if necessary, these
can be handled by adding R and L to the electrical circuit of the coil,
or a mass and damper to its mechanical model). The voice coil actuator
is one of the most popular actuators in mechatronics (e.g. it is used in
electromagnetic loudspeakers), but it is also used as sensor in geophones.

The first constitutive equation of the voice coil transducer follows from
Faraday’s law:

e = 2πnrBv = Tv (3.1)

where
T = 2πnrB (3.2)

is the transducer constant, equal to the product of the length of the coil
exposed to the magnetic flux, 2πnr, and the magnetic flux density B. The
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second equation follows from the Lorentz force law: The external force f
required to balance the total force of the magnetic field on n turns of the
conductor is

f = −i 2πnrB = −Ti (3.3)

where T is again the transducer constant (3.2). Equation (3.1) and (3.3)
are the constitutive equations of the voice coil transducer. Notice that
the transducer constant T appearing in Faraday’s law (3.1), expressed
in volt.sec/m, is the same as that appearing in the Lorentz force (3.3),
expressed in N/Amp.

The total power delivered to the moving-coil transducer is equal to the
sum of the electric power, ei, and the mechanical power, fv. Combining
with (3.1) and (3.3), one gets

ei + fv = Tvi− Tiv = 0 (3.4)

Thus, at any time, there is an equilibrium between the electrical power
absorbed by the device and the mechanical power delivered (and vice
versa). The moving-coil transducer cannot store energy, and behaves as a
perfect electromechanical converter. In practice, however, the transfer is
never perfect due to eddy currents, flux leakage and magnetic hysteresis,
leading to slightly different values of T in (3.1) and (3.3).

3.2.1 Proof-mass actuator

A proof-mass actuator (Fig.3.2) is an inertial actuator which is used in
various applications of vibration control. A reaction mass m is connected
to the support structure by a spring k, a damper c and a force actuator f
which can be either magnetic or hydraulic. In the electromagnetic actuator
discussed here, the force actuator consists of a voice coil transducer of
constant T excited by a current generator i; the spring is achieved with
membranes which also guide the linear motion of the moving mass. The
system is readily modelled as in Fig.3.2.a. Combining the equation of a
single d.o.f. oscillator with the Lorentz force law (3.3), one finds

mẍ + cẋ + kx = Ti (3.5)

or, in the Laplace domain,

x =
Ti

ms2 + cs + k
(3.6)
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Fig. 3.2. Proof-mass actuator (a) model assuming a current generator; (b) conceptual
design of an electrodynamic actuator based on a voice coil transducer.

(s is the Laplace variable). The total force applied to the support is equal
and opposite to that applied to the mass:

F = −ms2x =
−ms2Ti

ms2 + cs + k
(3.7)

It follows that the transfer function between the total force F and the
current i applied to the coil is

F

i
=

−s2T

s2 + 2ξpωps + ω2
p

(3.8)

where T is the transducer constant (in N/Amp), ωp = (k/m)1/2 is the
natural frequency of the spring-mass system and ξp is the damping ratio,
which in practice is fairly high, typically 20 % or more. 1 The Bode plots
of (3.8) are shown in Fig.3.3; one sees that the system behaves like a
high-pass filter with a high frequency asymptote equal to the transducer
constant T ; above some critical frequency ωc ' 2ωp, the proof-mass actu-
ator can be regarded as an ideal force generator. It has no authority over
the rigid body modes and the operation at low frequency requires a large
stroke, which is technically difficult. Medium to high frequency actuators
(40 Hz and more) are relatively easy to obtain with low cost components
(loudspeaker technology).
1 the negative sign is irrelevant.
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Fig. 3.3. Bode plot F/i of an electrodynamic proof-mass actuator.

If the current source is replaced by a voltage source (Fig.3.4), the mod-
elling is slightly more complicated and combines the mechanical equation
(3.5) and an electrical equation which is readily derived from Faraday’s
law:

T ẋ + L
di

dt
+ Ri = E(t) (3.9)

where L is the inductance and R is the resistance of the electrical circuit.

Fig. 3.4. Model of a proof mass actuator with a voltage source.
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3.2.2 Geophone

The geophone is a transducer which behaves like an absolute velocity sen-
sor above some cut-off frequency which depends on its mechanical con-
struction. The system of Fig.3.2.a is readily transformed into a geophone
by using the voltage e as the sensor output (Fig.3.5). If x0 is the displace-

x0

e

Fig. 3.5. Model of a geophone based on a voice coil transducer.

ment of the support and if the voice coil is open (i = 0), the governing
equations are

mẍ + c(ẋ− ẋ0) + k(x− x0) = 0

T (ẋ− ẋ0) = e

combining these equations, one readily finds that

x− x0 =
−ms2x0

ms2 + cs + k

e = Ts(x− x0) =
−s2T

s2 + (c/m)s + k/m
sx0

e

ẋ0
=

−s2T

s2 + 2ξpωps + ω2
p

(3.10)

Thus, there is a perfect duality between a proof-mass actuator used with
a current source and a geophone (connected to an infinite resistor); above
the corner frequency, the gain of the geophone is equal to the transducer
constant T . Designing geophones with very low corner frequency is in
general difficult, especially if their orientation with respect to the gravity
vector is variable; active geophones where the corner frequency is lowered
electronically may constitute a good alternative option.
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3.3 General electromechanical transducer

Tme

Tem
e

Zei Zm v = xç

f

Fig. 3.6. Electrical analog representation of an electromechanical transducer.

3.3.1 Constitutive equations

The constitutive behavior of a wide class of electromechanical transduc-
ers can be modelled as in Fig.3.6, where the central box represents the
conversion mechanism between electrical energy and mechanical energy,
and vice versa. In Laplace form, the constitutive equations read

e = Zei + Temv (3.11)

f = Tmei + Zmv (3.12)

where e is the Laplace transform of the input voltage across the electri-
cal terminals, i the input current, f the force applied to the mechanical
terminals, and v the velocity of the mechanical part. Ze is the blocked
electrical impedance, measured for v = 0; Tem is the transduction co-
efficient representing the electromotive force (voltage) appearing in the
electrical circuit per unit velocity in the mechanical part (in volt.sec/m).
Tme is the transduction coefficient representing the force acting on the me-
chanical terminals to balance the electromagnetic force induced per unit
current input on the electrical side (in N/Amp), and Zm is the mechanical
impedance, measured when the electrical side is open (i = 0). As an ex-
ample, it is easy to check that the proof-mass with voltage source (Fig.3.4)
can be written in this form with Ze = Ls+R, Zm = ms+c+k/s, Tem = T
and Tme = −T . The same representation applies also to the piezoelectric
transducer analyzed below.

In absence of external force (f = 0), v can be eliminated between the
two foregoing equations, leading to

e = (Ze − TemTme

Zm
)i
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−TemTme/Zm is called the motional impedance. The total driving point
electrical impedance is the sum of the blocked and the motional impedances.

3.3.2 Self-sensing

Equation (3.11) shows that the voltage drop across the electrical termi-
nals of any electromechanical transducer is the sum of a contribution
proportional to the current applied and a contribution proportional to
the velocity of the mechanical terminals. Thus, if Zei can be measured
and subtracted from e, a signal proportional to the velocity is obtained.
This suggests the bridge structure of Fig.3.7. The bridge equations are as
follows: for the branch containing the transducer,

Transducer

Fig. 3.7. Bridge circuit for self-sensing actuation.

e = ZeI + Temv + ZbI

I =
1

Ze + Zb
(e− Temv)

V4 = ZbI =
Zb

Ze + Zb
(e− Temv)

For the other branch,
e = kZei + kZbi

V2 = kZbi =
Zb

Ze + Zb
e
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and the bridge output

V4 − V2 = (
−Zb Tem

Ze + Zb
) v (3.13)

is indeed a linear function of the velocity v of the mechanical termi-
nals. Note, however, that −Zb Tem/(Ze + Zb) acts as a filter; the bridge
impedance Zb must be adapted to the transducer impedance Ze to avoid
amplitude distortion and phase shift between the output voltage V4 − V2

and the transducer velocity in the frequency band of interest.

3.4 Reaction wheels and gyrostabilizers

These devices are torque actuators normally used in attitude control of
satellites. They have authority over the rigid body modes as well as the
flexible modes. A reaction wheel consists of a rotating wheel whose axis is
fixed with respect to the spacecraft; a torque is generated by increasing
or decreasing the angular velocity. If the angular velocity exceeds the
specification, the wheel must be unloaded, using another type of actuator
(jets or magnetic).

In control moment gyros (CMG), the rotating wheel is mounted on
gimbals, and the gimbal torques are used as control inputs. The principle
of a one-axis gyrostabilizer is described in Fig.3.7. Rotating the gimbal
about the x axis with an angular velocity θ̇x produces torques:

Ty = JzΩθ̇x cos θx (3.14)

Tz = JzΩθ̇x sin θx (3.15)

Servo Motor
Rotor

Gimbal

Ω

y

z

x

x

.
θ

Fig. 3.8. One-axis gyrostabilizer.
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where JzΩ is the angular momentum along the z axis, and θx is the
deviation of the rotor axis with respect to the vertical. The servo motor
on the gimbal axis is velocity controlled. The angle θx is measured also,
and a small gain feedback maintains the axis of the rotor in the vertical
position (for a deeper discussion of the use of CMG in attitude control,
see Jacot & Liska).

3.5 Smart materials

Piezoelectric materials belong to the so-called smart materials, or multi-
functional materials, which have the ability to respond significantly to
stimuli of different physical natures. Figure 3.9 lists various effects that
are observed in materials in response to various inputs: mechanical, elec-
trical, magnetic, thermal, light. The coupling between the physical fields
of different types is expressed by the non-diagonal cells in the figure; if
its magnitude is sufficient, the coupling can be used to build discrete or
distributed transducers of various types, which can be used as sensors, ac-
tuators, or even integrated in structures with various degrees of tailoring
and complexity (e.g. as fibers), to make them controllable or responsive
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Fig. 3.9. Stimulus-response relations indicating various effects in materials. The smart
materials correspond to the non-diagonal cells.
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to their environment (e.g. for shape morphing, precision shape control,
damage detection, dynamic response alleviation,...).

3.6 Piezoelectric transducer

The piezoelectric effect was discovered by Pierre and Jacques Curie in
1880. The direct piezoelectric effect consists in the ability of certain crys-
talline materials to generate an electrical charge in proportion to an exter-
nally applied force; the direct effect is used in force transducers. According
to the inverse piezoelectric effect, an electric field parallel to the direction
of polarization induces an expansion of the material. The piezoelectric
effect is anisotropic; it can be exhibited only by materials whose crystal
structure has no center of symmetry; this is the case for some ceramics
below a certain temperature called the Curie temperature; in this phase,
the crystal has built-in electric dipoles, but the dipoles are randomly ori-
entated and the net electric dipole on a macroscopic scale is zero. During
the poling process, when the crystal is cooled in the presence of a high
electric field, the dipoles tend to align, leading to an electric dipole on
a macroscopic scale. After cooling and removing of the poling field, the
dipoles cannot return to their original position; they remain aligned along
the poling direction and the material body becomes permanently piezo-
electric, with the ability to convert mechanical energy to electrical energy
and vice versa; this property will be lost if the temperature exceeds the
Curie temperature or if the transducer is subjected to an excessive electric
field in the direction opposed to the poling field.

The most popular piezoelectric materials are Lead-Zirconate-Titanate
(PZT) which is a ceramic, and Polyvinylidene fluoride (PVDF) which is
a polymer. In addition to the piezoelectric effect, piezoelectric materials
exhibit a pyroelectric effect, according to which electric charges are gen-
erated when the material is subjected to temperature; this effect is used
to produce heat detectors; it will not be discussed here.

In this section, we consider a transducer made of a one-dimensional
piezoelectric material of constitutive equations (we use the notations of
the IEEE Standard on Piezoelectricity)

D = εT E + d33T (3.16)
S = d33E + sET (3.17)
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where D is the electric displacement (charge per unit area, expressed
in Coulomb/m2), E the electric field (V/m), T the stress (N/m2) and
S the strain. εT is the dielectric constant (permittivity) under constant
stress, sE is the compliance when the electric field is constant (inverse of
the Young’s modulus) and d33 is the piezoelectric constant, expressed in
m/V or Coulomb/Newton; the reason for the subscript 33 is that, by con-
vention, index 3 is always aligned to the poling direction of the material,
and we assume that the electric field is parallel to the poling direction.
More complicated situations will be considered later. Note that the same
constant d33 appears in (3.16) and (3.17).

In the absence of external force, a transducer subjected to a voltage
with the same polarity as that during poling produces an elongation, and
a voltage opposed to that during poling makes it shrink (inverse piezo-
electric effect). In (3.17), this amounts to a positive d33. Conversely (di-
rect piezoelectric effect), if we consider a transducer with open electrodes
(D = 0), according to (3.16), E = −(d33/εT )T , which means that a trac-
tion stress will produce a voltage with polarity opposed to that during
poling, and a compressive stress will produce a voltage with the same
polarity as that during poling.

3.6.1 Constitutive relations of a discrete transducer

Equations (3.16) and (3.17) can be written in a matrix form
{

D
S

}
=

[
εT d33

d33 sE

] {
E
T

}
(3.18)

where (E, T ) are the independent variables and (D, S) are the dependent
variables. If (E, S) are taken as the independent variables, they can be
rewritten

D =
d33

sE
S + εT

(
1− d33

2

sEεT

)
E

T =
1
sE

S − d33

sE
E

or
{

D
T

}
=

[
εT (1− k2) e33

−e33 cE

] {
E
S

}
(3.19)
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Fig. 3.10. Piezoelectric linear transducer.

where cE = 1/sE is the Young’s modulus under E = 0 (short circuited
electrodes), in N/m2 (Pa); e33 = d33/sE , product of d33 by the Young
modulus, is the constant relating the electric displacement to the strain
for short-circuited electrodes (in Coulomb/m2), and also that relating
the compressive stress to the electric field when the transducer is blocked
(S = 0).

k2 =
d33

2

sEεT
=

e33
2

cEεT
(3.20)

k is called the electromechanical coupling factor of the material; it mea-
sures the efficiency of the conversion of mechanical energy into electrical
energy, and vice versa, as discussed below. From (3.19), we note that
εT (1− k2) is the dielectric constant under zero strain.

If one assumes that all the electrical and mechanical quantities are
uniformly distributed in a linear transducer formed by a stack of n disks
of thickness t and cross section A (Fig.3.10), the global constitutive equa-
tions of the transducer are obtained by integrating Equ.(3.18) or (3.19)
over the volume of the transducer; one easily finds

{
Q
∆

}
=

[
C nd33

nd33 1/Ka

] {
V
f

}
(3.21)

or
{

Q
f

}
=

[
C(1− k2) nd33Ka

−nd33Ka Ka

] {
V
∆

}
(3.22)
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where Q = nAD is the total electric charge on the electrodes of the trans-
ducer, ∆ = Sl is the total extension (l = nt is the length of the trans-
ducer), f = AT is the total force and V the voltage applied between the
electrodes of the transducer, resulting in an electric field E = V/t = nV/l.
C = εT An2/l is the capacitance of the transducer with no external
load (f = 0), Ka = A/sEl is the stiffness with short-circuited electrodes
(V = 0). Note that the electromechanical coupling factor can be written
alternatively

k2 =
d33

2

sEεT
=

n2d33
2Ka

C
(3.23)

Equation (3.21) can be inverted
{

V
f

}
=

Ka

C(1− k2)

[
1/Ka −nd33

−nd33 C

] {
Q
∆

}
(3.24)

from which we can see that the stiffness with open electrodes (Q = 0) is
Ka/(1−k2) and the capacitance for a fixed geometry (∆ = 0) is C(1− k2).
Note that typical values of k are in the range 0.3− 0.7; for large k, the
stiffness changes significantly with the electrical boundary conditions, and
similarly the capacitance depends on the mechanical boundary conditions.

Next, let us write the total stored electromechanical energy and coen-
ergy functions.2 Consider the discrete piezoelectric transducer of Fig.3.11;

Fig. 3.11. Discrete Piezoelectric transducer.

2 Energy and coenergy functions are needed in connection with energy formulations
such as Hamilton principle, Lagrange equations or finite elements.



3.6 Piezoelectric transducer 61

the total power delivered to the transducer is the sum of the electric power,
V i and the mechanical power, f∆̇. The net work on the transducer is

dW = V idt + f∆̇dt = V dQ + fd∆ (3.25)

For a conservative element, this work is converted into stored energy, dWe,
and the total stored energy, We(∆,Q) can be obtained by integrating
(3.25) from the reference state to the state (∆, Q).3 Upon differentiating
We(∆, Q),

dWe(∆,Q) =
∂We

∂∆
d∆ +

∂We

∂Q
dQ (3.26)

and, comparing with (3.25), we recover the constitutive equations

f =
∂We

∂∆
V =

∂We

∂Q
(3.27)

Substituting f and V from (3.24) into (3.25), one gets

dWe = V dQ + fd∆

=
QdQ

C(1− k2)
− nd33Ka

C(1− k2)
(∆dQ + Q d∆) +

Ka

1− k2
∆ d∆

which is the total differential of

We(∆,Q) =
Q2

2C(1− k2)
− nd33Ka

C(1− k2)
Q∆ +

Ka

1− k2

∆2

2
(3.28)

This is the analytical expression of the stored electromechanical energy
for the discrete piezoelectric transducer. Equations (3.27) recover the con-
stitutive equations (3.24). The first term on the right hand side of (3.28) is
the electrical energy stored in the capacitance C(1− k2) (corresponding
to a fixed geometry, 4 = 0); the third term is the elastic strain energy
stored in a spring of stiffness Ka/(1 − k2) (corresponding to open elec-
trodes, Q = 0); the second term is the piezoelectric energy.

The electromechanical energy function uses ∆ and Q as independent
state variables. A coenergy function using ∆ and V as independent vari-
ables can be defined by the Legendre transformation

W ∗
e (∆,V ) = V Q−We(∆,Q) (3.29)

3 Since the system is conservative, the integration can be done along any path leading
from (0, 0) to (∆, Q).
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The total differential of the coenergy is

dW ∗
e = QdV + V dQ− ∂We

∂∆
d∆− ∂We

∂Q
dQ

dW ∗
e = QdV − f d∆ (3.30)

where Equ.(3.27) have been used. It follows that

Q =
∂W ∗

e

∂V
and f = −∂W ∗

e

∂∆
(3.31)

Introducing the constitutive equations (3.22) into (3.30),

dW ∗
e =

[
C(1− k2)V + nd33Ka∆

]
dV + (nd33KaV −Ka∆) d∆

= C(1− k2)V dV + nd33Ka (∆dV + V d∆)−Ka∆ d∆

which is the total differential of

W ∗
e (∆, V ) = C(1− k2)

V 2

2
+ nd33KaV ∆−Ka

∆2

2
(3.32)

This is the analytical form of the coenergy function for the discrete piezo-
electric transducer. The first term on the right hand side of (3.32) is
recognized as the electrical coenergy in the capacitance C(1− k2) (cor-
responding to a fixed geometry, ∆ = 0); the third is the strain energy
stored in a spring of stiffness Ka (corresponding to short-circuited elec-
trodes, V = 0). The second term of (3.32) is the piezoelectric coenergy;
using the fact that the uniform electric field is E = nV/l and the uniform
strain is S = ∆/l, it can be rewritten

∫

Ω
Se33E dΩ (3.33)

where the integral extends to the volume Ω of the transducer.
The analytical form (3.28) of the electromechanical energy, together

with the constitutive equations (3.27) can be regarded as an alternative
definition of a discrete piezoelectric transducer, and similarly for the an-
alytical expression of the coenergy (3.32) and the constitutive equations
(3.31).
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3.6.2 Interpretation of k2

Consider a piezoelectric transducer subjected to the following mechanical
cycle: first, it is loaded with a force F with short-circuited electrodes; the
resulting extension is

∆1 =
F

Ka

where Ka = A/(sEl) is the stiffness with short-circuited electrodes. The
energy stored in the system is

W1 =
∫ ∆1

0
f dx =

F∆1

2
=

F 2

2Ka

At this point, the electrodes are open and the transducer is unloaded ac-
cording to a path of slope Ka/(1−k2), corresponding to the new electrical
boundary conditions,

∆2 =
F (1− k2)

Ka

The energy recovered in this way is

W2 =
∫ ∆2

0
f dx =

F∆2

2
=

F 2(1− k2)
2Ka

leaving W1−W2 stored in the transducer. The ratio between the remaining
stored energy and the initial stored energy is

W1 −W2

W1
= k2

Similarly, consider the following electrical cycle: first, a voltage V is
applied to the transducer which is mechanically unconstrained (f = 0).
The electric charges appearing on the electrodes are

Q1 = CV

where C = εT An2/l is the unconstrained capacitance, and the energy
stored in the transducer is

W1 =
∫ Q1

0
v dq =

V Q1

2
=

CV 2

2

At this point, the transducer is blocked mechanically and electrically un-
loaded from V to 0. The electrical charges are removed according to
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Q2 = C(1− k2)V

where the capacitance for fixed geometry has been used. The energy re-
covered in this way is

W2 =
∫ Q2

0
v dq =

C(1− k2)V 2

2

leaving W1 −W2 stored in the transducer. Here again, the ratio between
the remaining stored energy and the initial stored energy is

W1 −W2

W1
= k2

Although the foregoing relationships provide a clear physical interpreta-
tion of the electromechanical coupling factor, they do not bring a practical
way of measuring k2; the experimental determination of k2 is often based
on impedance (or admittance) measurements.

3.6.3 Admittance of the piezoelectric transducer

(a)

Transducer

dB

(b)

Fig. 3.12. (a) Elementary dynamical model of the piezoelectric transducer. (b) Typical
admittance FRF of the transducer, in the vicinity of its natural frequency.

Consider the system of Fig.3.12, where the piezoelectric transducer is
assumed massless and is connected to a mass M . The force acting on the
mass is the negative of that acting on the transducer, f = −Mẍ; using
(3.22), {

Q
−Mẍ

}
=

[
C(1− k2) nd33Ka

−nd33Ka Ka

] {
V
x

}
(3.34)
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From the second equation, one gets (in Laplace form)

x =
nd33Ka

Ms2 + Ka

and, substituting in the first one and using (3.23), one finds

Q

V
= C(1− k2)

[
Ms2 + Ka/(1− k2)

Ms2 + Ka

]
(3.35)

It follows that the admittance reads:

I

V
=

sQ

V
= sC(1− k2)

s2 + z2

s2 + p2
(3.36)

where the poles and zeros are respectively

p2 =
Ka

M
and z2 =

Ka/(1− k2)
M

(3.37)

p is the natural frequency with short-circuited electrodes (V = 0) and z
is the natural frequency with open electrodes (I = 0). From the previous
equation one sees that

z2 − p2

z2
= k2 (3.38)

which constitutes a practical way to determine the electromechanical cou-
pling factor from the poles and zeros of admittance (or impedance) FRF
measurements (Fig.3.12.b).
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3.8 Problems

P.3.1 Consider the piezoelectric linear transducer of Fig.3.10; assuming
that all the electrical and mechanical quantities are uniformly distributed,
show that the constitutive equations of the transducer, Equ.(3.22) can be
derived from those of the material, Equ.(3.19).
P.3.2 A piezoelectric transducer supporting an inertial mass M (Fig.3.12.a)
can be used as an accelerometer. Assuming that the transducer is placed
on a surface subjected to an acceleration ẍ0 and that it is connected to
a charge amplifier enforcing the electrical boundary conditions V = 0,
establish the relationship between the the support acceleration and the
electric charge Q. Discuss the conditions under which this system can be
used to measure ẍ0 (some damping may be introduced in the system by
assuming a mechanical behavior f = (Ka + cs)∆ instead of f = Ka∆).
P.3.3 Draw the cycle diagrams (f,∆) and (V,Q) of the physical interpre-
tations of the electromechanical coupling factor k2, in section 3.6.2.
P.3.4 Represent the discrete piezoelectric transducer (3.24) in the elec-
trical analog form of Fig.3.6.
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Piezoelectric beam, plate and truss

4.1 Piezoelectric material

4.1.1 Constitutive relations

The constitutive equations of a general piezoelectric material are

Tij = cE
ijklSkl − ekijEk (4.1)

Di = eiklSkl + εS
ikEk (4.2)

where Tij and Skl are the components of the stress and strain tensors,
respectively, cE

ijkl are the elastic constants under constant electric field
(Hooke’s tensor), eikl the piezoelectric constants (in Coulomb/m2) and
εS
ij the dielectric constant under constant strain. These formulae use clas-

sical tensor notations, where all indices i, j, k, l = 1, 2, 3, and there is a
summation on all repeated indices. The above equations are a general-
ization of (3.19), with Skl and Ej as independent variables; they can be
written alternatively with Tkl and Ej as independent variables:

Sij = sE
ijklTkl + dkijEk (4.3)

Di = diklTkl + εT
ikEk (4.4)

where sE
ijkl is the tensor of compliance under constant electric field, dikl

the piezoelectric constants (in Coulomb/Newton) and εT
ik the dielectric

constant under constant stress. The difference between the properties un-
der constant stress and under constant strain has been stressed earlier.
As an alternative to the above tensor notations, it is customary to use
the engineering vector notations
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T =





T11

T22

T33

T23

T31

T12





S =





S11

S22

S33

2S23

2S31

2S12





(4.5)

With these notations, Equ.(4.1) (4.2) can be written in matrix form

{T} = [c]{S} − [e]{E}
{D} = [e]T {S}+ [ε]{E} (4.6)

and (4.3), (4.4),

{S} = [s]{T}+ [d]{E}
{D} = [d]T {T}+ [ε]{E} (4.7)

where the superscript T stands for the transposed; the other superscripts
have been omitted, but can be guessed from the equation itself. Assum-
ing that the coordinate system coincides with the orthotropy axes of the
material and that the direction of polarization coincides with direction 3,
the explicit form of (4.7) is:

Actuation :




S11

S22

S33

2S23

2S31

2S12





=




s11 s12 s13 0 0 0
s12 s22 s23 0 0 0
s13 s23 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s55 0
0 0 0 0 0 s66








T11

T22

T33

T23

T31

T12





+




0 0 d31

0 0 d32

0 0 d33

0 d24 0
d15 0 0
0 0 0








E1

E2

E3





(4.8)

Sensing :





D1

D2

D3





=




0 0 0 0 d15 0
0 0 0 d24 0 0

d31 d32 d33 0 0 0








T11

T22

T33

T23

T31

T12





+




ε11 0 0
0 ε22 0
0 0 ε33








E1

E2

E3





(4.9)
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Typical values of the piezoelectric constants for piezoceramics (PZT) and
piezopolymers (PVDF) are given Table 3.1. Examining the actuator equa-
tion (4.8), we note that when an electric field E3 is applied parallel to
the direction of polarization, an extension is observed along the same
direction; its amplitude is governed by the piezoelectric coefficient d33.
Similarly, a shrinkage is observed along the directions 1 and 2 perpendic-
ular to the electric field, the amplitude of which is controlled by d31 and
d32, respectively (shrinkage, because d31 and d32 are negative). Piezoce-
ramics have an isotropic behaviour in the plane, d31 = d32; on the con-
trary, when PVDF is polarized under stress, its piezoelectric properties
are highly anisotropic, with d31 ∼ 5d32. Equation (4.8) also indicates that
an electric field E1 normal to the direction of polarization 3 produces a
shear deformation S13, controlled by the piezoelectric constant d15 (sim-
ilarly, a shear deformation S23 occurs if an electric field E2 is applied; it
is controlled by d24). An interesting feature of this type of actuation is
that d15 is the largest of all piezoelectric coefficients (500 10−12C/N for
PZT). The various modes of operation associated with the piezoelectric
coefficients d33, d31 and d15 are illustrated in Fig.4.1.

4.1.2 Coenergy density function

With an approach parallel to that of the discrete transducer, the total
stored energy density in a unit volume of material is the sum of the
mechanical work and the electrical work,

dWe(S,D) = {dS}T {T}+ {dD}T {E} (4.10)

[compare with (3.25)]. For a conservative system, We(S, D) can be ob-
tained by integrating (4.10) from the reference state to the state (S,D);
since the system is conservative, the integration can be done along any
path from (0, 0) to (S, D). Upon differentiating We(S,D) and comparing
with (4.10) we recover the constitutive equations

{T} =
{

∂We

∂S

}
and {E} =

{
∂We

∂D

}
(4.11)

which are the distributed counterparts of (3.27). The coenergy density
function is defined by the Legendre transformation

W ∗
e (S, E) = {E}T {D} −We(S, D) (4.12)

[compare with (3.29)]. The total differential is
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Fig. 4.1. Actuation modes of piezoelectric actuators. P indicates the direction of
polarization.

dW ∗
e = {dE}T {D}+ {E}T {dD} − {dS}T

{
∂We

∂S

}
− {dD}T

{
∂We

∂D

}

= {dE}T {D} − {dS}T {T} (4.13)

where (4.11) have been used. It follows that

{D} =
{

∂W ∗
e

∂E

}
and {T} = −

{
∂W ∗

e

∂S

}
(4.14)

Substituting (4.6) into (4.13),

dW ∗
e = {dE}T [e]T {S}+ {dE}T [ε]{E} − {dS}T [c]{S}+ {dS}T [e]{E}

(4.15)
which is the total differential of

W ∗
e (S, E) =

1
2
{E}T [ε]{E}+ {S}T [e]{E} − 1

2
{S}T [c]{S} (4.16)
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Material properties PZT PVDF

Piezoelectric constants
d33(10−12C/N or m/V ) 300 -25
d31(10−12C/N or m/V ) -150 uni-axial:

d31 = 15
d32 = 3
bi-axial:

d31 = d32 = 3
d15(10−12C/N or m/V ) 500 0

e31 = d31/sE(C/m2) -7.5 0.025
Electromechanical coupling factor

k33 0.7
k31 0.3 ∼ 0.1
k15 0.7

Dielectric constant εT /ε0 1800 10
(ε0 = 8.85 10−12F/m)

Max. Electric field (V/mm) 2000 5 105

Max. operating (Curie) T ◦ (◦C) 80◦ − 150◦ 90◦

Density (Kg/m3) 7600 1800
Young’s modulus 1/sE (GPa) 50 2.5

Maximum stress (MPa)
Traction 80 200

Compression 600 200
Maximum strain Brittle 50 %

Table 4.1. Typical properties of piezoelectric materials.

[compare with (3.32)]. The first term in the right hand side is the electrical
coenergy stored in the dielectric material (ε is the matrix of permittivity
under constant strain); the third term is the strain energy stored in the
elastic material (c is the matrix of elastic constants under constant elec-
tric field); the second term is the piezoelectric coenergy, which generalizes
(3.33) in three dimensions. Taking the partial derivatives (4.14), one re-
covers the constitutive equations (4.6). In that sense, the analytical form
of the coenergy density function, (4.16) together with (4.14), can be seen
as an alternative definition of the linear piezoelectricity. In the literature,

H(S,E) = −W ∗
e (S,E) (4.17)



72 4 Piezoelectric beam, plate and truss

is known as the electric enthalpy density.

4.2 Hamilton’s principle

According to Hamilton’s principle, the variational indicator

V.I. =
∫ t2

t1
[δ(T ∗ + W ∗

e ) + δWnc]dt = 0 (4.18)

is stationary for all admissible (virtual) variations δui and δEi of the path
between the two fixed configurations at t1 and t2.

T ∗ =
1
2

∫

Ω
%{u̇}T {u̇}dΩ (4.19)

is the kinetic (co)energy (% is the density) and

W ∗
e =

1
2

∫

Ω

(
{E}T [ε]{E}+ 2{S}T [e]{E} − {S}T [c]{S}

)
dΩ (4.20)

has been defined in the previous section. T ∗ + W ∗
e is the Lagrangian and

δWnc is the virtual work of nonconservative external forces and applied
currents.

4.3 Piezoelectric beam actuator

Consider the piezoelectric beam of Fig.4.2; it is covered with a single
piezoelectric layer of uniform thickness hp, polarized along the z axis; the
supporting structure is acting as electrode on one side and there is an
electrode of variable width bp(x) on the other side. The voltage difference
between the electrodes is controlled, so that the part of the piezoelectric
material located between the electrodes is subjected to an electric field
E3 parallel to the polarization (note that the piezoelectric material which
is not covered by the electrode on both sides is useless as active material).
We denote by w(x, t) the transverse displacements of the beam; according
to the Euler-Bernoulli assumption, the stress and strain fields are uniaxial,
along Ox; the axial strain S1 is related to the curvature w

′′
by

S1 = −zw
′′

(4.21)

where z is the distance to the neutral axis. We also assume that the piezo-
electric layer is thin enough, so that E3 is constant across the thickness.
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Fig. 4.2. Piezoelectric beam covered by a single piezoelectric layer with an electrode
profile of width bp(x).

4.3.1 Hamilton’s principle

The kinetic coenergy reads

T ∗ =
1
2

∫ l

0
%Aẇ2dx (4.22)

where A is the cross-section of the beam. Both the electric field and the
strain vectors have a single non-zero component, respectively E3 and S1;
the coenergy function (4.20) is therefore

W ∗
e =

1
2

∫ l

0
dx

∫

A

(
ε33E

2
3 + 2S1e31E3 − c11S

2
1

)
dA (4.23)

and, combining with (4.21),

W ∗
e =

1
2

∫ l

0
dx

∫

A

(
ε33E

2
3 − 2w

′′
ze31E3 − c11w

′′2
z2

)
dA (4.24)

The first contribution to W ∗
e is restricted to the piezoelectric part of the

beam under the electrode area; the integral over the cross section can
be written ε33E

2
3bphp. The second contribution is also restricted to the

piezoelectric layer; taking into account that
∫

A
zdA =

∫ h2

h1

bp z dz = bphpzm

where zm is the distance between the mid-plane of the piezoelectric layer
and the neutral axis (Fig.4.2), it can be written −2w

′′
e31E3bphpzm. The
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third term in W ∗
e can be rewritten by introducing the bending stiffness

(we give up the classical notation EI familiar to structural engineers to
avoid confusion)

D =
∫

A
c11z

2dA (4.25)

Thus, W ∗
e reads

W ∗
e =

1
2

∫ l

0

(
ε33E

2
3bphp − 2w

′′
e31E3bphpzm −Dw

′′2)
dx

Next, we can apply Hamilton’s principle, recalling that only the vertical
displacement is subject to virtual changes, δw, since the electric potential
is fixed (voltage control). Integrating by part the kinetic energy with
respect to time and taking into account that δw(x, t1) = δw(x, t2) = 0,

∫ t2

t1
δT ∗dt =

∫ t2

t1
dt

∫ l

0
%Aẇ δẇ dx = −

∫ t2

t1
dt

∫ l

0
%Aẅ δw dx

Similarly,

δW ∗
e =

∫ l

0
[−δw

′′
(e31E3bphpzm)−Dw

′′
δw

′′
]dx

and, integrating by part twice with respect to x,

δW ∗
e = − (e31E3bphpzm) δw′

]l

0
+(e31E3bphpzm)

′
δw

]l

0
−

∫ l

0
(e31E3bphpzm)

′′
δw dx

−Dw
′′
δw

′
]l

0
+ (Dw

′′
)
′
δw

]l

0
−

∫ l

0
(Dw

′′
)
′′
δw dx

The virtual work of nonconservative forces is

δWnc =
∫ l

0
p(x, t)δw dx

where p(x, t) is the distributed transverse load applied to the beam. In-
troducing in Hamilton’s principle (4.18), one gets that

V.I. =
∫ t2

t1
dt

∫ l

0

[
−%Aẅ − (e31E3bphpzm)

′′ −
(
Dw

′′)′′
+ p

]
δw dx

−
[(

e31E3bphpzm +Dw
′′)

δw
′]l

0
+

[
{(e31E3bphpzm)

′
+

(
Dw

′′)′}δw
]l

0
= 0

for all admissible variations δw compatible with the kinematics of the
system (i.e. boundary conditions); let us discuss this equation.
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4.3.2 Piezoelectric loads

It follows from the previous equation that the differential equation gov-
erning the problem is

%Aẅ +
(
Dw

′′)′′
= p− (e31E3bphpzm)

′′
(4.26)

If one takes into account that only bp depends on the spatial variable
x and that E3hp = V , the voltage applied between the electrodes of the
piezoelectric layer, it becomes

%Aẅ +
(
Dw

′′)′′
= p− e31V zmbp

′′
(x) (4.27)

This equation indicates that the effect of the piezoelectric layer is equiva-
lent to a distributed load proportional to the second derivative of the width
of the electrode.

Examining the remaining terms, one must also have
(
e31E3bphpzm +Dw

′′)
δw

′
= 0

[
(e31E3bphpzm)

′
+

(
Dw

′′)′]
δw = 0 at x = 0 and x = l (4.28)

The first condition states that at an end where the rotation is free (where
a virtual rotation is allowed, δw′ 6= 0), one must have

e31V bpzm +Dw
′′

= 0 (4.29)

This means that the effect of the piezoelectric layer is that of a bending
moment proportional to the width of the electrode. Similarly, the second
condition states that at an end where the displacement is free (where a
virtual displacement is allowed, δw 6= 0), one must have

e31V b
′
pzm +

(
Dw

′′)′
= 0 (4.30)

(
Dw

′′)′
represents the transverse shear force along the beam in classical

beam theory, and step changes of the shear distribution occur where point
loads are applied. This means that the effect of a change of slope b′p in the
width of the electrode is equivalent to a point force proportional to change
of the first derivative of the electrode width. One should always keep in
mind that the piezoelectric loading consists of internal forces which are
always self-equilibrated.
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Fig. 4.3. Examples of electrode shapes and corresponding piezoelectric loading: (a)
rectangular electrode, (b) triangular electrode, (c) parabolic electrode. The piezoelectric
loading is always self-equilibrated.

Figure 4.3 shows a few examples of electrode shapes and the cor-
responding piezoelectric loading. A rectangular electrode (Fig.4.3.a) is
equivalent to a pair of bending moments Mp applied at the ends of the
electrode. A triangular electrode (Fig.4.3.b) is equivalent to a pair of point
forces P and a bending moment Mp; note that if the beam is clamped on
the left side, the corresponding loads will be taken by the support, and
the only remaining force is the point load at the right end. A parabolic
electrode (Fig.4.3.c) is equivalent to a uniform distributed load p and a
pair of point forces P at the ends.
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As another example, consider the electrode shape of Fig.4.4. It consists
of a rectangular part of length l1, followed by a part with constant slope,
of length l2. According to the foregoing discussion, this is equivalent to
bending moments M1 and M2 at the extremities of the electrodes, and
point forces P at the location where there is a sudden change in the first
derivative b

′
(x). Once again, the piezoelectric loading is self-equilibrated.

l1

l2

b1

b2

P

P

M1

M2

M1 = à e31V b1 zm

M2 = à e31V b2 zm
P = à e31V (

l2

b2àb1)zm

Fig. 4.4. Self-equilibrated equivalent piezoelectric loading for an electrode with a sud-
den change in b′p(x).

4.4 Laminar sensor

4.4.1 Current and charge amplifiers

When used in sensing mode, a piezoelectric transducer is coupled to
an operational amplifier (Fig.4.5.a) to form either a current amplifier
(Fig.4.5.b), or a charge amplifier (Fig.4.5.c). An operational amplifier is
an active electrical circuit working as a high gain linear voltage ampli-
fier with infinite input resistance (so that the input currents i− and i+
are essentially zero), and zero output resistance, so that the output volt-
age e0 is essentially proportional to the voltage difference e+ − e−; the
open loop gain A is usually very high, which means that the allowable
input voltage is very small (millivolt). As a result, when the electrodes
of a piezoelectric transducer are connected to an operational amplifier,
they can be regarded as short-circuited and the electric field through the
piezo can be considered as E3 = 0. Then, it follows from the constitutive
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Fig. 4.5. (a) Operational amplifier, (b) Current amplifier, (c) Charge amplifier.

equation (4.2) that the electric displacement is proportional to the strain

D3 = e31S1 (4.31)

4.4.2 Distributed sensor output

If one assumes that the piezoelectric sensor is thin with respect to the
beam, the strain can be regarded as uniform over its thickness, S1 =
−zmw

′′
, and E3 = 0 is enforced by the charge amplifier; integrating over

the electrode area (Fig.4.2), one gets

Q =
∫

D3dA = −
∫ b

a
bp(x)zme31w

′′
dx = −zme31

∫ b

a
bp(x)w

′′
dx (4.32)

with a constant polarization profile e31. It is assumed that the sensor
extends from x = a to x = b along the beam. Thus, the amount of elec-
tric charge is proportional to the weighted average of the curvature, the
weighing function being the width of the electrode. For an electrode with
constant width,
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Q = −zme31bp[w
′
(b)− w

′
(a)] (4.33)

The sensor output is proportional to the difference of slopes (i.e. rotations)
at the extremities of the sensor strip. We note that this result is dual of
that of Fig.4.3.a, where the piezoelectric transducer is used in actuation
mode.

Equation (4.32) can be integrated by parts, twice, leading to

∫ b

a
w
′′
bp(x)dx = w

′
bp

]b

a
− wb

′
p

]b

a
+

∫ b

a
w b

′′
dx (4.34)

If, as an example, one considers the case of a cantilever beam clamped at
x = 0 and covered with a piezoelectric strip and an electrode of triangular
shape extending over the whole length as in Fig.4.3.b (a = 0 and b = l),
w(0) = w

′
(0) = 0 (cantilever beam) and b

′′
p = 0, bp(l) = 0, b

′
p = −bp(0)/l

(triangular electrode). Substituting into the foregoing equations, one gets

Q = −zme31
bp(0)

l
w(l) ∼ w(l) (4.35)

Thus, the output signal is proportional to the tip displacement of the
cantilever beam. Once again, this result is dual of that obtained in actua-
tion mode (the piezoelectric loading is a point force at the tip). Similarly,
if one considers a parabolic electrode as in Fig.4.3.c and if the beam is
such that w(0) = w(l) = 0 (this includes pinned-pinned, pinned-clamped,
etc), we have bp(0) = bp(l) = 0 and b

′′
p(x) = −8b/l2 and, substituting into

(4.34),

Q = zme31
8b

l2

∫ l

0
w(x)dx ∼

∫ l

0
w(x)dx (4.36)

Thus, the output signal is proportional to the volume displacement, which
is, once again, dual of the uniform distributed load in actuation mode.
All the above results are based on the beam theory which is essentially
one-dimensional; their accuracy in practical applications will depend very
much on the relevance of these assumptions for the applications con-
cerned. This issue is important in applications, especially in collocated
control systems.

4.4.3 Charge amplifier dynamics

According to Fig.4.5.c, the output voltage is proportional to the amount
of electric charge generated on the electrode; the amplifier gain is fixed
by the capacitance C. This relation is correct at frequencies beyond some
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corner frequency depending on the amplifier construction, but does not
apply statically (near ω = 0). If a refined model of the charge amplifier
is required, this behavior can be represented by adding a second order
high-pass filter

F (s) =
s2

s2 + 2ξcωcs + ω2
c

(4.37)

with appropriate parameters ωc and ξc. For frequencies well above the
corner frequency ωc, F (s) behaves like a unit gain.

4.5 Spatial modal filters

4.5.1 Modal actuator

According to (4.27), a piezoelectric layer with an electrode of width bp(x)
is equivalent to a distributed transverse load proportional to b

′′
p(x). Let

w(x, t) =
∑

i

zi(t)φi(x) (4.38)

be the modal expansion of the transverse displacements, where zi(t) are
the modal amplitudes, and φi(x) the mode shapes, solutions of the eigen-
value problem

[
Dφ

′′
i (x)

]′′
− ω2

i %Aφi = 0 (4.39)

They satisfy the orthogonality conditions
∫ l

0
%Aφi(x)φj(x)dx = µiδij (4.40)

∫ l

0
D φ

′′
i (x)φ

′′
j (x)dx = µiω

2
i δij (4.41)

where µi is the modal mass, ωi the natural frequency of mode i, and δij

is the Kronecker delta (δij = 1 if i = j, δij = 0 if i 6= j). Substituting
(4.38) into (4.27) (assuming p = 0), one gets

%A
∑

i

z̈iφi +
∑

i

zi(Dφ
′′
i )
′′

= −e31V b
′′
pzm

or using (4.39),
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%A
∑

i

z̈iφi + %A
∑

i

ziω
2
i φi = −e31V b

′′
pzm

where the sums extend over all modes. Upon multiplying by φk(x), inte-
grating over the length of the beam, and using the orthogonality condition
(4.40), one finds easily the equation governing the modal amplitude zk:

µk(z̈k + ω2
kzk) = −e31V zm

∫ l

0
b
′′
p(x)φk(x)dx (4.42)

The right hand side is the modal force pk applied by the piezoelectric strip
to mode k. From the first orthogonality condition (4.40), it is readily seen
that if the electrode profile is chosen in such a way that

b
′′
p ∼ %Aφl(x) (4.43)

all the modal forces pk vanish, except pl:

pk ∼ −e31V zm

∫ l

0
%Aφlφkdx ∼ −e31V zmµlδkl (4.44)

such an electrode profile will excite only mode l; it constitutes a modal
actuator (for mode l).

4.5.2 Modal sensor

Similarly, if the piezoelectric layer is used as a sensor, the electric charge
appearing on the sensor is given by (4.32). Introducing the modal expan-
sion (4.38),

Q = −zme31

∑

i

zi(t)
∫ l

0
bp(x)φ

′′
i (x)dx (4.45)

Comparing this equation with the second orthogonality conditions (4.41),
one sees that any specific mode can be made unobservable by choosing the
electrode profile in such a way that the integral vanishes. If the electrode
profile is chosen according to

bp(x) ∼ Dφ
′′
l (x) (4.46)

(proportional to the distribution of the bending moment of mode l), the
output charge becomes
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Fig. 4.6. Electrode profile of modal filters for the first two modes of a uniform beam
for various boundary conditions: left: cantilever, right: simply supported.

Q ∼ −zme31µlω
2
l zl(t) (4.47)

It contains only a contribution from mode l. This electrode profile consti-
tutes a modal sensor. Note that, for a uniform beam, (4.39) implies that
the mode shapes satisfy φIV

i (x) ∼ φi(x). It follows that the electrode
profile of a modal sensor also satisfies that of a modal actuator: from
(4.46),

b
′′
p(x) ∼ φIV

l (x) ∼ φl(x) (4.48)

which satisfies (4.43). Figure 4.6 illustrates the electrode profile of modal
filters used for a uniform beam with various boundary conditions; the
change of sign indicates a change in polarity of the piezoelectric strip,
which is equivalent to negative values of bp(x). As an alternative, the
part of the sensor with negative polarity can be bonded on the opposite
side of the beam, with the same polarity. The reader will notice that the
electrode shape of the simply supported beam is the same as the mode
shape itself, while for the cantilever beam, the electrode shape is that of
the mode shape of a beam clamped at the opposite end.

Modal filters constitute an attractive option for spillover alleviation,
because they allow one to minimize the controllability and observability
of a known set of modes. In practical applications, however, the beam
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approximation often provides fairly poor modal filters, because the piezo-
electric layer reacts as an orthotropic material rather than a unidirectional
one (Preumont et al., 2003).

4.6 Active beam with collocated actuator-sensor

x

M M

F.E. model

Actuator

Sensor

yi

iq1
x

2

Fig. 4.7. Active cantilever beam with collocated piezoelectric actuator and sensor.
Every node has 2 d.o.f. (yi and θi)

Consider a beam provided with a pair of rectangular piezoelectric ac-
tuator and sensor (Fig.4.7). The two patches do not have to be of the
same size, nor have the same material properties, but they are collocated
in the sense of the Euler-Bernoulli beam theory, which means that they
extend over the same length along the beam. The system can, for exam-
ple, be modelled by finite elements; the mesh is such that there is a node
at both ends of the piezo patches (each node has two degrees of freedom,
one translation yi and one rotation θi). We seek the open-loop FRF be-
tween the voltage V (t) applied to the actuator, and the output voltage
v0(t) of the sensor (assumed to be connected to a charge amplifier).

4.6.1 Frequency response function

According to Fig.4.3.a, the rectangular piezoelectric actuator is equivalent
to a pair of torques M with opposite signs and proportional to V :

M = −e31zmbpV = gaV (4.49)
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where ga is the actuator gain which can be computed from the actuator
size and the material properties. In the general form of the equation of
motion, the external force vector in a FE model is

f = bM = bgaV (4.50)

where the influence vector b has the form bT = (.., 0,−1, 0, 1, ...); the
only non-zero components correspond to the rotational degrees of freedom
of the nodes located at x = x1 and x = x2 in the model. In modal
coordinates, the system dynamics is governed by a set of independent
second order equations

z̈k + 2ξkωkżk + ω2
kzk =

φT
k f

µk
=

pk

µk
(4.51)

where ωk is the natural frequency of mode k, ξk the modal damping ratio
and µk the modal mass. Using the Laplace variable s, we can write it
alternatively as

zk =
pk

µk(s2 + 2ξkωks + ω2
k)

(4.52)

The modal forces pk represent the work of the external loading on the
various mode shapes:

pk = φT
k f = φT

k bgaV = gaV ∆θa
k (4.53)

where ∆θa
k = φT

k b is the relative rotation [difference of slope w′(x2) −
w′(x1)] between the extremities of the actuator, for mode k. Similarly,
according to (4.33), the sensor output is also proportional to the difference
of slopes, that is the relative rotation of the extremities of the sensor,4θs.
In modal coordinates,

v0 = gs∆θs = gs

∑

i

zi∆θs
i (4.54)

where gs is the sensor gain, depending on the sensor size, material prop-
erties and on the charge amplifier gain (which converts the electric charge
into voltage), and ∆θs

i are the modal components of the relative rotation
between the extremities of the sensor. Note that if the sensor and the ac-
tuator extend over the same length of the beam, they can be considered
as collocated in the sense of the Euler-Bernoulli beam theory, and

∆θs
i = ∆θa

i = ∆θi (4.55)
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Combining the foregoing equations, one easily gets the transfer function
between the actuator voltage V and the sensor output v0; the FRF follows
by substituting s = jω.

v0

V
= G(ω) = gags

n∑

i=1

∆θ2
i

µi
(
ω2

i − ω2 + 2jξiωiω
) (4.56)

4.6.2 Pole-zero pattern

For an undamped system, the FRF is purely real:

v0

V
= G(ω) = gags

n∑

i=1

∆θ2
i

µi
(
ω2

i − ω2
) (4.57)

All the residues of the modal expansion are positive and G(ω) is an in-
creasing function of ω similar to that represented in Fig.2.5; the pole-zero
pattern is that of Fig.2.6.a. As explained in chapter 2, for a lightly damped
structure, the poles and zeros are slightly moved to the left half plane as
in Fig.2.6.b. The position of the zeros in the complex plane depends on
the position of the actuator/sensor pair along the beam, while the poles
do not. The Bode and Nyquist plots of such a system are always similar
to those of Fig.2.8. Once again, this interlacing property of the poles and

Fig. 4.8. Experimental open-loop FRF G(ω) of a piezoelectric beam similar to that of
Fig.4.7.
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zeros is of fundamental importance in control system design for lightly
damped vibrating systems, because it is possible to find a fixed controller
with guaranteed stability, irrespective to changes in the mass and stiffness
distribution of the system.

Figure 4.8 shows typical experimental results obtained with a system
similar to that of Fig.4.6. Observe that G(ω) does not exhibit any roll-off
(decay) at high frequency; this indicates a feedthrough component in the
system, which is not apparent from the modal expansion (4.56) (according
to which the high frequency behavior is as ω−2). It will become clearer
when we consider the modal truncation. 1

4.6.3 Modal truncation

Let us now examine the modal truncation of (4.56) which normally in-
cludes all the modes of the system (a finite number n with a discrete
model, or infinite if one looks at the system as a distributed one). Ob-
viously, if one wants an accurate model in some frequency band [0, ωc],
all the modes (with significant residues) which belong to this frequency
band must be included in the truncated expansion, but the high frequency
modes cannot be completely ignored. To analyze this, one rewrites (4.56)

G(ω) = gags

n∑

i=1

∆θ2
i

µiω2
i

.Di(ω) (4.58)

where

Di(ω) =
n∑

i=1

1
1− ω2/ω2

i + 2jξiω/ωi
(4.59)

is the dynamic amplification of mode i. For any mode with a natural
frequency ωi substantially larger than ωc, on see from Fig.2.2 that Di(ω) '
1 within [0, ωc] and the sum (4.58) may be replaced by

G(ω) = gags

m∑

i=1

∆θ2
i

µiω2
i

.Di(ω) + gags

n∑

i=m+1

∆θ2
i

µiω2
i

(4.60)

where m has been selected in such a way that ωm À ωc. This equation
recognizes the fact that, at low frequency, the high frequency modes re-
spond in a quasi-static manner. The sum over the high frequency modes
can be eliminated by noting that the static gain satisfies
1 Another observation is that a small linear shift appears in the phase diagram, due to

the fact that these results have been obtained digitally (the sampling is responsible
for a small delay in the system).
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G(0) = gags

n∑

i=1

∆θ2
i

µiω2
i

(4.61)

leading to

G(ω) = gags

m∑

i=1

∆θ2
i

µiω2
i

.Di(ω) + [G(0)− gags

m∑

i=1

∆θ2
i

µiω2
i

] (4.62)

The term between brackets, independent of ω, which corresponds to the
high frequency modes is often called the residual mode. This equation can
be written alternatively

G(ω) = G(0) + gags

m∑

i=1

∆θ2
i

µiω2
i

.[Di(ω)− 1]

or

G(ω) = G(0) + gags

m∑

i=1

∆θ2
i

µiω2
i

(ω2 − 2jξiωiω)
(ω2

i − ω2 + 2jξiωiω)
(4.63)

The feedthrough component observed in Fig.4.8 is clearly apparent in
(4.62). Note that the above equations require the static gain G(0), but do
not require the knowledge of the high frequency modes.

It is important to emphasize the fact that the quasi-static correction
has a significant impact on the open-loop zeros of G(ω), and consequently
on the performance of the control system. Referring to Fig.2.5, it is clear
that neglecting the residual mode (quasi-static correction) amounts to
shifting the diagram G(ω) along the vertical axis; this operation alters
the location of the zeros which are at the crossing of G(ω) with the hori-
zontal axis. Including the quasi-static correction tends to bring the zeros
closer to the poles which, in general, tends to reduce the performance
of the control system. Thus, it is a fairly general statement to say that
neglecting the residual mode (high frequency dynamics) tends to overesti-
mate the performance of the control system. Finally, note that since the
piezoelectric loads are self-equilibrated, they would not affect the rigid
body modes if there were any.

4.7 Admittance of a beam with a piezoelectric patch

Let us consider a beam provided with a single piezoelectric patch and
establish the analytical expression of the admittance FRF, or equivalently
of the dynamic capacitance. Assuming a rectangular patch of length l
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(from x1 to x2), width bp, thickness t, and distant zm from the mid-plane
of the beam, applying a voltage V generates a pair of self-equilibrated
moments M = −e31bpzmV . As in the previous section, the response of
mode i is governed by (assuming no damping)

µiz̈i + µiω
2
i zi = M∆θi (4.64)

or
zi = −e31bpzmV

∆θi

µi(s2 + ω2
i )

(4.65)

where ∆θi = φ′i(x2) − φ′i(x1) is the difference of slope of mode i at the
ends of the patch. The beam deflection is

w =
n∑

i=1

ziφi(x) = −e31bpzmV
n∑

i=1

∆θiφi(x)
µi(s2 + ω2

i )
(4.66)

In the previous section, the charge amplifier cancelled the electric field
across the sensor. Here, we must use the second constitutive equation of
a unidirectional piezoelectric material

D = εT (1− k2)E + e31S (4.67)

with the electric field E = V/t; it is assumed that t << zm and that
the strain level is uniform across the thickness of the patch, leading to
S = −zmw′′ according to the Bernoulli assumption. The electric charge
is obtained by integrating over the area of the electrode

Q =
∫

A
D dA =

∫

A
εT (1− k2)

V

t
dA− e31zmbp

∫ x2

x1

w′′dx

Q = (1− k2)CV − e31zmbp[w′(x2)− w′(x1)]

Thus,
Q

(1− k2)CV
= 1 +

(e31zmbp)2

(1− k2)C

n∑

i=1

∆θ2
i

µi(s2 + ω2
i )

(4.68)

or, after using (3.20) and C = εT bpl/t

Q

(1− k2)CV
= 1 +

k2

1− k2

n∑

i=1

cEbptz
2
m∆θ2

i

l µiω2
i

1
1 + s2/ω2

i

(4.69)

If one notes that the average strain in the piezo patch is S̄ = −zm∆θ/l
and bplt is the volume of the patch, the strain energy in the patch when
the structure vibrates according to mode i can be written approximately
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We ' S̄2.cE .bplt

2
=

cEz2
m∆θ2

i bpt

2l
(4.70)

Since µiω
2
i /2 is the total strain energy in the beam when it vibrates

according to mode i, the residues in the modal expansion represent the
fraction of modal strain energy in the piezo patch, for mode i:

νi =
cEbptz

2
m∆θ2

i

l µiω2
i

= {Strain energy in the piezo patch
Strain energy in the beam

}i (4.71)

and the relation between Q and V reads finally

Q

(1− k2)CV
= 1 +

k2

1− k2

n∑

i=1

νi

1 + s2/ω2
i

(4.72)

or equivalently, the dynamic capacitance reads

Q

V
= C(1− k2)[1 +

n∑

i=1

K2
i

1 + s2/ω2
i

] (4.73)

where

K2
i =

k2νi

1− k2
(4.74)

is known as the effective electromechanical coupling factor for mode i.
C(1− k2) is the blocked capacitance of the piezo. The static capacitance
(at ω = 0) is given by

Cstat = {Q

V
}ω=0 = C(1− k2)(1 +

n∑

i=1

K2
i ) (4.75)

The poles of the FRF are the natural frequencies ωi of the beam with
short-circuited electrodes, while the zeros correspond to the natural fre-
quencies Ωi with open electrodes (Q = 0). Typically, Ωi is very close to
ωi, so that in the vicinity of ω = Ωi, the modal expansion is dominated
by the contribution of mode i. It follows that Ωi satisfies the equation

1 +
K2

i

1−Ω2
i /ω2

i

' 0 (4.76)

or

K2
i '

Ω2
i − ω2

i

ω2
i

(4.77)
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Thus, the effective electromechanical coupling factor of all modes can be
evaluated from a single admittance FRF test (the poles of which are ωi

and the zeros are Ωi). The foregoing formula is an extension of (3.38).2

Formula (4.73) can be written alternatively

Q

V
= Cstat.

∏
(1 + s2/Ω2

i )∏
(1 + s2/ω2

j )
(4.78)

4.8 Piezoelectric laminate

In the first part of this chapter, the partial differential equation governing
the dynamics of a piezoelectric beam, and the equivalent piezoelectric
loads were established from Hamilton’s principle. A similar approach can
be used for piezoelectric laminates, but it is lengthy and cumbersome.
The analytical expression for the equivalent piezoelectric loads and the
sensor output can be obtained alternatively, as in the classical analysis
of laminate composites, by using the appropriate constitutive equations;
this is essentially the approach followed by (C.K. Lee, 1990).

4.8.1 Two dimensional constitutive equations

Consider a two dimensional piezoelectric laminate in a plane (x, y): the
poling direction z is normal to the laminate and the electric field is also
applied along z. In the piezoelectric orthotropy axes, the constitutive
equations (4.1) (4.2) read

{T} = [c]{S} −





e31

e32

0





E3 (4.79)

D3 = {e31 e32 0}{S}+ εE3 (4.80)

where

{T} =





T11

T22

T12





{S} =





S11

S22

2S12





=





∂u/∂x
∂v/∂y

∂u/∂y + ∂v/∂x





(4.81)

2 the presence of ωi instead of Ωi at the denominator of (4.77) is insignificant in
practice.
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are the stress and strain vector, respectively, [c] is the matrix of elastic
constants under constant electric field, E3 is the component of the electric
field along z, D3 is the z component of the electric displacement and ε
the dielectric constant under constant strain (εS).

4.8.2 Kirchhoff theory

Following the Kirchhoff theory (e.g. Agarwal and Broutman, 1990), we as-
sume that a line originally straight and normal to the midplane remains so
in the deformed state. This is equivalent to neglecting the shear deforma-
tions S23 and S31. If the midplane undergoes a displacement u0 , v0 , w0 ,
a point located on the same normal at a distance z from the midplane
undergoes the displacements (Fig.4.9)

A

B

B

A

wo

ë = @w0=@x

u = uoà ëz

uo

z

w

x

Fig. 4.9. Kinematics of a Kirchhoff plate.

u = u0 − z
∂w0

∂x

v = v0 − z
∂w0

∂y
(4.82)

w = w0

The corresponding strains are

{S} = {S0}+ z{κ} (4.83)

where
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{S0} =





S0
11

S0
22

2S0
12





=





∂u0/∂x
∂v0/∂y

∂u0/∂y + ∂v0/∂x





(4.84)

are the midplane strains and

{κ} =





κ11

κ22

κ12





= −





∂2w0/∂x2

∂2w0/∂y2

2∂2w0/∂x∂y





(4.85)

are the curvatures (the third component represents twisting). The stresses
in the laminate vary from layer to layer (because of varying stiffness prop-
erties) and it is convenient to integrate over the thickness to obtain an
equivalent system of forces and moments acting on the cross sections:

{N} =
∫ h/2

−h/2
{T}dz {M} =

∫ h/2

−h/2
{T}z dz (4.86)

The positive direction of the resultant forces and moments is given in
Fig.4.10. {N} and {M} are respectively a force per unit length, and a
moment per unit length.
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Fig. 4.10. Resultant forces and moments.

4.8.3 Stiffness matrix of a multi-layer elastic laminate

Before analyzing a piezoelectric laminate, let us recall the stiffness matrix
of a multi-layer elastic laminate (Fig.4.11). If [c]k represents the stiffness
matrix of the material of layer k, expressed in global coordinates, the
constitutive equation within layer k is
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{T} = [c]k{S} = [c]k{S0}+ z[c]k{κ} (4.87)

Upon integrating over the thickness of the laminate, one gets
{

N
M

}
=

[
A B
B D

] {
S0

κ

}
(4.88)

with

A =
n∑

k=1

[c]k(hk − hk−1)

B =
1
2

n∑

k=1

[c]k(h2
k − h2

k−1) (4.89)

D =
1
3

n∑

k=1

[c]k(h3
k − h3

k−1)

where the sum extends over all the layers of the laminate; this is a clas-
sical result in laminate composites. A is the extensional stiffness matrix
relating the in-plane resultant forces to the midplane strains; D is the
bending stiffness matrix relating the moments to the curvatures, and B is
the coupling stiffness matrix, which introduces coupling between bending
and extension in a laminated plate; from (4.89), it is readily seen that
B vanishes if the laminate is symmetric, because two symmetric layers
contribute equally, but with opposite signs to the sum.

Mid plane
x

Layer k

hk hkà1
hn

h0

z

Fig. 4.11. Geometry of a multilayered laminate.
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4.8.4 Multi-layer laminate with a piezoelectric layer

Next, consider a multi-layer laminate with a single piezoelectric layer
(Fig.4.12); the constitutive equations of the piezoelectric layer are (4.79)
and (4.80). Upon integrating over the thickness of the laminate as in the
previous section, assuming that the global axes coincide with orthotropy
axes of the piezoelectric layer, one gets

Mid plane
h

z

zm

Piezo

hp

Fig. 4.12. Piezoelectric layer.

{
N
M

}
=

[
A B
B D

] {
S0

κ

}
+

[
I3

zmI3

] 



e31

e32

0





V (4.90)

D3 = {e31 e32 0}[I3 zmI3]

{
S0

κ

}
− ε V/hp (4.91)

where V is the difference of potential between the electrodes of the piezo-
electric layer (E3 = −V/hp), hp the thickness of the piezoelectric layer,
zm the distance between the midplane of the piezoelectric layer and the
midplane of the laminated; I3 is the unity matrix of rank 3 and A,B,D
are given by (4.89), including the piezoelectric layer.3 In writing (4.91),
it has been assumed that the thickness of the piezoelectric layer is small
with respect to that of the laminate, so that the strain can be regarded
as uniform across its thickness.
3 The piezoelectric layer contributes to A, B and D with the stiffness properties under

constant electric field.
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4.8.5 Equivalent piezoelectric loads

If there is no external load, {N} and {M} vanish and (4.90) can be
rewritten

[
A B
B D

] {
S0

κ

}
= −

[
I3

zmI3

] 



e31

e32

0





V (4.92)

The right hand side represents the equivalent piezoelectric loads. If the
material is isotropic, e31 = e32, and the equivalent piezoelectric loads
are hydrostatic (i.e. they are independent of the orientation of the facet
within the part covered by the electrode). Overall, they consist of an in-
plane force normal to the contour of the electrode, and a constant moment
acting on the contour of the electrode (Fig.4.13); the force per unit length
and moment per unit length are respectively

Np = −e31V Mp = −e31zmV (4.93)

M

N

Electrode

piezoelectric patch

p

p

Fig. 4.13. Equivalent piezoelectric loads (per unit length) for an isotropic piezoelectric
actuator: Np = −e31V , Mp = −e31zmV .

4.8.6 Sensor output

On the other hand, if the piezoelectric layer is used as a sensor and if its
electrodes are connected to a charge amplifier which enforces V∼0, the
sensor equation (4.91) becomes
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D3 = {e31 e32 0}[I3 zmI3]

{
S0

κ

}
(4.94)

Upon substituting the midplane strains and curvature from (4.84-85), and
integrating over the electrode area, one gets

Q =
∫

Ω
D3dΩ =

∫

Ω

[
e31

∂u0

∂x
+ e32

∂v0

∂y
− zm

(
e31

∂2w

∂x2
+ e32

∂2w

∂y2

)]
dΩ

(4.95)
The integral extends over the electrode area (the part of the piezo not
covered by the electrode does not contribute to the signal). The first part
of the integral is the contribution of the membrane strains, while the
second is due to bending.

If the piezoelectric properties are isotropic (e31 = e32), the surface
integral can be further transformed into a contour integral using the di-
vergence theorem; the previous equation is rewritten

Q = e31

∫

Ω
div ~u0 dΩ − e31zm

∫

Ω
div. ~gradw dΩ

= e31

∫

C
~n.~u0 dl − e31zm

∫

C
~n. ~gradw dl

where ~n is the outward normal to the contour of the electrode in its plane.
Alternatively,

Q = e31

∫

C
(~u0.~n− zm

∂w

∂~n
)dl (4.96)

(u .n)n

n

∂ ∂w/ n

C
Ω

0

Fig. 4.14. Contributions to the sensor output for an isotropic piezoelectric layer. Ω is
the electrode area.



4.8 Piezoelectric laminate 97

This integral extends over the contour of the electrode (Fig.4.14); the
first contribution is the component of the mid-plane, in-plane displace-
ment normal to the contour and the second one is associated with the
slope along the contour.
Once again, the duality between the equivalent piezoelectric loads gener-
ated by the transducer used as actuator, and the sensor output when the
transducer is connected to a charge amplifier must be pointed out.

4.8.7 Beam model vs. plate model

In this chapter, we have analyzed successively the piezoelectric beam
according to the assumption of Euler-Bernoulli, and piezoelectric lami-
nate according to Kirchhoff’s assumption. The corresponding piezoelectric
loads have been illustrated in Fig.4.3 and 4.13, respectively; the sensor
output, when the transducer is used in sensing mode, can be deduced
by duality : a bending moment normal to the contour in actuation mode
corresponds to the slope along the contour in sensing mode, and the in-
plane force normal to the contour in actuation mode corresponds to the
in-plane displacement normal to the contour in sensing mode. Figure 4.15
illustrates the equivalent piezoelectric loads according to both theories for
a rectangular isotropic piezoceramic patch acting on a structure extend-
ing along one dimension: according to the beam theory, the equivalent
piezoelectric loads consist of a pair of torques applied to the ends of the
electrode (Fig.4.15.a), while according to the laminate theory, the torque

(a)

(b)

beam axis

Mp

Mp

Mp

Np

Fig. 4.15. Equivalent piezoelectric loads of a rectangular piezoelectric patch bonded
on a beam: (a) beam theory, (b) laminate theory.
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is applied along the whole contour of the electrode and it is supplemented
by an in-plane force Np normal to the contour (Fig.4.15.b). If the struc-
ture extends dominantly along one axis, and if one is interested in the
structural response far away from the actuator (e.g. tip displacement),
it is reasonable to think that the piezoelectric loads of the beam theory
are indeed the dominant ones. However, in active vibration control, one
is often interested in configurations where the dual actuator and sensor
are close to being collocated, to warrant alternating poles and zeros in
the open-loop FRF, for a wide frequency range (the perfectly dual and
collocated case was considered in section 4.6); in this case, it turns out
that the contributions to the piezoelectric loading and to the sensor output
which are ignored in the beam theory are significant, and neglecting them
usually leads to substantial errors in the open-loop zeros of the control
system. This important issue will be addressed again in later chapters.

50mm

450 mm

Detail of
the piezos

p4

p3

p2

p1

Test Structure

Fig. 4.16. Cantilever plate with piezoceramics.

To illustrate how a beam model and a plate model can be different for
nearly collocated systems, consider the cantilever plate of Fig.4.16; the
steel plate is 0.5 mm thick and 4 piezoceramic strips of 250 µm thickness
are bounded symmetrically as indicated in the figure. The size of the
piezos is respectively 55 mm×25 mm for p1 and p3, and 55 mm×12.5 mm
for p2 and p4. p1 is used as actuator while the sensor is taken successively
as p2, p3 and p4. Since they cover the same extension along the beam,
the various sensor locations cannot be distinguished in the sense of the
Euler-Bernoulli beam theory (except for the sign or a constant factor,
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because p2 and p4 are on opposite sides and the size of p3 is twice that
of p2 and p4) and they should lead to the same transfer function. This is

Gain
dB

Freq (Hz)

p3 sensor

p2 sensor

p4 sensor

Fig. 4.17. Cantilever plate with piezoceramics; experimental FRF for the three sensor
configurations of Fig.4.16.

Gain
dB

Freq (Hz)

p3 sensor

p2 sensor

p4 sensor

Fig. 4.18. Cantilever plate with piezoceramics; Numerical (finite elements) FRF for
the three sensor configurations of Fig.4.16.

not the case in practice, as we can see in the experimental results shown
in Fig.4.17. We see that the transmission zeros vary significantly from one
configuration to the other. In fact, because of the nearness of the actuator
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to the sensor, and the small thickness of the plate, the membrane strains
play an important role in the transmission of the strain from the actuator
to the sensor and are responsible for the differences between the three
sensor configurations. Figure 4.18 show computed FRF based on the plate
theory using Mindlin-type finite elements (Piefort, 2001); one sees that
the FRF curves behave in a way similar to the experimental ones and that
the plate theory accounts for the experimental results. We shall see later
that, because the closed-loop poles are located on branches going from
the open-loop poles to the open-loop zeros, overestimating the spacing
between the poles and the zeros leads to overestimating the closed-loop
performances of the system.

A deeper discussion of the finite element formulation of multi-layer
piezoelectric shells can be found in (Benjeddou, 2000, Garcia Lage et al.,
2004, Heyliger et al, 1996, Piefort, 2001) and the literature quoted in these
papers. The newly available PZT fibers (with interdigitated electrodes or
not), which are usually supplied in a soft polymer cladding, seem to be
particularly difficult to model accurately, due to the stiffness discrepancy
between the supporting structure, the PZT fibers and the soft polymer
interface; this is the subject of on-going research.

4.8.8 Additional remarks

1. Experiments conducted on a cantilever beam excited by a PZT patch
on one side and covered with an isotropic PVDF film on the other side,
with an electrode shaped as a modal filter for the first mode according
to the theory of modal sensors developed in section 4.5, have revealed
significant discrepancies between the measured FRF and that predicted
by the beam theory; however, the FRF could be predicted quite accurately
by the laminated plate theory (Preumont et al., 2003).

2. For beams, modal filtering has been achieved by shaping the width
of the electrode. This concept cannot be directly transposed to plates.
Spatial filtering of two-dimensional structures will be examined in Chapter
14.

4.9 Active truss

Figure 4.19 shows a truss structure where some of the bars have been
replaced by active struts; each of them consists of a piezoelectric linear
actuator colinear with a force transducer. Such an active truss can be used
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Fig. 4.19. Active truss. The active struts consist of a piezoelectric linear actuator with
a force sensor.

Fig. 4.20. ULB Active truss (1988).
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for vibration attenuation, or to improve the dimensional stability under
thermal gradients. If the stiffness of the active struts matches that of the
other bars in the truss, the passive behaviour of the truss is basically
unchanged. Fig.4.20 shows an example of active truss equipped with two
active struts (built in the late 80’s ).

Consider a structure with a single discrete piezoelectric transducer
(Fig.4.21); the transducer is governed by Equ.(3.22)

{
Q
f

}
=

[
C(1− k2) nd33Ka

−nd33Ka Ka

] {
V

bT x

}
(4.97)

where ∆ = bT x is the relative displacement at the extremities of the
transducer. The dynamics of the structure is governed by

Mẍ + K∗x = −bf (4.98)

where K∗ is the stiffness matrix of the structure without the transducer
and b is the influence vector of the transducer in the global coordinate
system of the structure. The non-zero components of b are the direction
cosines of the active bar (Problem 4.5). The minus sign on the right hand
side of the previous equation comes from the fact that the force acting on
the structure is opposed to that acting on the transducer. Note that the
same vector b appears in both equations because the relative displacement
is measured along the direction of f .

Substituting f from the constitutive equation into the second equation,
one finds

Mẍ + Kx = bKaδ (4.99)

I

V
Piezoelectric

Transducer

Structure

D = b x
T

f

M K, *

Fig. 4.21. Structure with a piezoelectric transducer.
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where K = K∗ + bbT Ka is the global stiffness matrix of the structure
including the piezoelectric transducer in short-circuited conditions (which
contributes for bbT Ka); δ = nd33V is the free expansion of the transducer
induced by a voltage V ; Kaδ is the equivalent piezoelectric loading: the
effect of the piezoelectric transducer on the structure consists of a pair of
self-equilibrating forces applied axially to the ends of the transducer; as
for thermal loads, their magnitude is equal to the product of the stiffness
of the transducer (in short-circuited conditions) by the unconstrained
piezoelectric expansion; this is known as the thermal analogy.

Let φi be the normal modes, solutions of the eigenvalue problem

(K − ω2
i M)φi = 0 (4.100)

They satisfy the usual orthogonality conditions

φT
i Mφj = µiδij (4.101)

φT
i Kφj = µiω

2
i δij (4.102)

where ωi is the natural frequency when the transducer is short-circuited.
If the global displacements are expanded into modal coordinates,

x =
∑

i

ziφi (4.103)

where zi are the modal amplitudes, (4.99) is easily transformed into

µi(z̈i + ω2
i zi) = φT

i bKaδ (4.104)

Upon taking the Laplace transform, one easily gets

x =
n∑

i=1

φiφ
T
i

µi(ω2
i + s2)

bKaδ (4.105)

and the transducer extension

∆ = bT x =
n∑

i=1

Ka(bT φi)2

µiω2
i (1 + s2/ω2

i )
δ (4.106)

From Equ.(4.102), µiω
2
i /2 is clearly the strain energy in the structure

when it vibrates according to mode i, and Ka(bT φi)2/2 represents the
strain energy in the transducer when the structure vibrates according to
mode i. Thus, the ratio
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Fig. 4.22. (a) Open-loop FRF of the active strut mounted in the structure (un-
damped). (b) Admittance of the transducer mounted in the structure.

νi =
Ka(bT φi)2

µiω2
i

(4.107)

is readily interpreted as the fraction of modal strain energy in the trans-
ducer for mode i. With this notation, the previous equation is rewritten

∆ = bT x =
n∑

i=1

νi

(1 + s2/ω2
i )

δ (4.108)

4.9.1 Open-loop transfer function

From the second constitutive equation (4.97), one readily establish the
open-loop transfer function between the free expansion δ of the transducer
(proportional to the applied voltage) and the force f in the active strut

f

δ
= Ka[

n∑

i=1

νi

(1 + s2/ω2
i )
− 1] (4.109)
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All the residues being positive, there will be alternating poles and zeros
along the imaginary axis. Note the presence of a feedthrough in the trans-
fer function. Figure 4.22.a shows the open-loop FRF in the undamped
case; as expected the poles at ±jωi are interlaced with the zeros at ±zi.
As usual, the transfer function can be truncated after m modes:

f

δ
= Ka[

m∑

i=1

νi

(1 + s2/ω2
i )

+
n∑

i=m+1

νi − 1] (4.110)

4.9.2 Admittance function

According to the first constitutive equation (4.97),

Q = C(1− k2)V + nd33Kab
T x

Using (4.108),

Q = C(1− k2)V + n2d2
33Ka

n∑

i=1

νi

(1 + s2/ω2
i )

V (4.111)

and, taking into account (3.23), one finds the dynamic capacitance

Q

V
= C(1− k2)[1 +

k2

1− k2

n∑

i=1

νi

(1 + s2/ω2
i )

] (4.112)

(the admittance is related to the dynamic capacitance by I/V = sQ/V ),

Q

V
= C(1− k2)[1 +

n∑

i=1

K2
i

(1 + s2/ω2
i )

] (4.113)

where

K2
i =

k2νi

1− k2
(4.114)

is once again the effective electromechanical coupling factor for mode i.
This equation is identical to (4.73). The corresponding FRF is represented
in Fig.4.22(b). The zeros of the admittance (or the dynamic capacitance)
function correspond to the natural frequencies Ωi with open electrodes
and equations (4.77) and (4.78) apply also for this configuration,

K2
i '

Ω2
i − ω2

i

ω2
i

(4.115)

Q

V
= Cstat.

∏n
i=1(1 + s2/Ω2

i )∏n
j=1(1 + s2/ω2

j )
(4.116)
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4.10 Finite element formulation

The finite element formulation of a piezoelectric continuum can be derived
from Hamilton’s principle (section 4.2). The Lagrangian of a structure in-
volving a finite number of discrete piezoelectric transducers can be written
in the general form

L = T ∗ + W ∗
e =

1
2
ẋT Mẋ− 1

2
xT Kxxx +

1
2
φT Cφφφ + φT Kφxx (4.117)

In this equation, M is the mass matrix, Kxx is the stiffness matrix (includ-
ing the mechanical part of the transducers with short circuited electrical
boundary conditions), Cφφ is the matrix of capacitance of the transducers
(for fixed displacements) and Kφx is the coupling matrix of piezoelectric
properties, relating the mechanical and electrical variables.

The resulting dynamic equations read

Mẍ + Kxxx−KT
φxφ = f (4.118)

Kφxx + Cφφφ = Q (4.119)

where Q is the vector of electric charges appearing on the electrodes.
For voltage driven electrodes, the electric potential φ is controlled and
Equ.(4.118) can be rewritten (assuming no external load, f = 0)

Mẍ + Kxxx = KT
φxφ (4.120)

where the right hand side represents the self-equilibrated piezoelectric
loads associated with the voltage distribution φ. Note that the dynamics
of the system with short-circuited electrodes (φ = 0) is the same as if
there were no piezoelectric electromechanical coupling.

Conversely, open electrodes correspond to a charge condition Q = 0;
in this case, one can substitute φ from Equ.(4.119) into Equ.(4.118)

Mẍ + (Kxx + KT
φxC−1

φφ Kφx)x = f (4.121)

This equation shows that the piezoelectric coupling tends to increase the
global stiffness of the system if the electrodes are left open. The natural
frequencies of the system with open electrodes are larger than those with
short-circuited electrodes, as we have discussed extensively earlier in this
chapter. If the electrodes are connected to a passive electrical network,
the relationship between φ and Q is fixed by the network, as discussed in
the following chapter.
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4.12 Problems

P.4.1 Consider a simply supported beam with collocated piezoelectric
d31 rectangular actuator and sensor extending longitudinally from x = a
to x = b. Using the results of section 2.6, show that the expression ∆θi

appearing at the numerator of Equ.(4.56) can be written analytically

∆θi = 2
iπ

l
{sin iπ

l
(
a + b

2
). sin

iπ

l
(
a− b

2
)}

P.4.2 From the result of the previous problem, sketch the actuator (and
the sensor) which maximizes the response of mode 1, mode 2 and mode
3, respectively.
P.4.3 Consider the active cantilever beam of transfer function (4.56). As-
suming that G(0) is available from static calculations or from an experi-
ment at low frequency, show that the truncated modal expansion including
a quasi-static correction can be written

G(ω) = G(0) + gags

m∑

i=1

∆θ2
i

µiω2
i

(ω2 − 2jξiωiω)
(ω2

i − ω2 + 2jξiωiω)
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P.4.4 Consider a free-free beam covered with a piezoelectric layer with
the various electrodes profiles of Fig.4.23. For each of them, sketch the
equivalent piezoelectric loading.

parabola

parabola

l

a

a

b

Fig. 4.23. Free-free beam covered with a piezoelectric layer with various electrode
profiles.

P.4.5 Consider the active truss of Fig.4.19.
(a) For each active strut, write the influence vector b of the piezoelectric
loads in global coordinates.
(b) Assuming small displacements, check that the projection of the dif-
ferential displacements of the end nodes of the active struts are given by
bT x where b is the result of (a).
P.4.6 Consider a nine bay planar truss similar to that of Fig.4.19. Each
bay is square with one diagonal; all the bars have the same cross section.
For the following boundary conditions, use a finite element program to
calculate the first three flexible modes of the truss. Suggest two reasonable
locations of an active strut to control these modes.
(a) Free-free boundary conditions.
(b) Clamped-free boundary conditions.
[Hint: Use the modal fraction of strain energy νi as index in the selection
of the active strut location.]
P.4.7 Consider a general piezoelectric structure governed by Equ.(4.118-
119) (assume f = 0). Write the general form of the admittance matrix Y :
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sQ = Y φ. Compare it to Equ.(4.113) and interpret the meaning of the
various terms.
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Passive damping with piezoelectric transducers

5.1 Introduction

In this chapter, we examine the basics of the passive damping with
shunted piezoelectric transducers. We have seen in the previous chapters
that a flexible structure (assumed undamped) with embedded piezoelec-
tric transducers (Fig.5.1) is characterized by an admittance function of
the form

I

V
=

sQ

V
= s.Cstat.

∏n
i=1(1 + s2/Ω2

i )∏n
j=1(1 + s2/ω2

j )
(5.1)

or alternatively

I

V
=

sQ

V
= sC(1− k2)[1 +

n∑

i=1

K2
i

1 + s2/ω2
i

] (5.2)

where C(1−k2) is the blocked capacitance1 of the transducer and K2
i are

the modal effective electromechanical coupling factors

K2
i =

k2νi

1− k2
=

Ω2
i − ω2

i

ω2
i

(5.3)

with ωi being the natural frequencies of the structure when the piezoelec-
tric transducer has short-circuited electrodes and Ωi when the electrodes
are open. It is assumed that the structure has well separated modes, and
that the transducer produces only a minor perturbation to the original
structure: the mode shapes are not affected significantly by the electrical
boundary conditions and ωi and Ωi are very close to each other.
1 comparing the two foregoing equations, one finds that the static capacitance reads

Cstat = C(1− k2)(1 +
∑

K2
i ).
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According to the foregoing formula, there are two contributions to K2
i :

(i) the electromechanical coupling factor k2 which is a material prop-
erty. If the material is used in the extension (d33) mode, the value k33

should be used, and if it is used in shear mode (d13), k13 applies. Refer
to Table 4.1 for typical values (note that k13 is significantly smaller than
k33).

(ii) the modal fraction of strain energy νi which depends on the size as
well as the location of the transducer inside the structure. It varies from
mode to mode. The transducer should be located where the strain energy
is large for the targeted mode(s).

Note that the definition (5.3) of K2
i does not imply that K2

i = k2 if
νi = 1. The classical definition is K2

i = (Ω2
i − ω2

i )/Ω2
i but, Ωi and ωi are

in general very close and the difference is insignificant in most cases.

I

V
PZT
Transducer

Structure

( )a

I

V

I

V R

I

V

R

L

(c)

(b)

(d)

PZT patch

R-shunt

RL-shunt

Fig. 5.1. Structure with a shunted piezoelectric transducer (a) in d33 mode (b) in d31

mode (c) R shunt (d) RL shunt.

5.2 Resistive shunting

Using the same positive signs for V and I as for the structure (Fig.5.1.c),
the admittance of the shunt is I/V = −1/R. The characteristic equation
of the system is obtained by equating it to the admittance of the structure:



5.2 Resistive shunting 113

− 1
R

= sC(1− k2)[1 +
n∑

i=1

K2
i

1 + s2/ω2
i

] (5.4)

or

− 1
sRC(1− k2)

= 1 +
n∑

i=1

K2
i ω2

i

s2 + ω2
i

(5.5)

In the vicinity of ±jωi, the sum is dominated by the contribution of mode
i and the other terms can be neglected; defining γ = [RC(1− k2)]−1, the
equation may be simplified as

−γ

s
= 1 +

K2
i ω2

i

s2 + ω2
i

which in turn can be rewritten

1 + γ
s2 + ω2

i

s(s2 + Ω2
i )

= 0 (5.6)

This form of the characteristic equation is that of a root locus in auto-

Fig. 5.2. Resistive shunt. Evolution of the poles of the system as γ = [RC(1− k2)]−1

goes from 0 to ∞ (the diagram is symmetrical with respect to the real axis, only the
upper half is shown).

matic control (Fig.5.2);2 where the parameter γ acts as the feedback gain
in classical root locus plots; for γ = 0 (R = ∞), the poles are ±jΩi, corre-
sponding to the natural frequency of the system with open electrodes. The
2 This root locus will be met many times in the following chapters.
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system is undamped. As the resistance decreases (γ increases), the poles
move to the left and some damping appears in the system; the maximum
damping is achieved for γ = Ωi

√
Ωi/ωi ' Ωi and is (Problem 5.1)

ξmax
i =

Ωi − ωi

2ωi
' Ω2

i − ω2
i

4ω2
i

=
K2

i

4
(5.7)

5.3 Inductive shunting

We proceed in the same way as for the R-shunt (Fig.5.1.d); the admittance
of the shunt is now I/V = −1/(R + Ls). The characteristic equation is
therefore

− 1
R + Ls

= sC(1− k2)[1 +
n∑

i=1

K2
i

1 + s2/ω2
i

] (5.8)

or

− 1
(R + Ls)sC(1− k2)

= 1 +
n∑

i=1

K2
i ω2

i

s2 + ω2
i

(5.9)

Once again, in the vicinity of ±jωi, the sum is dominated by the contri-
bution of modi i and the equation is simplified as

− 1
(R + Ls)sC(1− k2)

= 1 +
K2

i ω2
i

s2 + ω2
i

(5.10)

Defining the electrical frequency

ω2
e =

1
LC(1− k2)

(5.11)

and the electrical damping

2ξeωe =
R

L
(5.12)

it is rewritten

− ω2
e

2ξeωes + s2
= 1 +

K2
i ω2

i

s2 + ω2
i

=
s2 + Ω2

i

s2 + ω2
i

(5.13)

or
s4 + 2ξeωes

3 + (Ω2
i + ω2

e)s
2 + 2Ω2

i ξeωes + ω2
i ω

2
e = 0 (5.14)

This can be rewritten in a root locus form
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1 + 2ξeωe
s(s2 + Ω2

i )
s4 + (Ω2

i + ω2
e)s2 + ω2

i ω
2
e

= 0 (5.15)

In this formulation, 2ξeωe plays the role of the gain in a classical root
locus. Note that, for large R, the poles tend to ±jΩi, as expected. For
R = 0 (i.e. ξe = 0), they are the solutions p1 and p2 of the characteristic
equation s4 + (Ω2

i + ω2
e)s

2 + ω2
i ω

2
e = 0 which accounts for the classical

double peak of resonant dampers, with p1 above jΩi and p2 below jωi.
Figure 5.3 shows the root locus for a fixed value of ωi/Ωi and various
values of the electrical tuning, expressed by the ratio

αe =
ωeωi

Ω2
i

(5.16)

The locus consists of two loops, starting respectively from p1 and p2; one
of them goes to jΩi and the other goes to the real axis, near −Ωi. If
αe > 1 (Fig.5.3.a), the upper loop starting from p1 goes to the real axis,
and that starting from p2 goes to jΩi, and the upper pole is always more
heavily damped than the lower one (note that, if ωe → ∞, p1 → ∞ and
p2 → jωi; the lower branch of the root locus becomes that of the resistive
shunting). The opposite situation occurs if αe < 1 (Fig.5.3.b): the upper
loop goes from p1 to jΩi and the lower one goes from p2 to the real axis;
the lower pole is always more heavily damped. If αe = 1 (Fig.5.3.c), the
two poles are always equally damped until the two branches touch each
other in Q. This double root is achieved for

αe =
ωeωi

Ω2
i

= 1 , ξ2
e = 1− ω2

i

Ω2
i

' K2
i (5.17)

This can be regarded as the optimum tuning of the inductive shunting.
The corresponding eigenvalues satisfy

s2 + Ω2
i + Ωi(

Ω2
i

ω2
i

− 1)1/2s = 0 (5.18)

For various values of ωi/Ωi (or Ki), the optimum poles at Q move along
a circle of radius Ωi (Fig.5.3.d). The corresponding damping ratio can
be obtained easily by identifying the previous equation with the classical
form of the damped oscillator, s2 + 2ξiΩis + Ω2

i = 0, leading to

ξi =
1
2
(
Ω2

i

ω2
i

− 1)1/2 =
Ki

2
=

1
2
(

k2νi

1− k2
)1/2 (5.19)
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ëe > 1
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Fig. 5.3. Root locus plot for inductive shunting (only the upper half is shown). The
optimum damping at Q is achieved for αe = 1 and ξe = K2

i ; the maximum modal
damping is ξi ' Ki/2.

This value is significantly higher than that achieved with purely resistive
shunting [it is exactly the square-root of (5.7)]. Note, however, that it
is much more sensitive to the tuning of the electrical parameters on the
targeted modes. This is illustrated in Fig.5.4, which displays the evolution
of the damping ratio ξi when the actual natural frequency ω′i moves away
from the nominal frequency ωi for which the shunt has been optimized
(the damping ratio associated with p1 and p2 is plotted in dotted lines; the
ratio ω′i/Ω′

i is kept constant in all cases). One sees that the performance of
the inductive shunting drops rapidly below that of the resistive shunting
when the de-tuning increases. Note that, for low frequency modes, the
optimum inductance value can be very large; such large inductors can be
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Fig. 5.4. Evolution of the damping ratio of the inductive and resistive shunting with
the de-tuning of the structural mode. ωi is the natural frequency for which the shunt
has been optimized, ω′i is the actual value (k = 0.5, νi = 0.3).

synthesized electronically. The multimodal passive damping via resonant
shunt has been investigated by (Hollkamp, 1994).

All the dissipation mechanisms considered in this chapter are based
on linear time-invariant filters. Recently, promising alternative nonlinear
methods based on state switching have been proposed. The transducer is
connected to a solid-state switch device which discharges periodically the
piezoelectric element on a small inductor, producing a voltage inversion
(Guyomar & Richard, 2005).
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5.5 Problems

P.5.1 Show that the maximum damping achievable with a resistive shunt
is given by Equ.(5.7). [Hint: The use of a symbolic calculation software is
recommended.]
P.5.2 Consider a beam equipped with a rectangular piezoelectric trans-
ducer extending from a to b, and a collocated actuator-sensor pair at
l (Fig.5.5). The natural frequencies and the mode shapes with short-
circuited electrodes are respectively ωk and φk(x). This system is intended
to be equipped with various forms of shunt damping or energy harvesting
devices. The input-output relationship of this system can be written in
the form {

w
i

}
=

[
G11(s) G12(s)
G21(s) G22(s)

] {
f
V

}

Write the analytical form of the various transfer functions Gkj(s) involved
in this expression.
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Fig. 5.5. Beam equipped with a piezoelectric transducer extending from a to b, and a
collocated actuator sensor pair.
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Collocated versus non-collocated control

6.1 Introduction

In the foregoing chapters, we have seen that the use of collocated ac-
tuator and sensor pairs, for a lightly damped flexible structure, always
leads to alternating poles and zeros near the imaginary axis, Fig.6.1.a. In
this chapter, using the root locus technique, we show that this property
guarantees the asymptotic stability of a wide class of single-input single-
output (SISO) control systems, even if the system parameters are subject
to large perturbations. This is because the root locus plot keeps the same
general shape, and remains entirely within the left half plane when the
system parameters are changed from their nominal values. Such a control
system is said to be robust with respect to stability. The use of collocated
actuator/sensor pairs is recommended whenever it is possible.

Re(s)

Im(s)

xx

x x

x

x

x

x

Pole / Zero
flipping

Fig. 6.1. (a) Alternating pole-zero pattern of a lightly damped flexible structure with
collocated actuator and sensor. (b) Pole-zero flipping for a non-collocated system.
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This interlacing property of the poles and zeros no longer holds for
a non-collocated control, and the root locus plot may experience severe
alterations for small parameter changes. This is especially true when the
sequence of poles and zeros along the imaginary axis is reversed as in
Fig.6.1.b. This situation is called a pole-zero flipping. It is responsible for
a phase uncertainty of 3600, and the only protection against instability is
provided by the damping (systems which are prone to such a huge phase
uncertainty can only be gain-stabilized).

6.2 Pole-zero flipping

ψ
i

ψ
i

φ
i

φ
i

Root locus

Stable StableUnstable Unstable

Root locus

Fig. 6.2. Detail of a root locus showing the effect of the pole-zero flipping on the
departure angle from a pole. Since the contribution of the far away poles and zeros is
unchanged, that of the pole and the nearby zero, φi −ψi must also remain unchanged.

Recall that the root locus shows, in a graphical form, the evolution
of the poles of the closed-loop system as a function of the scalar gain g
applied to the compensator. The open-loop transfer function GH includes
the structure, the compensator, and possibly the actuator and sensor
dynamics, if necessary. The root locus is the locus of the solution s of
the closed-loop characteristic equation 1 + gGH(s) = 0 when the real
parameter g goes from zero to infinity. If the open-loop transfer function
is written

GH(s) = k

∏m
i=1(s− zi)∏n
i=1(s− pi)

(6.1)
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the locus goes from the poles pi (for g = 0) to the zeros zi (as g →∞) of
the open-loop system, and any point P on the locus is such that

m∑

i=1

φi −
n∑

i=1

ψi = 1800 + l 3600 (6.2)

where φi are the phase angles of the vectors ~ai joining the zeros zi to
P and ψi are the phase angles of the vector ~bi joining the poles pi to P
(see Fig.6.8). Since n ≥ m, there are n −m branches of the locus going
asymptotically to infinity as g increases.

Consider the departure angle from a pole and the arrival angle at the
zero when they experience a pole-zero flipping; since the contribution of
the far away poles and zeros remains essentially unchanged, the difference
φi−ψi must remain constant after flipping. As a result, a nice stabilizing
loop before flipping is converted into a destabilizing one after flipping
(Fig.6.2). If the system has some damping, the control system is still able
to operate with a small gain after flipping.

Since the root locus technique does not distinguish between the system
and the compensator, the pole-zero flipping may occur in two different
ways:

• There are compensator zeros near system poles (this is called a notch
filter). If the actual poles of the system are different from those assumed
in the compensator design, the notch filter may become inefficient (if
the pole moves away from the zero), or worse, a pole-zero flipping may
occur. This is why notch filters have to be used with extreme care.
As we shall see in later chapters, notch filters are generated by opti-
mum feedback compensators and this may lead to serious robustness
questions if the parameter uncertainty is large.

• Some actuator/sensor configurations may produce pole-zero flipping
within the system alone, for small parameter changes. These situa-
tions are often associated with a pole-zero (near) cancellation due to
a deficiency in the controllability or the observability of the system
(typically, when the actuator or the sensor is close to a nodal point in
the mode shapes). In some cases, however, especially if the damping
is extremely light, instability may occur. No pole-zero flipping can oc-
cur within the structure if the actuator and sensor are collocated. The
following sections provide examples illustrating these points.
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Fig. 6.3. Two-mass problem.

6.3 The two-mass problem

Consider the two-mass problem of Fig.6.3. The system has a rigid
body mode along the x axis; it is controlled by a force f applied to the
main body M . A flexible appendage m is connected to the main body
by a spring k and a damper b. First, a position control system will be
designed, using a sensor placed on the main body (collocated); a sensor
attached to the flexible appendage will be considered in the next section.

With f representing the control torque and y and d being the attitude
angles, this problem is representative of the single-axis attitude control of
a satellite, with M representing the main body, and the other inertia rep-
resenting either a flexible appendage like a solar panel (in which case the
sensor can be on the main body, i.e. collocated), or a scientific instrument
like a telescope which must be accurately pointed towards a target (now
the sensor has to be part of the secondary structure; i.e. non-collocated).
A more elaborate single-axis model of a spacecraft is considered in Prob-
lem 2.8.

The system equations are :

Mÿ + (ẏ − ḋ)b + (y − d)k = f (6.3)

md̈ + (ḋ− ẏ)b + (d− y)k = 0 (6.4)

With the notations

ω2
o = k/m, µ = m/M, 2ξωo = b/m (6.5)

the transfer functions between the input force f and y and d are respec-
tively :

G1(s) =
Y (s)
F (s)

=
s2 + 2ξωos + ω2

o

Ms2 [s2 + (1 + µ) (2ξωos + ω2
o)]

(6.6)



6.3 The two-mass problem 125

G2(s) =
D(s)
F (s)

=
2ξω0s + ω2

0

Ms2 [s2 + (1 + µ) (2ξωos + ω2
o)]

(6.7)

G2(s) ' ω2
0

Ms2 [s2 + (1 + µ) (2ξωos + ω2
o)]

(6.8)

Approximation (6.8) recognizes the fact that, for low damping (ξ ¿ 1),
the far away zero will not influence the closed-loop response. There are
two poles near the imaginary axis. In G1(s), which refers to the collocated
sensor, there are two zeros also near the imaginary axis, at (−ξω0± jω0).
As observed earlier, these zeros are identical to the poles of the modified
system where the main body has been blocked (i.e. constrained mode of
the flexible appendage). When the mass ratio µ is small, the polynomials
in the numerator and denominator are almost equal, and there is a pole-
zero cancellation.

6.3.1 Collocated control

Let us consider a lead compensator

H(s) = g
Ts + 1
αTs + 1

(α < 1) (6.9)
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Fig. 6.4. Two-mass problem, root locus plot for the collocated control with a lead
compensator (the plot is symmetrical with respect to the real axis, only the upper part
is shown).
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It includes one pole and one zero located on the negative real axis; the
pole is to the left of the zero. Figure 6.4 shows a typical root locus plot
for the collocated case when ω0 = 1, M = 1, ξ = 0.02 and µ = 0.1. The
parameters of the compensator are T = 10 and α = 0.004. Since there are
two more poles than zeros (n−m = 2), the root locus has two asymptotes
at ±900. One observes that the system is stable for every value of the gain,
and that the bandwidth of the control system can be a substantial part
of ω0. The lead compensator always increases the damping of the flexible
mode.

If there are not one, but several flexible modes, there are as many
pole-zero pairs and the number of poles in excess of zeros remains the
same (n − m = 2 in this case), so that the angles of the asymptotes
remain ±900 and the root locus never leaves the stable region. The lead
compensator increases the damping ratio of all the flexible modes, but
especially those having their natural frequency between the pole and the
zero of the compensator. Of course, we have assumed that the sensor and
the actuator have perfect dynamics; if this is not the case, the foregoing
conclusions may be considerably modified, especially for large gains.

6.3.2 Non-collocated control

Figure 6.5 shows the root locus plot for the lead compensator applied to
the non-collocated open-loop system characterized by the transfer func-
tion G2(s), Equ.(6.7), with the following numerical data: ω0 = 1, M = 1,
µ = 0.1, ξ = 0.02. The excess number of poles is in this case n−m = 3 so
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Fig. 6.5. Two-mass problem, root locus plot for the non-collocated control with a lead
compensator.
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Fig. 6.6. Two-mass problem, Bode plots of the non-collocated control for g = 0.003.

that, for large gains, the flexible modes are heading towards the asymp-
totes at ±600, in the right half plane. For a gain g = 0.003, the closed-loop
poles are located at −0.0136± 0.0505j and −0.0084± 1.0467j (these lo-
cations are not shown in Fig.6.5 for clarity: the poles of the rigid body
mode are close to the origin and those of the flexible mode are located
between the open-loop poles and the imaginary axis). The corresponding
Bode plots are shown in Fig.6.6; the phase and gain margins are indicated.
One observes that even with this small bandwidth (crossover frequency
ωc = 0.056), the gain margin is extremely small. A slightly lower value of
the damping ratio would make the closed-loop system unstable (Problem
6.1).

6.4 Notch filter

A classical way of alleviating the effect of the flexible modes in non-
collocated control is to supplement the lead compensator with a notch
filter with two zeros located near the flexible poles:
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H(s) = g .
Ts + 1
αTs + 1

.
s2/ω2

1 + 1
(s/a + 1)2

(6.10)

The zeros of the notch filter, at s = ±jω1, are selected right below the
flexible poles. The double pole at −a aims at keeping the compensator
proper (i.e. the degree of the numerator not larger than that of the denom-
inator); it can, for example, be selected far enough along the negative real
axis. The corresponding root locus is represented in Fig.6.7.a for ω1 = 0.9
and a = 10. This compensator allows a larger bandwidth than the lead
compensator alone (Problem 6.2).

To be effective, a notch filter must be closely tuned to the flexible
mode that we want to attenuate. However, as we already mentioned, the
notch filter suffers from a lack of robustness and should not be used if the
uncertainty in the system properties is large. To illustrate this, Fig.6.7.b
shows a detail of the root locus near the notch, when the natural frequency
of the system is smaller than expected (in the example, ω0 is reduced from
1 rad/s to 0.8 rad/s; the other data are identical to that of Fig.6.5, while
the notch filter is kept the same (being implemented in the computer, the
notch filter is not subject to parameter uncertainty). The rest of the root
locus is only slightly affected by the change.
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ω0 = 0.8 rad/s

Fig. 6.7. Two-mass problem, non-collocated control; (a) Lead compensator plus notch
filter (b) Detail of the root locus near the notch for off-nominal open-loop system (ω0

reduced from 1 to 0.8).

Because the open-loop poles of the flexible mode move from above
to below the zero of the notch filter (from ±j to ±0.8j with the zeros
at ±0.9j in the example), there is a pole-zero flipping, with the conse-
quence that the branch of the root locus connecting the pole to the zero
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rapidly becomes unstable. This example emphasizes the fact that notch
filters should be used with extreme care, especially for systems where the
uncertainty is large (Problem 6.3).

6.5 Effect of pole-zero flipping on the Bode plots

From Equ.(6.1),

GH(jω) = k

∏m
i=1(jω − zi)∏n
i=1(jω − pi)

(6.11)

the phase of GH(jω) for a specific value jω is given by

m∑

i=1

φi −
n∑

i=1

ψi (6.12)

where φi is the phase angle of the vector ~ai joining the zero zi to jω and
ψi is the phase angle of the vector ~bi joining the pole pi to jω (Fig.6.8).
Accordingly, an imaginary zero at jω0 produces a phase lead of 1800 for
ω > ω0 and an imaginary pole produces similarly a phase lag of 1800.
Therefore, a pole-zero flipping near the imaginary axis produces a phase
uncertainty of 3600 in the frequency range between the pole and the zero.
It appears that the only way the closed-loop stability can be guaranteed
in the vicinity of a pole-zero flipping is to have the open-loop system
gain-stabilized (i.e. such that |gHG| < 1) in that frequency range.
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Fig. 6.8. Effect of the pole-zero flipping on the phase diagram.
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6.6 Nearly collocated control system

In many cases, the actuator and sensor pair are close to each other without
being strictly collocated. This situation is examined here.

u

a

s

y

Fig. 6.9. Structure with nearly collocated actuator/sensor pair.

Consider the undamped system of Fig.6.9 where the actuator input u
is applied at a and the sensor y is located at s. The open-loop FRF of the
system is given by

G(ω) =
y

u
=

n∑

i=1

φi(a)φi(s)
µi(ω2

i − ω2)
(6.13)

where φi(a) and φi(s) are the modal amplitudes at the actuator and the
sensor locations, respectively (the sum includes all the normal modes in
this case). The residues of (6.13) are no longer guaranteed to be posi-
tive; however, if the actuator location a is close to the sensor location s,
the modal amplitudes φi(a) and φi(s) will be close to each other, at least
for the low frequency modes, and the corresponding residues will again be
positive. The following result can be established in this case : If two neigh-
boring modes are such that their residues φi(a)φi(s) and φi+1(a)φi+1(s)
have the same sign, there is always an imaginary zero between the two
poles (Martin, 1978).

Since G(ω) is continuous between ωi and ωi+1, this result will be es-
tablished if one proves that the sign of G(ω) near ωi is opposite to that
near ωi+1. At ω = ωi + δω, G(ω) is dominated by the contribution of
mode i and its sign is

sign[
φi(a)φi(s)
ω2

i − ω2
] = −sign[φi(a)φi(s)] (6.14)

At ω = ωi+1 − δω, G(ω) is dominated by the contribution of mode i + 1
and its sign is

sign[
φi+1(a)φi+1(s)

ω2
i+1 − ω2

] = sign[φi+1(a)φi+1(s)] (6.15)
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Thus, if the two residues have the same sign, the sign of G(ω) near ω−i+1 is
opposite to that near ω+

i . By continuity, G(ω) must vanishes somewhere
in between, at zi such that ω+

i < zi < ω−i+1. Note, however, that when the
residues of the expansion (6.13) are not all positive, there is no guarantee
that G(ω) is an increasing function of ω, and one can find situations where
there are more than one zero between two neighboring poles.

6.7 Non-collocated control systems
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Fig. 6.10. Uniform beam with non-collocated actuator/sensor pair. Mode shapes 1 to
4.

Since the low frequency modes vary slowly in space, the sign of
φi(a)φi(s) tend to be positive for low frequency modes when the actu-
ator and sensor are close to each other, and the interlacing of the poles
and zeros is maintained at low frequency. This is illustrated in the follow-
ing example: Consider a simply supported uniform beam of mass per unit
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length m and bending stiffness EI. The natural frequencies and mode
shapes are respectively

ω2
i = (iπ)4

EI

ml4
(6.16)

and
φi(x) = sin

iπx

l
(6.17)

(the generalized mass is µi = ml/2). Note that the natural frequency
increases as the square of the mode order. We assume that a force actuator
is placed at a = 0.1 l and we examine the evolution of the open-loop zeros
as a displacement sensor is moved to the right from s = a (collocated),
towards the end of the beam (Fig 6.10).

The evolution of the open-loop zeros with the sensor location along
the beam is shown in Fig 6.11; the plot shows the ratio zi/ω1, so that the
open-loop poles (independent of the actuator/sensor configuration) are at
1, 4, 9, 25, etc.... For s = a = 0.1 l, the open-loop zeros are represented by
◦; they alternate with the poles. Another position of the actuator/sensor

Mode 1
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Fig. 6.11. Evolution of the imaginary zeros when the sensor moves away from the
actuator along a simply supported beam (the actuator is at 0.1 l). The abscissa is the
sensor location, the ordinate is the frequency of the transmission zero.
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pair along the beam would lead to a different position of the zeros, but
always alternating with the poles.

As the sensor is displaced from the actuator, s > a, the zeros tend to
increase in magnitude as shown in Fig.6.11, but the low frequency ones
still alternate. When s = 0.2 l, z4 becomes equal to ω5 and there is no
zero any longer between ω4 and ω5 when s exceeds 0.2 l. Thus, a pole/zero
flipping occurs. Similarly, z3 flips with ω4 for s = l/4, z2 flips with ω3 for
s = l/3 and z1 flips with ω2 for s = l/2. Examining the mode shapes, one
notices that the pole-zero flipping always occurs at a node of one of the
mode shapes, and this corresponds to a change of sign in φi(a)φi(s), as
discussed above.

This simple example confirms the behavior of the pole/zero pattern for
nearly collocated control systems: the poles and zeros are still interlacing
at low frequency, but not at higher frequency, and the frequency where
the interlacing stops decreases as the distance between the actuator and
sensor increases. A more accurate analysis (Spector & Flashner, 1989;
Miu, 1993) shows that:

For structures such as bars in extension, shafts in torsion or simply
connected spring-mass systems (non dispersive), when the sensor is dis-
placed from the actuator, the zeros migrate along the imaginary axis
towards infinity. The imaginary zeros are the resonance frequencies of the
two substructures formed by constraining the structure at the actuator
and sensor (this generalizes the result of chapter 2).

Imaginary zeros

migrate towards

Real zeros come from

j1

1

Fig. 6.12. Evolution of the zeros of a beam when the sensor moves away from the
actuator. Every pair of imaginary zeros which disappears at infinity reappears on the
real axis.
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For beams with specific boundary conditions, the imaginary zeros still
migrate along the imaginary axis, but every pair of zeros that disappears
at infinity reappears symmetrically at infinity on the real axis and moves
towards the origin (Fig 6.12). Systems with right half plane zeros are
called non-minimum phase. Thus, non collocated control systems are al-
ways non-minimum phase, but this does not cause difficulties if the right
half plane zeros lie well outside the desired bandwidth of the closed-loop
system. When they interfere with the bandwidth, they put severe restric-
tions on the control system, by reducing significantly the phase margin;
this point will be discussed later in chapter 10.

6.8 The role of damping

To conclude this chapter, we would like to insist on the role of the damping
for non-collocated control systems. We have seen that the imaginary zeros
provide the necessary phase lead to compensate the undesirable phase lag
caused by the poles. Whenever a flexible pole is not associated with a zero,
it produces a net phase lag of 1800. According to the stability criterion,
the amplitude of the open-loop transfer function must satisfy |gGH| < 1
whenever the phase lag exceeds 1800. Since the amplitude of gGH in the
roll-off region is dominated by the resonant peaks of G, it is clear that
the damping of the flexible modes is essential for non-collocated systems
(Problem 6.1).

Damping augmentation can be achieved by passive as well as active
means. For spacecraft applications, the former often use constrained lay-
ers of high damping elastomers placed at appropriate locations in the
structure (e.g. Johnson 1981 or Ikegami, 1986). More varied ways are reg-
ularly used in civil engineering applications, such as tuned-mass dampers,
tuned liquid dampers, chain dampers, etc... Active damping is the subject
of next chapter.
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6.10 Problems

P.6.1 Consider the lead compensator for the non-collocated control of the
two-mass system.

(a) Determine the value of the damping ratio ξ which would reduce
the gain margin to zero.

(b) What would be the gain margin if ξ = 0.04 instead of ξ = 0.02.
P.6.2 Consider the lead compensator plus notch filter for the non-
collocated control of the two-mass system (section 6.4). Draw the cor-
responding Bode plots. Select a reasonable value of the gain g and com-
pare the bandwidth, the gain and phase margins with those of the lead
compensator of Fig.6.6.
P.6.3 (a) Repeat the previous problem when the frequency of the ap-
pendage is lower than that of the notch filter (ω0 =0.8 rad/sec); compare
the Bode plots and comment on the role of the damping.
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(b) Same as (a) with the frequency of the appendage moving away
from the notch filter (ω0 =1.1 rad/sec). Comment on the importance of
tuning the notch filter.
P.6.4 Consider the PD regulator

H(s) = g(Ts + 1)

applied to the open-loop structure

G(s) =
∞∑

i=1

φi(a)φi(s)
s2 + ω2

i

Assuming that the modes are well separated, show that, for small gain g,
the closed-loop damping ratio of mode i is

ξi = gT
φi(a)φi(s)

2ωi

Conclude on the stability condition (Gevarter, 1970).
[Hint: Use a perturbation method, s = ωi[−ξ + j(1 + δ)] in the vicinity of
jωi, and write the closed-loop characteristic equation.]
P.6.5 Consider a simply supported uniform beam with a point force ac-
tuator and a displacement sensor. Based on the result of the previous
problem, sketch a non-collocated actuator and sensor configuration such
that a PD regulator is stabilizing for the first three modes.
P.6.6 Consider a system of n identical masses M simply connected with
n + 1 springs of stiffness k; assume that a point force is applied on mass
i and a displacement sensor is connected to mass j(> i). Show that the
zeros of the transfer function are the resonance frequencies of the two
substructures (from 1 to i and from j + 1 to n ), formed by constraining
the masses i and j (Miu, 1991).
P.6.7 Consider the non-collocated control of the two-mass problem [the
system transfer function is given by Equ.(6.7)] with M = 1. For various
values of the mass ratio µ = 0.1, 0.01, 0.001, assuming a lead compensator
(6.9), draw a diagram of the bandwidth of the control system, ωc/ω0 as
a function of the damping ratio ξ for the limit of stability (GM = 0).
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Active damping with collocated system

7.1 Introduction

The use of collocated (and dual) actuator and sensor pairs, for a lightly
damped flexible structure, always leads to alternating poles and zeros
near the imaginary axis, Fig.7.1. In this chapter, we use this interlacing
property to develop Single Input-Single Output (SISO) active damping
schemes with guaranteed stability. By active damping, we mean that the
primary objective of the controller is simply to increase the negative real
part of the system poles, while maintaining the natural frequencies es-
sentially unchanged. This simply attenuates the resonance peak in the
dynamic amplification (Fig 7.2). Recall that the relationship between the
damping ratio ξ and the angle φ with respect to the imaginary axis is
sinφ = ξ, and that the dynamic amplification at resonance is 1/2ξ. Note
that for typical damping values encountered in practice, the values of φ
are very close to 0; this is why in most of the root locus plots shown in

Re(s) Re(s)

Im(s) Im(s)

x x

x x

x x

(a) (b)

jzi

j!i

Fig. 7.1. Pole/Zero pattern of a structure with collocated (dual) actuator and sensor;
(a) undamped; (b) lightly damped.
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this chapter, different scales are used for the real and the imaginary axes,
leading to a distortion of the angles.

Im(s)

Re(s)

sinþ = ø

Open-loop

(a) Dynamic Amplification (dB)

Damping

(b)

!
0

þ

Fig. 7.2. Role of damping (a) System poles. (b) Dynamic amplification (1/2ξ).

Active damping requires relatively little control effort; this is why it is
also called Low Authority Control (LAC), by contrast with other control
strategies which fully relocate the closed-loop poles (natural frequency
and damping) and are called High Authority control (HAC).

A remarkable feature of the LAC controllers discussed here is that
the control law requires very little knowledge of the system (at most
the knowledge of the natural frequencies). However, guaranteed stability
does not mean guaranteed performances; good performance does require
information on the system as well as on the disturbance applied to it, for
appropriate actuator/sensor placement, actuator sizing, sensor selection
and controller tuning. Actuator placement means good controllability of
the dominant modes (note that, for collocated systems, controllability
and observability go together, because the actuator and the sensor are
collocated); this will be reflected by well separated poles and zeros, leading
to wide loops in the root-locus plots.

In order to keep the formal complexity to a minimum, we assume no
structural damping and perfect actuator and sensor dynamics throughout
most of this chapter. The impact of the actuator and sensor dynamics on
stability, and the beneficial effect of passive damping is discussed at the
end.
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7.2 Lead control

Consider a undamped structure with a collocated, dual actuator/sensor
pair. We assume that the open-loop FRF G(ω) does not have any
feedthrough (constant) component, so that G(ω) decays at high frequency
as s−2; the roll-off (high frequency decay rate) is −40 dB/decade in this
case.

The open-loop transfer function of such a system, expressed in modal
coordinates, reads

G(s) =
n∑

i=1

(bT φi)2

µi(s2 + ω2
i )

(7.1)

where bT φi is the modal amplitude at the actuator/sensor location. This
corresponds, typically, to a point force actuator collocated with a displace-
ment sensor, or a torque actuator collocated with an angular sensor. The
pole-zero pattern is that of Fig 7.3 (where 3 modes have been assumed);
there are two structural poles in excess of zeros, which provide a roll-off
rate s−2 (a feedthrough component would introduce an additional pair of
zeros). This system can be damped with a lead compensator :

H(s) = g
s + z

s + p
(p À z) (7.2)

Structure

à p à zLead
Re(s)

Im(s)

j!i

jzi

Fig. 7.3. Open-loop pole/zero pattern and root locus of the lead compensator applied
to a structure with collocated actuator/sensor (open-loop transfer function with two
poles in excess of zeros). Different scales are used on the real and imaginary axes and
only the upper half of the plot is shown.
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g
s+p
s+z+

à

u yP

i
öi(s2+!

2
i
)

(bTþi)
2

G(s) =

Fig. 7.4. Block diagram of the lead compensator applied to a structure with collocated
actuator/sensor (open-loop transfer function G(s) with two poles in excess of zeros).

The block diagram of the control system is shown in Fig 7.4. This
controller takes its name from the fact that it produces a phase lead in
the frequency band between z and p, bringing active damping to all the
modes belonging to z < ωi < p. Figure 7.3 also shows the root locus of
the closed-loop poles when the gain g is varied from 0 to ∞. The closed-
loop poles which remain at finite distance start at the open-loop poles for
g = 0 and eventually go to the open-loop zeros for g → ∞. Since there
are two poles more than zeros, two branches go to infinity. The controller
does not have any roll-off, but the roll-off of the structure is enough to
guarantee gain stability at high frequency.

Note that the asymptotic values of the closed-loop poles for large gains
being the open-loop zeros zi, which are the natural frequencies of the
constrained system, they are therefore independent of the lead controller
parameters z and p. For a structure with well separated modes, the indi-
vidual loops in the root-locus (Fig 7.3) are to a large extent independent
of each other, and the root-locus for a single mode can be drawn from
the lead controller and the asymptotic values ωi and zi of that mode only
(Fig 7.5). The characteristic equation for this simplified system can be
written from the pole-zero pattern:

1 + α
(s2 + z2

i )(s + z)
(s2 + ω2

i )(s + p)
= 0 (7.3)

where α is the variable parameter going from α = 0 (open-loop) to infinity.
This can be written alternatively

1 +
1
α

(s2 + ω2
i )(s + p)

(s2 + z2
i )(s + z)

= 0

If z and p have been chosen in such a way that z ¿ ωi < zi ¿ p, this can
be approximated in the vicinity of jωi by
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Im(s)

Re(s)

ømax
j!i

jzi

à p à z

Fig. 7.5. Structure with well separated modes and lead compensator, root-locus of a
single mode.

1 +
p

α

(s2 + ω2
i )

s(s2 + z2
i )

= 0 (7.4)

This characteristic equation turns out to be the same as that of the Inte-
gral Force Feedback (IFF) controller discussed a little later in this chap-
ter, Equ.(7.31); it follows that the maximum achievable modal damping
is given by

ξmax =
zi − ωi

2ωi
(ωi > zi/3) (7.5)

Note that the maximum achievable damping is controlled by the separa-
tion between the open-loop pole ωi and the nearby zero zi.

7.3 Direct velocity feedback

The Direct Velocity Feedback (DVF) is the particular case of the lead
controller as z → 0 and p →∞. Returning to the the basic equations:

Structure:
Mẍ + Kx = bu (7.6)

Output (velocity sensor) :
y = bT ẋ (7.7)

Control :
u = −gy (7.8)

one finds easily the closed-loop equation
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Mẍ + gbbT ẋ + Kx = 0 (7.9)

Upon transforming into modal coordinates, x = Φx and taking into ac-
count the orthogonality conditions, one gets

diag(µi)z̈ + gΦT bbT Φ ż + diag(µiω
2
i )z = 0 (7.10)

where z is the vector of modal amplitudes. The matrix ΦT bbT Φ is in gen-
eral fully populated. For small gains, one may assume that it is diagonally
dominant, ' diag(bT φi)2. This assumption leads to a set of decoupled
equations. Mode i is governed by

µiz̈i + g(bT φi)2żi + µiω
2
i zi = 0 (7.11)

By analogy with single a d.o.f. oscillator, one finds that the active modal
damping ξi is given by

2ξiµiωi = g(bT φi)2 (7.12)

or

ξi =
g(bT φi)2

2µiωi
(7.13)

Thus, for small gains, the closed-loop poles sensitivity to the gain (i.e.
the departure rate from the open-loop poles) is controlled by (bT φi)2, the
square of the modal amplitude at the actuator/sensor location.

Now, let us examine the asymptotic behavior for large gains. For all
g, the closed-loop eigenvalue problem (7.9) is

(Ms2 + gbbT s + K)x = 0 (7.14)

Except for the presence of s in the middle term, this equation is close to
Equ.(2.45); proceeding as we did in chapter 2, it follows that

x = −(K + Ms2)−1gsbbT x

or
bT x = −gsbT (K + Ms2)−1bbT x (7.15)

Since bT x is a scalar, one must have

sbT (K + Ms2)−1b = −1
g

(7.16)

and taking the limit for g →∞
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sbT (K + Ms2)−1b = 0 (7.17)

The solutions of this equation are s = 0 and the solutions of (2.49),
that are the eigenvalues of the constrained system. The fact that the
eigenvalues are purely imaginary, s = ±jω0 stems from the fact that K
and M are symmetric and semi-positive definite. Typical root locus plots
for a lead controller and a DVF controller are compared in Fig.7.6.

Im(s)

Re(s)

g Structure

Lead

Im(s)

Re(s)

g Structure

DVF

(b)(a)

Fig. 7.6. Collocated control system. (a) Root locus for a lead controller. (b) DVF
controller.

As for the lead controller, for well separated modes, those which are
far enough from the origin can be analyzed independently of each other.
In this way, the characteristic equation for mode i is approximated by

1 + g
s(s2 + z2

i )
(s2 + ω2

1)(s2 + ω2
i )

= 0

(besides the poles at ±jωi and the zeros at ±jzi, we include the zero at
s = 0 and the poles at ±jω1) which in turn, if ωi > zi À ω1, may be
approximated by

1 + g
s2 + z2

i

s(s2 + ω2
i )

= 0 (7.18)

in the vicinity of mode i. This root locus is essentially the same as in
the previous section (with zi appearing in the numerator and ωi in the
denominator), and the formula for the maximum modal damping (7.32)
applies

ξmax =
ωi − zi

2zi
(zi > ωi/3) (7.19)
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7.4 Positive Position Feedback (PPF)

There are frequent situations where the open-loop FRF does not exhibit a
roll-off of −40 dB/decade as in the previous section. In fact, a feedthrough
component may arise from the truncation of the high frequency dynamics,
as in (2.34), or because of the physical nature of the system (e.g. beams
or plates covered with collocated piezoelectric patches, Fig.4.8).

In these situations, the degree of the numerator of G(s) is the same
as that of the denominator and the open-loop pole-zero pattern has an
additional pair of zeros at high frequency. Since the overall degree of the
denominator of H(s)G(s) must exceed the degree of the numerator, the
controller H(s) must have more poles than zeros. The Positive Position
Feedback was proposed to solve this problem (Goh & Caughey).

The second-order PPF controller consists of a second order filter

H(s) =
−g

s2 + 2ξfωfs + ω2
f

(7.20)

where the damping ξf is usually rather high (0.5 to 0.7), and the filter
frequency ωf is adapted to target a specific mode. The block diagram of
the control system is shown in Fig.7.7; the negative sign in H(s), which
produces a positive feedback, is the origin of the name of this controller.

s2+2øf!f+!
2
f

àg+

à

u yP

i
öi(s2+!

2
i
)

(bTþi)
2

G(s) =

Fig. 7.7. Block diagram of the second-order PPF controller applied to a structure with
collocated actuator and sensor (the open-loop transfer function has the same number
of poles and zeros).

Figure 7.8 shows typical root loci when the PPF poles are targeted to
mode 1 and mode 2, respectively (i.e. ωf close to ω1 or ω2, respectively).
One sees that the whole locus is contained in the left half plane, except
one branch on the positive real axis, but this part of the locus is reached
only for large values of g, which are not used in practice. The stability
condition can be established as follows: the characteristic equation of the
closed-loop system reads
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j!i

jzi

Stability limit

PPF

(mode 1)

Structure

Re(s)

Im(s)Im(s)

PPF

(mode 2)

Fig. 7.8. Root locus of the PPF controller applied to a structure with collocated
actuator and sensor (the open-loop transfer function has the same number of poles and
zeros). (a) Targeted at mode 1. (b) Targeted at mode 2. (For clarity, different scales
are used for the real and the imaginary axes.)

ψ(s) = 1 + gH(s)G(s) = 1− g

s2 + 2ξfωfs + ω2
f

{
n∑

i=1

bT φiφ
T
i b

µi(s2 + ωi
2)
} = 0

or

ψ(s) = s2 + 2ξfωfs + ω2
f − g{

n∑

i=1

bT φiφ
T
i b

µi(s2 + ωi
2)
} = 0

According to the Routh-Hurwitz criterion for stability (see chapter 13), if
one of the coefficients of the power expansion of the characteristic equation
becomes negative, the system is unstable. It is not possible to write the
power expansion ψ(s) explicitly for an arbitrary value of n, however, one
can see easily that the constant term (in s0) is

an = ψ(0) = ω2
f − g

n∑

i=1

bT φiφ
T
i b

µiωi
2

In this case, an becomes negative when the static loop gain gG(0)H(0)
becomes larger than 1. The stability condition is therefore

gG(0)H(0) =
g

ω2
f

{
n∑

i=1

bT φiφ
T
i b

µiωi
2
} < 1 (7.21)

Note that it is independent of the structural damping in the system.
Since the instability occurs for large gains which are not used in practice,
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the PPF can be regarded as unconditionally stable. Unlike the lead con-
troller of the previous section which controls all the modes which belong
to z < ωi < p and even beyond, the PPF filter must be tuned on the
targeted mode (it is therefore essential to know the natural frequency ac-
curately), and the authority on the modes with very different frequencies
is substantially reduced. Several PPF filters can be used in parallel, to
target several modes simultaneously, but they must be tuned with care,
because of the cross coupling between the various loops. An application
will be considered in section 14.4.

j!i

jzi

PPF

(1st order)

Structure

Im(s)

Re(s)

s = à 1=ü

Fig. 7.9. Root locus of the first-order PPF controller (the scale on the real axis has
been magnified for clarity).

The following first-order PPF controller is an alternative to the second
order controller:

H(s) =
−g

1 + τs
(7.22)

A typical root locus is shown in Fig.7.9. As compared to the second-order
controller, this one does not have to be tuned on targeted modes; the
roll-off is reduced to −20 dB/decade instead of −40 dB/decade with the
second order controller. The part of the locus on the real axis also becomes
unstable for large gains. Proceeding exactly as we did for the second order
controller, one finds easily that the stability condition is, once again, that
the static loop gain must be lower than 1:

gG(0) < 1 (7.23)
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Thus the gain margin is GM = [gG(0)]−1. The stability condition corre-
sponds to the negative stiffness of the controller overcoming that of the
structure. Because of this negative stiffness, the root-locus does not leave
the open-loop poles orthogonally to the imaginary axis; this is responsible
for larger control efforts, as compared to the other strategies considered
before, which may be a serious drawback in applications where the control
effort is an important issue.

7.5 Integral Force Feedback(IFF)

Fig. 7.10. Active truss with an active strut consisting of a displacement actuator and a
force sensor. δ = gau is the unconstrained extension of the strut induced by the control
u. The passive stiffness of the strut is Ka and f/Ka is the elastic extension. ∆ = bT x
is the total extension of the active strut.

So far, all the collocated system that we have considered exhibit al-
ternating poles and zeros, starting with a pole at low frequency (ω1 <
z1 < ω2 < z2 < ω3....). This corresponds to an important class of
actuator/sensor pairs, including (force actuator/displacement or veloc-
ity sensor), (torque actuator/angular or angular velocity sensor), (piezo-
electric patches used as actuator and sensor). In this section, we dis-
cuss an other interlacing pole-zero configuration but starting with a zero
(z1 < ω1 < z2 < ω2...). This situation arises, typically, in a actua-
tor/sensor pair made of a displacement actuator and a force sensor, such
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as that of the piezoelectric active truss of Fig 7.10 already considered
considered in section 4.9. The governing equation has been found to be

Mẍ + (K∗ + bbT Ka)x = bKaδ (7.24)

where K∗ is the stiffness matrix of the structure without the active strut
and K∗ + bbT Ka is the global stiffness matrix, including the active strut.
Note that this equation applies to linear actuators of many types, piezo-
electric, magnetostrictive, thermal, ball-screw,..., provided that the con-
stitutive equation of the actuator is

∆ = δ + f/Ka

or equivalently
y = f = Ka(bT x− δ) (7.25)

where ∆ = bT x is the total extension of the active strut, δ its free exten-
sion (control), f is the force sensor output, and Ka is the strut stiffness.
The open-loop transfer function has been found to be

G(s) =
y

δ
= Ka[

m∑

i=1

νi

s2/ω2
i + 1

+
n∑

i=m+1

νi − 1] (7.26)

where the residues νi are the fraction of modal strain energy in the active
strut. The FRF exhibit alternating poles and zeros on the imaginary axis,
beginning with a zero, Fig.7.11.
The feedback control law is in this case a positive Integral Force Feedback

δ =
g

Kas
y (7.27)

(the Ka at the denominator is for normalization purpose; y/Ka is the
elastic extension of the strut). The block diagram of the system is rep-
resented in Fig.7.12. The pole-zero pattern of the system is shown in
Fig 7.13. It consists of interlacing pole-zero pairs on the imaginary axis
(z1 < ω1 < z2 < ω2...) and the pole at s = 0 from the controller. The
root locus plot consists of the negative real axis and a set of loops going
from the open-loop poles ±jωi to the open-loop zeros ±jzi. All the loops
are entirely contained in left half plane, so that the closed-loop system
is unconditionally stable, for all values of the gain g. Note also that the
root-locus plot does not change significantly if the pole at the origin is
moved slightly in the left half plane, to avoid saturation (which is often
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Fig. 7.11. Open-loop FRF of an active truss. The active strut consists of a piezoelectric
actuator and a collocated force sensor.
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Fig. 7.12. Block diagram of the IFF control.

associated with integral control). In fact, piezoelectric force sensors have
a built-in high-pass filter and cannot measure a d.c. component.1

Equations (7.25) and (7.27) can be combined, leading to

δ =
g

s + g
bT x (7.28)

and upon substituting into (7.24), one gets the closed-loop characteristic
equation
1 This issue and the static behavior of the active truss will be reexamined later in this

book; see also Problem 7.5.
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Fig. 7.13. Pole-zero pattern of the active strut and root-locus of the IFF.

[Ms2 + (K∗ + bbT Ka)− bbT Ka
g

s + g
]x = 0 (7.29)

For g = 0, the eigenvalues are indeed the open-loop poles, ±jωi. Asymp-
totically, for g →∞, the eigenvalue problem becomes

[Ms2 + K∗]x = 0 (7.30)

where K∗ is the stiffness matrix of the structure without the active strut.
Thus, the open-loop zeros ±jzi are the natural frequencies of the truss
after removing the active strut. This situation should be compared to
that discussed earlier (section 2.5.1) in connection with a displacement
sensor. In that case, the open-loop zeros were found to be the natural
frequencies of the constrained system where the d.o.f. along which the
actuator and sensor operate is blocked (i.e. the sensor output is cancelled).
In the present case, if the sensor output is zero, the force carried by the
active strut vanishes and it can be removed.

For well separated modes, the individual loops in the root-locus of Fig
7.13 are, to a large extent, independent of each other, and the root locus
of a single mode can be drawn from the asymptotic values ±jωi and ±jzi

only (Fig 7.14.a). The corresponding characteristic equation is 2

2 Note the similarity with (7.4) for the lead controller and with (7.18) for the DVF.
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IFF

a) b)

Fig. 7.14. (a) IFF root locus of a single mode. (b) Evolution of the root locus as zi

moves away from ωi

1 + g
(s2 + z2

i )
s(s2 + ω2

i )
= 0 (7.31)

The actual root-locus, Fig.7.13, which includes the influence of the other
modes, is only slightly different from that of Fig 7.14.a, with the same
asymptotic values at ±jωi and ±jzi. It can be shown (Problem 7.3) that
the maximum modal damping for mode i is given by

ξmax
i =

ωi − zi

2zi
(zi ≥ ωi/3) (7.32)

It is achieved for g = ωi

√
ωi/zi This result applies only for ξi ≤ 1, that is

for zi ≥ ωi/3. For zi = ωi/3, the locus touches the real axis as indicated in
Fig 7.14.b, and for even larger differences ωi − zi, the root locus includes
part of the real axis, which means that one can achieve enormous damping
values. Equation (7.32) relates clearly the maximum achievable damping
and the distance between the pole and the zero. Note, however, that
if the system has several modes, there is a single tuning parameter g,
and the various loops are travelled at different speeds. As a result, the
optimal value of g for one mode will not be optimal for another one, and
a compromise must be found.

Equation (7.29) can be transformed into modal coordinates. Using the
orthogonality conditions, one finds

[diag(µi)s2 + diag(µiω
2
i )− ΦT bbT ΦKa

g

s + g
]z = 0 (7.33)
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For small g, the equations are nearly decoupled:

[s2 + ω2
i − νiω

2
i

g

s + g
]zi = 0 (7.34)

after using the definition of νi, Equ.(4.107). Since the root locus plot
leaves the open-loop pole orthogonally to the imaginary axis, for small
gain, one can assume a solution of the form s = ωi(−ξi + j). Substituting
into (7.34), one finds easily

ξi =
gνi

2ωi
(7.35)

Thus, for small gains, the closed-loop poles sensitivity to the gain, i.e. the
departure rate from the open-loop poles, is controlled by the fraction of
modal strain energy in the active element. This result is very useful for the
design of active trusses. The active strut should be located to maximize
νi for the critical modes of the structure. Note that νi is readily available
from finite element softwares; an example is analyzed in section 14.2.

In summary, the active strut placement can be made from the inspec-
tion of the map of modal strain energy in the finite element model, once
the active strut location has been selected, a modal analysis of the truss
including the active strut gives the open-loop poles ±jωi, and a modal
analysis after removing the active strut gives the open-loop zeros ±jzi.
Then, the root-locus plot can be drawn. The case of a truss involving
several active struts controlled in a decentralized manner is examined in
section 14.3.

7.6 Duality between the Lead and the IFF controllers

In both cases, if the modes are well separated, they behave essentially
independently, and their closed-loop behavior may be analyzed as a single
mode, without considering the interaction with the other modes.

7.6.1 Root-locus of a single mode

Figure 7.15 illustrates the duality between the IFF and the Lead con-
trollers. If the pole and the zero of the lead controller (7.2) are such that
z ¿ ωi < zi ¿ p, the root-locus plots of every mode turn out to be very
similar (Fig.7.15.c and d). The DVF can be looked at as the limit of the
Lead controller as z → 0 and p → ∞; however, depending on the situa-
tion, the individual loops starting from an open-loop pole may go either
to a zero with higher frequency (similar to Fig.7.15.d) or to a zero with
lower frequency (similar to Fig.7.15.c).
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Fig. 7.15. Duality between the IFF and the Lead (DVF) control configurations. (a)
IFF architecture with displacement actuator, force sensor and positive integral force
feedback. (b) Force actuator and collocated displacement transducer and (negative)
Lead controller (DVF is a particular case). (c) IFF control: Root locus for a single
mode. (d) Lead control: Root locus for a single mode (z ¿ ωi < zi ¿ p). The loops
of the DVF can be approximated by one configuration or the other, depending on the
relative value of ωi and zi.
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7.6.2 Open-loop poles and zeros

For the IFF (Fig.7.15.a), the open-loop poles jωi are the natural fre-
quencies of the structure with the active element working passively (con-
tributing with its own stiffness Ka), while the open-loop zeros, jzi, are
the natural frequencies when the force f in the active strut is zero, that
is when the active element is removed. On the contrary, in the control
configuration of Fig.7.15.b, the open-loop poles are the natural frequen-
cies when the active element produces no force (same as the zeros in the
previous case), and the open-loop zeros are the natural frequencies with
the d.o.f. along the actuator blocked (∆ = 0). Note that these are larger
than the open-loop poles in the IFF case, because the stiffness Ka of the
active strut is finite.

7.7 Actuator and sensor dynamics

Re(s)

Im(s)
(a)

Re(s)

Im(s)

Actuator

(b)

11

2

3

4

Fig. 7.16. Effect of the actuator dynamics on the Lead compensator. (a) With per-
fect actuator. (b) Including the actuator dynamics A(s) given by (7.37) (the corner
frequency of the actuator is such that ω2 < ωa < ω3).

Throughout this chapter, it has been assumed that the actuator and
sensor have perfect dynamics. As a result, the active damping algorithms
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Re(s)

Im(s)

Actuator

Fig. 7.17. Stabilizing effect of the structural damping on the actuator dynamics.

are stable for all gains g (except the PPF). In practice, however, the
open-loop transfer function becomes

g A(s) H(s) G0(s) (7.36)

where A(s) includes the sensor, actuator and the digital controller dy-
namics. The low frequency behavior of the proof-mass actuator and the
charge amplifier can both be approximated by a second order high-pass
filter such as (3.8). The high frequency behavior of the actuators and
sensors can often be represented by a second order low-pass filter

A(s) =
ω2

a

s2 + 2ξaωas + ω2
a

(7.37)

It is easy to see that the two extra poles of A(s) bring the asymptotes of
the root locus inside the right half plane and substantially alter its shape
for ω > ωa. Figure 7.16 shows the effect of the second order low-pass filter
on the root locus plot of the lead compensator (we have assumed ξa = 0.5
and ω2 < ωa < ω3). The active damping is no longer unconditionally
stable and always has some destabilizing influence on the modes with
natural frequencies beyond ωa. Fortunately, in practice, the modes of the
structure are not exactly on the imaginary axis, because of the structural
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damping (Fig.7.17); this allows us to operate the controller with small
gains. The control system becomes insensitive to the actuator dynamics
if ωa is far beyond the cross-over frequency of gH(s)G0(s). The effect of
the low frequency dynamics of a proof-mass actuator is left as a problem.

7.8 Decentralized control with collocated pairs

7.8.1 Cross talk

Consider the Multi-Input Multi-output (MIMO) control of a structure
with two independent control loops using collocated pairs. The input-
output relationship for this system can be written in compact form




y1

y2

z


 =




G11 G12 G1w

G21 G22 G2w

Gz1 Gz2 Gzw







u1

u2

w


 (7.38)

where w is the disturbance and z is the performance metric. One sees that
the output y1 responds to u2 through G12 and y2 responds to u1 through
G21, respectively. These terms are called cross-talk, and are responsible
for interactions between the two loops.

7.8.2 Force actuator and displacement sensor

Consider a control system with m collocated force actuator/displacement
sensor pairs. The control is governed by the following equations:

Structure:
Mẍ + Kx = Bu (7.39)

Output:
y = BT x (7.40)

where B defines the topology of the actuator/sensor pairs (the size of the
vectors u and y is equal to the number m of collocated pairs).

Control:
u = −gH(s)y (7.41)

where H(s) is a square matrix and g is a scalar parameter (the discussion
is not restricted to decentralized control; H(s) is diagonal if the control
is decentralized). The closed-loop eigenvalue problem is obtained by com-
bining the three equations above:
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[Ms2 + K + gBH(s)BT ]x = 0 (7.42)

One can show that the asymptotic values of the finite eigenvalues of this
equation as g →∞ are independent of H(s) (Davison & Wang); therefore,
they can be computed with H(s) = I:

lim
g→∞[Ms2 + K + gBBT ]x = 0 (7.43)

The asymptotic solutions of this equation are the transmission zeros of
the MIMO system. The matrix gBBT is the contribution to the global
stiffness matrix of a set of springs of stiffness g connected to all the d.o.f.
involved in the control. Asymptotically, when g → ∞, the additional
springs act as supports restraining the motion along the controlled d.o.f..
Thus, the transmission zeros are the poles (natural frequencies) of the
constrained system where the d.o.f. involved in the control are blocked.
Since all the matrices involved in (7.43) are symmetrical and positive
semi-definite, the transmission zeros are purely imaginary; since blocking
the controlled d.o.f. reduces the total number of d.o.f. by the number m
of control loops, the number of zeros is 2m less than the number of poles.

7.8.3 Displacement actuator and force sensor

The equations are in this case:
Structure:

Mẍ + Kx = BKaδ (7.44)

Output:
y = Ka(BT x− δ) (7.45)

Control:
δ = gH(s)y (7.46)

where B defines the topology of the active members within the structure,
assumed of equal stiffness Ka, H(s) is a square matrix and g is a scalar
gain (a positive feedback is assumed as in the IFF controller). The closed-
loop eigenvalues are solutions of

[Ms2 + K − gBKaH(I + gKaH)−1KaB
T ]x = 0 (7.47)

The asymptotic values are respectively, for g = 0, the open-loop poles
(natural frequencies of the system including the active members) and, for
g →∞,3 they are solution of
3 because limg→∞(I + gKaH) ∼ gKaH
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(Ms2 + K −BKaB
T )x = 0 (7.48)

Thus, asymptotically, as g → ∞, the finite eigenvalues coincide with the
transmission zeros which are the poles (natural frequencies) of the system
where the contribution of the active members to the stiffness matrix has
been removed. This result applies in particular for independent IFF loops.
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7.10 Problems

P.7.1 Compare the following implementations of the Lead and the Direct
Velocity Feedback compensators:

H(s) = s

H(s) = 1 + Ts

H(s) =
s

s + a

H(s) =
Ts + 1
αTs + 1

(α < 1)

H(s) =
ω2

fs

s2 + 2ξfωfs + ω2
f

Discuss the conditions under which these compensators would be appli-
cable for active damping.
P.7.2 Consider a vibrating structure with a point force actuator collo-
cated with an accelerometer. Consider the two compensators:

H(s) = g/s
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H(s) =
g

s2 + 2ξfωfs + ω2
f

Draw the block diagram of the control system, examine the stability and
performance. What would be the effect of the dynamics of a charge am-
plifier, represented as a second order high-pass filter of corner frequency
ωp and damping ξp = 0.7, assuming that its corner frequency satisfies
ωp ¿ ω1.
P.7.3 Show that the maximum damping achievable in an active truss with
the integral force feedback is

ξmax
i =

ωi − zi

2zi
(zi ≥ ωi/3)

where ωi is the natural frequency of the truss including the active strut
as a passive element and zi is the natural frequency when the active strut
has been removed, and that it is achieved for g = ωi

√
ωi/zi. [Hint: The

use of a symbolic calculation software is recommended.]
P.7.4 Consider the plane truss of Fig.4.19; write the influence matrix B
for the set of active struts depicted on the figure. Check that the topology
matrix appearing in the sensor equation is BT .
P.7.5 To avoid the saturation associated with integral control, the IFF
controller (7.27) may be replaced by

δ

y
= H(s) =

gs

Ka(s + β)2

where β ¿ ω1 (de Marneffe).
(a) Compare the root locus and the damping performance of the two

controllers.
(b) Show that, on the contrary to (7.27), this control law does not

reduce the static stiffness of the structure.
P.7.6 Consider the seven-story shear frame of Fig.7.18. It is controlled in a
decentralized manner with two independent and identical feedback loops.
Every actuator ui applies a pair of forces equal and opposite between floor
i and floor i − 1, while the sensor yi = xi − xi−1 measures the relative
displacement between the same floors. The mass, stiffness and B matrices
are respectively M = mI7,
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Fig. 7.18. (a) Shear frame with two independent control loops (displacement sensor
and force actuator). (b) Configuration corresponding to transmission zeros.

K = k




2 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0

. . .
0 0 −1 2 −1
0 . . . 0 −1 1




, B =




1 −1
0 1
0 0
...

...
0 0
0 0




(7.49)

(m is the mass and k the stiffness of a single floor). The natural frequency
of mode l is given by

ωl = 2

√
k

m
sin[

π

2
(2l − 1)
(2n + 1)

] , l = 1, · · · , n (7.50)

where n is the number of storeys (for the calculations, one can normalize
according to Ω =

√
k/m = 1). Consider the lead compensator

H(s) = g
1 + Ts

1 + αTs
(α < 1) (7.51)

and select the parameters T and α to control properly at least the first 3
modes of the system.

(a) Consider a single control loop in the first floor. Compute the trans-
mission zeros, draw the root locus and select a reasonable value of the gain;
evaluate the active damping obtained in the 3 targeted modes.
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(b) Consider the decentralized control with two independent loops with
the same gain. Compute the transmission zeros, draw the root locus and
compare it to the previous one; select a reasonable value of the gain and
evaluate the active damping obtained for the 3 targeted modes.

(c) For the single loop controller, evaluate the effect of a band limited
actuator by including a low-pass filter (7.37) with a corner frequency
ωa = ω5 and ξa = 0.7. Comment on the feasibility of such a control
system.
P.7.7 Consider again the seven-story shear frame of Fig.7.18 with one or
two active struts in the first two floors; the stiffness Ka of the strut is
such that Ka/k = 5. The active struts are equipped with a displacement
actuator and a force sensor pair and are controlled in a decentralized
manner with the IFF controller:

H(s) = g/s (7.52)

(a) Consider a single control loop in the first floor. Compute the open-
loop poles and the transmission zeros, draw the root locus and select a
reasonable value of the gain; evaluate the active damping obtained in the
3 targeted modes.

(b) Consider the decentralized control with two independent loops with
the same gain. Compute the open-loop poles and the transmission zeros,
draw the root locus and compare it to the previous one; select a reasonable
value of the gain and evaluate the active damping obtained for the 3
targeted modes.

(c) For the single loop controller, evaluate the effect of a band limited
actuator by including a low-pass filter (7.37) with a corner frequency
ωa = ω5 and ξa = 0.7. Comment on the feasibility of such a control
system and compare to the previous problem.



8

Vibration isolation

8.1 Introduction

There are two broad classes of problems in which vibration isolation is
necessary: (i) Operating equipments generate oscillatory forces which can
propagate into the supporting structure (Fig.8.1.a). This situation corre-
sponds to that of an engine in a car. (ii) Sensitive equipments may be
supported by a structure which vibrates appreciably (Fig.8.1.b); in this
case, it is the support motion which constitutes the source of excitation;
this situation corresponds to, for example, a telescope in a spacecraft, a
wafer stepper or a precision machine tool in a workshop, or a passenger
seated in a car.

The disturbance may be either deterministic, such as the unbalance
of a motor, or random as in a passenger car riding on a rough road.
For deterministic sources of excitation which can be measured, such as

dd

xx x

xx

cc

fkk k
c

cc

MM M

a

( c )( b )( a ) f

f

d

s

Fig. 8.1. (a) Operating equipment generating a disturbance force fd. (b) Equipment
subjected to a support excitation xd. (c) Active isolation device.
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a rotating unbalance, feedforward control can be very effective (see for
example chapter 7 of Fuller’s book).1 However, the present chapter is
focused on the feedback strategies for active isolation; they apply to both
deterministic and random disturbances, and they do not need a direct
measurement of the disturbance.

Let us begin with the system depicted in Fig.8.1.a, excited by a dis-
turbance force fd. If the support is fixed, the governing equation is:

Mẍ + cẋ + kx = fd (8.1)

The force transmitted to the support is given by

fs = kx + cẋ (8.2)

In the Laplace domain,

X(s) =
Fd(s)

M(s2 + 2ξωns + ω2
n)

(8.3)

Fs(s) = M(ω2
n + 2ξωns)X(s) (8.4)

where X(s), Fd(s) and Fs(s) stand for the Laplace transform of respec-
tively x(t), fd(t) and fs(t), and with the usual notations ω2

n = k/M and
2ξωn = c/M . The transmissibility of the support is defined in this case
as the transfer function between the disturbance force fd applied to the
mass and the force fs transmitted to the support structure; combining
the foregoing equations, we get

Fs(s)
Fd(s)

=
1 + 2ξs/ωn

1 + 2ξs/ωn + s2/ω2
n

(8.5)

Next, consider the second situation illustrated in Fig.8.1.b; the distur-
bance is the displacement xd of the supporting structure and the system
output is the displacement xc of the sensitive equipment. Proceeding in
a similar way, it is easily established that the transmissibility of this iso-
lation system, defined in this case as the transfer function between the
support displacement and the absolute displacement of the mass M , is
given by (Problem 8.1)

Xc(s)
Xd(s)

=
1 + 2ξs/ωn

1 + 2ξs/ωn + s2/ω2
n

(8.6)

1 In feedforward control, it is not necessary to measure directly the disturbance force,
but rather a signal which is correlated to it, such as the rotation velocity, if the
disturbance results from a rotating unbalance.
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Fig. 8.2. Transmissibility of the passive isolator for various values of the damping ratio
ξ. The performance objectives of active isolation are a high frequency decay like s−2

together with no overshoot at resonance.

which is identical to the previous one; the two isolation problems can
therefore be treated in parallel. The amplitude of the corresponding FRF,
for s = jω, is represented in Fig.8.2 for various values of the damping ratio
ξ. We observe that: (i) All the curves are larger than 1 for ω <

√
2 ωn

and become smaller than 1 for ω >
√

2 ωn. Thus the critical frequency√
2 ωn separates the domains of amplification and attenuation of the

isolator. (ii) When ξ = 0, the high frequency decay rate is s−2, that is -40
dB/decade, while very large amplitudes occur near the corner frequency
ωn (the natural frequency of the spring-mass system).

Figure 8.2 illustrates the trade-off in passive isolator design: large
damping is desirable at low frequency to reduce the resonant peak while
low damping is needed at high frequency to maximize the isolation. One
may already observe that if the disturbance is generated by a rotating
unbalance of a motor, there is an obvious benefit to use a damper with
variable damping characteristics which can be adjusted according to the
rotation velocity: high when ω <

√
2ωn and low when ω >

√
2ωn. Such

variable (adaptive) devices will be discussed in chapter 17. Figure 8.2 also
shows the target of an active isolation system which combines a decay
rate of -40 dB/decade with no overshoot at resonance. Before addressing
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the active isolation, the following section discusses one way of improving
the high frequency isolation in a passive way.

8.2 Relaxation isolator

In the relaxation isolator, the viscous damper c is replaced by a Maxwell
unit consisting of a damper c and a spring k1 in series (Fig.8.3.a). The
governing equations are

Mẍ + k(x− x0) + c(ẋ− ẋ1) = 0 (8.7)

c(ẋ− ẋ1) = k1(x1 − x0) (8.8)

or, in matrix form using the Laplace variable s,
[

Ms2 + cs + k −cs
−cs k1 + cs

] {
x
x1

}
=

{
k
k1

}
x0 (8.9)

It follows that the transmissibility reads

x

x0
=

(k1 + cs)k + k1cs

(Ms2 + cs + k)(k1 + cs)− c2s2
=

(k1 + cs)k + k1cs

(Ms2 + k)(k1 + cs) + k1cs
(8.10)

One sees that the asymptotic decay rate for large frequencies is in s−2,
that is -40 dB/decade. Physically, this corresponds to the fact that, at
high frequency, the viscous damper tends to be blocked, and the system

Fig. 8.3. (a) Relaxation isolator. (b) Electromagnetic realization.
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Fig. 8.4. Transmissibility of the relaxation oscillator for fixed values of k and k1 and
various values of c. The first peak corresponds to ω = ωn; the second one corresponds
to ω = Ωn. All the curves cross each other at A and have an asymptotic decay rate of
-40 dB/decade. The curve corresponding to copt is nearly maximum at A.

behaves like a undamped isolator with two springs acting in parallel.
Figure 8.4 compares the transmissibility curves for given values of k and
k1 and various values of c. For c = 0, the relaxation isolator behaves
like an undamped isolator of natural frequency ωn = (k/M)1/2. Likewise,
for c → ∞, it behaves like an undamped isolator of frequency Ωn =
[(k + k1)/M ]1/2. In between, the poles of the system are solution of the
characteristic equation

(Ms2 + k)(k1 + cs) + k1cs = (Ms2 + k)k1 + cs(Ms2 + k + k1) = 0

which can be rewritten in root locus form

1 +
k1

c

s2 + ω2
n

s(s2 + Ω2
n)

= 0 (8.11)

It is very similar to (7.31); it is represented in Fig.8.5 when c varies from
0 to ∞; using the results of section 7.5, the maximum damping ratio is
achieved for

k1

c
=

Ω
3/2
n

ω
1/2
n

(8.12)
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Fig. 8.5. Root locus of the solutions of Equ.(8.11) as c goes from zero to infinity. The

maximum damping is achieved for k1/c = Ω
3/2
n ω

−1/2
n .

and the corresponding damper constant is

copt =
k1

Ωn
(
ωn

Ωn
)1/2 =

k1

Ωn
(1 +

k1

k
)−1/4 =

k1

ωn
(1 +

k1

k
)−3/4 (8.13)

The transmissibility corresponding to copt is also represented in Fig.8.4;
it is nearly maximum at A.

8.2.1 Electromagnetic realization

The principle of the relaxation isolator is simple and it can be realized
with viscoelastic materials. However, it may be difficult to integrate in
the system, and also to achieve thermal stability. In some circumstances,
especially when thermal stability is critical, it may be more convenient
to achieve the same effect through an electromechanical converter which
consists of a voice coil transducer, an inductor L and a resistor R.

A voice coil transducer is an energy converter transforming mechanical
energy into electrical energy and vice-versa; its constitutive equations are
given by Equ.(3.1) to (3.3).

Referring to Fig.8.3.b, the governing equations of the system are

Mẍ + k(x− x0)− Ti = 0 (8.14)

L
di

dt
+ T (ẋ− ẋ0) + Ri = 0 (8.15)
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where T is the transducer constant; in matrix form, using the Laplace
variable, [

Ms2 + k −T
Ts Ls + R

] {
x
i

}
=

{
k
Ts

}
x0 (8.16)

It follows that the transmissibility reads

x

x0
=

(Ls + R)k + T 2s

(Ms2 + k)(Ls + R) + T 2s
(8.17)

Comparing with Equ.(8.10), one sees that the electromechanical isolator
behaves exactly like a relaxation isolator provided that

Ls + R

T 2
=

cs + k1

k1c
(8.18)

or

k1 =
T 2

L
c =

T 2

R
(8.19)

These are the two relationships between the three parameters T , L and R
so that the transmissibility of the electromechanical system of Fig.8.3.b
is the same as that of Fig.8.3.a.

8.3 Active isolation

k
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M
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F
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Fig. 8.6. Single-axis active isolator.

Consider the single-axis isolator connecting a disturbance source m to
a payload M (Fig.8.6). It consists of a soft spring k in parallel with a force
actuator fa; the objective is to isolate the motion xc of the payload M
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from the motion xd of m due to the disturbance load fd. The governing
equations are

Mẍc + k(xc − xd) = fa (8.20)

mẍd + k(xd − xc) = fd − fa (8.21)

or, in matrix form using the Laplace variable s,
[

Ms2 + k −k
−k ms2 + k

] {
Xc

Xd

}
=

{
Fa

Fd − Fa

}
(8.22)

Upon inverting this equation, one gets

Xc =
kFd

s2[Mms2 + (M + m)k]
+

mFa

Mms2 + (M + m)k
(8.23)

The first term of this expression describes the payload response to the
disturbance load while the second term is the payload response to the
actuator. If an accelerometer or a geophone is attached to the payload,
measuring the absolute acceleration ẍc or the absolute velocity ẋc, the
open-loop transfer function is

G(s) =
s2Xc

Fa
=

ms2

Mms2 + (M + m)k
(8.24)

Consider the closed-loop response to a general feedback law based on the
absolute velocity ẋc:

Fa = −H(s)sXc(s) (8.25)

Introducing this into (8.22), one gets
[

Ms2 + H(s)s + k −k
−k −H(s)s ms2 + k

] {
Xc

Xd

}
=

{
0
Fd

}
(8.26)

Upon considering the first line of this equation, one finds easily that the
closed-loop transmissibility is

Xc

Xd
=

k

Ms2 + H(s)s + k
(8.27)
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8.3.1 Sky-hook damper

Equation (8.27) shows the influence of the feedback control law on the
transmissibility; it shows that a simple velocity feedback, H(s) = g leads
to the transmissibility

Xc

Xd
=

k

Ms2 + gs + k
=

1
s2/ω2

n + gs/k + 1
(8.28)

which complies with the objectives of active isolation stated in Fig.8.2,
because the asymptotic decay rate is in s−2 (i.e. -40 dB/decade) and the
overshoot at resonance may be controlled by adjusting the gain g of the
controller to achieve critical damping. This control law is called sky-hook,
because the control force fa = −gẋc is identical to that of a viscous
damper of constant g attached to the payload and a fixed point in space
(the sky), Fig.8.7.

k

Accelerometer
m M

aF

k
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F   = - g s Xa c
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disturbance
source
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Fig. 8.7. (a) Isolator with absolute velocity feedback. (b) Equivalent sky-hook damper.

The open-loop transfer function between the input force fa and the
output acceleration ẍc is given by (8.24); it has a pair of imaginary poles
at

pi = ±j

√
(M + m)k

Mm
(8.29)

and a pair of zeros at the origin. The root-locus of the sky-hook is shown
in Fig.8.8; it is entirely contained in the left-half plane, which means that
the sky-hook damper is unconditionally stable (infinite gain margin).

8.3.2 Integral Force feedback

We have just seen that the sky-hook damper based on the absolute ve-
locity of the payload is unconditionally stable for a rigid body. However,
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Fig. 8.8. Root-locus of the sky-hook damper.

this is no longer true if the payload cannot be regarded as a rigid body,
situation which is frequently met in space applications. Since the abso-
lute acceleration of a rigid body is proportional to the force applied to
it, F = Mẍc, the acceleration feedback of Fig.8.7 may be replaced by a
force feedback as shown in Fig.8.9. Note that, besides the advantage of
achieving alternating poles and zeros discussed here, a force sensor may
be more sensitive than an accelerometer in low frequency applications;
for example, a force sensor with a sensitivity of 10−3N is common place;
for a mass M of 1000 kg (e.g. a space telescope), this corresponds to an
acceleration of 10−6m/s2; such a sensitivity is more difficult to achieve.
Force sensing is especially attractive in micro-gravity where one does not
have to consider the dead loads of a structure. The open-loop transfer
function is, in this case

G(s) =
F

Fa
=

Mms2

Mms2 + (M + m)k
(8.30)
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Fig. 8.9. Sky-hook based on a force sensor (F is taken positive when it is acting in
the direction of xc on mass M).
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Fig. 8.10. Arbitrary flexible structures connected by a single-axis isolator with force
feedback.

which has the same pole/zero pattern and the same root-locus as Fig.8.8.
However, when the payload is flexible, the force applied and the accelera-
tion are no longer proportional and the pole/zero pattern may differ sig-
nificantly. It can be observed that the feedback based on the acceleration
still leads to alternating poles and zeros in the open-loop transfer function
when the flexible modes are significantly above the suspension mode, but
they do not alternate any more when the flexible modes interact with
the suspension mode. On the contrary, if two arbitrary undamped flexi-
ble bodies are connected by a single-axis isolator with force feedback, the
poles and zeros of the open-loop transfer function F/Fa always alternate
on the imaginary axis (Fig.8.10).

This result is not obvious, because the actuator Fa and the sensor F ,
if collocated, are not dual as requested for alternating poles and zeros
(as emphasized in previous chapters); it can be demonstrated as follows:
The system with input Fa and output the relative displacement between
the two bodies, ∆x = x1 − x2 is collocated and dual ; therefore, the FRF
(which is purely real in the undamped case) exhibits alternating poles and
zeros (full line in Fig.8.11). On the other hand, the control force Fa, the
relative displacement ∆x and the output (total) force F are related by

F = k∆x− Fa (8.31)

(in this equation, F is assumed positive in traction while Fa is positive
when it tends to separate the two bodies). It follows that the FRF F/Fa

and ∆X/Fa are related by

F

Fa
=

k∆X

Fa
− 1 (8.32)

This equation states that the FRF with force sensor, F/Fa, can be ob-
tained from that with relative displacement sensor, k∆X/Fa by a simple
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1

0

1

Fig. 8.11. FRFs of the single-axis oscillator connecting two arbitrary flexible struc-
tures. The full line corresponds to k∆X/Fa and the dotted line to F/Fa; it is obtained
by vertical translation of the full line by -1.

vertical translation bringing the amplitude to 0 at ω = 0 (from the full
line to the dotted line). This changes the locations of the zeros Zi but
the continuity of the FRF curve between two resonances guarantees that
there is a zero between two consecutive poles (natural frequencies):

ωi < Zi < ωi+1 (8.33)

8.4 Flexible body

When the payload is flexible, the behavior of the acceleration feedback
and the force feedback are no longer the same, due to different poles/zeros
configurations of the two control strategies. In fact, different sensor con-
figurations correspond to different locations of the zeros in the s-plane.
To analyze this situation, consider the payload with a flexible appendage
of Fig.8.12; the nominal numerical values used in the calculations are
m = 1.1kg, M = 1.7kg, k = k1 = 12000N/m, c1 = 0; the mass m1 of the
flexible appendage is taken as a parameter to analyze the interaction be-
tween the flexible appendage and the isolation system. When m1 is small,
the flexible appendage is much more rigid than the isolation system and
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Fig. 8.12. Payload with a flexible appendage.

the situation is not much different from that of a rigid body. Figure 8.13
shows the root locus plots for m1 = 0.5kg; the acceleration feedback and
the force feedback have similar root locus plots, with a new pole/zero pair
appearing higher on the imaginary axis; the poles and zeros still alternate
on the imaginary axis and the only difference between the two plots is the
distance between the pole and the zero which is larger for the acceleration
feedback; as a result, the acceleration feedback produces a larger damping
of the higher mode.

By contrast, when m1 is large, the root locus plots are reorganized as
shown in Fig.8.14 for m1 = 3.5kg. For force feedback, the poles and zeros
still alternate on the imaginary axis, leading to a stable root locus; this
property is lost for the acceleration feedback, leading to an unstable loop
for the lower mode. In practice, however, this loop is moved slightly to the
left by the structural damping, and the control system can still operate
with small gains (conditionally stable).

(b)(a)
Im

Re

Im

Re

Fig. 8.13. Root locus of the isolation system with a light flexible appendage (m1 =
0.5kg). (a) Force feedback. (b) Acceleration feedback.
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Fig. 8.14. Root locus of the isolation system with a heavy flexible appendage (m1 =
3.5kg). (a) Force feedback. (b) Acceleration feedback.

8.4.1 Free-free beam with isolator

To analyze a little further the situation when the payload is flexible,
consider the vertical isolation of a free-free continuous beam from the dis-
turbance of a body of mass m, Fig.8.15.a. This situation is representative
of a large space structure with its attitude control system attached to
m (the disturbance is created by the unbalance of the rotating wheels).
Note that the rigid body modes are uncontrollable from the internal force
Fa. In the numerical example described below, the length of the beam
is l = 5m, the mass per unit length is % = 2kg/m, the stiffness of the
isolator is k = 1N/m and the mass where the disturbance is applied is
m = 1kg; the stiffness EI of the beam is taken as a parameter.

Let Ωi be the natural frequencies of the flexible modes of the free-free
beam alone, Fig.8.15.b and Zi be the transmission zeros corresponding to
a force excitation and a collocated displacement sensor (or equivalently
acceleration). According to what we have seen in the previous chapters,
Zi are the natural frequencies of the system with an additional restraint
at the connecting degree of freedom of the isolator. Because of the collo-
cation, the poles and zeros are alternating on the imaginary axis, so that
Ωi and Zi satisfy

Zi < Ωi < Zi+1 (8.34)

Next, consider the complete system (beam + mass m) and let ωi be its
natural frequencies (flexible mode only, because the rigid body modes are
not controllable from the internal force Fa). If the control system uses a
force sensor, Fig.8.15.d, the transmission zeros, obtained by enforcing a
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Fig. 8.15. (a) Free-free beam and single axis isolator. The other figures illustrate
the various situations and the boundary conditions corresponding to the transmission
zeros. (b) Free-free beam with displacement sensor and point force actuator. (c) Free-
free beam and sky-hook isolator. (d) Free-free beam and isolator with force feedback.

zero force at the connecting d.o.f., are identical to the natural frequencies
of the system when the isolator is disconnected from the beam; which
are identical to the natural frequencies Ωi of the free-free beam. The
configuration is exactly that of Fig.8.10 and, accordingly, the open-loop
FRF has alternating poles and zeros and the following relation holds:

ωi < Ωi < ωi+1 (8.35)

This condition guarantees the stability of the closed-loop system when a
force feedback is used.

With an acceleration feedback (sky-hook damper, Fig.8.15.c, the poles
are still ±jωi while the zeros, obtained by enforcing a zero acceleration at
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Fig. 8.16. Flexible beam with an isolator; evolution of ωi,Zi and ωi with the flexibility
of the beam.

the connecting d.o.f. are ±jZi, as for the free-free beam of Fig.8.15.b. This
actuator/sensor configuration is no longer collocated, so that no condition
similar to (8.34) or (8.35) holds between ωi and Zi. When the beam is
stiff, the interlacing property ωi < Zi < ωi+1 is satisfied and the stability
is guaranteed, but as the beam becomes more flexible, the values of ωi and
Zi decrease at different rates and a pole/zero flipping occurs when they
both become equal to the natural frequency of the isolator (ω∗ =

√
k/m),

Fig.8.16. As a result, the system is no longer unconditionally stable when
the flexibility is such that ω1 = Z1 = ω∗ =

√
k/m, and above.

As a conclusion to this section, it seems that the sky-hook damper
implementation (acceleration feedback) is preferable when the payload is
fairly stiff as compared to the isolator corner frequency (e.g. car suspen-
sion), to benefit from the better active damping properties of the flexible
modes (Fig.8.13). On the contrary, the force feedback implementation is
preferable when the payload is very flexible (e.g. space structure), to ben-
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efit from the interlacing of the poles and zeros, leading to guaranteed
stability.

8.5 Payload isolation in spacecrafts

Space telescopes and precision payloads are subject to jitter due to the
unbalanced masses of the attitude control reaction wheels or gyros. The
performance of the instruments may be improved by inserting one or sev-
eral isolators in the transmission path between the disturbance source and
the payload. If the isolator is designed in such a way that its transmis-
sibility exhibits a decay rate of −40dB/decade, the jitter can be reduced
by a factor 100 by selecting the isolator corner frequency, f0, one decade
lower than the first flexible mode of the payload, fn (Fig.8.17). Extremely
sensitive payloads may even involve several isolation layers. 2

Fig. 8.17. Effect of the isolator on the transmissibility between the spacecraft bus and
the telescope.

2 The future James Webb Space Telescope, JWST will involve two isolation layers, (i)
the wheel isolator supporting six reaction wheels, with corner frequencies at 7 Hz
for rocking and 12 Hz for translation and (ii) a 1 Hz passive isolator at the interface
between the telescope deployment tower and the spacecraft bus (Bronowicki).
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Fig. 8.18. Spacecraft architecture. (a) Without isolator. (b) Isolator placed between
the Reaction Wheel Assembly (RWA) and and the spacecraft bus. (c) Isolator between
the spacecraft bus and the telescope.

8.5.1 Interaction isolator/attitude control

There are several possible locations for the isolator, depending on the
spacecraft architecture (Fig.8.18). If the attitude control wheels are
packed in a single assembly (RWA), the isolator may be placed between
the RWA and the spacecraft bus, Fig.8.18.b. Another option consists
in placing the isolator between the spacecraft bus and the instrument,
Fig.8.18.c; in this alternative, the rotating wheels are rigidly attached to
the spacecraft bus. The additional compliance introduced by the vibration
isolator has a major impact on the low frequency dynamics of the system
and its interaction with the attitude control system must be taken into
account. The most favorable situation is that where the attitude control
actuators and the attitude sensors (star trackers) are both rigidly at-
tached to the spacecraft bus (collocated). For non-collocated situations,
the stability of the control system requires that the corner frequency f0

of the isolator be one decade above the attitude control bandwidth, fc;
altogether,

fc ∼ 0.1f0 ∼ 0.01fn (8.36)
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8.5.2 Gough-Stewart platform

To fully isolate two rigid bodies with respect to each other, six single-axis
isolators judiciously placed are needed. For a number of space applica-
tions, generic multi-purpose isolators have been developed with a standard
Gough-Stewart platform architecture, in which every leg of the platform
consists of a single-axis active isolator, connected to the base plates by
spherical joints. In the cubic architecture (Fig.8.19), the legs are mutu-
ally orthogonal, which minimizes the cross coupling between them. This
configuration is particularly attractive, because it also has uniform stiff-
ness properties and uniform control capability, and it has been adopted
in most of the projects.

Fig. 8.19. Multi-purpose soft isolator based on a Gough-Stewart platform with cubic
architecture (ULB).

8.6 Six-axis isolator

Let us consider a payload isolated by six identical isolators (Fig.8.20); if
the isolators consist of simple springs of stiffness k, the six suspension
modes are solution of an eigenvalue problem
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Fig. 8.20. Six-axis isolator (only four legs are represented). The connection between the
leg and the support as well as the payload is done with spherical joints. The coordinates
of the payload x = (x, y, z, θx, θy, θz)

T and the leg extensions q = (q1, . . . , q6)
T are

related by q = Jx where J is the Jacobian of the isolator.

(Ms2 + K)x = 0 (8.37)

where x is a vector of 6 coordinates describing the position of the payload,
e.g. x = (x, y, z, θx, θy, θz)T . The mass matrix M can be obtained by
writing the kinetic energy in terms of ẋ. Similarly, the stiffness matrix is
obtained by writing the strain energy in terms of x. The strain energy
in the system is V = 1

2k qT q, where q = (q1, . . . , q6)T is the vector of
the spring extensions in the isolator and k is the stiffness common to all
springs. If J is the Jacobian matrix connecting the spring extensions q to
the coordinates x (J depends on the topology of the isolator),

q = Jx (8.38)

one gets that

V =
1
2
k qT q =

1
2
k xT JT Jx (8.39)

which means that the stiffness matrix is

K = kJT J (8.40)

8.6.1 Relaxation isolator

If the linear spring is replaced by a relaxation isolator, the common stiff-
ness k must be replaced by the appropriate relationship between the
spring force F and the spring extension x − x0. From the constitutive
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equations of the isolator, Equ.(8.9), one finds that the dynamic stiffness
of the relaxation isolator is (Problem 8.5):

F

x− x0
= k(s) = k[1 +

k1cs

k(k1 + cs)
] (8.41)

(the stiffness is k at low frequency and k1 at high frequency). Thus, the
(frequency-dependent) stiffness matrix of the six-axis relaxation isolator
reads

K(s) = JT J k[1 +
k1cs

k(k1 + cs)
] = K[1 +

k1cs

k(k1 + cs)
] (8.42)

and the eigenvalue problem (8.37) becomes

{Ms2 + K[1 +
k1cs

k(k1 + cs)
]}x = 0 (8.43)

If ωi and Φ = (φ1, . . . , φ6) are the solution of the eigenvalue problem
(8.37), normalized according to ΦT MΦ = I, one can transform (8.43)
into modal coordinates, x = Φz; using the orthogonality conditions, one
finds a set of decoupled equations

s2 + ω2
i [1 +

k1cs

k(k1 + cs)
] = 0 (8.44)

Upon introducing

Ω2
i = ω2

i (1 +
k1

k
) (8.45)

the previous equation may be rewritten

k1

c
(s2 + ω2

i ) + s(s2 + Ω2
i ) = 0

or

1 +
k1

c

s2 + ω2
i

s(s2 + Ω2
i )

= 0 (8.46)

which is identical to (8.11). Thus, according to the foregoing equation,
the six suspension modes follow independent root-loci connecting ωi and
Ωi (Fig.8.5). However, k1/c being a single scalar parameter, the optimal
damping cannot be reached simultaneously in the six modes, because of
the modal spread (ω1 < ω6).
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8.6.2 Integral Force Feedback

If the linear springs are substituted with identical active isolators such as
in Fig.8.10, the dynamics of the isolator is governed by

Mẍ + Kx = Bu (8.47)

where the right hand side is the projection of the six actuator forces,
u = (u1, . . . , u6)T in the global coordinate system attached to the payload.
The control forces ui act in the direction where the leg extension qi is
measured; from the principle of virtual work,

(Bu)T δx = uT δq −→ uT BT δx = uT Jδx

which implies
B = JT and K = kBBT (8.48)

The force sensor equation is the same as (8.31):

y = kq − u (8.49)

where y = (y1, . . . , y6)T is the output vector of the six force sensors; the
IFF feedback law is

u =
g

s
y (8.50)

where an equal gain is assumed for the six independent loops. Combining
Equ.(8.47), (8.49) et (8.50), one gets the closed-loop equation

(Ms2 + K)x =
g

s + g
kBBT x

or
(Ms2 + K

s

s + g
)x = 0 (8.51)

If we transform into modal coordinates, x = Φz, and take into account
the orthogonality relationships, the characteristic equation is reduced to
a set of uncoupled equations

(s2 + Ω2
i

s

s + g
)zi = 0 (8.52)

Thus, every mode follows the characteristic equation

s2 + Ω2
i

s

s + g
= 0
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or
1 + g

s

s2 + Ω2
i

= 0 (8.53)

where Ωi are the natural frequencies of the six suspension modes. The
corresponding root locus is shown in Fig.8.21.a. It is identical to Fig.8.8
for a single-axis isolator; however, unless the 6 natural frequencies are
identical, a given value of the gain g will lead to different pole locations for
the various modes and it will not be possible to achieve the same damping
for all modes. This is why it is recommended to locate the payload in such
a way that the spread of the modal frequencies is minimized.

(a) (b)

jÒi jÒi

jzi

Im

ReRe

Im

Fig. 8.21. Six-axis active isolator with independent IFF loops: root locus of individual
modes. (a) with perfect spherical joints. (b) with flexible joints.

8.6.3 Spherical joints, modal spread

The foregoing results have been obtained with the assumptions that the
connections are made by perfect spherical joints, so that the only contri-
bution to the stiffness matrix come from the axial stiffness of the legs,
K = kBBT . However perfect spherical joints do not exist and they have
friction and backlash. Backlash is not acceptable in precision engineering
and the spherical joints are replaced by flexible connections with large
longitudinal and shear stiffness and low bending stiffness, such as the one
shown in Fig.8.22. This is responsible for an additional contribution Ke

to the stiffness matrix. The global stiffness matrix is kBBT + Ke and the
closed-loop equation of the suspension with the IFF controller becomes
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F.E.  mesh

(Samcef field)

Fig. 8.22. Typical flexible joint for the connections of a six-axis isolator. Its behavior
is close to a universal joint, with low bending stiffness while the other d.o.f. are rather
stiff.

(Ms2 + Ke + kBBT s

s + g
)x = 0 (8.54)

According to this equation, the transmission zeros, which are the asymp-
totic solutions as g → ∞, are no longer at the origin (s = 0), but are
solutions of the eigenvalue problem

[Ms2 + Ke]x = 0 (8.55)

It follows that the zeros are shifted along the imaginary axis, leading to the
root locus of Fig.8.21.b, which reduces the performance of the suspension
system.

As mentioned before, the six suspension modes have different natu-
ral frequencies and the decentralized IFF controller has a single gain g
which has to be adjusted to achieve a good compromise in the suspension
performance for the six modes. The best performance is achieved if the
suspension is designed in such a way that the modal spread, Ω6/Ω1, is
minimized. The combined effect of the modal spread and the joint stiff-
ness is illustrated in Fig.8.23; there are only 4 different curves because
of the symmetry of the system. The bullets correspond to the closed-
loop poles for a fixed value of g; they illustrate the fact that the various
loops are travelled at different speeds as g increases. How this impacts
the transmissibility is examined below.
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Fig. 8.23. Typical root locus of a complete isolation system with real joints. The
bullets indicate the location of the closed-loop poles for the adopted value of the gain
g (from Preumont et al., 2007).

8.7 Active vs. passive

Figure 8.24 compares the components involved in the passive relaxation
isolator and the active one. The active isolation requires conditioning
electronics for the force sensor and power electronics for the voice coil
actuator. The relaxation isolator requires only a passive RL circuit but
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Fig. 8.24. Comparison of the active isolator (left) with the passive isolator (right);
if a RL electrical circuit is used, the passive isolator is a relaxation isolator; a purely
resistive circuit produces a linear viscous isolator.
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Fig. 8.25. Leg of a passive relaxation isolator; conceptual design and exploded view
of the transducer showing the membrane, the magnetic circuit, the voice coil and its
connection with the stinger.

also requires a bigger transducer (with a larger transducer constant T ).
Also, it does not have a force sensor, which makes it lighter. In fact,
the legs have their own local dynamics which interfere with that of the
isolator and impact significantly the transmissibility in the vicinity of
the resonance frequency of the local modes and beyond. Maximizing the
natural frequency of the local modes of the legs is a major challenge in
the design of a six-axis isolator with broadband isolation capability. This
is achieved through careful design of all the components of the isolator.
Figure 8.25 shows the leg of a passive relaxation isolator; the exploded
view of the transducer shows the membrane which acts as an axial spring
and also plays the role of spherical joint, the magnetic circuit and the
voice coil, and its connection to the stinger, made of CFRP to minimize
its weight.

From the comparison of the root locus plots, of Fig.8.5 and 8.21.b, one
would expect that the active isolator would have less overshoot near the
resonance frequencies of the suspension. On the other hand, the passive
isolator does not need a force sensor, which makes the leg a little lighter
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and improves the high frequency behavior of the isolator. Fig.8.26 com-
pares the transmissibility of the active (IFF) and the passive (relaxation)
isolator. The dotted line refer to the transmissibility of the passive isola-
tor when the RL circuit is open. As expected, the overshoot of the active
one is a little lower; both have a decay rate of -40 dB/decade in the inter-
mediate frequency range, and the high frequency behavior is dominated
by the local modes; the passive isolator behaves better in high frequency,
because the local modes have higher frequencies.

Fig. 8.26. Vertical transmissibility of a six-axis isolator: comparison of the Open-loop
(dotted line), closed-loop (IFF) active isolator and passive relaxation isolator with a
RL shunt (from de Marneffe et al.).

8.8 Car suspension

Ride comfort requires good vibration isolation; it is usually measured by
the car body acceleration, or sometimes its derivative called jerk. Vehicle
handling requires good road holding, which is measured by the tyre de-
flection. In addition to the car body acceleration and the tyre deflection,
there are design constraints on the suspension travel, that is the relative
displacement between the car body and the wheel.



190 8 Vibration isolation

Fig. 8.27. Quarter-car, two-d.o.f. models. (a) Fully active suspension. (b) Passive
suspension with an added sky-hook active control.

Figure 8.27 shows a quarter-car model of a vehicle equipped with a fully
active suspension (Fig.8.27.a) or a passive suspension with an active, sky-
hook damper (Fig.8.27.b); ms refers to the sprung mass, equal to a quarter
of the car body mass, and mus is the unsprung mass (wheel); kt is the
stiffness of the tyre; k and c are the stiffness and damping of the passive
suspension. The figure also shows the definition of the state variables used
to model the systems: x1 = xs − xus is the relative displacement of the
sprung mass with respect to the wheel (suspension travel), x2 = ẋs is the
absolute velocity of the car body, x3 = xus−w is the tyre deflection, and
x4 = ẋus is the absolute wheel velocity. With this definition of the state
variables, the dynamics of the fully active suspension (Fig.8.27.a) reads

ms ẋ2 = f

mus ẋ4 = −f − ktx3

ẋ1 = x2 − x4

ẋ3 = x4 − v

where v = ẇ is the road velocity. Defining the force per unit sprung mass
u = f/ms, the unsprung mass ratio µ = mus/ms and the tyre frequency
ωt = (kt/mus)1/2, this system is rewritten in matrix form,




ẋ1

ẋ2

ẋ3

ẋ4


 =




0 1 0 −1
0 0 0 0
0 0 0 1
0 0 −ω2

t 0







x1

x2

x3

x4


 +




0
1
0

−1/µ


 u +




0
0
−1
0


 v (8.56)
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With the same state-variables, the dynamics of the system of Fig.8.27.b
(without control) is governed by

ms ẋ2 = f − kx1 + c(x4 − x2)

mus ẋ4 = −f − ktx3 + kx1 + c(x2 − x4)

ẋ1 = x2 − x4

ẋ3 = x4 − v

and, upon defining ω2
n = k/ms (ωn is the body resonance), c/ms = 2ξωn,

they are rewritten in matrix form



ẋ1

ẋ2

ẋ3

ẋ4


 =




0 1 0 −1
−ω2

n −2ξωn 0 2ξωn

0 0 0 1
ω2

n
µ

2ξωn

µ −ω2
t
−2ξωn

µ







x1

x2

x3

x4


 +




0
1
0

−1/µ


 u +




0
0
−v
0




(8.57)

Passive suspension

The trade-off in the design of a passive suspension can be illustrated with
the following example taken from Chalasani: The nominal values of the
passive suspension are kt = 160000N/m (tyre stiffness), k = 16000N/m
(suspension spring stiffness), ms = 240 kg (car body), mus = 36 kg
(wheel). Figure 8.28.a shows the transmissibility Tẍsv between the road
velocity v = ẇ and the body absolute acceleration ẋ2 = ẍs for three val-
ues of the damping constant, c = 200 Ns/m, 980 Ns/m, 4000 Ns/m. For
the smallest value of c, one sees clearly the two peaks associated with
the body resonance (sprung mass) and the tyre resonance (unsprung
mass); the body resonance is at 7.8 rad/s and the tyre resonance is at
69.5 rad/s, respectively very close to ωn =

√
k/ms = 8.16 rad/s and

ωt =
√

kt/mus = 66.7 rad/s. As the damping increases, the amplitude
of the two peaks is reduced; one sees clearly that the passive damping
cannot control the body resonance without deteriorating the isolation at
higher frequency. The cumulative RMS value of the body acceleration is
defined by the integral

σẍs(ω) = [
∫ ω

0
|Tẍsv|2dν]1/2 (8.58)

it is represented in Fig.8.28.b; since the road velocity is approximately a
white noise, σẍs describes how the various frequencies contribute to the
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Fig. 8.28. Behavior of the passive suspension for various values of the damping con-
stant: c = 200 Ns/m, 980 Ns/m, 4000 Ns/m: (a) Transmissibility Tẍsv between the
road velocity v = ẇ and the body absolute acceleration ẋ2 = ẍs. (b) Cumulative RMS
value of the sprung mass acceleration σẍs .

RMS of the body acceleration (in relative terms). When the damping
increases, the RMS body acceleration initially decreases, and increases
again for larger values of c.

Active suspension

A partial state feedback is added to the passive suspension; it consists of
a sky-hook damper, f = −gẋs as shown in Fig.8.27.b. Figure 8.29.a shows
the impact of the control gain on the transmissibility Tẍsv between the
road velocity v = ẇ and the body absolute acceleration ẍs; the cumulative
RMS value of the sprung mass acceleration σẍs is shown in Fig.8.29.b.
One can see that the active control acts very effectively on the body
resonance and that the attenuation is achieved without deteriorating the
high frequency isolation. However, the active control is unable to reduce
the wheel resonance. The active control produces a significant reduction of
the RMS sprung mass acceleration but the control system fails to reduce
the wheel resonance, Fig.8.29.c. The RMS tyre deflection is dominated
by the wheel resonance and is not much reduced by the sky-hook control,
Fig.8.29.d.
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Fig. 8.29. Active suspension for various values of the control gain, g = 0, 1000 and
2000. The damping of the shock absorber is c = 200 Ns/m: (a) and (b) Sprung mass
acceleration (c) and (d) Tyre deflection.
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8.10 Problems

P.8.1 Consider the passive isolator of Fig.8.1.b. Find the transmissibility
Xc(s)/Xd(s) of the isolation system.
P.8.2 Consider the active isolator of Fig.8.7.a with a sky-hook controller.
Analyze the effect of the passive damping on the transmissibility. Is the
damping beneficial or detrimental ?
P.8.3 Write the differential equations governing the system of Fig.8.12 in
state variable form. Using the following values of the parameters: m =
1.1kg, M = 1.7kg, k = k1 = 1.2 104N/m,m1 = 0.5kg, c1 = 0Ns/m. Write
the open-loop frequency response for the acceleration feedback (ẍc) and
force feedback (f) configurations and draw the corresponding poles/zeros
pattern. In both cases draw the root locus for an integral controller. Do
the same for m1 = 3.5kg; investigate the effect of structural damping in
the flexible appendage.
P.8.4 Consider the modal expansion of the open-loop FRF (F/Fa) of the
system of Fig.8.15.d. Show that the residues are all positive and that this
results in alternating poles and zeros.
P.8.5 Show that the dynamic stiffness of the relaxation isolator (Fig.8.3.a)
is given by

F

x− x0
= k(s) = k[1 +

k1cs

k(k1 + cs)
]

P.8.6 Consider the Gough-Stewart platform with cubic architecture of
Fig.8.30 (Spanos et al.); the basic frame {xb, yb, zb} has its origin at node
0; the reference (or payload) frame {xr, yr, zr} has its origin at the geo-
metrical center of the hexapod, noted as node 8, and ~zr is perpendicular
to the payload plate; the orientation of ~xr and ~yr is shown in the figure.
The small displacements of the system are described by the coordinates
x = (xr, yr, zr, θx, θy, θz)T
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Fig. 8.30. Geometry and coordinate systems for the cubic hexapod isolator. Numbers
in bold indicate the active struts.

(a) Show that the control influence matrix appearing in Equ.(8.47)
reads

B =
1√
6




1 1 −2 1 1 −2√
3 −√3 0
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2
√

2
√

2
√

2
√

2
√

2
−L/2 L/2 L L/2 −L/2 −L

−L
√

3/2 −L
√

3/2 0 L
√

3/2 L
√

3/2 0
L
√

2 −L
√

2 L
√

2 −L
√

2 L
√

2 −L
√
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(b) If the base is fixed and the payload is an axisymmetrical rigid
body of mass m with the principal axes of inertia aligned with {xr, yr, zr},
principal moment of inertia Ix = Iy = mR2

x , Iz = mR2
z , and with the

center of mass located at an offset distance Zc from the geometrical center,
along the vertical axis zr, show that the mass and stiffness matrices are
respectively
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M = m




1 0 0 0 Zc 0
0 1 0 −Zc 0 0
0 0 1 0 0 0
0 −Zc 0 (R2

x + Z2
c ) 0 0

Zc 0 0 0 (R2
x + Z2

c ) 0
0 0 0 0 0 R2

z




K = kBBT = k diag(2, 2, 2, 0.5L2, 0.5L2, 2L2)

where k is the stiffness of one strut. Observe that the translational stiff-
ness is uniform in all directions and that the two bending stiffnesses are
identical.

(c) Consider the natural frequencies of the isolator, solutions of the
eigenvalue problem (8.37). Show that the the z-translation or “bounce”
mode and the z-rotation or “torsional” mode are decoupled, with natural
frequencies given by

Ω3 =
√

2 Ω0 Ω6 =
√

2
ρz

Ω0

where Ω0 =
√

k/m and ρz = Rz/L is the z-axis radius of gyration nor-
malized to the strut length (for most cases, ρz < 1 and Ω6 > Ω3). Show
that the remaining four modes are lateral bending coupled with shear;
their natural frequencies occur in two identical pairs, solutions of the
characteristic equation

(
2− Ω2

Ω2
0

)(
1
2
− ρ2

x

Ω2

Ω2
0

)
− 2ρ2

c

Ω2

Ω2
0

= 0

where ρx = Rx/L is the x-axis radius of gyration normalized to the strut
length and ρc = Zc/L is the center of mass offset normalized to the strut
length. Show that if the center of mass is at the geometric center (ρc = 0)
and if ρx = 1

2 and ρz = 1, the hexapod will have 6 identical natural
frequencies, all equal to Ω3.
P.8.7 Consider the fully active suspension of Fig.8.27.a where v = ẇ is
assumed to be a white noise process.

Find the Linear Quadratic Regulator (LQR) minimizing the perfor-
mance index

J = E[%1x
2
1 + %2x

2
2 + u2]

and
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J = E[%1x
2
1 + %2x

2
2 + %3x

2
3 + u2]

Discuss the meaning of the various terms in the performance index (The
solution of this problem requires a prior reading of Chapters 9 an 11).
P.8.8 Consider the active suspension of Figure 8.27.b with kt = 160000N/m
(tyre stiffness), k = 16000 N/m (suspension spring stiffness), ms = 240 kg
(car body), mus = 36 kg (wheel). For the three values of the control gain,
g = 0, 1000 and 2000, plot the transmissibility between the road velocity
v and the body absolute velocity ẋs and between the road velocity and
the force in the dash-pot c. Compare their frequency content.




