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Preface

Advance-level vibration topics are presented here, including lumped-mass and distributed-
mass systems in the context of the appropriate mathematics, along with topics from control
that are useful in vibration analysis and design. This text is intended for use in a second
course in vibration, or in a combined course in vibration and control. This book is also
intended as a reference for the field of structural control and could be used as a text in
structural control. Control topics are introduced at beginner level, with no knowledge of
controls needed to read the book.

The heart of this manuscript was first developed in the early 1980s and published in 1989
under the title Vibration with Control, Measurement and Stability. That book went out of
print in 1994. However, the text remained in use at several universities, and all used copies
seem to have disappeared from online sources in about 1998. Since then I have had yearly
requests for copying rights. Hence, at the suggestions of colleagues, I have revised the older
book to produce this text. The manuscript is currently being used in a graduate course at
Virginia Tech in the Mechanical Engineering Department. As such, presentation materials
for each chapter and a complete solutions manual are available for use by instructors.

The text is an attempt to place vibration and control on a firm mathematical basis and
connect the disciplines of vibration, linear algebra, matrix computations, control, and applied
functional analysis. Each chapter ends with notes on further references and suggests where
more detailed accounts can be found. In this way I hope to capture a ‘big picture’ approach
without producing an overly large book. The first chapter presents a quick introduction
using single-degree-of-freedom systems (second-order ordinary differential equations) to
the following chapters, which extend these concepts to multiple-degree-of-freedom systems
(matrix theory, systems of ordinary differential equations) and distributed-parameter systems
(partial differential equations and boundary value problems). Numerical simulations and
matrix computations are also presented through the use of MATLAB™. New material has
been added on the use of MATLAB, and a brief introduction to nonlinear vibration is given.
New problems and examples have been added, as well as a few new topics.
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1

Single-degree-of-freedom
Systems

1.1 INTRODUCTION

In this chapter the vibration of a single-degree-of-freedom system will be analyzed and
reviewed. Analysis, measurement, design, and control of a single-degree-of-freedom system
(often abbreviated SDOF) is discussed. The concepts developed in this chapter constitute an
introductory review of vibrations and serve as an introduction for extending these concepts
to more complex systems in later chapters. In addition, basic ideas relating to measurement
and control of vibrations are introduced that will later be extended to multiple-degree-
of-freedom systems and distributed-parameter systems. This chapter is intended to be a
review of vibration basics and an introduction to a more formal and general analysis for
more complicated models in the following chapters.

Vibration technology has grown and taken on a more interdisciplinary nature. This has
been caused by more demanding performance criteria and design specifications for all types
of machines and structures. Hence, in addition to the standard material usually found in
introductory chapters of vibration and structural dynamics texts, several topics from control
theory and vibration measurement theory are presented. This material is included not to
train the reader in control methods (the interested student should study control and system
theory texts) but rather to point out some useful connections between vibration and control
as related disciplines. In addition, structural control has become an important discipline
requiring the coalescence of vibration and control topics. A brief introduction to nonlinear
SDOF systems and numerical simulation is also presented.

1.2 SPRING-MASS SYSTEM

Simple harmonic motion, or oscillation, is exhibited by structures that have elastic restoring
forces. Such systems can be modeled, in some situations, by a spring—mass schematic, as
illustrated in Figure 1.1. This constitutes the most basic vibration model of a structure and can
be used successfully to describe a surprising number of devices, machines, and structures.
The methods presented here for solving such a simple mathematical model may seem to be

Vibration with Control D. J. Inman
© 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01051-7
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Figure 1.1 (a) Spring-mass schematic, (b) free body diagram, and (c) free body diagram of the static
spring-mass system.

more sophisticated than the problem requires. However, the purpose of the analysis is to lay
the groundwork for the analysis in the following chapters of more complex systems.

If x =x(¢) denotes the displacement (m) of the mass m (kg) from its equilibrium position
as a function of time 7 (s), the equation of motion for this system becomes [upon summing
forces in Figure 1.1(b)]

mX+k(x+x,) —mg=0

where k is the stiffness of the spring (N/m), x, is the static deflection (m) of the spring
under gravity load, g is the acceleration due to gravity (m/s®), and the overdots denote
differentiation with respect to time. (A discussion of dimensions appears in Appendix A, and
it is assumed here that the reader understands the importance of using consistent units.) From
summing forces in the free body diagram for the static deflection of the spring [Figure 1.1(c)],
mg = kx, and the above equation of motion becomes

mi(t) + kx(r) =0 (L.1)

This last expression is the equation of motion of a single-degree-of-freedom system and is
a linear, second-order, ordinary differential equation with constant coefficients.

Figure 1.2 indicates a simple experiment for determining the spring stiffness by adding
known amounts of mass to a spring and measuring the resulting static deflection, x,. The
results of this static experiment can be plotted as force (mass times acceleration) versus x,,
the slope yielding the value of k for the linear portion of the plot. This is illustrated in
Figure 1.3.

Once m and k are determined from static experiments, Equation (1.1) can be solved to
yield the time history of the position of the mass m, given the initial position and velocity
of the mass. The form of the solution of Equation (1.1) is found from substitution of an
assumed periodic motion (from experience watching vibrating systems) of the form

x(1) = Asin(w, t + ¢) (1.2)

where w, = +/k/m is the natural frequency (rad/s). Here, the amplitude, A, and the phase
shift, ¢, are constants of integration determined by the initial conditions.



SPRING-MASS SYSTEM 3

Figure 1.2 Measurement of the spring constant.

12t 5
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Figure 1.3 Determination of the spring constant.

The existence of a unigue solution for Equation (1.1) with two specific initial conditions is
well known and is given by, for instance, Boyce and DiPrima (2000). Hence, if a solution of
the form of Equation (1.2) form is guessed and it works, then it is the solution. Fortunately,
in this case the mathematics, physics, and observation all agree.

To proceed, if x, is the specified initial displacement from equilibrium of mass m, and v, is
its specified initial velocity, simple substitution allows the constants A and ¢ to be evaluated.
The unique solution is

2.2 4 .2
x(t) = ijo sin [(unt +tan”! <%):| (1.3)
®

n Vo
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Alternatively, x(¢) can be written as

v
x(t) = 2 sin w,t+ x,cosw,t (1.4)
10)

n

by using a simple trigonometric identity.
A purely mathematical approach to the solution of Equation (1.1) is to assume a solution
of the form x(¢) = A e and solve for A, i.e.,

mA2eM + ke =0

This implies that (because e*’ 0, and A #0)

k
A+ (—) =0
m
or that
K\ 12
A=d2j (—) =Ztw,j
m
where j = (—1)"/2. Then the general solution becomes
x()=A e " 4+ A, e (1.5)

where A, and A, are arbitrary complex conjugate constants of integration to be determined
by the initial conditions. Use of Euler’s formulae then yields Equations (1.2) and (1.4) (see,
for instance, Inman, 2001). For more complicated systems, the exponential approach is often
more appropriate than first guessing the form (sinusoid) of the solution from watching the
motion.

Another mathematical comment is in order. Equation (1.1) and its solution are valid only
as long as the spring is linear. If the spring is stretched too far, or too much force is applied
to it, the curve in Figure 1.3 will no longer be linear. Then Equation (1.1) will be nonlinear
(see Section 1.8). For now, it suffices to point out that initial conditions and springs should
always be checked to make sure that they fall in the linear region if linear analysis methods
are going to be used.

1.3 SPRING-MASS-DAMPER SYSTEM

Most systems will not oscillate indefinitely when disturbed, as indicated by the solution in
Equation (1.3). Typically, the periodic motion dies down after some time. The easiest way
to treat this mathematically is to introduce a velocity based force term, cx, into Equation
(1.1) and examine the equation

mi—+cx+kx=0 (1.6)
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Figure 1.4 (a) Schematic of the spring—mass—damper system and (b) free body diagram of the system
in part (a).

This also happens physically with the addition of a dashpot or damper to dissipate energy,
as illustrated in Figure 1.4.

Equation (1.6) agrees with summing forces in Figure 1.4 if the dashpot exerts a dissipative
force proportional to velocity on the mass m. Unfortunately, the constant of proportionality, c,
cannot be measured by static methods as m and k are. In addition, many structures dissipate
energy in forms not proportional to velocity. The constant of proportionality ¢ is given in
N's/m or kg/s in terms of fundamental units.

Again, the unique solution of Equation (1.6) can be found for specified initial conditions
by assuming that x(7) is of the form

x(H)=AeM
and substituting this into Equation (1.6) to yield

A(ﬁ+~£A+f>e“:0 (1.7)
m m

Since a trivial solution is not desired, A # 0, and since e is never zero, Equation (1.7)
yields

k
Arfar oo (1.8)
m m

Equation (1.8) is called the characteristic equation of Equation (1.6). Using simple algebra,

the two solutions for A are
c 1 /¢ k
AMpg=——F -/ — —4— 1.9
12 2m 2V m? m (19)

The quantity under the radical is called the discriminant and, together with the sign of m, c,
and k, determines whether or not the roots are complex or real. Physically, m, ¢, and k are
all positive in this case, so the value of the discriminant determines the nature of the roots
of Equation (1.8).
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It is convenient to define the dimensionless damping ratio, {, as

c

- 2V km

In addition, let the damped natural frequency, w,, be defined (for 0 < { < 1) by

w,=w,1—? (1.10)

{

Then, Equation (1.6) becomes

¥+2{w,x+wx=0 (1.11)
and Equation (1.9) becomes
AMp=—lo, *0,V/*—1=-{0o,£o,, 0<<l1 (1.12)

Clearly, the value of the damping ratio, {, determines the nature of the solution of
Equation (1.6). There are three cases of interest. The derivation of each case is left as a
problem and can be found in almost any introductory text on vibrations (see, for instance,
Meirovitch, 1986 or Inman, 2001).

Underdamped. This case occurs if the parameters of the system are such that
0<{<l

so that the discriminant in Equation (1.12) is negative and the roots form a complex conjugate
pair of values. The solution of Equation (1.11) then becomes

x(t) =e " (Acos w,t + Bsin w,t) (1.13)
or
x(f) = Ce " sin (w1 + )

where A, B, C, and ¢ are constants determined by the specified initial velocity, v,, and
position, x:

A=x, C= \/(Uo + {w,x))* + (xow,)?
Wy
BZL&””XO’ ¢ =tan"! <x0—wd> (1.14)
Wy ) + gwnxo

The underdamped response has the form given in Figure 1.5 and consists of a decaying
oscillation of frequency w,.
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Figure 1.5 Response of an underdamped system.

Overdamped. This case occurs if the parameters of the system are such that
{>1

so that the discriminant in Equation (1.12) is positive and the roots are a pair of negative
real numbers. The solution of Equation (1.11) then becomes

(1) = AelEVENent | g (ei/E o (1.15)
where A and B are again constants determined by v, and x,. They are

vy + ({—l—,/{z — l) ®,Xy
- 20, /0 -1
O (/S P
2wn\/ﬁ

The overdamped response has the form given in Figure 1.6. An overdamped system does
not oscillate, but rather returns to its rest position exponentially.

Critically damped. This case occurs if the parameters of the system are such that
(=1

so that the discriminant in Equation (1.12) is zero and the roots are a pair of negative real
repeated numbers. The solution of Equation (1.11) then becomes

x(t) =e " [(vy + w,x0)f + x,] (1.16)
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Figure 1.6 Response of an overdamped system.
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Figure 1.7 Response of a critically damped system.

The critically damped response is plotted in Figure 1.7 for various values of the initial
conditions v, and x,,.

It should be noted that critically damped systems can be thought of in several ways. First,
they represent systems with the minimum value of damping rate that yields a nonoscillating

system (Problem 1.5). Critical damping can also be thought of as the case that separates
nonoscillation from oscillation.

1.4 FORCED RESPONSE

The preceding analysis considers the vibration of a device or structure as a result of some
initial disturbance (i.e., v, and x,). In this section, the vibration of a spring—mass—damper
system subjected to an external force is considered. In particular, the response to harmonic
excitations, impulses, and step forcing functions is examined.
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Figure 1.8 (a) Schematic of the forced spring—mass—damper system assuming no friction on the
surface and (b) free body diagram of the system of part (a).

In many environments, rotating machinery, motors, and so on, cause periodic motions
of structures to induce vibrations into other mechanical devices and structures nearby. It is
common to approximate the driving forces, F(¢), as periodic of the form

F(t) = F, sin wt

where F|, represents the amplitude of the applied force and w denotes the frequency of the
applied force, or the driving frequency (rad/s). On summing the forces, the equation for the
forced vibration of the system in Figure 1.8 becomes

mX + cx + kx = F sin wt (1.17)

Recall from the discipline of differential equations (Boyce and DiPrima, 2000), that the
solution of Equation (1.17) consists of the sum of the homogeneous solution in Equation (1.5)
and a particular solution. These are usually referred to as the transient response and the
steady state response respectively. Physically, there is motivation to assume that the steady
state response will follow the forcing function. Hence, it is tempting to assume that the
particular solution has the form

x, (1) = X sin(wt — 6) (1.18)

where X is the steady state amplitude and 6 is the phase shift at steady state. Mathemati-
cally, the method is referred to as the method of undetermined coefficients. Substitution of
Equation (1.18) into Equation (1.17) yields

¥ Fy/k
V(1 —mw?/k)? + (co/k)?

or

Xk _ 1
Foo V1= (0/0,)P +[2{(w/w,)]

(1.19)
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and

(co/k)  2{(w/w,)

tan 0 = =
an l—mw?/k 1—(w/w,)?

(1.20)

where w, = /k/m as before. Since the system is linear, the sum of two solutions is a
solution, and the total time response for the system of Figure 1.8 for the case 0 < { < 1
becomes

x(f) =e " (Asin w,t + Bcos w,yt) + X sin(wt — ) (1.21)

Here, A and B are constants of integration determined by the initial conditions and the
forcing function (and in general will be different from the values of A and B determined for
the free response).

Examining Equation (1.21), two features are important and immediately obvious. First,
as t becomes larger, the transient response (the first term) becomes very small, and hence
the term steady state response is assigned to the particular solution (the second term). The
second observation is that the coefficient of the steady state response, or particular solution,
becomes large when the excitation frequency is close to the undamped natural frequency,
i.e., X~ w,. This phenomenon is known as resonance and is extremely important in design,
vibration analysis, and testing.

Example 1.4.1

Compute the response of the following system (assuming consistent units):

#(1) +0.45 (1) + 4x(1) = % sin3t,  x(0)= :72 #(0)=0

First, solve for the particular solution by using the more convenient form of
x,(t) = X, sin 3t + X, cos 3¢

rather than the magnitude and phase form, where X, and X, are the constants to be determined.
Differentiating x, yields

¥, () =3X, cos 3t — 3X, sin 3¢
%, (1) = —9X, sin 3t — 9X, cos 3¢

Substitution of x, and its derivatives into the equation of motion and collecting like terms yield

1
(—9Xl —1.2X,+4X, — \7f2> sin3t+ (—9X, + 1.2X, +4X,)cos3t =0
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Since the sine and cosine are independent, the two coefficients in parentheses must vanish, resulting
in two equations in the two unknowns X, and X,. This solution yields

x,(t) =—0.134 sin3¢ —0.032 cos 3¢

Next, consider adding the free response to this. From the problem statement

0.4
w, =2rad/s, {:2——0.1<1, w; =0,/ 1—{>=199rad/s

n

Thus, the system is underdamped, and the total solution is of the form
x(t) =e " (Asin w,t + Bcos wyt) + X, sin wt + X, cos ot
Applying the initial conditions requires the following derivative

() =e " (wyAcos w,t — wyBsin w,t) + wX, cos wt

— wX,sinwt — {w,e 5" (Asin w,t 4 Bcos w,t)

The initial conditions yield the constants A and B:

-3 3
x(0)=B+X2=ﬁ:>B=—X2—\—[2=—2.089

1
10)=wA4+ wX, —{w,B=0=>A=— ({w,B—wX,)=—0.008
Wq

Thus the total solution is

x(t) = —e~"* (0.008 sin 1.997 4 2.089 cos 1.99¢) — 0.134 sin 37 — 0.032 cos 3¢

Resonance is generally to be avoided in designing structures, since it means large-amplitude
vibrations, which can cause fatigue failure, discomfort, loud noises, and so on. Occasionally,
the effects of resonance are catastrophic. However, the concept of resonance is also very
useful in testing structures. In fact, the process of modal testing (see Chapter 8) is based
on resonance. Figure 1.9 illustrates how w, and { affect the amplitude at resonance. The
dimensionless quantity Xk/F, is called the magnification factor and Figure 1.9 is called a
magnification curve or magnitude plot. The maximum value at resonance, called the peak
resonance, and denoted by M[,, can be shown (see, for instance, Inman, 2001) to be related
to the damping ratio by

1
M=——"
P /1=2
Also, Figure 1.9 can be used to define the bandwidth (BW) of the structure as the value
of the driving frequency at which the magnitude drops below 70.7% of its zero frequency
value (also said to be the 3dB down point from the zero frequency point). The bandwidth
can be calculated (Kuo and Golnaraghi, 2003, p. 359) in terms of the damping ratio by

szwn\/u—2§2)+,/4g4—4§2+2 (1.23)

(1.22)
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Figure 1.9 Magnification curves for a single-degree-of-freedom system (r = w/w,,).

Two other quantities are used in discussing the vibration of underdamped structures. They
are the loss factor defined at resonance (only) to be

n=2¢ (1.24)
and the Q value, or resonance sharpness factor, given by

1 1

°=uy

(1.25)

Another common situation focuses on the transient nature of the response, namely the
response of (1.6) to an impulse, to a step function, or to initial conditions. Many mechanical
systems are excited by loads, which act for a very brief time. Such situations are usually
modeled by introducing a fictitious function called the unit impulse function, or the Dirac
delta function. This delta function is defined by the two properties

o(t—a)=0, t#a

/mS(t—a)dtzl (1.26)

where a is the instant of time at which the impulse is applied. Strictly speaking, the quantity
4(¢) is not a function; however, it is very useful in quantifying important physical phenomena
of an impulse.

The response of the system of Figure 1.8 for the underdamped case (with a = x, = v, =0)
can be shown to be given by

0, t<a

={ e *“sinw,t
M=y e Msinogt (127)
mw,
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0 —t

t, t
Figure 1.10 Step response of a single-degree-of-freedom system.

Note from Equation (1.13) that this corresponds to the transient response of the system to
the initial conditions x, =0 and v, = 1/m. Hence, the impulse response is equivalent to
giving a system at rest an initial velocity of (1/m). This makes the impulse response, x(t),
important in discussing the transient response of more complicated systems. The impulse is
also very useful in making vibration measurements, as described in Chapter 8.

Often, design problems are stated in terms of certain specifications based on the response
of the system to step function excitation. The response of the system in Figure 1.8 to a step
function (of magnitude mw? for convenience), with initial conditions both set to zero, is
calculated for underdamped systems from

m¥ + cx + kx = me’ (1), n(t) = {(1)’ ;ig (1.28)
to be
et sin(w,t + )
x()=1- \/1__22 (1.29)
where
¢ = arctan |:—']§_§2:| (1.30)

A sketch of the response is given in Figure 1.10, along with the labeling of several significant
specifications for the case m=1, w, =2, and {=0.2.

In some situations, the steady state response of a structure may be at an acceptable level,
but the transient response may exceed acceptable limits. Hence, one important measure is
the overshoot, labeled OS in Figure 1.10 and defined as the maximum value of the response
minus the steady state value of the response. From Equation (1.29) it can be shown that

0S=x_ (1) 1 =7/ V170 (131)

max

This occurs at the peak time, Ly which can be shown to be

=T (1.32)

r w,\ 1=
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In addition, the period of oscillation, 7, is given by

2
T,=— " _ (1.33)

w,\/1—2 !

Another useful quantity, which indicates the behavior of the transient response, is the settling
time, t,. This is the time it takes the response to get within £5% of the steady state response
and remain within £5%. One approximation of ¢, is given by (Kuo and Golnaraghi, 2003,
p. 263):

32
=— (1.34)

wn

tX

The preceding definitions allow designers and vibration analysts to specify and classify
precisely the nature of the transient response of an underdamped system. They also give
some indication of how to adjust the physical parameters of the system so that the response
has a desired shape.

The response of a system to an impulse may be used to determine the response of an
underdamped system to any input F(¢) by defining the impulse response function as

1

mo,

h(r)= e " sin w,t (1.35)

Then the solution of
mx(t) + cx(t) + kx(t) = F(t)

can be shown to be

t 1 t
x(1) = / F(T)h(t — 1) dr = —— e / F(7) " sinw, (t — 7) d7 (1.36)
0 mw, 0
for the case of zero initial conditions. This last expression gives an analytical representation
for the response to any driving force that has an integral.

1.5 TRANSFER FUNCTIONS AND FREQUENCY METHODS

The preceding analysis of the response was carried out in the time domain. Current vibra-
tion measurement methodology (Ewins, 2000) as well as much control analysis (Kuo and
Golnaraghi, 2003) often takes place in the frequency domain. Hence, it is worth the effort
to reexamine these calculations using frequency domain methods (a phrase usually asso-
ciated with linear control theory). The frequency domain approach arises naturally from
mathematics (ordinary differential equations) via an alternative method of solving differen-
tial equations, such as Equations (1.17) and (1.28), using the Laplace transform (see, for
instance, Boyce and DiPrima, 2000, Chapter 6).

Taking the Laplace transform of Equation (1.28), assuming both initial conditions to be
zero, yields

xo=| Juo (137)

ms?+cs+k
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where X(s) denotes the Laplace transform of x(¢), and w(s) is the Laplace transform of the
right-hand side of Equation (1.28). If the same procedure is applied to Equation (1.17), the
result is

X(s) = [ ] Fy(s) (1.38)

ms>+cs+k
where F(s) denotes the Laplace transform of F; sin wt. Note that

_X(s)  X(s) 1

Gls)= w(s)  Fy(s) ms>+cs+k

(1.39)

Thus, it appears that the quantity G(s) =[1/(ms* + cs + k)], the ratio of the Laplace transform
of the output (response) to the Laplace transform of the input (applied force) to the system,
characterizes the system (structure) under consideration. This characterization is independent
of the input or driving function. This ratio, G(s), is defined as the transfer function of this
system in control analysis (or of this structure in vibration analysis). The transfer function
can be used to provide analysis of the vibrational properties of the structure as well as to
provide a means of measuring the dynamic response of the structure.

In control theory, the transfer function of a system is defined in terms of an output to
input ratio, but the use of a transfer function in structural dynamics and vibration testing
implies certain physical properties, depending on whether position, velocity, or acceleration
is considered as the response (output). It is quite common, for instance, to measure the
response of a structure by using an accelerometer. The resultant transfer function is then
s>X(s)/U(s), where U(s) is the Laplace transform of the input and s>X(s) is the Laplace
transform of the acceleration. This transfer function is called the inertance and its reciprocal
is referred to as the apparent mass. Table 1.1 lists the nomenclature of various transfer
functions. The physical basis for these names can be seen from their graphical representation.

The transfer function representation of a structure is very useful in control theory as well
as in vibration testing. The variable s in the Laplace transform is a complex variable, which
can be further denoted by

s=0+jw,

where the real numbers o and w, denote the real and imaginary parts of s respectively.
Thus, the various transfer functions are also complex valued.

In control theory, the values of s where the denominator of the transfer function G(s)
vanishes are called the poles of the transfer function. A plot of the poles of the compliance
(also called receptance) transfer function for Equation (1.38) in the complex s plane is given

Table 1.1 Various transfer functions.

Response Transfer Inverse transfer
measurement  function function
Acceleration  Inertance Apparent mass
Velocity Mobility Impedance

Displacement Compliance Dynamic stiffness
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Figure 1.11 Complex s plane of the poles of Equation (1.39).

Input | Plantor [Output U | 1 | X&)
> structure ’ ™ ms2+cs+k ’

(@) (b)

Figure 1.12 Block diagram representation of a single-degree-of-freedom system.

in Figure 1.11. The points on the semicircle occur where the denominator of the transfer
function is zero. These values of s(s =—{w, + w,j) are exactly the roots of the characteristic
equation for the structure. The values of the physical parameters m, ¢, and k determine the
two quantities { and w,, which in turn determine the position of the poles in Figure 1.11.

Another graphical representation of a transfer function useful in control is the block
diagram illustrated in Figure 1.12(a). This diagram is an icon for the definition of a transfer
function. The control terminology for the physical device represented by the transfer function
is the plant, whereas in vibration analysis the plant is usually referred to as the structure.
The block diagram of Figure 1.12(b) is meant exactly to imply the formula

X(s) 1
U(s) ms>+cs+k

(1.40)

The response of Equation (1.38) to a sinusoidal input (forcing function) motivates a second
description of the transfer function of a structure, called the frequency response function
(often denoted by FRF). The frequency response function is defined as the transfer function
evaluated at s =jw, i.e., G(jw). The significance of the frequency response function follows
from Equation (1.21), namely that the steady state response of a system driven sinusoidally
is a sinusoid of the same frequency with different amplitude and phase. In fact, substitution
of jw into Equation (1.40) yields exactly Equations (1.19) and (1.20) from

X
7 =1G(0)| =V (@) +y*(w) (1.41)
0
where |G (jw)| indicates the magnitude of the complex frequency response function,

¢=tan"' G(jw)=tan™" [%} (1.42)
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indicates the phase of the frequency response function, and
G(jo) = x(w) + y(w)j (1.43)

This mathematically expresses two ways of representing a complex function, as the sum
of its real part [Re G(jw) = x(w)] and its imaginary part [Im G(jw) = y(w)], or by its
magnitude (|G (jw)|) and phase (¢). In more physical terms, the frequency response function
of a structure represents the magnitude and phase shift of its steady state response under
sinusoidal excitation. While Equations (1.17), (1.21), (1.41), and (1.42) verify this for a
single-degree-of-freedom viscously damped structure, it can be shown in general for any
linear time-invariant plant (Melsa and Schultz, 1969, p. 187).

It should also be noted that the frequency response function of a linear system can be
obtained from the transfer function of the system, and vice versa. Hence, the frequency
response function uniquely determines the time response of the structure to any known input.

Graphical representations of the frequency response function form an extensive part of
control analysis and also form the backbone of vibration measurement analysis. Next, three
sets of frequency response function plots that are useful in testing vibrating structures
are examined. The first set of plots consists simply of plotting the imaginary part of the
frequency response function versus the driving frequency and the real part of the frequency
response function versus the driving frequency. These are shown for a damped single-degree-
of-freedom system in Figure 1.13 (the compliance frequency response function for { =0.01
and w, =20rad/s).

The second representation consists of a single plot of the imaginary part of the frequency
response function versus the real part of the frequency response function. This type of plot
is called a Nyquist plot (also called an Argand plane plot) and is used for measuring the
natural frequency and damping in testing methods and for stability analysis in control system
design. The Nyquist plot of the mobility frequency response function of a structure modeled
by Equation (1.37) is given in Figure 1.14.

The last plots considered for representing the frequency response function are called Bode
plots and consist of a plot of the magnitude of the frequency response function versus the
driving frequency and the phase of the frequency response function versus the driving fre-
quency (a complex number requires two real numbers to describe it completely). Bode plots

Im G(jw) Re G(jo)

A A

[ S — ...

[ S ——" Sp—

20 Hz 20 Hz

Figure 1.13 Plots of the real part and the imaginary part of the frequency response function.
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Im G(joo)

1/c  Re G(jo)

Figure 1.14 Nyquist plot for Equation 1.39.

have long been used in control system design and analysis as well as for determining the
plant transfer function of a system. More recently, Bode plots have been used in analyzing
vibration test results and in determining the physical parameters of the structure.

In order to represent the complete Bode plots in a reasonable space, log,, scales are often
used to plot |G (jw)|. This has given rise to the use of the decibel and decades in discussing

0° 1 10 100 1000
=005 | e
0.2
£=1.0
~90°-
—180°1
V Semil |
emilog scale
b g
Figure 1.15 Bode phase plot for Equation (1.39).
|Gljo)]
A
{=10.05
(1/k)
i
1
i Slope = —2/m
i
i
1
L ‘ >
A 10 100 1000

Figure 1.16 Bode magnitude plot for Equation (1.39).
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the magnitude response in the frequency domain. The magnitude and phase plots (for the
compliance transfer function) for the system of Equation (1.17) are shown in Figures 1.15
and 1.16 for different values of {. Note the phase change at resonance (90°), as this is
important in interpreting measurement data.

1.6 MEASUREMENT AND TESTING

One can also use the quantities defined in the previous sections to measure the physical
properties of a structure. As mentioned before, resonance can be used to determine the
natural frequency of a system. Methods based on resonance are referred to as resonance
testing (or modal analysis techniques) and are briefly introduced here and discussed in more
detail in Chapter 8.

As mentioned earlier, the mass and stiffness of a structure can often be determined by
making simple static measurements. However, damping rates require a dynamic measurement
and hence are more difficult to determine. For underdamped systems one approach is to
realize, from Figure 1.5, that the decay envelope is the function e~%»’, The points on the
envelope illustrated in Figure 1.17 can be used to curve-fit the function e~%, where a is the
constant determined by the curve fit. The relation a = {w, can next be used to calculate {
and hence the damping rate ¢ (assuming that m and k or w, are known).

A second approach is to use the concept of logarithmic decrement, denoted by & and
defined by

t
O (1.44)
x(t+T,)
where T, is the period of oscillation. Using Equation (1.13) in the form
x(t) = Ae™*" sin(w,t + ) (1.45)
x(t)
A

Figure 1.17 Free decay measurement method.



20 SINGLE-DEGREE-OF-FREEDOM SYSTEMS

the logarithmic decrement 6 becomes

| et 0

=Ine" = {w,T, 1.46
e‘{wn(H'Td) Siﬂ(wdl+wde+¢>)i| e Z ntd ( )

where the sine functions cancel because w,T),; is a one-period shift by definition. Further
evaluation of 0 yields

2wl
V1=

Equation (1.47) can be manipulated to yield the damping ratio in terms of the decrement, i.e.,

0={w,T,=

(1.47)

5
(= Wiz (1.48)

Hence, if the decrement is measured, Equation (1.48) yields the damping ratio.

The various plots of the previous section can also be used to measure w,, {, m, ¢, and
k. For instance, the Bode diagram of Figure 1.16 can be used to determine the natural
frequency, stiffness, and damping ratio. The stiffness is determined from the intercept of
the frequency response function and the magnitude axis, since the value of the magnitude
of the frequency response function for small w is log(1/k). This can be seen by examining
the function log,, |G (jw)| for small w. Note that

2\ 2 2
log|G(jw)|=log%—%log|:<l—%> —i—(i{w) j|=log (%) (1.49)

for very small values of w. Also, note that |G(jw)| evaluated at w, yields

1
k|G(j =— 1.50
G, =55 (150)
which provides a measure of the damping ratio from the magnitude plot of the frequency
response function.
Note that Equations (1.48) and (1.22) appear to contradict each other, since

1
20 /1= 22

except in the case of very small { (i.e., the difference between M, and |G(jw,)| goes to
zero as { goes to zero). This indicates a subtle difference between using the damping ratio
obtained by taking resonance as the value of w, where |G(jw, )| is a maximum, and using the
point where w = w,,, the undamped natural frequency. This point is also illustrated by noting
that the damped natural frequency [Equation (1.8)] is w, = w,+/1 — {? and the frequency at
which |G(jw,)| is maximum is

1
=k max|G(jw)| =M, #k|G(jo,)| = 2

w,=w,\1-2 (1.51)

Also note that Equation (1.51) is valid only if 0 < { < 0.707.
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Finally, the mass can be related to the slope of the magnitude plot for the inertance transfer
function, G, (s), by noting that

S2

G (s)=— 1.52
)= Tk (1.52)
and for large w (i.e., w, << w), the value of |G,(jw)]| is

|G ()|~ (1/m) (1.53)

Plots of these values are referred to as straight-line approximations to the actual magnitude
plot (Bode, 1945).

The preceding formulae relating the physical properties of the structure to the magnitude
Bode diagrams suggest an experimental way to determine the parameters of a structure:
namely, if the structure can be driven by a sinusoid of varying frequency and if the magnitude
and phase (needed to locate resonance) of the resulting response are measured, then the Bode
plots and the preceding formulae can be used to obtain the desired physical parameters. This
process is referred to as plant identification in the control’s literature and can be extended
to systems with more degrees of freedom (see, for instance, Melsa and Schultz, 1969, for a
more complete account).

There are several other formulae for measuring the damping ratio and natural frequency
from the results of such experiments (sine sweeps). For instance, if the Nyquist plot of
the mobility transfer function is used, a circle of diameter 1/c results (see Figure 1.14).
Another approach is to plot the magnitude of the frequency response function on a linear
scale near the region of resonance, as shown in Figure 1.18. If the damping is small enough
for the peak at resonance to be sharp, the damping ratio can be determined by measuring the
frequencies at 0.707 at the maximum value (also called the 3 dB down point or half-power
points), denoted by w, and w, respectively, and then using the formula (Ewins, 2000)

(=1 [M} (1.54)

Wy

|
|
1
|
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|
|
1
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] 2

Figure 1.18 Quadrature peak picking method.
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to compute the damping ratio. This method is referred to as quadrature peak picking and is
illustrated in Figure 1.18.

1.7 STABILITY

In all the preceding analysis, the physical parameters m, ¢, and k are, of course, positive
quantities. There are physical situations, however, in which expressions in the form of
Equations (1.1) and (1.6) result but have one or more negative coefficients. Such systems
are not well behaved and require some additional analysis.

Recalling that the solution to Equation (1.1) is of the form Asin(wt? + ¢), where A is a
constant, it is easy to see that the response, in this case x(t), is bounded. That is to say,

x(1)] < A (1.55)

for all ¢, where A is some finite constant and |x(7)| denotes the absolute value of x(#). In
this case, the system is well behaved or stable (called marginally stable in the control’s
literature). In addition, note that the roots (also called characteristic values or eigenvalues) of

Nm+k=0

are purely complex numbers +jw, as long as m and k are positive (or have the same sign).
If k happens to be negative and m is positive, the solution becomes

x(t) = Asinhw,t 4+ Bcoshw, ¢ (1.56)

which increases without bound as ¢ does. Such solutions are called divergent or unstable.

If the solution of the damped system of Equation (1.6) with positive coefficients is
examined, it is clear that x(f) approaches zero as ¢ becomes large because of the exponential
term. Such systems are considered to be asymptotically stable (called stable in the controls
literature). Again, if one or two of the coefficients are negative, the motion grows without
bound and becomes unstable as before. In this case, however, the motion may become
unstable in one of two ways. Similar to overdamping and underdamping, the motion may
grow without bound and not oscillate, or it may grow without bound and oscillate. The first
case is referred to as divergent instability and the second case is known as flutter instability,
together, they fall under the topic of self-excited vibrations.

Apparently, the sign of the coefficient determines the stability behavior of the system.
This concept is pursued in Chapter 4, where these stability concepts are formally defined.
Figures 1.19 through 1.22 illustrate each of these concepts.

These stability definitions can also be stated in terms of the roots of the characteristic
equation [Equation (1.8)] or in terms of the poles of the transfer function of the system. In
fact, referring to Figure 1.11, the system is stable if the poles of the structure lie along the
imaginary axis (called the jw axis), unstable if one or more poles are in the right half-plane,
and asymptotically stable if all of the poles lie in the left half-plane. Flutter occurs when the
poles are in the right half-plane and not on the real axis (complex conjugate pairs of roots
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Figure 1.19 Response of a stable system. Figure 1.20 Response of an asympotically
stable system.
x(t

X(2) (1)

A

Figure 1.21 Response of a system with a diver-  Figure 1.22 Response of a system with flutter
gent instability. instability.

with a positive real part), and divergence occurs when the poles are in the right half-plane
along the real axis. In the simple single-degree-of-freedom case considered here, the pole
positions are entirely determined by the signs of m, ¢, and k.

The preceding definitions and ideas about stability are stated for the free response of the
system. These concepts of a well-behaved response can also be applied to the forced motion
of a vibrating system. The stability of the forced response of a system can be defined by
considering the nature of the applied force or input. The system is said to be bounded-input,
bounded-output stable (or, simply, BIBO stable) if, for any bounded input (driving force),
the output (response) is bounded for any arbitrary set of initial conditions. Such systems are
manageable at resonance.

It can be seen immediately that Equation (1.17) with ¢ =0, the undamped system, is not
BIBO stable, since, for f(r) = sin(w,t), the response x(f) goes to infinity (at resonance)
whereas f(¢) is certainly bounded. However, the response of Equation (1.17) with ¢ >0 is



24 SINGLE-DEGREE-OF-FREEDOM SYSTEMS

bounded whenever f{(z) is. In fact, the maximum value of x(¢) at resonance M, is illustrated
in Figure 1.9. Thus, the system of Equation (1.17) with damping is said to be BIBO
stable.

The fact that the response of an undamped structure is bounded when f(¢) is an impulse
or step function suggests another, weaker, definition for the stability of the forced response.
A system is said to be bounded, or Lagrange stable, with respect to a given input if the
response is bounded for any set of initial conditions. Structures described by Equation (1.1)
are Lagrange stable with respect to many inputs. This definition is useful when f(¢) is known
completely or known to fall in some specified class of functions.

Stability can also be thought of in terms of whether or not the energy of the system
is increasing (unstable), constant (stable), or decreasing (asymptotically stable) rather than
in terms of the explicit response. Lyapunov stability, defined in Chapter 4, extends this
idea. Another important view of stability is based on how sensitive a motion is to small
perturbations in the system parameters (m, ¢, and k) and/or small perturbations in initial
conditions. Unfortunately, there does not appear to be a universal definition of stability
that fits all situations. The concept of stability becomes further complicated for nonlin-
ear systems. The definitions and concepts mentioned here are extended and clarified in
Chapter 4.

1.8 DESIGN AND CONTROL OF VIBRATIONS

One can use the quantities defined in the previous sections to design structures and machines
to have a desired transient and steady state response to some extent. For instance, it is a
simple matter to choose m, c, and k so that the overshoot is a specified value. However,
if one needs to specify the overshoot, the settling time, and the peak time, then there may
not be a choice of m, ¢, and k that will satisfy all three criteria. Hence, the response cannot
always be completely shaped, as the formulae in Section 1.4 may seem to indicate.

Another consideration in designing structures is that each of the physical parameters m, c,
and k may already have design constraints that have to be satisfied. For instance, the material
the structure is made of may fix the damping rate, c. Then, only the parameters m and k
can be adjusted. In addition, the mass may have to be within 10% of a specified value,
for instance, which further restricts the range of values of overshoot and settling time. The
stiffness is often designed on the basis of the static deflection limitation.

For example, consider the system of Figure 1.10 and assume it is desired to choose values
of m, ¢, and k so that { and w, specify a response with a settling time ¢, =3.2 units and a
time to peak, 7,, of 1 unit. Then, Equations (1.32) and (1.34) imply that w, =1/ and that
{ =1/+/1+ 72, This, unfortunately, also specifies the overshoot, since

—{m
OS=exp| ——
) p<\/<1—52>)

Thus, all three performance criteria cannot be satisfied. This leads the designer to have to
make compromises, to reconfigure the structure, or to add additional components.

Hence, in order to meet vibration criteria such as avoiding resonance, it may be necessary in
many instances to alter the structure by adding vibration absorbers or isolators (Machinante,
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1984, or Rivin, 2003). Another possibility is to use active vibration control and feedback
methods. Both of these approaches are discussed in Chapters 6 and 7.

As just mentioned, the choice of the physical parameters m, ¢, and k determines the shape
of the response of the system. In this sense, the choice of these parameters can be considered
as the design of the structure. Passive control can also be considered as a redesign process
of changing these parameters on an already existing structure to produce a more desirable
response. For instance, some mass could be added to a given structure to lower its natural
frequency. Although passive control or redesign is generally the most efficient way to control
or shape the response of a structure, the constraints on m, ¢, and k are often such that the
desired response cannot be obtained. Then the only alternative, short of starting over, is to
try active control.

There are many different types of active control methods, and only a few will be considered
to give the reader a feel for the connection between the vibration and control disciplines. As
mentioned earlier, the comments made in this text on control should not be considered
as a substitute for studying standard control or linear system texts. Output feedback control
is briefly introduced here and discussed in more detail in Chapter 7.

First, a clarification of the difference between active and passive control is in order.
Basically, an active control system uses some external adjustable or active (for example,
electronic) device, called an actuator, to provide a means of shaping or controlling the
response. Passive control, on the other hand, depends only on a fixed (passive) change in the
physical parameters of the structure. Active control often depends on current measurements
of the response of the system, and passive control does not. Active control requires an
external energy source, and passive control typically does not.

Feedback control consists of measuring the output, or response, of the structure and
using that measurement to determine the force to apply to the structure to obtain a desired
response. The device used to measure the response (sensor), the device used to apply the
force (actuator), and any electronics required to transfer the sensor signal into an actuator
command (control law) make up the control hardware. This is illustrated by the block
diagram in Figure 1.23. Systems with feedback are referred to as closed-loop systems, while
control systems without feedback are called open-loop systems, as illustrated in Figures 1.23
and 1.24 respectively. A major difference between open-loop and closed-loop control is
simply that closed-loop control depends on information about the response of the system,
and open-loop control does not.

The rule that defines how the measurement from the sensor is used to command the
actuator to effect the system is called the control law, denoted by H(s) in Figure 1.23. Much

+
Structure
F(s) K p—» G(s) I X(S)
Actuator Sensor
Control Law :
H(s)

Figure 1.23 Closed-loop system.
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Fls)—>»1 K > Strgg;;re —— X(s)

Figure 1.24 Open-loop system.

of control theory focuses on clever ways to choose the control law to achieve a desired
response.

A simple open-loop control law is to multiply (or amplify) the response of the system
by a constant. This is referred to as constant gain control. The magnitude of the frequency
response function for the system in Figure 1.23 is multiplied by the constant K, called the
gain. The frequency domain equivalent of Figure 1.23 is

O _pee= K

Fo) KOO = STk (157)

where the plant is taken to be a single-degree-of-freedom model of structure. In the time
domain, this becomes

mi(1) + cx(1) + kx(t) = Kf(1) (1.58)

The effect of this open-loop control is simply to multiply the steady state response by K and
to increase the value of the peak response, M,

On the other hand, the closed-loop control, illustrated in Figure 1.23, has the equivalent
frequency domain representation given by

X(s) KG(s)
F(s)  1+KG(s)H(s)

(1.59)

If the feedback control law is taken to be one that measures both the velocity and position,
multiplies them by some constant gains g, and g, respectively, and adds the result, the
control law H(s) is given by

H(s)=gs+ 8, (1.60)

As the velocity and position are the state variables for this system, this control law is called
full state feedback, or PD control (for position and derivative). In this case, Equation (1.56)
becomes

X(s) K

F(s) — ms*+(Kg +¢)s+(Kg, +k)

(1.61)

The time domain equivalent of this equation (obtained by using the inverse Laplace trans-
form) is

mi(t) + (¢ + Kg))x(r) + (k + Kg,)x(1) = Kf(¢) (1.62)

By comparing Equations (1.58) and (1.62), the versatility of closed-loop control versus
open-loop, or passive, control is evident. In many cases the choice of values of K, g;, and
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g, can be made electronically. By using a closed-loop control, the designer has the choice
of three more parameters to adjust than are available in the passive case to meet the desired
specifications.

On the negative side, closed-loop control can cause some difficulties. If not carefully
designed, a feedback control system can cause an otherwise stable structure to have an
unstable response. For instance, suppose the goal of the control law is to reduce the stiffness
of the structure so that the natural frequency is lower. From examining Equation (1.62),
this would require g, to be a negative number. Then, suppose that the value of k& was
overestimated and g, calculated accordingly. This could result in the coefficient of x(¢)
becoming negative, causing instability. That is, the response of Equation (1.62) would be
unstable if (k+ Kg,) <0. This would amount to positive feedback and is not likely to arise
by design on purpose, but it can happen if the original parameters are not well known. On
physical grounds, instability is possible because the control system is adding energy to the
structure. One of the major concerns in designing high-performance control systems is to
maintain stability. This introduces another constraint on the choice of the control gains and
is discussed in more detail in Chapter 7. Of course, closed-loop control is also expensive
because of the sensor, actuator, and electronics required to make a closed-loop system. On
the other hand, closed-loop control can always result in better performance provided the
appropriate hardware is available.

Feedback control uses the measured response of the system to modify and add back into
the input to provide an improved response. Another approach to improving the response
consists of producing a second input to the system that effectively cancels the disturbance
to the system. This approach, called feedforward control, uses knowledge of the response
of a system at a point to design a control force that, when subtracted from the uncontrolled
response, yields a new response with desired properties, usually a response of zero. Feed-
forward control is most commonly used for high-frequency applications and in acoustics
(for noise cancellation) and is not considered here. An excellent treatment of feedforward
controllers is given by Fuller, Elliot, and Nelson (1996).

1.9 NONLINEAR VIBRATIONS

The force versus displacement plot for a spring in Figure 1.3 curves off after the deflections
and forces become large enough. Before enough force is applied to deform permanently
or break the spring, the force deflection curve becomes nonlinear and curves away from a
straight line, as indicated in Figure 1.25. Therefore, rather than the linear spring relationship
fi =kx, a model such as f, = ax — Bx°, called a softening spring, might better fit the curve.
This nonlinear spring behavior greatly changes the physical nature of the vibratory response
and complicates the mathematical description and analysis to the point where numerical
integration usually has to be employed to obtain a solution. Stability analysis of nonlinear
systems also becomes more complicated.

In Figure 1.25 the force—displacement curves for three springs are shown. Notice that the
linear range for the two nonlinear springs is a good approximation until about 1.8 units of
displacement or 2000 units of force. If the spring is to be used beyond that range, then the
linear vibration analysis of the preceding sections no longer applies.

Consider, then, the equation of motion of a system with a nonlinear spring of the form

m¥(t) + ax(t) — Bx*(£) =0 (1.63)
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Figure 1.25 Force deflection curves for three different springs, indicating their linear range. The
curve g(x) =kx is a linear spring, the curve f(x) = kx—bx> is called a softening spring, and the curve
h(x) = kx + bx? is called a hardening spring (here k = 1000, b = 10).

which is subject to two initial conditions. In the linear system there was only one equilibrium
point to consider, v(¢) = x(¢) =0. As will be shown in the following, the nonlinear system of
Equation (1.63) has more than one equilibrium position. The equilibrium point of a system,
or set of governing equations, may be defined best by first placing the equation of motion
into state-space form.

A general single-degree-of-freedom system may be written as

#(0) + f(x(1), (1)) =0 (1.64)

where the function f can take on any form, linear or nonlinear. For example, for a linear
spring-mass—damper system the function f is just f(x, X) = 2{w,x(r) + @>x(¢), which is
a linear function of the state variables of position and velocity. For a nonlinear system
the function f will be some nonlinear function of the state variables. For instance, for the
nonlinear spring of Equation (1.63), the function is f(x, X) = ax — Bx°.

The general state-space model of Equation (1.64) is written by defining the two state
variables: the position x, = x(¢), and the velocity x, = x(¢). Then, Equation (1.64) can be
written as the first-order pair

X1 (1) = x,(1)
X (1) = —fl(xy, x,) (1.65)

This state-space form of the equation of motion is used for numerical integration, in control
analysis, and for formally defining an equilibrium position. Define the state vector, X, and a
nonlinear vector function F, as

x(1) = [28} and  F= [_ f’(ci(lf)xz)] (1.66)
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Then, Equations (1.65) may be written in the simple form of a vector equation
x=F(x) (1.67)

An equilibrium point of this system, denoted by X, is defined to be any value of the vector
x for which F(x) is identically zero (called zero-phase velocity). Thus, the equilibrium point
is any vector of constants, X,, that satisfies the relations

F(x,)=0 (1.68)

Placing the linear single-degree-of-freedom system into state-space form then yields

x= [ % ] (1.69)

2
—2{w,x, — w,x,

The equilibrium of a linear system is thus the solution of the vector equality

X, 10
|:_2gwnx2_wixl:| B [01| (1.70)

which has the single solution x; = x, =0. Thus, for any linear system the equilibrium point
is a single point consisting of the origin. On the other hand, the equilibrium condition of the
soft spring system of Equation (1.63) requires that

x2=O
—ax; +Bx; =0 (1.71)

Solving for x; and x, yields the three equilibrium points

Xe=[8} \/Og, _\({% (1.72)

In principle, the soft spring system of Equation (1.63) could oscillate around any of these
equilibrium points, depending on the initial conditions. Each of these equilibrium points may
also have a different stability property.

The existence of multiple equilibrium points also complicates the notion of stability intro-
duced in Section 1.7. In particular, solutions near each equilibrium point could potentially
have different stability behavior. Since the initial conditions may determine the equilibrium
around which the solution centers, the behavior of a nonlinear system will depend on the
initial conditions. In contrast, for a linear system with fixed parameters the solution form is
the same regardless of the initial conditions. This represents another important difference to
consider when working with nonlinear components.

1.10 COMPUTING AND SIMULATION IN MATLAB

Modern computer codes such as MATLAB make the visualization and computation of vibra-
tion problems available without much programming effort. Such codes can help enhance
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understanding through plotting responses, can help find solutions to complex problems lack-
ing closed-form solutions through numerical integration, and can often help with symbolic
computations. Plotting certain parametric relations or plotting solutions can often aid in
visualizing the nature of relationships or the effect of parameter changes on the response.
Most of the plots used in this text are constructed from simple MATLAB commands, as the
following examples illustrate. If you are familiar with MATLAB, you may wish to skip this
section.

MATLAB is a high-level code, with many built-in commands for numerical integration
(simulation), control design, performing matrix computations, symbolic manipulation, etc.
MATLAB has two areas to enter information. The first is the command window, which
is an active area where the entered command is compiled as it is entered. Using the
command window is somewhat like a calculator. The second area is called an m-file, which
is a series of commands that are saved and then called from the command window for
execution. All of the plots in the figures in this chapter can be reproduced using these simple
commands.

Example 1.10.1

Plot the free response of the underdamped system to the initial conditions x, =0.01m, v, =0 for
values of m =100kg, c =25kg/s, and k = 1000N/m, using MATLAB and Equation (1.13).

To enter numbers in the command window, just type a symbol and use an equal sign after the blinking
cursor. The following entries in the command window will produce the plot of Figure 1.26. Note that
the prompt symbol ‘>>" is provided by MATLAB and the information following it is code typed in by

001 T T T T T

0.008

0.006

0.004

0.002

0

-0.002

-0.004

0.006

0.008

—0.01 1 1 1 1 1
0 5 10 15 20 25 30

Figure 1.26 Response of an underdamped system (m = 100kg, c =25kg/s, and k = 1000N/m) to
the initial conditions x, =0.01 m, v, =0, plotted using MATLAB.
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the user. The symbol % is used to indicate comments, so that anything following this symbol is ignored
by the code and is included to help explain the situation. A semicolon typed after acommand suppresses
the command from displaying the output. MATLAB uses matrices and vectors so that numbers can be
entered and computed in arrays. Thus, there are two types of multiplication. The notation a*b is a vector
operation demanding that the number of rows of a be equal to the number of columns of b. The product
a. *b, on the other hand, multiplies each element of a by the corresponding element in b.

>> clear % used to make sure no previous values are stored

>> %assign the initial conditions, mass, damping and stiffness
>>x0=0.01;v0=0.0;m=100;c=25;k=1000;

>> gcompute omega and zeta, display zeta to check if underdamped
>>wn=sqrt(k/m);z=c/(2*sqrt(k*m))

z =

0.0395

>> gcompute the damped natural frequency

>>wd=wn*sqrt(1-z"2);

>>+t=(0:0.01:15*(2*pi/wn));%set the values of time from 0 in
increments of 0.01 up to 15 periods

>> x=exp(-z*wn*t).*(x0*cos (wd*t)+((vO+z*wn*x0)/wd)*sin(wd*t));
% computes x(t)

>>plot(t,x)%generates a plot of x(t) vs t

The MATLAB code used in this example is not the most efficient way to plot the response and does
not show the detail of labeling the axis, etc., but is given as a quick introduction.

The next example illustrates the use of m-files in a numerical simulation. Instead of plotting
the closed-form solution given in Equation (1.13), the equation of motion can be numerically
integrated using the ode command in MATLAB. The ode45 command uses a fifth-order
Runge—Kutta, automated time step method for numerically integrating the equation of motion
(see, for instance, Pratap, 2002).

In order to use numerical integration, the equations of motion must first be placed in
first-order, or state-space, form, as done in Equation (1.69). This state-space form is used in
MATLAB to enter the equations of motion.

Vectors are entered in MATLAB by using square brackets, spaces, and semicolons. Spaces
are used to separate columns, and semicolons are used to separate rows, so that a row vector
is entered by typing

>>u=[1 -1 2]

which returns the row

and a column vector is entered by typing

>>u=[1; -1; 2]
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which returns the column

To create a list of formulae in an m-file, choose ‘New’ from the file menu and select ‘m-file’.
This will display a text editor window, in which you can enter commands. The following
example illustrates the creation of an m-file and how to call it from the command window
for numerical integration of the equation of motion given in example 1.10.1.

Example 1.10.2

Numerically integrate and plot the free response of the underdamped system to the initial conditions
Xy =0.01m, vy =0 for values of m =100kg, c =25kg/s, and k = 1000N/m, using MATLAB and
equation (1.13).

First create an m-file containing the equation of motion to be integrated and save it. This is done
by selecting ‘New’ and ‘m-File’ from the File menu in MATLAB, then typing

Function xdot=£2(t,x)

c=25; k=1000; m=100;

% set up a column vector with the state equations
xdot=[x(2); -(c/m)*x(2)-(k/m)*x(1)1];

This file is now saved with the name £2 .m. Note that the name of the file must agree with the name
following the equal sign in the first line of the file. Now open the command window and enter the
following:

>>+ts=[030]; % this enters the initial and final time
>>x0=[0.010]; ¢ this enters the initial conditions
>>[t, x]=oded5('£f2’,ts,x0);

>>plot(t,x(:,1))

The third line of code calls the Runge—Kutta program ode45 and the state equations to be integrated
contained in the file named £2.m. The last line plots the simulation of the first state variable
x,(#) which is the displacement, denoted by x( :,1) in MATLAB. The plot is given in Figure 1.27.

Note that the plots of Figures 1.26 and 1.27 look the same. However, Figure 1.26 was obtained
by simply plotting the analytical solution, whereas the plot of Figure 1.27 was obtained by
numerically integrating the equation of motion. The numerical approach can be used suc-
cessfully to obtain the solution of a nonlinear state equation, such as Equation (1.63), just as
easily.
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Figure 1.27 Plot of the numerical integration of the underdamped system of example 1.10.1 resulting
from the MATLAB code given in example 1.10.2.

The forced response can also be computed using numerical simulation, and this is often
more convenient than working through an analytical solution when the forcing functions are
discontinuous or not made up of simple functions. Again, the equations of motion (this time
with the forcing function) must be placed in state-space form. The equation of motion for a
damped system with a general applied force is

mi(t) + cx(t) + kx(t) = F(t)
In state-space form this expression becomes

A R e T P M

m

where f(f) = F(t)/m and F(¢) is any function that can be integrated. The following example
illustrates the procedure in MATLAB.

Example 1.10.3

Use MATLAB to compute and plot the response of the following system:

100%(7) + 10x(¢) + 500x(z) = 150 cos 5¢, x,=0.01, vy=0.5
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Figure 1.28 A plot of the numerical integration of the damped forced system resulting from the
MATLAB code given in example 1.10.3.

The MATLAB code for computing these plots is given. First an m-file is created with the equation
of motion given in first-order form:

function v=£f(t,x)
m=100; k=500; c=10; Fo=150; w=5;
v=[x(2); X(1)*-k/m+x(2)*-c/m + Fo/m*cos (w*t)];

Then the following is typed in the command window:

>>clear all

>>x0=[0.01; 0.5]; %enters the initial conditions

>>ts=[0 40]; %enters the initial and final times
>>[t,x]=oded5('f’,ts,x0); %$calls the dynamics and integrates
>>plot(t,x(:,1)) $plots the result

This code produces the plot given in Figure 1.28. Note that the influence of the transient dynamics
dies off owing to the damping after about 20s.

Such numerical integration methods can also be used to simulate the nonlinear systems dis-
cussed in the previous section. Use of high-level codes in vibration analysis such as MATLAB
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is now commonplace and has changed the way vibration quantities are computed. More
detailed codes for vibration analysis can be found in Inman (2001). In addition there are
many books written on using MATLAB (such as Pratap, 2002) as well as available online help.

CHAPTER NOTES

This chapter attempts to provide an introductory review of vibrations and to expand the
discipline of vibration analysis and design by intertwining elementary vibration topics with
the disciplines of design, control, stability, and testing. An early attempt to relate vibrations
and control at an introductory level was made by Vernon (1967). More recent attempts
have been made by Meirovitch (1985, 1990) and by Inman (1989) — the first edition of
this text. Leipholz and Abdel-Rohman (1986) take a civil engineering approach to structural
control. The latest attempts to combine vibration and control are by Preumont (2002) and
Benaroya (2004) who also provides an excellent treatment of uncertainty in vibrations. The
information contained in Sections 1.2 and 1.3, and in part of Section 1.4 can be found
in every introductory text on vibrations, such as my own (Inman, 2001) and such as the
standards by Thomson and Dahleh (1993), Rao (2004), and Meirovitch (1986). A complete
summary of most vibration-related topics can be found in Braun, Ewins, and Rao (2002)
and in Harris and Piersol (2002).

A good reference for vibration measurement is McConnell (1995). The reader is encour-
aged to consult a basic text on control such as the older text by Melsa and Schultz (1969),
which contains some topics omitted from modern texts, or by Kuo and Golnaraghi (2003),
which contains more modern topics integrated with MATLAB. These two texts also provide
background to specifications and transfer functions given in Sections 1.4 and 1.5 as well
as feedback control discussed in Section 1.8. A complete discussion of plant identifica-
tion as presented in Section 1.6 can be found in Melsa and Schultz (1969). The excellent
text by Fuller, Elliot, and Nelson (1996) examines the control of high-frequency vibration.
Control is introduced here not as a discipline by itself but rather as a design technique for
vibration engineers. A standard reference on stability is Hahn (1967), which provided the
basic ideas for Section 1.7. The topic of flutter and self-excited vibrations is discussed in
Den Hartog (1985). Nice introductions to nonlinear vibration can be found in Virgin (2000),
in Worden and Tomlinson (2001), and in the standards by Nayfeh and Mook (1978) and
Nayfeh and Balachandra (1995).
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PROBLEMS

1.1 Derive the solution of mX + kx =0 and sketch your result (for at least two periods) for
the case x, =1, v, = «/5, and k/m =4.

1.2 Solve mx — kx =0 for the case x,=1,v,=0, and k/m =4, for x(¢) and sketch the
solution.

1.3 Derive the solutions given in the text for { > 1,{ =1, and 0 < { < 1 with x,, and v, as
the initial conditions (i.e., derive Equations 1.14 through 1.16 and the corresponding
constants).

1.4 Solve ¥ — x +x =0 with x, =1 and v, =0 for x(¢) and sketch the solution.

1.5 Prove that { =1 corresponds to the smallest value of ¢ such that no oscillation occurs.
(Hint: Let A= —Db, b a positive real number, and differentiate the characteristic equa-
tion.)

1.6 Calculate Ly oS, T,, M, and BW for a system described by

23 +0.8% + 8x = (1)

where f(¢) is either a unit step function or a sinusoidal, as required.
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Derive an expression for the forced response of the undamped system
mi(t) + kx(t) = F, sin wt, x(0) = x,, x(0)=v,

to a sinusoidal input and nonzero initial conditions. Compare your result with Equa-
tion (1.21) with { =0.
Compute the total response to the system

4%(t) + 16x(t) = 8 sin 3¢, X, =1mm, vy =2mm/s

Calculate the maximum value of the peak response (magnification factor) for the
system in Figure 1.18 with { = 1/+/2.

Derive Equation (1.22).

Calculate the impulse response function for a critically damped system.

Solve for the forced response of a single-degree-of-freedom system to a harmonic
excitation with { = 1.1 and w? =4. Plot the magnitude of the steady state response
versus the driving frequency. For what value of w, is the response a maximum
(resonance)?

Calculate the compliance transfer function for the system described by the differential
equation

axX +bx +ci+di+ex=f(1)

where f(z) is the input and x(#) is a displacement. Also, calculate the frequency
response function for this system.

Derive Equation (1.51).

Plot (using a computer) the unit step response of a single-degree-of-freedom sys-
tem with w? =4,k =1 for several values of the damping ratio ({ =0.01,0.1,0.5,
and 1.0).

Let o, denote the frequency at which the peak response occurs [Equation (1.22)]. Plot
w,/w, versus { and w,/w, versus { and comment on the difference as a function of {.
For the system of problem 1.6, construct the Bode plots for (a) the inertance transfer
function, (b) the mobility transfer function, (c) the compliance transfer function, and
(d) the Nyquist diagram for the compliance transfer function.

Discuss the stability of the following system: 2X(¢) — 3x(¢) + 8x(f) = —3x(¢) + sin 2t.
Using the system of problem 1.6, refer to Equation (1.62) and choose the gains K, g;,
and g, so that the resulting closed-loop system has a 5% overshoot and a settling time
of less than 10.

Calculate an allowable range of values for the gains K, g,, and g, for the system of
problem 1.6, such that the closed-loop system is stable and the formulae for overshoot
and peak time of an underdamped system are valid.

Compute a feedback law with full state feedback [of the form given in Equation (1.62)]
that stabilizes (makes asymptotically stable) the system 4X(¢) + 16x(r) =0 and causes
the closed-loop settling time to be 1.

Compute the equilibrium positions of the pendulum equation m €26 (¢) + mgt sin 6(¢) = 0.
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1.23 Compute the equilibrium points for the system defined by
¥+ Bi+x+x*=0
1.24 The linearized version of the pendulum equation is given by
() + %0(1‘) =0

Use numerical integration to plot the solution of the nonlinear equation of problem 1.22
and this linearized version for the case where

g=0.01¢, 6(0) =0.1rad, 6(0) =0.1rad/s

Compare your two simulations.
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Lumped-parameter
Models

2.1 INTRODUCTION

Many physical systems cannot be modeled successfully by the single-degree-of-freedom
model discussed in Chapter 1. That is, to describe the motion of the structure or machine,
several coordinates may be required. Such systems are referred to as lumped-parameter
systems to distinguish them from the distributed-parameter systems considered in Chapters 9
through 12. Such systems are also called lumped-mass systems and sometimes discrete
systems (referring to mass not time). Each lumped mass potentially corresponds to six
degrees of freedom. Such systems are referred to as multiple-degree-of-freedom systems
(often abbreviated MDOF). In order to keep a record of each coordinate of the system,
vectors are used. This is done both for ease of notation and to enable vibration theory to
take advantage of the power of linear algebra. This section organizes the notation to be used
throughout the rest of the text and introduces several common examples.

Before the motions of such systems are considered, it is important to recall the definition
of a matrix and a vector as well as a few simple properties of each. Vectors were used in
Sections 1.9 and 1.10, and are formalized here. If you are familiar with vector algebra, skip
ahead to Equation (2.7). Let q denote a vector of dimension n defined by

9>
q= . (2.1

4

Here, g; denotes the ith element of vector q. This is not to be confused with q;, which
denotes the ith vector in a set of vectors. Two vectors q and r of the same dimension (n in
this case) may be summed under the rule

q; + 1

G+ 1,

q+r=s= (2.2)

qn + r’l

Vibration with Control D. J. Inman
© 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01051-7
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and multiplied under the rule (dot product or inner product)

q-r:Zqiiqur (2.3)

i=1

where the superscript T denotes the transpose of the vector. Note that the inner product of
two vectors, q”q, yields a scalar. With q given in Equation (2.1) as a column vector, q7 is
a row vector given by q" =[q, ¢,---q,].

The product of a scalar, a, and a vector, q, is given by

aq=[aq, aq, --- agq,)" (2.4)

If the zero vector is defined as a vector of proper dimension whose entries are all zero, then
rules (2.2) and (2.4) define a linear vector space (see Appendix B) of dimension 7.
A matrix, A, is defined as a rectangular array of numbers (scalars) of the form

apy A -0 a4

Ay Ay -+ Ay,
A=

aml am2 e amn

consisting of m rows and n columns. Matrix A is said to have the dimensions m x n. For
the most part, the equations of motion used in vibration theory result in real-valued square
matrices of dimensions n x n. Each of the individual elements of a matrix are labeled as a;,
which denotes the element of the matrix in the position of the intersection of the ith row
and kth column.

Two matrices of the same dimensions can be summed by adding the corresponding
elements in each position, as illustrated by a 2 x 2 example:

a; ap by b12:| |:a11 + by a12+b12:|
+ — 2.5
|:‘121 azz:| |:b21 by, Ay +by  aytby 23)

The product of two matrices is slightly more complicated and is given by the formula
C =AB, where the resulting matrix C has elements given by

¢y =2 auby (2.6)
k=1

and is only defined if the number of columns of A is the same as the number of rows of B,
which is n in Equation (2.6). Note that the product BA is not defined for this case unless A
and B are of the same dimensions. In most cases, the product of two square matrices or the
product of a square matrix and a vector are used in vibration analysis. Note that a vector is
just a rectangular matrix with the smallest dimension being 1.

With this introduction, the equations of motion for lumped-parameter systems can be
discussed. These equations can be derived by several techniques, such as Newton’s laws
and Lagrange’s equations (Goldstein, 2002), linear graph methods (Rosenberg and Karnopp,
1983, or Shearer, Murphy, and Richardson, 1967), or finite element methods (Hughes, 2000).
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These analytical models can be further refined by comparison with experimental data
(Friswell and Mottershead, 1995). Modeling techniques will not be discussed in this text,
since the orientation is analysis.

All the methods just mentioned yield equations that can be put in the following form:

Aq+A,q+Ayq=1(1) (2.7)

which is a vector differential equation with matrix coefficients. Here, q = q(¢) is an n
vector of time-varying elements representing the displacements of the masses in the lumped-
mass model. The vectors q and ¢ represent the accelerations and velocities respectively.
The overdot means that each element of q is differentiated with respect to time. The vec-
tor q could also represent a generalized coordinate that may not be an actual physical
coordinate or position but is related, usually in a simple manner, to the physical displace-
ment. The coefficients A,, A,, and A; are n square matrices of constant real elements
representing the various physical parameters of the system. The n vector f =f(r) repre-
sents applied external forces and is also time varying. The system of Equation (2.7) is
also subject to initial conditions on the initial displacement q(0) = q, and initial velocities
q(0) =q,.

The matrices A; will have different properties depending on the physics of the problem
under consideration. As will become evident in the remaining chapters, the mathematical
properties of these matrices will determine the physical nature of the solution q(¢), just as
the properties of the scalars m, ¢, and k determined the nature of the solution x(¢) to the
single-degree-of-freedom system of Equation (1.6) in Chapter 1.

In order to understand these properties, there is need to classify square matrices further.
The transpose of a matrix A, denoted by A7, is the matrix formed by interchanging the rows
of A with the columns of A. A square matrix is said to be symmetric if it is equal to its
transpose, i.e., A =A7. Otherwise it is said to be asymmetric. A square matrix is said to be
skew-symmetric if it satisfies A = —AT. It is useful to note that any real square matrix may
be written as the sum of a symmetric matrix and a skew-symmetric matrix. To see this,
notice that the symmetric part of A, denoted by A,, is given by

AT +A
A= 2.8
== (2:8)
and the skew-symmetric part of A, denoted by A, is given by
A—AT
A. = 29
"= (29)
so that A=A, +A,,.
With these definitions in mind, Equation (2.7) can be rewritten as
Ma+ (D+G)q+ (K+H)q=f (2.10)

where q and f are as before but

M =MT" = mass, or inertia, matrix
D = DT = viscous damping matrix (usually denoted by C)
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G=—G" = gyroscopic matrix
K =KT = stiffness matrix
H = —HT = circulatory matrix (constraint damping)

Some physical systems may also have asymmetric mass matrices (see, for instance, Soom
and Kim, 1983).

In the following sections, each of these matrix cases will be illustrated by a physical
example indicating how such forces may arise. The physical basis for the nomenclature is
as expected. The mass matrix arises from the inertial forces in the system, the damping
matrix arises from dissipative forces proportional to velocity, and the stiffness matrix arises
from elastic forces proportional to displacement. The nature of the skew-symmetric matrices
G and H is pointed out by the examples that follow.

Symmetric matrices and the physical systems described by Equation (2.10) can be further
characterized by defining the concept of the definiteness of a matrix. A matrix differs from a
scalar in many ways. One way in particular is the concept of sign, or ordering. In the previous
chapter it was pointed out that the sign of the coefficients in a single-degree-of-freedom
system determined the stability of the resulting motion. Similar results will hold for Equation
(2.10) when the ‘sign of a matrix’ is interpreted as the definiteness of a matrix (this is
discussed in Chapter (4). The definiteness of an n x n symmetric matrix is defined by
examining the sign of the scalar xTA x, called the guadratic form of A, where X is an arbitrary
n-dimensional real vector. Note that, if A =1, the identity matrix consisting of ones along
the diagonal and all other elements zero, then

X' Ax=x"Ix=x"x=x?+ x5+ x5+ + 2

which is clearly quadratic.
In particular, the symmetric matrix A is said to be:

o positive definite if X' Ax > 0 for all nonzero real vectors x and x’ Ax = 0 if and only if x
1S zero;

® positive semidefinite (or nonnegative definite) if x'Ax > 0 for all nonzero real vectors x
(here, x"Ax could be zero for some nonzero vector X);

o indefinite (or sign variable) if (xTAx)(yTAy) < 0 for some pair of real vectors x and y.

Definitions of negative definite and negative semidefinite should be obvious from the first
two of the above.

In many cases, M, D, and K will be positive definite, a condtion that ensures stability,
as illustrated in Chapter 4, and follows from physical considerations, as it does in the
single-degree-of-freedom case.

2.2 CLASSIFICATIONS OF SYSTEMS

This section lists the various classifications of systems modeled by Equation (2.10) that
are commonly found in the literature. Each particular engineering application may have a
slightly different nomenclature and jargon. The definitions presented here are meant only
to simplify discussion in this text and are intended to conform with most other references.
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These classifications are useful in verbal communication of the assumptions made when
discussing a vibration problem. In the following, each word in italics is defined to imply the
assumptions made in modeling the system under consideration.

The phrase conservative system usually refers to systems of the form

Mq(r)+Kq(r) =1£(r) (2.11)
where M and K are both symmetric and positive definite. However, the system
M)+ Gq(r) + Kq(r) =£(1) (2.12)

(where G is skew-symmetric) is also conservative, in the sense of conserving energy, but is
referred to as a gyroscopic conservative system, or an undamped gyroscopic system. Such
systems arise naturally when spinning motions are present, such as in a gyroscope, rotating
machine, or spinning satellite.

Systems of the form

M{(r)+Dq(r) + Kq(r) =£(r) (2.13)

(where M, D, and K are all positive definite) are referred to as damped nongyroscopic systems
and are also considered to be damped conservative systems in some instances, although they
certainly do not conserve energy. Systems with symmetric and positive definite coefficient
matrices are sometimes referred to as passive systems.

The classification of systems with asymmetric coefficients is not as straightforward, as
the classification depends on more matrix theory than has yet been presented. However,
systems of the form

My(t) +(K+H)q(t) =f£(2) (2.14)

are referred to as circulatory systems (Ziegler, 1968). In addition, systems of the more
general form

My(t) +Dq(t) + (K +H)q(t) =£(2) (2.15)

result from dissipation referred to as constraint damping as well as external damping in
rotating shafts. Combining all of these effects provides motivation to study the most general
system of the form of Equation (2.10), i.e.,

M4(t)+ (D +G)q(r) +(K+H)q(r) =£(z) (2.16)

This expression is the most difficult model considered in the first half of the text. To be
complete, however, it is appropriate to mention that this model of a structure does not account
for time-varying coefficients or nonlinearities, which are sometimes present. Physically, the
expression represents the most general forces considered in the majority of linear vibration
analysis, with the exception of certain external forces. Mathematically, Equation (2.16) will
be further classified in terms of the properties of the coefficient matrices.
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2.3 FEEDBACK CONTROL SYSTEMS

The vibrations of many structures and devices are controlled by sophisticated control meth-
ods. Examples of the use of feedback control to remove vibrations range from machine
tools to tall buildings and large spacecraft. As discussed in Section 1.8, one popular way to
control the vibrations of a structure is to measure the position and velocity vectors of the
structure and to use that information to drive the system in direct proportion to its positions
and velocities. When this is done, Equation (2.16) becomes

M{(1) + (G +D)q(1) + (K + H)q(1) = —K,q(1) — K,q(1) +£(2) (2.17)

which is the vector version of Equation (1.62). Here, K, and K, are called feedback gain
matrices.

Obviously, the control system (2.17) can be rewritten in the form of Equation (2.10) by
moving the terms K,q and K,q to the left side of system (2.17). Thus, analysis performed
on Equation (2.10) will also be useful for studying the vibrations of structures controlled by
position and velocity feedback (called state feedback).

Control and system theory (see, for instance, Rugh, 1996) are very well developed areas.
Most of the work carried out in linear systems has been developed for systems in state-space
form introduced in Section 1.9 to define equilibrium and in Section 1.10 for numerical
integration. The state-space form is

x(1) =Ax(r) + Bu(t) (2.18)

where X is called the state vector, A is the state matrix, and B is the input matrix. Here, u
is the applied force, or control, vector. Much software and many theoretical developments
exist for systems in the form of Equation (2.18). Equation (2.10) can be written in this form
by several very simple transformations. To this end, let X, = q and x, = q; then, Equation
(2.16) can be written as the two coupled equations

X, (1) =%, (1)

Mx,(1)=—(D+ G)x,(t) — (K + H)x,(1) +£(?) (2.19)

This form allows the theory of control and systems analysis to be directly applied to vibration
problems.

Now suppose there exists a matrix, M~!, called the inverse of M, such that M~'M =1,
the n x n identity matrix. Then, Equation (2.19) can be written as

(1) = [_MI(OKJFH) _M,I(D+G)i|x(t)+ [Mol}f(t) (2.20)

where the state matrix A is

A_[ 0 I }
“|-M"Y(K+H) -M'Y(D+G)
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and the input matrix B is

(2]

and where x =[x, Xz]T =[q (]]T. This expression has the same form as Equation (2.18).
The state-space approach has made a big impact on the development of control theory and,
to a lesser but still significant extent, on vibration theory. This state-space representation
also forms the approach used for numerical simulation and calculation for vibration analysis.

The matrix inverse M~ can be calculated by a number of different numerical methods
readily available in most mathematical software packages along with other factorizations.
This is discussed in detail in Appendix B. A simple calculation will show that for second-
order matrices of the form

a b
w=f ]

o1 d —b
M _det(M)[—c a]

where det(M) = ad — cb. This indicates that, if ad = cb, then M is called singular and M~
does not exist. In general, it should be noted that, if a matrix inverse exists, then it is unique.
Furthermore, the inverse of a product of square matrices is given by (AB)~"' =B~'A~".

The following selection of examples illustrates the preceding ideas and notations. Addi-
tional useful matrix definitions and concepts are presented in the next chapter and as the
need arises.

the inverse is given by

2.4 EXAMPLES

This section lists several examples to illustrate how the various symmetries and asymmetries
arise from mechanical devices. No attempt is made here to derive the equations of motion.
The derivations may be found in the references listed or in most texts on dynamics. In most
cases the equations of motion follow from a simple free body force diagram (Newton’s laws).

Example 2.4.1

The first example (Meirovitch, 1980, p. 37) consists of a rotating ring of negligible mass containing
an object of mass m that is free to move in the plane of rotation, as indicated in Figure 2.1. In the
figure, k, and k, are both positive spring stiffness values, ¢ is a damping rate (also positive), and
{2 is the constant angular velocity of the disc. The linearized equations of motion are

m 0. c 0 0 —11].. ky +ky — mQ? 0 _
[0 m]q+{[0 0}+2m(2[] O]Iq—k[ 0 2y — MmO q=0 (2.21)

where q =[x(f) y(#)]” is the vector of displacements. Here, M, D, and K are symmetric, while G
is skew-symmetric, so the system is a damped gyroscopic system.
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Figure 2.1 Schematic of a simplified model of a spinning satellite.

Note that, for any arbitrary nonzero vector X, the quadratic form associated with M becomes

m 0 ||x
xX'Mx=[x x,] |:O m] [xﬂ =m(x} +x3) >0

Therefore, x” Mx is positive for all nonzero choices of x and the matrix M is (symmetric) positive
definite (and nonsingular, meaning that M has an inverse). Likewise, the quadratic form for the
damping matrix becomes

rlc O .2
X |:0 0:|x_cx1>0

Note here that, while this quadratic form will always be nonnegative, the quantity x/ Dx = cx? =0
for the nonzero vector x=[0 1]7, so that D is only positive semidefinite (and singular). Easier
methods for checking the definiteness of a matrix are given in the next chapter.

The matrix G for the preceding system is obviously skew-symmetric. It is interesting to calculate
its quadratic form and note that for any real value of x

x'Gx =2 mO(x;x, — X,x,) =0 (2.22)

This is true in general. The quadratic form of any-order real skew-symmetric matrix is zero.

Example 2.4.2

A gyroscope is an instrument based on using gyroscopic forces to sense motion and is commonly
used for navigation as well as in other applications. One model of a gyroscope is shown in Figure 2.2.
This is a three-dimensional device consisting of a rotating disc (with electric motor), two gimbals
(hoops), and a platform, all connected by pivots or joints. The disc and the two gimbals each have
three moments of inertia — one around each of the principal axes of reference. There is also a
stiffness associated with each pivot. Let A, B, and C be the moments of inertia of the disc (rotor);



EXAMPLES 47

Gimbal 2

Platform

L

Figure 2.2 Schematic of a simplified model of a gyroscope.

a;, b;, and ¢;, for i = 1, 2, be the principal moments of inertia of the two gimbals; k,; and k,, be the
torsional stiffness elements connecting the driveshaft to the first and second gimbal respectively;
k,, and k,, be the torsional stiffness elements connecting the rotor to the first and second gimbal
respectively; and let 2 denote the constant rotor speed. The equations of motion are then given by
Burdess and Fox (1978) to be

Ata, 0 7. 0 —17.
[0 B+b1]q+Q(A+B_C)[1 0]‘1
(2.23)
n ki +ky+20°(C—B+c,— b)) 0 —o
0 ki +kyy +20%(C—A+cy—by) |47

where q is the displacement vector of the rotor.

Here we note that M is symmetric and positive definite, D and H are zero, G is nonzero
skew-symmetric, and the stiffness matrix K will be positive definite if (C—B+ ¢, — b;) and
(C — A+ ¢, — b,) are both positive. This is a conservative gyroscopic system.

Example 2.4.3

A lumped-parameter version of the rod illustrated in Figure 2.3 yields another example of a system
with asymmetric matrix coefficients. The rod is called Pfliiger’s rod, and its equation of motion
and the lumped-parameter version of it used here can be found in Huseyin (1978) or by using the
methods of Chapter 13. The equations of motion are given by the vector equation

/n \

l<— ¢ >I

Figure 2.3 Pfliiger’s rod: a simply supported bar subjected to uniformly distributed tangential forces.
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LTl w32
m[1 0]. Eln* | — ¢ 4 9
= q-+ 2 -7 q=0 (2.24)
2[0 ! e {0 8} 8 »
9

where 7 is the magnitude of the applied force, EI is the flexural rigidity, m is the mass density, £
is the length of the rod, and q(¢) =[x, (¢) x,()]” represents the displacements of two points on the rod.

Again, note that the mass matrix is symmetric and positive definite. However, owing to the pres-
ence of the so-called follower force ), the coefficient of q(¢) is not symmetric. Using Equations (2.8)
and (2.9), the stiffness matrix K becomes

Elm* 7 20
— = |
_| 26 % 9
k= 20 8EITY
—— —nm
9" I

and the skew-symmetric matrix H becomes

2n[0 -1
H‘T[l 0]

Example 2.4.4

As an example of the types of matrix that can result from feedback control systems, consider the
two-degree-of-freedom system in Figure 2.4. The equations of motion for this system are

my 0. c+c, —c . ki+k, —ky| |0
|: 0 mz]q+[ -G (&) }q+|: —k, k, 4= fa (225)
where q = [x,(¢) x,(#)]7. If a control force of the form f, = —g,x; — gX,, where g, and g, are
constant gains, is applied to the mass m,, then Equation (2.25) becomes
m; 0 .. cit+e —o . ki +k, —k, 0
= 2.26
|:0 m2:|q+[ —G 53 :|q+|:_kz+81 ky+ g =lo (2.26)

Equation (2.26) is analogous to Equation (1.62) for a single-degree-of-freedom system.

"

Cq C

k1 k2

o e

Figure 2.4 Schematic of a two-degree-of-freedom system.
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Now the displacement coefficient matrix is no longer symmetric owing to the feedback gain
constant g,. Since just x; and x, are used in the control, this is called position feedback. Velocity
feedback could result in the damping matrix becoming asymmetric as well. Without the control, this
is a damped symmetric system or nonconservative system. However, with position and/or velocity
feedback, the coefficient matrices become asymmetric, greatly changing the nature of the response
and, as discussed in Chapter 4, the stability of the system.

These examples are referred to in the remaining chapters of the text, which develops
theories to test, analyze, and control such systems.

2.5 EXPERIMENTAL MODELS

Many structures are not configured in nice lumped arrangements, as in examples 2.4.1, 2.4.2,
and 2.4.4. Instead, they appear as distributed parameter arrangements (see Chapter 9), such
as the rod of Figure 2.3. However, lumped-parameter multiple-degree-of-freedom models
can be assigned to such structures on an experimental basis. As an example, a simple beam
may be experimentally analyzed for the purpose of obtaining an analytical model of the
structure by measuring the displacement at one end that is due to a harmonic excitation
(sin wt) at the other end and sweeping through a wide range of driving frequencies, w. Using
the ideas of Section 1.6, a magnitude versus frequency relationship similar to Figure 2.5 may
result. Because of the three very distinct peaks in Figure 2.5, one is tempted to model the
structure as a three-degree-of-freedom system (corresponding to the three resonances). In
fact, if each peak is thought of as a single-degree-of-freedom system, using the formulations
of Section 1.6 yields a value for m;, k;, and ¢, (or w; and ;) for each of the three peaks
(i=1, 2, and 3). A reasonable model for the system might then be

m, 0 0 ¢ 0 0 k0 0
0 m O |g+|0 ¢ O0|q+|0 %k 0 ]|q=0 (2.27)
0 0 my 0 0 e 0 0 ks

=

I
|
|
!
I
I
|
|
|
|
|
!

o

Figure 2.5 Experimentally obtained magnitude versus frequency plot for a simple beam-like structure.
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which is referred to as a physical model. Alternatively, values of w; and {; could be used to
model the structure by the equation

1 0 0 24w, 0 0 @ 0 0
0 1 0[i+] 0 26w, 0 |r+|0 o 0 |r=0 (229
0 0 1 0 0 2L 0 0 o

which is referred to as a modal model. The problem with each of these models is that it
is not clear what physical motion to assign to the coordinates ¢;(¢) or r,(f). In addition,
as discussed in Chapter 8, it is not always clear that each peak corresponds to a single
resonance (however, phase plots of the experimental transfer function can help).

Such models, however, are useful for discussing the vibrational responses of the structure
and will be considered in more detail in Chapter 8. The point in introducing this model
here is to note that experimental methods can result in viable analytical models of structures
directly, and that these models are fundamentally based on the phenomenon of resonance.

2.6 INFLUENCE METHODS

As mentioned in Section 2.1, there are many methods that can be used to determine a model
of a structure. One approach is the concept of influence coefficients, which is discussed here
because it yields a physical interpretation of the elements of the matrices in Equation (2.7).
The influence coefficient idea extends the experiment suggested in Figure 1.2 to multiple-
degree-of-freedom systems.

Basically, a coordinate system denoted by the vector q(¢) is chosen arbitrarily, but it is
based on as much knowledge of the dynamic behavior of the structure as possible. Note
that this procedure will not produce a unique model because of this arbitrary choice of the
coordinates. Each coordinate, x;(7), is used to define a degree of freedom of the structure.
At each coordinate a known external force, denoted by p,(7), is applied. In equilibrium, this
force must be balanced by the internal forces acting at that point. These internal forces are
modeled to be the internal inertial force, denoted by f,, , the internal damping force, denoted
by f,,, and the elastic force, denoted by f; .

The equilibrium is expressed as

pi0) =1, () + f4,() + £, (1) (2.29)

Since this must be true for each coordinate point, the n equations can be written as the single
vector equation

p(1) =£, (1) =£,(1) +£.(1) (2.30)

Each of the terms in Equation (2.30) can be further expressed as the sum of forces due to
the influence of each of the other coordinates. In particular, k,-j is defined to be the constant
of proportionality (or slope of Figure 1.3) between the force at point i that is due to a unit
displacement at point j (x; = 1). This constant is called the stiffness influence coefficient.
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Because the structure is assumed to be linear, the elastic force is due to the displacements
developed at each of the other coordinates. The resulting force is then the sum

fki szijxj(t) (2.31)
j=1
Writing down all i equations results in the relation

f,=Kx (2.32)

where K is the n x n stiffness matrix or stiffness influence matrix with elements k;; and
x! =[x,x,...x,]. In full detail, Equation (2.32) is

fkl ki kiypeoky, X
e e
fk” kn] knz e knn Xy

The element k,,, is essentially the force at point i required to produce displacements x; =1
and x,, =0 for all values m between 1 and n excluding the value of i. Equation (2.33) can
be inverted as long as the coefficient matrix K has an inverse. Solving Equation (2.33) for
x then yields

X
x; ap Ap--dy fkl
Qyp Ay - dyy, sz
X3 | — ) (2.34)
x.n an] anz Tt lpp fk”
or
x=Af, (2.35)

If each f}_ is set equal to zero except for f; , which is set equal to unity, then the ith equation
of system (2.34) yields

Xi=ayfi, *apfo, ¥+ @ fi, =i (2.36)

Thus a,,, is the displacement at point i, i.e., x;, that is due to a unit force applied at point m.
The quantity a;,, is called a flexibility influence coefficient.

This procedure can be repeated for the inertial forces and the viscous damping forces.
In the case of inertial forces, the inertial influence coefficient is defined as the constant of
proportionality between the force at point i and the acceleration at point j (X; = 1) of unit
magnitude. These coefficients are denoted by m,; and define the force f,, by

f, (1) =Mx(r) (2.37)



52 LUMPED-PARAMETER MODELS

where the mass matrix M has elements m;;. Likewise, the damping influence coefficient is
defined to be the constant of proportionality between the force at point i and the velocity
at point j (x; = 1) of unit magnitude. These coefficients are denoted by d,; and define the
force f; as

£,(f) = Di(r) (2.38)

where the damping matrix D has elements d;;.
Combining the preceding four equations then yields the equations of motion of the structure
in the standard form

Mq(t)+Dq(r) +Kq(r)=0 (2.39)

where the coefficients have the physical interpretation just given, and q =X is used to
conform with the generalized notation of earlier sections.

2.7 NONLINEAR MODELS AND EQUILIBRIUM

If one of the springs in Equation (2.21) is stretched beyond its linear region, then Newton’s
law would result in a multiple-degree-of-freedom system with nonlinear terms. For such
systems the equations of motion become coupled nonlinear equations instead of coupled
linear equations. The description of the nonlinear equations of motion can still be written in
vector form, but this does not result in matrix coefficients, and therefore linear algebra does
not help. Rather the equations of motion are written in the state-space form of Equation (1.67),
repeated here:

% = F(x) (2.40)

As in Section 1.9, Equation (2.40) is used to define the equilibrium position of the system.
Unlike the linear counterpart, there will be multiple equilibrium positions defined by solutions
to the nonlinear algebraic equation [Equation (1.68)]

F(x,)=0

The existence of these multiple equilibrium solutions forms the first basic difference between
linear and nonlinear systems. In addition to being useful for defining equilibria, Equa-
tion (2.40) is also useful for numerically simulating the response of a nonlinear system with
multiple degrees of freedom.

If one of the springs is nonlinear or if a damping element is nonlinear, the stiffness and/or
damping terms can no longer be factored into a matrix times a vector but must be left in
state-space form. Instead of Equation (2.13), the form of the equations of motion can only
be written as

Mi+G(q.q)=0 (2.41)

where G is some nonlinear vector function of the displacement and velocity vectors. As in
the single-degree-of-freedom case discussed in Section 1.9, it is useful to place the system
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in Equation (2.41) into state-space form by defining new coordinates corresponding to the
position and velocity. To this end, let X, = q and X, = ¢ and multiply the above by M~!.
Then, the equation of motion for the nonlinear system of Equation (2.41) becomes

x=F(x) (2.42)
Here
F(x)= [—Ml gZ(XI’ XZ):| (2.43)
and the 2n x 1 state vector x(1) is
x(1) = [g] - [iﬂ (2.44)

Applying the definition given in Equation (1.68), equilibrium is defined as the vector x,
satisfying F(x,) = 0. The solution yields the various equilibrium points for the system.

Example 2.7.1

Compute the equilibrium positions for the linear system of Equation (2.20).
Equation (2.20) is of the form

. 0
x:Ax+|:M_l]f

Equilibrium is concerned with the free response. Thus, set f =0 in this last expression, and the
equilibrium condition becomes Ax =0. As long as matrix A has an inverse, A x =0 implies that the
equilibrium position is defined by x, = 0. This is the origin with zero velocity: x;, =0 and x, =0, or
x =0 and x =0. Physically, this condition is the rest position for each mass.

Much analysis and theory of nonlinear systems focuses on single-degree-of-freedom systems.
Numerical simulation is used extensively in trying to understand the behavior of MDOF
nonlinear systems. Here, we present a simple example of a two-degree-of-freedom nonlinear
system and compute its equilibria. This is just a quick introduction to nonlinear MDOF, and
the references should be consulted for a more detailed understanding.

Example 2.7.2

Consider the two-degree-of-freedom system in Figure 2.4, where spring k,(g,) is driven into its
nonlinear region so that k,(g;) = k;q, — Bq} and the force and dampers are set to zero. For
convenience, let m; =m, = 1. Note that the coordinates are relabeled g; to be consistent with the
state-space coordinates. Determine the equilibrium points.
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The equations of motion become

m g, =ky(q, — q1) — ki q +3‘I?
My, =—ky(q, — q1)

Next, define the state variables as x, =¢q,, x, =%, =¢q,, X3 =¢,, and x, = X3 = ¢,. Then, the
equations of motion in first order can be written (for m; =m, =1) as

X=X

Xy =ky(x3 — x) —kyx; + Bx]

Xy = x4
Xy =—ky(x3 — xy)
In vector form this becomes
X2
x=F(x)= k(x5 — 3‘1)):t kyx, + Bx
—ky(x3 — xy)
Setting F(x) =0 yields the equilibrium equations
X, \ 0
F(x,) = kz(x3—xl));k1xl+ﬁx] 8
—ky (x5 —x,) 0

This comprises four algebraic equations in four unknowns. Solving yields the three equilibrium points

kl/B_ :
0 0 — I/B
x, = 8 ’ kl/ﬁ ’ 0
0 0 — kl/B
kl/ 0
B
- O -

The first equilibrium vector corresponds to the linear system.

CHAPTER NOTES

The material in Section 2.1 can be found in any text on matrices or linear algebra. The
classification of vibrating systems is discussed in Huseyin (1978), which also contains an
excellent introduction to matrices and vectors. The use of velocity and position feedback as
discussed in Section 2.3 is quite common in the literature but is usually not discussed for
multiple-degree-of-freedom mechanical systems in control texts. The experimental models
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of Section 2.5 are discussed in Ewins (2000). Influence methods are discussed in more detail
in texts on structural dynamics, such as Clough and Penzien (1975).

As mentioned, there are several approaches to deriving the equation of vibration of a
mechanical structure, as indicated by the references in Section 2.1. Many texts on dynamics
and modeling are devoted to the topic of deriving equations of motion (Meirovitch, 1986).
The interest here is in analyzing these models.
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PROBLEMS

For problems 2.1 through 2.5, consider the system described by
3 0f.. 6 2]. 3 =2
o i s Sy Se-o

2.1 Identify the matrices M, C, G, K, and H.

2.2 Which of these matrices are positive definite and why?

2.3 Write the preceding equations in the form x =A x where X is a vector of four elements
given by x=[q q]”.

2.4 Calculate the definiteness of M, D, and K from problem 2.1 as well as the values of
x”Gx and x” Hx for an arbitrary value of x.

2.5 Calculate M~!, D!, and K~! as well as the inverse of D+ G and K + H from prob-
lem 2.1 and illustrate that they are, in fact, inverses.
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2.6
2.7

2.8

29

2.10

2.11
2.12

2.13
2.14

2.15

LUMPED-PARAMETER MODELS

Discuss the definiteness of matrix K in example 2.4.3.

A and B are two real square matrices. Show by example that there exist matrices

A and B such that AB # BA. State some conditions on A and B for which AB = BA.

Show that the ijth element of matrix C, where C = AB, the product of matrix A with

matrix B, is the inner product of the vector consisting of the ith row of matrix A and

the vector consisting of the jth column of matrix B.

Calculate the solution of Equation (2.27) to the initial conditions given by q”(0) =0

and q(0)=[0 1 0]".

(a) Calculate the equation of motion in matrix form for the system in Figure 2.4 if
the force applied at f; = —g,;x, — g,X, and f, = —g3x; — g4X,.

(b) Calculate f; and f, so that the resulting closed-loop system is diagonal
(decoupled).

Show that, if A and B are any two real square matrices, then (A + B)T =AT + BT,

Show, by using the definition in Equation (2.4), that, if x is a real vector and a is any

real scalar, then (ax)” = ax”.

Using the definition of the matrix product, show that (AB)T = BTAT.

Show that Equation (2.13) can be written in symmetric first-order form Ax + Bx =F,

where x=[q" q"], F=[f” 0], and A and B are symmetric.

Compute the equilibrium positions for the system of example 2.7.2 for the case where

the masses m, and m, are arbitrary and not equal.
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Matrices and the Free
Response

3.1 INTRODUCTION

As illustrated in Chapter 1, the nature of the free response of a single-degree-of-freedom
system is determined by the roots of the characteristic equation [Equation (1.8)]. In addi-
tion, the exact solution is calculated using these roots. A similar situation exists for the
multiple-degree-of-freedom systems described in the previous chapter. Motivated by the
single-degree-of-freedom system, this chapter examines the problem of characteristic roots
for systems in matrix notation and extends many of the ideas discussed in Chapter 1 to the
multiple-degree-of-freedom systems described in Chapter 2. The mathematical tools needed
to extend the ideas of Chapter 1 are those of linear algebra, which are introduced here in an
informal way, as needed.

Chapter 2 illustrated that many types of mechanical system can be characterized by vector
differential equations with matrix coefficients. Just as the nature of the scalar coefficients
in the single-degree-of-freedom case determines the form of the response, the nature of
the matrix coefficients determines the form of the response of multiple-degree-of-freedom
systems.

In fact, if we attempt to follow the method of solving single-degree-of-freedom vibra-
tion problems in solving multiple-degree-of-freedom systems, we are led immediately to a
standard matrix problem called the algebraic eigenvalue problem. This chapter introduces
the matrix eigenvalue problem and applies it to the multiple-degree-of-freedom vibration
problems introduced in Chapter 2. The eigenvalues and eigenvectors can be used to deter-
mine the time response to initial conditions by the process called modal analysis which is
introduced here. The use of high-level codes such as MATLAB is introduced to compute mode
shapes and natural frequencies. The chapter concludes with simulation of the time response
to initial condition disturbances, using numerical integration as an alternative to modal
analysis.

Vibration with Control D. J. Inman
© 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01051-7



58 MATRICES AND THE FREE RESPONSE

3.2 EIGENVALUES AND EIGENVECTORS

This section introduces topics from linear algebra and the matrix eigenvalue problem needed
to study the vibrations of multiple-degree-of-freedom systems. Consider first the simple
conservative vibration problem of Equation (2.11), repeated here:

MX+Kx=0

for the free response case where F =0. Since M is assumed to be positive definite, it has
an inverse. Premultiplying the equation of motion by the matrix M~! yields the following
equation for the free response:

q+M 'Kq=0

Following the mathematical approach of Section 1.2 and the physical notion that the solution
should oscillate suggests that a solution may exist of the form of nonzero constant u, in this
case a vector, times the exponential ¢, i.e., q(f) =ue'. Substitution of this expression
into the preceding equation yields

—pfu+Au=0, u#0
where A =M~'K. Rearrangement of this expression yields the equation
Au=Au, uz0

where A = u? and u cannot be zero. This expression is exactly a statement of the matrix
eigenvalue problem. As in the case of the single-degree-of-freedom system, the constants
A= u? characterize the natural frequencies of the system. With this as a motivation, the
matrix eigenvalue problem is described in detail in this section and applied to the linear
vibration problem in Section 3.3. Computational considerations are discussed in Section 3.8.

Square matrices can be characterized by their eigenvalues and eigenvectors, defined in
this section. Let A denote an n x n square matrix. The scalar A is defined as an eigenvalue
of matrix A with corresponding eigenvector X, which must be nonzero, if A and x satisfy the
equation

AX = Ax, x#0 (3.1)

Geometrically, this means that the action of matrix A on vector x just changes the length of
vector x and does not change its direction or orientation in space. Physically, the eigenvalue
A will yield information about the natural frequencies of the system described by matrix A.
It should be noted that, if x is an eigenvector of A, then so is the vector ax, where « is any
scalar. Thus, the magnitude of an eigenvector is arbitrary.

A rearrangement of Equation (3.1) yields

(A—ADx=0 (3.2)

where [ is the n x n identity matrix. Since X cannot be zero, by the definition of an eigen-
vector, the inverse of the matrix (A — AI) must not exist. That is, there cannot exist a matrix
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(A — AI)7! such that, (A — AI)"'(A — AI) = I. Otherwise, premultiplying Equation (3.2)
by this inverse would mean that the only solution to Equation (3.2) is x =0, violating the
definition of an eigenvector. Matrices that do not have inverses are said to be singular, and
those that do have an inverse are called nonsingular.

Whether or not a matrix is singular can also be determined by examining the determinant
of the matrix. The determinant of an n x n matrix A is defined and denoted by

detA=|A| =Y a,lA,| (3.3)
s=1

for any fixed r, where a,, is the element of A at the intersection of the rth row and sth column
of A and |A,,] is the determinant of the matrix formed from A by striking out the rth row and
sth column multiplied by (—1)"™*. An illustration of this for n =2 is given in Section 2.3.
The value of the determinant of a matrix is a unique scalar. In addition, it is a simple matter
to show that

A =A"] (3.4)
|AB| = |A||B| (3.5)

Whether or not the determinant of a matrix is zero is very significant and useful. The
following five statements are entirely equivalent:

A is nonsingular.

A~! exists.

det A #O.

The only solution of the equation Ax =0 is x=0.
Zero is not an eigenvalue of A.

Nk e =

Note that, if det(A) =0, then A~! does not exist, A is singular, and Ax =0 has a nontrivial
solution; i.e., zero is an eigenvalue of A.

Example 3.2.1
The determinant of matrix A is calculated from Equation (3.3) ( is chosen as the fixed value 1) as
1 3 =2
detA = [0 1 1} =1[MDE) - MG =3[0)3) = (D] -2[(0)(5) — ()(2)]=8
2 5 3

Applying the concept of the determinant of a matrix to the eigenvalue problem stated in Equa-
tion (3.2) indicates that, if A is to be an eigenvalue of matrix A, then A must satisfy the
equation

det(A — AI)=0 (3.6)
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This expression results in a polynomial in A, which is called the characteristic equation of
matrix A.

Since A is an n X n matrix, Equation (3.6) will have n roots (or A will have n eigenvalues),
which are denoted by A;. Then, Equation (3.6) can be rewritten as

det(A — Al) = ﬁ(A —1)=0 (3.7)

i=1

If A, happens to be a root that is repeated m; times, then this becomes

k k
det(A — M) =] (A= A)™, where Y m;=n (3.8)

i=1 i=1

Also, note from examination of Equation (3.2) that any given eigenvalue may have
many eigenvectors associated with it. For instance, if x is an eigenvector of A with corre-
sponding eigenvalue A, and « is any scalar, ax is also an eigenvector of A with corresponding
eigenvalue A. Eigenvectors have several other interesting properties, many of which are
useful in calculating the free response of a vibrating system.

The first property has to do with the concept of linear independence. A set of vec-
tors, denoted by {e;}’_; = {e,,e,,...,e,}, is said to be linearly independent, or just
independent, if

ae +oe,+---+ae, =0 (3.9)

implies that each of the scalars q; is zero. If this is not the case, i.e., if there exists one or more
nonzero scalars «; satisfying Equation (3.9), then the set of vectors {x;} is said to be linearly
dependent. The set of all linear combinations of all n-dimensional real vectors is called the
span of the set of all n-dimensional real vectors. A set of n linearly independent vectors,
{e,,e,,...,e,} is said to form a basis for the span of vectors of dimension n. This means
that, if x is any vector of dimension n, then there exists a unique representation of vector x
in terms of the basis vectors e;, given by

X=a,e +ae,+---+a,e, (3.10)

The coefficients a; are sometimes called the coordinates of vector x in the basis {e;}’_,. One
familiar basis is the basis consisting of unit vectors (i, j, ﬁ) of a rectangular coordinate
system, which forms a basis for the set of all three-dimensional real vectors.

Another important use of the idea of linear independence is contained in the concept of
the rank of a matrix. The rank of a matrix is defined as the number of independent rows
(or columns) of the matrix when the rows (columns) are treated like vectors. This property
is used in stability analysis in Chapter 4, and in control in Chapter 7. Note that a square
n X n matrix is nonsingular if and only if its rank is n (i.e., if and only if it has full rank).

If the scalar product, or dot product, of two vectors is zero, i.e., if xiTx ;= 0, then the two
vectors are said to be orthogonal. If xI'x; = 1, the vector x; is called a unit vector. If a set of
unit vectors is also orthogonal, i.e., if

0. ..
XiTXj:(Sij:: l;é]
1, i=j
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they are said to be an orthonormal set. Here, ;; is the Kronecker delta. Again, the familiar
unit vectors of rectangular coordinate systems are an orthonormal set of vectors. Also, as
discussed later, the eigenvectors of a symmetric matrix can be used to form an orthonormal
set. This property is used in this chapter and again in Chapter 5 to solve various vibration
problems.

Another important property of eigenvectors is as follows. If A is a square matrix and if
the eigenvalues of A are distinct, then the eigenvectors associated with those eigenvalues
are independent. If A is also symmetric, then an independent set of eigenvectors exist even
if the eigenvalues are repeated. Furthermore, if zero is not an eigenvalue of A and A has
eigenvalues A, with corresponding eigenvectors X;, then the eigenvectors of A~! are also x;
and the eigenvalues are A;'. Thus, A and A~' have related eigenvalue problems. Yet another
useful result for the eigenvalues, A;, of matrix A is that the eigenvalues of (A £ BI) are just
A; £ B, where 3 is any scalar (called a shift).

Matrix A is similar to matrix B if there exists a nonsingular matrix P such that

A=PBP™! (3.11)

In this case, P is referred to as a similarity transformation (matrix) and may be used to change
vibration problems from one coordinate system, which may be complicated, to another
coordinate system that has a simple or canonical form.

The reason that similarity transformations are of interest is that, if two matrices are
similar, they will have the same eigenvalues. Another way to state this is that similarity
transformations preserve eigenvalues, or that eigenvalues are invariant under similarity
transformations. Some square matrices are similar to diagonal matrices. Diagonal matrices
consist of all zero elements except for those on the diagonal, making them easy to manipulate.
The algebra of diagonal matrices is much like that of scalar algebra. This class of matrices
is examined in detail next.

If matrix A is similar to a diagonal matrix, denoted by A, then A can be written as

A=PAP! (3.12)

Postmultiplying this expression by P yields

AP=PA (3.13)
Now, let the vectors p;,,i=1,2, ..., n, be the columns of matrix P, i.e.,
P=[p, p. P3Pl (3.14)

Note that no p; can be a zero vector since P is nonsingular. If A; denotes the ith diagonal
element of diagonal matrix A, then Equation (3.13) can be rewritten as the n separate
equations

Ap;=Np,,  i=1,2,....n (3.15)
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Equations (3.15) state that p; is the ith eigenvector of matrix A and that A, is the associated
eigenvalue, A;. The preceding observation can be summarized as follows:

1. If A is similar to a diagonal matrix, the diagonal elements of that matrix are the
eigenvalues of A (i.e., A, = A;).

2. A is similar to a diagonal matrix if and only if A has a set of n linearly independent
eigenvectors.

3. If A has distinct eigenvalues, then it is similar to a diagonal matrix.

As an important note for vibration analysis: if A is a real symmetric matrix, then there exists
a matrix P such that Equation (3.12) holds.

If the eigenvectors of A are linearly independent, they can be used to form an orthonormal
set. Let s; denote the orthonormal eigenvectors of A so that s's ;= 0;;, the Kronecker delta.
Forming a matrix out of this set of normalized eigenvectors then yields

S=[s; s, 85 ... 8,] (3.16)
Here, note that expanding the matrix product S7S yields
STS=1 (3.17)

where [ is the n x n identity matrix, because of the orthonormality of the rows and columns
of S. Equation (3.17) implies immediately that S” =S~!. Such real-valued matrices are called
orthogonal matrices, and Equation (3.12) can be written as

A=SAS" (3.18)

In this case, A is said to be orthogonally similar to A. (If S is complex valued, then S*S=1,
where the asterisk indicates the complex conjugate transpose of S, and S is called a Hermitian
matrix.) Orthonormal sets are used to compute the time response of vibrating systems from
the eigenvalues and eigenvectors.

Often it is convenient in vibration analysis to modify the concept of orthogonally similar
matrices by introducing the concept of a weighting matrix. To this end, the eigenvectors of
a matrix K can be normalized with respect to a second positive definite matrix, which in
this case is chosen to be the matrix M. That is, the magnitude of the eigenvectors of K, x;,
are chosen such that

X/ Mx; =8, (3.19)

In this case the weighted transformation, denoted by S,,, has the following properties:

m?>

S™™S,, =1 (3.20)
STKS,, = diag[w?] (3.21)

where w? denote the eigenvalues of matrix K. This is not to be confused with the diagonal
matrix STKS, where S is made up of the (not weighted) eigenvectors of matrix K.
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3.3 NATURAL FREQUENCIES AND MODE SHAPES

As mentioned previously, the concept of the eigenvalue of a matrix is closely related to
the concept of natural frequency of vibration in mechanical structures, just as the roots
of the characteristic equation and natural frequency of a single-degree-of-freedom system
are related. To make the connection formally, consider again the undamped nongyroscopic
conservative system described by

Mi(f) + Kq(f) =0 (3.22)

subject to initial conditions q, and q,. Here, the matrices M and K are assumed to be
symmetric and positive definite.

In an attempt to solve Equation (3.22), a procedure similar to the method used to solve a
single-degree-of-freedom system is employed by assuming a solution of the form

q(t) =ue” (3.23)

Here, u is a nonzero, unkown vector of constants, w is a scalar value to be determined, j =
~/—1, and t is, of course, the time. Substitution of Equation (3.23) into Equation (3.22) yields

(—Mu*+K)ue' =0 (3.24)

This is identical to the procedure used in Section 1.2 for single-degree-of-freedom systems.
Since e*" is never zero for any value of w or ¢, Equation (3.24) holds if and only if

(-Mp* +K)u=0 (3.25)

This is starting to look very much like the eigenvalue problem posed in Equation (3.2). To
make the analogy more complete, let u? = A, so that Equation (3.25) becomes

(K —AM)u=0 (3.26)

Since it is desired to calculate nonzero solutions of Equation (3.22), the vector u should be
nonzero. This corresponds very well to the definition of an eigenvector, i.e., that it be nonzero.
Eigenvalue problems stated in terms of two matrices of the form Ax = ABx, x # 0, are called
generalized eigenvalue problems. Now recall, that a nonzero solution u of Equation (3.26)
exists if and only if the matrix (K — AM) is singular or if and only if

det(K — AM) =0 (3.27)

Next, note that, since M is positive definite, it must have an inverse. To see this, note that,
if M~'does not exist, then there is a nonzero vector x such that

Mx =0, x#0 (3.28)
Premultiplying by x” results in
x'Mx=0, x#£0 (3.29)

which clearly contradicts the fact that M is positive definite (recall the end of Section 2.1).
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Since M~! exists, det(M ") # 0 and we can multiply Equation (3.27) by det(M~!) [invok-
ing Equation (3.5)] to obtain

det(M™'K —A)=0 (3.30)

which is of the same form as Equation (3.6) used to define eigenvalues and yields a
polynomial in A of order n. As will be illustrated, each root of Equation (3.30), or eigenvalue
of the matrix M~'K, is the square of one of the natural frequencies of Equation (3.22).

There are several alternative ways to relate the eigenvalue problem of Equation (3.1) to
the natural frequency problem of Equation (3.22). For instance, since M is positive definite,
it has a positive definite square root. That is, there exists a unique positive definite matrix
M'72 such that M'/2M"/> = M. The eigenvalues of M'/2 are B,/*, where B, are the eigenvalues
of M. Both M and its matrix square root have the same eigenvectors. Furthermore, if P is
the matrix of eigenvectors of M, then

M'?=PA)> P! (3.31)

where A}f is a diagonal matrix with diagonal elements ﬂll 2 Many times in modeling
systems, M is already diagonal, in which case the matrix square root is calculated by taking
the square root of each of the diagonal elements. Systems with a non-diagonal mass matrix
are called dynamically coupled systems. The existence of this matrix square root provides
an important alternative relationship between matrix eigenvalues and vibrational natural
frequencies and allows a direct analogy with the single-degree-of-freedom case. Matrix
factorizations, such as the square root, lead to more computationally efficient algorithms
(see Section 3.8).

Since M'/? is positive definite, it has an inverse M~'/2, and pre- and postmultiplying
Equation (3.27) by det(M ~'/?) and factoring out —1 yields

detM —M~'"PKM™'?) = 0 (3.32)

Equation (3.32) is an alternative way of expressing the eigenvalue problem. The difference
between Equations (3.32) and (3.30) is that the matrix K =M~"2KM~"/ is symmetric and
positive definite, whereas M 'K is not necessarily symmetric. Matrix symmetry provides
both a theoretical and computational advantage. Specifically, a symmetric matrix is similar
to a diagonal matrix consisting of its eigenvalues along the diagonal, and the eigenvectors of
a symmetric matrix are linearly independent and orthogonal. The corresponding differential
equation then becomes

IV (1) + M~ '"PKM~*r(1) =0 (3.33)

where q(f) =M~'/’r(¢) has been substituted into Equation (3.22) and the result premultiplied
by M~1/2,

As expected and shown later, the numbers A; are directly related to the natural frequencies
of vibration of the system described by Equation (3.22): w? = u? = A,. It is expected, as in
the case of single-degree-of-freedom systems with no damping, that the natural frequencies
will be such that the motion oscillates without decay. Mathematically, this result follows
from realizing that the matrix K =M~'"2KM~'/? is symmetric and positive definite, ensuring
the nature of the natural frequencies and eigenvectors.
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To see that a real, symmetric, positive definite matrix such as K = M~"2KM~"/? has
positive real eigenvalues (and, hence, real eigenvectors) requires some simple manipulation
of the definitions of these properties. First, note that, if x is an eigenvector of A with
corresponding eigenvalue A,then

Ax = Ax (3.34)

Assuming that A and x are complex and taking the conjugate transpose of this expression
yields (because A is symmetric)

XA =XA* (3.35)

Premultiplying Equation (3.34) by x*, postmultiplying Equation (3.35) by x, and subtracting
the two yields

0=x"Ax — x*Ax = (A — A")X"x

or, since x # 0, that A = A*. Hence, A must be real valued.
Next, consider that A can be written as A = SAST. Therefore, for any and all arbitrary
vectors X,

x'Ax=x"SASTx =y’ Ay

where y = S7x is also free to take on any real value. This can be expressed as

Y Ay=Y Ay’ >0

i=1

since A is positive definite. If the vectors y, =[1 00 --- 0]7, y,=[0 10 --- 0],

., ¥, =[000 --- 1] are, in turn, substituted into this last inequality, the result
is A; > 0, for each of the n values of index i. Hence, a positive definite symmetric
matrix has positive real eigenvalues (the converse is also true).

Applying this fact to Equation (3.32) indicates that each eigenvalue of the mass normalized
stiffness matrix K =M~"2KM~"/? is a positive real number. From Equation (3.25) we see
that the natural frequencies of Equation (3.22) are u = w, where w? = A, a positive real
number. Hence, the coefficient of ¢ in Equation (3.23) has the form o = :t\/Xj, just as
in the single-degree-of-freedom case. The square roots of A; are the natural frequencies of
the system, i.e., w;, = \/)\_i, where i ranges from 1 to n, n being the number of degrees of
freedom. That is, there is one natural frequency for each degree of freedom.

The concept of a positive definite matrix can also be related to conditions on the elements
of the matrix in a useful manner. Namely, it can be shown that a symmetric matrix A is
positive definite if and only if the leading principal minors of A are positive. That is, if

ap  dp v Ay
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then A is positive definite if and only if

a;; >0
a a
det|: 1 12]>O
ay Ay

detA >0

This condition provides a connection between the condition that a matrix be positive definite
and the physical parameters of the system. For example, the stiffness matrix of example 2.4.1
will be positive definite if and only if k, + k, > m£? and 2k, > m{?, by the preceding
principle minor condition. That is, for A=K in example 2.4.1, the first two conditions
yield the two inequalities in k;, m, and (2. This provides physical insight as it indicates
that stability may be lost if the system spins faster (£2) than the stiffness can handle. These
inequalities are very useful in vibration design and in stability analysis.

Another interesting fact about symmetric matrices is that their eigenvectors form a com-
plete set, or a basis. Recall that a set of real vectors {u,} of dimension n is a basis for the
set of all real n-dimensional vectors if and only if they are linearly independent and every
other real vector of dimension n can be written as a linear combination of u;. Thus, the
solution (7) can be expanded in terms of these eigenvectors. The set of eigenvectors of the
matrix K =M~"2KM~"/ forms a linearly independent set such that any vector of dimension
n can be written as a linear combination of these vectors. In particular, the solution of the
vibration problem can be expanded in terms of this basis.

Combining the preceding matrix results leads to the following solution for the response
r(t). There are n solutions of Equation (3.33) of the form

r. (1) =u, e (3.36)

As just shown, under the assumption that M~'/2KM~'/?

must all be of the form

is positive definite, the numbers w,

I EN (337)

where A, are the positive eigenvalues of the matrix M~'/2KM ~'/?. Combining Equation (3.36)
and (3.37) it can be seen that each r,(f) must have the form

1 (1) = (ak e VM 4 b et M‘f) u, (3.38)
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where a, and b, are arbitrary constants. Since u, are the eigenvectors of a symmetric matrix,
they form a basis, so the n-dimensional vector r(¢) can be expressed as a linear combination
of these. That is,

r(1)= i (ak eVt 4 by €ﬂjt> u; (3:39)

k=1

where the arbitrary constants a, and b, can be determined from the initial conditions r(0)
and r(0). This amounts to solving the 2n algebraic equations given by

r(0) = Xn:(ak + b )uy

H0) =i 3 V/Ae (b — ap)uy (3.40)
k=1

for the 2n constants a, and b, k=1,...,n.

Since the symmetric properties of the matrix M~1/2KM~'/* were used to develop the solu-
tion given by Equation (3.39), note that the solution expressed in Equation (3.39)
is the solution of a slightly different problem to the solution q(#) of Equation (3.22). The
two are related by the transformation

12

q(t) =M""*r(1) (3.41)

which also specifies how the initial conditions in the original coordinates are to be
transformed.

Equation (3.39) can be manipulated, using Euler’s formulae for trigonometric functions,
to become

r(t) :Xn:ck sin (w,t + ¢,) u, (3.42)

k=1

where ¢, and ¢, are constants determined by the initial conditions. This form clearly
indicates the oscillatory nature of the system and defines the concept of natural frequency.
Here, w, =+./A, denotes the undamped natural frequencies. Note that the frequencies are

always positive because the Euler formula transformation from VM (o sin w,t effectively
uses the & sign in defining oscillation at the (positive) frequency w,. This expression
extends the undamped single-degree-of-freedom result to undamped multiple-degree-of-
freedom systems.

To evaluate the constants ¢, and ¢,, the orthonormality of vectors u, is again used.
Applying the initial conditions to Equation (3.42) yields

r(0)= i ¢, sin(¢,)u, (3.43)
k=1

and

r(0) = i c,w; cos(d,)u, (3.44)

k=1
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Equation (3.41) is used to yield r(0) =M'/>q(0) and r(0) =M'/2q(0) from the given initial
conditions q(0) and q(0). Premultiplying Equation (3.43) by u yields

Wr(0) = 3 ¢ sin()ulug

k=1

Invoking the orthonormality for vectors u; yields
¢;sing; =u!r(0) (3.45)
Likewise, Equation (3.44) yields

u’#(0)

c;cos ;= (3.46)

i

Combining Equations (3.45) and (3.46) and renaming the index yields

o wu/r(0)
b= {2 |

and

u,r(0)
cCi=—

sin ¢,

Note that, if the initial position r(0) is zero, then Equation (3.45) would imply that ¢, =0
for each i, then Equation (3.46) is used to compute the coefficients ¢;. Once the constants c;
and ¢, are determined, then the index is changed to & to fit into the sum of Equation (3.42)
which is written in terms of ¢, and ¢,.

Next, consider the eigenvectors u, to see how they represent the physical motion of the
system. Suppose the initial conditions r(0) and r(0) are chosen in such a way that ¢, =0
for k=2,3,---,n, ¢, =1, and ¢, =0 for all k. Then, the expansion (3.42) reduces to one
simple term, namely

r(t) =sin(w, )y, (3.47)

This implies that every mass is vibrating with frequency w, or is stationary and that the
relative amplitude of vibration of each of the masses is the value of the corresponding element
of u,. Thus, the size and sign of each element of the eigenvector indicates the positions of
each mass from its equilibrium position, i.e., the ‘shape’ of the vibration at any instant of
time. Transforming this vector back into the physical coordinate system via v, =M~'/?u,
allows the interpretation that vector v, is the first mode shape of the system, or the mode
shape corresponding to the first natural frequency. This can clearly be repeated for each of
the subscripts &, so that v, is the kth mode shape. Hence, the transformed eigenvectors are
referred to as the modes of vibration of the system. Since eigenvectors are arbitrary to within
a multiplicative constant, so are the mode shapes. If the arbitrary constant is chosen so that
v, is normalized, i.e., so that v/ v, =1, and the vector v, is real, the v, is called a normal
mode of the system. The constants ¢, in Equation (3.42) are called modal participation
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factors because their relative magnitudes indicate how much the indexed mode influences
the response of the system.

The procedure just described constitutes a theoretical modal analysis of the system of
Equation (3.22). Some researchers refer to Equations (3.39) and (3.42) as the expansion
theorem. They depend on the completeness of the eigenvectors associated with the system,
i.e., of the matrix M~'2KM~/?,

Example 3.3.1

It should be obvious from Equations (3.27) and (3.32) how to calculate the eigenvalues and hence
the natural frequencies of the system as they are the roots of the characteristic polynomial following
from det(K — AI) =0. How to calculate the eigenvectors, however, may not be as obvious; thus,
calculation is illustrated in this example. Let A; be an eigenvalue of A; then A; and u; =[x, x,]”

satisty the vector equation
ap—»A ap ] [xl]:[o:| 3.48
[ ay ay —A X 0 (348)

This represents two dependent equations in x; and x,, the two components of the eigenvector u,.
Hence, only their ratio can be determined. Proceeding with the first equation in system (3.48) yields

(ay; —A)x; +apx,=0

which is solved for the ratio x,/x,. Then, the vector u, is ‘normalized’ so that ulw; =x? +x3 = 1.
The normalization yields specific values for x; and x,. As a consequence of the singularity of
(A — AI), the second equation in system (3.48), a,; + x; + (a,, — A)x, =0, is dependent on the first
and does not yield new information.

Example 3.3.2

This example illustrates the procedure for calculating the free vibrational response of a
multiple-degree-of-freedom system by using a modal expansion. The procedure is illustrated by a
two-degree-of-freedom system, since the procedure for a larger number of degrees of freedom is the
same. The purpose of the example is to develop an understanding of the eigenvector problem, and it is not
intended to imply that this is the most efficient way to calculate the time response of a system (it is not).

Consider the system described in Figure 2.4 with ¢, =¢, =0, m; =9, m, =1, k;, =24, and k, =3.
Then, the equation of motion becomes

9 0].,[27 -3
o a5 e

subject to the initial condition q(0) =[1 0]" and q(0) =[0 0]” in some set of consistent units.
The matrix K =M~"2KM~'/? becomes

/3 0({27 =3|(1/3 0] |3 -1
0 1|[-3 3 0 1| [-1 3
The characteristic equation [equation (3.32)] becomes

AN —6A+8=0
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which has roots A; =2, A, =4. The corresponding normalized eigenvectors are computed to be
u,=[1/v/2 1/3/2]" andu, =[—1/+/2 1/+/2]7, so that the orthogonal matrix of eigenvectors is

S=%[} _11] (3.49)

Also note that ST(M~'/2KM~/?)S = diag[2 4], as it should. The transformed initial conditions

become
-2 -

and of course £(0) =[0 0]7. The values of the constants in Equation (3.42) are found from

T
= tan! [M} —an-looe T

ul7(0) 2
- _ur(0) 3
s sing, ﬁ
¢, =tan™! [%] =tan"' co= 7
~_wr(0) -3
e sing, ﬁ

Hence, the solution r(7) is given by

r(n = 1.5c0sﬁtm _ 1_5COS2I[_11}

In the original coordinates this becomes q(f) = M~'/r(¢)

q(t) = 1.5008\/52‘[1{3] — 1.5c032[[_11/3]

Multiplying this out yields the motion of the individual masses:

q,(t)=0.5cos V2t 40.5c0s 2t
¢ (1) =1.5cos /21 — 1.5cos 2t

The two mode shapes are (v, =M'/?u;)

1 1 [—
5[7) e

If K is not symmetric, i.e., if we have a system of the form

Mq(r) + (K + H)q(1) =0
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then proceed by solving an eigenvalue problem of the form
M~ (K +H)x=Ax
or
Ax = AX

where A is not a symmetric matrix. In this case the eigenvalues A; and the eigenvectors
X; are in general complex numbers. Also, because of the asymmetry, matrix A has a left
eigenvector, y,, which satisfies

ViA=Ay,

and, in general, may not equal the right eigenvector, x,. Now, let y, be a left eigenvector
and x; be a right eigenvector. Then

AX; = Ax; or YiAX, = \y] x; (3.50)
and
ViA=\yL or Vi AX; = Ly X; (3.51)

where the ith eigenvalues of x; and y,; are the same. Subtracting Equation (3.51) from
Equation (3.50) yields (A; — A,)y/x; =0, so that, if A; # A,, then y/x;, =0. This is called
biorthogonality.

For distinct eigenvalues, the right and left eigenvectors of A each form a linearly indepen-
dent set and can then be used to express any n x 1 vector, i.e., an expansion theorem still
exists. These relations are useful for treating gyroscopic systems, systems with constraint
damping, systems with follower forces, and feedback control systems.

3.4 CANONICAL FORMS

The diagonal matrix of eigenvalues of Section 3.3 is considered a canonical, or simple, form
of a symmetric matrix. This is so because of the ease of manipulation of a diagonal matrix.
For instance, the square root of a diagonal matrix is just the diagonal matrix with nonzero
elements equal to the square root of the diagonal elements of the original matrix.

From the point of view of vibration analysis, the diagonal form provides an immediate
record of natural frequencies of vibration of systems. In addition, the similarity transformation
equation [Equation (3.12)] can be used to solve the undamped vibration problem of Equation
(3.33). To see this, let S be the orthogonal similarity transformation associated with the
symmetric matrix K =M~"2KM~"/2, Substitution of r(r) = Sy(r) into Equation (3.33) and
premultiplying by ST yields

y(1)+ Ay(1) =0 (3.52)
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where A is diagonal. Thus, Equation (3.52) represents n scalar equations, each of the form
y:(1) + wly; (1) =0, i=1,2,...,n (3.53)

These expressions can be integrated separately using the initial conditions y(0) = S7r(0) and
y(0) =S8Ti(0) to yield a solution equivalent to Equation (3.42). This argument forms the
crux of what is called modal analysis and is repeated many times in the following chapters.

Unfortunately, not every square matrix is similar to a diagonal matrix. However, every
square matrix is similar to an upper triangular matrix. That is, let matrix A have eigenvalues

Ay, Ay, ..., A,; there then exists a nonsingular matrix P such that
At O e 0 0
0 Aty - 0 0
P'AP=| @ @ : : (3.54)
0 O 0 /\n—l tn—l,n
o o o .- 0 A

The matrix P~'AP is said to be upper triangular. If the matrix is symmetric, then the ; in
Equation (3.54) are all zero, and the upper triangular matrix becomes a diagonal matrix.

A classic result in the theory of matrices is known as Jordan’s theorem and states the
following. Let A be n x n with eigenvalues A; of multiplicities m;, so that

k k
det(A — AD) =] ](A; — A)™, where Y m;=n
i=1

i=1

Then, every matrix A is similar to a block-diagonal matrix of the form

A0 0 - 0
0 A, 0 - 0

J=l0o 0 A, - (3.55)
. " o
0 0 0 A

where each block A; is of the form

A a0 0
0 A a
A= 0 0
0 -~ . A a
0 0 - 0 A

Here a =0 or 1, depending on whether or not the associated eigenvectors are dependent. The
value of a is determined as follows. If A; are distinct, then a =0, always. If A; is repeated
m; times but has m; linearly independent eigenvectors, then a = 0. If the eigenvector X; is
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dependent (degenerate), then a = 1. If the preceding matrix describes a vibration problem,
the value of a determines whether or not a given system can be diagonalized. Note, then,
that in general it is eigenvector ‘degeneracy’ that causes problems in vibration analysis —
not just repeated eigenvalues.

Next, recall again that the determinant of a matrix is invariant under a similarity transfor-
mation. Expanding the determinant yields

det(A = Al =(=1)"(A=A)(A—=2Ay)---(A=],)
which is the characteristic polynomial and hence is equal to
det(A— A =(=1)"(A"+c, A" '+ 4c, 1 A+c,) (3.56)
Thus, the coefficients ¢; of the characteristic polynomial must also be invariant under

similarity transformations. This fact is used to some advantage.
The trace of a matrix A is defined as

tr(A) =) a; (3.57)
i=1
That is, the trace is the sum of the diagonal entries of the matrix. Some manipulation yields
¢, =—tr(A) (3.58)
and
tr(A)=)_A (3.59)
i=1

Thus, the trace of a matrix is invariant under similarity transformations. Some additional
properties of the trace are

tr(AB) =tr(BA) (3.60)
For nonsingular matrix P
tr(A) =tr(P'AP) (3.61)
For a and 3 scalars
tr(a¢A + BB) = atr(A) + Btr(B) (3.62)
and
tr(A) =tr(A") (3.63)

It is interesting to note that the tr(A) and det(A) can be used for a check of computational
accuracy because they are invariant under similarity transformations.
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3.5 LAMBDA MATRICES

Since many structures exhibit velocity-dependent forces, the ideas of Section 3.4 need to be
extended to equations of the form

Al +Aq+A;q=0 (3.64)

Of course, this expression could be placed in the state-space form of Equation (2.20), and the
methods of Section 3.4 can be applied. In fact, many numerical algorithms do exactly that.
However, the second-order form does retain more of the physical identity of the problem
and hence is worth developing.

Again, assume solutions of Equation (3.64) of the form q(f) =u e, where u is a nonzero
vector of constants. Then Equation (3.64) becomes

(N’A; + A4, +Ay)uet =0
or, since e* is never zero,
(MA, + A4, +A)u=0
This last expression can be written as
D,(M)u=0 (3.65)

where D, (A) is referred to as a lambda matrix and u is referred to as a latent vector. In fact,
in this case u is called the right latent vector (Lancaster, 1966).

Here, it is important to distinguish between the concept of eigenvalues and eigenvectors
of a matrix [Equation (3.1)] and eigenvalues and eigenvectors of a system [Equation (3.65)]
Lancaster (1966) has suggested referring to A and u of the system as latent roots and latent
vectors respectively, in order to make this distinction clear. Unfortunately, this did not catch
on in the engineering literature. In order to be compatible with the literature, the distinction
between eigenvectors (of a single matrix) and latent vectors (of the system) must be made
from context. Equation (3.65) expresses the system eigenvectors and occasionally is referred
to as a nonlinear eigenvalue problem, a matrix polynomial problem, or a lambda matrix
problem.

For the existence of nonzero solutions of Equation (3.65), the matrix D,(A) must be
singular, so that

det(D,(A))=0 (3.66)
The solutions to this 2n-degree polynomial in A are called latent roots, eigenvalues, or
characteristic values and contain information about the natural frequencies of the system.

Note that the solution of Equation (3.66) and the solution of det(A — AI) =0 are the same.
Here, A is the state matrix [see Equation (2.20)] given by

0 1
[ 0 ] oo
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Also, the eigenvectors of A are just [u; A,u,]7, where u, are the latent vectors of Equation
(3.65) and A, are the solutions of Equation (3.66).

An n x n lambda matrix, D, (A), is said to be simple if A7! exists and if, for each eigenvalue
(latent root) A; satisfying Equation (3.65), the rank of D,(A;) is n — «;, where «; is the
multiplicity of the eigenvalue A,. If this is not true, then D,(A) is said to be degenerate. If
each of the coefficient matrices are real and symmetric and if D,(A) is simple, the solution
of Equation (3.64) is given by

2n
q(0) =) cu; e (3.68)
i=1

Here the ¢; are 2n constants to be determined from the initial conditions, and the u; are the
right eigenvectors (latent vectors) of D,()). Note that, if A, =0, Equation (3.65) collapses
to the eigenvalue problem of a matrix. The definitions of degenerate and simple still hold
in this case.

Since, in general, u; and A; are complex, the solution (#) will be complex. The physical
interpretation is as follows. The displacement is the real part of q(¢), and the velocity is the
real part of ¢(z). The terms modes and natural frequencies can again be used if care is taken
to interpret their meaning properly. The damped natural frequencies of the system are again
related to the A, in the sense that, if the initial conditions q(0) and q(0) are chosen such that
¢; =0 for all values of i except i = 1, each coordinate g;(¢) will oscillate (if underdamped)
at a frequency determined by A;. Furthermore, if the u; are normalized, i.e., if uju, =1,
then the elements of u, indicate the relative displacement and phase of each mass when the
system vibrates at that frequency. Here, u* denotes the complex conjugate of the transpose
of vector u.

In many situations, the coefficient matrices are symmetric and the damping matrix D is
chosen to be of a form that allows the solution (2.13) to be expressed as a linear combination
of the normal modes, or eigenvectors, of the matrix K , which, of course, are real. In this
case, the matrix of eigenvectors decouples the equations of motion. In fact the main reason
for this assumption is the convenience offered by the analysis of systems that decouple. The
advantage in the normal mode case is that the eigenvectors are all real valued. To this end,
consider the symmetric damped system of Equation (2.13) and note the following:

1. If D=aM + BK, where a and 3 are any real scalars, then the eigenvectors (latent
vectors) of Equation (3.65) are the same as the eigenvectors of the same eigenvalue
problem with D =0.

2. If D=3 B, K", where B, are real scalars, then the eigenvectors of Equation (2.13)
are thelgame as the eigenvectors of the undamped system (D = 0).
3. The eigenvectors of Equation (2.13) are the same as those of the undamped system (with

D =0) if and only if DM~'K = KM~'D (Caughey and O’Kelly, 1965).

Systems satisfying any of the above rules are said to be proportionally damped, to have
Rayleigh damping, or to be normal mode systems. Such systems can be decoupled by the
modal matrix associated with matrix K.

Of the cases just mentioned, the third is the most general and includes the other two as
special cases. It is interesting to note that case 3 follows from a linear algebra theorem that
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states that two symmetric matrices have the same eigenvectors if and only if they commute
(Bellman, 1970), i.e., if and only if there exists a similarity transformation simultaneously
diagonalizing both matrices. It is also worth noting that, in the normal mode case, the
eigenvectors are real, but the reverse is not true (see the discussion of overdamping below).
That is, some structures with real-valued eigenvectors are not normal mode systems because
the matrix of modal vectors does not decouple the equations of motion (i.e., diagonalize
the coefficient matrices). The significance of complex eigenvectors is that the elements are
not in phase with each other as they are in the normal mode case. Some researchers have
incorrectly stated that, if the damping is small in value, normal modes can be assumed.
However, even small amounts of damping can cause condition 3 above to be violated,
resulting in complex mode shapes (see, for example, Lallament and Inman, 1995).

As a generic illustration of a normal mode system, let S,, be the matrix of eigenvectors
of K normalized with respect to the mass matrix M (i.e., S,, =M~"/2S) so that

S'MS,, =1

STKS,, = Ax = diag[w?] (3.69)
where w? are the eigenvalues of matrix K and correspond to the square of the natural
frequencies of the undamped system. If case 3 holds, then the damping is also diagonalized
by the transformation S,,, so that

SDS,, = diag[2{;0;] (3.70)

where {; are called the modal damping ratios. Then, Equation (3.64) can be transformed into
a diagonal system via the following. Let q(¢) = S,,y(¢) in Equation (2.13) and premultiply
by S7 to get

5i() + 26030 + 0y (D=0,  i=12,....n (3.71)

where y;(¢) denotes the ith component of vector y(#). Each of the n equations of system (3.71)
is a scalar, which can be analyzed by the methods of Chapter 1 for single-degree-of-freedom
systems. In this case the {; are called modal damping ratios and the w, are the undamped
natural frequencies, or modal frequencies.

Alternatively, the modal decoupling described in the above paragraph can be obtained
by using the mass normalized stiffness matrix. To see this, substitute q =M~'"?r into
Equation (2.12), multiply by M~"/2 to form K = M~'/>KM~'/?, compute the normalized
eigenvectors of K , and use these to form the columns of the orthogonal matrix S. Next, use
the substitution r = Sy in the equation of motion, premultiply by S7, and Equation (3.71)

results. This procedure is illustrated in the following example.

Example 3.5.1

Let the coefficient matrices of Equation (2.13) have the values

9 0 9 -1 27 -3
(o I B R D
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Calculating DM~'K yields
30 -6
DMK = 10

-6 —
3

which is symmetric and hence equal to KM~'D, so that condition 3 is satisfied. From exam-
ple 3.3.2, the eigenvectors and eigenvalues of matrix K are as follows: u'=[1 1]/ V2,0, =2, ul =
[-1 1]/4/2, and A, =4.

Then STM~'2DM =125 = diag[2/3 4/3], and STM~'/2KM~'/2S =diag[2 4]. Hence, Equation
(2.13) with f =0 is equivalent to the two scalar equations given by

() +(2/3)3 () +2y,() =0
and
Y1) + (4/3)3,(1) + 4y, () =0

each of which can easily be solved by the methods of Chapter 1. From the displacement coefficient,
the frequencies are

wlzﬁrad/s and w2=\/21=2 rad/s

and from the velocity coefficients the damping ratios are

[ 2 1 4 ¢ 41
= == — an = - — = —
' 320, 342 732w, 3

3.6 OSCILLATION RESULTS

The definition of critical damping, overdamping, and underdamping, stated for single-
degree-of-freedom systems in Chapter 1, can be extended to some of the lumped-parameter
systems of this chapter. In particular, consider the symmetric positive definite system
given by

(1) + Di(t) + Kr(£) =0 (3.72)

Here, D=M""?DM~"? K = M~'>KM~"?, and r(tr) = M'q(¢) in Equation (2.13). In a
form imitating the single-degree-of-freedom case, a critical damping matrix is defined as
D, =2K'. Then, the following classifications can be derived (Inman and Andry, 1980,
and Barkwell and Lancaster, 1992):

1. If D=D,, then Equation (3.72) is said to be a critically damped system, each mode
of vibration is critically damped, and each eigenvalue of Equation (3.72) is a repeated
negative real number. The response of such systems will not oscillate, and all the
eigenvectors are real.
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2. If the matrix D — D, is positive definite and DK = KD, then Equation (3.72) is said
to be an overdamped system, each ‘mode’ of the structure is overdamped, and each
eigenvalue is a negative real number. The response of such systems will not oscillate,
and all the eigenvectors are real.

3. If the matrix D, — D is positive definite, then Equation (3.72) is said to be an under-
damped system, each mode of vibration is underdamped, and each eigenvalue is a
complex conjugate pair with a negative real part. The response of such systems oscillates
with decaying amplitude and the eigenvectors are, in general, complex (unless the matrix
DM™'K is symmetric).

A fourth possibility exists for the matrix case. That is, the matrix D — D, could be indefinite.
In this case, Equation (3.72) is said to exhibit mixed damping, and at least one mode oscillates
and at least one mode does not oscillate. In addition, if A is the state matrix associated with
Equation (3.72), then the system is overdamped if and only if A can be factored into the
product of two positive definite Hermitian matrices (Nicholson, 1983). In order to relax the
condition of normal modes in the overdamped case (case 2 above), Barkwell and Lancaster
(1992) showed that Equation (3.72) has all negative real eigenvalues if 8, > 2w,, where 3,
is the smallest eigenvalue of the damping matrix D and w,, is the largest undamped natural
frequency.

The determinant condition of Section 3.2 for the positive definiteness of a matrix can be
used on the matrix D — D, to provide a system of nonlinear inequalities in the physical
parameters m;, ¢;, and k; of a given structure. These inequalities can be solved for low-order
systems to yield choices of m;, c¢;, and k; that will cause the system to be overdamped or
underdamped as desired. The following example illustrates the process.

Example 3.6.1

Consider the two-degree-of-freedom system of Figure 2.4, which has equations of motion given by

5 o[ e[ a0 am

where q(1) =[x, (1) x(n]".

To form the matrix 2K'/? requires the computation of the square root of a matrix. This computa-
tional burden can be reduced by noting that Bellman (1968) has shown that, if 4K — D? is positive
definite, so is the matrix 2K '/ — D. Hence, it is sufficient to calculate only the square of a matrix
instead of the square root of a matrix. To proceed, calculation of the square of the damping matrix
in terms of the generic values of the system parameters yields the following:

kitky, (ci+e) 4

(4K —D%);, =4 <
nm nm mymy
(4K — DY), = — 4k, ¢y + 3 c
JSmimy o omy/mim, - my Jmim,
5 4k 2 2
4K —D¥,=—2_ 2 9 (3.74)

2
my, m;  mpm,
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Applying the determinant condition to the matrix defined by Equation (3.74) yields the inequalities

4k1+k2 - (C1+C§) T C%

5 (3.75)
my my myny
4k, ciCy —I—c% c% :
(mym)'2 (mimy)2 (mym3)'/2

- cl—|—zcz N c? _4k1+k2i%2+ c _4&
mj mm, mp my  mym, m,
These inequalities have many solutions. One possibility is to choose m; =m,=1,¢,=2,¢,=1,k, =
5, and k, =4. With this choice, the motion should oscillate.
To check to see that this is, in fact, the case, these values of m;, ¢;, and k; can be substituted into
Equation (3.73). The characteristic equation then becomes

A H4X 1507 + 134 4+20=0 (3.76)

This has roots

A, =—0.312 — 1.306]
A, = —0.312 + 1.306;
Ay =—1.688 —2.870j
Ay =—1.688 +2.870j

}:>w1=1.343 rad/s and {,=0232<1

} = w,=3.33rad/s and $,=0.507<1

This clearly indicates that the system oscillates as indicated by the theory. Here, the natural frequen-
cies and damping ratios are determined from the complex eigenvalues by solving the two equations
Ma=-{iw £ wy/1 -} for the two unknowns {; and w,. Note that the matrix elements in
Equation (3.74) and the determinant in Equation (3.75) can be derived using symbolic computations
in Mathcad, MATLAB, or Mathematica.

The condition of critical damping is a very special situation and is not easily obtainable. In
fact, unlike single-degree-of-freedom structures, not all multiple-degree-of-freedom systems
can be made critically damped by adjusting the spring, mass, and/or damping parameters.
For instance, consider the example in Figure 2.4. In order for this system to be critically
damped, each of the elements of matrix (3.74) must be zero. Since the matrix is symmetric,
this yields the three equalities

¢, +c,)? c? k, +k
( 1 - 2) + 2 =4 1 2 (377)
mj mym, m,
2 2
atas G _y, (3.78)
my m,
2 2
k
519 4o (3.79)
mj  mm, m,

Manipulation of these equations shows that all three equalities can be satisfied if and only
if one of the pairs (k,, ¢;) or (k,, ¢,) is zero. This means critical damping can result only
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if the system is reduced to a single degree of freedom, or perhaps by adding additional
components.

If structural changes are allowed, the two-degree-of-freedom system in Figure 2.4 can be
made critically damped. For example, consider adding one more dashpot, c;, and one more
spring, k5, to the system in Figure 2.4 by attaching them from m, to ground. The equation
of motion then becomes

m; 0 ].. ¢+ - | ki +k, —k,
=0 3.80
|:O m2:|q+|: Y CQ+C3i|q+|: —k2 k2+k3 q ( )
Choosing the mass matrix to be the identity matrix, the three equalities resulting from setting
D* =4K become
(c1+ )+ e =4k, + k)
ey (¢ + ¢35+ 2¢,) =4k,
(e +¢3)* + ¢35 =4(ky + k3) (3.81)

One solution for this system is

c, =4, k=
=2, ky=6
c; =4, ky=4

The characteristic equation then becomes
A+ 1207 + 5207 +96A + 64 =0 (3.82)
which has roots

A ="2=w =2 and £ =1
Ay=—4=>0,=4 and H=1

Hence, each mode is critically damped, as predicted by the theory.

The preceding methods of defining critical damping, overdamping, and underdamping
are based on a ‘permode’ concept of critical damping. That is, a critically damped system
is one in which each mode is critically damped. However, as pointed out in problem 1.5,
critical damping can be viewed as the smallest value of the damping rate such that the
system does not oscillate. This latter approach, taken by Beskos and Boley (1980), can
be used for multiple-degree-of-freedom systems to generate critical damping surfaces in
spaces defined by the damping parameters of the system. These surfaces can be calculated
for two-degree-of-freedom systems of the same structure as in Figure 2.4. Such curves are
computed by finding solutions for values of ¢, and c, that satisfy

d , B
et (Mb* Db+ K)] =0 (3.83)
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Ci

> Co

Figure 3.1 Critical damping curves for a two-degree-of-freedom system.

where b is restricted to be a positive real number and d/db indicates the derivative with
respect to b. The curves are given in Figure 3.1. Systems with values of ¢, and ¢, lying in
region I exhibit oscillation in both modes. In region II, one mode oscillates and one does
not. In region III, neither mode oscillates. The two curves, called critical damping curves,
are the solutions to Equation (3.83) for fixed values of m; and k;.

Several extensions of the preceding ideas have been developed in the literature. Papargyri-
Beskou, Thessaloniki, and Beskos (2002) present the latest discussion of critical damping
and examine a system with an indefinite damping matrix, followed by a comparison of the
published definitions. The interest in calculating the critical damping matrix is for comparison
and design, as is often the case for single-degree-of-freedom systems.

3.7 EIGENVALUE ESTIMATES

In many instances it is enough to know an approximate value, or estimate, of a particular
eigenvalue or how changes in certain parameters affect the natural frequencies. Methods
that require less computation than solving the characteristic equation of a given system but
yield some information about the eigenvalues of the system may be useful. As an example,
consider the single-degree-of-freedom spring—mass system driven by Fj sin wt. If, in a given
design situation, one wanted to avoid resonance, it would be enough to know that the natural
frequency is less than the driving frequency w. Also, since the free response of the system
is a function of the eigenvalues, estimates of eigenvalues yield some estimates of the nature
of the free response of the structure and may lead to design inequalities.

One of the most basic estimates of the eigenvalues of a symmetric matrix is given by
Rayleigh’s principle. This principle states that, if A, is the smallest eigenvalue of the
symmetric matrix A and A, is its largest, then for any nonzero vector x

xTAx
<—— <A
x’x

A (3.84)

min max
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This quotient defines what is called the Rayleigh quotient for matrix A; i.e., the Rayleigh
quotient is defined as the scalar ratio R(x) = x”Ax/x”x (see, for instance, Huseyin (1978)
for a proof).

The variational characterization of Rayleigh’s quotient can also be used to characterize the
other eigenvalues of A. If the minimization of the Rayleigh quotient is carried out over all
vectors orthogonal to the first eigenvector, the second eigenvalue results. The ith eigenvalue
is calculated by

A= gnin (x"Ax), k=1,2,...,i—1 (3.85)

which states that the ith eigenvalue is obtained by taking the minimum value of x”Ax over

all vectors x that satisfy x"x = 1 and that are orthogonal to the first (i — 1) eigenvectors.
To apply Rayleigh’s quotient to the vibration problem of a conservative system

Mi+Kq=0 (3.86)

requires little manipulation. Recall that the eigenvalue problem for Equation (3.86) can be
written as

AMu=Ku
or
u’Ku
R(A,u)= 3.87
=128 (387

where the notation R(A, u) denotes the Rayleigh quotient. Equation (3.87) can be examined
for all vectors such that u’ Mu = 1. Alternatively, R(A,u) can be formed for system of
equations (3.32) to yield

R(A,q)=q"M~'*KM~'/*q (3.88)

which can be examined for all vectors q with ||q| =+/q"q =1, called the norm of q.

Example 3.7.1

Consider the system in Figure2.4 with ¢, =¢,=0,m,; =1, m, =4, k, =2, and k, = 1. The nondi-
mensional equation of motion is then given by

1 0]., [3 -t
R R T

where q =[x, x,]7. Since M is diagonal,

10
-1/2 _
M= [0 0.5]
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and R(A, q) from Equation (3.88) becomes

_ 3 —1/2

If a trial vector is chosen (out of thin air and then normalized) of q =[0.243  0.970]7, then R(A, q) =
0.176. Since the actual value is A; =0.1619, the Rayleigh quotient appears to be a reasonable estimate.

Again, note that the Rayleigh method provides an estimate of A, without having to solve
for the roots of the characteristic equation. It should also be noted that the method is not as
accurate as it may sometimes appear from the usual textbook examples. If the trial vector q
is ‘near’ the first eigenvector, the estimate will be fairly close. If not, the estimate will not be
as good. For instance, if q=[1 0]” is chosen in the preceding example, then R(A, q) =3,
which is not a very good estimate of A,;. However, while of little computational value for
computing frequencies, the Rayleigh quotient is of use in analysis and design.

Several other results of interest involving eigenvalue inequalities are useful in vibration
analysis. One is a method for determining the effect of truncating the degrees of freedom
of a system on the eigenvalues of the system. Let the symmetric matrix A be n x n with
eigenvalues, A;, ordered as

A <Ay <--- <A,

and let matrix B be formed from matrix A by deleting a row and column. Hence, B is (n — 1)
by (n— 1), so it will have n — 1 eigenvalues, which are denoted by

Yi<VY2<-"<Yu
It can be shown that these two sets of eigenvalues are inferlaced, i.e., that
A<y <AM<y,<A<--<Y,_; <A, (3.89)

This last statement shows that the natural frequencies of a system decrease as the number
of degrees of freedom increase. In fact, if A, denotes a symmetric r x r matrix and A;(A,)
denotes the ith eigenvalue of matrix A,, then

/\i(Ar+1) <A(A) < )\i+1(Ar+1) (3.90)

This is referred to as a Sturmian separation theorem (see, for instance, Bellman, 1970) and
is useful in illustrating how the order of a vibration model affects the natural frequencies,
such as when model reduction is used (defined in Section 6.8).

Another useful result reported by Bellman (1970) is that, if A and B are n X n symmetric
matrices, then

A (A4 B) > A (A), k=1,2,...,n (3.91)
if B is positive semidefinite, and

MA+B) > A A),  k=1,2,....n (3.92)
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if B is positive definite. Here, A, (A + B) refers to the kth eigenvalue of the matrix A + B,
and so on.

The physical parameters of a system are often known only to a certain precision. For
instance, mass and stiffness coefficients may be measured quite accurately for most systems,
but viscous damping coefficients are very hard to measure and are not always known to a
high degree of accuracy.

A symmetric matrix with error in its elements can be written as the sum

B=A+E, (3.93)
where B is a known symmetric matrix with known eigenvalues

Bi<By<--<B,
and A is a symmetric matrix with unknown eigenvalues

Al <A, <<,
and E, is a symmetric matrix representing the errors in matrix B. The objective is to estimate
A; given the numbers 3;, without knowing too much about matrix E,. It can be shown that

1B = Al < lIE. I (3.94)

where ||E, || denotes the Euclidian norm of matrix E,, defined as the square root of the sum of
the squares of each element of E,. It is easy to see that ||E,|| < ne, where n is the dimension
of E, and ¢ is the absolute value of the largest element in matrix E,. Combining these two
inequalities yields

IB; — Al <ne (3.95)

Inequality (3.95) can be used to measure the effects of errors in the parameters of a physical
system on the eigenvalues of the system. For instance, let K be the mass normalized stiffness
matrix of the actual system associated with Equation (3.33), which is measured by some
experiment. Let B denote the matrix consisting of all measured values, and let E, be the
matrix consisting of all the measured errors. Then, from expression (3.95), with A =K and
with eigenvalues w?, the inequality becomes |B; — w?| < ne, or —ne < w? < B; + ne, which
in turn can be written as

B; — ne < w? < B; + ne (3.96)

This last expression indicates how the actual natural frequencies, w;, are related to the
calculated natural frequencies, ,B}/ 2, and the measurement error, €. Note that the assumption
of symmetry will be satisfied for the matrix E; since each element is the sum of the errors
of the stiffness elements in that position so that the ijth element of E; will contain the same
measurement error as the jith element of E,.
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A fundamental theorem from linear algebra that yields simple estimates of the eigenvalues
of a matrix from knowledge only of its elements is attributed to Gerschgorin (Todd, 1962).
Simply stated, let a;; denote the ijth element of a matrix A. Then every eigenvalue of A lies
inside at least one of the circles in the complex plane centered at a;; of radius

n
ri = Z |aij| (397)
J=1
J#
If a disc has no point in common with any other disc, it contains only one eigenvalue. The

following example serves to illustrate the statement of Gerschgorin’s theory for a symmetric
matrix.

Example 3.7.2

Let matrix A be

25 -1 0
A=|-1 5 -2
0 —v2 10

Then, using formula (3.97), define three circles in the plane. The first one has its center at 2.5 and a
radius r, = |a,,| 4 |a,;] = 1, the second has its center at 5 with a radius r, = |y, | + |ay| = (1 + /2),
and the third is centered at 10 with a radius of +/2. The circles are illustrated in Figure3.2. The
actual eigenvalues of the system are

A =2.1193322

A, =5.00

A;=10.380678

which lie inside the Gerschgorin circles, as illustrated in Figure 3.2.

w

Not to scale

Figure 3.2 Gerschgorin circles and eigenvalues.
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In the course of the development of a prototype, a system is built, analyzed, and finally
tested. At that point, small adjustments are made in the design to fine-tune the system so that
the prototype satisfies all the response specifications. Once these design changes are made,
it may not be desirable or efficient to recalculate the eigensolution. Instead, a perturbation
technique may be used to show how small changes in the elements of a matrix affect its
eigensolution.

Perturbation methods are based on approximations of a function obtained by writing
down a Taylor series expansion (see any introductory calculus text) for a function about
some point. The equivalent statement for matrix and vector functions is more difficult to
derive. However, with proper assumptions, a similar expansion can be written down for the
eigenvalue problem.

In the following, let A denote an n x n symmetric matrix with distinct eigenvalues, denoted
by w;, and refer to A as the unperturbed matrix. Define the matrix A(e) by A(e) =A + €B.
Matrix A(e) is called the perturbed matrix. Note that A(0) = A. Furthermore, denote the
eigenvalues of A(g) by A;(g) and the corresponding eigenvectors by x;(g). It is clear that,
as & approaches zero, A;(€) approaches u; and x,(€) approaches x; for each value of index
i. Here, u; and x; are the eigenvalues and eigenvectors of A respectively (see, for instance,
Lancaster, 1969). For sufficiently small ¢ and symmetric A and B, the expansions for A;(&)
and x;(¢g) are

M) =A+eA) + 22D 4. .. (3.98)

and

x(e)=x,+ex!") +&x? + ... (3.99)

where x!x; = 1. Here, the parenthetical superscript (k) denotes the kth derivative, with respect
to the parameter &, evaluated at € =0 and multiplied by (1/k!). That is,

NOa d A,
P\ Lae ],

Here, differentiation of vector x is defined by differentiating each element of x.
Next, consider the ith eigenvalue problem for the perturbed matrix

A(e)x;(8) = A;(e)x;(e) (3.100)

Substitution of Equations (3.98) and (3.99) into Equation (3.100) yields
A+eB)(x;,+exV +xP 4. ) =(A+ AV + 220D+ ) (x+exV +--) (3.101)
Multiplying out this last expression and comparing coefficients of the powers of & yields
several useful relationships. The result of comparing the coefficients of &° is just the
eigenvalue problem for the unperturbed system. The coefficient of &', however, yields the

expression

(M —A)x" =B - A", (3.102)
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Premultiplying this by x! (suppressing the index) results in
x'(B—AYDx=x"(A\ —A)xV =0 (3.103)

The last term in Equation (3.103) is zero, since x” is the left eigenvector of A, i.e., ux! =x’A.
Hence, the first term in the perturbation of the eigenvalue (recall that x”x = 1) becomes

MY =x"Bx; (3.104)

Equation (3.104) indicates how the eigenvalues of a matrix, and hence the natural frequencies
of an undamped system, change as the result of a small change, £B, in the matrix values.
This is illustrated in example 3.7.3. The preceding formulae can be used to calculate the
eigenvalues of the perturbation matrix in terms of the perturbation matrix itself and the
known eigensolution of the unperturbed system defined by A. Equation (3.98) can be used
to yield the eigenvalues of the ‘new,” or perturbed, system by making the approximations
rNE) =+ 8/\,(-1) and using Equation (3.104). This method is good for small values of €.

Perturbation schemes can also be used to calculate the effect of the perturbation on
the eigenvectors as well. In addition, the method can be easily used for nongyroscopic
conservative systems of the forms given in Equation (3.32). It has also been used for damped
systems and for systems with gyroscopic forces. Example 3.7.3 illustrates its use for systems
in the form of Equation (3.33).

Example 3.7.3

This example illustrates the use of perturbation calculations to find the result of making a small
perturbation to a given system [here A is perturbed to A(g)]

3 -1 0 31 —-11 0
M™'PRM™P=A=| -1 1 -1 and A(g)=|-1.1 1.1 -1
0 -1 5 0 -1 5

Suppose the eigensolution of A is known, i.e.,

A, =0.3983
A, =3.3399
A, =5.2618

x,=[0.3516 0.9148 0.1988]"
x,=[—0.9295 0.3159 0.1903]"
x;=[0.1113 —0.2517 0.9614]"

Given this information, the eigensolution of the new system A(e) is desired, where
|

0
eB=A(e)—A=(0.1){ -1 1 0
0 0 o0
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Here, ¢ =0.1 is small, so that the series in Equation (3.98) converges and can be truncated.
Equation (3.104) yields

eAl) =x"eBx, =0.03172
ed) =xleBx, =0.15511

ed) =xTeBx; =0.01317
Then, the new (perturbed) eigenvalues are A;(g) = A; + 8)\51)

A () =0.43002  (0.4284)
A(e)=3.55410 (3.4954)
My(e) =5.27497  (5.2762)

Here, the actual values are given in parentheses for comparison.

The methods presented in this section are not really needed to compute eigenvalues. Rather,
the methods of the following section should be used for computing accurate eigenvalues
and modal data. The eigenvalue approximations and bounds presented in this section are
significant analytical tools that can be used in design and redesign to understand how changes
in the system or system model affect modal data.

3.8 COMPUTATION EIGENVALUE PROBLEMS IN MATLAB

The availability of cheap, high-speed computing and the subsequent development of high-
level mathematically oriented computer codes (MATLAB, Mathcad, and Mathematic in partic-
ular) almost negate the need for eigenvalue approximation methods and schemes presented
in the previous section. The very nature of many computational schemes demands that
the analytical formulation change. The following presents some alternative formulations to
matrix-related computations based on the available codes. The details of the various algo-
rithms used in these codes are left to the references (Meirovitch, 1980; Golub and Van Loan,
1996; Datta, 1995). Table 3.1 lists various MATLAB commands useful in computing natural
frequencies, damping ratios, and mode shapes.

The best way to compute a matrix inverse is not to. Rather, Gaussian elimination can be
used effectively to solve for the inverse of a matrix. The matrix inverse can be thought of
as the solution to a system of »n linear equations in n variables written in the matrix form
Ax =Db. Solving this by Gaussian elimination yields the effective inverse x=A"'b.

The best way to compute the eigenvalues and eigenvectors of a matrix is to use one of
the many eigenvalue routines developed by the numerical linear algebra community and
packaged nicely in a variety of commercial codes. These are both numerically superior to
computing the roots of the polynomial derived from det(Al — A) and applicable to systems
of much larger order.
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Table 3.1 Sample MATLAB matrix commands for solving the eigenvalue problem.

M=1[1 0; O 4] createsthe mass matrix of example 3.7.1

Chol (M) computes the Cholesky factor of matrix M

Sqrtm(M) computes the matrix square root of M

inv (M) computes the inverse of matrix M

M\I computes the inverse of matrix M, using Gaussian elimination

d=eig(A) returns a vector d containing the eigenvalues of A

[V,D] =eig(A) returns a matrix V of eigenvectors and a matrix D of
eigenvalues

[V,D] = eig(A, ‘nobalance’) returns a matrix V of eigenvectors and a
matrix D of eigenvalues without balancing

d =eig(A,B) returns a vector d of eigenvalues, using the generalized problem
Ax = ABx (works for a singular B matrix)

[V,D] =eig(A,B) returns a matrix D of eigenvalues and a matrix V of mode
shapes, solving the generalized problem Ax = ABx

The matrix square root can be computed by using the function of a matrix approach,
which is trivial for diagonal matrices (as is often, but not always, the case for the mass
matrix). However, for nondiagonal matrices, the square root involves solving the eigenvalue
problem for the matrix. This is given in Equation (3.31) and repeated here. If M is a positive
definite matrix, then its eigenvalues w, are all positive numbers, and its eigenvectors u; form
an orthonormal set and can be used to form an orthogonal matrix S =[u,u, ---u,] such that
STMS = diag(u;). Then, any scalar function f of matrix M can be computed by

f(M) =Sdiag[ (1) flma) -+ fl,)]S" (3.105)

In particular, the inverse and matrix square root of any positive definite matrix can be
computed with Equation (3.105).

An alternative to the eigenvalue decomposition of Equation (3.105) is to use the Cholesky
decomposition, or Cholesky factors, of a positive definite matrix. Cholesky noted that every
positive definite matrix can be factored into the product of an upper triangular matrix R and
its transpose: M = RTR. In this case it follows that

(R"Y'MR™ ' =1

Hence, the Cholesky factor R behaves like a square root. In fact, if M is diagonal, R = R”
is the square root of M.

The most efficient way to compute the undamped eigenvalues is to use the Cholesky
factors. In this case the transformations of Equations (3.33) and (3.72) become

K=(R")"'KR'" and C=(R")'CR!

So far, several different approaches to computing the natural frequencies and mode shapes
of a conservative system have been presented. These are summarized in Table 3.2, along
with a computational ‘time’ measured by listing the floating-point operations per second
(flops) for a given example in MATLAB.

Note from Table 3.2 that using the Cholesky factor R requires the least flops to produce
the eigenvalues and eigenvectors. The next ‘fastest calculation’ is using Gaussian elimination
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Table 3.2 Comparison of the computing ‘time’ required to calculate
eigenvalues and eigenvectors for the various methods for a conservative

system.

Method Flops
inv (R’ )*K*inv (R) 118
M\K 146
inv (M)*K 191
inv (sqrtm(M))*K* inv (sqrtm(M)) 228
[V,D]=eig (K,M) 417

to compute M~'K, but this becomes an asymmetric matrix so that the eigenvectors are not
orthogonal, and hence an additional computational step is required.

The eigenvalue problem can also be placed into a number of state matrix forms, and
these are now presented. The first and most common case is given by Equation (2.20).
The associated eigenvalue problem for the state matrix is asymmetric and in general gives
complex eigenvalues and eigenvectors. In addition, the eigenvectors of the state matrix are
twice as long and related to the eigenvectors u; in second-order form by

0 I u;
Az =)z, A:|:—M1K _MIC]:>z,-:|:/\iuii| (3.106)

The eigenvalues, however, are exactly the same.
Other state-space approaches can be formulated by rearranging the equations of motion
in state-space form. For instance, in Equation (3.64) let

yi=q and  y,=q
This then implies that
Yi=Y:
and hence
—Ky, =—Ky,
Then the equation of motion can be written as
My,=—-Cy, — Ky,

Combining the last two expressions yields the state-space system and symmetric generalized
eigenvalue problem:

AL

which does not require a matrix inverse.



NUMERICAL SIMULATION OF THE TIME RESPONSE IN MATLAB 91

Alternative forms of solving the eigenvalue problem can be useful for special cases,
such as a nearly singular mass matrix. Such formulae can also be useful for analysis.
Once the state-space eigenvalue problem is solved, the data need to be related to natural
frequencies, damping ratios, and mode shapes of the physical system. This can be done in the
case of an underdamped system by representing all of the eigenvalues as the complex

pairs
A=—o;— Wjy/ 1- 5121 and Aip1 =—{0;+ Wi/ 1— é’?]

Comparing this form with the complex form A, = a; + B,j =Re(A;) + Im(A;)j shows that the
modal frequencies and damping ratios can be determined by

W; =/ af + B} = vRe(X,)> +1Im(A,)?
_ai

_ _ —Re(A))
Va4 B YRe(A)*+Im(},)?

(3.107)

i

The mode shapes are taken as the first n values of the 2n state vector by the relationship
given in Equation (3.106). The mode shapes in this case are likely to be complex valued
even if the condition for normal modes to exist is satisfied (DM~'K = KM~'D). In this
case there will be a normalizing condition on u in Equation (3.106) that will normal-
ize the modes to be real valued. If, however, DM 'K % KM~'D, then vector u will be
complex, meaning that the masses pass through their equilibrium out of phase with each
other.

3.9 NUMERICAL SIMULATION OF THE TIME RESPONSE IN
MATLAB

The time response can be computed by calculating the eigenvalues and eigenvectors of the
system and then forming the summation of modes as outlined in example 3.3.2. This same
procedure also works for the damped case as long as the damping is proportional. However,
for systems that do not have proportional damping (the nonsymmetric KM ' C matrix), the
modal summations are overcomplex values, which can occasionally lead to confusion. In
these cases, numerical simulation can be performed to compute the time response directly
without computing the eigenvalues and eigenvectors. The method follows directly from the
material in Section 1.10 with the state-space model of Equations (2.20) and (3.106). For any
class of second-order systems, the equations of motion can be written in state-space form as
given in Equation (2.20) and repeated here (for the free response case, f(¢) =0):

X = AX, x(0) =x,

where

q 0 I
Xz[q} and A:|:—M"(K+H) —M“(D+G)]
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To solve this using numerical integration, the Runge—Kutta ode command in MATLAB is used.
The ode command uses a fifth-order Runge—Kutta automated time step method for numer-
ically integrating the equation of motion (see, for instance, Inman, 2001). The following
example illustrates the procedure.

Example 3.9.1

Compute the response of the system

4 0 2 -1 0 1 10 —4
(o L R Ry B R O

to the initial conditions
0.1 . 0
X(O)_[ 0 ] m, X(O)_[O] m/s

using MATLAB numerical integration.

In order numerically to integrate the equations of motion in MATLAB using Runge—Kutta, an
m-file containing the system dynamics must first be created and stored (see example 1.10.2). The
following file sets up the equations of motion in state-space form:

function v=£391(t,x)

M=[40; 03];D=[2-1;-11]1;G=[01; -10];K=[10-4;-44];
A=[zeros(2) eye(2);-inv(M)*K -inv (M) *(D+G) ];

V=A*X;

This function must be saved under the name f391.m. Note that the command zeros (n) produces
an n x n matrix of zeros and that the matrix eye (n) creates an n x n identity matrix. Once this is
saved, the following is typed in the command window:

EDU>clear all
EDU>x0=[0.1;0;0;0];

EDU>ts=[0 40];
EDU>[t,x]=oded45(’'£391’,ts,x0);
EDU>plot(t,x(:,1),t,x(:,2),'-=")

This returns the plot shown in Figure3.3. Note that the command x(:,1) pulls off the record
for x,(#) and the command ode45 calls a fifth-order Runge—Kutta program. The command ts=[0
407 ; tells the code to integrate from O to 40 time units (seconds in this case).

The plot illustrated in Figure 3.3 can also be labeled and titled using additional plotting com-
mands in MATLAB. For instance, typing ,title(’displacement versus time’)
after the plot command in the code in example 3.9.1 would add a title to the plot.

This numerical solution technique also still applies if the system is nonlinear. In this
case the state-space formulation becomes a nonlinear vector rather than a matrix. This form
was illustrated in Equations (1.66) and (1.67), and again in Section 2.7. An example of the
state-space form of a nonlinear system is given in example 2.7.2.
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Figure 3.3 Response g, (¢) versus time (solid line) and response g,() versus time (dashed line) as
computed in MATLAB using numerical integration.

CHAPTER NOTES

The material of Section 3.2 can be found in any text concerning linear algebra or matrices,
such as Lancaster (1969). An excellent quick summary of relevant matrix results is available
in the first chapter of Huseyin (1978). A very good historical account and development can
be found in Bellman (1960, 1970). An explanation of mode shapes and undamped natural
frequencies in Section 3.3 can be found in any modern vibration text. Most linear algebra
and matrix texts devote several chapters to canonical forms (Section 3.4); for instance,
both Lancaster (1966) and Bellman (1970) do. The development of lambda matrices of
Section 3.5 stems mostly from the book and work of Lancaster (1966), who has published
extensively in that area. The idea of decoupling the equations of motion is based on the
result of commuting matrices discussed in Bellman (1960) and was set straight in the engi-
neering literature by Caughey and O’Kelly (1965). The extension of critical damping and
the like to multiple-degree-of-freedom systems of Section 3.6 comes directly from Inman
and Andry (1980), which contains all the references up to that date. Since then, several
results have appeared that examine more efficient means of computing a critical damp-
ing matrix. Nicholson and Inman (1983) provide a review of oscillation results. Barkwell
and Lancaster (1992) corrected the overdamping condition by pointing out that the result
initially reported (Inman and Andry, 1980) was only a local condition. Papargyri-Beskou,
Thessaloniki, and Beskos (2002) provide interesting examples and results regarding critical
damping. The material of Section 3.7 follows the pattern presented in Meirovitch (1980);
however, Rayleigh quotients are discussed in every vibration text and most texts on matrices —
in particular, Bellman (1970) and Lancaster (1969). Bellman (1970) also treats the lacing
of eigenvalues in a rigorous fashion. Gerschgorin’s result is also to be found in many texts
on matrices. An excellent treatment of perturbation methods can be found in Kato (1966).
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The results presented in Section 3.7 on perturbation of eigenvalues are due to Lancaster
(1969). Other applications of perturbation results to vibration problems are presented in
Hagedorn (1983) and Meirovitch and Ryland (1979). Key papers in the development of
linear systems and control using linear algebra can be found in Patel, Laub, and Van Dooren
(1994). Information and sample codes for solving dynamics problems in MATLAB
can be found in Soutas-Little and Inman (1999) or by simply typing ‘MATLAB’ into
Google.
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PROBLEMS

31

3.2

3.3

34

3.5

3.6

3.7

3.8

Check if the four vectors given by x, = [1 1 1 l]T,x2: [1 -1 1 l]T,

x3=[1 0 2 I]T, and x4=[1 0 2 l]T are independent.

Select a basis for R?, which denotes th7§: set of all 3 x 1T vectors with regl
elements, from the vectors x, =[1 1 1] ,x,=[2 -1 1] ,x;=[0 3 1],

andx,=[1 1 —1]".

Determine whether the matrix

1 1 1 1
1 -1 0 1

A= 1 2 -1
1 1 1 2

is singular or not by calculating the value of its determinant.
Determine the rank of the matrix

Consider the following system:

I 1. 3 -1
|:1 4]x+[_1 1 ]X—O
with initial conditions x(0) = [0 1 ]T and x(0) = [O O]T.
(a) Calculate the eigenvalues of the system.
(b) Calculate the eigenvectors and normalize them.
(¢) Use (a) and (b) to write the solution x(7) for the preceding initial conditions.

(d) Sketch x,(¢) versus ¢ and x,(z) versus t.
(e) What is the solution if x(0) =[0 0]7 and x(0) =[0 0]7?

Calculate the natural frequencies of the following system:
4 -1 0

4 0 O
0 2 Ofx+|-1 2 —-1]x=0
0 0 1 0o -1 1

Consider the matrix
1 1
a=o 2]

and calculate its eigenvalues and eigenvectors. Are the left and right eigenvectors the
same? Are they orthogonal? Are they biorthogonal?
Does the following system have normal modes (i.e., does it decouple)?

1 0].. 15 =-3]. 5 —1
|:0 1}x+|:_3 3}x+|:_1 1}x:O
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3.9
3.10

3.11

3.12

3.13

3.14

3.15

MATRICES AND THE FREE RESPONSE

Does the system in problem 3.8 oscillate? Why or why not?
Consider the following system

oole [ 1744 2)iz0
o 11X =1 3|2 4 |*T

(a) Calculate the eigenvalues of the system.

(b) Calculate the system eigenvectors and normalize them.

(c) Show that the eigenvectors can be used to diagonalize the system.

(d) Calculate the modal damping ratios and damped and undamped natural
frequencies.

(e) Calculate the free response for x”(0) =[1 0], x*(0) =[0 0].

(f) Plot the responses x, () and x,(¢) as well as ||x(7)]|.

Calculate the eigenvalues for the matrix

a=[3 5]

what are the eigenvalues of the matrix

Think before you calculate anything.

For the matrix in problem 3.11, calculate x”Ax,/x7x, and xJAx,/x]x,, where x,
and x, are the eigenvectors of A. Next, choose five different values of vector x
and calculate the five scalars x” Ax/x”x for your five choices. Compare all of these
numbers with the values of the eigenvalues computed in problem 3.11. Can you draw
any conclusions?

Consider the following model of a machine part that has equations of motion given by

10T, [k+k —k].
[O ‘JXJF[ —k, kz]x_o

Let k;, =2 and k, = 1. The elements of M are known precisely, whereas the elements
of K are known only to within 0.01 at worst. (Everything here is dimensionless.) Note
that the machine will fail if it is disturbed by a driving frequency equal to one of the
natural frequencies of the system. If there is a disturbance to this system of frequency
+/0.15 j (A=0.15) will this system fail? Why or why not? Try to work this out with
a minimum of calculation.

Referring to problem 3.13, suppose that, in order to satisfy a given manufacturing
change, the spring coefficient k, is required to change from 2 to 2.1 units. How will
this affect the natural frequencies of the system? Give a quantitative answer without
recalculating the eigenvalues, that is, use perturbation results.

If m, is neglected in problem 3.13, i.e., if the order of the model is reduced by one,
by what would you expect the natural frequency of the new system to be bounded?
Check your result by calculation.



3.16

317

3.18

3.19
3.20

3.21

3.22

3.23
3.24

3.25

3.26

3.27

3.28

3.29

3.30
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Show that Gerschgorin’s theory works for the matrices

3 -1 1 1 1 1

el BT B [
Show that the solution of Equations (3.77) through (3.79) requires either ¢, =k, = 0
or c,=k,=0.
Prove that, if A is similar to a diagonal matrix, then the eigenvectors of A form a
linearly independent set.
Derive the relationship between S,, of Equation (3.20) and matrix S of Equation (3.17).
Show that the matrices M, M'/>, M~' and M? all have the same eigenvectors. How
are the eigenvalues related?
Prove that, if a real symmetric matrix has positive eigenvalues, then it must be positive
definite.
Derive Equation (3.40). Let n =3, and solve symbolically for the constants of inte-
gration.
Derive Equation (3.42) from Equation (3.39).
Let S be the matrix of eigenvectors of the symmetric matrix A. Show that STAS is
diagonal and compare it with SAS”.
Derive the relationship between the modal matrix S of example 3.3.2 and the matrix
S, of Equation (3.21).
Use perturbation to calculate the effect on the eigenvalues of matrix A given in
example 3.7.2 by making the following changes in A: change a,, by 0.1, a,, and a,,
by 0.1, and a,, by 0.2.
A geometric interpretation of the eigenvector problem for a 2 x 2 matrix is that
the eigenvectors determine the principal axis of an ellipse. Calculate matrix A for
the quadratic form 2x? + 2x,x, + 2x3 = 3 =x"Ax. Then use the eigenvector of A to
determine the principal axis for the ellipse.
Show that the eigenvalues for the first-order form [Equation (2.20)] are equivalent to
the latent roots of Equation (3.65) by noting that

A D] o
det|:C B:|_detAdet[B—CA D]

as long as A~! exists, for the case where G=H =0.
Show that the generic system of Equation (3.73) has normal modes if and only if

ki

&) kz.

Consider the system defined by the following coefficient matrices:

100 O 0 2000  —1000 0
M= 0 200 0 |, K=| —-1000 2000 —1000
0 0 200 0 —1000 1000

Compute the eigenvalues, eigenvectors, and natural frequencies.
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3.31

3.32

3.33

3.34

3.35

3.36
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Consider again the system of problem 3.30 and determine the effects of damping.
Suppose a damping matrix of the form

10 -10 0
C=|-10 30 =20
0 —20 20

is added to the system of problem 3.30. Is the system overdamped, underdamped,
critically damped, or does it exhibit mixed damping? Does the system have normal
modes or not?

Compute the eigenvalues and eigenvectors for the system of problem 3.31. Also
compute the natural frequencies and mode shapes. If you worked out problem 3.31,
do your computations agree with the results obtained there?

Compute the response of the s;fstem defined in problem 3.31 to the initial displacement
x(0)=[0.01 0 0 —0.01] and zero initial velocity.

Consider the system of problem 3.30 with a gyroscopic term added of the form

0
G=|-1 0 1
0

Compute the eigenvalues and eigenvectors. What are the natural frequencies?
Compute the time response of the system of problem 3.34 to the initial displacement
x(0)=[0.01 0 0 —O.OI]T and zero initial velocity.

Show that the coefficient c¢; in Equation (3.42) can be written as

1
¢ =+ — /17 (0)uu!r(0) + ¥ (O)u,u! £(0)
w;
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Stability

4.1 INTRODUCTION

A rough idea concerning the concept of stability was introduced for single-degree-of-freedom
systems in the first chapter. It was pointed out that the sign of the coefficients of the
acceleration, velocity, and displacement terms determined the stability behavior of a given
single-degree-of-freedom system. That is, if the coefficients have the proper sign, the motion
will always remain within a given bound. This idea is extended in this chapter to the multiple-
degree-of-freedom systems described in the previous two chapters. As in the case of the
oscillatory behavior discussed in Chapter 3, the criterion based on the sign of the coefficients
is translated into a criterion based on the definiteness of certain coefficient matrices.

It should be noted that no universal definition of stability exists, but rather variations are
adopted depending on the nature of the particular problem under consideration. However, all
definitions of stability are concerned with the response of a system to certain disturbances
and whether or not the response stays within certain bounds.

4.2 LYAPUNOYV STABILITY

The majority of the work done on the stability behavior of dynamical systems is based on
a formal definition of stability given by Lyapunov (see, for instance, Hahn, 1963). This
definition is stated with reference to the equilibrium point, X, of a given system. In the case
of the linear systems considered in this chapter, the equilibrium point can always be taken
to be the zero vector. In addition, the definition of Lyapunov is usually stated in terms of
the state vector of a given system rather than in physical coordinates directly, so that the
equilibrium point refers to both the position and velocity.

Let x(0) represent the vector of initial conditions for a given system (both position and
velocity). The system is said to have a stable equilibrium if, for any arbitrary positive number
&, there exists some positive number &(g) such that, whenever ||x(0)|| < d, then ||x(?)|| < &
for all values of # > (0. A physical interpretation of this mathematical definition is that, if
the initial state is within a certain value, i.e., |[x(0)|| < 6(&), then the motion stays within
another bound for all time, i.e., ||x(7)|| < &. Here, ||x(7)||, called the norm of x, is defined
by [[x()]] = (x"x)""2.

Vibration with Control D. J. Inman
© 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01051-7
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To apply this definition to the single-degree-of-freedom system of Equation (1.1), note
that x(7) = [x(#) x(#)]”. Hence

Xl = (x"%)"? = /x2(1) +¥2(1)

For the sake of illustration, let the initial conditions be given by x(0) =0 and x(0) = w, =
Jk/m. Then the solution is given by x(f) = sinw,t. Intuitively, this system has a stable
response as the displacement response is bounded by 1, and the velocity response is bounded
by w,. The following simple calculation illustrates how this solution satisfies the Lyapunov
definition of stability.

First, note that

Ix(0)[| = (x*(0) +%°(0)"* = (0 + ;)" = w, (4.1)
and that
[x(0)]| = [sin® @, + @? cos® w,1]"* < (1 + w?) "/ (4.2)

These expressions show exactly how to choose 6 as a function of ¢ for this system. From
Equation (4.2) note that, if (1 + w?)'/? <&, then ||x(7)|| < &. From Equation (4.1) note that,
if 8(¢) is chosen to be 8(¢) = cw, (1 + w?)~"/2, then the definition can be followed directly
to show that, if

[x(0)|| =w, <8(s) = Ew,

V 1+ w?

is true, then w, < gw,//1+ w?. This last expression yields

JI+wl<e

That is, if ||x(0)|| < 6(e), then /1 + w? < & must be true, and Equation (4.2) yields that

XD <1+ w; <&

Hence, by a judicious choice of the function 6(e), it has been shown that, if ||x(0)|| < 6(¢),
then ||x(?)|| < & for all > 0. This is true for any arbitrary choice of the positive number ¢.

The preceding argument demonstrates that the undamped harmonic oscillator has solutions
that satisfy the formal definition of Lyapunov stability. If dissipation, such as viscous damping,
is included in the formulation, then not only is this definition of stability satisfied, but also

lim [x(r)[| =0 (4.3)

Such systems are said to be asymptotically stable. As in the single-degree-of-freedom case,
if a system is asymptotically stable it is also stable. In fact, by definition, a system is
asymptotically stable if it is stable and the norm of its response goes to zero as ¢ becomes
large. This can be seen by examining the definition of a limit (see Hahn, 1963).

The procedure for calculating 6(e) is similar to that of calculating & and 6 for limits
and continuity in beginning calculus. As in the case of limits in calculus, this definition of
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stability does not provide the most efficient means of checking the stability of a given system.
Hence, the remainder of this chapter develops methods to check the stability properties of a
given system that require less effort than applying the definition directly.

There are many theories that apply to the stability of multiple-degree-of-freedom systems,
some of which are discussed here. The most common method of analyzing the stability of
such systems is to show the existence of a Lyapunov function for the system. A Lyapunov
function, denoted by V(x), is a real scalar function of the vector x(¢), which has continuous
first partial derivatives and satisfies the following two conditions:

1. V(x) >0 for all values of x(7) # 0.
2. V(x) <0 for all values of x(r) #0.

Here, V(x) denotes the time derivative of the function V(x). Based on this definition of a
Lyapunov function, several extremely useful stability results can be stated. The first result
states that, if there exists a Lyapunov function for a given system, then that system is stable.
If, in addition, the function V(X) is strictly less than zero, then the system is asymptotically
stable. This is called the direct, or second, method of Lyapunov. It should be noted that, if
a Lyapunov function cannot be found, nothing can be concluded about the stability of the
system, as the Lyapunov theorems are only sufficient conditions for stability.

The stability of a system can also be characterized by the eigenvalues of the system. In
fact, it can easily be shown that a given linear system is stable if and only if it has no
eigenvalue with a positive real part. Furthermore, the system will be asymptotically stable if
and only if all of its eigenvalues have negative real parts (no zero real parts allowed). These
statements are certainly consistent with the discussion in Section 4.1. The correctness of
the statements can be seen by examining the solution using the expansion theorem (modal
analysis) of the previous chapter [Equation (3.68)]. The eigenvalue approach to stability has
the attraction of being both necessary and sufficient. However, calculating all the eigenvalues
of the state matrix of a system is not always desirable.

The preceding statements about stability are not always the easiest criteria to check. In
fact, use of the eigenvalue criteria requires almost as much calculation as computing the
solution of the system. The interest in developing various different stability criteria is to
find conditions that (1) are easier to check than calculating the solution, (2) are stated
in terms of the physical parameters of the system, and (3) can be used to help design
and/or control systems to be stable. Again, these goals can be exemplified by recalling the
single-degree-of-freedom case, where it was shown that the sign of the coefficients m, c,
and k determine the stability behavior of the system. To this end, more convenient stability
criteria are examined on the basis of the classifications of a given physical system stated in
Chapter 2.

4.3 CONSERVATIVE SYSTEMS
For conservative systems of the form
Mq+Kq=0 (4.4)

where M and K are symmetric, a simple stability condition results — namely if M and K
are positive definite, the eigenvalues of K are all positive, and hence the eigenvalues of the
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system are all purely imaginary. The solutions are then all linear combinations of terms of
the form e*“~', or, by invoking Euler’s formula, all terms are of the form Asin(w,t + ¢).
Thus, from the preceding statement, the system of Equation (4.4) is stable, since both the
displacement and velocity response of the system are always less than some constant (A and
w,A respectively) for all time and for any initial conditions.

Also, note that, if K has a negative eigenvalue, then the system has a positive real
exponent. In this case one mode has a temporal coefficient of the form e“, a > 0, which
grows without bound, causing the system to become unstable (note that, in this case, d(¢&)
cannot be found).

The condition that K be positive definite can be coupled with the determinant condition,
discussed in Section 3.3, to yield inequalities in the system parameters. In turn, these
inequalities can be used as design criteria. It should be pointed out that, in most mechanical
systems, K will be positive definite or positive semidefinite, unless some applied or external
force proportional to displacement is present. In control theory, the applied control force is
often proportional to position, as indicated in Equation (2.17) and example 2.4.4.

It is instructive to note that the function V(q) defined by (the energy in the system)

V(g)= %[QT(I)MCI(I) +4q' (DKq()] (4.5)

serves as a Lyapunov function for the system in Equation (4.4). To see this, note first that
V(q) > 0, since M and K are positive definite, and that

V@) ="M+ Kq 4.6

Now, if q(¢) is a solution of Equation (4.4), it must certainly satisfy Equation (4.4). Thus,
premultiplying Equation (4.4) by q” yields

QdMG+q"Kq=0 4.7

This, of course, shows that V(q) =0. Hence, V(q) is a Lyapunov function and, by the
second method of Lyapunov, the equilibrium of the system described by Equation (4.4) is
stable.

In cases where K may be positive semidefinite, the motion corresponding to the zero
eigenvalue of K is called a rigid body mode and corresponds to a translational motion.
Note that in this case Equation (4.5) is not a Lyapunov function because V(q) =0 for
q # 0, corresponding to the singularity of matrix K. Since the other modes are purely
imaginary, such systems may still be considered well behaved because they consist of
stable oscillations superimposed on the translational motion. This is common with mov-
ing mechanical parts. This explains why the concept of stability is defined differently
in different situations. For instance, in aircraft stability, some rigid body motion is
desirable.
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4.4 SYSTEMS WITH DAMPING

As in the single-degree-of-freedom system case, if damping is added to a stable system (4.4),
the resulting system can become asymptotically stable. In particular, if M, D, and K are all
symmetric and positive definite, then the system

M{+Dq+Kq=0 (4.8)

is asymptotically stable. Each of the eigenvalues of Equation (4.8) can be shown to have
a negative real part. Again, since the conditions of stability are stated in terms of the
definiteness of the coefficient matrices, the stability condition can be directly stated in terms
of inequalities involving the physical constants of the system.

To see that this system has a stable equilibrium by using the Lyapunov direct method,
note that V(q) as defined by Equation (4.5) is still a Lyapunov function for the damped
system of Equation (4.8). In this case, the solution () must satisfy

4'Mi+4"Kq=—(4"Dqg) (4.9)

which comes directly from Equation (4.8) by premultiplying by ¢7(¢). This means that the
time derivative of the proposed Lyapunov function, V(q), is given by Equation (4.9) to be

%V(q(t)) =—q'Dq<0 (4.10)

This is negative for all nonzero values of () because matrix D is positive definite. Hence,
V(q) defined by Equation (4.5) is in fact a Lyapunov function for the system described by
Equation (4.8), and the system equilibrium is stable. Furthermore, since the inequality in
expression (4.10) is strict, the equilibrium of the system is asymptotically stable.

An illustration of an asymptotically stable system is given in example 2.4.4. The matrices
M, D, and K are all positive definite. In addition, the solution of problem 3.10 shows that
both elements of the vector q(#) are combinations of the functions e~ sin w, ¢, a > 0. Hence,
each element goes to zero as ¢ increases to infinity, as the definition (4.3) indicates it should.

4.5 SEMIDEFINITE DAMPING

An interesting situation occurs when the damping matrix in Equation (4.8) is only positive
semidefinite. Then the above argument for the existence of a Lyapunov function is still
valid, so that the system is stable. However, it is not clear whether or not the system
is asymptotically stable. There are two equivalent answers to this question of asymptotic
stability for systems with a semidefinite damping matrix.

The first approach is based on the null space of the matrix D. The null space of matrix D is
the set of all nonzero vectors x such that Dx =0, i.e., the set of those vectors corresponding
to the zero eigenvalues of matrix D. Since D is semidefinite in this situation, there exists
at least one nonzero vector x in the null space of D. Moran (1970) showed that, if D
is semidefinite in Equation (4.8), then the equilibrium of Equation (4.8) is asymptotically
stable if and only if none of the eigenvectors of matrix K lies in the null space of D.
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This provides a convenient, necessary, and sufficient condition for asymptotic stability of
semidefinite systems, but it requires the computation of the eigenvectors for K or at least
the null space of D.

Physically, this result makes sense because, if there is an eigenvector of matrix K in
the null space of D, the vector also becomes an eigenvector of the system. Furthermore,
this eigenvector results in a zero damping mode for the system, and hence a set of initial
conditions exists that excites the system into an undecaying harmonic motion.

The second approach avoids having to solve an eigenvector problem to check for asymp-
totic stability. Walker and Schmitendorf (1973) showed that the system of Equation (4.8)
with semidefinite damping will be asymptotically stable if and only if

D
DK

Rank | PK* | = (@.11)

DKrL—l

where n is the number of degrees of freedom of the system. The rank of a matrix is the
number of linearly independent rows (or columns) the matrix has (see Appendix B). This
type of rank condition comes from control theory considerations and is used and explained
again in Chapter 7.

These two approaches are equivalent. They essentially comment on whether or not the
system can be transformed into a coordinate system in which one or more modes are
undamped. It is interesting to note that, if D is semidefinite and KM ~'D is symmetric, then
the system is not asymptotically stable. This results since, as pointed out in section 3.5,
if KM~'D=DM™'K, then K and D have the same eigenvectors and the system can be
decoupled. In this decoupled form there will be at least one equation with no velocity term
corresponding to the zero eigenvalue of D. The solution of this equation will not go to zero
with time, and hence the system cannot be asymptotically stable.

4.6 GYROSCOPIC SYSTEMS

The stability properties of gyroscopic systems provide some very interesting and unexpected
results. First, consider an undamped gyroscopic system of the form

Mi+Gq+Kq=0 (4.12)

where M and K are both positive definite and symmetric and where G is skew-symmetric.
Since the quadratic form ¢ Gq is zero for any choice of g, the Lyapunov function for the
previous system [Equation (4.5)] still works for Equation (4.12), and the equilibrium of
Equation (4.12) is stable.

If matrix K in Equation (4.12) is indefinite, semidefinite, or negative definite, the system
may still be stable. This is a reflection of the fact that gyroscopic forces can sometimes be
used to stabilize an unstable system. A child’s spinning top provides an example of such
a situation. The vertical position of the top is unstable until the top is spun, providing a
stabilizing gyroscopic force.
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Easy-to-use conditions are not available to check if Equation (4.12) is stable when K is not
positive definite. Hagedorn (1975) has been able to show that, if K is negative definite and if
the matrix 4K — GM~'G is negative definite, then the system is definitely unstable. Several
authors have examined the stability of Equation (4.12) when the dimension of the system
is n=2. Teschner (1977) showed that, if n =2, K is negative definite, and 4K — GM~'G
is positive definite, then the system is stable. Inman and Saggio (1985) showed that, if
n=2, K is negative definite, det K > 0, and the trace of 4K — GM™'G is positive, then the
system is stable.

Huseyin, Hagedorn, and Teschner (1983) showed that, for any degree-of-freedom sys-
tem, if 4K — GM ™' G is positive definite and if the matrix (GM 'K — KM~'G) is positive
semidefinite, then the system is stable. In addition, they showed that, if GM “'K=KM™'G,
then the system is stable if and only if the matrix 4K — GM~'G is positive definite. These
represent precise conditions for the stability of undamped gyroscopic systems. Most of these
ideas result from Lyapunov’s direct method. The various results on gyroscopic systems
are illustrated in example 4.6.1. Bernstein and Bhat (1995) give additional examples and
summarize known stability conditions up to 1994.

Example 4.6.1

Consider a simplified model of a mass mounted on a circular, weightless rotating shaft that is also
subjected to an axial compression force. This system is described by Equation (4.12) with

_ _ 0 -1 [a=v*=nm 0
N L T (e S I

where y represents the angular velocity of the shaft and 7 the axial force. The parameters ¢, and c,
represent the flexural stiffness in two principal directions, as illustrated in Figure 4.1.

It is instructive to consider this problem first for fixed rotational speed (y =2) and for n = 3.
Then the relevant matrices become (M =1)

a7 0
K_[ 0 02—7]

_ a4l =3 0

4K — GM G_4[ 0 62_3]

Figure 4.2 shows plots of stable and unstable choices of ¢; and ¢, using the previously mentioned
theories. To obtain the various regions of stability illustrated in Figure 4.2, consider the following
calculations:

1. K positive definite implies that ¢, —7 >0 and ¢, — 7 > 0, a region of stable operation.

detK > 0 implies that (¢, —7)(c, —7) >0, or that ¢, <7, ¢, <7. The tr(4K — GM~'G) > 0

implies that 4[(c; — 3) + (¢, — 3)] > 0, or that ¢, 4 ¢, > 6, which again yields a region of stable

operation.

4K — GM~'G negative definite implies that ¢, <3 and ¢, < 3, a region of unstable operation.

4. 4K — GM~'G positive definite implies that ¢, >3 and ¢, > 3, a region of either stable or unstable
operation depending on other considerations. If, in addition, the matrix

w

GM"K—KM‘]G:4[ 0 C'_Cz]
;1 —C 0

is zero, i.e., if ¢; =c,, then the system is stable. Thus, the line ¢, = c, represents a region of
stable operation for ¢; = ¢, > 3 and unstable operation for ¢; = ¢, < 3.
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Figure 4.1 Schematic of a rotating shaft subject to an axial compression force.
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Figure 4.2 Regions of stable and unstable operation of a conservative gyroscopic system as a function
of stiffness coefficients.

4.7 DAMPED GYROSCOPIC SYSTEMS

As the previous section illustrated, gyroscopic forces can be used to stabilize an unstable
system. The next logical step is to consider adding damping to the system. Since added
positive definite damping has caused stable symmetric systems to become asymptotically
stable, the same effect is expected here. However, this turns out not to be the case in all
circumstances.

Consider a damped gyroscopic system of the form

Mi+ (D +G)q+Kq=0 (4.13)
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where M =M" >0,D=D",G=—-G", and K =K. The following results are due to Kelvin,
Tait, and Chetaev and are referred to as the KTC theorem by Zajac (1964, 1965):

1. If K and D are both positive definite, the system is asymptotically stable.

If K is not positive definite and D is positive definite, the system is unstable.

3. If K is positive definite and D is positive semidefinite, the system may be stable
or asymptotically stable. The system is asymptotically stable if and only if none of
the eigenvectors of the undamped gyroscopic system is in the null space of D. Also,
proportionally damped systems will be stable.

Hughes and Gardner (1975) showed that the Walker and Schmitendorf rank condition
[Equation (4.11)] also applies to gyroscopic systems with semidefinite damping and positive
definite stiffness. In particular, let the state matrix A and the ‘observer’ matrix C be defined
and denoted by

0 I
Az[—M‘lK —M‘IG] =00 D]

Then the equilibrium of Equation (4.13) is asymptotically stable if the rank of the 2n x 2n?
matrix R" =[CT ATC" .- (AT)"~'C"] is full, i.e., rank R” =2n. Systems that satisfy either
this rank condition or Equation (4.11) are said to be pervasively damped, meaning that the
influence of the damping matrix D pervades each of the system coordinates. Each mode of
a pervasively damped system is damped, and such systems are asymptotically stable.

Note that condition 2 points out that, if one attempts to stabilize an unstable system by
adding gyroscopic forces to the system and at the same time introduces viscous damping,
the system will remain unstable. A physical example of this is again given by the spinning
top if the friction in the system is modeled as viscous damping. With dissipation considered,
the top is in fact unstable and eventually falls over after precessing because of the effects of
friction.

4.8 CIRCULATORY SYSTEMS

Next, consider those systems that have asymmetries in the coefficient of the displacement
term. Such systems are called circulatory. A physical example is given in example 2.4.3.
Other examples can be found in the fields of aeroelasticity, thermoelastic stability, and in
control (see example 2.4.4). The equation of motion of such systems takes the form

Mi+ (K+H)q=0 (4.14)

where M =M", K=K", and H=—H". Here, K is the symmetric part of the position
coefficient and H is the skew-symmetric part. Results and stability conditions for circulatory
systems are not as well developed as for symmetric conservative systems.

Since damping is not present, the stability of Equation (4.14) will be entirely determined
by the matrix A; =K + H, as long as M is nonsingular. In fact, it can be shown (see Huseyin,
1978, p. 174) that Equation (4.14) is stable if and only if there exists a symmetric and positive
definite matrix P such that PM~'A, is symmetric and positive definite. Furthermore, if the
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matrix PM ‘1A3 is symmetric, there is no flutter instability. On the other hand, if such a
matrix P does not exist, Equation (4.14) can be unstable both by flutter and by divergence.
In this case, the system will have some complex eigenvalues with positive real parts.

The preceding results are obtained by considering an interesting subclass of circulatory
systems that results from a factorization of the matrix M~'A;. Taussky (1972) showed that
any real square matrix can be written as the product of two symmetric matrices. That is,
there exist two real symmetric matrices S; and S, such that M~'A; =S, S,. With this factor-
ization in mind, all asymmetric matrices M~'A; can be classified into two groups: those for
which at least one of the matrix factors, such as S, is positive definite and those for which
neither of the factors is positive definite. Matrices for which S, (or S,) is positive definite
are called symmetrizable matrices or pseudosymmetric matrices. The corresponding systems
are referred to as pseudoconservative systems, pseudosymmetric systems, or symmetrizable
systems and behave essentially like symmetric systems. One can think of this transforma-
tion as a change of coordinate systems to one in which the physical properties are easily
recognized.

In fact, for M~'A; =S,S,, S, positive definite, the system described by Equation (4.14)
is stable if and only if S, is positive definite. Furthermore, if S, is not positive definite,
instability can only occur through divergence, and no flutter instability is possible. Complete
proofs of these statements can be found in Huseyin (1978), along with a detailed discussion.
The proof follows from the simple idea that, if M~'A; is symmetrizable, then the system
is mathematically similar to a symmetric system. Thus, the stability problem is reduced to
considering that of the symmetric matrix S,.

The similarity transformation is given by the matrix S )/, the positive definite square root
of matrix S;. To see this, premultiply Equation (4.14) by S f'/ *, which is nonsingular. This
yields

ST+ 57 (M A)q =0 (4.15)
which becomes
S d+5,75,5,9=0
or
ST+ 5178, =0 (4.16)
Substitution of q = Sll / 2y into this last expression yields the equivalent symmetric system
§+5,7°5,57y=0 (4.17)

Thus, there is a nonsingular transformation Sll/ . relating the solution of symmetric prob-
lems given by Equation (4.17) to the asymmetric problem of Equation (4.14). Because the
transformation is nonsingular, the eigenvalues of Equations (4.14) and (4.17) are the same.
Thus, the two representations have the same stability properties. Here, the matrix S ; / 252S } 2
is seen to be symmetric by taking its transpose, i.e., (Sll/zSlel/z)T =S11/ZSZSII/2. Thus, if S, is
positive definite, then S 1]/ °S,8 11/ * is positive definite (and symmetric) so that Equation (4.17)
is stable. Methods for calculating the matrices S, and S, are discussed in the next section.
Note that, if the system is not symmetrizable, i.e., if S, is not positive definite, then S,1 /2
does not exist and the preceding development fails. In this case, instability of Equation (4.14)

can be caused by either flutter or divergence.
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4.9 ASYMMETRIC SYSTEMS

For systems that have both asymmetric velocity and stiffness coefficients not falling into
any of the previously mentioned classifications, several different approaches are available.
The first approach discussed here follows the idea of a pseudosymmetric system introduced
in the previous section, and the second approach follows methods of constructing Lyapunov
functions. The systems considered in this section are of the most general form [Equation (2.7)
with f =0]

Aq+Aq+A,9=0 (4.18)

where A, is assumed to be nonsingular, A, =D + G, and A; =K 4 H. Since A, is nonsingular
and since A, and A, are symmetric, it is sufficient to consider the equivalent system

G+A'Aq+A"Aq=0 (4.19)

The system described by Equation (4.19) can again be split into two classes by examining
the factorization of the matrices A;'A, and A7 'A; in a fashion similar to the previous section.
First note that there exists a factorization of these matrices of the form A;'A, =T,T, and
A7'A;=S§,S,, where the matrices S,, S,, T}, and T, are all symmetric. This is always possible
because of the result of Taussky just mentioned, i.e., any real square matrix can always be
written as the product of two symmetric matrices. Then, the system in Equation (4.19) is
similar to a symmetric system if and only if there exists at least one factorization of A;'A, and
A7'A; such that S, =T, which is positive definite. Such systems are called symmetrizable.
Under this assumption, it can be shown that the equilibrium position of Equation (4.18) is
asymptotically stable if the eigenvalues of the matrix A;'A, and the matrix A['A; are all
positive real numbers. This corresponds to requiring the matrices S, and 7, to be positive
definite.

Deciding if the matrices A7'A, and A7'A; are symmetrizable is, in general, not an easy
task. However, if the matrix A, is proportional, i.e., if A, = @A, + BA;, where o and 3 are
scalars, and if Al"A3 is symmetrizable, then Al"A2 is also symmetrizable, and there exists
a common factor S,7;. It can also be shown that, if two real matrices commute and one of
them is symmetrizable, then the other matrix is also symmetrizable, and they can be reduced
to a symmetric form simultaneously.

Several of the usual stability conditions stated for symmetric systems can now be stated
for symmetrizable systems. If A7'A, has nonnegative eigenvalues (i.e., zero is allowed) and
if A7'A; has positive eigenvalues, Equation (4.18) is asymptotically stable if and only if the
n? x n matrix

AT'A,
AT'AL(AT1A)
R=| AT'A(AT'Ay)? (4.20)

AT'A (AT A"

has rank n. This, of course, is equivalent to the statement made by Moran (1970) for
symmetric systems, mentioned in section 4.5, that the system is asymptotically stable if and
only if none of the eigenvectors of A;'A; lies in the null space of A['A,.



110 STABILITY

The KTC theorem can also be extended to systems with asymmetric but symmetrizable
coefficients. However, the extension is somewhat more complicated. Consider the matrix
S=(A7'A)T, + T,(A;'A,)", and note that S is symmetric. If S is positive definite and if A,
is nonsingular, then Equation (4.18) is stable if and only if all of the eigenvalues of A]'A,
are positive numbers. If S, # T;, the matrix A;'A, contains a gyroscopic term, and this
result states the equivalent problem faced in using gyroscopic forces to stabilize an unstable
system, that it cannot be done in the presence of damping. Hence, in the case where S, # T,
the stability of the system is determined by the eigenvalues of T, (which are the eigenvalues
of A,) for systems with a symmetrizable stiffness coefficient matrix.

The following two examples serve to illustrate the above discussion as well as indicate
the level of computation required.

Example 4.9.1

The preceding results are best understood by considering some examples. First, consider a system

described by
1 0 G+ 2 4 - 10 8 —0
o 1|94 2|97 0 1|97

A4 — 2 4 1.2461  —0.2769 || 2.8889  5.7778
7271 2|7 -02769 03115 5.7778 11.5556

A AL — 10 8| | 1.2461 —0.2769 10 8.8889
P70 1] [-0.2769 0.3115 8.8889 11.1111

Here note that

so that 7, =S, and the coefficient matrices have a common factor. Then the eigenvalue problem
associated with this system is similar to a symmetric eigenvalue problem. An illustration on how to
calculate the symmetric factors of a matrix is given in example 4.9.3.

According to the previous theorems, the stability of this equation may be indicated by calculating
the eigenvalues of A7'A, and of A7'A;. The eigenvalues of A7'A, in this example are A, , =0, 4,
and those of A7'A; are Ay, =1,10. Hence, AT'A; has positive real eigenvalues and A7'A, has
nonnegative real eigenvalues. Because of the singularity of the matrix A;'A,, knowledge of the
rank of the matrix equation [Equation (4.20)] is required in order to determine if the system is
asymptotically stable or just stable. The matrix of Equation (4.20) is

2 4 0 0] [0 o
N O I - O B
20 20170 0] [0 0
1010 11 0 1

which obviously has rank = 2, the value of n. Here, the symbol ~ denotes column (or row) equivalence,
as discussed in Appendix B. Thus, the previous result states that the equilibrium of this example is
asymptotically stable. This is in agreement with the eigenvalue calculation for the system, which yields

A,=—1£2
Ag=—14j

showing clearly that the equilibrium is in fact asymptotically stable, as predicted by the theory.
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Example 4.9.2

As a second example, consider the asymmetric problem given by

Eo17a [0 2076, (5 610
o 11973 s |94 o |97

Premultiplying this by A7! yields

. 6 12]. —-1-6
Iq—I—[3 8:|q+[_40:|q=0

The eigenvalues of A7 'A, are A, , =7+ (1/2)+/148 and those of AT'Ajare A ,=—1/24+ (1/2)V/97.
Thus, both coefficient matrices have real distinct eigenvalues and are therefore symmetrizable.
However, a simple computation shows that there does not exist a factorization of A;'A, and A['A;
such that T, =S,.

Thus, the generalized KTC theorem must be applied. Accordingly, if the matrix (A7'A,)T, +
T,(A7'A,)T is positive definite, then the equilibrium of this systemis unstable, since A| A has anegative
eigenvalue. To calculate T, note that (A7'A5) = T, T,, where 7 is positive definite and hence nonsin-
gular. Thus, multiplying by 7, from the right results in the matrix T, being given by T, = T, ' (A['A5).

Let T;! be a general generic symmetric matrix denoted by

where it is desired to calculate a, b, and c so that 7} is positive definite. Thus
| b{|-1 —6| |—-a—4b —6a
27 |b c||-4 0| |-b—4c —6b
Requiring 7, to be symmetric and T to be positive definite yields the following relationships for a,

b, and c:

ac> b*

6a=b+4c

This set of equations has multiple solutions; one convenient solution is a =2, b=0, and ¢ =3. Then
T, becomes

T, =

S N =

W =

Thus, (A7'A))T, + T,(A7'A,)T becomes

6 11

_ _ 2
(AT'A)T, + T, (A]'A)" = 11 16
2 3

which is positive definite. Thus, the equilibrium must be unstable.
This analysis again agrees with calculation of the eigenvalues, which are A, =0.3742, A, =
—13.5133, and A; , = —0.4305 £0.2136j, indicating an unstable equilibrium, as predicted.
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Example 4.9.3

The question of how to calculate the factors of a symmetrizable matrix is discussed by Huseyin (1978)
and Ahmadian and Chou (1987). Here it is shown that the matrices A;'A; =S,S, and A['A, =T, T,
of example 4.9.2 do not have any common factorization such that 7, = S,. Hence, A7 'A, and A['A,
cannot be simultaneously symmetrized by the same transformation.

It is desired to find a symmetric positive definite matrix P such that PAT'A, and PA7'A; are
both symmetric. To that end, let

Then
_ 6a+3b 12a+8b
Tr —
PA, AZ—[6b+3c 12b+8c]
and
-1, _|—a—4b —6a
PA, A3_[—b—4c —6b]

Symmetry of both matrices then requires that

6b+3c=12a+8b

b+4c=6a 4.21)
Positive definiteness of P requires
a>0
ac > b* (4.22)

It will be shown that the problem posed by Equations (4.21) and (4.22) does not have a solution.
Equations (4.21) may be written in matrix form as

]
[1)-[37]

for all values of a. Thus, b=2.73a and ¢ =2.18a, so that b* = 7.45a4* and ac =2.184>. Then

which has the unique solution

ac=2.184%> <7.45a* = b*

and condition (4.22) cannot be satisfied.
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Other alternatives exist for analyzing the stability of asymmetric systems. Walker (1970),
approaching the problem by looking for Lyapunov functions, was able to state several results
for the stability of Equation (4.18) in terms of a fourth matrix R. If there exists a symmetric
positive definite matrix R such that RA(IA3 is symmetric and positive definite (this is the
same as requiring A} 'A; to be symmetrizable), then the system is stable if the symmetric part
of RA]'A, is positive semidefinite and asymptotically stable if the symmetric part of RA;'A,
is strictly positive definite. This result is slightly more general than the symmetrizable results
just stated in that it allows the equivalent symmetric systems to have gyroscopic forces.

In addition to these results, Walker (1970) showed that, if there exists a symmetric matrix
R such that RA;'A, is skew-symmetric and RA|'A; is symmetric, and such that R and
RAI’IA3 have the same definiteness, then the system is stable but not asymptotically stable.

Another approach to the stability of Equation (4.18), not depending on symmetrizable
coefficients, has been given by Mingori (1970). He showed that, if the coefficient matrices
M,D, G,H, and K satisfy the commutivity conditions

HD'M =MD 'H
HD'G=GD™'H
HD'K=KD™'H

then the stability of the system is determined by the matrix
Q=HD 'MD'H—-GD 'H+K

This theory states that the system is stable, asymptotically stable, or unstable if the matrix Q
possesses nonnegative, positive, or at least one negative eigenvalue respectively. Although
the problem addressed is general, the restrictions are severe. For instance, this method cannot
be used for systems with semidefinite damping (D~! does not exist).

Other more complicated and more general stability conditions are due to Walker (1974)
and an extension of his work by Ahmadian and Inman (1986). The methods are developed
by using Lyapunov functions to derive stability and instability conditions on the basis of
the direct method. These are stated in terms of the symmetry and definiteness of certain
matrices consisting of various combinations of the matrices A, A,, and A;. These conditions
offer a variety of relationships among the physical parameters of the system, which can aid
in designing a stable or asymptotically stable system.

4.10 FEEDBACK SYSTEMS

One of the major reasons for using feedback control is to stabilize the system response.
However, most structures are inherently stable to begin with, and control is applied to improve
performance. Unfortunately, the introduction of active control can effectively destroy the
symmetry and definiteness of the system, introducing the possibility of instability. Thus,
checking the stability of a system after a control is designed is an important step. A majority
of the work in control takes place in state space (first-order form). However, it is interesting to
treat the control problem specifically in ‘mechanical’ or physical coordinates in order to take
advantage of the natural symmetries and definiteness in the system. Lin (1981) developed
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a theory for closed-loop asymptotic stability for mechanical structures being controlled by
velocity and position feedback. The systems considered here have the form (see Section 2.3)

Ma+Aq+Kq=f +f (4.23)

where M =M is positive definite, A, = D + G is asymmetric, and K is symmetric. Here, the
vector f represents external disturbance forces (taken to be zero in this section) and the vector
f; represents the control force derived from the action of r force actuators represented by

f,=Bu (4.24)

where the r x 1 vector u denotes the r inputs, one for each control device (actuator), and B,
denotes the n x r matrix of weighting factors (influence coefficients or actuator gains) with
structure determined by the actuator locations. In order to be able to feed back the position
and velocity, let y be an s x 1 vector of sensor outputs denoted and defined by

Here, C, and C, are s x n matrices of displacement and velocity influence coefficients
respectively, with structure determined by the sensor locations and where s is the number
of sensors. Equation (4.25) represents those coordinates that are measured as part of the
control system and is a mathematical model of the transducer and signal processing used to
measure the system response. The input vector u is chosen to be of the special form

u()=-G,y=-G,C,q—G,C,q (4.26)

where the r x s matrix G, consists of constant feedback gains. This form of control law is
called output feedback, because the input is proportional to the measured output or response, y.

In Equation (4.24) the matrix B, reflects the location on the structure of any actuator or
device being used to supply the forces u. For instance, if an electromechanical or piezoelectric
actuator is attached to mass m, in Figure 2.4, and if it supplies a force of the form F|, sin wt,
the vector u reduces to the scalar u = Fjsin(wt) and the matrix B reduces to a vector
BfT =[1 0]. Alternatively, the control force can be written as a column vector u, and B,
can be written as a matrix

_ | Fysinwt |1 0
u—|: 0 :| and Bf—|:0 Oi|

If, on the other hand, there are two actuators, one attached to m, supplying a force
F,sin(w,t) and one at m, supplying a force F,sin(w,?), then the vector u becomes u’ =
[F;sin(w,1) F,sin(w,t)] and the matrix B, becomes B, =1, the 2 x 2 identity matrix.
Likewise, if the positions x, and x, are measured, the matrices in Equation (4.25) become
C,=1 and C, =0, the 2 x 2 matrix of zeros. If only the position x, is measured and the

p
control force is applied to x,, then

0 0 10
Bf:[o 1} and CPZ[O o}
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Making the appropriate substitutions in the preceding equations and assuming no external
disturbance (i.e., f = 0) yields an equivalent homogeneous system, which includes the effect
of the controls. It has the form

M{+(D+G+B;G,C,)q+ (K +B,G;C,)q=0 (4.27)

For the sake of notation, define the matrices D* :BfoCv and K* :BfoCP. Note that, since
the number of actuators r is usually much smaller than the number of modeled degrees of
freedom 7 (the dimension of the system), the matrices K* and D* are usually singular. Since,
in general, D 4+ D* and K 4+ K* may not be symmetric or positive definite, it is desired to
establish constraints on any proposed control law to ensure the symmetry and definiteness
of the coefficient matrices and hence the stability of the system (see problem 4.11). These
constraints stem from requiring D + D* and K + K* to be symmetric positive definite. The
problem of interest in control theory is how to choose the matrix G, so that the response
q has some desired property (performance and stability). Interest in this section focuses on
finding constraints on the elements of G, so that the response q is asymptotically stable or
at least stable. The stability methods of this chapter can be applied to Equation (4.27) to
develop these constraints. Note that the matrices B;G,C, and B;G,C, are represented as the
matrices K, and K, respectively in Equation (2.17).

Collocated control refers to the case where the sensors are located at the same physical
location as the actuators. If the sensors or the actuators add no additional dynamics, then
collocated controllers provide improved stability of the closed-loop system. As seen above,
the closed-loop system coefficients D* and K* generally lose their symmetry for many
choices of B, C;, B,, and C,. If, however, the gain matrices G, and G, are symmetric, and
if B,? =C; and B =C,, then the matrices D* and K* remain symmetric. The symmetry then
results in the possibility of choosing the gain matrices so that D* and K* remain positive
definite, ensuring closed-loop stability for stable open-loop systems (D and K positive
definite). Placing sensors and actuators at the same location causes Bf = C; and B'=C,,
so that collocated control enhances closed-loop stability. The controller design consists of
choosing gains G, and G, that are symmetric and positive definite (or at least semidefinite)
with collocated sensors and actuators to ensure a stable closed-loop response.

Example 4.10.1

Consider the two-degree-of-freedom system in figure 2.4, with a control force applied to m; and a
measurement made of x, so that the control system is not collocated. Then the input matrix, output
matrix, and symmetric control gain matrix are

[t o o 1 [e O
w=lo ol oo o] e [B ]

Note that this is not collocated because B]Z # C;. The closed-loop system of Equation (4.27) becomes

m; 0 |[|X n cte —o |l x n ki+ky, —ko+g ||x _ 0
0 m|| X —c, ) X, —k, ky X, 0
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This has an asymmetric displacement coefficient, implying the potential loss of stability. If, on the
other hand, a control force is applied to m, and a measurement made of x;, then the control system
is collocated and the input matrix, output matrix, and control gain matrix are

[t o [t o [e 0
o=lo o] eslo o] oy

so that B]? = C; and the closed-loop system of Equation (4.27) becomes

mp 0% + ate —ofly + kit+ky+g —ky || x _ 0
0 m||X, —c, ¢, X, —k, ks, X, 0

which is symmetric and stable for any choice of g, such that k, + k, + g > O.

The topic of control and Equation (4.27) is discussed in more detail in section 6.6 and
in Chapter 7. Historically, most of the theory developed in the literature for the control of
systems has been done using a state-space model of the structure. The next section considers
the stability of systems in the state variable coordinate system.

4.11 STABILITY IN STATE SPACE

In general, if none of the stability results just mentioned is applicable, the problem can be
cast in first-order form as given in Section 2.3. The system of Equation (4.18) then has
the form

X =Ax (4.28)

where A is a 2n x 2n state matrix and X is a 2n state vector. In this setting, it can easily be
shown that the system is asymptotically stable if all the eigenvalues of A have negative real
parts and is unstable if A has one or more eigenvalues with positive real parts.

The search for stability by finding a Lyapunov function in first-order form leads to the
Lyapunov equation

ATB4+BA=—C (4.29)

where C is positive semidefinite and B is the symmetric, positive definite, unknown matrix
of the desired (scalar) Lyapunov function:

V(x) =x"Bx (4.30)
Do not confuse the arbitrary matrices B and C used here with the B and C used for input

and output matrices. To see that V(x) is, in fact, the desired Lyapunov function, note that
differentiation of Equation (4.30) yields

%[V(X)] =x"Bx +x"Bx (4.31)
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Substitution of the state equation [Equation (4.28)] into Equation (4.31) yields

d
o [V(x)] =x"A" Bx + x" BAx

=x"(ATB+ BA)x
=—x"Cx (4.32)

Here, taking the transpose of Equation (4.28) yields x” = x"A”, which is used to remove
the time derivative in the second term. Hence, if V(x) is to be a Lyapunov function, matrix
C must be positive semidefinite. The problem of showing stability by this method for a
system represented by matrix A then becomes one, given the symmetric positive semidefinite
matrix C, of finding a positive definite matrix B such that Equation (4.29) is satisfied. This
approach involves solving a system of linear equations for the n(n+ 1)/2 elements b, of
matrix B.

As explained by Walker (1974), Hahn (1963) has shown that, for a given choice of
symmetric positive definite matrix C, there exists a unique solution, i.e., there exists a
symmetric matrix B satisfying Equation (4.29) if the eigenvalues of A, A,, satisfy A, + A, #0
for all i,k=1,2,...,2n. Furthermore, matrix B is positive definite if and only if each
eigenvalue of A has a negative real part, in which case the system is asymptotically stable.
Matrix B is indefinite if and only if at least one eigenvalue of A has a positive real part,
in which case the equilibrium of the system is unstable. Many theoretical and numerical
calculations in stability theory are based on the solution of Equation (4.29). Walker (1974)
has shown that this system of linear equations has a unique solution.

Solving for the eigenvalues of Equation (4.28) can involve writing out the characteristic
equation of the system. In such cases where this can be done analytically and the coefficients
of the characteristic equation are available, a simple stability condition exists, namely if the
characteristic equation is written in the form

N4+a N +a, "+ 4 a,=0 (4.33)

then the system is asymptotically stable if and only if the principal minors of the n x n
Hurwitz matrix defined by

a 1 0 0 0

ay a, a; 1 0

as a, ay a, a 1 -+ 0
— an—

are all positive. In addition, if any of the coefficients a; are nonpositive (i.e., negative or
zero), then the system may be unstable. This is called the Hurwitz test.

Writing out the (determinant) principal minors of the Hurwitz matrix yields nonlinear
inequalities in the coefficients that provide relationships in the physical parameters of the
system. If these inequalities are satisfied, asymptotic stability is ensured.
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Example 4.11.1

As an illustration of the Hurwitz method, consider determining the asymptotic stability of a system
with the characteristic equation

N +a, X +aA+a;=0

The Hurwitz matrix is

a 1 0
az 4, 4
0 0 a,

From the Hurwitz test, a; > 0, a, > 0, and a; > 0 must be satisfied. From the principal minors of
the Hurwitz matrix, the inequalities

a; >0
aya,—az;>0
a,(a,as) —a%:a,a2a3 —a% >0

must be satisfied. The above set reduces to the conditions that a; >0, a, >0, a; >0, and a;a, —a; >0
be satisfied for the system to be asymptotically stable.

4.12 STABILITY BOUNDARIES

An alternative way of looking at stability has been summarized by Huseyin (1978) and
involves examining the characteristic equation as a surface from which stability properties
can be deduced by plotting various stability boundaries. These methods are especially useful
when examining stability questions that arise because of an applied load. A typical example
is the case of a circulatory force given in example 4.6.1 above.

The point of view taken here is that a system without an applied load is represented by a
symmetric system. For example

Mi+Kq=0 (4.34)

where M and K are positive definite and symmetric, i.e., the system is stable. This system
is now subjected to a load proportional to position and results in the equation

Mi+ (K — nE)q=0 (4.35)

where 7 is a parameter characterizing the magnitude of the applied load and E is a matrix
representing the point, or points, of application of the load. If there are several loads present,
they can be indexed, 1, E,, summed, and included in the equation of motion as

M4+ (K =) mE)q=0 (4.36)

In some sense, this equation is similar to the feedback control systems described in the
previous sections, the difference being that the extra term m)E; results in this case from
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some physical loading of a structure, whereas the position feedback term G,C, in Equa-
tion (4.26) results from adding actuators to the structure. In the case of feedback, the matrix
G,C, is found that causes the system to have a desired (stable) response. In the case of
Equation (4.35), it is desired to see how the stability properties are affected by changes in
the scalar parameter 7.

The characteristic equation associated with Equation (4.36) is an equation (if no damping
or gyroscopic terms are present) in A2 and the variable 7. This is denoted by A(A2, 1,) and

defined by
AN, m) =det(MA* +K —n,E) =0 (4.37)

In most circumstances, 17, =0 corresponds to a stable state. Then the problem is to find values
of m, at which the system loses stability. The initially stable system may, in general, lose
stability by either divergence or flutter. Many of the investigations using this method focus
on determining which way stability is lost. The locus of points in the 7, space corresponding
to zero roots, or divergence (recall Section 1.7), is called the divergence boundary. On the
other hand, flutter instability corresponds to repeated roots with degenerate eigenvectors.
The locus of points corresponding to repeated roots generates the flutter boundary. Together,
these two curves comprise the stability boundary.

Huseyin (1978) showed that the flutter condition results from those values of 1 such that

0A
= — 4.38
e (4.38)
A majority of Huseyin’s text is devoted to various ways of computing stability boundaries for
various classifications of systems. These curves allow design work to be done by examining
the relationship of 7 to the stability of the system.

CHAPTER NOTES

The classification of systems in this chapter is motivated by the text of Huseyin (1978).
This text provides a complete list of references for each type of system mentioned here,
with the exception of the material on control systems. In addition, Huseyin’s text provides
an in-depth discussion of each topic. The material of Section 4.2 is standard Lyapunov (also
spelled Liapunov in older literature) stability theory, and the definitions are available in most
texts. The reader who understands limits and continuity from elementary calculus should be
able to make the connection to the definition of stability. The material in Sections 4.3 and 4.4
is also standard fare and can be found in most texts considering stability of mechanical
systems. The material of Section 4.5 on semidefinite damping results from several papers
(as referenced) and is not usually found in text form. The material on gyroscopic systems
presented in Section 4.6 is also from several papers. The material on damped gyroscopic
systems is interesting because it violates instinct by illustrating that adding damping to a
structure may not always make it ‘more stable.” The next section deals with asymmetric but
symmetrizable systems. The material of Section 4.9 is taken from Inman (1983). The major
contributors to the theories (Walker and Huseyin) developed separate methods, which turned
out to be quite similar and, in fact, related. The paper by Ahmadian and Chou (1987) should
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be consulted for methods of calculating symmetric factors of a matrix. Feedback control
systems are presented in this chapter (Section 4.10) before they are formally introduced
in Chapter7 to drive home the fact that the introduction of a control to a system adds
energy to it and can make it unstable. The topic of Section 4.11 also presents material
from control texts. It is important to note that the controls community generally thinks of
a stable system as one that is defined as asymptotically stable in this text, i.e., one with
eigenvalues with negative real parts. Systems are said to be marginally stable by the controls
community if the eigenvalues are all purely imaginary. This is called stable in this and other
vibration texts. Recent survey articles on the stability of second-order systems are provided
by Bernstein and Bhat (1995) and Nicholson and Lin (1996). Vidyasagar (2002) includes
detailed stability analysis for both linear and nonlinear systems, as well as definitions of
other types of stability.
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4.1 Consider the system in figure 2.4 with ¢, =c¢, ¢, =0, f=0,k, =k, =k, and m;, =m, =

4.2
4.3

44

4.5
4.6

4.7

4.8

4.9

m. The equation of motion is

e 0.+ 2k —k —0
X o o*T -k kYT

Use Moran’s theorem to see if this system is asymptotically stable.

Repeat problem 4.1 by using Walker and Schmitendorf’s theorem.

Again, consider the system in Figure 2.4, this time with ¢, =0, ¢, =c, f =0, k, =k, =k,
and m, = m, = m. The equation of motion is

. c —c. 2k —k

m€X+|:_c c}x—i—[_k ki|x_0
Is this system asymptotically stable? Use any method.
Discuss the stability of the system of Equation (2.24) using any method. Note that your
answer should depend on the relative values of n, m, E, I, and £.
Calculate a Lyapunov function for the system of example 4.9.1.
Show that, for a system with symmetric coefficients, if D is positive semidefinite and
DM™'K = KM~'D, then the system is not asymptotically stable.
Calculate the matrices and vectors Bf, u, Cp and C,, defined in Section 4.10 for the
system in Figure 2.4 for the case where the velocities of m, and m, are measured
and the actuator (f,) at m, supplies a force of —g,X,. Discuss the stability of this
closed-loop system as the gain g, is changed.
The characteristic equation of a given system is

MEI0A +A2+1504+3=0

Is this system asymptotically stable or unstable? Use a root solver to check your answer.
Consider the system defined by

mo 0. [0 07 [k —&],_y
0 m |30 0|9 |k, K |97

Assume a value of matrix R from the theory of Walker (1970) of the form

o3 i
g m

and calculate relationships between the parameters m;, k;, and g that guarantee the

|4 154

stability of the system. Can the system be asymptotically stable?
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4.10

4.11

4.12

4.13
4.14

4.15

4.16

4.17

4.18

4.19

4.20

STABILITY

Let

C C,
A2 — 1 4
Gz O

in problem 4.9 and repeat the analysis.

Lety= CprT q+ CvaT q, where C, and C, are restricted to be symmetric and show
that the resulting closed-loop system with G; =1 and G =0 in Equation (4.27) has
symmetric coefficients (Junkins, 1986).

For the system of problem 4.10, choose feedback matrices Bf, Gf, CP,
make the system symmetric and stable (see problem 4.11 for a hint).

Prove that collocated control is stable for the system of problem 4.10.

The characteristic equation of a two-link structure with stiffness at each joint and
loaded at the end by p, and at the joint by p, is

and C, that

20+ p3 + Ap +4X°py + pip, — 8N —p —4p, +2=0

where the parameters of the structure are all taken to be unity (see Huseyin, 1978,
p. 84). Calculate and sketch the divergence boundary in the p, — p, space. Discuss
the flutter condition.

Use the Hurwitz test to discuss the stability of the system in problem 4.14.

Consider the system of example 2.4.4 [Equation (2.26)] and compute the B, G; and
C, matrices that correspond to the control law suggested in the example.

Consider the system of example 4.10.1 with M =1,C =0.1K, and k, =k, =2.
Compute the values for the gain g, that make the closed loop stable for the collocated
case.

Consider the system of example 4.10.1 with M =1, C=0.1K, and k; =k, =2. Com-
pute the values for the gain g, that make the closed loop stable for the noncollocated
case.

A common way of improving the response of a system is to add damping via velocity
feedback control. Consider the standard two-degree-of-freedom system in Figure 2.4
with open-loop values of m; =m, =1, ¢, =c¢,=0.1,k, =4, and k, = 1. Add damping
to the system using a control system that measures x, and applies a force to the
mass m, that is proportional to X, (i.e., —gx;). Determine values of g that make the
closed-loop response asymptotically stable.

Consider the system of problem 4.5 and calculate the eigenvalues of the state matrix
in MATLAB to determine the stability.
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Forced Response of
Lumped-parameter
Systems

5.1 INTRODUCTION

Up to this point, with the exception of Section 1.4 and some brief comments about feedback
control, only the free response of a system has been discussed. In this chapter the forced
response of a system is considered in detail. Such systems are called nonhomogeneous.
Here, an attempt is made to extend the concepts used for the forced response of a single-
degree-of-freedom system to the forced response of a general lumped-parameter system. In
addition, the concept of stability of the forced response, as well as bounds on the forced
response, is discussed. The beginning sections of this chapter are devoted to the solution
for the forced response of a system by modal analysis, and the latter sections are devoted
to introducing the use of a forced modal response in measurement and testing. The topic
of experimental modal testing is considered in detail in Chapter 8. This chapter ends with
an introduction to numerical simulation of the response to initial conditions and an applied
force.

Since only linear systems are considered, the superposition principle can be employed. This
principle states that the total response of the system is the sum of the free response (the homo-
geneous solution) plus the forced response (the nonhomogeneous solution). Hence, the form
of the transient responses calculated in Chapter 3 are used again as part of the solution of a
system subject to external forces and nonzero initial conditions. The numerical integration
technique presented at the end of the chapter may also be used to simulate nonlinear system
response, although that is not presented.

5.2 RESPONSE VIA STATE-SPACE METHODS

This section considers the state-space representation of a structure given by

x(1) =Ax(z) +£(2) (5.1)

Vibration with Control D. J. Inman
© 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01051-7
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where A is a 2n X 2n matrix containing the generalized mass, damping, and stiffness matrices
as defined in Equation (2.20). The 2n x 1 state vector x(f) contains both the velocity and
position vectors and will be referred to as the response in this case. Equation (5.1) reflects
the fact that any set of n differential equations of second order can be written as a set
of 2n first-order differential equations. In some sense, Equation (5.1) represents the most
convenient form for solving for the forced response, since a great deal of attention has been
focused on solving state-space descriptions numerically (such as the Runge—Kutta method),
as discussed in Sections 1.10, 3.9, and 5.8, as well as analytically. In fact, several software
packages are available for solving Equation (5.1) numerically on virtually every computing
platform. The state-space form is also the form of choice for solving control problems
(Chapter 7).

Only a few of the many approaches to solving this system are presented here; the reader
is referred to texts on numerical integration and systems theory for other methods. More
attention is paid in this chapter to developing methods that cater to the special form of
mechanical systems, i.e., systems written in terms of position, velocity, and acceleration
rather than in state space.

The first method presented here is simply that of solving Equation (5.1) by using the
Laplace transform. Let X(0) denote the Laplace transform of the initial conditions. Taking
the Laplace transform of Equation (5.1) yields

sX(s) =AX(s) + F(s) + X(0) (5.2)

where X(s) denotes the Laplace transform of x(¢) and is defined by

X(s) = / x(1) e~ dt (5.3)
0
Here, s is a complex scalar. Algebraically solving Equation (5.2) for X(s) yields
X(s) = (s —A)"'X(0) + (s] —A)"'F(s) (5.4)

The matrix (sI —A)~" is referred to as the resolvent matrix. The inverse Laplace transform
of Equation (5.4) then yields the solution x(¢). The form of Equation (5.4) clearly indi-
cates the superposition of the transient solution, which is the first term on the right-hand
side of Equation (5.4), and the forced response, which is the second term on the right-hand
side of Equation (5.4). The inverse Laplace transform is defined by

x(f) = £ [X(s)] = lim —— / X (s) e ds (5.5)
a—o0 277j

c—ja

where j =+/—1. In many cases, Equation (5.5) can be evaluated by using a table such as the
one found in Thomson (1960) or a symbolic code. If the integral in Equation (5.5) cannot be
found in a table or calculated, then numerical integration can be used to solve Equation (5.1)
as presented in Section 5.8.
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Example 5.2.1

Consider a simple single-degree-of-freedom system ¥ + 3x + 2x = u(¢), written in the state-space
form defined by Equation (5.1) with

e[ 22] wo-[48) o-[i]

subject to a force given by f; =0 and

t<0
t>0

no={}

the unit step function, and initial condition given by x(0)=[0 1]7. To solve this, first calculate

s -1
(sf—A)= |:2 s+3:|

and then determine the resolvent matrix

- 1 s+3 1
[—A) = —
(s ) s2+3s+2|: -2 S:|
Equation (5.4) becomes

0 s+1
X(s) = 1 s+3 1]]0 n 1 s+3 1 1= s +3s2+2s

s24+3s+2] -2 5|1 243542 =2 s|| = s+1
§ s243s+2

Taking the inverse Laplace transform by using a table yields

1 1
x(t)=1| 2 ze
e—2t

—2t

This solution is in agreement with the fact that the system is overdamped. Also note that X, = x,,
as it should in this case, and that setting r =0 satisfies the initial conditions.

A second method for solving Equation (5.1) imitates the solution of a first-order scalar
equation, following what is referred to as the method of ‘variation of parameters’ (Boyce
and DiPrima, 2005). For the matrix case, the solution depends on defining the exponential
of a matrix. The matrix exponential of matrix A is defined by the infinite series

=) — (5.6)

where k! denotes the k factorial with 0!=1 and A°=1, the n x n identity matrix. This
series converges for all square matrices A. By using the definition of Section 2.1 of a scalar
multiplied by a matrix, the time-dependent matrix e’ is similarly defined as
o0 Ak lk
r_
=2 k!

k=0

(5.7)
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which also converges. The time derivative of Equation (5.7) yields
d At At At
— () =AM =€""A (5.8)
dt
Note that matrix A and the matrix ¢! commute because a matrix commutes with its powers.
Following the method of variation of parameters, assume that the solution of Equation (5.1)
is of the form

x(1) = Me() (5.9)

where ¢(f) is an unknown vector function of time. The time derivative of Equation (5.9)
yields

x(f) =Aee(t) + eM'é(1) (5.10)

This results from the product rule and Equation (5.8). Substitution of Equation (5.9) into
Equation (5.1) yields

x(1) =AeMe(t) +£(1) (5.11)
Subtracting Equation (5.11) from Equation (5.10) yields
eMe(t) =1(1) (5.12)
Premultiplying Equation (5.12) by e~ (which always exists) yields
¢(f) =e (1) (5.13)
Simple integration of this differential equation yields the solution for ¢(¢):
c(f) = fo " AT (n)d T+ ¢(0) (5.14)
Here, the integration of a vector is defined as integration of each element of the vector, just

as differentiation is defined on a per element basis. Substitution of Equation (5.14) into the
assumed solution (5.9) produces the solution of Equation (5.1) as

t
x(1) = M / e (T)dT + e (0) (5.15)
0
Here, ¢(0) is the initial condition on x(7). That is, substitution of =0 into (5.9) yields
x(0) = €% (0) =1¢(0) = ¢(0)

so that ¢(0) =x(0), the initial conditions on the state vector. The complete solution of
Equation (5.1) can then be written as

x(1) = eMx(0) + /reA(’_T)f(T)dT (5.16)
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The first term represents the response due to the initial conditions, i.e., the free response of
the system. The second term represents the response due to the applied force, i.e., the steady
state response. Note that the solution given in Equation (5.16) is independent of the nature of
the viscous damping in the system (i.e., proportional or not) and gives both the displacement
and velocity time response.

The matrix e’ is often called the state transition matrix of the system defined by Equa-
tion (5.1). Matrix ¢’ ‘maps’ the initial condition x(0) into the new or next position x(%).
While Equation (5.16) represents a closed-form solution of Equation (5.1) for any state
matrix A, use of this form centers on the calculation of matrix e¢4’. Many papers have been
written on different methods of calculating ¢’ (Moler and Van Loan, 1978).

One method of calculating e is to realize that ¢!’ is equal to the inverse Laplace
transform of the resolvent matrix for A. In fact, a comparison of Equations (5.16) and (5.4)
yields

M =L (s -A)"} (5.17)

Another interesting method of calculating ¢’ is restricted to those matrices A with diagonal
Jordan form. Then it can be shown [recall Equation (3.31)] that

M =UeMU™! (5.18)

where U is the matrix of eigenvectors of A, and A is the diagonal matrix of eigenvalues
of A. Here, e’ =diag[eM" e®' - eM'], where the A; denote the eigenvalues of matrix A.

Example 5.2.2

Compute the matrix exponential ¢! for the state matrix

=13 3

Using the Laplace transform approach of Equation (5.18) requires forming of the matrix (s/ —A):

SI_A:[S;LZ sfz]
Calculating the inverse of this matrix yields
s+2 3
(sT—A)"' = (s+%)32+9 (sti)22+9

(5+272+9 (s+2)7+9

The matrix exponential is now computed by taking the inverse Laplace transform of each element.
This results in

e 2cos3t e sin3t ]

e :£_I{(SI _A)_I} = |:_ —2t 2t

o | cos3t  sin3t
e “'sin3t e “cos3t

—sin3¢ cos3t
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5.3 DECOUPLING CONDITIONS AND MODAL ANALYSIS

An alternative approach to solving for the response of a system by transform or matrix
exponent methods is to use the eigenvalue and eigenvector information from the free response
as a tool for solving for the forced response. This provides a useful theoretical tool as
well as a computationally different approach. Approaches based on the eigenvectors of the
system are referred to as modal analysis and also form the basis for understanding modal
test methods (see Chapter 8). Modal analysis can be carried out in either the state vector
coordinates of first-order form or the physical coordinates defining the second-order form.

First consider the system described by Equation (5.1). If matrix A has a diagonal Jordan
form (Section 3.4), which happens when it has distinct eigenvalues, for example, then matrix
A can be diagonalized by its modal matrix. In this circumstance, Equation (5.1) can be
reduced to 2n independent first-order equations. To see this, let u; be the eigenvectors
of the state matrix A with eigenvalues \,. Let U =[u, u,---u,,] be the modal matrix of
matrix A. Then substitute x = Uz into Equation (5.1) to obtain

Uz=AUz+f (5.19)
Premultiplying Equation (5.19) by U~ yields the decoupled system
1=U"'AUz+U't (5.20)
each element of which is of the form
z;=Nz; +F, (5.21)

where z; is the ith element of the vector z and F is the ith element of the vector F=U"'f.
Equation (5.21) can now be solved using scalar integration of each of the equations subject
to the initial condition z,(0) =[U~'x(0)],. In this way, the vector z(f) can be calculated, and
the solution x(#) in the original coordinates becomes

x(1)=Uz(r) (5.22)

The amount of effort required to calculate the solution via this method is comparable with
that required to calculate the solution via Equation (5.17). The modal form offered by
Equations (5.21) and (5.22) provides a tremendous analytical advantage.

The above process can also be used on systems described in the second-order form.
The differences are that the eigenvector—eigenvalue problem is solved in n dimensions
instead of 2n dimensions and the solution is the position vector instead of the state vector
of position and velocity. In addition, the modal vectors used to decouple the equations of
motion have important physical significance when viewed in second-order form which is
not as apparent in the state-space form.

Consider examining the forced response in the physical or spatial coordinates defined by
Equation (2.7). First consider the simplest problem, that of calculating the forced response
of an undamped nongyroscopic system of the form

Mq(r)+ Kq(r) =1£(r) (5.23)
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where M and K are n x n real positive definite matrices, q(¢) is the vector of displacements,
and f(¢) is a vector of applied forces. The system is also subject to an initial position given
by q(0) and an initial velocity given by q(0).

To solve Equation (5.23) by eigenvector expansions, one must first solve the eigenvalue—
eigenvector problem for the corresponding homogeneous system. That is, one must calculate
A; and w; such that (A; = w?)

Au;=Ku, (5.24)

Note that u; now denotes an n x 1 eigenvector of the mass normalized stiffness matrix. From
this, the modal matrix S, is calculated and normalized such that

SIMS,, =1
STKS,, = A = diag(w?) (5.25)

This procedure is the same as that of Section 3.3 except that, in the case of the forced
response, the form that the temporal part of the solution will take is not known. Hence, rather
than assuming that the dependence is of the form sin(wt), the temporal form is computed
from a generic temporal function designated as y;(¢).

Since the eigenvectors u; form a basis in an n-dimensional space, any vector q(¢,), where
t, is some fixed but arbitrary time, can be written as a linear combination of the vectors
u;; thus

a() = v, =S, ¥(1) (5.26)

i=1

where y(#,) is an n-vector with components y;(t,) to be determined. Since ¢, is arbitrary, it
is reasoned that Equation (5.25) must hold for any ¢. Therefore

q(1) =iy,-(t)ui=5m y@, 1=0 (5.27)
i=1

This must be true for any n-dimensional vector q. In particular this must hold for solutions of
Equation (5.23). Substitution of Equation (5.27) into Equation (5.23) shows that the vector
y(#) must satisfy
MS,,§(1) + KS,,y(1) =1 (1) (5.28)
Premultiplying by S yields
(1) + Ay (1) =S/ £(1) (5.29)
Equation (5.28) represents n decoupled equations, each of the form

§.(t) + o}y (1) = f,(1) (5.30)

where f;(#) denotes the ith element of the vector S f(7).
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If K is assumed to be positive definite, each @? is a positive real number. Denoting the
‘modal’ initial conditions by y;(0) and y,;(0), the solutions of Equation (5.30) are calculated
by the method of variation of parameters to be

3:(0)

w;

sin(w;t), i=1,2,3,...,n
(5.31)

y:() = wi fot fi(t — 7)sin(w;7) d7 + y;(0) cos(w;t) +

(see Boyce and DiPrima, 2005, for a derivation).
If K is semidefinite, one or more values of w? might be zero. Then, Equation (5.30) would
become

yi(0)=fi(1) (5.32)

Integrating Equation (5.32) then yields

no=[ [ [ ds]dwyi(c» 5,00 (5.33)

which represents a rigid body motion.
The initial conditions for the new coordinates are determined from the initial conditions
for the original coordinates by the transformation

¥(0)=S,'q(0) (5.34)

and

y(0)=5,"'4(0) (5.35)

This method is often referred to as modal analysis and differs from the state-space modal
approach in that the computations involve matrices and vectors of size n rather than 2n.
They result in a solution for the position vector rather than the 2n-dimensional state vector.
The coordinates defined by the vector y are called modal coordinates, normal coordinates,
decoupled coordinates, and (sometimes) natural coordinates. Note that, in the case of a free
response, i.e., f; = 0, then y,(7) is just e*®/’, where w; is the ith natural frequency of the
system, as discussed in Section 3.3.

Alternatively, the modal decoupling described in the above paragraphs can be obtained by
using the mass normalized stiffness matrix. To see this, substitute q =M '"/’r into Equation
(2.11), multiply by M~'/? to form K =M~"2KM~'/2, compute the normalized eigenvectors
of K , and use these to form the columns of the orthogonal matrix S. Next, use the substitution
r = Sy in the equation of motion, premultiply by S7, and equation (5.30) results. This
procedure is illustrated in the following example.

Example 5.3.1

Consider the undamped system of example 3.3.2 and Figure 2.4 subject to a harmonic force applied
to m,, given by

f(r)= |:(1)i| sin 3¢
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Following the alternative approach, compute the modal force by multiplying the physical force by

STM—1/2.
_ 1 1 1[5 o0]f07. 1[17].
STM l/zf(l‘): 3 sin 3t = — sin 3¢
V2L-1 1]Lo 1)t VAR

Combining this with the results of example 3.32 leads to the modal equations [Equation (5.30)]

1
Vi (1) +2y,(1) = —= sin 3¢

V2

1
(1) +4y,(t) = —=sin 3¢

V2

This of course is subject to the transformed initial conditions, and each equation can be solved by
the methods of Chapter 1. For instance, if the initial conditions in the physical coordinates are

4(0) = [0(',1] and  4(0)= [8]

then in the modal coordinates the initial velocity remains zero but the initial displacement is
transformed (solving q =M ~!?r and r = Sy, for y) to become

y(0) =S"M"?q(0) = % [_i i] [8 ﬂ [061}:072 [—11}

Solving for y, proceeds by first computing the particular solution (see Section 1.4 with zero damping)
by assuming that y(7) = X sin 3¢ in the modal equation for y,to obtain

1
—9Xsin3t+2Xsin3f = — sin 3¢

V2
Solving for X leads to the particular solution y,,(r) = (—1 / (7\/§)> sin3¢. The total solution
(from Equation (1.21) with zero damping) is then

1
y, (1) = asin /2t + bcos v/2t — —— sin 3t

72
Applying the modal initial conditions yields
. . 3 3
yl(O):bzﬁ, yl(O)zfoa—ﬁzoza:ﬁ
Thus, the solution of the first modal equation is
v (1) = 13—4 sin /21 + 07; cos /2t — % sin 3¢

Likewise, the solution to the second modal equation is

0.3 0.3 0.2
Y, (t) = —=sin2t — — cos2t — — sin 3¢

V2 V2 V2

The solution in physical coordinates is then found from q(f) =M~/2Sy(z).
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5.4 RESPONSE OF SYSTEMS WITH DAMPING

The key to using modal analysis to solve for the forced response of systems with velocity-
dependent terms is whether or not the system can be decoupled. As in the case of the
free response, discussed in Section 3.5, this will happen for symmetric systems if and
only if the coefficient matrices commute, i.e., if KM~'D =DM ~'K. Ahmadian and Inman
(1984a) reviewed previous work on decoupling and extended the commutivity condition to
systems with asymmetric coefficients. Inman (1982) and Ahmadian and Inman (1984b) used
the decoupling condition to carry out modal analysis for general asymmetric systems with
commuting coefficients. In each of these cases the process is the same, with an additional
transformation into symmetric coordinates, as introduced in Section 4.9. Hence, only the
symmetric case is illustrated here.

To this end, consider the problem of calculating the forced response of the nongyroscopic
damped linear system given by

Mi+Di+Kq=£(1) (5.36)

where M and K are symmetric and positive definite and D is symmetric and positive
semidefinite. In addition, it is assumed that KM ~'D=DM'K. Let S,, be the modal matrix
of K normalized with respect to M, as defined by Equations (3.69) and (3.70). Then, the
commutivity of the coefficient matrices yields

ST™MS,, =1
DS, = Ay =diag(2{;»;)
STKS,, = Ay = diag(w?) (5.37)

where A, and Ay are diagonal matrices, as indicated. Making the substitution
q=q(r) =S,,y(¢) in Equation (5.36) and premultiplying by S’ as before yields

Iy + Apy + Agy = SLE(1) (5.38)
Equation (5.38) is diagonal and can be written as n decoupled equations of the form
§:(1) +25,0.3:(1) + 0}y, (1) = f,(1) (5.39)

Here, {; = A;(D)/2w;, where A,(D) denotes the eigenvalues of matrix D. In this case these
are the nonzero elements of Aj,. This expression is the nonhomogeneous counterpart of
Equation (3.71).

If it is assumed that 4K — D? is positive definite, then 0 < {; < 1, and the solution of
Equation (5.39) (assuming all initial conditions are zero) is

1 t
yi(t)z—/ e 607 £ (1 — T)sin(wyT)dT,  i=1,2,3,....,n (5.40)
Wg; 70

where w,;; = w;/1 — {,-(2). If 4K — D? is not positive definite, other forms of y,(7) result,
depending on the eigenvalues of the matrix 4K — D?, as discussed in Section 3.6.
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In addition to the forced response given by Equation (5.40), there will be a tran-
sient response, or homogeneous solution, due to any nonzero initial conditions. If this
response is denoted by y#, then the total response of the system in the decoupled coordinate
system is the sum y,(r) + y¥ (7). This solution is related to the solution in the original
coordinates by the modal matrix S,, and is given by

q(1) =S,[y() +y" (1] (541)

For asymmetric systems, the procedure is similar, with the exception of computing a second
transformation; this transforms the asymmetric system into an equivalent symmetric system,
as done in Section 4.9.

For systems in which the coefficient matrices do not commute, i.e., for which
KM™'D+#DM™'K in Equation (5.36), modal analysis of a sort is still possible without
resorting to state space. To this end, consider the symmetric case given by the system

Mi+Da+Kq=£(1) (5.42)

where M, D, and K are symmetric.
Let u; be the eigenvectors of the lambda matrix

(MA} +DA; + K)u; =0 (5.43)
with associated eigenvalues A;. Let n be the number of degrees of freedom (so there are 2n
eigenvalues), let 2s be the number of real eigenvalues, and let 2(n — s) be the number of
complex eigenvalues. Assuming that D,(A) is simple and that the w; are normalized so that

u/ (2M\; 4+ D)u; =1 (5.44)

a particular solution of Equation (5.42) is given by Lancaster (1966) in terms of the gener-
alized modes u, to be

2s t 2n t
A=Y uul [ eN(nydr+ Y [ RefeM Pl }(r) dr (5.45)
k=1 0 k=25+1"0

This expression is more difficult to compute but does offer some insight into the form of
the solution that is useful in modal testing, as will be illustrated in Chapter 8. Note that
the eigenvalues indexed A, through A, are real, whereas those labeled A, , through A,,
are complex. The complex eigenvalues A, and A,y are conjugates of each other. Also,
note that the nature of the matrices D and K completely determines the value of s. In fact,
if 4K — D? is positive definite, s =0 in Equation (5.44). Also note that, if A, is real, so is
the corresponding u,. On the other hand, if A, is complex, the corresponding eigenvector u,
is real if and only if KM ~'D =DM ~'K; otherwise, the eigenvectors are complex valued.

The particular solution (5.45) has the advantage of being stated in the original, or phys-
ical, coordinate system. To obtain the total solution, the transient response developed in
Section (3.4) must be added to Equation (5.45). This should be done unless steady state
conditions prevail.
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Example 5.4.1

Consider example 5.3.1 with a damping force applied of the form D =0.1K (proportional damping).
In this case 4K — D is positive definite so that each mode will be underdamped. The alternative
transformation used in example 5.3.1 is employed here to find the modal equations given in
Equation (5.39). The equations of motion and initial conditions (assuming compatible units) are

o Vao+[ 5y W5 a0+ 2 T ao=[]sna ao=[g]. ao=[o]

Since the damping is proportional, the undamped transformation computed in examples 3.3.2 and
. . . . 1

5.3.1 can be used to decouple the equations of motion. Using the transformation y(f) = S”M "2q(t)

and premultiplying the equations of motion by S”M ' yields the uncoupled modal equations

M+0.zyl<r>+2y1(r>=%sin3r, y](O)z%, 51(0)=0
m)+o.4&2(r>+4y2(r>=%sin3r, nO=2 50=0

From the modal equations the frequencies and damping ratios are evident:

0.2
o, =v2=14l4rad/s, {=—==0071<1, ,=w,/1-{=14lrad/s

272
0.4
w, =~/4=2rad/s, L= PI0) =0.1<1, wg, = wy\/1— {2 =1.99rad/s

Solving the two modal equations using the approach of example 1.4.1 (y, is solved there) yields

v, () =e %1 (0.3651sin 1.41¢ +2.1299 cos 1.41¢) — 0.1015 sin 3¢ — 0.0087 cos 3¢
¥, (£) = —e~%% (0.0084 sin 1.99¢ + 2.0892 cos 1.99¢) — 0.1325 sin 3t — 0.032 cos 3¢

This forms the solution in modal coordinates. To regain the solution in physical coordinates, use
the transformation q(¢) = M~'/2Sy(¢). Note that the transient term is multiplied by a decaying
exponential in time and will decay off, leaving the steady state to persist.

5.5 BOUNDED-INPUT, BOUNDED-OUTPUT STABILITY

In the previous chapter, several types of stability for the free response of a system were
defined and discussed in great detail. In this section the concept of stability as it applies
to the forced response of a system is discussed. In particular, systems are examined in the
state-space form given by Equation (5.1).

The stability of the forced response of a system is defined in terms of bounds of the
response vector x(7). Hence, it is important to recall that a vector x(¢) is bounded if

Ix()ll = VxTx <M (5.46)

where M is some finite positive real number. The quantity ||x|| just defined is called the
norm of x(t). The response x(¢) is also referred to as the output of the system, hence the
phrase bounded-output stability.
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A fundamental classification of stability of forced systems is called bounded-input,
bounded-output (BIBO) stability. The system described by Equation (5.1) is called BIBO
stable if any bounded forcing function f(z), called the input, produces a bounded response
x(#), i.e., a bounded output, regardless of the bounded initial condition x(0). An exam-
ple of a system that is not BIBO stable is given by the single-degree-of-freedom
oscillator

¥+ iy =sinwt (5.47)

In state-space form this becomes

K= [—?vi (l)]x+f(r) (5.48)

where x=[y ¥]? and f(f) =[0 sinwt]’. This system is not BIBO stable, since, for a
bounded input y(¢), and hence x(¢), blows up when w = w, (i.e., at resonance).

A second classification of stability is called bounded stability, or Lagrange stability, and
is a little weaker than BIBO stability. The system described in Equation (5.1) is said to be
Lagrange stable with respect to a given input f(¢) if the response x(¢) is bounded for any
bounded initial condition x(0). Referring to the example of the previous paragraph, if w # ,,,
then the system described by Equation (5.48) is bounded with respect to f(f) =[0 sin wt]”
because, when w # w,, X(f) does not blow up. Note that, if a given system is BIBO stable,
it will also be Lagrange stable. However, a system that is Lagrange stable may not be BIBO
stable.

As an example of a system that is BIBO stable, consider adding damping to the preceding
system. The result is a single-degree-of-freedom damped oscillator that has the state matrix

0 1
A= [_k/m _C/m] (5.49)

Recall that the damping term prevents the solution x(z) from becoming unbounded at res-
onance. Hence, y(¢) and y(t) are bounded for any bounded input f(z), and the system is
BIBO stable as well as Lagrange stable.

The difference in the two examples is due to the stability of the free response of each
system. The undamped oscillator is stable but not asymptotically stable, and the forced
response is not BIBO stable. On the other hand, the damped oscillator is asymptotically
stable and is BIBO stable. To some extent this is true in general. Namely, it is shown by
Miiller and Schiehlen (1977) that, if the forcing function f(#) can be written as a constant
matrix B times a vector u, i.e., f(#) = Bu, then, if

rank[B AB A’B A'B..- A 'B]=2n (5.50)

where 2n is the dimension of matrix A, the system in Equation (5.1) is BIBO stable if and
only if the free response is asymptotically stable. If () does not have this form or does not
satisfy the rank condition (5.50), then asymptotically stable systems are BIBO stable, and
BIBO stable systems have a stable free response.
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Another way to look at the difference between the above two examples is to con-
sider the phenomenon of resonance. The undamped single-degree-of-freedom oscillator of
Equation (5.48) experiences an infinite amplitude at w = w,, the resonance condition, which
is certainly unstable. However, the underdamped single-degree-of-freedom oscillator of
Equation (5.49) is bounded at the resonance condition, as discussed in Section 1.4. Hence,
the damping ‘lowers’ the peak response at resonance from infinity to some finite, or bounded,
value, resulting in a system that is BIBO stable.

The obvious use of the preceding conditions is to use the stability results of Chapter 4
for the free response to guarantee BIBO stability or boundedness of the forced response,
x(¢). To this extent, other concepts of stability of systems subject to external forces are not
developed. Instead, some specific bounds on the forced response of a system are examined
in the next section.

5.6 RESPONSE BOUNDS

Given that a system is either BIBO stable or at least bounded, it is sometimes of interest to cal-
culate bounds for the forced response of the system without actually calculating the response
itself. A summary of early work on the calculation of bounds is given in review papers
by Nicholson and Inman (1983) and Nicholson and Lin (1996). More recent work is given
in Hu and Eberhard (1999). A majority of the work reported there examines bounds for
systems in the physical coordinates q(¢) in the form of Equation (5.36). In particular, if
DM 'K =KM~'D and if the forcing function or input is of the form (periodic)

(1) =, (5.51)
where £, is an n x 1 vector of constants, j>= —1, and w is the driving frequency, then
1 £ A;(K) /\? (D)
i <
la@Il _ max A;(K) A(M) - 205(M) (5.52)
6l J A(M) : '
_— otherwise
A{(D)A(K)

Here, A;(M), A,(D), and A;(K) are used to denote the ordered eigenvalues of the matrices
M, D, and K respectively. The first inequality in expression (5.52) is satisfied if the free
system is overdamped, and the bound [A?(D)A;(K)/A;(M)]~'/? is applied for underdamped
systems.

Bounds on the forced response are also available for systems that do not decouple, i.e., for
systems with coefficient matrices such that DM 'K % KM ~'D. One way to approach such
systems is to write the system in the normal coordinates of the undamped system. Then the
resulting damping matrix can be written as the sum of a diagonal matrix and an off-diagonal
matrix, which clearly indicates the degree of decoupling.

Substituting q(7) = S,,x into Equation (5.36) and premultiplying by S?, where S,, is the
modal matrix for K, yields
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I&+ (Ap+ D)%+ Ayx=£(r) (5.53)

The matrix A, is the diagonal part of ST DS,,, D, is the matrix of off-diagonal elements of
S'DS,,, Ay is the diagonal matrix of squared undamped natural frequencies, and f= STt

The steady state response of Equation (5.53) with a sinusoidal input, i.e., f= f,e" and
Equation (5.53) underdamped, is given by

laOIl 2 oy
ol Awin(ApAc)

(5.54)

Here, A, (A, Ac) denotes the smallest eigenvalue of the matrix A, A, where A= (4A, —
A2)12. Also, Ay, is the smallest eigenvalue of the matrix Ap, ||D,]|| is the matrix norm
defined by the maximum value of the square root of the largest eigenvalue of D] D, = D?,
and B is defined by

B=/ |1+ (AZ'Ap)?| (5.55)

Examination of the bound in Equation (5.53) shows that, the greater the coupling in the
system characterized by ||D, ||, the larger is the bound. Thus, for small values of ||D, ||, i.e.,
small coupling, the bound is good, whereas for large values of ||D, || or very highly coupled
systems, the bound will be very large and too conservative to be of practical use. This is
illustrated in example 5.6.1.

Example 5.6.1

Consider a system defined by Equation (5.36) with M =1:

5 -1 0 1
K:[_1 | ] D:O.SK—I—O.SI—I—S[1 0]
subject to a sinusoidal driving force applied to the first mass so that f,=[1 0]”. The parameter ¢
clearly determines the degree of proportionality or coupling in the system. The bounds are tabulated
in Table 5.1 for various values of &, along with a comparison with the exact solution.
Examination of Table 5.1 clearly illustrates that, as the degree of coupling increases (larger &), the
bound gets farther away from the actual response. Note that the value given in the ‘exact’ column

is the largest value obtained by the exact response.

Table 5.1 Forced response bounds.

13 Exact Bound
solution
0 1.30 1.50
—-0.1 1.56 2.09
—-0.2 1.62 3.05
-0.3 1.70 4.69

—0.4 1.78 8.60
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5.7 FREQUENCY RESPONSE METHODS

This section attempts to extend the concept of frequency response introduced in Sections 1.5
and 1.6 to multiple-degree-of-freedom systems. In so doing, the material in this section
makes the connection between analytical modal analysis and experimental modal analysis
discussed in Chapter 8. The development starts by considering the response of a struc-
ture to a harmonic or sinusoidal input, denoted by f(¢) = f,¢/*’. The equations of motion
in spatial or physical coordinates given by Equation (5.36) with no damping (D =0) or
Equation (5.23) are considered first. In this case, an oscillatory solution of Equation (5.23)
of the form

q(f) =ue™ (5.56)

is assumed. This is equivalent to the frequency response theorem stated in Section 1.5. That
is, if a system is harmonically excited, the response will consist of a steady state term that
oscillates at the driving frequency with different amplitude and phase.

Substitution of the assumed oscillatory solution into Equation (5.36) with D =0
yields

(K — 0’M)ue® = £, (5.57)
Dividing through by the nonzero scalar ¢/’ and solving for u yields
u=(K — o’M)'f, (5.58)

Note that the matrix inverse of (K — w?M) exists as long as w is not one of the natural
frequencies of the structure. This is consistent with the fact that, without damping, the system
is Lagrange stable and not BIBO stable. The matrix coefficient of Equation (5.58) is defined
as the receptance matrix, denoted by a(w), i.e.,

a(w)=(K —o*M)™! (5.59)

Equation (5.58) can be thought of as the response model of the structure. Solution of
Equation (5.58) yields the vector u, which, coupled with Equation (5.56), yields the steady
state response of the system to the input force f(7).

Each element of the response matrix can be related to a single-frequency response function
by examining the definition of matrix multiplication. In particular, if all the elements of the
vector f,, denoted by f;, except the jth element are set equal to zero, then the ijth element
of a(w) is just the receptance transfer function between u;, the ith element of the response
vector u, and f i That is

a (@) =21, f=0,  i=0,...,n,  i#j (5.60)

fi
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Note that, since a(w) is symmetric, this interpretation implies that u;/f; = u;/f.
Hence, a force applied at position j yields the same response at point i as a force applied
at i does at point j. This is called reciprocity.

An alternative to computing the inverse of the matrix (K — w*M) is to use the modal
decomposition of a(w). Recalling Equations (3.20) and (3.21) from Section 3.2, the matrices
M and K can be rewritten as

M=S,"S" (5.61)
K =S, diag(?)S,,' (5.62)

where w; are the natural frequencies of the system and S, is the matrix of modal vectors
normalized with respect to the mass matrix. Substitution of these ‘modal’ expressions into
Equation (5.59) yields

a(w) =S, [diag(w?) — @’I]5,,"}
=S, {diag[w? — w?]'}S7 (5.63)

Expression (5.63) can also be written in summation notation by considering the ijth element
of a(w), recalling formula (2.6), and partitioning the matrix S, into columns, denoted by s, .
The vectors s, are, of course, the eigenvectors of the matrix K normalized with respect to
the mass matrix M. This yields

a(w) = i(w% —w?)7's,s" (5.64)

The ijth element of the receptance matrix becomes

n

a;(w) = > (0] —”)! [SrSrT]ij (5.65)

r=1

where the matrix element [s,s”], ; 18 identified as the modal constant or residue for the rth
mode, and the matrix s,s is called the residue matrix. Note that the right-hand side of Equa-
tion (5.65) can also be rationalized to form a single fraction consisting of the ratio of two
polynomials in w?*. Hence, [s,s”]; ; can also be viewed as the matrix of constants in the partial
fraction expansion of Equation (5.60).

Next, consider the same procedure applied to Equation (5.36) with nonzero damping. As
always, consideration of damped systems results in two cases: those systems that decouple
and those that do not.

First consider Equation (5.36) with damping such that DM 'K = KM~'D, so that the
system decouples and the system eigenvectors are real. In this case the eigenvectors of
the undamped system are also eigenvectors for the damped system, as was established
in Section 3.5. The definition of the receptance matrix takes on a slightly different form
to reflect the damping in the system. Under the additional assumption that the system is
underdamped, i.e., that the matrix 4K — D? is positive definite, the modal damping ratios .
are all between 0 and 1. Equation (5.58) becomes

u= (K +joD — o*M)'f, (5.66)
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Because the system decouples, matrix D can be written as
D=S,"diag(2{,w,)S," (5.67)
Substitution of Equations (5.61), (5.62), and (5.67) into Equation (5.66) yields

u=S,[diag(w? +2j{,w,0 — w*)"'|S" £, (5.68)

m

This expression defines the complex receptance matrix given by
(@) = Y (] +2j¢,0,0 - ) 's,s] (5.69)
r=1

Next, consider the general viscously damped case. In this case the eigenvectors s, are
complex and the receptance matrix is given (see Lancaster, 1966) as

n S.ST S*S*T
— rer rer 5.70
=2+ 70

r=1

Here, the asterisk denotes the conjugate, the A, are the complex system eigenvalues, and the
s, are the system eigenvectors.

The expressions for the receptance matrix and the interpretation of an element of the
receptance matrix given by Equation (5.60) form the background for modal testing. In
addition, the receptance matrix forms a response model for the system. Considering the most
general case [Equation (5.70)], the phenomenon of resonance is evident. In fact, if the real
part of A, is small, jo — A, is potentially small, and the response will be dominated by
the associated mode s,. The receptance matrix is a generalization of the frequency response
function of Section 1.5. In addition, like the transition matrix of Section 5.2, the receptance
matrix maps the input of the system into the output of the system.

5.8 NUMERICAL SIMULATION IN MATLAB

This section extends Section 3.9 to include simulation of systems subject to an applied
force. The method is the same as that described in Section 3.9, with the exception that
the forcing function is now included in the equations of motion. All the codes mentioned
in Section 3.9 have the ability numerically to integrate the equations of motion including
both the effects of the initial conditions and the effects of any applied forces. Numerical
simulation provides an alternative to computing the time response by modal methods, as
done in Equation (5.45). The approach is to perform numerical integration following the
material in Sections 1.10 and 3.9 with the state-space model. For any class of second-order
systems the equations of motion can be written in the state-space form, as by Equation (5.1),
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subject to appropriate initial conditions on the position and velocity. While numerical
solutions are a discrete time approximation, they are systematic and relatively easy to com-

pute with modern high-level codes. The following example illustrates the procedure in
MATLAB.

Example 5.8.1

Consider the system in physical coordinates defined by:
> 0 él 3 —0.5 QI 3 -1 a | _ 17 .
[0 IM%}JF[—O.S 0.5 qu o I R RSO
0 . 1
q(o):[o.l]’ q(O)_[O]

In order to use the Runge—Kutta numerical integration, first put the system into the state-space form.
Computing the inverse of the mass matrix and defining the state vector x by

the state equations become

0 0 1 0 0 0
: 0o 0 o0 1 0. 0.1
=\ aysu5-3s5 172 | X a5 S xO=1

-1 1/2 =172 1 0

The steps to solve this numerically in MATLAB follow those of example 3.9.1, with the additional
term for the forcing function. The corresponding m-file is

function v=£f581(t,x)

M=[5 0; 0 5]; D=[3 -0.5;-0.5 0.5]; K=[3 -1;-1 1];
A=[zeros(2) eye(2);-inv(M)* K -inv(M)* D]; b=[0;0;0.2;17;
v=A*x+b*sin(4*t);

This function must be saved under the name £581.m. Once this is saved, the following is typed
in the command window:

EDU>clear all

EDU>x0=[0;0.1;1;0];

EDU>ts=[0 50];

EDU>[t,x]=oded5(’'£f581’,ts,x0);
EDU>plot(t,x(:,1),t,x(:,2),"'--"),title('x1l,x2 versus time’)

This returns the plot shown in Figure 5.1. Note that the command x ( : , 1) pulls off the record for
x,(7) and the command ode45 calls a fifth-order Runge—Kutta program. The command ts=[0 507 ;
tells the code to integrate from 0 to 50 time units (seconds in this case).
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Figure 5.1 Displacement response to the initial conditions and forcing function of example 5.8.1

CHAPTER NOTES

The field of systems theory and control has advanced the idea of using matrix methods for
solving large systems of differential equations (see Patel, Laub and Van Dooren, 1994). Thus,
the material in Section 5.2 can be found in most introductory systems theory texts such as
Chen (1998) or Kailath (1980). In addition, those texts contain material on modal decoupling
of the state matrix, as covered in Section 5.3. Theoretical modal analysis (Section 5.3) is just
a method of decoupling the equations of motion of a system into a set of simple-to-solve
single-degree-of-freedom equations. This method is extended in Section 5.4 and generalized
to equations that cannot be decoupled. For such systems, modal analysis of the solution is
simply an expansion of the solution in terms of its eigenvectors. This material parallels the
development of the free response in Section 3.5. The material of Section 5.6 on bounds
is not widely used. However, it does provide some methodology for design work. The
results presented in Section 5.6 are from Yae and Inman (1987). The material on frequency
response methods presented in Section 5.7 is essential in understanding experimental modal
analysis and testing and is detailed in Ewins (2000). Section 5.8 is a brief introduction to
the important concept of numerical simulation of dynamic systems.
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PROBLEMS

5.1 Use the resolvent matrix to calculate the solution of
X+ X+ 2x =sin 3¢

with zero initial conditions.
5.2 Calculate the transition matrix e*’ for the system of problem 5.1.
5.3 Prove that e = (¢*)~! and show that e*e™ =1.
5.4 Compute e*’, where
1 1
St

5.5 Show that, if z(t) = ae7¢e*/*)f(¢), where a and f(t) are real and j> = —1, then
Re(z) = af (t) e* cos(wt — ¢).

5.6  Consider problem 3.6. Let f(¢) = [u(f) 0 0]7, where w(¢) is the unit step function,
and calculate the response of that system with f(z) as the applied force and zero initial
conditions.

5.7 Let f(¢t)=[sin(z) 0]7 in problem 3.10 and solve for x(¢).

5.8 Calculate a bound on the forced response of the system given in problem 5.7. Which
was easier to calculate, the bound or the actual response?

5.9 Calculate the receptance matrix for the system of example 5.6.1 with = —1.

5.10 Discuss the similarities between the receptance matrix, the transition matrix, and the
resolvent matrix.
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5.11

5.12
5.13
5.14
5.15

5.16
517

5.18

5.19
5.20

5.21
5.22

5.23

5.24

5.25

FORCED RESPONSE OF LUMPED-PARAMETER SYSTEMS
Using the definition of the matrix exponential, prove each of the following:

(@) (M) '=e
(b) &L=I,
() e'ef =eP if AB=BA.

Develop the formulation for modal analysis of symmetrizable systems by applying
the transformations of Section 4.9 to the procedure following Equation (5.23).

Using standard methods of differential equations, solve Equation (5.39) to obtain
Equation (5.40).

Plot the response of the system in example 5.6.1 along with the bound indicated in
Equation (5.54) for the case { = —1.

Derive the solution of Equation (5.39) for the case ¢; > 1.

Show that fye/’ is periodic.

Compute the modal equations for the system described by

|:(1) g]ij(t)+|:_51 _11](1(f)=|:(1):|sin2t

subject to the initial conditions of zero initial velocity and an initial displacement of
x(0)=[0 1]" mm.

Repeat problem 5.17 for the same system with the damping matrix defined by
C=0.1K.

Derive the relationship between the transformations S and S,,,.

Consider example problem 5.4.1 and compute the total response in physical coordi-
nates.

Consider example problem 5.4.1 and plot the response in physical coordinates.
Consider the problem of example 5.4.1 and use the method of numerical integration
discussed in Section 5.8 to solve and plot the solution. Compare your results to the
analytical solution found in problem 5.21.

Consider the following undamped system:

4 0|]Xx 30 =5 ||x |_[0.23500 | .
[0 9} I:x2:| + [—5 5 } |:x2] = [2.97922] sin(2.7565561)
(a) Compute the natural frequencies and mode shapes and discuss whether or not
the system experiences resonance.

(b) Compute the modal equations.
(c) Simulate the response numerically.

For the system of example 5.4.1, plot the frequency response function over a range
of frequencies from 0 to 8rad/s.

Compute and plot the frequency response function for the system of example 5.4.1
for the damping matrix having the value D = aK for several different values of «
ranging from 0.1 to 1. Discuss your results. What happens to the peaks?
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Design Considerations

6.1 INTRODUCTION

The word design means many different things to different people. Here, design is used
to denote an educated method of choosing and adjusting the physical parameters of a
vibrating system in order to obtain a more favorable response. The contents of this chapter
are somewhat chronological in the sense that the topics covered first, such as vibration
absorbers, are classical vibration design techniques, whereas the later sections, such as the
one on control, represent more contemporary methods of design. A section on controls serves
as an introduction to Chapter 7, which is devoted entirely to control methods. A section
on damping treatments introduces a commonly used method of vibration suppression. The
chapter ends with a section on model reduction, which is not a design method but a technique
commonly used to provide reasonable sized models to help in design analysis.

6.2 ISOLATORS AND ABSORBERS

Isolation of a vibrating mass refers to designing the connection of a mass (machine part or
structure) to ground in such a way as to reduce unwanted effects or disturbances through that
connection. Vibration absorption, on the other hand, refers to adding an additional degree of
freedom (spring and mass) to the structure to absorb the unwanted disturbance. The typical
model used in vibration isolation design is the simple single-degree-of-freedom system of
Figure 1.1(a) without damping, or Figure 1.4(a) with damping. The idea here is twofold.
First, if a harmonic force is applied to the mass through movement of the ground (i.e., as the
result of a nearby rotating machine, for instance), the values of ¢ and k should be chosen to
minimize the resulting response of the mass. The design isolates the mass from the effects
of ground motion. The springs on an automobile serve this purpose.

A second use of the concept of isolation is that in which the mass represents the mass of
a machine, causing an unwanted harmonic disturbance. In this case the values of m, ¢, and
k are chosen so that the disturbance force passing through the spring and dashpot to ground
is minimized. This isolates the ground from the effects of the machine. The motor mounts
in an automobile are examples of this type of isolation.

Vibration with Control D. J. Inman
© 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01051-7
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In either case, the details of the governing equations for the isolation problem consist
of analyzing the steady state forced harmonic response of equations of form (1.17). For
instance, if it is desired to isolate the mass of Figure 1.8 from the effects of a disturbance
F, sin(w?), then the magnification curves of Figure 1.9 indicate how to choose the damping ¢
and the isolator frequency w, so that the amplitude of the resulting vibration is as small
as possible. Curves similar to the magnification curves, called transmissibility curves, are
usually used in isolation problems.

The ratio of the amplitude of the force transmitted through the connection between the
ground and the mass to the amplitude of the driving force is called the transmissibility. For
the system of Figure 1.8, the force transmitted to ground is transmitted through the spring,
k, and the damper, c¢. From Equation (1.21), these forces at steady state are

F, =kx, (1) = kX sin(wt — ¢) (6.1)
and

F.=cx(t) = cwX cos(wt — ¢) (6.2)

Here, F, and F. denote the force in the spring and the force in the damper respectively, and
X is the magnitude of the steady state response as given in Section 1.4. The magnitude of
the transmitted force is the magnitude of the vector sum of these two forces, denoted by F,
and is given by

F2 = kx, +ci, > =[(kX)? + (coX)’] (6.3)

Thus, the magnitude of transmitted force becomes

F, = kX [1 n (%)T/Z (6.4)

The amplitude of the applied force is just Fy, so that the transmissibility ratio, denoted by
TR, becomes

Fr Vit Qlw/o,)

TR=—= 6.5
Fo 1= (0/0,) P+ 20/, ¢

Plots of expression (6.5) versus the frequency ratio w/w, for various values of { are called
transmissibility curves. One such curve is illustrated in Figure 6.1. This curve indicates that,
for values of w/w, > V2 (that is, TR < 1), vibration isolation occurs, whereas for values of
w/w, <~+/2 (TR > 1) an amplification of vibration occurs. Of course, the largest increase in
amplitude occurs at resonance.

If the physical parameters of a system are constrained such that isolation is not feasible,
a vibration absorber may be included in the design. A vibration absorber consists of an
attached second mass, spring, and damper, forming a two-degree-of-freedom system. The
second spring—mass system is then ‘tuned’ to resonate and hence absorb all the vibrational
energy of the system.
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100 ~ w/w,
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Figure 6.1 Transmissibility curve used in determining frequency values for vibration isolation.

The basic method of designing a vibration absorber is illustrated here by examining the
simple case with no damping. To this end, consider the two-degree-of-freedom system of
Figure 2.4 with ¢, =¢, = f, =0, m, = m,, the absorber mass, m, = m, the primary mass,
k, =k, the primary stiffness, and k, = k,, the absorber spring constant. In addition, let
x, = x, the displacement of the primary mass, and x, = x,,, the displacement of the absorber.
Also, let the driving force F|,sin(wt) be applied to the primary mass, m. The absorber is
designed to the steady state response of this mass by choosing the values of m, and k,,.
Recall that the steady state response of a harmonically excited system is found by assuming
a solution that is proportional to a harmonic term of the same frequency as the driving
frequency.

From Equation (2.25) the equations of motion of the two-mass absorber system are

KA E sl | 4

Assuming that in the steady state the solution of Equation (6.6) will be of the form

[;((tt))} = |:§ j| sin wt (6.7)
and substituting into Equation (6.6) yields
k+k, — mw? —k, X]. | F ..
|: “k, ka_maw2j| [Xa:| sinwt = |: 0 j|smwt (6.8)

Solving for the magnitudes X and X, yields

|:X:|_ 1 [(ka—mawz) k, HFO} 69)
Xa B (k+ka_mw2)(ka_maw2)_k§ ka (k+ka_mw2) 0 '
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or
(ka - mawz)FO
X= 6.10
HE, — mad)k, — myo?) — 2 (©10)
and
k,F,
a9 (6.11)

o= Wk, —mad) (k, — myo?) 2
As can be seen by examining Equation (6.10), if k, and m, are chosen such that k, — m,w* =0,
i.e., such that \/k,/m, = w, then the magnitude of the steady state response of the primary
m is zero, i.e., X = 0. Hence, if the added absorber mass, m,, is ‘tuned’ to the driving
frequency w, then the amplitude of the steady state vibration of the primary mass, X, is zero
and the absorber mass effectively absorbs the energy in the system.

The addition of damping into the absorber-mass system provides two more parameters
to be adjusted for improving the response of the mass m. However, with damping, the
magnitude X cannot be made exactly zero. The next section illustrates methods for choosing
the design parameters to make X as small as possible in the damped case.

6.3 OPTIMIZATION METHODS

Optimization methods (see, for instance, Gill, Murray, and Wright, 1981) can be used
to obtain the ‘best’ choice of the physical parameters m,, c,, and k, in the design of a
vibration absorber or, for that matter, any degree-of-freedom vibration problem (Vakakis
and Paipetis, 1986). The basic optimization problem is described in the following and
then applied to the damped vibration absorber problem mentioned in the preceding
section.

The general form for standard nonlinear programming problems is to minimize some
scalar function of the vector of design variables y, denoted by J(y), subject to p inequality
constraints and ¢ equality constraints, denoted by

&) <0,  s=12,....p (6.12)
h(y)=0, r=12,....q (6.13)

respectively. The function J(y) is referred to as the objective function, or cost function.
The process is an extension of the constrained minimization problems studied in beginning
calculus.

There are many methods available to solve such optimization problems. The intention
of this section is not to present these various methods of design optimization but rather
to introduce the use of optimization techniques as a vibration design method. The reader
should consult one or more of the many texts on optimization for details of the various
methods.

A common method for solving optimization problems with equality constraints is to use
the method of Lagrange multipliers. This method defines a new vector 6=[6,6,---6,]"
called the vector of Lagrange multipliers (in optimization literature they are sometimes
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denoted by A;), and the constraints are added directly to the objective function by using the
scalar term 07 h. The new cost function becomes J' = J(y) + 6" h(y), which is then minimized
as a function of y; and 0,. This is illustrated in the following example.

Example 6.3.1

Suppose it is desired to find the smallest value of the damping ratio { and the frequency ratio
r =w/w, such that the transmissibility ratio is 0.1. The problem can be formulated as follows. Since
TR =0.1, then TR*> =0.01 or (TR)?> — 0.01 =0, which is the constraint 4, (y) in this example. The
vector y becomes y =[{ 7|7, and the vector 6 is reduced to the scalar 6. The cost function J' then
becomes

J =+ 4+ 0(TR* —0.01)
=241 40[0.9940.02r —0.017* +3.967%17]

The necessary (but not sufficient) conditions for a minimum are that the first derivatives of the cost
function with respect to the design variables must vanish. This yields

J;=2046(7.92¢r*) =0
J/=2r+6[0.04r —0.04r" +7.92{°r]=0
Jy=0.99+0.02r2 —0.017* +3.96,*r* =0

where the subscripts of J' denote partial differentiation with respect to the given variable. These
three nonlinear algebraic equations in the three unknowns ¢, r, and 6 can be solved numerically to
yield { =0.037, r =3.956, and 6 = —0.016.

The question arises as to how to pick the objective function J(y). The choice is arbitrary,
but the function should be chosen to have a single global minimum. Hence, the choice of
the quadratic form ({2 + r?) in the previous example. The following discussion on absorbers
indicates how the choice of the cost function affects the result of the design optimization.
The actual minimization process can follow several formulations; the results presented next
follow Fox (1971).

Soom and Lee (1983) examined several possible choices of the cost function J(y) for
the absorber problem and provided a complete analysis of the absorber problem (for a
two-degree-of-freedom system) given by

m 0 []|X e te, —c || x ki+k, —k |[x ] _[f
KA R Rl | ] R i R R

(6.14)
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These equations are first nondimensionalized by defining the following new variables and
constants:

k c
W = _1, gl = !
my 2 mlkl
w ¢ c,
w= -, =
, : 2,/1’)11](1
T=w,, P= %, where L is the static deflection of x,
1
m, X1
= —, 1= —
e Ignl =7
] X,
k _“’ 7, = —a
k, T L

Substitution of these into Equation (6.14) and dividing by k,L yields the dimensionless
equations

1 o]z 26, +8) —261T¢z 1+k —k|[z]_[P
R el [ A vl [ S

(6.15)

where the overdots now indicate differentiation with respect to 7. As before, the steady state
responses of the two masses are assumed to be of the form

7y =|A[cos(wT + &)

2, =|Ay| cos(wT + ¢,) (6.16)

Substitution of Equations (6.16) into Equation (6.15) and solving for the amplitudes |A,|
and |A,| yields

(sl =l + G107 |4 (6.17)
P
SN (e e, ©19

where the constants a, b, g, r, and s are defined by

a=k +450* — pko?
b=-2pw’

g= (k- po’)’ +480’
r=upk’o’ — pko' + 440
s=25Lp’ 0’

Note that Equations (6.17) and (6.18) are similar in form to Equations (6.10) and (6.11)
for the undamped case. However, the tuning condition is no longer obvious, and there are
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many possible design choices to make. This marks the difference between an absorber with
damping and one without. The damped case is, of course, a much more realistic model of
the absorber dynamics.

Optimization methods are used to make the best design choice among all the physical
parameters. The optimization is carried out using the design variable defined by the design
vector. Here, « is the tuning condition defined by

k
a=_[—
m
and ) is a damping ratio defined by
= &

2= Tk

The quantity ¢, is the damping ratio of the ‘added-on’ absorber system of mass m,. The
tuning condition « is the ratio of the two undamped natural frequencies of the two masses.

The designer has the choice of making up objective functions. In this sense, the opti-
mization produces an arbitrary best design. Choosing the objective function is the art of
optimal design. However, several cost or objective functions can be used, and the results of
each optimization compared. Soom and Lee (1983) considered several different objective
functions:

J, = the maximum value of |A,|, the magnitude of the displacement response in the
frequency domain;

J, = Y (J]A,| = 1)? for frequencies where |A,| > 1 and where the sum runs over a number
of discrete points on the displacement response curves of mass m;;

J; = maximum (w|A,|), the maximum velocity of m,;

J, = Y |A,|?, the mean squared displacement response;

Js = Y (w]A,])?, the mean squared velocity response.

These objective functions were all formed by taking 100 equally spaced points in the
frequency range from w =0 to w =2. The only constraints imposed were that the stiffness
and damping coefficients be positive.

Solutions to the various optimizations yields the following interesting design conclusions:

1. From minimizing J,, the plot of J, versus ¢, for various mass ratios is given in Figure 6.2
and shows that one would not consider using a dynamic absorber for a system with a
damping ratio much greater than {; =0.2. The plots clearly show that not much reduction
in magnitude can be expected for systems with large damping in the main system.

2. For large values of damping, {; =0.3, the different objective functions lead to different
amounts of damping in the absorber mass, {,, and the tuning ratio, «. Thus, the choice
of the objective function changes the optimum point. This is illustrated in Figure 6.3.

3. The peak, or maximum value, of z,(¢) at resonance also varies somewhat, depending on
the choice of the cost function. The lowest reduction in amplitude occurs with objective
function J;, as expected, which is 30% lower than the value for J,.
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Figure 6.2 Plot of the cost function J,, versus the damping ratio {; for various mass ratios.
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Figure 6.3 Tuning parameter « versus the first mode damping ratio {; for each cost function J,

indicating a broad range of optimal values of «.
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It was concluded from this study that, while optimal design can certainly improve the
performance of a device, a certain amount of ambiguity exists in an optimal design based
on the choice of the cost function. Thus, the cost function must be chosen with some
understanding about the design objectives as well as physical insight.

6.4 DAMPING DESIGN

This section illustrates a method of adjusting the individual mass, damping, and stiffness
parameters of a structure in order to produce a desired damping ratio. Often in the design
of systems, damping is introduced to achieve a reduced level of vibrations, or to perform
vibration suppression. Consider a symmetric system of the form

M%+Dx+Kx=0 (6.19)

where M, D, and K are the usual symmetric, positive definite mass, damping, and stiffness
matrices, to be adjusted so that the modal damping ratios, ;, have desired values. This in
turn provides insight into how to adjust or design the individual elements m;, c;, and k; such
that the desired damping ratios are achieved.

Often in the design of a mechanical part, the damping in the structure is specified in
terms of either a value for the loss factor or a percentage of critical damping, i.e., the
damping ratio. This is mainly true because these are easily understood concepts for a single-
degree-of-freedom model of a system. However, in many cases, of course, the behavior of
a given structure may not be satisfactorily modeled by a single modal parameter. Hence,
the question of how to interpret the damping ratio for a multiple-degree-of-freedom system
such as the symmetric positive definite system of Equation (6.19) arises.

An n-degree-of-freedom system has n damping ratios, {;. These damping ratios are, in
fact, defined by Equation (5.40) for the normal mode case (i.e., under the assumption that
DM 'K is symmetric). Recall that, if the equations of motion decouple, then each mode has
a damping ratio {; defined by

_ (D)

= (6.20)

2w,

where w, is the ith undamped natural frequency of the system and A;(D) denotes the ith
eigenvalue of matrix D.

To formalize this definition and to examine the nonnormal mode case (DM 'K #KM ' D),
the damping ratio matrix, denoted by Z, is defined in terms of the critical damping matrix
D,, of Section 3.6. The damping ratio matrix is defined by

Z=D_'*DD.'? (6.21)

where D is the mass normalized damping matrix of the structure. Furthermore, define the
matrix Z’ to be the diagonal matrix of eigenvalues of matrix Z, i.e.,

Z' = diag[A,(2)] =diag[{] (6.22)
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Here, the { are damping ratios in that, if 0 < { < 1, the system is underdamped. Note, of
course, that, if DM 'K =KM~'D, then Z=Z'.

By following the definitions of underdamped and critically damped systems of Section 3.6,
it can easily be shown that the definiteness of the matrix / — Z’ determines whether a given
system oscillates.

Example 6.4.1

As an example, consider Equation (6.19) with the following numerical values for the coefficient
matrices:

(R S R B B

In this case, D, is calculated to be
- 44272 —0.6325
— 12 _
Doy =2K77= [—0.6325 1.8974 ]

where K = M~12KM~'/2,
From Equation (6.21) the damping ratio matrix becomes

| 03592 —0.2205

T [—0.2205  0.4660
It is clear that the matrix [ — Z] is positive definite, so that each mode in this case should be
underdamped. That is

03592 0.2205
u _Z)z[o.zzos 0.5340]

so that the principle minors become 0.3592 > 0 and det(/ — Z) =0.1432 > 0. Hence, the matrix
[I — Z] is positive definite.

Calculating the eigenvalues of the matrix Z yields A,(Z) =0.7906 and A,(Z) =0.3162, so that
0< X (Z) <1 and 0 < A,(Z) < 1, again predicting that the system is underdamped in each mode,
since each {; is between O and 1.

To illustrate the validity of these results for this example, the latent roots of the system can be
calculated. They are

A, =—0337£08326/,  Ay,=—1.66+1481]

where j = +/—1. Thus, each mode is, in fact, underdamped as predicted by both the damping ratio
matrix Z and the modal damping ratio matrix Z'.

It would be a useful design technique to be able to use this defined damping ratio matrix
to assign damping ratios to each mode and back-calculate from the matrix Z’ to obtain the
required damping matrix D. Unfortunately, although the eigenvalues of matrix Z' specify
the qualitative behavior of the system, they do not correspond to the actual modal damping
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ratios unless the matrix DM 'K is symmetric. However, if the damping is proportional, then
Equation (6.21) can be used to calculate the desired damping matrix in terms of the specified
damping ratios, i.e.,

D — Dl_/ZZDl,/Z

This damping matrix would then yield a system with modal damping ratios exactly as
specified.

This section is a prelude to active control where one specifies the desired eigenvalues
of a system (i.e., damping ratios and natural frequencies) and then computes a control law
to achieve these values. The pole placement method introduced in Section 6.6 is such a
method. The hardware concerns for achieving the desired damping rates are discussed in
Nashif, Jones, and Henderson (1985).

6.5 DESIGN SENSITIVITY AND REDESIGN

Design sensitivity analysis usually refers to the study of the effect of parameter changes on the
result of an optimization procedure or an eigenvalue—eigenvector computation. For instance,
in the optimization procedure presented in Section 6.3, the nonabsorber damping ratio ¢
was not included as a parameter in the optimization. How the resulting optimum changes as
{, changes is the topic of sensitivity analysis for the absorber problem. The eigenvalue and
eigenvector perturbation analysis of Section 3.7 is an example of design sensitivity for the
eigenvalue problem. This can, on the other hand, be interpreted as the redesign problem,
which poses the question as to how much the eigenvalue and eigenvector solution changes as
a specified physical parameter changes because of some other design process. In particular,
if a design change causes a system parameter to change, the eigensolution can be computed
without having to recalculate the entire eigenvalue/eigenvector set. This is also referred to
as a reanalysis procedure and sometimes falls under the heading of structural modification.
These methods are all fundamentally similar to the perturbation methods introduced in
Section 3.7. This section develops the equations for discussing the sensitivity of natural
frequencies and mode shapes for conservative systems.

The motivation for studying such methods comes from examining the large-order dynam-
ical systems often used in current vibration technology. Making changes in large systems is
part of the design process. However, large amounts of computer time are required to find
the solution of the redesigned system. It makes sense, then, to develop efficient methods to
update existing solutions when small design changes are made in order to avoid a complete
reanalysis. In addition, this approach can provide insight into the design process.

Several approaches are available for performing a sensitivity analysis. The one pre-
sented here is based on parameterizing the eigenvalue problem. Consider a conservative
n-degree-of-freedom system defined by

M(a)q(r) +K()q(1) =0 (6.23)

where the dependence of the coefficient matrices on the design parameter « is indicated.
The parameter « is considered to represent a change in the matrix M and/or the matrix K.
The related eigenvalue problem is

M~ (@)K (@)u,(a) = A(a)u() (624)
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Here, the eigenvalue A;(«) and the eigenvector u,(«) will also depend on the parameter «.
The mathematical dependence is discussed in detail by Whitesell (1980). It is assumed that
the dependence is such that M, K, A;, and u, are all twice differentiable with respect to the
parameter «.

Proceeding, if u; is normalized with respect to the mass matrix, differentiation of Equa-
tion (6.24) with respect to the parameter « yields

d Td d
e =el | L= Ageon]w (6.25)

Here, the dependence of o has been suppressed for notational convenience. The second
derivative of A, can also be calculated as

2

d Td d
—A=2u; | —(K)—\,— (M) |«
gm0 - |

d d?
Lo~ Aiﬁam] o (6.26)

[ d d
ol | 200 - 20
The notation u’ denotes the derivative of the eigenvector with respect to a. The expression
for the second derivative of A; requires the existence and computation of the derivative of
the corresponding eigenvector. For the special case where M is a constant, and with some
manipulation (see Whitesell, 1980), the eigenvector derivative can be calculated from the
related problem for the eigenvector v; from the formula

L w= kz (i @)y, (627)

where the vectors v, are related to u, by the mass transformation v, =M '/?u,. The coefficients
¢;(1, @) in this expansion are given by

0 i=k
e i, @)= I rda ik (6.28)
A=A Fda

where the matrix A is the symmetric matrix M~"/>KM~'/> depending on a.

Equations (6.25) and (6.27) yield the sensitivity of the eigenvalues and eigenvectors of a
conservative system to changes in the stiffness matrix. More general and computationally
efficient methods for computing these sensitivities are available in the literature. Adhikari
and Friswell (2001) give formulae for damped systems and reference to additional methods.

Example 6.5.1

Consider the system discussed previously in example 3.3.2. Here, take M =1, and K becomes

= 3 -1
k=[3 7er
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The eigenvalues of the matrix are A, =2,4, and the normalized eigenvectors are u; =v, =
(1/+/2) [ 11 ]T and u, =v, =(1/+/2) [—1 l]T. It is desired to compute the sensitivity of the natural
frequencies and mode shapes of this system as a result of a parameter change in the stiffness of the
spring attached to ground. To this end, suppose the new design results in a new stiffness matrix of

the form
34a -1
K(a)_|: _1 3 ]

Then

d 0 0 d 1 0
d—a(M):[O 0] and d—a(K)z[O 0]

Following Equations (6.25) and (6.27), the derivatives of the eigenvalues and eigenvectors become

dA, _0 dA, —0 duy, 1 [-1 da, 1171
da = da = 7 da 4201 da 42 |1
These quantities are an indication of the sensitivity of the eigensolution to changes in the matrix K.

To see this, substitute the preceding expressions into the expansions for A(a) and u,(«) given by
Equations (3.98) and (3.99). This yields

A(a)=2+4+0.5¢, A(a)=440.5a

u, (@) =0.707 [}] +0.177a[ 11], u,(a)=0.707 [‘11] —0.177a [”

This last set of expressions allows the eigenvalues and eigenvectors to be evaluated for any given
parameter change a without having to resolve the eigenvalue problem. These formulae constitute
an approximate reanalysis of the system.

It is interesting to note this sensitivity in terms of a percentage. Define the percentage change in
A, by

Aj(@) = Ay

100% =
A 7

2+0.5a) -2
% 100% = (25%) et
If the change in the system is small, say o =0.1, then the eigenvalue A; changes by only 2.5%,
and the eigenvalue A, changes by 1.25%. On the other hand, the change in the elements of the
eigenvector u, is 2.5%. Hence, in this case the eigenvector is more sensitive to parameter changes
than the eigenvalue is.

By computing higher-order derivatives of A; and u;, more terms of the expansion can be
used, and greater accuracy in predicting the eigensolution of the new system results. By
using the appropriate matrix computations, the subsequent evaluations of the eigenvalues and
eigenvectors as the design is modified can be carried out with substantially less computational
effort (reportedly of the order of n?> multiplications). The sort of calculation provided by
eigenvalue and eigenvector derivatives can provide an indication of how changes to an initial
design will affect the response of the system. In the example, the shift in value of the first
spring is translated into a percentage change in the eigenvalues and hence in the natural
frequencies. If the design of the system is concerned with avoiding resonance, then knowing
how the frequencies shift with stiffness is critical.
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6.6 PASSIVE AND ACTIVE CONTROL

In the redesign approach discussed in the previous section, the added structural modification
a can be thought of as a passive control. If « represents added stiffness chosen to improve the
vibrational response of the system, then it can be thought of as a passive control procedure.
As mentioned in Section 1.8, passive control is distinguished from active control by the
use of added power or energy in the form of an actuator, required in active control.

The material on isolators and absorbers of Section 6.2 represents two possible meth-
ods of passive control. Indeed, the most common passive control device is the vibra-
tion absorber. Much of the other work in passive control consists of added layers of
damping material applied to various structures to increase the damping ratios of trou-
blesome modes. Adding mass and changing stiffness values are also methods of pas-
sive control used to adjust a frequency away from resonance. Damping treatments
increase the rate of decay of vibrations, so they are often more popular for vibration
suppression.

Active control methods have been introduced in Sections 1.8, 2.3, and 4.10. Here we
examine active control as a design method for improving the response of a vibrating system.
This section introduces the method of eigenvalue placement (often called pole placement),
which is useful in improving the free response of a vibrating system by shifting natural
frequencies and damping ratios to desired values. The method of Section 6.4 is a primitive
version of placing the eigenvalues by adjusting the damping matrix. The next chapter is
devoted to formalizing and expanding this method (Section 7.3), as well as introducing
some of the other techniques of control theory.

There are many different methods of approaching the eigenvalue placement prob-
lem. Indeed, it is the topic of ongoing research. The approach taken here is simple.
The characteristic equation of the structure is written. Then a feedback law is intro-
duced with undetermined gain coefficients of the form given by Equations (4.24) through
(4.26). The characteristic equation of the closed-loop system is then written and com-
pared with the characteristic equation of the open-loop system. Equating coefficients of
the powers of A in the two characteristic equations yields algebraic equations in the
gain parameters, which are then solved. This yields the control law, which causes the
system to have the desired eigenvalues. The procedure is illustrated in the following
example.

Example 6.6.1

Consider the undamped conservative system of example 2.4.4 with M =1,D=0,k, =2, and k, = 1.
The characteristic equation of the system becomes

N —4r+2=0

This has roots A, =2 — +/2 and A, =2 + /2. The natural frequencies of the system are then v/2 — v/2
and v/2 4+ +/2. Suppose now that it is desired to raise the natural frequencies of this system to be
V2 and +/3 respectively. Furthermore, assume that the values of k; and m; cannot be adjusted, i.e.,
that passive control is not a design option in this case.
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First, consider the control and observation matrices of Section 4.10 and the solution to Problem
4.7. The obvious choice would be to measure the positions ¢, (f) and g,(#), so that C,=0and C, =1,
and apply forces proportional to their displacements, so that

& 0
G =
f |: 0 g2:|
with the actuators placed at x, and x, respectively. In this case, the matrix B, becomes B, =1. Then,
the closed-loop system of Equation (4.27) has the characteristic equation

N—(4+g +g)A+2+g +32,+88=0 (6.29)

If it is desired that the natural frequencies of the closed-loop system be +/2 and +/3, then the
eigenvalues must be changed to 2 and 3, which means the desired characteristic equation is

(A=3)(A=2)=X2—51+6=0 (6.30)

By comparing the coefficients of A and A° (constant) terms of Equations (6.29) and (6.30), it can
be seen that the gains g, and g, must satisfy

S5=(+g+8)
6=2+4g +38+8%
which has no real solutions.
From Equation (6.29) it is apparent that, in order to achieve the goal of placing the eigenvalues,

and hence the natural frequencies, the gains must appear in some different order in the coefficients
of Equation (6.29). This condition can be met by reexamining the matrix B;. In fact, if B, is chosen

to be
0 O
w1

the characteristic equation for the closed-loop system becomes
N —(4+g)A+2+3g8+g =0 (6.31)

Comparison of the coefficients of A in Equations (6.30) and (6.31) yields values for the gains of
g=1land g, =1.

The eigenvalues with these gains can be easily computed as a check to see that the scheme works.
They are in fact A =2 and A =3, resulting in the desired natural frequencies.

As illustrated by the preceding example, the procedure is easy to calculate but does not
always yield real values or even realistic values of the gains. The way in which G;, B;, and
C, are chosen and, in fact, whether or not such matrices even exist are topics of the next
chapter. Note that the ability to choose these matrices is the result of the use of feedback and
illustrates the versatility gained by using active control as against passive control. In passive
control, g, and g, have to correspond to changes in mass or stiffness. In active control,
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g, and g, are often electronic settings and hence are easily adjustable within certain bounds
(but at other costs).

The use of pole placement assumes that the designer understands, or knows, what eigen-
values are desirable. This knowledge comes from realizing the effect that damping ratios
and frequencies, and hence the eigenvalues, have on the system response. Often these are
interpreted from, or even stated in terms of, design specifications. This is the topic of the
next section.

6.7 DESIGN SPECIFICATIONS

The actual design of a mechanism starts and ends with a list of performance objectives
or criteria. These qualitative criteria are eventually stated in terms of quantitative design
specifications. Sample specifications form the topic of this section. Three performance
criteria are considered in this section: speed of response, relative stability, and resonance.

The speed of response addresses the length of time required before steady state is reached.
In classical control this is measured in terms of rise time, settling time, and bandwidth, as
discussed in Section 1.4. In vibration analysis, speed of response is measured in terms of a
decay rate or logarithmic decrement. Speed of response essentially indicates the length of
time for which a structure or machine experiences transient vibrations. Hence, it is the time
elapsed before the steady state response dominates. If just a single output is of concern,
then the definitions of these quantities for multiple-degree-of-freedom systems are similar
to those for the single-degree-of-freedom systems of Chapter 1.

For instance, for an n-degree-of-freedom system with position vector q =
[0 q:(D)...q,()], if one force is applied, say at position m,, and one displacement is
of concern, say gg(?), then specifications for the speed of response of g4(¢) can be defined
as follows. The settling time is the time required for the response gg(#) to remain within
+a percent of the steady state value of ggz(7). Here, « is usually 2, 3, or 5. The rise time
is the time required for the response gz(#) to go from 10 to 90% of its steady state value.
The log decrement discussed in Equation (1.35) can be used as a measure of the decay rate
of the system. All these specifications pertain to the transient response of a single-input,
single-output (SISO) configuration.

On the other hand, if interest is in the total response of the system, i.e., the vector q,
then the response bounds of Section 5.6 yield a method of quantifying the decay rate for the
system. In particular, the constant 3, called a decay rate, may be specified such that

la(n)ll <me™

is satisfied for all > 0. This can also be specified in terms of the time constant defined by
the time, ¢, required for B¢ = 1. Thus, the time constant is r =1/8.

Example 6.7.1

Consider the system of example 5.2.1. The response norm of the position is the first component of
the vector x(¢) so that g(f) = (1 —e*)e™" and its norm is |e™" — e | < |e”"|=¢~". Hence B =1,
and the decay rate is also 1.
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Some situations may demand that the relative stability of a system be quantified. In particular,
requiring that a system be designed to be stable or asymptotically stable may not be enough.
This is especially true if some of the parameters in the system may change over a period of
time or change owing to manufacturing tolerances or if the system is under active control.
Often the concept of a stability margin is used to quantify relative stability.

In Chapter 4 several systems are illustrated that can become unstable as one or more
parameters in the system change. For systems in which a single parameter can be used to
characterize the stability behavior of the system, the stability margin, denoted by sm, of the
system can be defined as the ratio of the maximum stable value of the parameter to the
actual value for a given design configuration. The following example illustrates this concept.

Example 6.7.2

Consider the system defined in example 4.6.1 with y=1,¢, =6, and ¢, =2 and calculate the
stability margin of the system as the parameter changes. Here, 7 is being considered as a design
parameter. As the design parameter 7 increases, the system approaches an unstable state. Suppose
the operating value of 7, denoted by 7, is 0.1. Then, the stiffness matrix becomes semidefinite for
mn =1 and indefinite for > 1, and the maximum stable value of 7 is 1,,,, = 1. Hence, the stability
margin is

. 1
sm="Tmx _ ____ 19
Nop 0.1
If the design of the structure is such that n,, =0.5, then sm = 2. Thus, all other factors being equal,
the design with n,, =0.1 is ‘more stable’ than the same design with n,, =0.5, because 7,,=0.1

has a larger stability margin.

The resonance properties, or modal properties, of a system are obvious design criteria in
the sense that in most circumstances resonance is to be avoided. The natural frequencies,
mode shapes, and modal damping ratios are often specified in design work. Methods of
designing a system to have particular modal properties have been discussed briefly in this
chapter in terms of passive and active control. Since these specifications can be related to
the eigenvalue problem of the system, the question of designing a system to have specified
modal properties is answered by the pole placement methods and eigenstructure assignment
methods of control theory discussed in Section 7.3.

6.8 MODEL REDUCTION

A difficulty with many design and control methods is that they work best for systems with
a small number of degrees of freedom. Unfortunately, many interesting problems have a
large number of degrees of freedom. One approach to this dilemma is to reduce the size of
the original model by essentially removing those parts of the model that affect its dynamic
response of interest the least. This process is called model reduction, or reduced-order
modeling.
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Quite often the mass matrix of a system may be singular or nearly singular owing to some
elements being much smaller than others. In fact, in the case of finite element modeling
(discussed in Section 13.3), the mass matrix may contain zeros along a portion of the
diagonal (called an inconsistent mass matrix). Coordinates associated with zero, or relatively
small mass, are likely candidates for being removed from the model.

Another set of coordinates that are likely choices for removal from the model are those
that do not respond when the structure is excited. Stated another way, some coordinates
may have more significant responses than others. The distinction between significant and
insignificant coordinates leads to a convenient formulation of the model reduction problem
due to Guyan (1965).

Consider the undamped forced vibration problem of Equation (5.22) and partition the mass
and stiffness matrices according to significant displacements, denoted by q,, and insignificant
displacements, denoted by q,. This yields

M, M12] |:‘hi| |:K11 K12:| |:‘hi| |:f1:|
S|+ + 6.32
|:M21 My || 4 Ky Kyn||l4 f, ( )
Note that the coordinates have been rearranged so that those having the least signifi-
cant displacements associated with them appear last in the partitioned displacement vector

q =[af qi]
Next consider the potential energy of the system defined by the scalar V, = (1/2)q"Kq
or, in partitioned form,
17q,71" [K K, 1[4
Ve [ 1 11 12 1 6.33
-2 |:Q2:| Ky Ky ||l ® (633)
Likewise, the kinetic energy of the system can be written as the scalar T, = (1/2)q"Mq,
which becomes
(4] [ ]
T,=-|h o Mz | 6.34
2 |:Q2j| My, My |4 ( )

in partitioned form. Since each coordinate q; is acted upon by a force f;, the condition that
there is no force in the direction of the insignificant coordinates, q,, requires that f, =0 and
that dV,/dq, = 0. This yields

d
a(‘hTKll(h +(hTK12Q2 +Q2TK21‘11 +Q2TK22‘12) =0 (6.35)
2

Solving Equation (6.35) yields a constraint relation between q, and q, which (since K, =
K})) is as follows:

q,= _Ki1K21Q1 (6.36)

This last expression suggests a coordinate transformation (which is nor a similarity trans-
formation) from the full coordinate system q to the reduced coordinate system q,. If the
transformation matrix P is defined by

1
P= 3 6.37
[_Kzzl KZI ] ( )
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then, if q = Pq, is substituted into Equation (6.32) and this expression is premultiplied by
PT, a new reduced-order system of the form

P"MP{, + P"KPq, = P'f, (6.38)

results. The vector PTf; now has the dimension of ,. Equation (6.38) represents the reduced-
order form of Equation (6.32), where

PTMP =M, — K}, K5;' My, — M ;K5 Ky, + K3, K3, Mo, K3 K (6.39)
and
P'KP =K, — K,K;,'K, (6.40)

These last expressions are commonly used to reduce the order of vibration problems in a
consistent manner in the case where some of the coordinates (represented by q,) are thought
to be inactive in the system response. This can greatly simplify design and analysis problems
in some cases.

If some of the masses in the system are negligible or zero, then the preceding formulae can
be used to reduce the order of the vibration problem by setting M,, =0 in Equation (6.39).
This is essentially the method referred to as mass condensation (used in finite element
analysis).

Example 6.8.1
Consider a four-degree-of-freedom system with the mass matrix

32 54 0 —13
1|54 156 12 -22

“a0] 0 13 8 -3
—-13 -2 -3 4

and the stiffness matrix

24 —12 0 6
-12 12 -6 -6
0 -6 2 4
6 -6 4 4

Remove the effect of the last two coordinates. The submatrices of Equation (6.32) are easily
identified:

1 [312 54 1[0 —-13]_ .,

M“—m[m 156]’ M'z‘m[la —22]—M21
178 -3 2 4

Mﬂ_m[—3 4}’ Kﬂ_[4 4]

24 -12 0 6
K“:[—lz 12]’ K”:[—6 —6]:K2Tl
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Using Equations (6.39) and (6.40) yields

1.021 0.198
TP —
PMP_|:0.I98 0.236:|
9 3
Trp—
P[(P_|:3 3]

These last two matrices form the resulting reduced-order model of the structure.

It is interesting to compare the eigenvalues (frequencies squared) of the full-order system with
those of the reduced-order system, remembering that the transformation P used to perform the
reduction is not a similarity transformation and subsequently does not preserve eigenvalues. The
eigenvalues of the reduced system and full-order systems are

APM=6981, A" =12.916
A, =6.965, A, =12.196
1,=230.934,  A,=3.833x10°

where the superscript ‘rom’ refers to the eigenvalues of the reduced-order model. Note that in this
case the reduced-order model captures the nature of the first two eigenvalues very well. This is not
always the case because the matrix P defined in Guyan reduction, unlike the matrix P from modal
analysis, does not preserve the system eigenvalues. More sophisticated model reduction algorithms
exist, and some are presented in Section 7.7.

CHAPTER NOTES

A vast amount of literature is available on methods of vibration isolation and absorption.
In particular, the books by Balandin, Bolotnik, and Pilkey (2001), Rivin (2003), and by
Korenev and Reznikov (1993) should be consulted to augment the information of Section 6.2.
The absorber optimization problem discussed in Section 6.3 is directly from the paper of
Soom and Lee (1983). Haug and Arora (1976) provide an excellent account of optimal
design methods. Example 6.4.1 is from Inman and Jiang (1987). More on the use of
damping materials can be found in the book by Nashif, Jones, and Henderson (1985).
The material of Section 6.5 comes from Whitesell (1980), which was motivated by the
work of Fox and Kapoor (1968). More advanced approaches to eigensystem derivatives
can be found in Adhikari and Friswell (2001). The pole placement approach to control
can be found in almost any text on control, such as Kuo and Golnaraghi (2003), and is
considered in more detail in Section 7.3. The section on design specification (Section 6.7),
is an attempt to quantify some of the terminology often used by control and structure
researchers in discussing the response of a system. An excellent treatment of reduction of
order is given by Meirovitch (1980) and by Antoulas (2005) who provides a mathematical
approach. A more advanced treatment of model reduction is given in Section 7.7 from
the controls perspective. An excellent summary of model reduction methods, including
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damped systems, is given by Qu (2004), which contains an extensive bibliography of model
reduction papers.
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PROBLEMS

6.1 Calculate the value of the damping ratio required in a vibration isolation design to yield
a transmissibility ratio of 0.1 given that the frequency ratio w/w, is fixed at 6.

6.2 A single-degree-of-freedom system has a mass of 200kg and is connected to its base
by a simple spring. The system is being disturbed harmonically at 2 rad/s. Choose the
spring stiffness so that the transmissibility ratio is less than 1.

6.3 A spring—mass system consisting of a 10kg mass supported by a 2000 N'm spring is
driven harmonically by a force of 20N at 4 rad/s. Design a vibration absorber for this
system and compute the response of the absorber mass.

6.4 Find the minimum and maximum points of the function

J(y)=yi +3yy; —3y; —3y; +4

Which points are actually minimum?
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6.5

6.6
6.7
6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

DESIGN CONSIDERATIONS

Calculate the minimum of the cost function
JY) =y +2% 4+ +;

subject to the equality constraints

h(y)=y,+3y,—y;+y,—2=0
hz(Y)=2y1+y2—y3+2y4—2=O

Derive Equations (6.17) and (6.18).

Derive Equation (6.25). (Hint: first multiply Equation (6.24) by M, then differentiate.)
Consider Example 6.5.1. Calculate the change in the eigenvalues of this system if
the mass, m,, is changed an unknown amount rather than the stiffness (refer to
example 3.3.2).

Consider example 2.4.4 with M =1,c, =2,c,=1,k, =4, and k, = 1. Calculate a
control law causing the closed-loop system to have eigenvalues A, , = —1 4 and
A3 4=—22j, using the approach of Section 6.6.

By using the results of Section 3.6, show that the damping ratio matrix Z’ deter-
mines whether the modes of a nonproportionally damped system are underdamped or
critically damped.

Consider the system of example 6.4.1 with the damping matrix D set to zero. Calculate
a new damping matrix D such that the new system has modal damping ratios {; =0.1
and £, =0.01.

Consider the cost function J(y). The partial derivative J with respect to the elements
of the vector y yield only necessary conditions for a minimum. The second-order
condition and sufficient condition is that the matrix of second partial derivatives [J]
be positive definite. Here, J;; denotes the second partial derivative with respect to
y; and y,. Apply this second condition to problem 6.2 and verify this result for that
particular example.

Derive second-order conditions (see problem 6.10) for example 6.3.1 using a symbolic
manipulation program.

Show that the reduction transformation P of Section 6.8 is not a similarity transfor-
mation. Are eigenvalues invariant under P?

Show that K,; = K[, and hence derive Equation (6.36). In addition, show that P MP
and PTKP are both symmetric.

Calculate a reduced-order model of the following system by removing the last two
coordinates:

32 0 54 —65 24 0 —-12 3 1
0 2 65 —075]|.. 0o 2 -3 1 0
2 —
s 65 156 —11 |90+ 1 3 o 3 90=||/O
—65 —075 —11 1 3001 3 0

Then, calculate the natural frequencies of both the reduced-order and the full-order
system (using a code such as MATLAB) and compare them. Also, plot the response of
each system to the initial conditions q=[1 0 0 0]” and =0 and compare the
results.



6.17

6.18

6.19

6.20

PROBLEMS 167
The characteristic equation of a given system is
AN +517+61+1=0

where n is a design parameter. Calculate the stability margin of this system for
MNop = 15.1.

Compare the time response of the coordinates ¢, () and g,(¢) of the full-order system
of example 6.8.1 with the same coordinates in the reduced-order system for an initial
displacement of ¢,(0) =1 and all other initial conditions set to zero.

Consider the system of example 6.4.1 with the damping matrix set to zero. Use the
pole placement approach of Section 6.6 to compute a control law that will cause the
closed-loop system to have frequencies of 2 and 3 rad/s.

Consider the vibration absorber designed in problem 6.3. Use numerical simulation
to plot the response of the system to an initial 0.01 m displacement disturbance of m,
(zero initial velocity). Discuss your results.
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Control of Vibrations

7.1 INTRODUCTION

This chapter formalizes the aspects of control theory introduced in previous chapters and
applies the theory to vibration suppression of structures. This topic is usually called structural
control and has become increasingly important, as the design of mechanisms and structures
has become more precise and less tolerant of transient vibrations. Many structures, such as
tall buildings, robotic manipulator arms, and flexible spacecraft, have been designed using
active vibration suppression as part of the total design. Active control provides an important
tool for the vibration engineer.

Control technology of linear systems is a mature discipline with many excellent texts and
journals devoted to the topic. Control methods can be split into three categories: single-
input, single-output frequency domain methods (classical control), state-space methods which
allow multiple-input, multiple-output (MIMO) control (focused on time domain control),
and modern control theory, which looks at MIMO control in the frequency domain. Like
design methods, most classical control depends on being able to use low-order models of the
structure (also called the plant). On the other hand, state-space control theory uses matrix
theory that is compatible with the vector differential equation commonly used to describe
the vibrations of structures. Hence, in this chapter, more emphasis is placed on time domain
methods relying on matrix techniques. The concepts of frequency response function and
other frequency domain topics common to classical control are, however, very useful in
vibrations. In particular, Chapter 8, on modal testing, uses many frequency domain ideas to
aid in measuring vibration properties of structures.

The words structure and plant are used interchangeably to describe the vibrating mechan-
ical part or system of interest. The phrase control system refers to an actuator (or group of
actuators), which is a force-generating device used to apply control forces to the structure,
the sensors used to measure the response of the structure (also called the output), and the
rule or algorithm that determines how the force is applied. The structure is often called the
open-loop system, and the structure along with the control system is called the closed-loop
system. The topic of control has been briefly introduced in Sections 1.8, 2.3, 4.10, and 6.6.
The notation of these sections is summarized here as an introduction to the philosophy of
active control.

Feedback control of a vibrating structure or machine requires measurements of the response
(by using sensing transducers) and the application of a force to the system (by using force

Vibration with Control D. J. Inman
© 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01051-7
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transducers) on the basis of these measurements. The mathematical representation of the
method of computing how the force is applied on the basis of the measurements is called
the control law. As is often the case in modeling physical systems, there are a variety
of mathematical representations of feedback control systems. Equation (2.17) represents a
method of modeling the use of control forces proportional to position (denoted by K ,q) and
velocity (denoted by K,q) used to shape the response of the structure. In the notation of
Section 2.3, the closed-loop system is modeled by

M3+ ({D+G)q+(K+H)q=-K,q—-Kq+f

as given in Equation (2.17) and represents state variable feedback (or position and velocity
feedback).

Another form of feedback, called output feedback, is discussed in Section 4.10 and results
if Equation (4.24) is substituted into Equation (4.23) to yield the closed-loop system (with
f=0)

MG+A,q+Kq=Bu

In this case, the control vector u is a function of the response coordinates of interest, denoted
by the vectory, i.e., u(t) = —G,y. This form of control is called output feedback. The vector
y can be any combination of state variables (i.e., position and velocities), as denoted by the
output equation [Equation (4.25)], which is

y=Cq+Cq

The matrices C, and C, denote the locations of and the electronic gains associated with the
transducers used to measure the various state variables.

Each of these two mathematical formulations can also be expressed in state-space form,
as indicated in Equation (2.20) and repeated here. The difference between output feedback
and state variable feedback is discussed in Section 7.2. The important point is that each
of these various mathematical models is used to determine how to design a system with
improved vibration performance using active feedback control, which provides an alternative
to passive design methods.

Active control is most often formulated in the state space by

X =Ax+ Bu
as given by Equation (2.18), with the output equation
y=Cx

as used in the following section. The relationships between the physical coordinates (M, A,,
K, and B;) and the state-space representation (A, B, and C) are given in Equation (2.20).
Most control results are described in the state-space coordinate system. The symbols y and
u in both the physical coordinate system and the state-space coordinate system are the same
because they represent different mathematical models of the same physical control devices.
The various relationships between the measurement or output y and the control input u
determine the various types of control law, some of which are discussed in the following
sections.
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7.2 CONTROLLABILITY AND OBSERVABILITY

As pointed out in Section 6.6 using pole placement, it is not always possible to find a control
law of a given form that causes the eigenvalues of the closed-loop system to have desired
values. This inability to find a suitable control law raises the concept of controllability.
A closed-loop system, meaning a structure and the applied control system, is said to be
completely controllable, or state controllable, if every state variable (i.e., all positions and
velocities) can be affected in such a way as to cause it to reach a particular value within a
finite amount of time by some unconstrained (unbounded) control, u(z). If one state variable
cannot be affected in this way, the system is said to be uncontrollable. Figures7.1(a) and
(b) illustrate two mechanical oscillators subject to the same control force u(r) acting on the
mass m,. System (a) of the figure is uncontrollable because m, remains unaffected for any
choice of u(f). On the other hand, system (b) is controllable, since any nonzero choice of
u(r) affects both masses. Note that, if a second control force is applied to m, in Figure 7.1(a),
then that system becomes controllable too. Hence, controllability is a function of both the
system dynamics and of where and how many control actuators are applied. For instance,
the system in Figure 7.1(b) is controllable with a single actuator, while that in Figure 7.1(a)
requires two actuators to be controllable.

The formal definition of controllability for linear time-invariant systems is given in state
space rather than in physical coordinates. In particular, consider the first-order system defined
as before by

x(1) = Ax(r) + Bu(r) (7.1)
y(1) = Cx(1) (7.2)

Recall that x(7) is the 2n x 1 state vector, u(z) is an r x 1 input vector, y(¢) is a p x 1
output vector, A is the 2n x 2n state matrix, B is a 2n X r input coefficient matrix, and C
is a p x 2n output coefficient matrix. The control influence matrix B is determined by the
position of control devices (actuators) on the structure. The number of outputs is p, which is
the same as 2s, where s is defined in Equation (4.25) in physical coordinates as the number
of sensors. In state space the state vector includes velocity and position coordinates and
hence has twice the size (p =2s) since the velocities can only be measured at the same
locations as the position coordinates. The state, x(¢), is said to be controllable at t =, if
there exists a piecewise continuous bounded input u(¢) that causes the state vector to move

m;

m, b——u

Figure 7.1 Example of (a) an uncontrollable mechanical system and (b) a controllable mechanical
system.
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to any final value x(#) in a finite time ¢, > #,. If each state x(t,) is controllable, the system
is said to be completely state controllable, which is generally what is implied when a system
is said to be controllable (see, for instance, Kuo and Gholoaraghi, 2003, or Kailath, 1980).

The standard check for the controllability of a system is a rank test of a certain matrix,
similar to the stability conditions used earlier for the asymptotic stability of systems with
semidefinite damping. That is, the system of Equation (7.1) is completely state controllable
if and only if the 2n x 2nr matrix R, defined by

R=[BAB A’B---A*'B] (7.3)

has rank 2n. In this case the pair of matrices [A, B] is said to be controllable. The matrix R
is called the controllability matrix for the matrix pair [A, B].

Example 7.2.1

It is easily seen that a damped single-degree-of-freedom system is controllable. In this case,

n=1,r=1. Then
0 1 0
A= [—k/m —c/m}’ B= [f/m]

so that the controllability matrix becomes

_ 0 f/m
k= [f/m —cf/mz]

which has rank 2 =2n. Thus, this system is controllable (even without damping, i.e., even if ¢ =0).

Example 7.2.2
As a second simple example, consider the state matrix of example 7.2.1 with k/m=1,c/m=2,
and a control force applied in such a way as to cause B=[1 — 1]7. Then, the controllability matrix
R becomes

|
SEE
which has rank 1 2n and the system is not controllable. Fortunately, this choice of B is not an

obvious physical choice for a control law for this system. In fact, this choice of B causes the applied
control force to cancel.

A similar concept to controllability is the idea that every state variable in the system has
some effect on the output of the system (response) and is called observability. A system
is observable if examination of the response (system output) determines information about
each of the state variables. The linear time-invariant system of Equations (7.1) and (7.2) is
completely observable if, for each initial state x(Z,), there exists a finite time #, > #, such
that knowledge of u(z), A, B, C, and the output y(¢) is sufficient to determine x(z,) for any
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(unbounded) input u(r). The test for observability is very similar to that for controllability.
The system described by Equations (7.1) and (7.2) is completely observable if and only if
the 2np x 2n matrix O defined by

C
CA
o=| . (7.4)

CAZn—l

has rank 2n. The matrix O is called the observability matrix, and the pair of matrices [A, C]
are said to be observable if the rank of the matrix O is 2n. The concept of observability is
also important to vibration measurement and is discussed in Chapter 8.

Example 7.2.3

Consider again the single-degree-of-freedom system of example 7.2.1. If just the position is mea-
sured, the matrix C reduces to the row vector [1 0] and y(7) becomes a scalar. The observability

matrix becomes
1 0
o=lo V]

which has rank 2(=2n), and this system is observable. This condition indicates that measurement
of the displacement x(f) (the output in this case) allows determination of both the displacement and
the velocity of the system, i.e., both states are observable.

The amount of effort required to check controllability and observability can be substantially
reduced by taking advantage of the physical configuration rather than using the state-space
formulation of Equations (7.1) and (7.2). For example, Hughes and Skelton (1980) have
examined the controllability and observability of conservative systems

Mq(r) +Kq(r) =1£(2) (7.5)
with observations defined by

Here, f:(t) = B;u(t) and u(?) = —G;y(7) defines the input as specified in Section 4.10. In
this case it is convenient to assign G, = 1. Then, the system of Equation (7.5) is controllable
if and only if the n x 2n matrix R, defined by

R,=[B;, AgB; - Ay 'B] (7.7)

has rank n, where B, =SB, and A, =S KS,,. Here, S,, is the modal matrix of Equation (7.5),
and Ay is the diagonal matrix of eigenvalues of Equation (7.5). Thus, controllability for a
conservative system can be reduced to checking the rank of a smaller-order matrix than the
2n x 2nr matrix R of Equation (7.3).



174 CONTROL OF VIBRATIONS

This condition for controllability can be further reduced to the simple statement that
system (7.5) is controllable if and only if the rank of each matrix B, is n,, where B, are
the partitions of the matrix Bf according to the multiplicities of the elgenvalues of K. Here,
d < n denotes the number of distinct eigenvalues of the stiffness matrix, and ¢=1,2,...,d.
The integer n,, refers to the order of a given multiple eigenvalue. The matrix Bf is partitioned
into n, rows. For example, if the first eigenvalue is repeated (Ay =A,), then n; =2 and B,
cons1sts of the first two rows of the matrix B If the stiffness matrix has distinct elgenvalues
the partitions B, are just the rows of Bf Thus in particular, if the elgenvalues of K are
distinct, then the system is controllable if and only if each row of B,» has at least one
nonzero entry.

For systems with repeated roots, this last result can be used to determine the minimum
number of actuators required to control the response. Let d denote the number of dis-
tinct eigenvalues of K, and let n, denote the multiplicities of the repeated roots so that
n+n,+---+n,=n, tI~1e number of degrees of freedom of the system, which corresponds
to the partitions B, of B,. Then the minimum number of actuators for the system to be
controllable must be greater than or equal to the maximum of the set {n,, n,, ..., n,}. Note
that, in the case of distinct roots, this test indicates that the system could be controllable
with one actuator. Similar results for general asymmetric systems can also be stated. These
are discussed by Ahmadian (1985).

As in the rank conditions for stability, if the controllability or observability matrix is
square, then the rank check consists of determining if the determinant is nonzero. The usual
numerical question then arises concerning how to interpret the determinant having a very
small value of, say, 107%. This situation raises the concept of ‘degree of controllability’
and ‘degree of observability.” One approach to measuring the degree of controllability is to
define a controllability norm, denoted by C,, of

C, =[det(B,B])]"*") (7.8)

where ¢ again denotes the partitioning of the control matrix B according to the repeated
eigenvalues of K. According to Equation (7.8), the system is controllable if and only if C, >
0 for all g. In particular, the larger the value of C,, the more controllable are the modes
associated with the gth natural frequency. Unfortunately, the definition in Equation (7.8) is
dependent on the choice of coordinate systems. Another more reliable measure of control-
lability is given later in Section 7.7, and a modal approach is given in Section 7.9.

Example 7.2.4

Consider the two-degree-of-freedom system of Figure 7.2. If &, is chosen to be unity and k, =0.01,
two orders of magnitude smaller, then the mass m, is weakly coupled to the mass m,. Because of
the increased number of forces acting on the system, a control system that acts on both m, and m,
should be much more controllable than a control system acting just on the mass m;. The following
calculation, based on the controllability norm of Equation (7.8), verifies this notion. For simplicity,
the masses are set at unity, i.e., m; =m, = 1. The equation of motion for the system of Figure 7.2

becomes
1 0 Kt 1 —0.01 x— 1 Of]u
0 1 —0.01 1.01 10 1 ||u
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my 000 m

-

Figure 7.2 Two-degree-of-freedom structure with two control forces acting on it.

so that u=[u; u,]’. In this case, B, =1, so that Bf = ST, the transpose of the normalized modal
matrix of the stiffness matrix K. Matrix K has distinct eigenvalues, so that Equation (7.8) yields
C, =C, =1, and both modes are controllable in agreement with the physical notion that u affects
both x, and x,. Next, consider a second control configuration with a single actuator acting on mass
m; only. In this case, u, =0, and B; becomes the vector [1 0]”, since the vector u collapses to the
scalar u =u,. Alternatively, u could still be considered to be a vector, i.e., u=[u, 0]”, and B, could

then be the matrix
1 0
5o o

Using either model, calculation of Bf yields C; =0.8507 and C, = 0.5207. Both of these numbers
are smaller than 1, so the controllability measure has decreased from the two-actuator case. In
addition, the second mode measure is smaller than the first mode measure (C, < C,), so that the
second mode is not as controllable as the first with the actuator placed at m,. In addition, neither
mode is as controllable as the two-actuator case. This numerical measure provides quantification
of the controllability notion that, for the weakly coupled system of this example, it would be more
difficult to control the response of m, (x,) by applying a control force at m,(C, =0.5207). The
system is still controllable, but not as easily so. Again, this is in agreement with the physical notion
that pushing on m; will affect x,, but not as easily as pushing on m, directly.

Complete controllability results if (but not only if) complete state feedback is used.
Complete state feedback results if each of the state variables is used in the feedback law.
In the physical coordinates of Equation (2.17), this use of full state feedback amounts to
nonzero choices of C, and C,. In state space, state feedback is obtained by controls of
the form

u=—Kx (7.9)

where K, is a feedback gain matrix of appropriate dimension. If the control u is a scalar,
then K, is a row vector given by

kfz[gl gz"'gzn] (7.10)
and u is a scalar with the form

U=g x|+ &X+ + 8,5, (7.11)
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The state equation [Equation (7.1)] becomes
x = (A — bk,)x (7.12)

where B is reduced to a column vector b. The product bk, is then a matrix (a column vector
times a row vector). For complete state feedback, each gain g, is nonzero, and the gains can
be chosen such that the closed-loop system defined by the matrix (A + bk;) has the desired
behavior (see problem 7.6).

By contrast, output feedback is defined for the system of Equation (7.1) by

u(t) =—Gy (7.13)

where G; is the output feedback gain matrix of dimensions r x p. Note that, since y = Cx,
where C indicates which states are measured, Equation (7.13) becomes

u(t) =—G,Cx (7.14)

This expression appears to be similar to state feedback. The difference between state feedback
and output feedback is that, unless GfC =K, of full rank, output feedback does not use
information about each state directly. On the other hand, use of the complete state variable
feedback implies that a measurement of each state variable is available and is used in
designing the control law. In output feedback, the output y is used to determine the control
law, whereas in state feedback the state vector x is used. In general, the vector y is of
lower order than x. Thus, in state feedback there are more ‘gains’ that can be manipulated
to produce the desired effect than there are in output feedback (recall example 6.6.1). Any
control performance achievable by output feedback can also be achieved by complete state
feedback, but the converse is not necessarily true.

In the next section, pole placement by output feedback is considered. Problem 7.6
illustrates that this task is easier with complete state feedback. Obviously, complete state
feedback is the more versatile approach. However, complete state feedback requires knowl-
edge (or measurement) of each state, which is not always possible. In addition, the hardware
required to perform full state feedback is much more extensive than that required for output
feedback. Section 7.5 discusses how state observers can be used to mimic state feedback
when output feedback is not satisfactory for a given application, or when hardware issues
do not allow for measurement of all of the states.

7.3 EIGENSTRUCTURE ASSIGNMENT

Section 6.6 points out a simple method for designing a feedback control system that causes
the resulting closed-loop system to have eigenvalues (poles) specified by the designer. In
this section, the concept of placing eigenvalues is improved and extended to placing mode
shapes as well as natural frequencies. From an examination of the modal expansion for the
forced response, it is seen that the mode shapes as well as the eigenvalues have a substantial
impact on the form of the response. Hence, by placing both the eigenvalues and eigenvectors,
the response of a vibrating system may be more precisely shaped.
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First, the procedure of Section 6.6 is formalized into matrix form. To this end, let M, and
K, define a desired mass and stiffness matrix resulting from a redesign process. Therefore,
the desired system

§+M;'Kyq=0 (7.15)

has the eigenstructure, i.e., eigenvalues and eigenvectors, that are desired by design. Next,
consider the closed-loop system with the existing structure (M and K) as the plant and only
position feedback (so that C, =0). The system is

Mi+Kq=Bu (7.16)
y=C,q (7.17)

where the various vectors and matrices have the dimensions and definitions stated for
Equations (4.24) and (4.25). Recall that the constant matrix C, represents the placement and
instrument gains associated with measurement of the positions, and B, denotes the position
of the force actuators.

The class of control problems considered here uses output feedback. Output feedback uses
only the output vector y rather than the state vector x in computing the gain and is defined
as calculating the matrix G, such that the control law

u() =—-G;y(1) (7.18)

yields the desired response. In this case, it is desired to calculate the gain matrix G, such that

the closed-loop system has the form of Equation (7.15), which has the required eigenvalues

and eigenvectors. This procedure is a form of mechanical design, as discussed in Chapter 6.
Proceeding, the closed-loop system (7.16) under output feedback becomes

. S -1
i+M'Kq=—M"'B,G,C,q
or

4+M ' (K+B,G,C,)q=0 (7.19)

which has the same form as Equation (4.27) without damping or velocity feedback. If
Equation (7.19) is to have the same eigenstructure as the design choice given by the matrices
M, and K, then comparison of Equations (7.19) and (7.15) indicates that G; must satisfy

M~'K+M~'B,G,C, =M, K, (7.20)
Solving this expression for G, following the rules of matrix algebra yields
B,G,C,=M(M;'K,—M~'K) (7.21)

In general, the matrices B, and C, are not square matrices (unless each mass has an actuator
and sensor attached), so the inverses of these matrices, required to solve for Gf, do not exist.
However, a left generalized inverse, defined by

Bi = (B{B,)"'B; (7.22)
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and a right generalized inverse, defined by
C,=C,(C,C))"! (7.23)

can be used to ‘solve’ Equation (7.21). The matrices Clﬂ and B; are called generalized
inverses in the sense that

BiB; = (B;B;)"'B; By =1,,, (7.24)
and

c,Cl=c,cl(c,chH' =1,

P-p

. (7.25)
where the subscripts on the identity matrices indicate their size. Note that the calculation
of the generalized inverses given by Equations (7.22) and (7.23) requires that the matrices
BJT B, and CPCPT both be nonsingular. Other solutions can still be found using a variety of
methods (see, for instance, Golub and Van Loan, 1996). Generalized inverses are briefly
discussed in Appendix B.

Premultiplying Equation (7.21) by Equation (7.22) and postmultiplying Equation (7.21)
by Equation (7.23) yields a solution for the m x s gain matrix G, to be

G,=(BfB))"'BfM(M;'K,—M~'K)C} (C,C])”" (7.26)

If this value of the gain matrix G, is implemented, the resulting closed-loop system will
have the eigenstructure and response approximately equal to that dictated by the design set
M, and K. Note, if the system is very close to the desired system, the matrix difference
(My 'Ky —M~'K) will be small and G, will be small. However, the matrix G, depends on
where the measurements are made because it is a function of C, and also depends on the
position of the actuators because it is a function of B;,.

Example 7.3.1

Consider the two-degree-of-freedom system with original design defined by M =1 and

2 -1
E
Suppose it is desired to build a control for this system so that the resulting closed-loop system has
eigenvalues A, =2 and A, =4 and eigenvectors given by v, =[1 —1]"/v/2andv,=[1 1]7/4/2,

which are normalized. A system with such eigenvalues and eigenvectors can be calculated from
Equation (3.21) or

My 'PKMy ' =S diag[2  4]S"

This expression can be further simplified if M|, is taken to be the identity matrix /. Then

, 301
K,=S diag[2 4]ST=[1 3]
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The pair (I, K,)) then represents the desired system.

Next, based on knowledge of controllability and observability, the matrices C,, and B, are each
chosen to be identity matrices, i.e., each position is measured and each mass has a force applied to it
(i.e., an actuator attached to it). This condition ensures that the system is completely controllable and
observable and that the controllability and observability norms are large enough. Equation (7.26)
for the gain matrix G, becomes

3 1 2 -1 1 2
a=(13)-[5 7))L 2
which causes the original system with closed-loop control [i.e., Equation (7.16)] to have the desired

eigenstructure. Note that the eigenvalues of K are 0.382 and 2.618 and those of G, + K are 2 and
4, as desired. In addition, the eigenvectors of G, + K are computed to be as desired:

=[] el

Although not obvious from the introductory material just presented, Wonham (1967) has
shown that all the eigenvalues can be placed if and only if the system is controllable. In
case more than one actuator is used, i.e., in the multi-input case, the calculated feedback
gain matrix G; is not uniquely determined by assigning just the eigenvalues (see Moore,
1976). Hence, the remaining freedom in the choice of G, can also be used to place the mode
shapes, as was the case in the preceding example. However, only mode shapes that satisfy
certain criteria can be placed. These issues are discussed in detail by Andry, Shapiro, and
Chung (1983), who also extended the process to damped and asymmetric systems.

7.4 OPTIMAL CONTROL

One of the most commonly used methods of modern control theory is called optimal
control. Like optimal design methods, optimal control involves choosing a cost function
or performance index to minimize. Although this method again raises the issue of how to
choose the cost function, optimal control remains a powerful method of obtaining a desirable
vibration response. Optimal control formulations also allow a more natural consideration of
constraints on the state variables as well as consideration for reducing the amount of time,
or final time, required for the control to bring the response to a desired level.

Consider again the control system and structural model given by Equations (4.23) and
(4.24) in Section 4.10 and its state-space representation given in Equations (7.1) and (7.2).
The optimal control problem is to calculate the control u(#) that minimizes some specified
performance index, denoted by J =J(q, q, ¢, u), subject to the constraint that

Mi+A,q+Kq=Bu

is satisfied, and subject to the given initial conditions q(#,) and q(#,). This last expression is
called a differential constraint and is usually written in state-space form. The cost function
is usually stated in terms of an integral. The design process in optimal control consists of
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the judicious choice of the function J. The function J must be stated in such a way as to
reflect a desired performance. The best, or optimal, u, denoted by u*, has the property that

J(u*) < J(u) (7.27)

for any other choice of u. Solving optimal control problems extends the concepts of max-
imum and minimum from calculus to functionals J. Designing a vibration control system
using optimal control involves deciding on the performance index J. Once J is chosen, the
procedure is systematic.

Before proceeding with the details of calculating an optimal control, u*, several examples
of common choices of the cost function J, corresponding to various design goals, will be
given. The minimum time problem consists of defining the cost function by

i
J=t,—ty=[ dt

to

which indicates that the state equations take the system from the initial state at time
to [i-e., ()] to some final state x(¢) at time f;, in a minimum amount of time.

Another common optimal control problem is called the linear regulator problem. This
problem has specific application in vibration suppression. In particular, the design objective
is to return the response (actually, all the states) from the initial state value x(f,) to the
system equilibrium position (which is usually x, =0 in the case of structural vibrations).
The performance index for the linear regulator problem is defined as

L, .
J=—/ (x” Ox +u’ Ru) dt (7.28)
2J,

where Q and R are symmetric positive definite weighting matrices. The larger the matrix
0, the more emphasis is placed by optimal control on returning the system to zero, since
the value of x corresponding to the minimum of the quadratic form x” Qx is x =0. On the
other hand, increasing R has the effect of reducing the amount, or magnitude, of the control
effort allowed. Note that positive quadratic forms are chosen so that the functional being
minimized has a clear minimum. Using both nonzero Q and R represents a compromise
in the sense that, based on a physical argument, making x(#;) zero requires u(z) to be
large. The linear regulator problem is an appropriate cost function for control systems that
seek to eliminate, or minimize, transient vibrations in a structure. The need to weight the
control effort (R) results from the fact that no solution exists to the variational problem when
constraining the control effort. That is, the problem of minimizing J with the inequality
constraint ||u(#)|| < ¢, where c is a constant, is not solved. Instead, R is adjusted in the cost
function until the control is limited enough to satisty ||u(?)| < c.

On the other hand, if the goal of the vibration design is to achieve a certain value of the
state response, denoted by the state vector x,(f), then an appropriate cost function would be

J= /Otf (x—x,)"0(x —x,)dt (7.29)

where Q is again symmetric and positive definite. This problem is referred to as the tracking
problem, since it forces the state vector to follow, or track, the vector x,(t).
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In general, the optimal control problem is difficult to solve and lends itself very few
closed-form solutions. With the availability of high-speed computing, the resulting numerical
solutions do not present much of a drawback. The following illustrates the problem by
analyzing the linear regulator problem.

Consider the linear regulator problem for the state-space description of a structure given
by Equations (7.1) and (7.2). That is, consider calculating u such that J(u) given by
Equation (7.28) is a minimum subject to the constraint that Equation (7.1) is satisfied. A
rigorous derivation of the solution is available in most optimal control texts (see, for instance,
Kirk, 1970). Proceeding less formally, assume that the form of the desired optimal control
law will be

u*(t) = —R'B"S(1)x*(¢) (7.30)

where x*(7) is the solution of the state equation with optimal control u* as input, and S(¢)
is a symmetric time-varying 2n x 2n matrix to be determined (not to be confused with the
orthogonal matrix of eigenvectors S). Equation (7.30) can be viewed as a statement that the
desired optimal control be in the form of state feedback. With some manipulation (see, for
instance, Kirk, 1970), S(7) can be shown to satisfy what is called the matrix Riccati equation
given by

as(s)
dr

subject to the final condition S(#;) = 0. This calculation is a backward-in-time matrix differ-
ential equation for the unknown time-varying matrix S(¢). The solution for S(¢) in turn gives
the optimal linear regulator control law (7.28), causing J(u) to be a minimum. Unfortu-
nately, this calculation requires the solution of 2n(2n + 1)/2 nonlinear ordinary differential
equations simultaneously, backward in time (which forms a difficult numerical problem).

In most practical problems — indeed, even for very simple examples — the Riccati equa-
tion must be solved numerically for S(r), which then yields the optimal control law via
Equation (7.30).

The Riccati equation, and hence the optimal control problem, becomes simplified if one
is interested only in controlling the steady state vibrational response and controlling the
structure over a long time interval. In this case, the final time in the cost function J(u) is set
to infinity and the Riccati matrix S(7) is constant for completely controllable, time-invariant
systems (see, for instance, Kirk, 1970). Then, dS(¢)/dt is zero and the Riccati equation
simplifies to

Q—S()BR'BTS(t) +ATS(1) + S(H)A + 0 (7.31)

Q—SBR'B'S+ATS+5A=0 (7.32)
which is now a nonlinear algebraic equation in the constant matrix S. The effect of this
method on the vibration response of a simple system is illustrated in example 7.4.1.
Example 7.4.1

This example calculates the optimal control for the infinite time linear quadratic regulator problem
for a single-degree-of-freedom oscillator of the form

X(1) =4x(1) = f(1)
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In this case, the cost function is of the form
J= /OOO (x"Ox +u’Ru)dt
which is Equation (7.28) with ¢, = co. A control (state feedback) is sought of the form
u=—R'B"Sx(t) = —K:x(¢)

The state equations are

. 0 1 x4 0 0 u
14 0 0 1
Two cases are considered to illustrate the effect of the arbitrary (but positive definite) weighting
matrices Q and R. The system is subject to the initial condition x(0) =[1 1]7. In the first case, let

Q=R=1, and the optimal control is calculated from Equation (7.32) using MATLAB (Moler et al.,
1985) to be

0 0
Kf‘:[—o.ml —l.1163]

The resulting response and control effort are plotted in Figures7.3 through 7.5. Figure7.5 is the
control law, u*, calculated by using Equation (7.30); Figures7.3 and 7.4 illustrate the resulting
position and velocity response to initial conditions under the action of the control system.

In case 2, the same problem is solved again, with the control weighting matrix set at R = (10)I.
The result is that the new control law is given by

a_[ O 0
r=|-0.0125 —0.3535

which is ‘smaller’ than the first case. The resulting position response, velocity response, and control
effort are plotted in Figures 7.6 through 7.8 respectively.

1.2

x4(t)

-2

-4
e ¢

Figure 7.3 Position, x,(¢), versus time for the case Q=R=1.
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Figure 7.4 Velocity, x,(7), versus time for the case Q=R =1.

1.5

u*

el 1oy

Figure 7.5 Control, u*(r), versus time for the case Q=R =1.

In the second case, with larger values for R, the control effort is initially much more limited, i.e.,
a maximum value of 0.7 units as opposed to 1.75 units for the first case. In addition, the resulting
response is brought to zero faster in the case with more control effort (i.e., Figures 7.3, 7.4, and
7.6). These examples illustrate the effect that the weighting matrices have on the response. Note, a
designer may have to restrict the control magnitude (hence, use large relative values of R) because
the amount of control energy available for a given application is usually limited even though a better
response (shorter time to settle) is obtained with larger values of control effort.

Optimal control has a stabilizing effect on the closed-loop system. Using a quadratic form
for the cost function guarantees stability (bounded output) of the closed-loop system. This
guaranty can be seen by considering the uncontrolled system subject to Equation (7.29)
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Figure 7.6 Position, x,(7), versus time for the case Q =1, R=10I.

Figure 7.7 Velocity, x,(t), versus time for the case Q =1, R =10I.

with x, taken as the origin. Asymptotic stability requires that x approaches zero as time
approaches infinity so that the integral

J:/OmxTQxdt

converges as long as Q is positive semidefinite. Define the quadratic from V(¢) = x” Px,
where P is the positive definite solution of the Lyapunov equation [Equation (4.29)]

PA+ATP=-0
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Figure 7.8 Control, u*(¢), versus time for the case Q =1, R=10I.

Here, A is the state matrix satisfying Equation (7.1) with B=0. Computing the time derivative
of V(¢) yields

. d
V()= = (XTPX) =x"Px+x"Px=x" (ATP + PA)x = —x'0x <0

Hence, V() is positive definite with a negative definite time derivative and is thus a
Lyapunov function of the system of Equation (7.1). As a result, the homogeneous system is
asymptotically stable (recall Section 4.10). Since the homogeneous system is asymptotically
stable, the closed-loop system (forced response) will be bounded-input, bounded-output
stable, as discussed in Section 5.5. Also, note that, if x,, is the initial state, integrating the
cost function yields

oo =) d
J:/ xTQxdtzf —(—x"Px)dt =x} Px,
0 o dt

since asymptotic stability requires that x approach zero at the upper limit. This calculation
indicates that the value of the cost function depends on the initial conditions.

This section is not intended to provide the reader with a working knowledge of optimal
control methods. It is intended to illustrate the use of optimal control as an alternative
vibration suppression technique and to encourage the reader to pursue the use of optimal
control through one of the references.

7.5 OBSERVERS (ESTIMATORS)

In designing controllers for vibration suppression, often not all of the velocities and displace-
ments can be conveniently measured. However, if the structure is known and is observable,
i.e., if the state matrix A is known and if the measurement matrix C is such that O has
full rank, one can design a subsystem, called an observer (or estimator, in the stochastic
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case), from measurements of the input and of the response of the system. The observer then
provides an approximation of the missing measurements.

Consider the state-space system given by Equations (7.1) and (7.2) with output feedback as
defined by Equation (7.13). To simplify this discussion, consider the case where the control
u(?) and the output y(¢) are both scalars. This is the single-input, single-output (SISO) case.
In this situation the matrix B becomes a column vector, denoted by b, and the matrix C
becomes a row vector, denoted by ¢’

The output y(¢) is proportional to a state variable or linear combination of state variables.
Sometimes recovering the state vector from the measurement of y(f) is trivial. For instance,
if each state is measured (multiple output), C is square and nonsingular, so that x=C"'y.
In this section it is assumed that the state vector is not directly measured and is not easily
determined from the scalar measurement y(z). However, since the quantities A, b, and ¢7,
as well as measurements of the input u(f) and the output y(¢), are known, the desired state
vector can be estimated. Constructing this estimated state vector, denoted by x_, is the topic
of this section. State observers can be constructed if the system is completely observable
(see, for instance, Chen, 1998).

The simplest observer to implement is the open-loop estimator. An open-loop estimator
is simply the solution of the state equations with the same initial conditions as the system
under consideration. Let x, denote the estimated state vector. The integration of

X, =Ax, +bu (7.33)

yields the desired estimated state vector. The estimated state vector can then be used to
perform state feedback or output feedback. Note that integration of Equation (7.33) requires
knowledge of the initial condition, x,(0), which is not always available.

Unfortunately, the open-loop estimator does not work well if the original system is unstable
(or almost unstable) or if the initial conditions of the unmeasured states are not known
precisely. In most situations, the initial state is not known. A better observer can be obtained
by taking advantage of the output of the system, y(z), as well as the input. For instance,
consider using the difference between the output y(z) of the actual system and the output
v,(?) of the estimator as a correction term in the observer of Equation (7.33). The observer
then becomes

).(e =Axe+re(y_ye)+bu (734)

where r, is the gain vector of the observer and is yet to be determined. Equation (7.34) is
called an asymptotic state estimator, which is designed by choosing the gain vector r,. The
error between the actual state vector X and the estimated state vector X, must satisfy the
difference between Equation (7.34) and Equation (7.1). This difference yields

().(_)‘(e):A(X_Xe)Jrre(ye_y) (735)
Since y, —y = ¢7(x, — x), this last expression becomes
é=(A-r,ce (7.36)

where the error vector e is defined to be the difference vector e = x — x,. This expression
is the dynamic equation that determines the error between the actual state vector and the
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estimated state vector. Equation (7.36) describes how the difference between the actual initial
condition x(0) and the assumed condition x,(0) evolves in time.

The idea here is to design the observer, i.e., to choose r,, so that the solution of
Equation (7.36) remains as close to zero as possible. For instance, if the eigenvalues of
(A —r,cT) are chosen to have negative real parts that are large enough in absolute value,
the vector e goes to zero quickly, and x, approaches the real state x. Thus, any difference
between the actual initial conditions and the assumed initial conditions for the observer dies
out with time instead of increasing with time, as could be the case with the open-loop
observer.

Obviously, there is some difference between using the actual state vector x and the
estimated state vector X, in calculating a control law. This difference usually shows up as
increased control effort; that is, a feedback control based on x, has to exert more energy
than one based on the actual state variables x. However, it can be shown that, as far as
placing eigenvalues are concerned, there is no difference in state feedback between using
the actual state and the estimated state (Chen, 1970). Furthermore, the design of the observer
and the control can be shown to be equivalent to performing the separate design of a control,
assuming that the exact states are available, and the subsequent design of the observer (called
the separation theorem).

To solve the control problem with state estimation, the state equation with the estimated
state vector used as feedback (u = gy = ge’x,, recalling that ¢ is a row vector) must be
solved simultaneously with the state estimation equation [Equation (7.36)]. This solution
can be achieved by rewriting the state equation as

X =Ax + gbc'x, (7.37)
and substituting the value for x,. Then
x=Ax+ gbe’ (x —e) (7.38)
or upon rearranging
x=(A+gbc’)x —gbce (7.39)

Combining Equations (7.36) and (7.39) yields

x| [A+gbe" —gbc” X
|:é:|_|: 0 A—recT] |:ei| (7.40)

Here, the zero in the state matrix is a 2n x 2n matrix of zeros. Expression (7.40) is subject to
the actual initial conditions of the original state equation augmented by the assumed initial
conditions of the estimator. These estimator initial conditions are usually set at zero, so that
[x7(0) €T(0)]" =[x"(0) 0]". Solution of Equation (7.40) yields the solution to the state
feedback problem with the states estimated, rather than directly measured.

The following example illustrates the computation of a state observer as well as the
difference between using a state observer and using the actual state in a feedback control
problem.
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Example 7.5.1

Consider a single-degree-of-freedom oscillator (w? =4, { =0.25) with displacement as the measured
output. The state-space formulation for a single-input, single-output system is

5;:[_04 _ll]x—i—bu, b:[ﬂ (7.41)

y=[1 0]x

If output feedback is used, then u = gy = ge”x, and the system becomes

k:[_o4 _11i|x+g[(l) 8}x (7.42)

Combining yields

5(=[g24 _11];( (7.43)

The asymptotic estimator in this case is given by
X, =Ax, +r,(y—c'x,) +bu (7.44)

where r, is chosen to cause the eigenvalues of the matrix (A —r,¢”) to have negative real parts that
are large in absolute value. As mentioned previously, in this case ¢/ =[1 0] is a row vector, so that
the product r,¢” is a matrix. Here, the eigenvalues of (A —r,¢”) are chosen to be —6 and —5 (chosen
only because they cause the solution of Equation (7.36) to die out quickly; other values could be
chosen). These equations are equivalent to requiring the characteristic equation of (A —r,c!) to be
A+6)(A+9), ie.,

detM —A+r,e )=+ (1 + DA+ (r, +1,+4)
=A2411A+30 (7.45)

Equating coefficients of A in this expression yields the desired values for r, =[r, ,]7 to be r, =10
and r, = 16. Thus, the estimated state is taken as the solution of

. 0 1 10
X€:|:_4 ]]Xe+|:]6] (y—CTX€)+bM (746)
The solution x, can now be used as feedback in the original control problem coupled with the state
estimation equation. This solution yields [from Equation (7.40) with the control taken as g = —1]
0 1 0 0
X -5 -1 1 0](x
[é]_ 0 0 -10 1 [ei| (7.:47)
0 0 =20 1
The plots in Figure 7.9 show a comparison between using the estimated state and the same control
with the actual state used. In the figure, the control is fixed to be g = —1 and the actual initial

conditions are taken to be x(0) =[1 1]7. The response for various different initial conditions for the
observer x,(0) are also plotted.
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Note that in both cases the error in the initial conditions of the estimator disappears by
about 1.2 time units, lasting just a little longer in Figure 7.10 than in Figure 7.9. This results
because the assumed initial conditions for the observer are farther away from the actual
initial condition in Figure7.10 than in Figure7.9. Comparison of the actual response in
Figure 7.9 and Figure 7.10 with that of Figure7.11 shows that the control law calculated
using estimated state feedback is only slightly worse (takes slightly longer to decay) than
those calculated using actual state feedback for this example.

In the preceding presentation of state observers, the scenario is that the state vector x is
not available for use in output feedback control. Thus, estimated output feedback control
is used instead, i.e., u(f) = ge’x,. A practical alternative use of an observer is to use the
estimated state vector X, to change a problem that is output feedback control (ge”x) because

Figure 7.9 Comparison of the error vector e(f) versus time and the components of the state vector
x(7) versus time for the initial condition e(0)=[1 0].

| | I | I ! ! | L5
0 5 1 15 2 25 3 35 4 45 5

Figure 7.10 Components of the error vector e(7) versus time and the components of the state vector
x(t) versus time for the initial condition e(0)=[1 1]7.
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1.5

Figure 7.11 Components of the state vector x(7) versus time for the case of complete state feedback.

of hardware limitations to one that is augmented by the observer to use complete state
variable feedback, i.e., u(f) = gc"x + k7x,. Here, the vector k makes use of each state
variable, as opposed to ¢, which uses only some state variables.

If multiple inputs and outputs are used, this analysis can be extended. The resulting
observer is usually called a Luenberger observer. If, in addition, a noise signal is added as
input to Equation (7.1), the estimation equation can still be developed. In this case they are
referred to as Kalman filters (see, for instance, Anderson and Moore, 1979).

7.6 REALIZATION

In the preceding section, the state matrix A (and hence the coefficient matrices M, D, and
K) and also the input matrix B and the output matrix C are all assumed to be known. In
this section, however, the problem is to determine A, B, and C from the transfer function
of the system. This problem was first introduced in Section 1.6, called plant identification,
where the scalar coefficients m, ¢, and k were determined from Bode plots. Determining the
matrices A, B, and C from the transfer function of a system is called system realization.
Consider again the SISO version of Equations (7.1) and (7.2). Assuming that the initial
conditions are all zero, taking the Laplace transform of these two expressions yields

sX(5) =AX(s) +bU(s) (7.48)
¥(s) =¢"X(s) (7.49)

Solving Equation (7.48) for X(s) and substituting the result into Equation (7.49) yields

Y(s)=c"(sI —A)"'bU(s) (7.50)
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Since y and u are scalars here, the transfer function of the system is just

Y(s)

U0) =G(s)=c"(sI—A)"'b (7.51)

Here and in the following, G(s) is assumed to be a rational function of s. If, in addition,
G(s) is such that

lim G(s) =0 (7.52)

then G(s) is called a proper rational function. These two conditions are always satisfied for
the physical models presented in Chapter 2. The triple A, b, and ¢ is called a realization of
G(s) if Equation (7.51) holds. The function G(s) can be shown to have a realization if and
only if G(s) is a proper rational function. The triple (A, b, ¢) of minimum order that satisfies
Equation (7.51) is called an irreducible realization, or a minimal realization. The triple
(A, b, ¢) can be shown to be an irreducible realization if and only if it is both controllable
and observable (see, for instance, Chen, 1998).

A transfer function G(s) is said to be irreducible if and only if the numerator and denom-
inator of G have no common factor. This statement is true if and only if the denominator of
G(s) is equal to the characteristic polynomial of the matrix A, and if and only if the degree of
the denominator of G(s) is equal to 2n, the order of the system. While straightforward con-
ditions are available for ensuring the existence of an irreducible realization, the realization
is not unique. In fact, if (A, b, ¢) is an irreducible realization of the transfer function G(s),
then (A’, b', ¢) is an irreducible realization if and only if A is similar to A’, i.e., there exits a
nonsingular matrix P such that A= PAP ', b=Pb/, and c=¢'P~!. Hence, a given transfer
function has an infinite number of realizations. This result is very important to remember
when studying modal testing in Chapter 8.

There are several ways to calculate a realization of a given transfer function. The easiest
method is to recall from differential equations the method of writing a 2n-order differential
equation as 2n first-order equations. Then, if the transfer function is given as

% =G()=, T azszﬁ F——— (7.53)
the time domain equivalent is simply obtained by multiplying this out to yield
s7y(s) + o s y(s) + - = Bu(s) (7.54)
and taking the inverse Laplace transform of Equation (7.54) to obtain
Y+ ay® ) 4, (1) = Bu() (7.55)

Here, y®” denotes the 2nth time derivative of y(¢). Next, define the state variables by the
scheme

x, (1) = (1)
x (0 =y"()

25, (1) =y (1)
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The state equations for Equation (7.55) then become

0 1 o --- 0 0
0 0 1 -0 0
x(1) = : : : Dol x( || u() (7.56)
0 0 o -1 0
—Qy, =0y —Qy,y TR B
and
y(@©)=[100 ---]x(¢) (7.57)

The triple (A, b, ¢) defined by Equations (7.56) and (7.57) constitutes an irreducible realiza-
tion of the transfer function given by Equation (7.53).

Realization procedures are also available for multiple-input, multiple-output (MIMO)
systems (see, for instance, Ho and Kalman, 1965). In Chapter 8, realization methods are
used to determine the natural frequencies, damping ratios, and mode shapes of a vibrating
structure by measuring the transfer function and using it to construct a realization of the test
structure.

Example 7.6.1

Consider the transfer function of a simple oscillator, i.e.,

1

G(s)=———
() 2+ 2{ws + w?

Following Equation (7.56), a state-space realization of this transfer function is given by

[ ] o[l (]

7.7 REDUCED-ORDER MODELING

Most control methods work best for structures with a small number of degrees of freedom.
Many modeling techniques produce structural models of a large order. Hence, it is often
necessary to reduce the order of a model before performing a control analysis and designing
a control law. This topic was first introduced in Section 6.8. In that section the method
of model reduction was based on knowledge that certain coordinates, such as those cor-
responding to a bending mode in a longitudinally excited beam, will not contribute to the
response. These coordinates are then removed, producing a model of lower order. In this
section, the coordinates to be removed are calculated in a more formal way as part of the
reduction process, rather than specified through experience as in the Guyan reduction of
Section 6.8.
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The approach taken in this section is to reduce the order of a given model on the basis
of deleting those coordinates, or modes, that are the least controllable and observable. The
idea here is that controllability and observability of a state (coordinate) are indications of the
contribution of that state (coordinate) to the response of the structure, as well as the ability
of that coordinate to be excited by an external disturbance.

To implement this idea, a measure of the degree of controllability and observability is
needed. One such measure of controllability is given by the controllability norm of Equation
(7.8). However, an alternative, more useful measure is provided for asymptotically stable
systems of the form given by Equations (7.1) and (7.2) by defining the controllability
grammian, denoted by W, as

W2 = / ABBT A di (7.58)
0
and the observability grammian, denoted by W, as
W2 = / ACTC M dt (7.59)
0

Here, the matrices A, B, and C are defined as in Equations (7.1) and (7.2). The properties
of these two matrices provide useful information about the controllability and observabil-
ity of the closed-loop system. If the system is controllable (or observable), the matrix
W¢ (or Wy) is nonsingular. These grammians characterize the degree of controllability
and observability by quantifying just how far away from being singular the matrices W,
and W, are. This is equivalent to quantifying rank deficiency. The most reliable way to
quantify the rank of a matrix is to examine the singular values of the matrix, which is
discussed next.

For any real m x n matrix A there exist orthogonal matrices U,,,,, and V,, such that
UTAV =diag[ o, 0, 0,], p =min(m, n) (7.60)
where the o; are real and ordered via
o >0y>>0,>0 (7.61)

(see, for instance, Golub and Van Loan, 1996). The numbers o; are called the singular
values of matrix A. The singular values of matrix A are the nonnegative square roots of the
eigenvalues of the symmetric positive definite matrix ATA. The vectors u, consisting of the
columns of matrix U are called the left singular vectors of A. Likewise, the columns of V,
denoted by v,, are called the right singular vectors of A. The process of calculating U, V,
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and diag[o - - - 0, ] is called the singular value decomposition (denoted by SVD) of matrix A.
Note that the singular values and vectors satisfy

Av.=ou,, i=1,...,p (7.62)
ATu,=oyv,, i=1,...,p (7.63)

Note that if A is a square symmetric positive definite matrix, then U =V, and the u, are
the eigenvectors of matrix A and the singular values of A are identical to the eigenvalues
of A2,

The real square symmetric semipositive definite matrix A is, of course, singular, or rank
deficient, if and only if it has a zero eigenvalue (or singular value). This statement leads
naturally to the idea that the size of the singular values of a matrix quantify how close the
matrix is to being singular. If the smallest singular value, o, is well away from zero, then
the matrix is of full rank and ‘far away’ from being singular (note: unlike frequencies, we
order singular values from largest to smallest).

Applying the idea of singular values as a measure of rank deficiency to the controllability
and observability grammians yields a systematic model reduction method. The matrices W,
and W, are symmetric and hence are similar to a diagonal matrix. Moore (1981) showed
that there always exists an equivalent system for which these two grammians are both equal
and diagonal. Such a system is then called balanced.

In addition, Moore showed that W and W, must satisfy the two Liapunov-type equations

AWE + WEAT = —BB"
ATWS+ W A=-C"C (7.64)

for asymptotically stable systems.
Let the matrix P denote a linear similarity transformation, which when applied to Equa-
tions (7.1) and (7.2) yields the equivalent system

X' =A'X' +B'u
y=Cx (7.65)

These two equivalent systems are related by

x=Px’ (7.66)
A =P7'AP (7.67)
B =P'B (7.68)

C'=CP (7.69)
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Here, matrix P can be chosen such that the new grammians defined by

W.=P'W.P (7.70)
and
W, =P 'WyP (7.71)
are equal and diagonal. That is,
Wi =W, = Ay =diaglo, 0, -+ 0y,] (7.72)

where the numbers o, are the singular values of the grammians and are ordered such that
0, >0, i=1,2,...,2n—1 (7.73)

Under these circumstances, i.e., when Equations (7.72) and (7.73) hold, the system given by
Equations (7.65) is said to be internally balanced.
Next, let the state variables in the balanced system be partitioned into the form

X _|AnAn || X B,
["‘J B [Azl Azz} [XJ N [Bz} ! 07
X/

=16 cll¥] (175)
where A, is a k x k matrix and x) is the vector containing those states corresponding to the
(2n — k) smallest singular values of Wc. It can be shown (Moore, 1981) that the x), part of
the state vector for Equations (7.74) and (7.75) affects the output much less than x| does.
Thus, if oy is much greater than oy, i.e., 0, >> 0, the X, part of the state vector does

not affect the input—output behavior of the system as much as x; does.
The preceding comments suggest that a suitable low-order model of the system of Equa-

tions (7.1) and (7.2) is the subsystem given by

X, =A; x| +Bu (7.76)
y=Cx] (7.77)

This subsystem is referred to as a reduced-order model (often referred to as ROM). Note
that, as pointed out by Moore (1981), a realization of Equations (7.1) and (7.2) should yield
the reduced model of equations (7.76) and (7.77).

The reduced-order model can be calculated by first calculating an intermediate transfor-
mation matrix P, based on the controllability grammian. Solving the eigenvalue problem for
W yields

We= VIV (7.78)
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where V. is the matrix of normalized eigenvectors of W and X2 is the diagonal matrix of
eigenvalues of W.. The square on 3 is a reminder that W,. is positive definite. Based on
this decomposition, a nonsingular transformation P, is defined by

P =VcXc (7.79)

Application of the transformation P, to the state equations yields the intermediate state
equations defined by

A" =P 'AP, (7.80)
B'=P'B (7.81)
C'=CP, (7.82)

To complete the balancing algorithm, these intermediate equations are balanced with respect
to W{. That is, the eigenvalue problem for W( yields the matrices V{j and 62 such that

Wy =Vixstvy! (7.83)

These two matrices are used to define the second part of the balancing transformation, i.e.,
< —1/2

P, =V3%, (7.84)

The balanced version of the original state equations is then given by the product transfor-
mation P =P, P, in Equation (7.65). They are

A'=P;'P'AP,P, (7.85)
B'=pP;'P;'B (7.86)
C'=CP,P, (7.87)

The balanced system is then used to define the reduced-order model of Equations (7.76) and
(7.77) by determining the value of k such that o, >> o . The following example illustrates
an internally balanced reduced-order model.

Example 7.7.1

Consider the two-degree-of-freedom system of Figure 2.4 with m; =m,=1,¢,=0.2,¢,=0.1, and
k, =k, =1. Let an impulse force be applied to m, and assume a position measurement of m, is
available. The state matrix is

0 0 1 0
0 0 0 1
A=15 1 —03 o1

1 -1 0.1 —0.1

In addition, B becomes the vector b=1[0 0 0 1], and the output matrix C becomes the vector
c¢'=[0100].
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The controllability and observability grammians can be calculated (for ¢ — o0) from
Equation (7.64) to be

[ 4.0569 6.3523 0.0000 —0.3114]
6.3523 10.5338 0.3114 0.0000
0.0000 0.3114 1.7927 2.2642

| —0.3114 0.0000 2.2642 4.1504

[1.8198 2.2290 0.5819 1.1637 |
2.2290 4.2315 -0.8919 0.4181
0.5819 —0.0819 4.0569 6.3523

| 1.1637 0.4181  6.3523 10.5338 |

Calculation of the matrix P that diagonalizes the two grammians yields

0.4451 —0.4975 0.4962 —0.4437
0.7821 —0.7510 —0.2369 0.3223
0.2895 0.2895 0.6827 0.8753
0.4419 0.5112 —0.4632 —0.4985

The singular values of W, and W, are then o, =9.3836, 0, =8.4310, 03 =0.2724, and 0, =0.2250.
From examination of these singular values, it appears that the coordinates x, and x, associated with
A’ of Equation (7.85) are likely candidates for a reduced-order model (i.e., k=1 in this case). Using
Equations (7.85) through (7.87) yields the balanced system given by

—0.0326 0.6166 0.0192 —0.0275

A —0.6166 —0.0334 —0.0218 0.0280
| 0.0192 0.0218 —0.1030 1.6102

0.0275 0.0280 1.6102 —0.2309

BT =[0.7821 0.7510 —0.2369 —0.03223]T
C'=[0.7821 —0.7510 —0.2369 0.3223]

Given that k =2 (from examination of the singular values), the coefficients in Equations (7.76) and
(7.77) for the reduced-order model become

—0.6166  —0.0334
B, =[0.7821 0.7510]"
C,=[0.7821 —0.7510]

—0.0326 0.6166
A= [ ]

Plots of the response of the full-order model and the balanced model are given in Figures 7.12
and 7.13 respectively. Note in Figure7.13 that the two coordinates (x} and x}) neglected in the
reduced-order model do not contribute as much to the response and, in fact, die out after about
15 time units. However, all the coordinates in Figure7.12 and x| and x} are still vibrating after
15 time units.
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1.5+

Figure 7.13 Response of the balanced state variables.

Note that the balanced reduced-order model will change if different inputs and outputs are
considered, as the B and C matrices would change, altering the reduction scheme.

7.8 MODAL CONTROL IN STATE SPACE

In general, modal control refers to the procedure of decomposing the dynamic equations
of a structure into modal coordinates, such as Equations (5.29) and (5.37), and designing
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the control system in this modal coordinate system. In broad terms, any control design
that employs a modal description of the structure is called a modal control method. Modal
control works well for systems in which certain (just a few) modes of the structure dominate
the response. That is, modal control works well for systems in which only a few of the
modal participation factors (see Section 3.3) are large and the rest are relatively small.
Modal control can be examined in either state space, via Equations (7.1) and (7.2), or in
physical space, via Equations (4.23) through (4.25). This section examines modal control in
the state-space coordinate system, and the following section examines modal control in the
physical coordinate system.

Consider the state-space description of Equations (7.1) and (7.2). If matrix A has a diagonal
Jordan form, then — following Section 5.3 — there exists a nonsingular matrix U such that

U'AU=A

where A is a diagonal matrix of the eigenvalues of the state matrix A. Note that the diagonal
elements of A will be complex if the system is underdamped. Substituting x = Uz into
Equation (7.1) and premultiplying by the inverse of the nonsingular matrix U yields the
diagonal system

2=Az+U 'Bu (7.88)

Here, the vector z is referred to as the modal coordinate system. In this form, the controlla-
bility problem and the pole placement problem become more obvious.

Consider first the controllability question for the case of a single input (i.e., u becomes
a scalar). Then B is a vector b and U~'b is a vector consisting of 2n elements denoted
by b,. Clearly, this system is controllable if and only if each b, #£0, i=1,2,...,2n. If,
on the other hand, b; should happen to be zero for some index i, then the system is not
controllable. With b, =0 the ith mode is not controllable, as no feedback law could possibly
affect the ith mode. Thus, the vector U~'b indicates the controllability of the system by
inspection.

The form of Equation (7.88) can also be used to perform a quick model reduction (see
problem 7.28). Suppose it is desired to control just the fastest modes or modes in a certain
frequency range. Then these modes of interest can be taken as the reduced-order model and
the others can be neglected.

Next, consider the pole placement problem. In modal form, it seems to be a trivial matter
to choose the individual modal control gains b; to place the eigenvalues of the system. For
instance, suppose output feedback is used. Then u = ¢’ Uz, and Equation (7.88) becomes

2=Az+U 'bc'Uz=(A+U'bc'U)z (7.89)

where ¢” is a row vector. The closed-loop system then has poles determined by the matrix
(A4 U~"be" U). Suppose that the matrix U~"be’ U is also diagonal. In this case the controls
are also decoupled, and Equation (7.89) becomes the 2n decoupled equations

2=\, +u,)z;, i=1,2,...,2n (7.90)

Here, u, denotes the diagonal elements of the diagonal matrix U~'be’ U. Note that the
vector U~'be’ Uz in Equation (7.89) is identical to the vector U~'f in Equation (5.20). The
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difference between the two equations is simply that in this section the forcing function is
the result of a control force manipulated by a designer to achieve a desired response. In the
development of Section 5.3, the forcing term represents some external disturbance.

The matrix U~'be’ U in Equation (7.89) may not be diagonal. In this case, Equation (7.89)
is not decoupled. The controls in this situation reintroduce coupling into the system. As a
result, if it is desired to change a particular modal coordinate, the control force chosen to
change this mode will also change the eigenvalues of some of the other modes. Following the
arguments of Section 3.5, a necessary and sufficient condition for U~'be” U to be diagonal
is for the matrix be’ to commute with the state matrix A. The remainder of this section is
devoted to discussing the coupling introduced by control laws and measurement points in
the case where it is desired to control independently a small number of modes of a given
structure.

Suppose, then, that it is desired to control independently a small number of modes. For
example, it may be desired to place a small number of troublesome poles while leaving
the remaining poles unaffected. Let k denote the number of modes that are to be controlled
independently of the remaining 2n — k modes. Furthermore, assume that it is the first k
modes that are of interest, i.e., the desired modes are the lowest k. Then, partition the modal
equations with state feedback into the k modal coordinates that are to be controlled and the
2n — k modal coordinates that are to be left undisturbed. This yields

z; Ay 0 :| [ bcf b.c, :|) [ Z j|
. = + n 7.91
|:Z2nk i| (|: 0 Ayy by, ckT by, c;nfk Zy, ( )

Here, the matrix U~'be’ U is partitioned into blocks defined by

b
U'b=|,  * }
|:b2nk

CTU = [CIZ c;nfk]

where b, denotes the first k elements of the vector b, b,,_, denotes the last 2n — k elements,
and so on. Likewise, the matrices A, and A,, , denote diagonal matrices of the first k
eigenvalues and the last 2n — k eigenvalues respectively. Let b; denote the elements of the
vector U~ 'b and c; denote the elements of the vector ¢’ U. Then, bkc,f is the k x k matrix

bie, bie, - b
b,c;, b,c -o by

bel=| . . o (7.92)
byey bie, - biey

Examination of Equation (7.91) illustrates that the first k modes of the system can be
controlled independently of the last (2n — k) modes if and only if the two vectors b,,_,
and c¢,,_, are both zero. Furthermore, the first X modes can be controlled independently of
each other only if Equation (7.92) is diagonal. This, of course, cannot happen, as clearly
indicated by setting the off-diagonal terms of Equation (7.92) to zero. Takahashi et al. (1968)
discussed decoupled or ideal control in detail. In general, it is difficult to control modes
independently, unless a large number of actuators and sensors are used. The vector ¢},
indicates the coupling introduced into the system by measurement, and the vector b,,
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indicates coupling due to control action. This phenomenon is known as observation spillover
and control spillover (Balas, 1978).

Example 7.8.1

Consider an overdamped two-degree-of-freedom structure with the state matrix given by

0 0 1 0
o o0 0 1
A=13 1 9 4

Solving the eigenvalue problem for A yields the matrices A, U, and U~! given by

[—10.9074 0 0 0
e 0 —1.2941 0 0
0 0 ~0.5323 0
.0 0 0 —0.2662
[—0.0917  —0.4629  0.7491  —0.0957]
y_| 00512 —07727  1.0000  1.0000
~| 1.0000 05990  —0.3988  0.0255
| —0.5584  1.0000 05323  —0.2662 |
(02560  —0.1121  0.7846  —0.4381]
poi_| 07382 03741 07180 1.1986
1.6791 03378 05368  0.7167
| —1.1218 09549  —0.0222  0.2320 |

which constitutes a modal decomposition of the state matrix (note that A= UAU™"). Suppose next
that b=[0 0 1 0]” and ¢” =[0 0 1 1] are the control and measurement vectors respectively. In the
decoupled coordinate system, the control and measurement vectors become

U 'b=[0.7846  0.7180  0.5368 —0.0222]T
and

c'U=[0.44161 05990 —0.9311  —0.2407]

Notice that these vectors are fully populated with nonzero elements. This leads to the fully coupled
closed-loop system given by Equation (7.89), since the term U~'be’ U becomes

03465 12545  —0.7305 —0.1888
oo o371 11481 —0.6685  —0.1728
UbeU=105371 08584  —04999  —0.1292

0.0098  —0.0355 0.0207 0.0053

This last expression illustrates the recoupling effect caused by the control and measurement locations.
Note that the matrix A+ U~'be” U of Equation (7.89) is not diagonal but fully populated, recoupling
the dynamics.
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7.9 MODAL CONTROL IN PHYSICAL SPACE

As indicated in Section 3.4, the left-hand side of Equation (4.23) can be decoupled into
modal coordinates if and only if DM 'K = KM ~'D. This was used in Section 5.4 to decouple
Equation (5.35) into modal coordinates to solve for the forced response. A similar approach
is taken here, except that the input force S”f of Equation (5.37) becomes the control force
S,f,Bfu. As in the state space, the dlfﬁculty lies in the fact that the transformation, S,,, o
the equations of motion into modal coordinates, z, does not necessarily decouple the control
input S;Bfu. (Note that in this section z is an n x 1 vector of modal positions, whereas in
the previous section z is a 2n x 1 vector of modal state variables.) The control problem in
second-order physical coordinates transformed into modal coordinates is, in the notation of
Sections 4.10 and 5.4,

Ii+ Api+ Agz=S"Bu (7.93)
y=C,S,z+C,S,z (7.94)

Here, the dimensions of the matrices C, and C, are as indicated in Equation (4.25). Note
that in Equation (7.93) the relative magnitudes of the elements (S, B;u); are an indication of
the degree of controllability for the ith mode. If (S;Bfu) ; 1s very small, the ith mode is hard
to control. If it happens to be zero, then the ith mode is not controllable. If, on the other
hand, (S;Bfu),- is relatively large, the ith mode is very controllable.

If output feedback of the form suggested in Equation (4.26) is used, then u= —Gyy.
Combining Equation (7.93) with Equation (7.94) and the control law, the system equation
becomes

1i+ Api+ Agz=—S)B/K,S,z—S|B/K,S, 2 (7.95)

p¥m vMm

where K, =G,C, and K, = G,C, represent measurement positions and B, is taken to represent
the control actuator locations. Note that, by this choice of u, the dlscusswn is now restricted
to state variable feedback, i.e., position and velocity feedback. Equation (7.95) can be
rewritten as

17+ (Ap+SLBK,S, )2+ (Ag +S)B/K,S, ) 2= (7.96)

Now, Equation (7.96) is posed for modal pole placement control.

To cause the closed-loop system of Equation (7.96) to have the desired eigenvalues and,
hence, a desired response, the control gain matrix B, and the measurement matrices K, and
K, must be chosen (a design process) appropriately. If, in addition, it is desired to control
each mode independently, i.e., each z; in Equation (7.96), then further restrictions must be
satisfied. Namely, it can be seen from Equation (7.96) that an independent control of each
mode is possible if and only if the matrices S£BfK S,, and STBfK S,, are both diagonal. In
the event where the matrix B,K, and the matrix B,K, are both symmetric, this will be true
if and only if
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B,K,M~'D=DM'B/K, (7.97)
and

—1 -1
B,K,M~'K =KM~'B/K, (7.98)

Unfortunately, this puts very stringent requirements on the location and number of sensors
and actuators. If, however, the conditions given by Equations (7.97) and (7.98) are satisfied,
Equation (7.96) reduces to n single-degree-of-freedom control problems of the form

i+ (2w + )z + (“)12 +B)z;=0 (7.99)

where «; and f3; are the diagonal elements of the matrices S;BvaSm and S;BprSm respec-
tively. This last expression represents an independent set of equations that can be solved for
a; and f3; given desired modal response information. That is, if it is desired that the closed-
loop system have a first-mode natural frequency of 10, for instance, then Equation (7.99)
requires that w? + 8, = 10, or B, = 10 — w?. If the known open-loop system has w? =6, then
3, =4 is the desired control gain.

While the modal control equations [Equations (7.99)] appear quite simple, the problem of
independent control remains complicated and requires a larger number of sensor and actuator
connections. This happens because the «; and 3; of Equation (7.99), while independent, are
not always capable of being independently implemented. The design problem is to choose
actuator and sensor locations as well as gains such that B, K,, and K|, satisfy Equations (7.97)
and (7.98). The choice of these gains is not independent but rather coupled through the
equations

S!B/K,S,, = diag[a;] (7.100)
and

Sy B:K,S,, = diag[B;] (7.101)
The modal control of a system in physical coordinates as well as the problem of performing

independent modal control are illustrated in the following example.

Example 7.9.1

Consider the system of Figure 2.4 with coefficient values (dimensionless) of m; =9, m, =1, ¢, =8,
¢, =1, k; =24, and k, = 3. This produces a system equivalent to the one of example 3.5.1, where
it is shown that DMK = KM~'D, so that the system decouples. The matrix S,, is given by
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The decoupled coordinates, listed in example 3.5.1, yield the modal frequencies and damping
ratios as

£, =0.2357, 0, =+2=1.414rad/s
$»=03333,  w,=2.0rad/s

Consider the control problem of calculating a feedback law that will cause the closed-loop system
(7.95) to have a response with a modal damping ratio of 0.4 in the first mode. Three cases of
different sensor and actuator placements are considered.

In the first case, consider an SISO system with non-collocated control. Suppose one actuator is
used to achieve the desired control and it is connected to only one mass, m,, and one sensor is used
to measure the velocity of m,. Then

Kv:[gl 0]’ K,=0

P
0
B, =
=]

since u is a scalar in this case. Calculating the control and measurement quantities from Equa-
tion (7.96) yields

T
S"B/K,S, =0

T _ 8182 1 -1
SmeK\’Sm - 6 |: 1 _1 ]
It should be clear from this last expression that no choice of g, and g, will allow just the first mode
damping to be changed, i.e., S;BJ-KVS,, cannot be diagonal.

For the second case, consider using two actuators, one at each mass, and two sensors measuring
the two velocities. This is a MIMO system with velocity feedback. Then

81 0
K =
! [0 gz}

and

Equation (7.96) then yields

S,TanKVS,,,zi[glg3+9g2g4 9g2g4_glg3:|
18 [ 98,84 — 818 81831+ 98:8&

An obvious choice for decoupled control is 9g,g, = g,83, as this makes the above matrix diago-
nal. Then

0
s'B K.S, = 8284 ]
mt |: 0 8284

Comparing the desired first mode damping ratio yields

2{io, + 88 = 2(0'4)\/E
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Solving this equation for the two unknown a = g,g, yields g,g, =0.164. This choice of the gain
keeps the equations of motion decoupled and assigns the first damping ratio the desired value of
0.4. Unfortunately, because of the way the gains appear in closed-loop system, the effect on the
second mode velocity coefficient is

20w, + 284 =240,

This results in a new damping ratio for mode 2 of 22 =10.449. Hence, although a decoupled control
has been found, it is still not possible independently to change the damping ratio of mode 1 without
affecting mode 2. This would require g,g; + 92,84 to be zero, which of course would also not allow
{, to be controlled at all.

For the third case, then consider a MIMO controller with the velocity signal at m, to be fed back
to mass m,, and vice versa. This means that K, now has the form

K, = |:g 1 85]
8 &
In this case, calculating the velocity feedback coefficient yields

1
s, L |

_ L 18381138385 19884 +3818 98284 138385 — 38486 — &8 ]
18

98,84 — 38385 138486 — 8381 98284 + 8381 — 38486 — 38385

Examining this new feedback matrix shows that independent modal control will be possible if and
only if the off-diagonals are set to zero, decoupling the system, and the element in the (2, 2) position
is zero, leaving the second mode unchanged. To change the first mode-damping ratio to 0.4, the
first entry in the matrix above requires that

8183 138385+ 98,84 + 38486

2{ o, + 18

=2(0.4)w,

To ensure that the controller does not recouple the equations of motion, the off-diagonal elements
are set to zero, resulting in the two equations

98,84 +38385 — 3848 — 8381 =0 and 98,84 — 38385 + 3848 — 8381 =0

To ensure that the second mode damping is not changed, the element in the (2, 2) position is also
set to zero, resulting in the additional condition

98,84 + 8381 — 38486 — 38385 =0

This last set of equations can be recognized as four linear equations in the four unknowns

a=gg, b=g&u, =88  d=gg
These equations in matrix form are

—a+9b+4+3c+3d=0
—a+9b—3c+3d=0
a+9b—-3c—-3d=0

1

a 1 1
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Solving this set of equations with the open-loop values of w, and {; given above yields
a=2.09, b=0.232, ¢=0.697, d=0.697

Substitution of these values along with the free choice of g; =g, =1 into the feedback matrix yields

m

. _[o464 0
SBfKVSm_[ o o

The resulting closed-loop system yields a new system with the desired first mode damping ratio of
0.4 and the second mode damping ratio unchanged. Furthermore, the closed-loop system remains
decoupled. Hence, independent mode control is achieved.

Note that, of the six gain values, only four can be determined. In fact, B, could have been
chosen as the identity matrix from the start with the same result. However, in practice, each sensor
and actuator will have a coefficient that needs to be accounted for. In many cases each sensor
and actuator will have significant dynamics, ignored here, that could change the plant by adding
additional poles and zeros.

Example 7.9.1 illustrates how many control actuators and sensors must be used in order to
accomplish an independent control of one mode of a simple two-degree-of-freedom system.
In the case of the last example, as many sensors and actuators were required as degrees
of freedom in the system. Hence, it is important in practical control design to consider
the placement of actuators and sensors and not just the relationships among the various
coefficient matrices for the system.

7.10 ROBUSTNESS

The concept of robust control systems, or robust systems, has been defined in many ways,
not all of which are consistent. However, the basic idea behind the concept of robustness is
an attempt to measure just how stable a given system is in the presence of some uncertainty
or perturbation in the system. That is, if a system is stable, is it still stable after some
changes have been made in the physical or control parameters of the system? This is called
stability robustness. This same question can be asked with respect to the performance of the
system. In this latter case, the question is asked in terms of a given level of acceptability
of a specific performance criterion such as overshoot or settling time. For example, if it is
required that a given control system have an overshoot of less than 10% and there is an
uncertainty in the control gain, does the overshoot still remain less than 10% in the presence
of that uncertainty? This is called performance robustness.

An example of performance robustness is given by Davison (1976). The steady state error
of a control system is defined to be the difference between the response of the system and the
desired response of the system as ¢ becomes large in the regulator problem of Section 7.4.
A logical measure of control system performance is then whether or not the steady state
error is zero. A given system is then said to be robust if there exists a control that regulates
the system with zero steady state error when subjected to perturbations in any of the matrices
A, B, or C in Equations (7.1) and (7.2).
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In the remainder of this section, only stability robustness is discussed. The approach

presented here follows that of Patel and Toda (1980). As an example of stability robustness,
consider a closed-loop system under state variable feedback of the form

x=(A+BK;)x=A'x (7.102)

The matrix A’ contains the measurement and control matrices and is such that the closed-

loop system is asymptotically stable. Let the matrix E, denote the uncertainty in the system

parameters (A) and gains (BK ). Then, rather than having Equation (7.102), the system may
be of the form

x=(A"+E,)x (7.103)

In this equation the matrix E, is not known [recall the discussion following Equation (3.93)],

but rather only bounds on its elements are known. In particular, it is assumed here that each
element of the uncertainty is bounded in absolute value by the same number, &, so that

(E);| <& (7.104)

for each value of the indices i and j. It was shown by Patel and Toda (1980) that the system
with the uncertainty given by Equation (7.104) is asymptotically stable if

& <M,

where

e 1( : ) (7.105)

" 20 \ 0 [F]
Here, F is a solution of the Lyapunov matrix equation [Equation (4.29)] in the form
ATF+FA =-21 (7.106)

where [ is the 2n x 2n identity matrix. The notation o, [F] refers to the largest singular
value of the matrix F.

Example 7.10.1

Consider a closed-loop system defined by the augmented state matrix given by

0 0 1 0
, o o o 1
A=13 1 9 4

1 -1 4 -4



208 CONTROL OF VIBRATIONS

the solution of the Lyapunov equation [Equation (7.106)] yields

3.5495 —0.6593  0.3626  0.0879

0.6593 4.6593 0.6374 1.6374

0.3626 0.6374 0.3956  0.5495

0.0879 1.6374 0.5495 1.2088
The singular values of F' are calculated to be

0,=55728,  0,=3.5202, 0;=0.6288, 0,=0.0914

From Equation (7.105) the value of u, becomes (n=2)
(1 1
He=\4)\55728
Hence, as long as the parameters are not changed more than 1.3676, i.e., as long as

|(E,);] < 1.3676

the system defined by (A’ 4+ E,) will be asymptotically stable.

Many other formulations and indices can be used to discuss stability robustness. For instance,
Rew and Junkins (1986) use the sensitivity (see Section 6.5) of the closed-loop matrix A’
in Equation (7.102) to discuss robustness in terms of the condition number of A’. Kissel
and Hegg (1986) have discussed stability robustness with respect to neglected dynamics in
control system design. They examine how stability of a closed-loop system is affected if a
reduced-order model is used in designing the feedback law. Zhou and Doyle (1997) provide
a complete account of the use of robustness principles in control design for both stability
and performance.

7.11 POSITIVE POSITION FEEDBACK

A popular modal control method with experimentalists and structural control engineers is
called positive position feedback (Goh and Caughey, 1985), which adds additional dynamics
to the system through the control law. A unique feature of the positive position feedback
(PPF) approach is that it can be designed around an experimental transfer function of the
structure and does not require an analytical model of the system or plant to be controlled.
Goh and Caughey proposed using a special dynamic feedback law designed specifically for
use in the second-order form, compatible with Newton’s formulation of the equations of
motion of a structure. These PPF control circuits are designed to roll off at higher frequency
and hence are able to avoid exciting residual modes and introducing spillover as discussed
in Section 7.8.

To illustrate the PPF formulation, consider the single-degree-of-freedom system (or alter-
natively, a single mode of the system)

¥ +2{w,x + wix=bu (7.107)
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where { and w, are the damping ratio and natural frequency of the structure, and b is the

input coefficient that determines the level of force applied to the mode of interest. The PPF

control is implemented using an auxiliary dynamic system (compensator) defined by
0428 @y 1+ 0f n= g0} x

u=

S oo

w1 (7.108)

Here, {; and w; are the damping ratio and natural frequency of the controller, and g is a
constant. The particular form of Equation (7.108) is that of a second-order system much
like a damped vibration absorber. The idea is to choose the PPF frequency and damping
ratio so that the response of the structural mode has the desired damping. Combining
Equations (7.107) and (7.108) gives the equations of motion in their usual second-order
form, which, assuming no external force, is as follows:

x 25‘% 0 X wﬁ —gw?. x| 0
[n]+[ 0 2§fw,.} [f,}*[_gw; wfzf} [n}_[o} (7.109)

Since the stiffness matrix couples the two coordinates, increasing the filter damping, £, will
effectively add damping to the structural mode. Note also that this is a stable closed-loop
system if the symmetric ‘stiffness’ matrix is positive definite for appropriate choices of
g and Wy, that is, if the determinant of displacement coefficient matrix is positive, which
happens if

gza)]% <w’ (7.110)

Notice that the stability condition only depends on the natural frequency of the structure, and
not on the damping or mode shapes. This is significant in practice because, when building an
experiment, the frequencies of the structure are usually available with a reasonable accuracy,
while mode shapes and damping ratios are much less reliable. The design of the controller
then consists of choosing g and w, that satisfy inequality (7.110) and choosing ; large
enough to add significant damping to the structural mode. Note that the gains of the controller
{f, g, and w; are chosen electronically.

The stability property of PPF is also important because it can be applied to an entire
structure, eliminating spillover by rolling off at higher frequencies. That is, the frequency
response of the PPF controller has the characteristics of a low-pass filter. The transfer
function of the controller is

n(s) _ 89}
X(s)  $+2fos+of

(7.111)

illustrating that it rolls off quickly at high frequencies. Thus, the approach is well suited to
controlling a mode of a structure with frequencies that are well separated, as the controller
is insensitive to the unmodeled high-frequency dynamics. If the problem is cast in the state
space, the term b,,_, in Equation (7.91) is zero, and no spillover results.
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The positive position terminology in the name PPF comes from the fact that the position
coordinate of the structure equation is positively fed to the filter, and the position coordinate
of the compensator equation is positively fed back to the structure.

Next, suppose a multiple-degree-of-freedom analytical model of the structure is available.
Following the formulation of output feedback discussed in Section 4.10 for an SISO system
with no applied force yields

Mg+ Dq+Kq=Bu (7.112)
Coupling this with the PPF controller in the form given in Equation (7.108) written as
. . 2, 2 pT
n+2§fwf77+wf ”fl—gwafq
u:gw?n (7.113)

yields

| 3 e [ s P | R
n n _ (7.114)
0 1{[n 0 2w || 1 —gw,Bf w; n 0

The system is SISO, so that B, is a vector since u is a scalar. The augmented mass matrix
in Equation (7.114) is symmetric and positive definite, the augmented damping matrix
is symmetric and positive semidefinite, so the closed-loop stability will depend on the
definiteness of the augmented stiffness matrix.

Consider then the definiteness of the augmented stiffness matrix defined by

N K —gw.B,
k= T (7.115)
—gwB; o]

Let x be an arbitrary vector partitioned according to K and compute

TE T T K —8wrBy | | X T T T pT 2T
x'Kx=[x] xI] =x, KX; — gw,X; B;X, — gwX, By X + 0 X, X,

—gw;B] w; X,

Completing the square and factoring yields
X' Kx=x{(K — ¢’B/B;)x, + (ngTXl - wfxz)T <ngx1 — wfxz)
This is of the form
x"Kx =x! (K — gr"B]{Bf)x1 +y'y
for arbitrary x, and y. Since y”y is always nonnegative, K will be positive definite if the
matrix K — g*Bf B; is positive definite. If ¢ is chosen such that K — g°B/ B, is positive

definite, then the closed-loop system will be stable (in fact asymptotically stable via the
discussion in Section 4.5 since the coefficient matrices do not commute).
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Example 7.11.1
Consider the two-degree-of-freedom system of example 7.9.1 and design a PPF controller to add

damping to the first mode of the system without affecting the second mode.
For a single actuator at the location of the first mass, the input matrix becomes

[}

The augmented mass and stiffness matrices of Equation (7.114) become

9 0 0 9 -1 0 27 -3 —guw;
M={0 1 0], D=| -1 1 0 , K=| -3 3 0
0 0 1 0 0 2fo, —gw, 0 wfz

Following the constraint given by inequality (7.110) for controlling the first mode g*w; < wi =2,
one free choice is ¢ = w; = 1. Choosing the PPF damping of {; =0.5 results in the following
closed-loop damping ratios and frequencies:

w, =143,  {,=0237
w,=2.00, {,=0332
w;=0966,  {=0531

as computed from the corresponding state matrix. Note that damping is added to the first mode
(from 0.235 to 0.237) while mode two damping is only slightly changed and the frequency is not
changed at all. All the modes change slightly because the system is coupled by the filter and,
as was shown in example 7.9.1, multiple sensors and actuators are required to affect only one
mode.

7.12 MATLAB COMMANDS FOR CONTROL CALCULATIONS

Most of the calculations in this chapter are easily made in MATLAB. MATLAB contains a
‘toolbox” just for controls, called the Control System Toolbox (Grace et al., 1992). This
is a series of algorithms expressed in m-files that implements common control design,
analysis, and modeling methods. Many websites are devoted to using and understanding the
Control System Toolbox. Table 7.1 lists some common commands useful in implementing
calculations for active control. The control commands in MATLAB assume the control problem
is a linear time-invariant system of the form

X =Ax + Bu, y=Cx+Du (7.116)
The developments in this chapter assume that D =0.

The following examples illustrate the use of some of the commands listed in Table 7.1 to
perform some of the computations developed in the previous sections.
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Table 7.1 MATLAB commands for control.

ss2tf converts the state-space model to the system transfer function
tf2ss converts a system transfer function to a state-space model
step computes the step response of a system

initial computes the response of a system to initial conditions
impulse computes the response of a system to a unit impulse

ctrb computes the controllability matrix

obsv computes the observability matrix

gram computes the controllability and observability grammians
balreal computes the balanced realization

place computes the pole placement gain matrix

lgr computes the linear quadratic regulator solution

modred  computes the reduced-order model

Example 7.12.1

The function initial can be used to plot the response of the system of Equation (7.116) to
a given initial condition. Consider the system in state-space form of a single-degree-of-freedom
system given by

x| O 1 X, 1 _ X, x| [1
=L BIR ) =] [
and plot the response using initial . Type the following in the command window:

>>clear all
>>A=[01;-4-27;
>>b=[1;0];

>>c=[101];

>>d=[0];

>>x0=[10];

>>t=0:0.1:6;
>>initial(A,b,c,d,x0,t);

This results in the plot given in Figure7.14.

Next, consider using MATLAB to solve the pole placement problem. MATLAB again works
with the state-space model of Equation (7.116) and uses full-state feedback (u = —KXx)
to find the gain matrix K that causes the closed-loop system (A — bK) to have the poles
specified in the vector p. The following example illustrates the use of the place command.

Example 7.12.2

Use the system of example 7.12.1 and compute the gain that causes the closed-loop system to
have two real poles: —2 and —4. Using the code in Figure 7.12.1 to enter the state-space model
(A, b, ¢, d), then type the following in the command window:
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. Initial Condition Results

0.8
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Figure 7.14 Response computed and plotted using the initial command.

>>p=[ -2 -4];
>>K=place(A,b,p)
place: ndigits= 15
K=

4 1

Thus, the proper gain matrix is a vector in this case. To check that the result works, type

>>eig(A-b*K)
ans =
-2
-4
>>eig(A)
ans =
-1.0000+ 1.73211
-1.0000-1.7321i

This shows that the computed gain matrix causes the system to move its poles from the two complex
values —1+£1.73211 to the two real values —2 and —4.

Next, consider solving the optimal control problem using the linear quadratic regulator prob-
lem defined by Equation (7.28). The MATLAB command 1gr computes the solution of the
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matrix Ricatta equation [Equation (7.32)], calculates the gain matrix K, and then calculates
the eigenvalues of the resulting closed-loop system (A — BK) for a given choice of the
weighting matrices Q and R defined in Section 7.4. In this case, the output matrix B must
have the same number of columns as the matrix R. The following example illustrates the

procedure.

Example 7.12.3

Compute an optimal control for the system of example 7.12.1. Here, we chose Q to be the identity
matrix and R to be 2Q. The following is typed into the command window:

>>A=[01;-4 -2];
>>B=eye(2);% the 2x2 identity matrix
>>c=[10];

>>d=[01];

>>Q=eye(2);R=2*Q;% weighting matrices in the

cost function
>>[K,S,E]=1lqr(A,B,Q,R)

K=
0.5791
0.0205

1.1582
0.0410

-1.3550+ 1.82651
-1.3550- 1.82651

The vector E contains new (closed-loop) eigenvalues of the system with the gain computed (K)
from the solution of the Ricatta equation (S). Note that the closed-loop eigenvalues are more heavily
damped then the open-loop eigenvalues (—1 £ 1.7321)).

0
0

o o

.0205
.1309

.0410
.2617

Next, consider the model reduction problem of Section 7.7. The balanced realization can
be obtained from the balreal command, and the corresponding reduced-order model
can be obtained from the modred command. The procedure is illustrated in the next

example.

Example 7.12.4

Compute the balanced realization of the system
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Use the balance realization to reduce the order of the model on the basis of its singular values. First
the state-space model is typed into the command window. Then a balanced realization is formed
and the singular values computed. The singular values (denoted by g in the code that follows) are
then used with the model reduction routine to compute a reduced-order model. Type the following
into the command window:

>>A=[0010;0001;-21-0.30.1;1-10.1-0.17];
>>b=[0;0;0;1]; c=[0100]; d=[0];
>>[ab,bb,cb,g]=balreal (A,b,c) % computes the balanced
version and singular values
ab =

-0.0326 0.6166 0.0192 -0.0275

-0.6166 -0.0334 -0.0218 0.0280

0.0192 0.0218 -0.1030 1.6102
0.0275 0.0280 -1.6102 -0.2309

0.7821

0.7510
-0.2369
-0.3223
cb =
0.7821 -0.7510 -0.2369 0.3223
g=
9.3836
8.4310
0.2724
0.2250
>>elim=find(g<l); %$eliminate states with singular values less
than 1
>>[ar,br,cr]=modred(ab,bb,cb,d,elim) % compute the reduced
order model based on eliminating the states with g<1
ar =
-0.0319 0.6173
-0.6173 -0.0342

br =
0.7743
0.7595
cr =
0.7743 -0.7595

The matrix ar and the vectors br and cr are the reduced-order state matrix and the input and
output vectors and form the reduced-order model as defined in Equations (7.76) and (7.77).

There are other commands in the Control System Toolbox that can be used to sim-
plify the calculation of control laws and models and to perform analysis of control
systems. Texts in control and the web should be consulted for additional samples and
commands.
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CHAPTER NOTES

This chapter attempts to introduce some control concepts useful in vibration analysis and
design. Linear control engineering is, of course, a topic in its own right, and hence many
texts have been written on the subject. The reader is referred to the excellent text by Kuo and
Gholoaraghi (2003) for an introduction to control topics and to Kailath (1980) for a more
advanced treatment of linear systems and control topics. Section 7.2 on controllability and
observability stresses the use of these concepts in physical coordinate systems. However,
literally hundreds of papers have been written on the topic in the state-space formulation.
In addition to those references listed in the text, useful conditions for controllability and
observability in second-order models are given by Laub and Arnold (1984) and Bender and
Laub (1985). The early important papers in linear control and computation are presented in
Patel, Laub, and Van Dooren (1994).

Section 7.3 on eigenstructure assignment extends the pole placement topics of Section 6.6
to include placing eigenvectors as well as eigenvalues. Again, hundreds of papers appear
in the literature on pole placement methods in the state space. The most comprehen-
sive treatment of eigenstructure assignment with structures in mind is that by Andry,
Shapiro, and Chung (1983), which motivated the development of Section 7.3. An excel-
lent text on eigenstructure assignment including MATLAB codes is the one by Liu and
Patton (1998).

The section on optimal control, Section 7.4, should be viewed by the reader as a very
brief introduction. Again, optimal control is a topic that should be studied in detail by
using one of the many texts written on the subject (see, for instance, Kirk, 1970). In addi-
tion, optimal control is an intense area of current research, with several journals devoted
to the topic. Optimal control is an extremely useful tool in controlling unwanted vibra-
tion. As pointed out by example 7.4.1, however, an element of art remains in optimal
control by virtue of the freedom to choose a cost function. Section 7.5 on observers
and estimators follows the development given by Chen (1970, 1998) and Kailath (1980).
Section 7.6 on realization also closely follows the development in Chen (1998). The
purpose of introducing realization is to set the stage for its use in vibration testing in
Section 8.6. This illustrates a recent application of a standard control topic (realization) to
a vibration problem (testing) and hence should motivate serious vibration engineers to pay
more attention to the topic of linear systems and control theory as a source of alternative
solutions.

Model reduction first introduced in Section 6.8 is revisited in Section 7.7 in the state
space. The balancing method presented is improved numerically by Laub (1980). This is
again an important area of vibration research and design that benefits from developments
that have taken place in linear system theory. There are many other approaches to model
reduction, notably the work of Hyland and Bernstein (1985) and Skelton, Hughes, and
Hablani (1982).

Section 7.8 on modal control in the state space follows the development given by
Takahashi, Rabins, and Auslander (1970). Modal control is popular and appears as a
tool in a large number of papers. The section on modal control in physical coordinates
is an attempt to extend the idea of modal coordinates to second-order systems. This
is again a popular method in vibration control problems (see, for instance, Meirovitch
and Baruh, 1982). The section on robustness is intended to provide a brief introduction
to a very popular topic in control. The development follows that used by Ridgely and
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Banda (1986). Note the similarity between robustness and design sensitivity discussed
in Section 6.5. Much activity surrounds the topic of robust control, and space has pre-
vented the inclusion of much material in this area. Instead the reader is referred to Zhou
and Doyle (1997). The material on PPF control of Section 7.10 comes from the article
by Friswell and Inman (1999), which contains additional references to PPF formulations
in first-order form and connects PPF to standard output feedback and optimal control
laws.
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PROBLEMS

7.1 Consider the system of example 7.3.1 and determine if the system is controllable with
one actuator placed at m,; and observable with one sensor placed at m,.

7.2 Recalculate the gain matrix G, for example 7.3.1 with one actuator placed at m, and
one sensor placed at m, to measure ¢,(¢) only. Does the resulting system have the
desired eigenstructure?

7.3  Consider the system given by M =1

D =diag[0.1 0.2] and K =diag[1 2]

Is the system controllable for B=[0 1]7? For B=[1 0]"?
7.4 Repeat example 7.3.1 with desired eigenvectors [1 — 1] and [1 1], desired eigen-
values A, =1 and A, =2, and desired mass matrix

10
wo=lo )

Assume the same structures as in example 7.3.1, and place the sensors and actuators
as you see fit.

7.5  Calculate G, in example 7.3.1 if the desired eigenvalues are A; =10 and A, =20 with
no specification of the system eigenvectors.

7.6  Show that for b=[1 00 ---]” the system of Equation (7.12) can be assigned any
eigenvalues by proper choice of the gain g;.

7.7  Show that the mode participation factors are unique for a given set of initial conditions.

7.8  Show that the control given in example 7.4.1 for the case Q = R =1 satisfies inequality
(7.27) by calculating some other values of u (i.e., Hy).
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Consider example 7.5.1. Let the observer poles be placed at —2 and —2 so that the
speed of the observer is comparable with that of the system. Calculate e(f) versus
time and x(¢) versus time for ¢(0) =[1 0]7 and plot the results. Note that in this case,
the observer does not do as well.

Calculate a realization for the vibration absorber problem of Section 6.2.

Calculate W and W,, for the vibration absorber problem of Equation (6.14). Use
my=1,m=10,k=5, and k, = .

Calculate the singular value decomposition of the following matrices

[101] [12} 0
2 3 4 0 3 1 0

Consider a two-degree-of-freedom system similar to that of Figure2.4. Discuss in
physical terms how such a system would have to behave if it could be reduced to a
single-degree-of-freedom model very accurately.

Using available software subroutines (for things like SVD), write a program to per-
form model reduction using balancing. Then reproduce the reduction illustrated in
example 7.7.1.

Consider example 2.4.4. Write the system of Equation (2.26) in state-space form. Let
my=1,m,=2,¢,=c,=0.1,k, =1, and k, =4. Use the modal control approach of
Section 7.8 to design a control (i.e., choose g, and g,) to raise the natural frequencies
of the structure above 5 Hz. Add additional controls or measurements as necessary.
Referring to the statement of problem 7.15, calculate the minimum number of sensors
and actuators required to control independently the lowest frequency; that is, for k =2
in Equation (7.91), what control configuration is required for

— o7 —
b2n—k - c2n7k =0

Again consider the feedback control problem for the example of Figure 2.4. Calculate
B;, K,, and K, for this system such that Equation (7.96) is diagonal (decoupled).
Make a physical interpretation of the calculation in problem 7.16 (i.e., where are the
sensors and actuators located and does it make sense?).

Prove, or derive, that Equations (7.97) and (7.98) are in fact sufficient conditions for
the closed-loop system to decouple.

Suppose that the commutivity condition assumed in Section 7.9 is not satisfied. Then
the coefficient of z in Equation (7.93) is not diagonal. Calculate conditions on the
matrices B, and K, so that the coefficient z in Equation (7.96) becomes diagonal.
Such a control decouples a coupled system.

Based on your answer to problem 7.20, discuss the physical implications of the control
in terms of, say, Figure 2.4.

Is the condition of problem 7.20 robust? Please discuss your answer.

Repeat example 7.10.1 for the system of problem 7.15, assuming that the coefficients
¢, and c, are only accurate to within 25%.

Compare the controllability norm of Equation (7.8) with the controllability grammian
of Equation (7.58). Is there a mathematical relationship between them?

Show that the realization of example 7.6.1 is both controllable and observable. In
general, show that Equations (7.56) and (7.57) are controllable and observable.
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7.26

7.27

7.28

7.29

7.30

7.31

7.32

7.33

7.34

7.35

CONTROL OF VIBRATIONS

Using the criterion given in Equation (7.3), show that the system of Figure 7.1(a) is
uncontrollable and that the system of Figure 7.1(b) is controllable.

Show that Equations (7.56) and (7.53) reduce to Equation (7.53) by using the definition
of a transfer function given in Equation (7.51).

One method of performing a model reduction (Section 7.7) is to represent the open-
loop system by the first few modes of the structure. Try this by using the first two
(state-space) modes of example 7.7.1 as the ROM of the system. Then compare
the response of this ROM to the ROM obtained in example 7.7.1 by the balancing
method.

Design a PPF controller for the mode #; 4+ 0.67; + 9r; = 0 that increases the modal
damping ratio to 0.3.

Compute the mode shapes, natural frequencies, and modal damping ratios for the
closed-loop system of example 7.9.1, case 3, to see if the controller does just change
the first mode damping ratio.

Consider example 7.9.1 and use pole placement to attempt to change just the first
mode damping ratio (to 0.4).

Consider example 7.9.1 and use eigenstructure assignment to attempt to change just
the first mode damping ratio (to 0.4).

Consider the system of example 7.9.1. Using pole placement, derive a control law
that will cause the first natural frequency of the closed-loop system to be 1.6rad/s
and leave the second natural frequency fixed at 2 rad/s.

Use the eigenstructure assignment method to place the mode shapes of the system of
example 7.3.1 to shift the second eigenvector to [0.316 0.949].

Compute the time response of the system of example 7.9.1 using the gains from cases
1 and 3 and compare your results. Use an initial condition of zero velocity and the
first coordinate displaced by 0.1 units.



8
Modal Testing

8.1 INTRODUCTION

This chapter introduces the basic topics associated with dynamic measurement and testing of
structures. In the previous chapters, the differential equations, or models, of the system were
assumed to be known, and the theory developed consists of calculating and characterizing
the response of the system to known inputs. This is called the forward problem. In this
chapter, however, the interest lies in measuring the response of a structure and in some way
determining the equations of motion from test data. The problem of determining a system
of equations from information about inputs and responses belongs to a class of problems
called inverse problems. Although measurements of vibrating systems are made for a variety
of reasons, this chapter focuses on the use of vibration measurement to identify, or verify,
a mathematical model of a test structure. Other uses of vibration measurements include
environmental testing, balancing of rotating machinery, prediction of failures, structural
health monitoring, and machinery diagnostics for maintenance (Inman et al., 2005).

The previous chapters have considered only structures modeled by lumped-mass elements.
As mentioned in Section 2.5, however, many structures are not configured in clear, sim-
ple lumped-mass arrangements but rather have mass distributed throughout the structure.
Such distributed-mass models form the topics of Chapters 9 through 13. However, mea-
surements of distributed-mass structures often result in data that resemble the response of a
lumped-mass structure. Hence, many test procedures, including those described here, assume
that the structure being tested can be adequately described by a lumped-parameter model.
The significance of such an assumption is discussed in Chapter 13 on finite-dimensional
modeling of distributed-parameter systems.

There are several other assumptions commonly made but not stated (or understated) in
vibration testing. The most obvious of these is that the system under test is linear and is
driven by the test input only in its linear range. This assumption is essential and should not
be neglected. Measurement of nonlinear systems is presented in Virgin (2000).

Vibration testing and measurement for modeling purposes forms a large industry. This field
is referred to as modal testing, modal analysis, or experimental modal analysis (abbreviated
EMA). Understanding modal testing requires knowledge of several areas. These include
instrumentation, signal processing, parameter estimation, and vibration analysis. These topics
are introduced in the following sections, but Ewins (2000) should be consulted for a complete
description.

Vibration with Control D. J. Inman
© 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01051-7
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It is worth noting that modal testing activity is centered mainly around determining
the modal parameters of a lumped-parameter model of the test structure. The process of
determining a mathematical model of a system from measured inputs and outputs is called
system identification theory. This theory has grown rapidly in the discipline of control
theory rather than vibrations. System identification theory, in turn, is a subclass of inverse
problems, as opposed to the direct problem discussed in earlier chapters. Much of the early
work in modal analysis did not take advantage of the disciplines of system identification
and parameter estimation, a situation rectified by efforts such as the book by Juang (1994).
In the material that follows, a few of the basic approaches are presented.

As mentioned, the first seven chapters consider only the forward problem, i.e., given
the matrices M, D, and K along with the appropriate initial conditions and forcing func-
tions, determine the solution of Equation (2.13) describing the dynamics of the structure.
The inverse problem, on the other hand, is to determine the matrices M, D, and K from knowl-
edge of the measurements of the responses (position, velocity, or acceleration). The modal
testing problem, a subclass of inverse problems, is to recover the mode shapes, natural
frequencies, and damping ratios from response measurements. In general, modal testing
methods cannot fully determine the matrices of physical parameters M, D, and K. While
forward problems have a unique solution for linear systems, inverse problems do not. Model
updating, introduced in Section 8.8, is an attempt to justify the analytically derived values
of M, D, and K with measured modal data.

The fundamental idea behind modal testing is that of resonance first introduced in
Section 1.4. If a structure is excited at resonance, its response exhibits two distinct phe-
nomena, as indicated by Equations (1.19) and (1.20). As the driving frequency approaches
the natural frequency of the structure, the magnitude at resonance rapidly approaches a
sharp maximum value, provided the damping ratio is less than about 0.5. The second, often
neglected, phenomenon of resonance is that the phase of the response shifts by 180° as the
frequency sweeps through resonance, with the value of the phase at resonance being 90°.

The first few sections of this chapter deal with the hardware considerations and digital
signal analysis necessary for making a vibration measurement for any purpose. The data
acquisition and signal processing hardware has changed considerably over the past decade
and continues to change rapidly as a result of advances in solid-state and computer technol-
ogy. The remaining sections discuss the modal analysis version of model identification and
parameter estimation. The last section introduces model updating.

8.2 MEASUREMENT HARDWARE

A vibration measurement generally requires several hardware components. The basic hard-
ware elements required consist of a source of excitation for providing a known or controlled
input to the structure, a transducer to convert the mechanical motion of the structure into
an electrical signal, a signal conditioning amplifier to match the characteristics of the trans-
ducer to the input electronics of the digital data acquisition system, and an analysis system
(or analyzer), in which signal processing and modal analysis programs reside. The arrange-
ment is illustrated in Figure 8.1; it includes a power amplifier and a signal generator for the
exciter, as well as a transducer to measure, and possibly control, the driving force or other
input. Each of these devices and their functions are discussed briefly in this section.
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Figure 8.1 Components of a vibration measurement system for modal analysis.

First consider the excitation system, denoted ‘exciter’ in Figure 8.1. This system provides
an input motion or, more commonly, a driving force f;(¢), as in Equation (2.13). The physical
device may take several forms, depending on the desired input and the physical properties
of the test structure. The two most commonly used exciters in modal testing are the shaker
(electromagnetic or electrohydraulic) and the impulse hammer. The preferred device is often
the electromagnetic exciter, which has the ability, when properly sized, to provide inputs
large enough to result in easily measured responses. Also, the output is easily controlled
electronically, sometimes using force feedback. The excitation signal, which can be tailored
to match the requirements of the structure being tested, can be a swept sine, random, or other
appropriate signal. The electromagnetic shaker is basically a linear electric motor consisting
of coils of wire surrounding a shaft in a magnetic field. An alternating current applied to the
coil causes a force to be applied to the shaft, which, in turn, transfers force to the structure.
The input electrical signal to the shaker is usually a voltage that causes a proportional force
to be applied to the test structure.

Since shakers are attached to the test structure and since they have significant mass, care
should be taken by the experimenter in choosing the size of shaker and method of attachment to
minimize the effect of the shaker on the structure. The shaker and its attachment can add mass
to the structure under test (called mass loading) as well as otherwise constraining the structure.

Mass loading and other constraints can be minimized by attaching the shaker to the
structure through a stinger. A stinger consists of a short thin rod (usually made of steel or
nylon) running from the driving point of the shaker to a force transducer mounted directly
on the structure. The stinger serves to isolate the shaker from the structure, reduces the
added mass, and causes the force to be transmitted axially along the stinger, controlling the
direction of the applied force.

Excitation can also be applied by an impulse by using an impact hammer. An impact
hammer consists of a hammer with a force transducer built into its head. The hammer is
then used to hit (impact) the test structure and thus excite a broad range of frequencies.
The peak impact force is nearly proportional to the hammer head mass and the impact
velocity. The upper frequency limit excited by the hammer is decreased by increasing the
hammer head mass, and increased with increasing stiffness of the tip of the hammer.

As a simple example of how the choice of excitation device is critical, consider Figure 8.2.
This plot illustrates the frequency spectrum of a typical force resulting from a hammer
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Figure 8.2 Frequency spectrum of a typical hammer impact.

impact or hit. It shows that the impact force is approximately constant up to a certain value
of frequency, denoted by w,. This hammer hit is less effective in exciting the modes of the
structure with frequencies larger than w, than it is in exciting the modes with frequencies
less than w, . For a given hammer mass, w, can be lowered by using a softer tip.

The built-in force transducer in impact hammers should be dynamically calibrated for
each tip used, as this will affect the sensitivity. Although the impact hammer is simple and
does not add mass loading to the structure, it is often incapable of transforming sufficient
energy to the structure to obtain adequate response signals in the frequency range of interest.
Also, peak impact loads are potentially damaging, and the direction of the applied load is
difficult to control. Nonetheless, impact hammers remain a popular and useful excitation
device, as they generally are much faster to use than shakers.

Next, consider the transducers required to measure the response of the structure as well as
the impact force. The most popular and widely used transducers are made from piezoelec-
tric materials. Piezoelectric materials generate electrical charge when strained. By various
designs, transducers incorporating these materials can be built to produce signals propor-
tional to either force or local acceleration. Accelerometers, as they are called, actually
consist of two masses, one of which is attached to the structure, separated by a piezoelectric
material, which acts like a very stiff spring. This causes the transducer to have a resonant
frequency. The maximum measurable frequency is usually a fraction of the resonance fre-
quency of the accelerometer. In fact, the upper frequency limit is usually determined by
the so-called mounted resonance, since the connection of the transducer to the structure is
always somewhat compliant.

Piezoelectric materials also produce a strain when excited with a voltage. Hence, piezoelec-
tric materials are emerging as a reasonable means of vibration excitation for special-purpose
situations, as described, for instance, by Cole, Saunders, and Robertshaw (1995) and Inman
et al. (2005).

The output impedance of most transducers is not well suited for direct input into signal
analysis equipment. Hence, signal conditioners, which may be charge amplifiers or voltage
amplifiers, match and often amplify signals prior to analyzing the signal. It is very important
that each set of transducers along with signal conditioning is properly calibrated in terms of
both magnitude and phase over the frequency range of interest. While accelerometers are
convenient for many applications, they provide weak signals if one is interested in lower-
frequency vibrations incurred in terms of velocity of displacement. Even substantial low-
frequency vibration displacements may result in only small accelerations, recalling that, for
a harmonic displacement of amplitude X, the acceleration amplitude is —w?X. Strain gauges
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and potentiometers as well as various optical (fiber optics, laser vibrometers), capacitive, and
inductive transducers are often more suitable than accelerometers for low-frequency motion
measurement.

Once the response signal has been properly conditioned, it is routed to an analyzer
for signal processing. The standard is called a digital or discrete Fourier analyzer (often
abbreviated DFA), also called the fast Fourier transform (often abbreviated FFT) analyzer;
and is introduced briefly here. Basically, the DFA accepts analog voltage signals which
represent the acceleration (force, velocity, displacement, or strain) from a signal conditioning
amplifier. This signal is filtered and digitized for computation. Discrete frequency spectra of
individual signals and cross-spectra between the input and various outputs are computed. The
analyzed signals can then be manipulated in a variety of ways to produce such information
as natural frequencies, damping ratios, and mode shapes in numerical or graphic displays.

While almost all the commercially available analyzers are marketed as turnkey devices, it
is important to understand a few details of the signal processing performed by these analysis
units in order to carry out valid experiments. This forms the topic of the next two sections.

8.3 DIGITAL SIGNAL PROCESSING

Much of the analysis done in modal testing is performed in the frequency domain, as
discussed in Section 5.7. The analyzer’s task is to convert analog time domain signals into
digital frequency domain information compatible with digital computing and then to perform
the required computations with these signals. The method used to change an analog signal,
x(1), into frequency domain information is the Fourier transform (similar to the Laplace
transform used in Chapter 5), or a Fourier series. The Fourier series is used here to introduce
the digital Fourier transform (DFT). See Newland (1985, p. 38) for the exact relationship
between a Fourier transform and a Fourier series.

Any periodic in time signal, x(¢), of period T can be represented by a Fourier series of
the form

21rit . 277iti| &.1)

x(t):%-}-g[aicos T + b, sin T

where the constants a; and b;, called the Fourier coefficients, or spectral coefficients, are
defined by

2 T 27rit
a;= —/ x(1) cos it dt
T Jo T

2T

it
dt 8.2
- (32)

9 T
bi:?/o x(t) sin

The expression in Equation (8.1) is referred to as the Fourier series for the periodic func-
tion x(¢). The spectral coefficients represent frequency domain information about the time
signal x(7).

The coefficients a; and b; also represent the connection to vibration experiments. The
analog output signals of accelerometers and force transducers, represented by x(t), are inputs
to the analyzer. The analyzer in turn calculates the spectral coefficients of these signals,
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Figure 8.3 Some signals and their Fourier spectrum.
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thus setting the stage for a frequency domain analysis of the signals. Some signals and their
Fourier spectrum are illustrated in Figure 8.3. The analyzer first converts the analog signals
into digital records. It samples the signals x(z) at many different equally spaced values
and produces a digital record of the signal in the form of a set of numbers {x(z;)}. Here,
k=1,2,...,N,the digit N denotes the number of samples, and ¢, indicates a discrete value
of the time.

This process is performed by an analog-to-digital converter (often denoted by A/D). This
conversion from an analog to digital signal can be thought of in two ways. First, one can
imagine a grate that samples the signal every f, seconds and passes through the signal x(z,).
One can also consider the analog-to-digital converters as multiplying the signal x(¢) by a
square-wave function, which is zero over alternate values of ¢, and has the value of 1 at each
t, for a short time. Some signals and their digital representation are illustrated in Figure 8.4.

In calculating digital Fourier transforms, one must be careful in choosing the sampling
time, i.e., the time elapsed between successive f,. A common error introduced in digital
signal analysis caused by improper sampling time is called aliasing. Aliasing results from
analog-to-digital conversion and refers to the misrepresentation of the analog signal by the
digital record. Basically, if the sampling rate is too slow to catch the details of the analog

x(t) x(t)

Time signal Digital record
x(t) x(t)

Figure 8.4 Sample time histories and their corresponding digital record.
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signal, the digital representation will cause high frequencies to appear as low frequencies.
The following example illustrates two analog signals of different frequency that produce the
same digital record.

Example 8.3.1

Consider the signals x,(f) =sin[(7/4)t] and x,(f) = —sin[(77/4)t], and suppose these signals are
both sampled at 1 intervals. The digital record of each signal is given in the following table.

n 0 1 2 3 4 5 6 7 ,
1
x 00707 1 0707 0 -0707 -1 -0707 o
7
¥ 00707 1 0707 0 -0707 -1 -0707 ¢

As is easily seen from the table, the digital sample records of x; and x, are the same, i.e., x,(#;) =
X, (1) for each value of k. Hence, no matter what analysis is performed on the digital record, x; and
x, will appear the same. Here, the sampling frequency, Aw, is 1. Note that w, —Aw=1/8-1=-7/8,
which is the frequency of x, (7).

To avoid aliasing, the sampling interval, denoted by A¢, must be chosen small enough to
provide at least two samples per cycle of the highest frequency to be calculated. That is, in
order to recover a signal from its digital samples, the signal must be sampled at a rate at
least twice the highest frequency in the signal. In fact, experience (see Otnes and Enochson,
1972) indicates that 2.5 samples per cycle is a better choice. This is called the sampling
theorem, or Shannon’s sampling theorem.

Aliasing can be avoided in signals containing many frequencies by subjecting the analog
signal x(¢) to an antialiasing filter. An antialiasing filter is a low-pass (i.e., only allowing
low frequencies through) sharp cut-off filter. The filter effectively cuts off frequencies higher
than about half the maximum frequency of interest, denoted by w,,,,, and also called the
Nyquist frequency. Most digital analyzers provide built-in antialiasing filters.

Once the digital record of the signal is available, the discrete version of the Fourier trans-
form is performed. This is accomplished by a digital Fourier transform or series defined by

Nj2 2t 2t
xkzx(tk)z%—i—Z[aicos 7Tle+bl-sin WT’k} k=1,2,...,N  (8.3)

i=1

where the digital spectral coefficients are given by
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The task of the analyzer is to solve Equations (8.3) given the digital record x(z, ), also denoted
by x,, for the measured signals. The transform size or number of samples, N, is usually fixed
for a given analyzer and is a power of 2.

Writing out Equations (8.3) for each of the N samples yields N linear equations in the N
spectral coefficients (a;, ..., @y, by,..., by,). These equations can also be written in
the form of matrix equations. Equations (8.3) in matrix form become

x=Ca (8.5)

where x is the vector of samples with elements x, and a is the vector of spectral coefficients.
The solution of Equations (8.5) for the spectral coefficients is then given simply by

a=C"'x (8.6)

The task of the analyzer is to compute C~! and hence the coefficients a. The most widely
used method of computing the inverse of this matrix C is called the fast Fourier transform
(FFT) developed by Cooley and Tukey (1965).

In order to make digital analysis feasible, the periodic signal must be sampled over a
finite time (N must obviously be finite). This can give rise to another problem referred to as
leakage. To make the signal finite, one could simply cut the signal at any integral multiple
of its period. Unfortunately, there is no convenient way to do this for complicated signals
containing many different frequencies. Hence, if no further steps are taken, the signal may be
cut off midperiod. This causes erroneous frequencies to appear in the digital representation
because the digital Fourier transform of the finite-length signal assumes that the signal is
periodic within the sample record length. Thus, the actual frequency will ‘leak’ into a number
of fictitious frequencies. This is illustrated in Figure 8.5.

Leakage can be corrected to some degree by the use of a window function. Windowing,
as it is called, involves multiplying the original analog signal by a weighting function, or
window function, w(¢), which forces the signal to be zero outside the sampling period.

A common window function, called the Hanning window, is illustrated in Figure 8.6,
along with the effect it has on a periodic signal. A properly windowed signal will yield a
spectral plot with much less leakage. This is also illustrated in the figures.

x(t)

A o
| ,

Sampling time

xt) Time domain Xk Frequency domain

Sampling time

Figure 8.5 Illustration of leakage.
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Figure 8.6 Hanning window and its effect on transform signals.

8.4 RANDOM SIGNAL ANALYSIS

This section introduces the topic of transfer function identification from signals, which is the
most commonly used approach to system identification concerned with trying to determine
the modal parameters of a linear time-invariant system. In most test situations, it becomes
desirable to average measurements to increase confidence in the measured parameter. This,
along with the fact that a random excitation is often used in testing, requires some background
in random processes.

First, some concepts and terminology required to describe random signals need to be
established. Consider a random signal x(#) such as pictured in Figure 8.7. The first distinction
to be made about a random time history is whether or not the signal is stationary. A random
signal is stationary if its statistical properties (such as its root mean square value, defined
later) are time-independent (i.e., do not change with time). For random signals, it is not
possible to focus on the details of the signal, as it is with a pure deterministic signal. Hence,
random signals are classified and manipulated in terms of their statistical properties.

x(t)

Figure 8.7 Sample random signal.
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The average of the random signal x(7) is defined and denoted by

%(r) = Jim % /0 " (0t (8.7)

For a digital signal, the definition of average becomes

N

T fim 3 x(0) 9)

k=1

Often, it is convenient to consider signals with zero average, or mean, i.e., X(¢) = 0. This
is not too restrictive an assumption, since, if X(¢) #0, a new variable x’ = x(¢) — X(#) can
be defined. The new variable x'(f) now has zero mean. In what follows, the signals are
assumed to have zero mean.

The mean square value of the random variable x() is denoted by ¥*(¢) and is defined by

1 /7
= lim = fo (1) dr (8.9)
or, in digital form,
X = lim ks %xz(tk) (8.10)
N—oo N =1

The mean square value, or variance as it is often called, provides a measure of the magnitude
of the fluctuations in the signal. A related quantity, called the root mean square value, or
simply the RMS value, of x(¢) is just the square root of the variance, i.e.,

s = VT (8.11)

Another question of interest for a random variable is that of calculating the probability that
the variable x(¢) will lie in a given interval. However, neither the root mean square value
of x(¢) nor its probability yields information about how ‘fast’ the values of x(#) change
and hence how long it takes to measure enough x(#,) to compute statistically meaningful
root mean square values and probabilities. A measure of the speed with which the random
variable x(¢) is changing is provided in the time domain by the autocorrelation function.
For analog signals, the autocorrelation function, denoted by R(z), defined by

R(1) == lim % / Tx(T)x(T+ 1) dr (8.12)

is used as a measure of how fast the signal x(r) is changing. Note that R(0) is the mean
square value of x(¢). The autocorrelation function is also useful for detecting the presence
of periodic signals contained in, or buried in, random signals. If x(7) is periodic or has a
periodic component, then R(¢) will be periodic instead of approaching zero as T — oo, as
required for a purely random x(z).

The digital form of the autocorrelation function is

N—r

1
R(I’, A[)Zm Zxkxk+, (813)
k=0
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Here, N is the number of samples, At is the sampling interval, and r is an adjustable
parameter, called a lag value, that controls the number of points used to calculate the
autocorrelation function.

In the frequency domain, the power spectral density (often denoted PSD) is used to
measure the speed with which the random variable x(¢) changes. The power spectral density,
denoted by S(w), is defined to be the Fourier transform of R(?), i.e.,

S(w) = % [ : R(r)e ™" dr (8.14)

The digital version of the power spectral density is given by

|x(w)]?

S(hw) = N At

(8.15)

where |x(w)|* is the magnitude of the Fourier transform of the sampled data corresponding
to x(1).

This definition of the autocorrelation function can also be applied to two different signals
to provide a measure of the transfer function between the two signals. The cross-correlation
function, denoted by R, (1), for the two signals x(7) and f(¢) is defined to be

R, (1) = lim % /0 " (D fr 1) dr (8.16)

Likewise, the cross-spectral density is defined as the Fourier transform of the cross-
correlation, i.e.,

1 = .
— —]OT
Sy(w) = oy /_m R (1) e dr (8.17)

If the function f(7 + 1) is replaced with x(7 + ¢) in Equation (8.16), the power spectral density
[Equation (8.14)], also denoted by S, results. These correlation and density functions allow
calculation of the transfer functions of test structures. The frequency response function
(recall Section 1.5), G(jw), can be shown (see, for instance, Ewins, 2000) to be related to

the spectral density functions by the two equations

Sr(@)=G(jw)S;(w) (8.18)
and

Su(@) =G (j0)S,(0) (8.19)

These hold if the structure is excited by a random input f resulting in the response x.
Here, S, denotes the power spectral density for the function f(¢), which is taken to be the
excitation force in a vibration test.

The spectrum analyzer calculates (or estimates) the various spectral density functions.
Then, using Equation (8.18) or (8.19), the analyzer can calculate the desired frequency
response function G(jw). Note that Equations (8.18) and (8.19) use different power spectral
densities to calculate the same quantity. This can be used to check the value of G(jw).
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1

Coherence versus frequency

Figure 8.8 Plot of the coherence of a sample signal versus frequency.

The coherence function, denoted by y?, is defined to be the ratio of the two values of G(jw)
calculated from Equations (8.18) and (8.19). Let G'(jw) = S, ()/S;;(w) denote the value
of G obtained from Equation (8.18) from measurements of S, (w) and S, (w). Likewise,
let G"(jw) =S,,(w)/S;,(w) denote the frequency response as determined by measurements
made for Equation (8.19). Then the coherence function becomes

2_ G'(jw)
7 TG (w)

(8.20)

which is always less than or equal to 1. In fact, if the measurements are consistent, G(jw)
should be the same value, independent of how it is calculated, and the coherence should be
1 (y*=1). In practice, coherence versus frequency is plotted (see Figure 8.8) and is taken as
an indication of how accurate the measurement process is over a given range of frequencies.
Generally, the values of y? =1 should occur at values of @ near the resonant frequencies of
the structure.

8.5 MODAL DATA EXTRACTION (FREQUENCY DOMAIN)

Once the frequency response of a test structure is calculated from Equation (8.18) or
(8.19), the analyzer is used to construct various vibrational information from the processed
measurements. This is what is referred to as experimental modal analysis. In what follows, it
is assumed that the frequency response function G (jw) has been measured via Equation (8.18)
or (8.19) or their equivalents.

The task of interest is to measure the natural frequencies, damping ratios, and modal
amplitudes associated with each resonant peak of the frequency response function. There
are several ways to examine the measured frequency response function to extract the desired
modal data. To examine all of them is beyond the scope of this text. To illustrate the basic
method, consider the somewhat idealized frequency response function record of Figure 8.9,
resulting from measurements taken between two points on a simple structure.

One of the gray areas in modal testing is deciding on the number of degrees of free-
dom to assign to a test structure. In many cases, simply counting the number of clearly
defined peaks or resonances, three in Figure 8.9, determines the order, and the procedure
continues with a three-mode model. However, as is illustrated later on, this procedure may
not be accurate if the structure has closely spaced natural frequencies or high damping
values.
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A

G|

Figure 8.9 Idealized frequency response function.

The easiest method to use on these data is the so-called single-degree-of-freedom curve
fit (often called the SDOF method), an approach alluded to in Section 2.5. In this approach
the frequency response function is sectioned off into frequency ranges bracketing each
successive peak. Each peak is then analyzed by assuming it is the frequency response of
a single-degree-of-freedom system. This assumes that, in the vicinity of the resonance, the
frequency response function is dominated by that single mode.

In other words, in the frequency range around the first resonant peak, it is assumed that
the curve is due to the response of a damped single-degree-of-freedom system to a harmonic
input at and near the first natural frequency. Recall from Section 1.4 that the point of
resonance corresponds to that value of frequency for which the magnification curve has its
maximum or peak value and the phase changes 180°.

The method is basically the peak picking method referred to in Section 1.6 and illustrated
in Figure 1.8. The approach is to assume that the peak occurs at the frequency corresponding
to the damped natural frequency of that particular mode, denoted by w,; (for the ith mode).
The two frequencies on each side of this peak correspond to the points on the curve that are
0.707 of |G(jw,)| (also called the half-power points). Denoting these two frequencies as
w,; and w,;, the formula for calculating the damping ratio for the ith peak is (see Blevins,
1994, p. 318)

2 T 8.21
2wdi ( )

&=

Next, even though these formulae result from examining a single-degree-of-freedom model,
it is recognized that the system is a distributed mass system that is being modeled as a
multiple-degree-of-freedom system with three modes. The frequency response function for
a multiple-degree-of-freedom system is discussed in Section 5.7 and leads to the concept
of a receptance matrix, a(w), which relates the input vector (driving force) to the response
(position in this case) via Equation (5.67). For a three-degree-of-freedom system, with the
assumption of proportional damping and that the frequency response near resonance w,; is
not influenced by contributions from w,, and w,;, the magnitude of the measured frequency
response at w,,, denoted by G(jw,,), allows the calculation of one of the elements of the
receptance matrix.
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If the structure is underdamped, the ikth element of the receptance matrix is given by

n

a, = Z [Srsz]ik (822)

w0+ 20,0 —w?

r=1

where s, is the rth eigenvector of the system. The magnitude of ;;(w,) is the measured
amplitude of the peak at w,. In this case, Equation (8.22) becomes

[s,s) ]
) =~ rroR 8.23
alk (wr) w% + Zgrw%] _ (U% ( )
Hence
|[Srsz-]ik | = |Gik (]wr)| |2§rwi] = 2§rw)2 |Gik (]wr)| (824)

Here, the measured value of the maximum of the frequency response function at w, = w with
input at point i and response measured at point & is denoted by G,,(w) and is approximated by
| (w)|. With the assumption, stated earlier, that the response is due to only one frequency
near resonance, Equation (8.24) yields one value for the modal constant, which is defined
as the magnitude of the ikth element of the matrix s;s]. The phase plot yields the relative
sign of the ikth element of s,s{. Equation (8.24) is the mathematical equivalent of assuming
that the first peak in the curve of Figure 8.9 results from only a single-degree-of-freedom
system.

The subscripts ik denote the output coordinate and the relative position of the input force.
In order words, the quantity |e; (w,)| represents the magnitude of the transfer function
between an input at point i and a measured output at point k.

Here, an estimate of the eigenvectors, or mode shapes, can be calculated by making a series
of measurements at different points, applying the modal constant formula, [Equation (8.24)],
and examining the relative phase shift at w,;. To see this, suppose that the transfer function
of Figure 8.9 is between the input f; (at point 1) and the measured response x; (at point 3
on the structure as labeled in Figure 8.10). Then, from Equation (8.24) with i=1, k=3, and
r=1,2,3, the three values of the matrix elements [sls]T]13, [szszT]B, and [5355]13 can be
measured. Furthermore, if the preceding experiment is completed two more times with the
response measurement (or the force) being moved to the two remaining positions (k =2, 1)
shown in Figure 8.10, the following matrix elements can also be measured: [slslT] 129 [szszT ] 12
and [s;s] ] , as well as [s;s]] |, [s,87],,. and [s,s] ], . Gathering up these nine elements of
the three different outer product matrices s;s{, s,s7, and s;s; allows the three vectors s, s,,
and s, to be calculated (problem 8.5). Note that, because of its special structure, knowing
one row or one column of the matrix s;s! is enough to determine the entire matrix and hence
the value of s; to within a multiplicative constant.

/ 2+ 3+

L

Figure 8.10 Measurement positions marked on a simple plate for performing a modal test.
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Hence, through measurements taken from the plot in Figure 8.9, along with the above
computations and two more measurements at the remaining two measurement points, the
receptance matrix, given by Equation (5.68), is completely determined, as are the eigenvalues
and eigenvectors of the system. However, in general this does not provide enough information
to determine the values of the matrices M, D, and K, because the eigenvectors may not
be scaled (normalized) properly. Also, the mathematical model constructed in this way is
dependent upon the choice of measurement points and as such should not be considered to
be unique.

Given the modal data, however, the receptance matrix can be used to predict the response
of the system as the result of any input, to compare the modal data with theoretical models,
or, along with other information, to construct physical models of the structure. The question
of uniqueness remains, and the physical models developed should always be referenced to
the measurement and disturbance position used in performing the test.

The single-degree-of-freedom method is really not based on a principle of parameter
identification but rather is an unsophisticated first attempt to ‘read’ the experimental data
and to fit the data into a specific underdamped vibration model. An attempt to make the
single-degree-of-freedom approach more sophisticated is to plot the real part of the frequency
response function versus the imaginary part near the resonant frequency. This yields the
Nyquist plot of Figure 1.14. In this domain, the theory predicts a circle; hence, the experi-
mental data around a resonant peak can be ‘fit’ using a least-squares circle fit to produce the
‘best’ circle for the given data. Then the frequency and damping values can be taken from
the Nyquist plot. This method is referred to as the circle fit method and brings the problem a
little closer to using the science of parameter estimation (see Ewins, 2000, or Zaveri, 1984,
for a more complete account).

The single-degree-of-freedom method is in obvious error for systems with closely spaced
modes and/or highly coupled modes. Hence, several other methods have been developed
to take into consideration the effects of coupling. These methods are usually referred to
as multiple-degree-of-freedom curve fits and consist largely of adding correction terms
to Equation (8.23) to take into consideration mode coupling effects. Because of space
limitations, these methods are not discussed here. The reader is referred to the note section
at the end of the chapter for references to more advanced methods.

8.6 MODAL DATA EXTRACTION (TIME DOMAIN)

An alternative approach to extracting the modal data of a structure from the vibrational
response of the structure is based in the time domain. Time domain methods have been
more successful in identifying closely spaced or repeated natural frequencies. They also
offer a more systematic way of determining the appropriate order (number of degrees of
freedom) of a test structure and generally identify a larger number of natural frequencies
than frequency domain methods do. Time domain methods are also referred to as damped
complex exponential response methods (Allemang, 1984).

The first time domain method to make an impact on the vibration testing community
was developed by Ibrahim (1973) and has since become known as the Ibrahim time domain
(ITD) method. The original method is based on the state equations of a dynamic system
[i.e., equation (2.20)]. A simplified version of the method is presented here.



236 MODAL TESTING

The solution for the dynamic system in physical coordinates in the form of Equation (2.13)
is given in Equation (3.68) and repeated here as

2n
q(t) =) cr.eM (8.25)
r=1

where A, are the complex latent roots, or eigenvalues, of the system and the u, are the
system eigenvectors. Here, it is convenient to absorb the constant c, into the vector u, and
write Equation (8.25) as

2n
q()=>"p,e" (8.26)
r=1

where the vector p, has an arbitrary norm. If the response is measured at discrete times, ¢;,
then Equation (8.26) becomes simply

2n
q(r)=)_p,e*" (8.27)
r=I1

For simplicity of explanation, assume that the structure is measured in n places (this assump-
tion can be relaxed) at 2n times, where n is the number of degrees of freedom exhibited by
the test structure. Writing Equation (8.27) 2n times results in the matrix equation

X = PE(1,) (8.28)

where X is an n x 2n matrix with columns consisting of the 2n vectors
q(t,),q(t), - .., q(t,,), P is the n x 2n matrix with columns consisting of the 2n vectors
p,, and E(¢,) is the 2n x 2n matrix given by

eMii gl eMin
Aty Aty Aty
et e ehatan
E(t;) = . . (8.29)
elult phata L. pAantan

Likewise, if these same responses are measured At seconds later, i.e., at time f;, + At,
Equation (8.28) becomes

Y =PE(t;+ Ar) (8.30)

where the columns of Y are defined by y(¢,) = q(z; + At), and E(z, + At) is the matrix with
ijth element equal to e*(/*2), Equation (8.30) can be factored into the form

Y =PE(t) (8.31)

where the matrix P’ has as its ith column the vector p,e**’. This process can be repeated
for another time increment A¢ later to provide the equations

Z=P'E(t,) (8.32)

where the columns of Z are the vectors q(¢; +2Af), and so on.
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Collecting Equations (8.28) and (8.31) together yields

&= [ﬂ - [ ﬂ E(t) = WE(1) (8.33)

where the 2n x 2n matrices @ and ¥ have obvious definitions. Likewise, Equations (8.31)
and (8.32) can be combined to form

@ = [;} - [ ﬁ,’,] E(t)=WE() (8.34)

where @ =[Y7 Z"]" and ¥ =[P" P'"]". Note that the matrices @, &', ¥, and ¥’ are
all square 2n x 2n matrices that are assumed to be nonsingular (Ibrahim and Mikulcik,
1976).

Equations (8.33) and (8.34) can be used to calculate a relationship between the vectors
that make up the columns of the matrix ¥ and those of ¥, namely

Py =y (8.35)
so that
<P’<D_11I/i=‘I’i’, i=1,2,...,2n (8.36)

where the subscript i denotes the ith column of the indexed matrix. However, the ith column
of P’ is p, =e"*!, so that

v =My, (8.37)

1

Comparison of Equations (8.37) and (8.36) yields
DD, =My, (8.38)

Note that this last expression states that the complex scalar e*2" = 8+ yj is an eigenvalue
of the matrix ¢’®~! with complex eigenvector ¥,. The 2n x 1 eigenvector W, has as its first
n elements the eigenvector or mode shape of the structure. That is, ¥, =[p! p!e%4]7,
where p; are the system eigenvectors.

The eigenvalues of Equation (8.38) can be used to calculate the eigenvalues of the system
and hence the damping ratios and natural frequencies. In particular, since e’ = B+ vj, it

follows that

1
Re), = X In(y* + B%) (8.39)

and

1 Y
ImA, = —tan~' [ £ 8.40
mA, A an (B) ( )
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With proper consideration for sampling time and the interval for the arc tangent in Equa-
tion (8.40), Equation (8.38) yields the desired modal data.

To summarize, this method first constructs a matrix of measured time responses, forms
the product @'®~!, and then numerically calculates the eigenvalue—eigenvector problem for
this matrix. The resulting calculation then yields the mode shapes, natural frequencies, and
damping ratios of the structure. The natural frequencies and damping ratios follow from
Equations (8.39) and (8.40) since (see Chapter 1)

w; = [(ReA,)” + (ImA,)"]” (8.41)
and
(=R (8.42)
.

4

Note that the key difference between the time domain approach to modal analysis and the
frequency domain approach is that the time domain approach constructs a matrix from the
time response and numerically computes the modal data by solving an eigenvalue problem.
On the other hand, the frequency domain method extracts and curve-fits the modal data from
the digital Fourier transform of the measured input and response data.

Two other major approaches in the time domain have been developed. One, called the
polyreference method (Vold and Rocklin, 1982), again uses a state-space approach and has
been developed commercially. The other time domain method is based on realization theory
developed by control theorists, as introduced in Section 7.6. This method, advocated by Juang
and Pappa (1985), also uses a state-space approach and is called the eigensystem realization
algorithm (often abbreviated ERA). The eigensystem realization algorithm method introduces
several important aspects to modal test analysis and hence is discussed next. The method is
based on the realization theory introduced in Section 7.6 and puts modal testing on the firm
theoretical foundation of linear systems theory (Juang, 1994).

Unlike the other time domain approaches, the eigensystem realization algorithm determines
a complete state-space model of the structure under test. In particular, using the notation of
Equations (7.1) and (7.2), the eigensystem realization algorithm identifies all three of the
matrices A, B, and C. This is an important aspect because it addresses the nonuniqueness of
modal analysis by specifying the measurement locations through the matrices B and C. In
addition, the eigensystem realization algorithm approach firmly attaches the modal testing
problem to the more mature discipline of realization used in control theory (Section 7.6). This
approach is computationally more efficient and provides a systematic means of determining
the order of the test model. The method is based on a discrete-time version of the state-space
solution given by Equation (5.16) with f(7) = Bu(7). The solution of Equation (7.1), starting
at time f,, can be written as

x(1) = 0x(15) + / " A Bu(r)dr (8.43)

This expression can be written at discrete time intervals equally spaced at times 0,
A1, 2At, ... kAt, . .., by making the substitutions t = (k4 1)At and 7, = kAz. This yields

(k+1)At
x((k+ 1)Ar) = Mx(kAF) + / ACEDA=D gy ) g (8.44)
kAt
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Note that the integration period is now performed over a small increment of time, Az. If
u(7) is assumed to be constant over the interval Az and to have the value u (kAr), this last
expression can be simplified to

x(k + 1) = ' (k) + [ | Y d(rB} u(k) (8.45)
0

Here, x(k 4 1) is used to denote x((k 4+ 1)Af), and so on, and the integration variable has
been changed to o = (k+ 1)At — 7.
Equation (8.45) can be further reduced in form by defining two new matrices A’ and B’ by

At
A=e™ B= [ A7 doB (8.46)
0

Thus, a discrete-time version of Equations (7.1) and (7.2) becomes

x(k+1)=A'x(k) + Bu

(8.47)
y(k) = Cx(k)
The last expression allows the measurement taken at discrete times, y(k), to be related to
the state matrix by the definition of the matrices A" and B’.

Consider a system subject to an impulse, y(1) = CB'u(1), where u(l) is a vector of
zeros and ones, depending upon where the impulse is applied. If the impulse is applied
at m different points one at a time, all the response vectors at k = 1, y(k), corresponding
to each of these m impulses, can be gathered together into a single s x m matrix Y,
given by

Y(1)=CB (8.48)
In a similar fashioin, it can be shown using Equation (8.47) that for any measurement time k
Y (k) =CA*'B (8.49)

The matrices Y (k) defined in this manner are called Markov parameters.
The Markov parameters for the test structure can next be used to define a larger matrix
of measurements, denoted by H,;(k), for any arbitrary positive integers i and j by

Y()  Y(k+1) - Y(k+))
Y(k+1) Y(k+2)

H (k)= (8.50)

Y(k+i) Y(k+u+1)  Y(k+i+))

This (i + 1) x (j + 1) block matrix is called a generalized Hankel matrix. If the arbitrarily
chosen integers i + 1 and j + 1 are both greater than 2n, the rank of H;;(k) will be 2n. This
follows from realizing that the Hankel matrix can be factored and written as

H,;(k)=0,A""'R, (8.51)
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where O; is the observability matrix and R; is the controllability matrix given by

C
CA/ /A D! N/
0,= . |.  R=[BAB---(4)B] (8.52)

c@y

introduced in Section 7.2. Note that the rank of H;;(k) is the order of the matrix A’, and hence
the order of the system state matrix A, as long as i and j are large enough. Equation (8.52)
also indicates that the smallest-order realization of A will have an order equal to the rank of
O, and R; for a controllable and observable system. (Recall the balanced model reduction
problem of Section 7.7.)

The eigensystem realization algorithm is based on a singular-value decomposition (see
Section 7.7) of the Hankel matrix H(0). Using Equation (7.60), the matrix H(0) can be
written as

H(0)=UIV’ (8.53)

where 3, is the diagonal matrix of the singular values, o, of H(0), and U and V are defined
in Equations (7.60), (7.62), and (7.63). If enough measurements are taken, so that i and j are
large enough, there will be an index r such that o, >> 0,4 1. Just as in the model reduction
problem of Section 7.7, this value of r yields a logical index for defining the order of the
structure under test, i.e., r =2n.

Partitioning U and V7 into the first 7 columns and rows respectively, and denoting the
reduced matrices by U, and V, yields

HO0)=UZX, VI (8.54)

Here, 3, denotes the r x r diagonal matrix of the first r singular values of H(0). Juang and
Pappa (1985) showed that

A =3 "MPUTH()Y,E 2 (8.55)
B =3"V,E, (8.56)

_ T 1/2
C=EIUz%, (8.57)

where E, is defined as the p x r matrix
E'=[1, 0, --- 0,] (8.58)

Here I, is a p x p identity matrix and 0, is a p X p matrix of zeros.

The modal parameters of the test structure are calculated from the numerical eigensolution
of the matrix A’. The mode shapes of the structure are taken from the eigenvectors of
A’, and the natural frequencies and damping ratios are taken from the eigenvalues of A.
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The eigenvalues of A, the continuous-time state matrix, denoted by A;, are found from the
eigenvalues of A’ via the formula (see Juang and Pappa, 1985)

InA; (A
A= n,—() (8.59)
At
For underdamped structures, the modal parameters are determined from Equations (8.41)
and (8.42).

8.7 MODEL IDENTIFICATION

A major reason for performing a modal test is for validation and verification of analytical
models of the test structure. What is often desired is a mathematical model of the structure
under consideration for the purpose of predicting how the structure will behave under a
variety of different loadings, to provide the plant in a control design, or to aid in the design
process in general. This section discusses three types of model of the structure that result
from using modal test data. The three types of model considered are the modal model,
discussed in the previous section, the response model, and the physical model (also called
the spatial model).

The modal model is simply the natural frequencies, damping ratios, and mode shapes as
given in the previous two sections. The modal model is useful in several ways. First, it can
be used to generate both static and dynamic displays of the mode shapes, lending visual
insight into the manner in which the structure vibrates. These displays are much more useful
to examine, in many cases, than reading a list of numbers. An example of such a display is
given in Figure 8.11.

A second use of modal models is for direct comparison with the predicted frequencies
and modal data for an analytical model. Frequently, the analytical model will not predict
the measured frequencies. As a result, the analytical model is changed, iteratively, until it
produces the measured natural frequencies. The modified analytical model is then considered
an improvement over the previous model. This procedure is referred to as model updating
and is introduced in the following section.

The frequency response model of the system is given by the receptance matrix defined
in Section 5.7 and used in Section 8.5 to extract the modal parameters from the measured
frequency response functions. From Equations (5.68) and (5.65) the measured receptance

______ Equilibrium
Mode of vibration

Figure 8.11 Display of the mode shape of a simple test structure.
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matrix can be used to calculate the response of the test structure data to any input (7). To see
this, consider taking the Laplace transform, denoted £[-], of the dynamic equation (2.13), i.e.,

(s°M + sD + K)£[q] = £[f] (8.60)
so that
1
£la(]= mﬂf] (8.61)

Letting s =jw in Equation (8.61) yields

3(q) = a(w)3(f) (8.62)

where it is noted that the Laplace transform of a function evaluated at s =jw yields the
exponential Fourier transform, denoted by 3[.]. Hence, Equation (8.62) predicts the response
of the structure for any input f(¢).

In some instances, such as control or design applications, it would be productive to have
a physical model of the structure in spatial coordinates, i.e., a model of the form

Mi+Dq+Kq=0 (8.63)

where q(f) denotes a vector of physical positions on the structure. The obvious way to
construct this type of model from measured data is to use the orthogonal mass normalized
matrix of eigenvectors, §,,, defined in Section 3.5, and to ‘undo’ the theoretical modal

analysis by using Equations (3.69) and (3.70). That is, if these equations are pre- and

postmultiplied by the inverses of S? and S,,, they yield
M=(s,)"'s,'
D= (S,) 'diag[2{;w/]S,,’
K = (S7) " 'diag[w?]S;" (8.64)

where the w;, {;, and the columns of S,, are the measured modal data. Unfortunately, this
formulation requires the damping mechanism to be proportional to velocity and measured
data for all » modes to be available. These two assumptions are very seldom met. Usually,
the modal data are too incomplete to form all S,,. In addition, the measured eigenvectors are
seldom scaled properly.

The problem of calculating the mass, damping, and stiffness matrices from experimental
data is very difficult and does not result in a unique solution (it is, after all, an inverse
problem — see Lancaster and Maroulas, 1987, and Starek and Inman, 1997). Research con-
tinues in this area by examining reduced-order models and approaching the problem as one
of improving existing analytical models, the topic of the next section.
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8.8 MODEL UPDATING

Analytical models are only useful if they are verified against an experimental model. Often,
analysis gets fairly close to predicting experimental data, and an approach called model
updating is used to change slightly or update the analytical model to predict or agree with
experimental data. Friswell and Mottershead (1995) present both an introduction to model
updating and a good summary of most techniques developed up to that date. One approach to
model updating is to use the analytical model of a structure to compute natural frequencies,
damping ratios, and mode shapes, and then to test, or perform an experimental modal analysis
on the structure and examine how well the analytical modal data predict the measured modal
data. If there is some difference, then the analytical model is adjusted or updated until the
updated analytical model predicts the measured frequencies and mode shapes. The procedure
is illustrated by the following simple example.

Example 8.8.1

Suppose the analytical model of a structure is derived as the following two-degree-of-freedom model
(from example 3.3.2):

3

Iq(r>+[ 1 ‘ll]q(z)=o

This has natural frequencies computed to be w, =+v'2 —+/2 and w, =+/2 + +/2. Suppose a modal
test is performed and that the measured frequencies are w, = +/2 and w, = +/3. Find adjustments to
the analytical model such that the new updated model predicts the measured frequencies.

Let AK denote the desired correction in the analytical model. To this end, consider the correction
matrix

AK = [ A(;Cl A(;Cz] (8.65)
The characteristic equation of the updated model is then

N — (44 Ak)A+ (24 3Ak, + Ak) =0 (8.66)
The characteristic equation of the system with the experimental frequencies would be

AN —50+6=0 (8.67)
Comparing coefficients in Equations (8.66) and (8.67) yields the updated parameters
Ak, =1 and Ak, =1

The new updated model is

rio+ |5 a0

which has frequencies w, =+/2 and w, = +/3 as measured.
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While the updated model in example 8.8.1 does in fact produce the correct frequencies,
the stiffness matrix of the updated model is no longer symmetric, nor does it retain the
original connectivity of, in this case, the two-degree-of-freedom spring—mass system. Other
methods exist that address these issues (see, for instance, Halevi, Tarazaga, and Inman,
2004). Model updating, as stated here, is related to the pole placement and eigenstructure
assignment methods used in Section 7.3. Instead of computing control gains, as done in
Section 7.3, the same computation yields an updating procedure if the gain matrices are
considered to be the correction matrices (e.g., AK). Basically, if measured mode shapes,
damping ratios, and frequencies are available, then an eigenstructure assignment method
may be used to compute updated damping and stiffness matrices. If only damping ratios
and frequencies are available, then pole placement can be used to update the damping and
stiffness matrices. Friswell and Mottershead (1995) should be consulted for other methods.
The literature should be consulted for latest approaches.

CHAPTER NOTES

Modal testing dominates the field of vibration testing. There are, of course, other iden-
tification methods and other types of vibration experiment. The main reference for this
chapter is the text by Ewins (1984, 2000), which discusses each topic of this chapter,
with the exception of Section 8.6 on time domain methods, in much more detail. Ewins
(1984) was the first book to describe modal testing. Another good general reference for
modal testing is the book by Zaveri (1984). Allemang (1984) has provided a review article
on the topic as well as an extended bibliography. Each year since 1981, an International
Modal Analysis Conference (IMAC) has been held, indicating the continued activity in this
area. McConnell (1995) presents a more general look at vibration testing. Maia and Silva
(1997) present an edited volume on modal analysis and testing written by Ewins’ former
students.

The material in Section 8.3 is a brief introduction to signal processing. More complete
treatments along with the required material from Section 8.4 on random signals can be found
in Otnes and Enochson (1972) or Doeblin (1980, 1983). An excellent introduction to signal
processing and the appropriate transforms is the book by Newland (1985). There are many
methods of extracting modal data from frequency response data, and only one is covered in
Section 8.5. Ewins (2000) and Zaveri (1984) discuss others. Most commercially available
modal software packages include details of the various modal data extraction methods used
in the package.

The time domain methods are mentioned briefly in Ewins (2000) and by Allemang (1984).
Leuridan, Brown, and Allemang (1986) discuss multiple-input and multiple-output time
domain methods and present some comparison of methodology. However, the eigensystem
realization algorithm is not included in these works. An excellent treatment of identification
methods driven by structural dynamics is given in the text by Juang (1994). A good intro-
duction to the realization theory upon which the eigensystem realization algorithm depends
can be found in Chen (1970). A least-squares regression technique for system identifica-
tion of discrete-time dynamic systems is given by Graupe (1976). The topic of physical
modeling using measurements discussed in Section 8.7 is really an inverse problem and/or
an identification problem such as defined in Rajaram and Junkins (1985) and Lancaster
and Maroulas (1987). Virgin (2000) provides an excellent introduction to experimental
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analysis for nonlinear systems. The use of vibration testing in structural health monitoring
is reviewed in Doebling, Farrar, and Prime (1998). Inman et al. (2005) provide reviews of
health monitoring and machinery diagnostics.
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PROBLEMS

8.1

8.2

8.3

84

8.5

8.6

Plot the error in measuring the natural frequency of a single-degree-of-freedom system
of mass 10 and stiffness 35 if the mass of the exciter is included in the calculation and
ranges from 0.4 to 5.0.

Calculate the Fourier transform of f(#) =3 sin 2¢ + 2sinz— cost and plot the spectral
coefficients.

Consider a signal x(#) with a maximum frequency of 500 Hz. Discuss the choice of
record length and sampling interval.

The eigenvalues and mode shapes of a structure are given next. Develop a two-degree-
of-freedom model of the structure that yields the same modal data if the mass matrix
is known to be diag[4 1]:

A, =—0.2134 + 1.2890;
A, = —0.0366 % 0.5400;
u, =[04142 1]

u, =[1.000 —0.4142]"

Consider the vector s7 = [s, s, s3]. Write the outer product matrix ss” and show that
the elements in one row (or one column) of the matrix completely determine the other
six elements of the matrix. In particular, calculate the receptance matrix of Section 8.5
for the following measured data:

£, =001, £,=02, £,=0.01
W, =2, w, =10, W =12
Glw,) =1, Glwy)=-1, G(w;)=3 (force at position 1 and transducer

at position 3)
G(wy,)=-3, G(wy,)=2, G(w,;) =4  (force at 1, transducer at 2)
G(w,) =5, G(w,) =2, G(w;)=-2 (force at 1, transducer at 1)

What are the eigenvectors of the system?
Calculate the receptance matrix for the two-degree-of-freedom system with

5 0 4 2 6 —4a
Mz[o 10}’ K:[—z 6]’ DZ[—4 5}



8.7

8.8

8.9

8.10
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(a) Consider the system of problem 8.6. Using any integration package, numerically
solve for the free response of this system to the initial conditions q(0) =[1 0]”
and q(0)=1[0 0]”.

(b) Using the solution to (a), generate the matrices @ and @’ of Equations (8.33)
and (8.34). Using @ and @' and Equation (8.38), calculate the eigenvalues and
eigenvectors of the system. Check to see if they satisfy the eigenvalue problem
for this system.

Repeat problem 8.7 using ERA. This will require the availability of software perform-
ing SVD, and the like, such as MATLAB.

Solve the problem of example 8.1.1 again for the case where the measured frequencies
are o, =+/2 and w, =2.

Solve the model updating problem of example 8.8.1 using the pole placement method
of Sections 6.6 and 7.3 to see if it is possible to obtain a symmetric updated stiffness
matrix with the required eigenvalues.



9

Distributed-parameter
Models

9.1 INTRODUCTION

This chapter presents an informal introduction to the vibrations of systems having distributed
mass and stiffness, often called distributed-parameter systems. For lumped-parameter sys-
tems, the single-degree-of-freedom system served as a familiar building block with which
more complicated multiple-degree-of-freedom structures can be modeled. Similarly, an
examination of the vibrations of simple models of strings, beams, and plates provides a
set of ‘building blocks’ for understanding the vibrations of systems with distributed mass,
stiffness, and damping parameters. Such systems are referred to as distributed-parameter
systems, elastic systems, continuous systems, or flexible systems.

This chapter focuses on the basic methods used to solve the vibration problem of flexible
systems. The purpose of this chapter is to list the equations governing the linear vibrations of
several distributed-parameter structures, list the assumptions under which they are valid, and
discuss some of the possible boundary conditions for such structures. The equations are not
derived; they are simply stated with a few representative examples of solutions. References
such as Meirovitch (2001) and Magrab (1979) should be consulted for derivations of the
equations of motion. These solution methods are made rigorous and discussed in more detail
in Chapter 10.

9.2 VIBRATION OF STRINGS

Figure 9.1 depicts a string fixed at both ends and displaced slightly from its equilibrium
position. The lateral position of the string is denoted by w. The value of w will depend not
only on the time 7 but also on the position along the string x. This spatial dependency is the
essential difference between lumped-parameter systems and distributed-parameter systems —
namely the deflection of the string is a function of both x and ¢ and hence is denoted by
w=w(x, ).

Vibration with Control D. J. Inman
© 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01051-7



250 DISTRIBUTED-PARAMETER MODELS

wix, t)

Figure 9.1 String fixed at both ends and displaced from its equilibrium position.

For small deflections and slopes of the string where the restoring forces in the vertical
displacement of the string are due entirely to the axial tension T in the string, the equation
governing the function w(x, f) can be shown to be

(6, ) = 3w (5.1) o

where ¢ =+/T/p, p is the mass per unit length of the string, w_, denotes the second partial
derivative of w(x, t) with respect to x, and w,, denotes the second partial derivative of w(x, ¢)
with respect to ¢. Alternatively, these partial derivatives are denoted by */dx* and &%/01>.
The derivation of this equation can be found in many texts (see, for instance, Inman, 2001).
Briefly, Equation (9.1) comes from applying a simple force balance on an infinitesimal
element of the string. The quantity w,, is the derivative of the slope and hence is proportional
to a restoring force. The right-hand side of Equation (9.1) is just the acceleration multiplied
by a coefficient and hence the inertia of the string.

The function w(x, t) that satisfies Equation (9.1) must also satisfy two initial conditions
because of the second-order time derivatives. The second-order spatial derivative implies that
two spatial conditions must also be satisfied. In the cases of interest here, the value of x will
vary over a finite range. Physically, if the string is fixed at both ends, then w(x, ) would have
to be zero at x =0 and again at x = £. These conditions are known as boundary conditions.
Mathematically, there must be one boundary condition (or one constant of integration) for
each spatial derivative and one initial condition for each time derivative.

The problem of finding the lateral vibrations of a string fixed at both ends can then be
summarized as follows. Find a function w(x, t) such that

1
w,,(x, 1) = ;w,,(x, 1), x€(0,¢0) for t>0

w(0, 1) =w(¢, 1) =0, t>0
w(x, 0) = wy(x) and w,(x,0) = wy(x) att=0 (9.2)

where w,(x) and w,(x) are specified time-invariant functions representing the initial (at
t =0) displacement and velocity distribution of the string. The notation x € (0, £) means that
the equation holds for values of x in the interval (0, £).

One approach used to solve the system given by Equations (9.2) is to assume that the
solution has the form w(x, r) = X(x)7(¢). This approach is called the method of separa-
tion of variables (see, for instance, Boyce and DiPrima, 2000). The method proceeds by
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substitution of this assumed separated form into Equation (9.2), which yields the set of
equations

X" (x)T(1) = %X(x)T(t)
X(OO)T()=0 and  X(O)T(r)=0
X(X)TO0)=wy(x) and  X(x)T(0) = wy(x) (9.3)

where the primes denote total derivatives with respect to x and the overdots indicate total
time differentiation. Rearranging the first equation in system (9.3) yields

X _ 170
X(x) 2 T(1)

(9.4)

Differentiating this expression with respect to x yields
d (X"(x)\ _ 0
dx \ X(x) )

X'(x) _
Xt 7

or that

(9.5)

where o is a constant (independent of ¢ or x) of integration. The next step then is to solve
Equation (9.5), i.e.,

X"(x) —oX(x)=0 (9.6)
subject to the two boundary conditions, which become
X(0)=0 and X()=0 9.7)

since T(t) # 0 for most values of t.

The nature of the constant o needs to be determined next. There are three pos-
sible choices for o: it can be positive, negative, or zero. If o =0, the solution of
Equation (9.6) subject to Equation (9.7) becomes X(x) =0, which does not satisfy the
condition of a nontrivial solution. If o> 0, then the solution to Equation (9.6) is of the form
X(x) = A, cosh(ox) + A, sinh(ox). Applying the initial conditions to this form of the solu-
tion then yields

0=A,
0=A,sinh({0)

so that again the only possible solution is the trivial solution, w(x, #) =0.
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Thus, the only nontrivial choice for o is that it must have a negative value. To indicate
this, ¢ = —A? is used. Equations (9.6) and (9.7) become

X'(x) + A2 X(x) =0
X(0)=X(£) =0 (9.8)

Equations (9.8) are called a boundary value problem as the values of the solution are
specified at the boundaries. The form of the solution of Equations (9.8) is

X(x)=A,sinAx+ A, cos Ax (9.9)

Applying the boundary conditions to the solution (9.9) indicates that the constants A, and
A, must satisfy

A, =0 and A;sinAl=0 (9.10)
Examination of Equation (9.10) shows that the only nontrivial solutions occur if
sinAl=0 9.11)

or when A has the value n/¢, where n is any integer value, denoted by

Note that the n =0, A =0 is omitted in this case because it results in zero solution. The
solution given in Equation (9.9) is thus the infinite set of functions denoted by

X,(x)=A, sin (%x) (9.12)
where n is any positive integer. Equation (9.11) resulting from applying the boundary
conditions is called the characteristic equation and the values A, are called characteristic
values.

Substitution of Equation (9.12) into Equation (9.4) then shows that the temporal coefficient
T(t) must satisfy the infinite number of equations

() + (%)zczm):o (9.13)

The solution of these equations, one for each n, is given by
T,(f)=A! sin (%I) + A% cos (%t) (9.14)
where A! and A2 are the required constants of integration and the subscript n has been added

to indicate that there are an infinite number of solutions of this form. Thus, the solutions of
Equation (9.1), also infinite in number, are of the form

w,(x, t) =a, sin (’%-Ct) sin (%x) + b, cos (’%-Ct) sin (%x) (9.15)
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Here, a, and b, are constants representing the product of A! and A2 of Equation (9.14) and
the constants of Equation (9.12).

Since Equation (9.15) is a linear system, the sum of all of these solutions is also a solution,
so that

wx, )=y [an sin (@t) + b, cos (ﬂt)]sin (Ex> (9.16)
n=1 e e Z
This infinite sum may or may not converge, as is discussed in Chapter 11. Next, the constants
a, and b, need to be calculated. These constants come from the initial conditions. Applying
the displacement initial condition to Equation (9.16) yields

w(x, 0) =wy(x) = i b, sin <¥x> (9.17)

This equation can be solved for the constants b, by using the (orthogonality) property of the
functions sin(nr/€)x:

i
/Oésin (%) sin (“x) dx =5, =1 2 e (9.18)
0, m#£n

Thus, multiplying Equation (9.17) by sin(mrx/£) and integrating yields the desired constants

b, = % /02 wo(x) sin (%x) dx (9.19)

since the sum vanishes for each n # m. Likewise, if Equation (9.16) is differentiated with
respect to time, multiplied by sin(mx/£), and integrated, the constants a, are found from

2 t . /nT
=l W, (x) sin (7)5) dx (9.20)

a n

The solution to problem (9.2) is given by the relations (9.16), (9.19), and (9.20).

The problem of solving the most basic distributed-parameter system is much more compli-
cated than solving for the free response of a simple one-degree-of-freedom lumped-parameter
system. Also, note that the solution just described essentially yields the theoretical modal
analysis solution established for lumped-parameter systems as developed in Section 3.3.
The functions sin(nmx/f) serve in the same capacity as the eigenvectors of a matrix in
calculating a solution. The major difference between the two developments is that the sum
in Equation (3.42) is finite, and hence always converges, whereas the sum in Equation (9.16)
is infinite and may or may not converge.

Physically, the functions sin(nrx/£) describe the configuration of the string for a fixed
time and hence are referred to as the natural modes of vibration of the system. Likewise,
the numbers (nc/€) are referred to as the natural frequencies of vibration, since they
describe the motion periodicity in time. Mathematically, the characteristic values (n/£) are
also called the eigenvalues of the system, and sin (nmx/{) are called the eigenfunctions of
the system and form an analogy to what is known about lumped-parameter systems. These
quantities are defined more precisely in Section 10.2. For now, note that the eigenvalues
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and eigenfunctions defined here serve the same purpose as eigenvalues and eigenvectors
defined for matrices.

The basic method of separation of variables combined with the infinite sums and orthog-
onality as used here forms the basic approach in solving for the response of distributed-
parameter systems. This approach, also called modal analysis, is used numerous times in the
following chapters to solve a variety of vibration and control problems.

In the case of lumped-parameter systems, a lot was gained by looking at the eigenvalue
and eigenvector problem. This information allowed the calculation of the solution of both
the free and forced response by using the properties of the eigenstructures. In the fol-
lowing, the same approach (modal analysis) is further developed for distributed-parameter
systems.

The fact that the solution (9.16) is a series of sine functions should not be a sur-
prise. In fact, Fourier’s theorem states that every function f(x) that is piecewise con-
tinuous and bounded on the interval [a, b] can be represented as a Fourier series of
Equation (8.1), i.e.,

fx)= ?O i [a,, cos (%x) + b, sin (%X)] (9.21)

where £ = b — a. This fact is used extensively in Chapter 8 on vibration testing.

Recall that a function f is said to be bounded on the interval [a, b] if there exists a
finite constant M such that |f(x)| < M for all x in [a, b]. Furthermore, a function f(x) is
continuous on the interval [a, b] if for every x, in [a, b], and for every & > 0, there exists a
number 6 = 6(g) > 0 such that |x — x,| < § implies | f(x) — f(x,)| < &. A function is piecewise
continuous on [a, b] if it is continuous on every subinterval of [a, b] (note here that the
square brackets indicate that the endpoints of the interval are included in the interval).

Note that in many cases either all of the coefficients a, or all of the coefficients b, are
zero. Also, note that many other functions ©,(x) besides the functions sin(nwx/¢) and
cos(nx/£) have the property that arbitrary functions of a certain class can be expanded in
terms of an infinite series of such functions, i.e., that

=3 a,0,(x) 9.22)
n=1

This property is called completeness and is related to the idea of completeness used with
orthogonal eigenvectors (Section 3.3). This concept is discussed in detail in Chapter 10.
Note that Equation (9.22) really means that the sequence of partial sums

{al@l,al@l—i—az@z,...,Zai@i,... } (9.23)

converges to the function f(x), i.e., that

lim (i an@n> = f(x) (9.24)

as defined in most introductory calculus texts.



VIBRATION OF STRINGS 255

Example 9.2.1

Now that the formal solution of the string has been examined and the eigenvalues and eigenfunctions
have been identified, it is important to realize that these quantities are the physical notions of mode
shapes and natural frequencies. To this end, suppose that the string is given the following initial
conditions:

w(x, 0) sin (%x) . w(x,0)=0 (9.25)

Calculation of the expansion coefficients yields [from Equations (9.19) and (9.20)]

a,= qun 0[ w,(x, 0) sin (%x) dx=0 (9.26)
and
b,= % /Oe sin (%x) sin (%x) dx= { (1): ZiZ 9.27)

The solution thus becomes

mct

w(x, f) =sin (%) cos (7) (9.28)

In Figure 9.2, this solution is plotted versus x for a fixed value of t. This plot is the shape
that the string would take if it were viewed by a stroboscope blinking at a frequency of mc/¢.
One of the two curves in Figure 9.2 is the plot of w(x, ) that would result if the string were
given an initial displacement of w(x,0) =sin(mx/£), the first eigenfunctions. The other curve,
which takes on negative values, results from an initial condition of w(x,0) = sin(27x/¢), the
second eigenfunction. Note that all the eigenfunctions sin(n7x/€) can be generated in this fash-
ion by choosing the appropriate initial conditions. Hence, this set of functions is known as the
set of mode shapes of vibration of the string. These correspond to the mode shapes defined
for lumped-parameter systems and are the quantities measured in the modal tests described in
Chapter 8.

w(x, t)

\/ T
0 02 ¢

Figure 9.2 First two mode shapes of a vibrating string fixed at both ends.




256 DISTRIBUTED-PARAMETER MODELS

9.3 RODS AND BARS

Next, consider the longitudinal vibration of a bar — that is, the vibration of a long slender
material in the direction of its longest axis, as indicated in Figure 9.3. Again, by summing
forces, the equation of motion is found (see, for instance, Timoshenko, Young, and Weaver,
1974) to be

[EA()w, (x, D], =p(x)A()w,(x,7),  x€(0,¢) (9.29)

where A(x) is the variable cross-sectional area, p(x) represents the variable mass distribu-
tion per unit area, E is the elastic modulus, and w(x, ) is the axial displacement (in the
x direction).

The form of Equation (9.29) is the same as that of the string if the cross-sectional area
of the bar is constant. In fact, the ‘stiffness’ operator (see Section 10.2) in both cases has
the form

82
@ (9.30)
where « is a constant. Hence, the eigenvalues and eigenfunctions are expected to have the
same mathematical form as those of the string, and the solution will be similar. The main
difference between these two systems is physical. In Equation (9.29) the function w(x, f)
denotes displacements along the long axis of the rod, where, as in Equation (9.1), w(x, ¢)
denotes displacements perpendicular to the axis of the string.

Several different ways of supporting a rod (and a string) lead to several different sets
of boundary conditions associated with Equation (9.29). Some are stated in terms of the
displacement w(x, r) and others are given in terms of the strain w, (x, f) (recall that strain is
the change in length per unit length).

Free boundary. If the bar is free or unsupported at a boundary, then the stress at the
boundary must be zero, i.e., no force should be present at that boundary, or

ow(x, t) ow(x, t)

EA(x)

=0 or EA(x)
x=0 x={

=0 (9.31)

Note that, if A(£) #0, the strain w, (£, t) must also be zero. The vertical bar in Equation (9.31)
denotes that the function is to be evaluated at x =0 or ¢ after the derivative is taken and
indicates the location of the boundary condition.

L > wi(x, t)

Figure 9.3 Schematic of a rod or bar, indicating the direction of longitudinal vibration.
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Clamped boundary. If the boundary is rigidly fixed, or clamped, then the displacement
must be zero at that point or

w(x, t)],_,=0 or w(x, 1) |,_,=0 (9.32)

Appended boundary. If the boundary is fastened to a lumped element, such as a spring of
stiffness k, the boundary condition becomes
dw(x, t)
dx

ow(x, 1)
ox

EA(x) lemo=—kw(x, )|,y or  EA(x) Lo =kw(x, )| =, (9.33)
which expresses a force balance at the boundary. In addition, if the bar has a lumped mass

at the end, the boundary condition becomes
EA(X)w,(x, 1) [ .o =mw,(x,0) oo or  EAX)w.(x,1) |y =—mw,(x,1) |-, (9.34)

which also represents a force balance. These types of problems are discussed in detail in
Section 12.4. They represent a large class of applications and are also referred to as structures
with time-dependent boundary conditions, constrained structures, or combined dynamical
systems.

As noted, the equation of motion is mathematically the same for both the string and the
bar, so that further discussion of the method of solution is not required. A third problem
again has the same mathematical model: the torsional vibration of circular shafts (rods). The
derivation of the equation of motion is very similar, comes from a force balance, and can be
found in several references (see, for instance, Timoshenko, Young, and Weaver, 1974). If
G represents the shear modulus of elasticity of the shaft, /, is the polar moment of inertia of
the shaft, p is the mass per unit area, 6(x, t) is the angular displacement of the shaft from its
neutral position, and x is the distance measured along the shaft, then the equation governing
the torsional vibration of the shaft is

0,(x,1) = %Ou(x, ),  xe(0,0) (9.35)

As in the case of the rod or bar, the shaft can be subjected to a variety of boundary conditions,
some of which are described in the following.

Free boundary. If the boundaries of the shaft are not attached to any device, there cannot
be any torque acting on the shaft at that point, so that

G1,0,|,-o=0 or G0, |,-,=0 (9.36)
at that boundary. If G and I, are constant, then Equation (9.36) becomes simply
Ox(x’ t) |x:0 =0 or Ox(x’ t) |x:l =0 (937)

Clamped boundary. If a boundary is clamped, then no movement of the shaft at that
position can occur, so that the boundary condition becomes

0(x,1)|,—o=0 or 0(x,1)|,,=0 (9.38)
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Appended boundaries. If a torsional spring of stiffness k is attached at the right end of

the shaft (say at x = £), then the spring force (torque) must balance the internal bending
moment. The boundary condition becomes

G1,0(x,1) |, =kO(x, 1) |,—, (9.39)
At the left end this becomes (see Figure 9.4)
G1,0.(x,1)],—o=—kO(x, 1) |, (9.40)

Quite often a shaft is connected to a disc at one end or the other. If the disc has mass polar
moment of inertia /, at the right end, the boundary condition becomes (see Figure 9.4)

GO, (x,1) |, =—1,0,(x, 1) |, (9.41)
or
G1,0,(x, 1) [,mo =140, (x, 1) | .= (9.42)
if the disc is placed at the left end.

The shaft could also have both a spring and a mass at one end, in which case the boundary
condition, obtained by summing forces, is

Gl o,r(x3 t) |x:0 = _Idolt('x’ t) |x:0 - ke('x’ t) |x:0 (943)

)4

As illustrated in the examples and problems, the boundary conditions affect the natural
frequencies and mode shapes. These quantities have been tabulated for many common
boundary conditions (Gorman, 1975, and Blevins, 2001).
Example 9.3.1

Consider the vibration of a shaft that is fixed at the left end (x=0) and has a disc attached to the right

end (x={). Let G, I,, and p all have unit values, and calculate the eigenvalue and eigenfunctions
of the system.

g

Ly

Figure 9.4 Shaft connected to a rotational spring on one end and a disc on the other end.
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Following the separation of variables procedure used in the solution of the string problems, a
solution of the form 6(x, r) = O(x)T(r) is assumed and substituted into the equation of motion and
boundary conditions, resulting in

0" (x) +A*0(x) =0
0(0)=0
G1,0'(O)T(t)=1,0(¢)T (1)

Recall that 7(¢) is harmonic, so that 7(f) = —A2T(¢), and the last boundary condition can be written as
GI,0' () =—A1,0(¢)

which removes the time dependence. The general spatial solution is

O(x)=A,sinAx + A, cos Ax
Application of the boundary condition at x =0 yields

A, =0 and O(x) = A, sin Ax

The second boundary condition yields (for the case G=1,=1)

AA, cos A =—AI,A,sin AL

which is satisfied for all values of A such that

¢ 1
d

Equation (9.44) is a transcendental equation for the values of A, the eigenvalues, and has an infinite
number of solutions denoted by A, calculated either graphically or numerically from the points of
intersection given in Figure 9.5. The values of A correspond to the values of (A£) at the intersections

tan(\?)
A

Figure 9.5 Graphical solution of the transcendental equation for tan A¢ =—1/A¢.
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of the two curves of Figure 9.5. Note that the effect of the disc inertia, /,, is to shift the points of
intersection of the two curves. The transcendental equation [Equation (9.44)] is solved numerically
near each crossing, using the plot to obtain an initial guess for the numerical procedure. For values
of n greater than 3, the crossing points in the plot approach the zeros of the tangent, and hence the
sine or nr.

9.4 VIBRATION OF BEAMS

In this section, the transverse vibration of a beam is examined. A beam is represented in
Figure 9.6. The beam has mass density p(x), cross-sectional area A(x), and moment of
inertia I(x) about its equilibrium axis. The deflection w(x, t) of the beam is the result of
two effects, bending and shear. The derivation of equations and boundary conditions for the
vibration of the beam can be found in several texts (see, for instance, Timoshenko, Young,
and Weaver, 1974).

A beam is a transversely loaded (along the z axis in Figure 9.6), prismatic structural
element with length ¢, which is large in value when compared with the magnitude of the
beam cross-sectional area, A (the y—z plane in Figure 9.6). In the previous section, vibration
of such a structure in the x direction was considered and referred to as the longitudinal
vibration of a bar. In this section the transverse vibration of the beam, i.e., vibration in the
z direction, perpendicular to the long axis of the beam, is considered.

The equations of motion are not developed here; however, the three basic assumptions
used in the derivation are important to bear in mind. The fundamental small displacement
assumption of linear vibration theory in this case results in requiring (1) that the material in
the y—z plane of the beam remains in the plane during deformation, (2) that the displacements
along the y direction are zero (called the plane strain assumption), and (3), that, along any
cross-section, the displacement in the z direction is the same (i.e., no stretch of material
in thickness). These assumptions lead to the Timoshenko beam equations in the transverse

Figure 9.6 Beam indicating the variables used in the transverse vibration model.



VIBRATION OF BEAMS 261

deflection w(x, t) and the bending slope /(x, 7) (see, for example, Reismann and Pawlik,
1974). They are

9 9
—pAw, + —|2AG (L —y)|+p=0, xe(0,0)
ox dx
(9.45)

—pliy,, + i[El‘;ﬂ 2AG( ¢> , x€(0,¢)

where k? is called the shear coefficient, G is the shear modulus, E is the elastic modulus,
and p = p(x, 1) is an externally applied force along the length of the beam. The shear
coefficient k? can be determined in several ways. A summary of values for x” is given by
Cowper (1966).

With the additional assumptions that (1) shear deformations are negligible, so that the
shear angle is zero and ¢ = —w,(x, ), and (2) that the rotary inertia is negligible, so
that plif,, =0, the so-called Euler—Bernoulli beam equations result. Under these additional
assumptions, Equations (9.45) become the single equation (for p =0 and A constant)

Pw(x, t)i| _

2

P —m(w,(x,1),  x€(0,0) (9.46)

10 ™

where m(x) = pA. Equation (9.46) is the Euler—Bernoulli beam equation and is more
commonly used in applications than the Timoshenko equations [Equation (9.45)] because of
its comparative simplicity. If the beam is long and skinny (aspect ratio, say, greater then 10),
the Euler—Bernoulli assumptions are appropriate. The rest of the section is devoted to the
Euler—Bernoulli model. Again, many boundary conditions are possible, and several common
cases are considered here.

Clamped boundary. If the beam is firmly fixed at a boundary x =0, then both the deflection
of the beam and the slope of the deflection must be zero, i.e.,

w(x, )] 2o = wy(x, )], =0 (9.47)

Simply supported boundary. If the beam is supported by a hinge at x =0, then the bending
moment and deflection must both be zero at that point, i.e.,

w(x 1)

E]( ) |x O:O

w(x, 1),o=0 (9.48)
This boundary condition is also referred to as hinged.

Free boundary. Again, in the case of no support at a boundary, the bending moment must
be zero. In addition, the shearing force at a free end must be zero, i.e.,

Fute]

EI(x) M =0 (9.49)

x=0

=0, : [EI()

x=0
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y

w(x, t)
LX T

Figure 9.7 Beam connected to a linear spring on one end and clamped on the other end.

Appended boundaries. If a spring, with spring constant k, is attached to one end of the
beam as shown in Figure 9.7, a force balance indicates that the shear force must equal the
spring-restoring force. In addition, the bending moment must still be zero.

Pw(x, 1) Pw(x, t)]

El(x) e

=—kw(x, 1) |,—o (9.50)

2
ox =0

ox

_o, 2 |:E1(x)

x=0

Note that the sign again changes if the spring is attached at the other end. If a mass is
placed at one end, the shear force must balance the inertial force provided by the mass, and
again the bending moment must be zero. Using the same end as indicated in Figure 9.7, the
boundary conditions are

Pw(x, 1)

El(x) P

= mw, (x’ [) |x:0 (951)

x=0

0x?2

Pw(x, t)]

=0, % |:El(x)

x=0

where m is the mass of the appended piece.

Example 9.4.1

Consider a cantilevered beam (clamped at x =0 and free at the x =) and compute the natural
frequencies and mode shapes using separation of variables as described above. Assume that E, I, p,
and / are constant. The method is basically the same as that used for a string, rod, and bar,
but the resulting boundary value problem is slightly more complex. The clamped—free boundary
conditions are

w(0,)=w,(0,1)=0 and w, (I, )=w,,(,1)=0
The equation of motion is
Pw EI\ &*w
i+ (o) =0
Using the method of separation of variables, assume the solution is of the form w(x, t) = X(x)7(¢)
to obtain

EINX" T
(?A) x 1w ¢



VIBRATION OF BEAMS 263

The spatial equation becomes
A
X" (x) — (%{) ®*X(x) =0

Next, define 8* = (pAw?)/(EI) so that the equation of motion becomes X’ — 84X =0 which has the
solution

X(x) = C, sin Bx + C, cos Bx + C; sinh Bx + C, cosh Bx
Applying the boundary conditions in separated form
X(0)=X'(0)=0 and X" (H=X"()=0
yields four equations in the four unknown coefficients C;. These four equations are written in matrix

form as

0 1 0 1 C

1 0 1 0 Gl_,
—sinBl —cosBl sinh Bl coshBl | | C; |
C

—cos B! sinBl cosh Bl sinh B/ 4

For a nonzero solution for the coefficients C;, the matrix determinant must be zero. The determinant
yields the characteristic equation

(—sin BI — sinh BI)(sin Bl — sinh BI) — (— cos Bl — cosh BI)(—cos Bl — cosh BI) =0

Simplifying, the characteristic equation becomes cos 3/cosh B/ =—1, or
Bl=——
cosfB,l=———
" cosh 3,1

This last expression is solved numerically for the values /. The frequencies are then

BLEI
w}l =
pA

The mode shapes given by the solution for each 3, are
X, =C,,sinB,x+ C,,cos B,x + C;, sinh B, x + C,, cosh B, x
Using the boundary condition information that C, = —C, and C; = —C, yields
—C, (sin Bl + sinh BI) = C,(cos B1 + cosh BI)
so that

C =—, <cos,Bl+cosh,Bl>

sin 3/ 4 sinh B

The mode shapes can then be expressed as

X —C cos 3,1+ cosh 8,1
nToT sin B, +sinh 3,1

cos 3, +cosh 8,1

inh B,.x — cosh
sin B, 1 +sinh B3, 1 )Sm Byx —coshp "x}

) sin 3,x +cos B, x +<
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Additional examples of the solution to the beam equation can be found in the next chapter
which discusses formal methods of solution.

9.5 MEMBRANES AND PLATES

In this section, the equations for linear vibrations of membranes and plates are discussed.
These objects are two-dimensional versions of the strings and beams discussed in the
preceding sections. They occupy plane regions in space. The membrane represents a two-
dimensional version of a string, and a plate can be thought of as a membrane with bending
stiffness.

First, consider the equations of motion for a membrane. A membrane is basically a two-
dimensional system that lies in a plane when in equilibrium. A common example is a drum
head. The structure itself provides no resistance to bending, so that the restoring force is due
only to the tension in the membrane. Thus, a membrane is similar to a string and, as was
mentioned, is a two-dimensional version of a string. The reader is referred to Timoshenko,
Young, and Weaver (1974) for the derivation of the membrane equation. Let w(x,y, )
represent the displacement in the z direction of a membrane lying in the x—y plane at the
point (x, y) and time ¢. The displacement is assumed to be small, with small slopes, and is
perpendicular to the x—y plane. Let T be the tensile force per unit length of the membrane,
assumed the same in all directions, and p be the mass per unit area of the membrane. Then,
the equation for free vibration is given by

TV w(x, v, t) = pw,(x, y, 1), x,yeQ (9.52)

where () denotes the region in the x—y plane occupied by the membrane. Here V? is the
Laplace operator. In rectangular coordinates this operator has the form
s 92

2 —
 ox? + ay?

(9.53)

The boundary conditions for the membrane must be specified along the shape of the bound-
ary, not just at points, as in the case of the string. If the membrane is fixed or clamped at a
segment of the boundary, then the deflection must be zero along that segment. If d() is the
curve in the x—y plane corresponding to the edge of the membrane, i.e., the boundary of (2,
then the clamped boundary condition is denoted by

w(x,y,0)=0,  x,yedQ (9.54)

If, for some segment of d(), denoted by d(),, the membrane is free to deflect transversely,
then there can be no force component in the transverse direction, and the boundary condition
becomes

ow(x, y, 1) _

09 -xv y € an (9.55)
on

Here, dw/dn denotes the derivative of w(x, y, t) normal to the boundary in the reference
plane of the membrane.
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Example 9.5.1

Consider the vibration of a square membrane, as indicated in Figure 9.8, clamped at all of the edges.
With ¢? = T/p, the equation of motion, [Equation (9.52)] becomes

Fw  Pw] P
cz[ v w} Y xyeQ (9.56)

e Ty | T
Assuming that the solution separates, i.e., that w(x, y, r) = X(x) ¥(y)T(z), Equation (9.56) becomes

1 T B X Y”

= 9.57
T X + Y ©37)

Equation (9.57) implies that 7'/(Tc?) is a constant (recall the argument used in Section 9.2). Denote
the constant by w?, so that

—=—w (9.58)
Then Equation (9.57) implies that
— =0 - — (9.59)

By the same argument used before, both X”/X and Y”/Y must be constant (that is, independent of
t and x or y). Hence

X//
= —a? (9.60)
and
Y// N
—=— 9.61
v Y (9.61)

where a” and y? are constants. Equation (9.59) then yields
0 =a’+y* (9.62)
These expressions result in two spatial equations to be solved

X' +a’X=0 (9.63)

/y Tw(x, )

; ‘

X

Figure 9.8 Square membrane illustrating vibration perpendicular to its surface.
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which have a solution (A and B are constants of integration) of the form
X(x)=Asinax+ B cos ax (9.64)
and
Y +9’Y =0 (9.65)
which yields a solution (C and D are constants of integration) of the form
Y(y) = Csinyy+ Dcosyy (9.66)
The total spatial solution is the product X(x)¥(y), or

X(x)Y(y) =A, sin axsin yy + A, sin ax cos yy
+ A; cos ax sin yy + A, cos ax cos yy (9.67)
Here, the constants A; consist of the products of the constants in Equations (9.64) and (9.66) and
are to be determined by the boundary and initial conditions.
Equation (9.67) can now be used with the boundary conditions to calculate the eigenvalues and
eigenfunctions of the system. The clamped boundary condition, along x =0 in Figure 9.8, yields
T()X(0)¥(y) = T(1) B(Ay sin yy + A, cos yy) =0
or
Assinyy+ A cosyy=0 (9.68)
Now, Equation (9.68) must hold for any value of y. Thus, as long as 7 is not zero (a reasonable
assumption, since if it is zero the system has a rigid body motion), A; and A, must be zero. Hence,
the spatial solution must have the form
X(x)Y(y) = A, sin axsinyy + A, sin ax cos yy (9.69)
Next, application of the boundary condition w =0 along the line x =1 yields
A sinasinyy+ A, sinacos yy=0 (9.70)
Factoring this expression yields
sina(A, sinyy+ A, cosyy) =0 (9.71)
Now, either sin & =0 or, by the preceding argument, A; and A, must be zero. However, if A; and
A, are both zero, the solution is zero. Hence, in order for a nontrivial solution to exist, sin @ =0,
which yields
a=nT, n=1,2,...,0 (9.72)

Using the boundary condition w =0 along the line y =1 results in a similar procedure and yields

y=mm, m=1,2,...,00 (9.73)
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Note that the possibility of ¥y =a =0 is not used because it was necessary to assume that y #0 in
order to derive Equation (9.69). Equation (9.62) shows that the constant w in the temporal equation

must have the form
wmn = \ a% + ‘y}?ﬂ
(9.74)
=V m?+n?, m,n=1,2,3,...,00

Thus, the eigenvalues and eigenfunctions for the clamped membrane are Equation (9.74) and
{sin nmx and sin m my} respectively. The solution of Equation (9.56) becomes

wx,y, )= Y (sinmmxsinnmwy){[A,, Sin[mcwt]
et (9.75)

+ B,,, cos[v/ n? + m?cmt]}

where A,,, and B,,, are determined by the initial conditions and the orthogonality of the eigenfunc-
tions.

In progressing from the vibration of a string to considering the transverse vibration of a
beam, the beam equation allowed for bending stiffness. In somewhat the same manner, a
plate differs from a membrane because plates have bending stiffness. The reader is referred
to Reismann (1988) or Sodel (1993) for a more detailed explanation and a precise derivation
of the plate equation. Basically, the plate, like the membrane, is defined in a plane (x—y)
with the deflection w(x, y, t) taking place along the z axis perpendicular to the x—y plane.
The basic assumption is again small deflections with respect to the thickness, /. Thus, the
plane running through the middle of the plate is assumed not to deform during bending
(called a neutral plane). In addition, normal stresses in the direction transverse to the plate
are assumed to be negligible. Again, there is no thickness stretch. The displacement equation
of motion for the free vibration of the plate is

—D . V'w(x, y, t) = pw,(x, y, 1), x,y€Q (9.76)

where E again denotes the elastic modulus, p is the mass density (per unit area), and the
constant D, the plate flexural rigidity, is defined in terms of Poisson’s ratio v and the plate
thickness h as

EW

The operator V*, called the biharmonic operator, is a fourth-order operator, the exact form
of which depends on the choice of coordinate systems. In rectangular coordinates, the
biharmonic operator becomes

o a* a*

Vi=— 42

= —+— 9.78
ax* dx%dy? + ay* ©78)

The boundary conditions for a plate are a little more difficult to write, as their form, in some
cases, also depends on the coordinate system in use.
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Clamped edge. For a clamped edge, the deflection and normal derivative d/dn are both
zero along the edge:

dw(x,y,1)

0, x,y €9 (9.79)
on

w(x,y,1)=0 and
Here, the normal derivative is the derivative of w normal to the neutral plane.
Simply supported. For a rectangular plate, the simply supported boundary conditions

become

w(x,y,1)=0 along all edges

w(x, y, t

% =0 along the edges x=0,x=¢, (9.80)
X

w(x, y, t

% =0 along the edges y=0,y=1¢, (9.81)
y

where ¢, and ¢, are the lengths of the plate edges and the second partial derivatives reflect
the normal strains along these edges.

9.6 LAYERED MATERIALS

The use of layered materials and composites in the design of modern structures has
become very popular because of increased strength-to-weight ratios. The theory of vibra-
tion of layered materials is not as developed, but does offer some interesting design
flexibility.

The transverse vibration of a three-layer beam consisting of a core between two faceplates,
as indicated in Figure 9.9, is considered here. The layered beam consists of two faceplates
of thickness h, and h;, which are sandwiched around a core beam of thickness h,. The
distance between the center-lines of the two faceplates is denoted by d. The displacement
equation of vibration becomes (see, for instance, Sun and Lu, 1995)

Pw(x, 1)
9x®

Hw(x,t)  p [ Fw Pw
1 _— —g— | =0, €(0,¢ 9.82
sU+B— 5+, |:3x26t2 aﬂ} x€(©.6 082

T Face plate h,
z, wix, t) )
y
d Core hy
X
X
Y \
-— Face plate Y hs
0 /

Figure 9.9 Cross-section of a three-layer beam for transverse vibration analysis.
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where

. G 1 . 1
= LEn, " Esh
G = shear modulus of the core

E; =Young’s modulus of the ith face plate

_ E\hi + E; 1}
E 12
B= d’E Il Eshy(E hy + Eshy)
DE
h h
d=h2+—1; 3

p =mass per unit length of the entire structure

The boundary conditions are again not as straightforward as those of a simple beam. In fact,
since the equation for free vibration contains six derivatives, there are six boundary conditions
that must be specified. If the beam has both ends clamped, the boundary conditions are

w(0,t)=w(¢,1)=0 (zero displacement)
w, (0, 1)=w,(¢,1)=0 (zero rotation)

wxxxx(o’ t) - g(l +B)w,\:x(0’ t) - Diwtt(o’ t) =0

E

W (6 1) — g(1+ Bw,, (¢, 1) — Diwn(é, =0 (zero bending moments)  (9.83)
E

Note that the form of this equation is quite different from all the other structures considered
in this chapter. In all the previous cases, the equation for linear vibration can be written in
the form

w, (X, 1)+ L,w(x, 1) =0, xe)
B(w)(x, 1) =0, x €90 (9.84)

plus initial conditions, where () is a region in three-dimensional space bounded by Q).
Here, L, is a linear operator in the spatial variables only, x is a vector consisting of the
spatial coordinates x, y, and z, and B represents the boundary conditions. As long as the
vibration of a structure fits into the form of Equations(9.84) and the operator L, satisfies
certain conditions (specified in Chapter 11), separation of variables can be used to solve the
problem. However, Equation (9.82) is of the form

Low,(x, ) + Lyw(x, t) =0, xe€ ()
Bw(x, t) =0, x € dQ) (9.85)
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where both L, and L, are linear operators in the spatial variables. Because of the presence
of two operators it is not clear if separation of variables will work as a solution technique.
The circumstances and assumptions required for separation of variables to work is the topic
of the next chapter. In addition, classifications and further discussion of the operators are
contained in Chapter 11.

The boundary conditions associated with the operator B in Equation (9.84) can be separated
into two classes. Boundary conditions that arise clearly as a result of the geometry of the
structure, such as Equation (9.47), are called geometric boundary conditions. Boundary
conditions that arise by requiring a force (or moment) balance at the boundary are called
natural boundary conditions. Equation (9.49) represents an example of a natural boundary
condition.

9.7 VISCOUS DAMPING

Only viscous damping, introduced in Section 1.3, is considered in this section. The rea-
son for this consideration is that viscous damping lends itself to analytical solutions for
transient as well as steady state response by relatively simple techniques. While there is
significant evidence indicating the inaccuracies of viscous damping models (for instance,
Snowden, 1968), modeling dissipation as viscous damping represents a significant improve-
ment over the conservative models given by Equations (9.84) or (9.85). In this section,
several distributed-parameter models with viscous-type damping are presented.

First, consider the transverse free vibration of a membrane in a surrounding medium (such
as air) furnishing resistance to the motion that is proportional to the velocity (i.e., viscous
damping). The equation of motion is Equation (9.52) with the addition of a damping force.
The resulting equation is

pw, (x, v, 1) + yw,(x, y, 1) — TV:w(x, y, {) =0, x,yeQ (9.86)

where p, T, and V? are as defined for Equation (9.53) and 7y is the viscous damping
coefficient. The positive constant vy reflects the proportional resistance to velocity. This
system is subject to the same boundary conditions as those discussed in Section9.5.

The solution method (separation of variables) outlined in example 9.5.1 works equally
well for solving the damped membrane equation [Equation (9.86)]. The only change in the
solution is that the temporal function 7(¢) becomes an exponentially decaying sinusoid rather
than a constant-amplitude sinusoid, depending on the relative size of y.

External damping of the viscous type can also be applied to the model of the free flexural
vibration of a plate. This problem has been considered by Murthy and Sherbourne (1972).
They modeled the damped plate by

pw, (x,v, 1) +yw,(x, y, t) + D V'w(x, y, 1) =0, x,y,€Q (9.87)

subject to the same boundary conditions as Equation (9.86). Here, D, p, and V* are as
defined for Equation (9.76), and vy again represents the constant viscous damping parameter.
The plate boundary conditions given in Section 9.5 also apply to the damped plate equation
[Equation (9.87)].
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Finally, consider the longitudinal vibration of a bar subject to both internal and external
damping. In this case, the equation of vibration for the bar in Figure 9.3 becomes

9 EA
w,(x, ) +2(y— ,Ba—x2 w,(x, 1) — Twu(x, 1) =0, xe) (9.88)

subject to the boundary conditions discussed in Section 9.3. The quantities E, A, and p are
taken to be constant versions of the like quantities defined in Equation (9.29). The constant
v is again a viscous damping factor derived from an external influence, whereas the constant
B is a viscous damping factor representing an internal damping mechanism.

Note that the internal model is slightly more complicated than the other viscous damping
models considered in this section because of the inclusion of the second spatial derivative.
Damping models involving spatial derivatives can cause difficulties in computing analytical
solutions and are discussed in Sections 10.4 and 11.6. In addition, damping terms can alter
the boundary conditions.

The general model for vibration of distributed-parameter systems with viscous damping
can be written as

Lyw, (x, 1)+ L,w,(x, 1) + L,w(x, ) =0, xe()
Bw(x, 1) =0, x €9Q) (9.89)

plus appropriate initial conditions. Here, the operators B, L, and L, are as defined for
Equation (9.85), and the operator L, is exemplified by the models illustrated in this section.
The operator L, is called the mass operator, the operator L, is called the damping operator,
and the operator L, is called the stiffness operator. As illustrated by the examples, the
operator L, is often the identity operator. The properties of these operators, the nature of the
solutions of Equations (9.84) and (9.89), and their relationship to the vibration problem are
topics of the next three chapters.

CHAPTER NOTES

This chapter presents a brief introduction to the linear vibration of distributed-parameter
systems without regard for mathematical rigor or a proper derivation of the governing
equations. The chapter is intended to review and familiarize the reader with some of the
basic structural elements used as examples in the study of distributed-parameter systems and
points out the easiest and most commonly used method of solution — separation of variables.

Section 9.2 introduces the classic vibrating string. The derivation and solution of the string
equation can be found in almost any text on vibration, partial differential equations, or applied
mathematics. The vibration of bars covered in Section9.3 is almost as common and can
again be found in almost any vibration text. An excellent detailed derivation of most of the
equations can be found in Magrab (1979) and more basic derivations can be found in Inman
(2001) or any of the other excellent introductory texts (such as Rao, 2004). The material on
membranes and plates of Section 9.5 is also very standard and can be found in most advanced
texts, such as Meirovitch (1967, 1997, 2001). Ventsel and Krauthammer (2001) present a
complete derivation of the thin plate equations used here. A classic reference for plates is
Sodel (1993). The material on layered structures of Section9.6 is nonstandard, but such



272 DISTRIBUTED-PARAMETER MODELS

materials have made a significant impact in engineering design and should be considered.
Sun and Lu’s (1995) book gives a list of useful papers in this area. Blevins (2001) is an
excellent reference and tabulates natural frequencies and mode shapes for a variety of basic
elements (strings, bars, beams, and plates in various configurations). Elishakoff (2005) gives
the solutions of several unusual configurations.

Section 9.7 introduces some simple viscous damping models for distributed-parameter
systems. Information on such models in the context of transient vibration analysis is difficult
to come by. The majority of work on damping models centers on the steady state forced
response of such systems and presents a very difficult problem. Snowden (1968) and Nashif,
Jones, and Henderson (1985) present an alternative view on damping and should be consulted
for further reading. Banks, Wang, and Inman (1994) discuss damping in beams.

As indicated, most of the material in this chapter is standard. However, this chapter
does include some unusual boundary conditions representing lumped-parameter elements
appended to distributed-parameter structures. These configurations are very important
in vibration design and control. The texts of Gorman (1975) and of Blevins (2001)
tabulates the natural frequencies of such systems. Such configurations are analyzed in
Section 12.4.
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PROBLEMS

9.1

9.2

9.3

94

9.5

9.6

9.7

9.8

9.9

9.10

9.11

9.12

Consider the bar of Section 9.3. Using the method of separation of variables, calculate
the natural frequencies if the bar is clamped at one end and connected to a linear
spring of stiffness k at the other end.

Consider the string equation of Section 9.2, with clamped boundaries at each end. At
the midpoint, x = ¢/2, the density changes from p, to p,, but the tension 7 remains
constant. Derive the characteristic equation.

Calculate the natural frequencies of vibration of the Euler—Bernoulli beam clamped
at both ends.

Consider a nonuniform bar described by

O (EAG)u,] = m(x)u, on (0, 6)

ox
with

EA(a):ZEAO(l—%) and m(x):ZmO(l—%)

fixed at O and free at £. Calculate the free vibration. What are the first three eigen-
values?

Solve the Timoshenko beam equation [Equation (9.45)]. Assume that the cross-section
remains constant and eliminate i from the equations to produce a single equation in
the displacement. Compare your result with the Euler—Bernoulli equation and identify
the shear deformation term and rotary inertia term. What can you conclude?

Verify the orthogonality condition for the set of functions

on the interval [0, ¢].

Calculate the natural frequencies of the system in Figure 9.4 and compare them with
those of example 9.3.1.

Calculate the solution of the internally and externally damped bar given by Equa-
tion (9.88) with a clamped boundary at x =0 and a free boundary at x = ¢£.

Are there values of the parameters vy and p in Equation (9.88) for which the damping
for one or more of the terms 7,,(¢) is zero? A minimum? (Use the clamped boundary
conditions of problem 9.8.)

Consider the damped membrane of Equation (9.86) with clamped boundary conditions.
Calculate values of vy, p, and T such that the temporal part, 7(t), of the separation of
variables solution does not oscillate.

Compute the natural frequencies of a beam clamped at the right end (0) with a tip
mass of value M at the left end.

Compute the characteristic equation of a shaft with a disc of inertia I at each end.



10

Formal Methods of
Solution

10.1 INTRODUCTION

This chapter examines various methods of solving for the vibrational response of the
distributed-parameter systems introduced in the previous chapter. As in finite-dimensional
systems, the response of a given system is made up of two parts: the transient, or free,
response, and the steady state, or forced, response. In general the steady state response is
easier to calculate, and in many cases the steady state is all that is necessary. The focus in this
chapter is the free response. The forced response is discussed in more detail in Chapter 12.

Several approaches to solving distributed-parameter vibration problems are considered.
The formal notion of an operator and the eigenvalue problem associated with the operator are
introduced. The traditional separation of variables method used in Chapter 9 is compared with
the eigenvalue problem. The eigenfunction expansion method is introduced and examined
for systems including damping. Transform methods and integral formulations in the form of
Green’s functions are also introduced in less detail.

10.2 BOUNDARY VALUE PROBLEMS AND EIGENFUNCTIONS

As discussed in Section 9.6, a general formulation of the undamped boundary value prob-
lems presented in Chapter 9 can be written as (the subscript on L is dropped here for
notational ease)
w,, (X, 1)+ Lw(x, 1) =0, xe€ N for t>0
Bw=0, x € 002 for t>0 (10.1)
w(x, 0) = wy(x), w, (X, 0) = wy(x) att=0

where w(X, r) is the deflection, x is a three-dimensional vector of spatial variables, and
(2 is a bounded region in three-dimensional space with boundary d(2. The operator L is

Vibration with Control D. J. Inman
© 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01051-7
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a differential operator of spatial variables only. For example, for the longitudinal vibration
of a beam (string or rod) the operator L has the form

82
L=—-a R (10.2)
where « is a constant. An operator, or transformation, is a rule that assigns, to each function
w(X, f) belonging to a certain class, another function (—aw,, in the case of the string operator)
belonging to another, perhaps different, class of functions. Note that a matrix satisfies this
definition. B is an operator representing the boundary conditions as given, for example, by
Equations (9.2). As indicated previously, the equations of (10.1) define a boundary value
problem. A common method of solving (10.1) is to use separation of variables, as illustrated
by the examples in Chapter 9. As long as the operator L does not depend on time, and if L
satisfies certain other conditions (discussed in the next chapter), this method will work.
In many situations, the separation of variables approach yields an infinite set of functions
of the form a,(f)¢, (x) that are solutions of Equations (10.1). The most general solution is
then the sum, i.e.,

w(x, 1) = i a,(t)o,(x) (10.3)

n=1

A related method, modal analysis, also uses these functions and is described in the next
section.

Similar to the eigenvectors of a matrix, some operators have eigenfunctions. A nonzero
function ¢(x) that satisfies the relationships

Lp(x) = rd(x), xe )
B¢p(x) =0, X € 042

is called an eigenfunction of the operator L with boundary conditions B. The scalar A
(possibly complex) is called an eigenvalue of the operator L with respect to the boundary
conditions B. In some cases the boundary conditions are not present, as in the case of
a matrix, and in some cases the boundary conditions are contained in the domain of the
operator L. The domain of the operator L, denoted by D(L), is the set of all functions u(x)
for which Lu is defined and of interest.

To see the connection between separation of variables and eigenfunctions, consider sub-
stitution of the assumed separated form w(Xx, ¢) = a(t)¢(x) into Equations (10.1). This yields

i%: L(Z’(g), €0, >0 (10.4)
a(DBH(x)=0,  x€dQ, >0 (10.5)
a(0)p(x) = wy(x), a(0)p(x) = wy(x) (10.6)

As before, Equation (10.4) implies that each side is constant, so that

Lp(x) = Ad(x), x € (10.7)
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where A is a scalar. In addition, note that, since a(t) #0 for all ¢, Equation (10.5) implies that
B¢p(x) =0, X €940, >0 (10.8)

Equations (10.7) and (10.8) are, of course, a statement that ¢(x) and A constitute an
eigenfunction and eigenvalue of the operator L.

Example 10.2.1

Consider the operator formulation of the longitudinal bar equation presented in Section 9.3. The
form of the beam operator is

2

L=—a—,
aﬁxz

xe(0,0)
with boundary conditions (B=1 at x=0 and B=9/dx at x=1{)
¢(0)=0 (clamped end) and ¢.(£)=0 (free end)

and where 942 consists of the points x =0 and x = £. Here, the constant a represents the physical
parameters of the beam, i.e., « = EA/p. The eigenvalue problem L¢ = A¢ becomes

_a¢xx = /\¢
or
A
d)xx + 7(15 =0
o

This last expression is identical to Equation (9.6) and the solution is

d(x)=A,sin (\/Zx) + A, cos <\/§x)

where A, and A, are constants of integration. Using the boundary conditions yields

0=¢(0)=A, and 0=¢X(€)=Al\/§cos\/§€

This requires that A, =0 and
[A
A cos,/—€=0
«

Since A, cannot be zero,

for all odd integers n. Thus, A depends on n and

an*m?

)\":W’ n=1,3,5,...,0
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Thus, there are many eigenvalues A, denoted now by A,, and many eigenfunctions ¢, denoted by
¢,. The eigenfunctions and eigenvalues of the operator L are given by the sets

001277

2
7}, n odd

(6,0} ={a,sin =) ana {An}={ a0

24

respectively. Note that, as in the case of a matrix eigenvector, eigenfunc-
tions are determined only to within a multiplicative constant (A, in this case).

Comparison of the eigenfunctions of the operator for the beam with the spatial functions
calculated in Chapter 9 shows that the eigenfunctions of the operator correspond to the mode
shapes of the structure. This correspondence is exactly analogous to the situation for the
eigenvectors of a matrix.

10.3 MODAL ANALYSIS OF THE FREE RESPONSE

The eigenfunctions associated with the string equation are shown in the example of
Section 9.2 to be the mode shapes of the string. Also, by using the linearity of the equations
of motion, the solution is given as a summation of mode shapes. This summation of mode
shapes, or eigenfunctions, given in Equation (9.16), constitutes the eigenfunction expansion
or modal analysis of the solution and provides an alternative point of view to the separation
of variables technique.

First, as in the case of eigenvectors of a matrix, eigenfunctions are conveniently normalized
to fix a value for the arbitrary constant. To this end, let the eigenfunctions of interest be
denoted by A, ¢, (x). If the constants A, are chosen such that

/ﬂ A2, (x),(x)d2 =1 (10.9)

then the eigenfunctions ©, = A, ¢, are said to be normalized, or normal. If, in addition, they
satisfy

0,0,4d0=5,, (10.10)
0
the eigenfunctions are said to be orthonormal, exactly analogous to the eigenvector case. The
method of modal analysis assumes that the solution of Equations (10.1) can be represented
as the series

wx, )= a,()0,(x) (10.11)
n=1
where 0,(x) are the normalized eigenfunctions of the operator L. Substitution of Equa-
tion (10.11) into Equations (10.1), multiplying by 0,,(x), and integrating (assuming uniform
convergence) over the domain (2 reduces Equations (10.1) to an infinite set of uncoupled
ordinary differential equations of the form

a,()+X,a,()=0, n=12,...,0 (10.12)
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Equation (10.12) can then be used along with the appropriate initial conditions to solve for
each of the temporal functions. Here, A, is the eigenvalue associated with the nth mode,
so that

f 0.LO d0=A, / 0,0,d0=)\, (10.13)
0 0

where Equation (10.7) and (10.10) are used to evaluate the integral.

Example 10.3.1

Consider the transverse vibration of a Euler—Bernoulli beam with hinged boundary conditions.
Calculate the eigenvalues and eigenfunctions for the associated operator.

The stiffness operator for constant mass, cross-sectional area, and area moment of inertia is given
by (see Equation 9.46)

LE
T omoaxt T T oxt
0(0)=0,(0)=0
0(0)=0,,()=0

The eigenvalue problem Lu = Au then becomes
B0, =)0
which has a solution of the form
O(x) = C, sin ux + C, cos wx + Cy sinh ux + C, cosh ux

where u* = A/B. Applying the four boundary conditions to this expression yields the four simulta-
neous equations

00)=C,+C,=0
0,.0)=-C,+C,=0
O(L)=C,sinpul + C,cosul + Cysinul + C,cos ul =0
0,,.(0)=—C;sinul — Cycosul + Cysinul + C,cosul =0
These four equations in the four unknown constants C; can be solved by examining the matrix
equation

0 1 0 1 C,

0 -1 0 1 G,
sin ut cosul  sinhuf coshul (0N
—sinul —cosul sinhuf coshul C,

0
o
0
0

Recall from Chapter 3 that, in order for a nontrivial vector ¢ =[C, C, C; C,]! to exist, the
coefficient matrix must be singular. Thus, the determinant of the coefficient matrix must be zero.
Setting the determinant equal to zero yields the characteristic equation

4sin(ul) sinh(ul) =0
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This, of course, can be true only if sin(uf) =0, leading to

Here, n =0 is excluded because it results in the trivial solution. In terms of the physical parameters
of the structure, the eigenvalues become (here n is an integer and m is the mass per unit length of
the beam)

_ n*m*El
T me

Solving for the four constants C; yields C, = C; = C, =0 and that is C, arbitrary. Hence, the
eigenfunctions are of the form
. (X
[A,, sin (—)]
£

The arbitrary constants A, can be fixed by normalizing the eigenfunctions

¢
/ A2 sin’ <%) dx=1
0

so that A2¢/2=1, or A, = +/2/L. Thus, the normalized eigenfunctions are the set
2 o0
{@n} = —sin (ﬂ)
Ve l ]
n=

Hence, the temporal coefficient in the series expansion of the solution (10.11) will be determined

from the initial conditions and the finite number of equations

n*m*El
me*

a,(t) + a,(1)=0, n=1,...,00

Equation (10.11) then yields the total solution.

10.4 MODAL ANALYSIS IN DAMPED SYSTEMS

As in the matrix case for lumped-parameter systems, the method of modal analysis (and
separation of variables) can still be used for certain types of viscous damping modeled
in a distributed structure. Systems that can be modeled by partial differential equations of
the form

w,, (X, 1)+ Lyw,(x, ) + Lyw(x, t) =0, x € (10.14)
(where L, and L, are operators, with similar properties to L and such that L, and L,

have the same eigenfunctions) can be solved by the method of modal analysis illustrated in
Equation (10.11) and example 10.3.1. Section 9.7 lists some examples.
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To see this solution method, let L, have eigenvalues A{" and L, have eigenvalues A(?.
Substitution of Equation (10.11) into Equation (10.14) then yields (assuming convergence)

oo

> [4,0,x) +1a,0,(x)+1Pa,0,(x)] =0 (10.15)

n=1

Multiplying by 0,(x), integrating over (2, and using the orthogonality conditions (10.10)
yields the decoupled set of n ordinary differential equations

a,()+AVa, () +APa, (1) =0, n=1,2,...,00 (10.16)

subject to the appropriate initial conditions.

The actual form of damping in distributed-parameter systems is not always clearly known.
In fact, the form of L, is an elusive topic of current research and several texts (see, for
instance, Nashif, Jones, and Henderson, 1985, or Sun and Lu, 1995). Often, the damping is
modeled as being proportional, i.e., L, = af 4+ BL,, where a and 3 are arbitrary scalars and
L, satisfies the same boundary conditions as L,. In this case, the eigenfunctions of L, are
the same as those of L,. Damping is often estimated using equivalent viscous proportional
damping of this form as an approximation.

Example 10.4.1

As an example of a proportionally damped system, consider the transverse free vibration of a mem-
brane in a surrounding medium, such as a fluid, providing resistance to the motion that is proportional
to the velocity. The equation of motion given by Equation (9.86) is Equation (10.14), with

L,=27
p
T
Ly=——V?
p

where 7y, T, p, and V? are as defined for Equation (9.86). The position x in this case is the vec-
tor [x y] in two-dimensional space. If )\52) is the first eigenvalue of L,, then the solutions to
Equation (10.16) are of the form

2 2
a”(t)zezt[AnSin\/ﬂt‘FBnCOS\/ﬂ[}
P P

where A, and B, are determined by the initial conditions (see Section 11.9).

Not all damped systems have this type of damping. Systems that have proportional
damping are called normal mode systems, since the eigenfunctions of the operator L, serve
to ‘decouple’ the system. Decouple, as used here, refers to the fact that Equations(10.16)
depends only on #n and not on any other index. This topic is considered in more detail in
Section 11.9.
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10.5 TRANSFORM METHODS

An alternative to using separation of variables and modal analysis is to use a transform
to solve for the vibrational response. As with the Laplace transform method used on the
temporal variable in state-space analysis for lumped-parameter systems, a Laplace transform
can also be used in solving Equations (10.1). In addition, a Fourier transform can be used
on the spatial variable to calculate the solution. These methods are briefly mentioned here.
The reader is referred to a text such as Churchill (1972) for a rigorous development.

The Laplace transform taken on the temporal variable of a partial differential equation
can be used to solve for the free or forced response of Equations (10.1) and (10.14). This
method is best explained by considering an example.

Consider the vibrations of a beam with constant force F;, applied to one end and fixed at
the other. Recall that the equation for longitudinal vibration is

w,, (x, 1) = a*w, (x, 1) (10.17)
with boundary conditions
w(0, 1) =0, EAw, (€, 1)=F,6(t) (10.18)

Here, a*> = EA/p, as defined in Section 9.3. Assuming that the initial conditions are zero,
the Laplace transform of Equation (10.17) yields

s W(x, s) — @*W,_ (x,5) =0 (10.19)

and the Laplace transform of Equation (10.18) yields

F,
W.(€,s)= E—XS

W(O. 5)=0 (10.20)

Here, W denotes the Laplace transform of w. The solution of Equation (10.19) is of the form
W(x, s) = A, sinh X + A, cosh =
a o

Applying the boundary condition at x =0, gives A, = 0. Differentiating with respect to x
and taking the Laplace transform yields the boundary condition at x = £. The constant A, is

then determined to be
A = aF, 1
"\ EA s?cosh(st/a)

The solution in terms of the transform variable s then becomes

aF,sinh(sx/a)

W 9) = Fa cosh(st/a)

(10.21)
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By taking the inverse Laplace transform of Equation (10.21) using residue theory, the
solution in the time domain is obtained. The inverse is given by Churchill (1972) to be

F, 80\* & (=1)" . 2n—1Dmx  (2n—1)mat
) =— — 10.22
w(x, t) Ex+(77) Z(Zn—l)z sin ~—— -~ cos 57 ( )

n=1

A text on transforms should be consulted for the details. Basically, the expansion comes
from the zeros in the complex plane of s% cosh(sf/a), i.e., the poles of W(x, s).

This same solution can also be obtained by taking the finite Fourier sine transform of
Equations (10.17) and (10.18) on the spatial variable x rather than the Laplace transform of
the temporal variable (see, for instance, Meirovitch, 1967). Usually, transforming the spatial
variable is more productive because the time dependence is a simple initial value problem.

When boundary conditions have even-order derivatives, a finite sine transformation
(Fourier transform) is appropriate. The sine transform is defined by

¢
W(n, f) = f w(x, ) sin "777’6 dx (10.23)
0
Note here that the transform in this case is over the spatial variable.

Again, the method is explained by example. To that end, consider the vibration of a string
clamped at each end and subject to nonzero initial velocity and displacement, i.e.,

Wy = izwn(x’ )
c
w(0, 1) =w(¢, t) =0, w(x, 0) = f(x), w,(x,0) = g(x) (10.24)

The finite sine transform of the second derivative is

W, (n, 1) = % (= 1) W(L, 1) + W(O, 1)| — (%)2 W(n, 1) (10.25)

which is calculated from integration by parts of Equation (10.23). Substitution of the bound-
ary conditions yields the transformed string equation

n\2
W, (n, 1) + (7) W(n, 1) =0 (10.26)
This equation is subject to the transform of the initial conditions, which are

W(n, 0) = / " A sin ™ iy (10.27)
0 b4
and

¢
W,(n,0) = /0 g(x)sin nlg dx

Thus

nwct nwct

1
W(n, t) = W(n, 0) cos + W,(n, 0)— sin (10.28)
nic
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Again, Equation (10.28) has to be inverted to obtain the solution w(x, t). The inverse finite
Fourier transform is given by

22 . (NTX
w(x.n =5 2 W(n, ) sin (7) (10.29)
so that
22 t W,(n,0)¢ | t .
w(x, 1) = 7 ; H W(n, 0) cos (nzc ) + ':;_C ) sin (nzc ) } sin nT?xi| (10.30)

Transform methods are attractive for problems defined over infinite domains and for prob-
lems with odd boundary conditions. The transform methods yield a quick ‘solution’ in terms
of the transformed variable. However, the inversion back into the physical variable can be
difficult and may require as much work as using separation of variables or modal analysis.
However, in some instances, the only requirement may be to examine the solution in its
transformed state, such as is done in Section 8.5.

10.6 GREEN’S FUNCTIONS

Yet another approach to solving the free vibration problem is to use the integral formulation
of the equations of motion. The basic idea here is that the free response is related to the
eigenvalue problem

Lw=A\w
Bw=0 (10.31)

where L is a differential operator and B represents the boundary conditions. The inverse of
this operator will also yield information about the free vibrational response of the structure.
If the inverse of L exists, Equation (10.31) can be written as

L’lwzlw (10.32)
A
where L~! is the inverse of the differential operator or an integral operator.

The problem of solving for the free vibration of a string fixed at both ends by working
essentially with the inverse operator is approached in this section. This is done by introducing
the concept of a Green’s function. To this end, consider again the problem of a string fixed
at both ends and deformed from its equilibrium position. This time, however, instead of
looking directly at the vibration problem, the problem of determining the static deflection of
the string owing to a transverse load concentrated at a point is first examined. This related
problem is called the auxiliary problem. In particular, if the string is subject to a point load
of unit value at x,, which is somewhere in the interval (0,1), the equation of the deflection
w(x) for a string of tension T is

d*w(x)

-T
dx?

=0(x—xp) (10.33)
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where 0(x — x,) is the Dirac delta function. The delta function is defined by

0, XFX
5(x — x) { ’ (10.34)
oo, X =.x0
and
1 0 if x, is not in (0,1)
/ 8(x — xg)dx = (10.35)
0 1 ifx, is in (0,1)

If f(x) is a continuous function, then it can be shown that

[ 70080 = xg)dx = fxo) (10.36)

for x, in (0,1). Note that the Dirac delta function is not really a function in the strict
mathematical sense (see, for instance, Stakgold, 1979).

Equation (10.33) can be viewed as expressing the fact that the force causing the deflection
is applied only at the point x,. Equation (10.33) plus boundary conditions is now viewed
as the auxiliary problem of finding a function g(x, x,), known as Green’s function for the
operator L = —Td?*/dx*, with boundary conditions g(0, x,) =0 and g(1, x,) =0. In more
physical terms, g(x, x,) represents the deflection of the string from its equilibrium position at
point x owing to a unit force applied at point x,. Green’s function thus defined is also referred
to as an influence function. The following example is intended to clarify the procedure for
calculating a Green’s function.

Example 10.6.1

Calculate Green’s function for the string of Figure 10.1. Green’s function is calculated by solving
the equation on each side of the point x, and then matching up the two solutions. Thus, since g’ =0
for all x not equal to x,, integrating yields

(x, xp) = Ax+ B, 0<x<x,
§5%)=1 cx + D, xg<x<l

where A, B, C, and D are constants of integration. Applying the boundary condition at x =0 yields

8(0,x)=0=28
wix)
T/I\ -
| X, 1

Figure 10.1 Statically deflected string fixed at both ends.
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and the boundary condition at 1 yields
g(1.x))=0=C+D
Hence, Green’s function becomes

( )= Ax, 0<x<x
£ Xo) = C(x—1), Xo<x<l1

Since the string does not break at x,, g(x, x,) must be continuous at x,,, and this allows determination
of one more constant. In particular, this continuity condition requires that

Axg=C(xy— 1)
Green’s function now becomes
Ax 0<x<x
-1
8(x, %) AL(X ), Xp<x<l1
xo—1

The remaining constant, A, can be evaluated by considering the magnitude of the applied force
required to produce the deflection. In this case, a unit force is applied, so that integration of
Equation (10.33) along a small interval containing x,, say, x, — & < x < x, + &, yields

xo+e d2 1 Xo+e
f E8 == O(x —xy)dx
X0—& dx? T X0—¢&
or
dg Xote _ 1
dx|w—e T

Denoting the derivative by a subscript and expanding yields

1
&(xo+ &, %) — g, (xg— &, x9) = -7

This last expression is called a jump discontinuity in the derivative. Upon evaluating the derivative,
the above expression becomes
Xg 1

—A=——
Xy —1 T

A

Solving this for the value of A yields

A:ﬂ
T

Green’s function, with all the constants of integration evaluated, is thus

(1= xp)x
8(x, xp) = a —Tx)xo
T

, 0<x<ux

, Xp<x<l1
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Green’s function actually defines the inverse operator (when it exists) of the differential
operator L and can be used to solve for the forced response of the string. Consider the
equations (for the string operator of the example)

Lu= f(x)
Bu=0 (10.37)

where f(x) is a piecewise continuous function, and L is a differential operator that has an
inverse. Let G denote the operator defined by

Gf(x) = / 2(x, xo) f(xo) dx,

The operator G defined in this way is called an integral operator. Note that the function

u(x) = [ g x0) fxo) dxy (1038)

satisfies Equation (10.37), including the boundary conditions, which follows from a straight-
forward calculation. Equation (10.38) can also be written as

x—g 1
uC= [ glrx) o)+ [ e x0)fxo) dx,
where the integration has been split over two separate intervals for the purpose of treating

the discontinuity in g,. Using the rules for differentiating an integral (Leibnitz’s rule) applied
to this expression yields

(= g xx) ) dxo + gl x = o) f(x — )
[ e fag) - s( x4 )fCx-+ )

x—¢& 1
= [ lrx) o) dxo+ [ g x) ) dxy
0 x+e

Taking the derivative of this expression for u, yields
w0 = [ g x0)fx0) dxg 8, (.1 =€) flx — o)

1
[ sl w) ) dxy = .05, x4 ) f(x + )
The discontinuity in the first derivative yields

& x—8)fx—8) —g.(x,x+ &) f(x+ &) = J%

Hence

/)

. (10.39)

x—g 1
Uy = / gxx('x’ xO)f('xO) de + [ gxx(x’ xO)f(XO) de -
0 x+e
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However, g,, =0 in the intervals specified in the two integrals. Thus, this last expression is
just the equation Lu = f. The function #(x) then becomes

u)= [ g S0 dy

which satisfies Equation (10.37) as well as the boundary condition.

Now note that Gf = u, so that G applied to Lu = f yields G(Lu) = Gf = u, and hence
GLu=u. Also, L applied to Gf =u yields LGf = Lu = f, so that LGf = f. Thus, the
operator G is clearly the inverse of the operator L.

In the same way, the Green’s function can also be used to express the eigenvalue problem
for the string. In fact,

| e 50 dxy = pb(x) (10.40)

yields the eigenfunctions 6(x) for the operator L as defined in Equation (10.2), where
@ =1/A and Equation (10.32) is defined by G.
To summarize, consider the slightly more general operator given by

Lw = ay(x)w,,(x) + a,(x)w,(x) + a;(x)w(x) =0 (10.41)
with boundary conditions given by
Biw|,_o=0 and B,w|,_, =0 (10.42)

Green’s function for the operator given by Equations (10.41) and (10.42) is defined as the
function g(x, x,) such that:

O<x<1,0<xy<1;

g(x, x,) is continuous for any fixed value of x, and satisfies the boundary conditions in
Equation (10.42);

g.(x, x,) is continuous except at x = x,;

as a function of x, Lg =0 everywhere except at x = x,;

the jump discontinuity g .(x, x,+ &) — g,(x, xo — &) = 1/a,(x) holds.

Green’s function defines the inverse of the operators (10.41) and (10.42). Furthermore,
the eigenvalue problem associated with the vibration problem can be recast as an integral
equation as given by Equation (10.40). The Green’s function approach can be extended to
other operators. Both of these concepts are capitalized upon in the following chapters.

CHAPTER NOTES

The majority of this chapter is common material found in a variety of texts, only some of
which are mentioned here. Section 10.2 introduces eigenfunctions and makes the connection
between eigenfunctions and separation of variables as methods of solving boundary value
problems arising in vibration analysis. The method of separation of variables is discussed in
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most texts on vibration as well as those on differential equations, such as the text by Boyce
and DiPrima (2000). Eigenfunctions are also discussed in texts on operator theory, such as
Naylor and Sell (1982). Few texts make an explicit connection between the two methods.
The procedure is placed on a firm mathematical base in Chapter 11.

Section 10.3 examines, in an informal way, the method of modal analysis, a procedure
made popular by the excellent texts by Meirovitch (1967, 2001). Here, however, the method
is more directly related to eigenfunction expansions. Section 10.4 introduces damping as
a simple velocity-proportional operator commonly used as a first attempt, as described in
Section 9.7. Damping models represent a discipline by themselves. Here, a model of mathemat-
ical convenience is used. A brief look at using transform methods is provided in Section 10.5
for the sake of completeness. Transform methods have been developed by Yang (1992).
Most transform methods are explained in detail in basic text, for instance by Churchill
(1972). The last section on Green’s functions follows closely the development in Stakgold
(1979, 2000). Green’s function methods provide a strong basis for the theory to follow in
the next chapter. Most texts on applied mathematics in engineering discuss Green’s
functions.
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PROBLEMS

10.1 Compute the eigenvalues and eigenfunctions for the operator

d2

L=——"
dx?

with boundary conditions u(0) =0, u,(1) + u(1) =0.
10.2 Normalize the eigenfunctions of problem 10.1.
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10.3

104

10.5
10.6

10.7

10.8

10.9

10.10

10.11

FORMAL METHODS OF SOLUTION

Show that u,,,(x,y) = A,,, sinnxsinmmry is an eigenfunction of the operator

92 s
ax? + ay?
with boundary conditions u(x, 0) = u(x, 1) =u(1, y) =u(0, y) =0. This is the mem-
brane operator for a unit square.
Normalize the eigenfunctions of a membrane (clamped) of problem 10.3 and show
that they are orthonormal.
Calculate the temporal coefficients, a,(t), for the problem of example 10.3.1.
Calculate the initial conditions required in order for a,(f) to have the form given in
example 10.4.1.
Rewrite Equation (10.16) for the case where the eigenfunctions of L, are not the
same as those of L,.
Solve for the free longitudinal vibrations of a clamped-free bar in the special case
where the damping is approximated by the operator L, =0.1/, FA=p =1, and the
initial conditions are w,(x,0) =0 and w(x,0) = 1072
Calculate Green’s function for the operator given by L = 10°9?/dx?, u(0) =0,
u,(£) =0. This corresponds to a clamped bar.
Calculate Green’s function for the operator L = */dx*, with boundary condi-
tions u(0) = u(1) =u, (1) =0. (Hint: The jump condition is g . (x,x+ &) — g,.,
(x,x—g)=1.)
Normalize the eigenfunctions of example 9.31 and discuss the orthogonality
conditions.
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Operators and the Free
Response

11.1 INTRODUCTION

Just as knowledge of linear algebra and matrix theory is helpful in the study of lumped-
parameter vibration problems, so a working knowledge of functional analysis and operator
theory is useful in the study of the vibrations of distributed-parameter systems. A complete
introduction to these topics requires a sound background in mathematics and is not possible
within the limited space here. However, this chapter introduces some of the topics of
relevance in vibration analysis. One of the main concerns of this section is to consider the
convergence of the series expansions of eigenfunctions used in the separation of variables
and modal analysis methods introduced in the previous chapters. The intent of this chapter
is similar to that of Chapter 3, which introduced linear algebra as needed for discussing the
free response of lumped-mass systems (also called finite-dimensional systems). The goal of
this chapter is to provide a mathematical analysis of the methods used in Chapter 10.

In addition, some results are presented that examine the qualitative nature of the solution
of linear vibration problems. In many instances, the describing differential equations cannot
be solved in closed form. In these situations, knowing the nature of the solution rather than
its details may be satisfactory. For example, knowing that the first natural frequency of a
structure is bounded away from a driving frequency, rather than knowing the exact numerical
value of the natural frequency, may be sufficient. Also, knowing whether a given structure
will oscillate or not without computing the solution is useful. All this qualitative behavior
is discussed in this chapter. As indicated in Chapter 6, qualitative results are very useful in
design situations.

11.2 HILBERT SPACES

The definition of integration familiar to most engineers from introductory calculus is Riemann
integration. Riemann integration can be defined on the interval [a, b] as

[ o dx=tim 3" f(x) Ax, (L

Ax—0 j=1

Vibration with Control D. J. Inman
© 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01051-7
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where Ax; is a small interval of the segment b — a, for instance, (b — a)/n. In most
engineering applications, this type of integration is adequate. However, quite often a sequence
of functions {f,(x)}, defined for values of x in the interval [a, b], converges to a function

f(x), ie.,
{f,(0)} = f(x) (11.2)

as n approaches infinity. Then, being able to conclude that

3@g<£hﬁm@dx>—>éhﬂxyh: (11.3)

is important. For example, when using modal analysis, this property is required. Unfortu-
nately, Equation (11.3) is not always true for Riemann integration. The Lebesgue integral
was developed to force Equation (11.3) to be true.

Lebesgue integration was developed using the concept of measurable sets, which is beyond
the scope of this text. Thus, rather than defining Lebesgue integration directly, the properties
are listed below:

1. If f(x) is Riemann integrable, then it is Lebesgue integrable, and the two integrations
yield the same value (the reverse is not true).

2. If ais a constant and f(x) and g(x) are Lebesgue integrable, then «f(x) and g(x) + f(x)
are Lebesgue integrable.

3. If f*(x) is Lebesgue integrable, then [f*(x)dx =0 if and only if f(x) =0 almost
everywhere (i.e., everywhere except at a few points).

4. If f(x) = g(x) almost everywhere, then [f(x)dx= [ g*(x)dx.

5. If f,(x) is a sequence of functions that are Lebesgue integrable over the interval [a, b],
if the sequence {f,(x)} converges to f(x), and if for sufficiently large n there exists a
function F(x) that is Lebesgue integrable and |f,(x)| < F(x), then

(a) f(x) is Lebesgue integrable;
(b) mﬂﬁﬁ@m4=ﬁﬂ@m

Any function f(x), x € £2 , such thatf?(x)is Lebesgue integrable, is called square integrable

in the Lebesgue sense, denoted by f € £X(£2), and, as will be illustrated, defines an important
class of functions. In fact, the set of functions that are £X(£2) make up a linear space (see
Appendix B or Naylor and Sell, 1982). In this notation, the subscript 2 denotes square
integrable, the superscript R denotes the functions are all real, and (2 denotes the domain of
integration.

Another important concept is that of linearly independent sets of functions. An arbitrary
set of functions is said to be linearly independent if every finite subset of elements is linearly
independent. Note that this definition is consistent with the notion of linear independence
introduced in Chapter 3 and, in fact, is based on that definition.

The concept of a linear space, or vector space, is sufficient for the study of matrices and
vectors. However, more mathematical structure is required to discuss operators. In particular,
a linear space is defined to be an inner product space if, with every pair of elements u and
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v in the space, there exists a unique complex number (u, v), called the inner product of u
and v, such that:

(u, v) = (v, u)*, where the asterisk indicates the complex conjugate;
(tt, + B, v) = ;. v) + iy, v);

(u, u) > 0;

(u, u) =0 if and only if u=0.

The inner product most often used in vibrations is that defined by the Lebesgue integral
given in the form

(u,v):/zu(x)v*(x)dﬂ (11.4)

Next, a few more definitions and results are required in order to mimic the structure used
in linear algebra to analyze vibration problems. The norm of an element in a linear space is
denoted by ||u|| and is defined, in the case of interest here, by

() = v (u(x), u(x)) (1L.5)

Note that ||u(x)|| =0 if and only if u(x) =0 almost everywhere. In addition, the norm
satisfies the following conditions:

o |full>0;

e |lau|| <|a| ||u||, where « is a scalar;

o |lu+v|| <|lu]| +||v|| with equality if and only if v = au > 0 (referred to as the triangle
inequality).

This last set of conditions introduces even more structure on a linear space. A linear space
with such a norm is called a normed linear space. The set £5(£2) can be shown to form an
inner product space with the preceding definition of an inner product and a normed linear
space with the preceding definition of a norm.

Note that, in the case of vectors, the scalar product x'x satisfies the preceding definition
of inner product. An important property of sets of elements is that of orthogonality. Just
as in the case of vectors, two elements, # and v, of an inner product space are said to be
orthogonal if (u,v) =0. Orthogonality is used extensively in Section 10.3 with respect to
modal analysis.

Based on the definitions of convergence used in calculus for scalars, a definition of
convergence for elements of a normed linear space can be stated. Let {u,(x)} be a set of
elements in a normed linear space, denoted by V. The sequence {u,(x)} converges to the
element u(x) in V if, for all & > 0, there exists a number N(&) such that

[, (x) —u(x)[| < &
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whenever n > N(¢). This form of convergence is denoted by any of the following:

u,—>u as n — oo;
lim u, (x) = u(x)
—

o Tim [u,(x) — u(x)[ =0
In particular, the notation
u(x) =73 u,(x)
n=1

implies that the sequence of partial sums converges to u(x), i.e.,
k
fim 3, () = ()
=

Convergence defined this way is referred to as strong convergence, or norm convergence.
As pointed out briefly in Section 9.3, this convergence is required when writing the modal
expansion of Equation (10.11).

In the case of vectors, writing a series of weighted sums of eigenvectors is sufficient.
The resulting sum is always finite, since the sum in the modal expansion contains a finite
number of terms. However, since the sums in general normed linear spaces may have an
infinite number of terms, convergence to some finite-valued function is not obvious.

As an aid in considering the convergence of a sequence of functions, a Cauchy sequence is
used. A sequence {u, (x)} is defined to be a Cauchy sequence if, for all numbers & > 0, there
exists a number N(g) such that ||u,(x) — u,,(x)|| < & for every index m and n larger than
N(e). An immediate consequence of this definition, and the triangle inequality, is that every
convergent sequence is a Cauchy sequence. However, in general, not every Cauchy sequence
converges. Requiring Cauchy sequences to converge leads to the concept of completeness. A
normed linear space is defined as complete if every Cauchy sequence in that space converges
in that space.

Note that, in a complete normed linear space, convergent sequences and Cauchy sequences
are identical. The concept of completeness means that the limits of all of the sequences in
the space that converge are also in that space. Comparing the set of real numbers with the set
of rational numbers is analogous to the concept of completeness. The set of rational numbers
is not complete, since one can construct a sequence of rational numbers that converges to
an irrational number (such as the square root of two), which is not rational and hence is not
in the set.

A complete normed linear space is called a Banach space. The set of all vectors of dimen-
sion n with real elements and with the norm defined by ||x||> =x"x is a familiar example of
a Banach space. The major difference in working with lumped-parameter vibration problems
versus working with distributed-parameter vibration problems is based on the fact that every
finite-dimensional normed linear space is complete and many common infinite-dimensional
spaces are not. This possibility requires some concern over issues of convergence when
using mode summation methods.
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Example 11.2.1

Show by example that the space defined by the set of all continuous functions defined on the interval
[—1, 1] with norm

1
= [ 1uf*dx

is not complete and also that a Cauchy sequence in the space does not converge to something in the
space. Consider the sequence of continuous functions u, (x), where

0, —1<x<0
1, (x) = nx, O<x<-—
1, —<x<l1

n

A quick computation verifies that the sequence is a Cauchy sequence, but the sequence {u,}
converges to the function u(x) given by

_]o, —1<x<0
wO=11 g y<1

whichis discontinuous and hence is not an element in the space defined on the set of continuous functions.

In this last example, note that both u,(x) and u(x) are square integrable in the Lebesgue
sense. In other words, if, instead of requiring the linear space in the example to be the
set of continuous functions, the set of square integrable functions in the Lebesgue sense is
used, the space is a complete normed linear space. Since using modal analysis is desirable,
mimicking the procedure used in finite dimensions, the natural choice of linear spaces to
work in is £¥(£2) or, when appropriate, £S(£2)

Again, motivated by the method of modal analysis, it is desirable to equip the linear space
with an inner product. Gathering all this mathematical structure together yields the class of
functions most useful in vibration analysis. This space is called a Hilbert space, denoted
by H. A Hilbert space is defined as a complete inner product space. Again, the set of real
vectors with inner product x”x is an example of a Hilbert space. The Hilbert spaces of
interest here are £5(£2) and £$(02).

A further requirement placed on Hilbert spaces used in vibration applications is the
assumption that the space is separable. A separable Hilbert space is a Hilbert space that
contains a countable set of elements {f,(x)} such that, for any element f in the space and
any positive real number &, there exists an index N and a set of constants {e;} such that

) =>a,f,(x)| <e (11.6)

n=1

Here, the set {f,} is called a spanning set for the Hilbert space. These concepts and their
significance are discussed in the next section. However, note again that finite-dimensional
vector spaces are separable and that this property is useful in writing modal expansions. Both
spaces L£X(£) and L5 (£2) are separable Hilbert spaces. The symbol J is used to denote a
general separable Hilbert space.
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11.3 EXPANSION THEOREMS

In this section, the expansion theorem, or modal expansion, used informally in the last
chapter is placed in a more rigorous setting by generalizing the Fourier series. Let {¢,} be
an infinite set of orthonormal functions in #, i.e., (¢, ¢;) = 6,;. For any element u € H,
the scalar (u, ¢,) is called the Fourier coefficient of u relative to the set {¢, }. Furthermore,
the sum

X 6)0()

is called the Fourier series of u(x) relative to the set {¢,}.

The following results (stated without proof) are useful in extending the Fourier theorem
and in understanding how to use modal expansions in applications. Let {¢,} again be an
orthonormal set of elements in J, let u also be an element in 7, and let {A,} denote a set
of complex scalars. Then, the following relationships hold

U= Ndy| = |u—_ (u, b)), (11.7)
k=1 k=1
i |(u, d )| < lu(x)|* (called Bessel’s inequality) (11.8)
and
lim (u, ) =0 (11.9)

This last result is referred to as the Riemann—Lebesgue lemma.
Furthermore, a famous result, the Riesz—Fischer theorem, relates the convergence of a
modal expansion to the convergence of the coefficients in that expansion:

1. If Z |A,|* < oo, then Z A b (x) converges to an element, u, in K and A, = (u, ¢,),
k=1
ie., the A, are the Fourler coefficients of the functlon u(x).

2. If Z |A,|” diverges, then so does the expansion Z Ay

A set of orthonormal functions satisfying (1) is called a complete set of functions. Recall
that a complete space is a space in which Cauchy sequences converge. A complete set, on
the other hand, is a set of elements in a space such that every element in the space can be
represented as a series expansion of elements of the set. In general, an orthonormal set of
functions {¢,} in H is complete if any of the following relationships hold:

u=>y (u, )P, for each in (11.10)
k=1
ull> =" |(u, ok for each continuous u in H (11.11)

If (u, ¢,) =0 for each index n, then u=0 (11.12)
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The second condition [Equation (11.11)] is referred to as Parseval’s equality.
The preceding theorems generalize the concept of a Fourier series expansion of a function
and provide a framework for modal expansions.

11.4 LINEAR OPERATORS

The idea of a linear operator was introduced in Chapter 10 as related to vibration problems.
Here, the definition of a linear operator is formalized, and some properties of a linear operator
are developed. The eigenfunctions and eigenvalues of operators are also discussed in detail,
and the concept of adjoint is introduced.

A subspace of a linear space is a subset of elements of that space that again has the
structure of a linear space. A linear operator is briefly defined in Section 10.2 as a mapping
from one set of functions to another. Then the subspace D(L) of the space JH denotes the
domain of the operator L and is the space of elements in J that the operator L is defined
to act upon. A rule L is defined to be an operator if, for each u € D(L), there is a uniquely
determined element Lu that lies in . An operator L is linear if, for every complex scalar
« and B as well as for u and v in D(L), the following is true:

L(au+ Bv)=aLu+ BLv (11.13)

The operator L defines two other spaces of interest. The first is the range space, or range,
of the operator L, denoted by R(L); it is defined as the set of all functions {Lu}, where
u € D(L). The domain and range of an operator are exactly analogous to the domain and
range of a function. Another very important space associated with an operator is the null
space. The null space of an operator L is the set of all functions u € D(L) such Lu =0. This
space is denoted by N(L) and corresponds to rigid body modes in a structure. The spaces
R(L) and N(L) are in fact subspaces of F .

Obvious examples of these various spaces associated with an operator are the transfor-
mation matrices of Chapter 3. In fact, linear operator theory is an attempt to generalize the
theory of matrices and linear algebra.

An important difference between matrices and operators can be pointed out by defining
equality of two operators. Two operators L, and L, are equal if and only if D(L,) = D(L,)
and L,u = L,u for all u(x) € D(L,).

Example 11.4.1

Consider the linear operator associated with the string equation with fixed ends. Define this operator’s
domain and null space. The operator is

The domain, D(L), consists of all functions in £X(0, £) having two derivatives and satisfying
the boundary conditions #(0) = u(€) =0. The null space of L is the set of all functions u in
D(L) such that u” = 0. Integrating u” =0 requires that u = ax + b, where a and b are constants
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of integration. However, elements in D(L) must also satisfy a(0) +b =0 and al + b =0,
so that @ = b =0. Thus, the null space of this operator consists of only the zero function.

An operator L is called one-to-one if Lu, = Lu, holds if and only if u;, = u,. A linear
operator L has an inverse, denoted by L~! and defined by L~'u =v, if and only if u = Lv.
Operator L is said to be nonsingular in this case and singular if L=' does not exist. Note
that for nonsingular operators

D(L™")=R(L)
R(L™")=D(L)
LL'u=u for all u in D(L™")=R(L)
and
L'"Lu=u  forall uin D(L)=R(L™")

Also, L™! is one-to-one. The inverse operator, as shown in Section 10.6, of a differential
operator often turns out to be an integral operator defined by a Green’s function.

The concept of null space and inverse are also closely related to the eigenvalues of an
operator. In particular, suppose zero is an eigenvalue of L,. Then L,u =0 for u #0 (since
eigenfunctions are never zero). Thus, there exists a nonzero function u in the null space
of the operator L. Actually, a stronger statement holds true. If L is a one-to-one operator,
L has an inverse, and N(L) contains only zero if and only if zero is not an eigenvalue of the
operator L.

An operator is bounded if there exists a finite constant ¢ > 0 such that

[Lull < cul

for each function u(x) in D(L). A related operator property is continuity. An operator L
is continuous at u € D(L) if, whenever {u,} is a sequence of functions in D(L) with limit
u, Lu, — Lu. This definition of continuity is often abbreviated as u, — u = Lu, — Lu.
For linear operators, this definition is equivalent to requiring L to be continuous at every
element in D(L). In addition, a linear operator is continuous if and only if it is a bounded
operator.

Example 11.4.2
Differential operators are not bounded. Consider L =d/dx with D(L) consisting of all func-

tions in £X(0,1) such that Lu is in £X(0, 1). This operator is not bounded since the element
u(x) =sin(nmx) € £5(0, 1). Then ||u|| = constant = a, independent of n, and

12
[|Lul|=n (/cos2 nwxdx) =nb

where b is a constant. Hence, there is a function u € D(L) such that ||[Lu|| > ||u||, and the
operator cannot satisfy the definition of a bounded operator because n may be arbitrarily large.
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Example 11.4.3

Integral operators are bounded. Let u € £X(0, 1) and define the operator L by

Lu(x) :/> u(s)ds = f(x)
0
Next, consider f(x) as defined earlier and square its modulus to obtain
5 x 2
P =| [ uts)as]

However, the Cauchy—Schwarz inequality yields

‘/Ox u(s)ds

Hence, ||Lu|| <||u||, and this operator is bounded.

2 1 1
</ |l|2ds/ |u(s) P ds = u|
0 0

The operators used to describe the linear vibrations of common distributed-parameter struc-
tures are unbounded. However, the differential operators for strings, beams, membranes,
and so on, all have inverses defined by Green’s functions. Green’s functions define integral
operators, which are bounded. This connection of vibration equations to a bounded operator
is significant in verifying convergence and eigenfunction expansions.

Another important operator is called the adjoint operator, which is defined in the following
paragraphs and is basically the generalization of the transpose of a real matrix. First consider
a linear operator 7, which maps elements in J into a set of complex numbers. Such an
operator is called a linear functional. In particular, consider the linear functional defined by
an inner product. Let the linear functional 7, be defined as

T,u=(u,v) :/ uv* d() (11.14)
0

where u € #(, and v is a fixed element in J. The action of T, defines a bounded operator.

The following result, called the Riesz representation theorem, allows the adjoint operator
for a bounded operator to be defined. Let T be a bounded linear functional defined on 7.
Then there exists a unique element, f, in J such that

Tu=(u, f) (11.15)

The significance of the Riesz representation theorem is as follows. Suppose that the operator
L is bounded, and u and v are in #. Then

Tu=(Lu,v) (11.16)

defines a bounded linear functional. However, via the Riesz representation theorem, there
exists a unique element f in J such that

Tu=(u, f) (11.17)
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Hence, Equation (11.16) yields

(Lu, v)=(u, f) (11.18)

where f € J{ is unique. The unique element f is denoted as f = L*v, where L* is defined
as the adjoint of the operator L. Then, Equation (11.18) becomes

(Lu, v) = (u, L*) (11.19)

The adjoint defined this way is linear and unique. The adjoint operator L* is also bounded
if L is bounded.

Unfortunately, the Riesz representation theorem and the preceding discussion of adjoints
only hold for bounded operators. The equations of interest in vibrations, however, yield
unbounded operators. Since the inverses of these unbounded operators are in fact bounded,
the idea of an adjoint operator for unbounded operators is still used. However, to denote that
a formal proof of existence of the adjoint operator for unbounded operators does not exist,
the adjoint of an unbounded operator is often referred to as a formal adjoint.

Let L be an unbounded differential operator with domain D(L). The operator L* defined
on a domain D(L*) is the formal adjoint of L if

(Lu,v)=(u,L*v), ueD(L), veD(L") (11.20)

Note that D(L) is characterized by certain boundary conditions. The domain D(L*) will
also be characterized by possibly different boundary conditions called adjoint boundary
conditions.

An operator (possibly unbounded) is defined to be formally self-adjoint if

D(L)=D(L¥) and Lu=L"u for ue D(L) (11.21)

The prefix formal is not always used, however. It is important to note that, if L is formally
self-adjoint, then, for all u, ve D(L),

(Lu, v) = (u, Lv) (11.22)

which follows from Equation (11.21). This last relationship is used to define a related class
of operators. An operator L is symmetric if Equation (11.22) holds for all pairs u and v
in D(L).

Note that the difference between the definitions of symmetric and formally self-adjoint
is the domain requirement of Equation (11.21). That is, if the form of the operator and
its adjoint are the same, then the operator is symmetric. If, in addition, both the operator
and the adjoint operator have the same boundary conditions, then the operator is self-
adjoint. If L is a bounded operator, then D(L) = H, and formally self-adjoint and symmetric
mean the same. If L is unbounded, however, an operator may be symmetric but not self-
adjoint [i.e., D(L) # D(L*)]. A formally self-adjoint operator, however, is a symmetric
operator.
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Example 11.4.4
Consider the operator for a fixed—fixed string and determine its adjoint. Here, L is of the form

52
L=—a—
o

and its domain is defined as
D(L) = {u|u(0) =u(€) =0, u,u’, u" € £L5(0, £)}

The right-hand side of this expression denotes the set of all functions u(x) such that the boundary
conditions are satisfied (i.e., #(0) = u(¢) =0) and the functions u, u’, and u” belong in the set
LR (0, £). Calculating the linear product (Lu, v) for u € D(L) and v D(L*) yields

¢
(Lu,v)= —a/ u"vdx
0
Integrating by parts twice yields
¢
(Lu,v) =[—au' (£)v(€) + au' (0)v(0) + au(£)v'(£) — au(0)v'(0)] — a[ uwv” dx
0

Since u € D(L), the above reduces to

(Lu, v) =[—au' (€)v(€) + au' (0)v(0)] + (u, Lv) (11.23)

Now, if both u and v are in D(L), then v(£) =v(0) =0 and Equation (11.23) shows that L is a
symmetric operator. To see that L is in fact formally self-adjoint, however, consider Equation (11.23)
with v e D(L*). Since v € D(L*), the integration by parts requires v, v/, and v to be in £X(0, £). In
order for (Lu, v) = (u, Lv) to be satisfied, the term in brackets in Equation (11.23) must be zero, i.e.,

—au' ()v(L) + au' (0)v(0)=0

However, since u'(£) and u'(0) are arbitrary [i.e., there is no restriction on these values in D(L)],
v(¢) and v(0) must both be zero. Thus

D(L*) = {v|v(0) =v(£) =0, v, v/, v" € £L5(0, £)} = D(L)

and this operator is in fact formally self-adjoint. The boundary conditions v(0) = v(£) =0 are the
adjoint boundary conditions.

In order for a differential operator to be symmetric, it must be of even order (problem
11.20). Most of the physical structures examined so far are self-adjoint with respect to
most boundary conditions. The following example illustrates a symmetric, nonself-adjoint
operator.
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Example 11.4.5
Consider the operator L = d%>/dx> on the domain
D(L) = {u|u(0) =u'(0) =0, u, u’, u" € £LX(0, £)}
Equation (11.23) still holds with @ = —1. However, the term in brackets is now
[ (O)v(€) — u(O)V' ()] =0
Since u'(£) and u(¢) are arbitrary, this last expression requires that v(¢) = v'(¢) = 0. Hence,

D(L*) = {v|v, v, v € L5(0, £) and v(£) =/ (€) = 0} # D(L) and the operator is not self-adjoint.
However, this operator is symmetric.

Symmetric operators (and thus self-adjoint operators) have special properties, as do sym-
metric matrices, which are useful in the study of vibrations. If L is symmetric, the following
are true:

1. (Lu,u) is real.
2. If L has eigenvalues, they are all real.
3. Eigenfunctions corresponding to distinct eigenvalues are orthogonal.

Furthermore, if L is self-adjoint, it is called positive definite if (Lu, u) > 0 for all nonzero
u € D(L) and positive semidefinite if (Lu, u) >0 for all nonzero u € D(L).

Example 11.4.6

Consider the operator of example 11.4.4 and show that it is positive definite. Start by calculating
(Lu, u) for an arbitrary element u € D(L). Integration by parts yields

¢ ¢
(Lu,u)=—(u', u) +f (u')*dx
0o

4
:/ () dx>0
0

where the boundary conditions eliminate the constant terms. This calculation shows that the operator
L is positive semidefinite. To see that the operator is, in fact, strictly positive definite, note that,
if u'=0, then u = ¢, a constant. However, u(0) = u(£) =0 must be satisfied, so that u must be
zero, contradicting the semidefinite condition. Thus, (Lu, u) > 0 and L is in fact positive definite.

In the case of matrices, a symmetric matrix is positive definite if and only if its eigenvalues
are all positive real numbers. For an operator, a weaker version of this statement holds.
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A positive definite operator has positive eigenvalues (assuming it has eigenvalues). With
further assumptions, which are clarified in the next section, a stronger statement can be made
that is more in line with the matrix result.

11.56 COMPACT OPERATORS

In this section, the last major mathematical requirement for eigenfunction expansions is
considered. Compact operators are defined and some of their principal properties exam-
ined. Self-adjoint compact operators have essentially the same eigenstructure as symmetric
matrices and hence are ideal for modal analysis.

The notion of a compact operator is based on restricting a bounded operator. Let {u,} be a
uniformly bounded, infinite sequence in J. A uniformly bounded sequence is one for which
|lu, || < M for all values of n (i.e., M does not depend on n). Let L be a bounded linear
operator defined on J. The operator L is defined to be compact if, from the sequence {Lu,},
one can extract a subsequence, denoted by {(Lu,),}, that is a Cauchy sequence. Another
way to describe a compact operator is to note that a compact operator maps bounded sets
into compact sets. A compact set is a set such that each sequence of elements in the set
contains a convergent subsequence. In this way, the notion of a compact operator is related
to a compact set.

The idea of a compact operator is stronger than that of a bounded operator. In fact, if
an operator is compact, it is also bounded. However, bounded operators are not necessarily
compact. Since bounded operators are continuous operators and compactness requires more
of the operator, compact operators are also called completely continuous operators.

The identity operator is an example of a bounded operator, i.e., ||Iu| < a| ||, which is not
necessarily compact. Every bounded operator defined on a finite-dimensional Hilbert space
is compact, however. Bounded operators are compact because every set containing a finite
number of elements is compact.

Consider next the integral operator defined by Green’s function. Such operators are
compact. In fact, if g(x, y) is any continuous function where x and y are both in the interval
(0, £), then the integral operator defined by

Lu= [ g uty) dy (11.24)

is a compact operator on £5(0, £).

Self-adjoint compact operators have the desired expansion property — namely, if L is
compact and self-adjoint on J, then L can be shown to have nonzero eigenvalues {u, } and
orthonormal eigenfunctions {©,}. Next, let u(x) be any element in J; u(x) can then be
represented as the generalized Fourier series

u(x) = (u,0,)0, + uy(x) (11.25)
n=1
where u,(x) lies in the null space of L. Furthermore, the function Lu can also be represented as

Lu(x)= i w,(u,0,)0, (11.26)

n=1
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Note that, if L is nonsingular, u,(x) =0. Also note that, from comparing Equation (11.10)
with Equation (11.25), the eigenfunctions of a compact self-adjoint operator are complete in
H . These two powerful results form the backbone of modal analysis of distributed-parameter
systems.

Expression (11.26) also allows a more concrete statement about the relationship between
the eigenvalues of an operator and the definiteness of an operator. In fact, a compact self-
adjoint operator L is positive definite if and only if each of its eigenvalues are positive real
numbers.

11.6 THEORETICAL MODAL ANALYSIS

In this section, the idea of a compact operator, along with the associated expansion, is
applied to a generic model of a differential equation describing the linear vibration of a
distributed-parameter system. This theory results in the modal analysis of such structures
and provides a firm mathematical foundation for the material presented in Sections 10.3
and 10.4.

Consider again Equations (10.1), repeated here for convenience:

w, (x, 1) + Lyw(x, 1) =0, x€, t>0
Bw=0, x € 042, t>0 (11.27)

w(x, 0) = wy(x), w,(x, 0) = wy(x) t=0
With the additional assumptions that the (nonsingular) operator L, is self-adjoint and has
a compact inverse, the following shows that the sum of Equation (10.3), i.e., the modal

expansion of the solution, converges.

Since L;"' is compact, the eigenfunctions of L;' are complete. As noted before, these
eigenfunctions are also those of L,, so that the eigenfunctions of L, are complete. As a

result, the solution w(x, ), considered as a function of x defined on the Hilbert space J for
a fixed value of ¢, can be written as

w(x, 1))=Y a,()0,(x) (11.28)
n=1
where it is anticipated that the Fourier coefficient a, will depend on the fixed parameter
t,t> 0. From Equation (11.10) the coefficient a,(7) is
a,(f) = / w(x, 0,d0 = (w, 0,). (11.29)
0
Multiplying Equations (11.27) by ©,(x) and integrating over {2 yields
/ w, 0, (x) d()—i—/ Lyw0,(x) dQ2=0 (11.30)
0 0

Equation (11.30) can be rewritten as

2

%[(w, 0,)]+ (L,w,0,)=0 (11.31)
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Using the self-adjoint property of L, and the fact that ©, is an eigenfunction of L, with
corresponding eigenvalue A, yields

82
.01+ 1,(,6,)=0
or, from Equation (11.29),

a,(t)+ A,a,(t) =0, t>0 (11.32)

This expression, along with the appropriate initial conditions, can be used to calculate a,, ().
In particular, if L, is positive definite, A, > O for all n, then

a,(0)
w,

a,(t)= sinw,t+ a,(0)cos w,t (11.33)

n

where
a,(0)= [ w(x,0)0,(x) d2
0
a,(0) = fﬂ w,(x,0)0,(x) d2

v, =V,

These formulae are, of course, consistent with those developed formally in Section 10.3.
Here, however, the convergence of Equation (11.28) is guaranteed by the compactness
theorem of Section 11.5.

As indicated in Section 10.4, this procedure can be repeated for damped systems if the
operators L, and L, commute on a common domain. This result was first pointed out
formally by Caughey and O’Kelly (1965), but the development did not concern itself with
convergence. The approach taken by Caughey and O’Kelley, as well as in Section 10.4, is to
substitute the series of Equation (11.28) into Equation (10.14). Unfortunately, this substitution
raises the issue of convergence of the derivative of the series. The convergence problem is
circumvented by taking the approach described in Equations (11.30) through (11.32).

Repeating this procedure for the damped system, as described by Equation (10.14), requires
that L, and L, have the same eigenfunctions and that L, is self-adjoint with compact inverse.
Multiplying Equation (10.14) by ©,(x) and integrating yields

2

.01+ 5 [(Lw. )] + (L, 6,) =0 (1134

Using the property that L, and L, are self-adjoint, and denoting the eigenvalues of L, by
A and those of L, by A?, Equation (11.34) becomes

a,(t) +AVa, (1) + A\ Pa, (1) =0 (11.35)
Equations (11.32) and (11.35) constitute a theoretical modal analysis of a distributed-mass

system. Equation (11.34) is solved using the methods of Section 1.3 from initial conditions
determined by using mode orthogonality.



306 OPERATORS AND THE FREE RESPONSE

11.7 EIGENVALUE ESTIMATES

As indicated previously, knowledge of the eigenvalues (natural frequencies) of a system
provides knowledge of the dynamic response of a structure. Unfortunately, the eigenvalue
problem for the operators associated with many structures cannot be solved. Having no
solution requires the establishment of estimates and bounds on the eigenvalues of operators.
Note that, while this section is an extension of Section 3.7 on eigenvalue estimates for
matrices, the operator problem is more critical because in the matrix case estimates are
primarily used as an analytical tool, whereas in the operator case the estimates are used
where solutions do not even exist in closed form.

Consider first the conservative vibration problems of Equation (10.1) for the case where
the operator L is self-adjoint and positive definite with compact inverse. As noted in
Section 11.6, these assumptions guarantee the existence of a countable infinite set of positive
real eigenvalues {A;}, which can be ordered as

D<A <A< <A, < (11.36)
with corresponding orthonormal eigenfunctions, {0, (x)}, complete in £5(2).

Next, further assume that the operator L is coercive, i.e., that there exists a constant ¢
such that

cllull® < (Lu, u) (11.37)
for all u € D(L). Thus
Lu,
(”” |z‘) - (11.38)
u

for all u € D(L). Thus, the quantity (Lu, u)/||u||* is bounded below, and therefore there is
a greatest lower bound, denoted by glb, of this ratio. Define the functional R(u) by

L ’
R(u) = (Lu ;‘) (11.39)
[l
The functional R(u) is called the Rayleigh quotient of the operator L.
Since the eigenfunctions of L are complete, Equation (11.11) yields
el =3 I(u, ©,)I
n=1
and
(Lu,u) =Y A,|(u, ©,)] (11.40)
n=1
Hence, the Rayleigh quotient can be written as
A (u, ©,)
R(uy= =@ O ) (11.41)

2w, 8,)?
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since Equation (11.7) implies that

ZA71|(u7@n)|2>AIZ|(u7 @n)|2 (1142)
Here, the summation limits have been suppressed. Also, note that R(®,) = A,, so that
b [R
A =min(\,) = S (RG] (11.43)
ueD(L)

As in the matrix case, the Rayleigh quotient yields a method of finding an upper bound to
the eigenvalues of a system.

Example 11.7.1

Consider the operator L = —3?/9x? defined on the domain D(L) = {u|u(0) = u(1) =0, u, u', u" €
LR(0, 1)}. Estimate the first natural frequency by using the Rayleigh quotient.

Note that the function u(x) = x(1 — x) is in D(L). Calculation of the Rayleigh quotient then
yields

_ " 13
W) _ 13 _

R == =130~

A calculation of the exact value of A, for this operator yields
A =(11) <10

so that the Rayleigh quotient in this case provides an upper bound to the lowest eigenvalue.

Bounds are also available for the other eigenvalues of an operator. In fact, with the previously
mentioned assumptions on the operator L, the domain of L can be split into two subspaces
M, and M}" (read ‘M, perp’) defined by the eigenfunctions of L. Let M, ={6,, 0,, . .., 6,}
be the set of the first k eigenfunctions of L, and M;* be the set of remaining eigenfunctions,
ie, M ={0,,,,0,,,,...}. From these considerations (see, for instance, Stakgold, 1967,
2000a) the following holds:

Ay = min [R(u)]:rrelaMx [R(u)] (11.44)

ueM_,

This formulation of the eigenvalues of an operator as a minimum or a maximum over
sets of eigenfunctions can be further extended to extremals over arbitrary subspaces. Equa-
tion (11.44) is called the Courant minimax principle. Again, with L satisfying the assumptions
of this section, let E, be any k-dimensional subspace of D(L). Then

. max(R(u max (R (u))
Aszgé?L)[%Ek( ( ))]=Efgg§§)[ueftl (11.45)
U0 k #0

where the value of u(x) satisfying Equation (11.45) becomes @,. The minimum over
E, € D(L) refers to the minimum over all the subspaces E, of dimension k contained in
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D(L). The maximum value of R(u), u € E}, refers to the maximum value of R(u) for each
element u in the set E,. The difference between Equations (11.44) and (11.45) is that
Equation (11.44) is restricted to subspaces generated by the eigenfunctions of L, whereas in
Equation (11.45) the subspaces are any subspace of D(L).

11.8 ENCLOSURE THEOREMS

The Rayleigh quotient and formulations of the eigenvalue problem of the previous section
provide a means of estimating an upper bound of the eigenvalues of an operator by examining
sets of arbitrary functions in the domain of the operator. In this section, lower bounds
and enclosure bounds are examined. Furthermore, bounds in terms of related operators are
examined. In this way, eigenvalues of operators that are difficult or impossible to calculate
are estimated in terms of operators with known eigenvalues.

The first two results follow from the definition of the definiteness of an operator. This def-
inition can be used to build a partial ordering of linear operators and to provide an eigenvalue
estimate. For two self-adjoint operators L, and L,, the operator inequality denoted by

L, <L, (11.46)
is defined to mean that
H DD(L,) > D(L,) (11.47)
and
(Lyu, u) < (Lyu, u) for all u e D(L,) (11.48)

where Equation (11.47) denotes that D(L,) is a subset of D(L,), and so on.

If Equation (11.48) holds with strict equality, i.e., if L, and L, have the same form,
with L, defined on a subspace of L,, and if L, and L, are positive definite with compact
inverses, then

AV <AP =12, (11.49)

Here, /\51) denotes the eigenvalues of L,, and )\,(-2) denotes those of the operator L,. This
inequality is called the first monotonicity principle.

Example 11.8.1

Consider the two operators defined by L; = L, = —*/dx* with domains D(L,)={u | u(0)=u(¢,) =
0,u, u',u" € LX(0, ¢,)} and D(L,) = {u | u(0) =u(€,) =0, u, u’, u" € LX(0, £,)}. Consider the case
with £, < £,. Then redefine the domain D(L,) to be the completion of the set of functions that
vanish outside D(L,), i.e., for x > ¢,. Then, D(L,) D D(L,) and expression (11.47) and inequality
(11.49) are satisfied so that

L,<L,
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Thus, inequality (11.49) yields (note the indices are interchanged)
AD <O

To see that this is true, note that /\52) = /im/{, < /im/l, = )\fl). This example shows that
shrinking the domain of definition of the problem increases the eigenvalues, as expected.

The trick in using the first monotonicity principle is the ability to extend the domain D(L,)
so that it can be considered as a subspace of D(L,). Extending the domain works in the
example because the boundary condition is u =0 along the boundary. The method fails,
for instance, for the membrane equation with clamped boundaries and a hole removed
(Weinberger, 1974).

The preceding example was chosen to illustrate that the principle works. The use of this
principle is more interesting, however, in a situation where one of the boundaries is such
that the eigenvalues cannot be calculated, i.e., as in the case of an odd-shaped membrane.
In this case, the unknown eigenvalues, and hence natural frequencies, can be bracketed by
two applications of the first monotonicity theorem.

For instance, if the eigenvalues of a membrane of irregular shape are required, the
eigenvalues of inscribed and circumscribed rectangles can be used to provide both upper
and lower bounds of the desired eigenvalues. Thus, the monotonicity principle can also be
thought of as an enclosure theorem (see problem 11.17).

If the operators L, and L, are positive definite and of different form, i.e., if the equality in
expression (11.48) does not hold, then inequality (11.49) is known as the second monotonicity
theorem. The following example illustrates how the monotonicity results can be used to
create enclosures for the eigenvalues of certain operators.

Example 11.8.2

Consider the membrane operator L = —V?, as defined by Equation (9.53). In particular, consider
the three operators

L =-V, D(L,)= {u

du
%+k1u=0 on 942, u, ux,uy,uxy,uxx,u).yELZR(Q) }

L,=—-V?, D(L,) = {u

a
£+k2u=0 on 40, u, ux,uy,un,,u”,u”.elg(())}

Ly=-V?, D(Ly)={ulu=0 on 402, u,ux,uy,uxy,un,uyyeLzR(_Q)}

where k, > k, > 0. Compare the eigenvalues of these three operators.
With k, > k,, integration yields

(u, Lyu) < (u, Lyu)
For all u € D(L,) and using the second monotonicity principle we have

)\52) < )tgl)
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Comparing operators Ly and L, note that D(L;) D D(L,), so that application of the first monotonicity
principle yields

/\52)5/\51)5)\53)

11.9 OSCILLATION THEORY

In this section, the damped system of Equation (10.14) with the assumption stated in
Section 11.6 is considered. Under these assumptions, the solution of Equation (10.14) is
expressible as the convergent series

w(x, ) = ian(t)@n(x) (11.50)

n=1

where the coefficients a,(¢) satisfy Equations (11.35), i.e.,

a,()+AVa, (1) + AP a, (1) =0, n=1,2,3,... (11.51)

The topic of interest in this section is the nature of the temporal solution a,(z) subjected to
arbitrary initial conditions. This section is an extension of the oscillation results presented
in Section 3.6 for lumped-mass systems to those distributed-mass structures described by
Equation (10.14).

Further, assume that the operators L, and L, are both positive definite. Then the sets
of eigenvalues {AV} and {A?)} are all positive real numbers. Hence, the solutions of
Equations (11.51), for arbitrary initial conditions, take one of three forms depending on the
sign of the discriminant

d,=[A"] —4r® (11.52)

of Equation (11.51). These forms are described next.

If, for each value of the index n, d, > 0, the solution of Equation (10.14) does not oscillate.
In this situation, the structure is said to be overdamped and the temporal solutions a,(¢) are
all of the form

a,(t)=C,e"" + D, e™" (11.53)

where C, and D,, are constants of integration determined by the initial conditions and r,,, and
r,, are the positive real roots of the characteristic equation associated with Equation (11.51).
In this case, the solution w(x, t) of Equation (10.14) does not oscillate in time.

Also, if the eigenvalues of the operators L, and L, are such that d, =0 for each index n,
the solution of Equation (11.51) does not oscillate. In this case, the structure is said to be
critically damped, and the solutions, a,(t), are all of the form

a(ty=(C,t+D,) e "/?! (11.54)
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where, as before, C, and D, are constants of integration determined by the initial conditions
and r, is the positive real repeated root of the characteristic equation associated with
Equation (11.51). As in the overdamped case, the solution w(x, ) of Equation (10.14) does
not oscillate in time.

If, for each value of the index n, the eigenvalues of L, and L, are such that d, <0,
then the solution of Equation (11.15) oscillates with decaying amplitude. In this case, the
structure is said to be underdamped, and the solutions a,(f) are all of the form

a,(t)y=e ™2 (C, sinw,t+ D, cos 1) (11.55)

where C, and D, are constants of integration determined by the initial conditions. Here,
A, and o, are positive real numbers determined from the roots of the characteristic
equation, which appear in complex conjugate pairs. In this case, the solution w(x,r) of
Equation (10.14) oscillates in time with decaying amplitude.

An additional possibility is that, for a given structure, d, takes on different signs. That is,
there exists an n for which d, <0 and at least one value of the index n such that d, > 0.
In this situation, the structure is said to be mixed damped. The solution w(x, ) will contain
one oscillatory term and at least one nonoscillatory term.

The preceding four conditions can be checked and the oscillatory nature of the solution
determined without calculating the eigenvalues of the operators L, and L,. The definiteness
of the operator (L? —4L,) can be determined by simple integration and, as illustrated by
Inman and Andry (1982), the definiteness determines the oscillatory nature of the solution
w(x, 1). In particular, if L, and L, commute on D(L,) = D(L,), then:

1. The operator L} —4L, is positive definite on D(L,) if and only if the structure is
overdamped.

2. The operator L? =4L, on D(L,) if and only if the structure is critically damped.

3. The operator 4L, — L? is positive definite on D(L,) if and only if the structure is
underdamped.

4. The operator L? — 4L, is indefinite on D(L,) if and only if the structure is mixed damped.

These conditions specify the oscillatory nature of the solution w(x, t) of Equation (10.14).
In addition to providing a criterion for oscillation, they also lead to simple inequalities in
the parameters of the structure, which can be used in design and control applications. The
following example illustrates this point.

Example 11.9.1

Consider the longitudinal vibration of a clamped bar with both internal and external damping. Under
the assumption of linearity, the equation of motion is written as

Ve &
u,(x,)+2|y—b— |u,(x,1) —a—u(x,1)=0, xeN=(0,1)
ax? dx?

where u(x, f) is the displacement of the bar, and the positive constants vy, b, and a reflect the relevant
physical parameters. Thus, the operator forms are
9? s

L1=2|:')/—b@i| and L2=—a@
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The boundary conditions are taken to be
u(0,)=u(l,1)=0
with D(L,) = {u(-,7) € £5(0,1) such that all partial derivatives up to order 4 are in

£X(0,1) and u(0, 1) =u(1, t) =0}. Note that L, and L, are positive definite and commute on D(L,).
Also, calculation of L? and L? — 4L, yields

2 4
L>=4(%? —2yba— +b26—
! dx? dx,

and

) ) 62 5 84 62
=4l =4y — 29— + B ya
! : (V Yo + 8x4+a6x2>

The eigenvalues of the operator L2 — 4L, are then

b B b\
4 (,},2 - 272)\}1 + ;/\i - An) =4 |:<’y_ 5)‘)1> - /\ni|

where A, = an?7%. Demanding that the sign of this expression be positive, negative, or zero is equiva-
lent to characterizing the definiteness of the operator 4L, — L2. Note that the only possibilities for this
problem are either overdamping for each mode or mixed damping with all higher modes overdamped.

CHAPTER NOTES

The material of this chapter is a much condensed, and somewhat oversimplified, version of
the contents of a course in applied functional analysis. Several texts are recommended and
were used to develop the material here. The books by Stakgold (1967, 1968) present most of
the material here in two volumes. This text, republished in 2000 (Stakgold, 2000a, 2000b),
is recommended because it makes a very useful comparison between finite-dimensional
systems (matrices) and infinite-dimensional systems. The book by Hocstadt (1973) presents
an introduction to Hilbert spaces and compact operators in fairly short order. A good
fundamental text on functional analysis, such as Bachman and Narici (1966), or on operator
theory, such as Naylor and Sell (1982), presents the information of Sections 11.2 through
11.5 in rigorous detail. The material of Section 11.5 is usually not presented, except formally
in vibration texts. MacCluer (1994) presents conditions for the existence of convergent
eigenfuction expansions and connects this to operator properties that result in the successful
application of the method of separation of variables.

The eigenvalue estimate methods given in Section 11.7 are the most common eigenvalue
estimates and can be found in most texts, including Stakgold (1967, 2000a). The literature
is full of improvements and variations of these estimates. The short and excellent text by
Weinberger (1974) is summarized in Section 11.8 on enclosure theorems. These theorems are
quite useful, but apparently have not been taken advantage of by the engineering community.
The oscillation results of Section 11.9 paraphrase the paper by Inman and Andry (1982) and
present a direct extension of Section 3.6.
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PROBLEMS

11.1  Show that £X(£2) is a linear space.

11.2  Show that the sequence of example 11.2.1 is in fact a Cauchy sequence.

11.3  Show that the sequence of example 11.2.1 converges to u(x) as claimed.

11.4  Show that the operator of example 11.4.1 is linear.

11.5 For the operator of example 11.4.1, show that N(L), R(L), and D(L) are linear
spaces and hence subspaces of .

11.6  Consider the operator —d*/dx?, defined on £X(0, £) such that u,(0) = u,(¢) =0.
Calculate the null space of the operator and show that it is a subspace of J . Is this
operator equal to the operator of example 11.4.1?

11.7  Show that the linear functional defined by Equation (11.14) is in fact bounded.

11.8 Show that the operator defined by the Green’s function of example 10.6.1 is a
bounded operator.

11.9  Calculate the adjoint of the operator in problem 11.6. Is the operator formally self-
adjoint? Positive definite?

11.10 Show that the operator —d*/dx* defined on £LX(0, ¢) with boundary conditions
u(0)=u(f) =u'(0) =u/(£) =0 is formally self-adjoint.

11.11 Consider the transverse vibrations of a beam with variable stiffness (EI(x)) and of
dimensions compatible with the Euler—Bernoulli assumptions and with cantilevered
boundary conditions. Show that the corresponding operator is symmetric, positive
definite, and self-adjoint.

11.12 Calculate the adjoint of the operator L = d/dx with boundary conditions
u(0) = au(1), a constant. [Do not forget to calculate D(L*).]

11.13 Suppose that A is a compact linear operator and B is a bounded linear operator such
that AB is defined. Show that AB is compact.
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11.14

11.15

11.16

11.17

11.18

11.19

11.20

11.21

11.22

OPERATORS AND THE FREE RESPONSE

Show that, if the linear self-adjoint operators L; and L, commute and if L, has
a compact inverse and L, is nonsingular, then L, and L, have a common set of
eigenfunctions.

Show that the identity operator is not compact.

Prove that, if L has a compact inverse, it is positive definite if and only if each of
its eigenvalues is positive.

Calculate some estimates of the eigenvalues of the operator for the transverse vibra-
tion of a simply supported, nonuniform beam with EI(x) = (1.1 — x). Compare the
results of your estimates to the exact values for EI = 1.

Calculate the eigenvalues of a square membrane clamped along its boundary on each
of the following:

(a) the square defined by the axis and the line x=1, y=1;
(b) the square defined by the axis and the line x =2,y =2;
(c) the square defined by the axis and the line x =3, y=3.

Compare the results of these three operators using the enclosure result of exam-
ple 11.8.2 and illustrate that the monotonicity results hold.

Consider the transverse vibrations of three beams all of dimensions compatible
with the Euler—Bernoulli assumptions and all with cantilevered boundary conditions.
Suppose two of the beams have constant stiffness denoted by E, I, and E, I, respec-
tively and that the third beam has a variable stiffness denoted by EI(x). Show that,
if E,\I, < EI(x) < E,I,, then the eigenvalues of the variable-stiffness beam fall in
between those of the constant-stiffness beams.

Consider the damped plate described by Equation (9.87) with simply supported
boundary conditions. Calculate inequalities in the constants p, 7y, and D, such that
the free response is (a) overdamped, (b) critically damped, and (c) underdamped.
What can you conclude from your calculation?

Consider the problem of example 11.9.1. Can this system be designed to be under-
damped if a mass is attached to one end and fixed at the other?

Show that a differential operator must be of even order for it to be symmetric.
(Hint: Use integration of parts to show that an odd-order differential operator is not
symmetric.)
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Forced Response and
Control

12.1 INTRODUCTION

This chapter considers the response of distributed-parameter structures that are under some
external influence. This includes consideration of the response of distributed-mass structures
to applied external forces, the response of distributed-mass structures connected to lumped-
mass elements, and the response of distributed-mass structures under the influence of both
passive and active control devices.

If the equations of motion can be decoupled, then many of the results used for lumped-
mass systems described in Chapter 5 can be repeated for the distributed-mass case. However,
because of the infinite-dimensional nature of distributed-mass systems, convergence of
solutions occasionally preempts the use of these methods. Convergence issues are especially
complicated if the structure is subjected to control forces or unknown disturbances.

12.2 RESPONSE BY MODAL ANALYSIS

This section considers the forced response of damped distributed-parameter systems of
Equation (10.14) of the form

w,, (x, 1) + Lyw,(x, 1) + Lyw(x, t) = f(x, 1), xeN (12.1)

with appropriate boundary and initial conditions. Here, the operators L, and L, are self-
adjoint, positive definite operators; L, has a compact inverse, and L, shares the set of
eigenfunctions {®,(x)} with L, (i.e., L, and L, commute). For the moment, the only
assumption made of f(x, 7) is that it lies in £5(£2).

Since f(x, t) € £LX(£2), Equation (12.1) can be multiplied by the function ©,(x) and then
integrated over (2. This integration yields

(wy» 0,) + (Lyw;, 6,) + (Lyw, 6,) =(f, 6,) (12.2)

Vibration with Control D. J. Inman
© 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01051-7
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The left-hand side of this equation is identical to Equation (10.16). Applying the analysis of
Section 11.6, Equation (12.2) becomes

i, +AVa,(t) + A Pa,(t)=f,(), n=1,2,3 (12.3)
where f,(¢) has the form
£.(1) =/ f(x,00,(x)d2,  n=1,2,3 (12.4)
Q
This scalar equation in the function a,(f) can be solved and analyzed using the single-
degree-of-freedom model of Section 1.4.
Equation (12.3) is essentially the same as Equation (5.38), and the solution is thus given

by Equation (5.39). That is, if the system is underdamped (4L, — L3 > 0), then for zero
initial conditions

1 t
a,(t)y=— / e_g'l“"ffn (t—7)sin(w,,7)dT (12.5)
Wy, J0

where for each value of the index n

w, =1 A, the nth natural frequency (12.6)
A
{,= ; \/’:\Tz), the nth modal damping ratio (12.7)
Wy, =, /1 —{2, the nth damped natural frequency (12.8)

Thus, in the solution where the operators L, and L, commute, the temporal coefficients
in the series solution are determined by using results from single-degree-of-freedom theory
discussed in Chapter 1. The solution to Equation (12.1) is the sum

w(x, 1) = ian(t)@n(x) (12.9)

n=1

where the a, () are determined by Equation (12.5) for the case where the initial conditions
are set to zero and the set {@,(x)} consists of the eigenfunctions of the operator L,. Since the
set of functions {®,(x)} consists of the modes of free vibration, the procedure just described
is referred to as a modal analysis solution of the forced response problem.

Example 12.2.1

Consider the hinged-hinged beam of example 10.3.1. Assuming the beam is initially at rest (r=0),
calculate the response of the system to a harmonic force of sin(¢) applied at x = £/2, where £ is
the length of the beam. Assume the damping in the beam is of the form 2aw,(x, r), where « is a
constant. First, note that the operator

_EI ot
27 m ooxt
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has a compact inverse and is self-adjoint and positive definite with respect to the given boundary
conditions. Furthermore, the eigenfunctions of the operator L, serve as eigenfunctions for the
operator L, = 2al. Thus, the eigenvalues of the operator 4L, — L? are (for the given boundary
conditions)

El
4 nt*rt— —a?
me*
which are greater than zero for every value of the index n if

% [EI

—/—>a
2N m

Hence, each coefficient, a,(7), is underdamped in this case. The solution given by Equation (12.5)
then applies.
The forcing function for the system is described by

f(x,1)=0 (x— ;) sin ¢

where 6(x — £/2) is the Dirac delta function. Substitution of this last expression into Equation (12.4)
along with the normalized eigenfunctions of example 10.3.1 yields

JAOE \/%sin tfoz sin (“7%) 6 (x — £) dx

— /2 in AT
= \/Z sintsin %
In addition, the natural frequency, damping ratio, and damped natural frequency become

nm\2 |EI
o) 5

l m
o
é’n:—
w,

a2

W,y, =W, I_E

With these modal damping properties determined, specific computation of Equation (12.5) can be
performed. Note that the even modes are not excited in this case, since f,, =0 for each n. Physically,
these are zero because the even modes all have nodes at the point of excitation, x = £/2.

If the damping in the system is such that the system is overdamped or mixed damped,
the solution procedure is the same. The only difference is that the form of a,(f) given
by Equation (12.5) changes. For instance, if there is zero damping in the system, then
{,— 0, w — w,, and the solution of Equation (12.5) becomes

a,(1) = wifotf”(t— 7)sin(w, ) dT (12.10)
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12.3 MODAL DESIGN CRITERIA

The previous section indicates how to calculate the forced response of a given structure to
an external disturbance by modal analysis. This modal approach is essentially equivalent to
decoupling a partial differential equation into an infinite set of ordinary differential equations.
This section examines some of the traditional design formulae for single-degree-of-freedom
oscillators applied to the modal coordinates of a distributed-parameter structure of the form
given in Equation (12.9). This modal design approach assumes that the summation of
Equation (12.9) is uniformly convergent and the set of eigenfunctions {@,(x)} is complete.
Hence, there is a value of the index n, say n = N, for which the difference between w(x, t)
and the partial sum

> a,()0,(x)
n=1

is arbitrarily small. Physically, observation of certain distributed-mass systems indicates that
some key modes seem to dominate the response, w(x, ), of the system. Both the mathematics
and the physics in this case encourage the use of these dominant modes in the design
criteria.

As an illustration of modal dominance, consider again the problem of example 12.2.1.
With zero initial conditions, the response a,(7) is of the same form as Equation (1.18)
multiplied by 0, 1, or —1, depending on the value of n (i.e., sinn/2). In fact, integration
of Equation (12.5) for the case f,(f) = f,, sin wt yields

a,(t)=X,sin(wt+ B,) (12.11)

The coefficient X, is determined (see Section 1.4) to be

X, = Juo (12.12)
JOP — o 002
and the phase shift 3, becomes
AM
B,=tan"! (12.13)
Ay — w?

The quantity X, can be thought of as a modal participation factor in that it is an indication
of how dominant the nth mode is. For a fixed value of the driving frequency w, the values
of X, steadily decrease as the index n increases. The modal participation factor decreases
unless the driving frequency is close to the square root of one of the eigenvalues of the
operator L,. In this case the modal participation factor for that index may be a maximum. By
examining the modal participation factors or modal amplitudes, the designer can determine
which modes are of interest or which modes are most important. The following example
illustrates this point.
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Example 12.3.1

Calculate the modal amplitudes for the clamped beam of example 12.2.1. Note that in this case the
driving frequency is 1, i.e., w = 1. For the sake of simplicity, let El =m = a = land £ =2, so that
the system is underdamped. From example 12.2.1, f,, =1 for each n. Also, A =2 for each n and

AP =6.088n*
for each value of the index 7. In this case, Equation (12.12) yields
X, =0.183, X,=0.010, X;=0.002

Note that the modal participation factor, X,,, decreases rapidly with increasing n.
Next, consider the same problem with the same physical parameters, except with a new driving
frequency of w =22. In this case the modal participation factors are

X, =0.002, X, =0.003
X,=0.022, X, =0.0009
X5=0.0003,  X,=0.0001

This example illustrates that, if the driving frequency is close to a given mode frequency (X; in this
case), the corresponding modal amplitude will increase in absolute value.

By examining the solution w(x, r) mode by mode, certain design criteria can be formulated
and applied. For example, the magnification curve of Figure 1.9 follows directly from
Equation (12.12) on a per mode basis. Indeed, all the design and response characterizations
of Section 1.4, such as bandwidth and overshoot, can be applied per mode. However, all
the design procedures become more complicated because of coefficient coupling between
each of the mode equations given by Equation (12.11). While the equations for a,(z) are
decoupled in the sense that each a,(f) can be solved for independently of each other, the
coefficients in these equations will depend on the same physical parameters (i.e., E, I, p, m,
and so on). This is illustrated in the following example.

Example 12.3.2

Consider the step response of the clamped beam of example 12.2.1. A modal time to peak can
be defined for such a system by using Equation (1.27) applied to Equation (12.3). With a proper
interpretation of ¢, and w,, the modal time to peak, denoted by 1,,,, is

T
f, =
pn
W,/ 1— Zr%
where 0, =(n*7*/€*)/EI/m and {,=a/w,. Examination of this formula shows that, if E, I, m,
and « are chosen so that 7, has a desired value, then 7,5, 7,, ... are fixed. Thus, the peak time,

overshoot, and so on, of a distributed-mass system cannot be independently chosen on a per mode
basis even though the governing equations decouple.
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12.4 COMBINED DYNAMICAL SYSTEMS

Many systems are best modeled by combinations of distributed-mass components and
lumped-mass components. Such systems are called hybrid systems, distributed systems with
lumped appendages, or combined dynamical systems. This section discusses the natural fre-
quencies and mode shapes of such structures and the use of the eigensolution to solve for
the forced response of such structures.

As an example of such a system, consider the free vibration of a beam of length ¢
connected to a lumped mass and spring as illustrated in Figure 12.1. The equation of motion
of the beam with the effect of the oscillator modeled as an external force, f(#)d(x — x,), is

Elw, .. + pAw, = f(1)6(x — x,), x€(0,0) (12.14)
The equation of motion of the appended system is given by
mZ(t) + kz(t) = —f(¢) (12.15)

where m is the appended mass and k is the associated stiffness. Here, the coordinate, z(¢), of
the appended mass is actually the displacement of the beam at the point of attachment, i.e.,

z(t) = w(xy, 1) (12.16)

Combining Equations (12.14) and (12.15) yields
(94
[Elﬁ +ké(x— Jﬁ)] w(x, 1)+ [pA+m8(x — x;)]w,(x, 1) =0 (12.17)
X

The solution w(x, t) is now assumed to separate, i.e., w(x, ) = u(x)a(z). Following the
method of separation of variables, substitution of the separated form into Equation (12.17)
and rearrangement of terms yields

Elw///(x) +k5(x—xl)u(x) __@
[pA+mb(x—x)Ju(x)  a(r) (12.18)

Figure 12.1 A beam with an attached lumped mass—spring system.
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As before (see Section 9.2), each side of the equality must be constant. Taking the separation
constant to be w?, the temporal function a() has the harmonic form

a(t) = Asin(wt) + Bcos(wt) (12.19)

where A and B are constants of integration determined by the initial conditions. The spatial
equation becomes

ELU"(x) + [(k = m?)8(x — x,) = pAw?] u(x) =0 (12.20)

subject to the appropriate boundary conditions.

Solution of Equation (12.20) yields the generalized eigenfunctions, ©,(x), and eigen-
values, @?, for the structure. These are called generalized eigenfunctions because Equa-
tion (12.20) does not formally define an operator eigenvalue problem, as specified in
Section 10.2. Hence, the procedure and modal analysis are performed formally. Note,
however, that, if k/m = w?, i.e., if the appended spring-mass system is tuned to a natural
frequency of the beam, the related eigenfunction becomes that of the beam without the
appendage. The solution of Equation (12.20) can be constructed by use of a Green’s function
for the vibrating beam.

The Green’s function g(x, x,) for a beam satisfies

g" —Bg=8(x—x)) (12.21)

where 8*=pAw?/(EI) and g satisfies the appropriate boundary conditions. Following the
development of Section 10.6, Equation (12.21) has the solution

1 y(x, x,), 0<x<ux
X)) =— _ 12.22
8% x1) 233 sin B¢ sinh B¢ { y(xp, x), X <x</{ ( )
where the function y(x, x,) is symmetric in x, and x and has the form
y(x, x;) =sin(BL — Bx,) sin(Bx) sinh(BL)
— sinh(B€ — Bx,) sinh(Bx) sin(BL) (12.23)

In terms of the Green’s function just defined, the solution to Equation (12.20) for the simply
supported case can be written as (see Nicholson and Bergman, 1986)

1
u(x)= E(mw2 —k)g(x, x)u(x,) (12.24)
If u(x,) were known, then Equation (12.24) would specify the eigenfunctions of the system.

Fortunately, the function u(x,) is determined by writing Equation (12.24) for the case x =x,,
resulting in

|:EI - {m <w2 - %) } g (x, xl)} u(x,) =0 (12.25)

which yields the characteristic equation for the system. In order to allow u(x,) to be nonzero,
the coefficient in Equation (12.25) must vanish, yielding an expression for computing the
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natural frequencies, w. This transcendental equation in w contains terms of the form sin 8¢
and hence has an infinite number of roots, denoted by w,. Thus, Equation (12.24) yields an
infinite number of eigenfunctions, denoted by u,, (x).

Both the free and forced response of a combined dynamical system, such as the one
described in Figure 12.1, can be calculated using a modal expansion for a cantilevered
beam. Following Section 9.4, the eigenfunctions are, from Equation (12.20), those of a
nonappended cantilevered beam, i.e.,

O;(x) = cosh B,x — cos B;x — a;(sinh B,x — sin B,x) (12.26)

Here, the constants «; are given by

h 3;¢ L
o, = SO B L cos By (12.27)
sinh B,£ +sin 3,¢
and the eigenvalues (3, are determined from the transcendental equation
1+ coshB,£cosB,£=0 (12.28)

Note that in this case the arguments of Section 11.6 hold and the functions ©,(x) form a
complete orthogonal set of functions. Hence, the spatial solution u(x) can be written as

u(x)=Y_b;0,(x) (12.29)
i=1
with the set {®,} normalized so that

(0,,0,)=15, (12.30)

Substitution of Equation (12.29) for u(x) in Equation (12.20), multiplying by ©;(x), using
the property

/" 4
O; (x) zﬁj@j(x)
and integrating over the interval (0,) yields

EILBD, + (k—mw*)O,(x,)b,0,(x,) — pAlw’b, =0 fori=j

(k—mw*)O,(x))b,0,(x,)=0  for i (12.31)
Dividing this last expression by pA¢ and defining two new scalars, A;; and B;;, by
kO;(x,)0; EIB}
Al»«: z(xl) ](xl)+ B, 5," (1232)
] pAe pA ]
1
B;j=——m0O,(x,)0;(x;) + 9, (12.33)

Y pAl
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allows Equation (12.31) to be simplified. Equation (12.31) can be rewritten as

=) =3}

Y A;b;=w"Y B;b, (12.34)

ij7J ij7
j=1 j=1
This last expression is in the form of a generalized infinite matrix eigenvalue problem for
o’ and the generalized Fourier coefficients b ;- The elements b; are the modal participation
factors for the modal expansion given by Equation (12.29).
The orthogonality relationship for the eigenfunctions {@,(x)} is calculated from Equa-
tion (12.20) and rearranged in the form

0" (x) — <”2§"2> 0,(x)= %(wim —K)8(x —x,)0,(x) (12.35)

Premultiplying Equation (12.35) by 0,,(x) and integrating yields (see problem 12.5)

pA[l 0 (00, (x)dx=— / (= 1)0, ()0, (x) dx
0 0

/OK [1 +Aﬂp5(x—x1)} 0,(x)0,(x)dx=5,, (12.36)

The preceding characteristic equation and orthogonality relationship completes the modal
analysis of a cantilevered Euler—Bernoulli beam connected to a spring and lumped mass.
Equipped with the eigenvalues, eigenfunctions, and the appropriate orthogonality condi-
tion, a modal solution for the forced response of a damped structure can be carried out
for a proportionally damped beam connected to a lumped spring—mass dashpot arrangement
following these procedures. Bergman and Nicholson (1985) showed that the modal equations
for a damped cantilevered beam attached to a spring—mass dashpot appendage have the form
x 4 4
AORDY { &y Bun It (8“;“"

8
m=1 0

- ) AmAn@m<x1>@,,<xl>am<r>} Tata, ()= £,

(12.37)
Here

0=7 [ 0,0 ndx
f(x, t) =externally applied force
g, =distributed damping coefficient
& =lumped damping rate
u = lumped mass
@ = system natural frequencies
o, = lumped stiffness

4
a
A, =—"
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With the given parameters and orthogonality conditions, the combined system has a modal
solution given by

w(x, 1) = i a,(H)0,(x) (12.38)

n=1

where a,(r) satisfies Equation (12.37) and the appropriate initial conditions. Note from
Equation (12.37) that proportional damping results if ea? o = ¢,a}.

12.5 PASSIVE CONTROL AND DESIGN

The lumped appendage attached to a beam of the previous section can be viewed as a passive
control device, much in the same way that the absorber of Section 6.2 can be thought of as
a passive control element. In addition, the layered materials of Section 9.6 can be thought
of as either a passive control method or a redesign method. In either case, the desired result
is to choose the parameters of the system in such a way that the resulting structure has
improved vibration response.

First, consider a single absorber added to a cantilevered beam. The equations of motion as
discussed in the previous section have a temporal response governed by Equation (12.37).
Thus, the rate of decay of the transient response is controlled by the damping terms:

o0 4

eat ot )
Z 8b8nm +H’ 8 _ahAmAn@m(xl)@n('xl) am(t) (1239)

m=1 @

The design problem becomes that of choosing x,, &, u, and ¢, so that Equation (12.39)
has the desired value. With only four parameters to choose and an infinite number of modes
to effect, there are not enough design parameters to solve the problem. In addition, the
summation in Equation (12.39) effectively couples the design problem so that passive control
cannot be performed on a per mode basis. However, for specific cases the summation can
be truncated, making the design problem more plausible.

Next, consider the layered material of Section 9.6. Such materials can be designed to
produce both a desired elastic modulus and a desired loss factor (Nashif, Jones, and Hen-
derson, 1985). Consider the problem of increasing the damping in a beam so that structural
vibrations in the beam decay quickly. Researchers in the materials area often approach the
problem of characterizing the damping in a material by using the concept of loss factor,
introduced as 7) in Section 1.4, and the concept of complex modulus introduced next.

For a distributed-mass structure, it is common practice to introduce damping in materials
by simply replacing the elastic modulus for the material, denoted by E, with a complex
modulus of the form

E(1+in) (12.40)

where 7 is the experimentally determined loss factor for the material and i is the square root
of (—1). The rationale for this approach is based on an assumed temporal solution of the form
Ae If Ae'® is substituted into the equation of motion of a damped structure, the velocity
term yields a coefficient of the form iw, so that the resulting equation may be viewed as
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having a complex stiffness. This form of damping is also called the Kimball-Lovell complex
stiffness (see Bert, 1973).

The loss factor for a given structure made of standard metal is usually not large enough to
suppress unwanted vibrations in many applications. One approach to designing more highly
damped structures is to add a layer of damping material to the structure, as indicated in
Figure 12.2. The new structure then has different elastic modulus (frequencies) and loss
factor. In this way, the damping material can be thought of as a passive control device used
to change the poles of an existing structure to more desirable locations. Such a treatment of
structures is called extensional damping. Sometimes it is referred to as unconstrained layer
damping, or free layer damping.

Let E and m denote the elastic modulus and loss factor of the combined system of
Figure 12.2. Let E, and 7, denote the modulus and loss factor of the original beam, and let
E, and m), denote the modulus and loss factor of the added damping material. In addition,
let H, denote the thickness of the added damping layer and H, denote the thickness of
the original beam. Let e, = E,/E, and h, = H,/H,. The design formulae relating the ‘new’
modulus and loss factor to those of the original beam and added damping material are given
in Nashif, Jones, and Henderson (1985) as

El  144e,h, +6¢,h] +4e,h; + e3h;
EI 1+e,h,

(12.41)

and

n e,hy (3 +6hy +4h5 +2e,h3 + €3h3) (12.42)
M (14 exhy)(1+4e,hy + 6eyh5 +dey 13 + €3h5) '

where (e,h,)? is assumed to be much smaller than e,h,.

Equations (12.41) and (12.42) can be used to choose an appropriate damping material to
achieve a desired response.

The preceding complex modulus approach can also be used to calculate the response of
a layered structure. Note that the response of an undamped uniform beam can be written in
the form

w(x, t) = i g(E)a,(t,E)O,(x, E) (12.43)

where g(E) is some function of the modulus E. This functional dependence is usually
not explicitly indicated but rather is contained in the eigenvalues of the eigenfunctions

Damping material Ex(1 + iny) H,

Structure E4(1 + iny) H,
Y

Figure 12.2 Passive vibration control by using a damping layer.
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O, (x, E) and in the temporal coefficients a, (¢, E). One approach used to include the effects
of damping in a layered beam is simply to substitute the values of E + in obtained from
Equations (12.41) and (12.42) into g, a,, and O, in Equation (12.43). Each term of the series
(12.43) is complex and of the form g(E(1 +in)a,(t, E(1+1in))0,(x, E(1 +1in)), so some
manipulation is required to calculate the real and imaginary parts. This approach should be
treated as an approximation, as it is not rigorous.

12.6 DISTRIBUTED MODAL CONTROL

In this section, the control of systems governed by partial differential equations of the form
of Equation (12.1) is considered. The control problem is to find some function f(x, t) such
that the response w(x, f) has a desired form. If f(x, ¢) is a function of the response of the
system, then the resulting choice of f(x,t) is called active control. If, on the other hand,
f(x, 1) is thought of as a change in the design of the structure, it is referred to as passive
control (or redesign). Modal control methods can be used in either passive or active control.
Any control method that uses the eigenfunctions, or modes, of the system in determining
the control law f(x, t) is considered to be a modal control method.

Repeating the analysis of Section (12.2) yields the modal control equations. For the control
problem, the functions f,(¢) of Equation (12.4) are thought of as modal controls, or inputs,
in the jargon of Chapter 7. As indicated in Chapter 7, there are many possible control
techniques to apply to Equation (12.3). Perhaps the simplest and most physically understood
is state feedback. Viewed by itself, Equation (12.3) is a two-state model, with the states
being the generalized velocity, a,(f), and position, a,(r). If f,(f) is chosen in this way,
Equation (12.3) becomes

a, (1) + MV a, (0 + MPa, (1) = —cla, () — c,a,() (12.44)

where ¢/ and ¢} are modal position and velocity gains respectively. Obviously, the choice
of the position and velocity feedback gains completely determines the nth temporal coeffi-
cient in the free response given by Equation (12.10). In theory, ¢? and ¢! can be used to
determine such performance criteria as the overshoot, decay rate, speed of response, and so
on. These coefficients can be chosen as illustrated for the single-degree-of-freedom problem
of example 12.6.1.

The question arises, however, about the convergence of f(x, t). Since

i) =—cya,(t) —c,a,(t) = /Qf(x, 10,(x)d (12.45)
the series
f(x, 1) = i [—cla,(t) — cra,(1)]0,(x)d2 (12.46)

must converge. Furthermore, it must converge to some function f(x, ¢) that is physically
realizable as a control. Such controls f(x, f) are referred to as distributed controls because
they are applied along the spatial domain (2.



DISTRIBUTED MODAL CONTROL 327

Example 12.6.1

Consider the problem of controlling the first mode of a flexible bar. An internally damped bar clamped
at both ends has equations of motion given by Equation (12.1) with

9? 9?
w T

L,=-2b
! ox?

and boundary conditions w(x, r) =0atx =0and x = 1. Here, bis the constant denoting the rate of internal
damping, and « denotes a constant representing the stiffness in the bar (E1/p). Solution of the eigenvalue
problem for L, and L, and substitution of the appropriate eigenvalues into Equation (12.3) yields

a,(t) + anz'n'zd,,(t) + oznz'n'za,,(t) =f,(0)

For the sake of illustration, assume that & =4007? and b =1 in the appropriate units.

Suppose it is desired to control only the lowest mode. Furthermore, suppose it is desired to shift
the frequency and damping ratio of the first mode. Note that the equation for the temporal coefficient
for the first mode is

&l (t) + szdiz(t) + 40077-4a1 (t) =fl (t)

so that the first mode has an undamped natural frequency of w, =207* and a damping ratio of
£, =0.05.

The control problem is taken to be that of calculating a control law, f(x, t), that raises the natural
frequency to 257* and the damping ratio to 0.1. This goal will be achieved if the displacement
coefficient, after control is applied, has the value

(257%)* = 6247
and the velocity coefficient of the closed-loop system has the value
240, =2(0.1)(250%) = 50”
Using Equation (12.44) with n =1 yields
G, (1) +27a,(t) + 4007 a, (f) = —cla, (t) — c}a, (¢)

Combining position coefficients and then velocity coefficients yields the following two simple
equations for the control gains:

& +4007* = 6257
¢} + 2% =572

Thus, ¢/ =2257* and ¢} = 372 will yield the desired first mode values. The modal control force is thus
fi(H) ==2257%a, (1) — 37%a,(1)
In order to apply this control law only to the first mode, the control force must be of the form
S, ) =f1(06,(x)

For this choice of f(x, r) the other modal controls, f,(f), n> 1, are all zero, which is very difficult
to achieve experimentally because the result requires f(x, ¢) to be distributed along a single mode.




328 FORCED RESPONSE AND CONTROL

Unfortunately, designing distributed actuators is difficult in practice. The design of actuators
that produce a spatial distribution along a given mode, as required by the example, is even
more difficult. Based on the availability of actuators, the more practical approach is to
consider actuators that act at a point, or points, in the domain of the structure. The majority
of control methods used for distributed-parameter structures involve using finite-dimensional
models of the structure. Such models are often obtained by truncating the series expansion
of the solution of Equation (12.9). The methods of Chapter 7 are then used to design a
vibration control system for the structure. The success of such methods is tied to the process
of truncation (Gibson, 1981). Truncation is discussed in more detail in Chapter 13.

12.7 NONMODAL DISTRIBUTED CONTROL

An example of a distributed actuator that provides a nonmodal approach to control is the
use of a piezoelectric polymer. Piezoelectric devices offer a convenient source of distributed
actuators. One such actuator has been constructed and used for vibration control of a beam
(Bailey and Hubbard, 1985) and is presented here.

Consider the transverse vibrations of a cantilevered beam of length ¢ with a piezoelectric
polymer bonded to one side of the beam. The result is a two-layer material similar to the
beam illustrated in Figure 12.2. Bailey and Hubbard (1985) have shown that the equation
governing the two-layer system is

P ()4 paZ 2o c0 (12.47)
_ — =0, X .
dx2 0x?2 p ot?

with boundary conditions

w(0, ) =w,(0,£)=0
Elw, (6, )=—cf(t) and  w,({,1)=0 (12.48)

where it is assumed that the voltage applied by the polymer is distributed evenly along x,
i.e., that its spatial dependence is constant. Here, ET reflects the modulus and inertia of both
the beam and the polymer, p is the density, and A is the cross-sectional area. The constant ¢
is the bending moment per volt of the material and f(¢) is the voltage applied to the polymer.
This distributed actuator behaves mathematically as a boundary control.

One approach to solving this control problem is to use a Lyapunov function, V(¢), for the
system, and choose a control, f(), to minimize the time rate of change of the Lyapunov
function.

The chosen Lyapunov function is

V(t)=%/0€ [(%):(%)2} dt (12.49)

which is a measure of how far the beam is from its equilibrium position. Minimizing
the time derivative of this functional is then equivalent to trying to bring the system to
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rest (equilibrium) as fast as possible. Differentiating Equation (12.49) and substitution of
Equation (12.47) yields

av ¢ EI c
—= 1—— cdx 4+ — f(t £t 12.51
=] (1= 55 [paars S v (1231)

The voltage f() is thus chosen to minimize this last quantity. Bailey and Hubbard (1985)
showed that f(t), given by

f(t) = —Sgl’l(wat(E, t))fmax (1252)

is used as a minimizing control law. Here, sgn denotes the signum function.

Not only is the control law of Equation (12.52) distributed and independent of the modal
description of the structure but it also allows the control force to be magnitude limited, i.e.,
| /(t)| < fuax- These are both very important practical features. In addition, the control law
depends only on feeding back the velocity of the tip of the beam. Hence, this distributed
control law requires that a measurement be taken at a single point at the tip (x = £).

12.8 STATE-SPACE CONTROL ANALYSIS

This section examines the control problem for distributed-parameter structures cast in the
state-space formulation. Considering Equation (12.1), define the two-dimensional vector
z(x, 1) by

z(x, )y =[w(x, 1) w,(x,0)]" (12.53)
The state equation for the system of Equation (12.2) then becomes
z,=Az+bu (12.54)

where the matrix of operators A is defined by

0 I
A= [_L2 —Ll} (12.55)

the vector b is defined by b=[0 1]7, and u = u(x, t) is now used to denote the applied
force, which in this case is a control. As in the lumped-mass case, there needs to be an
observation equation, denoted here as

y(x, 1) =Cz(x, 1) (12.56)

In addition, the state vector z is subject to boundary conditions and initial conditions and
must have the appropriate smoothness (i.e., the elements z belong to a specific function
space). Equations (12.55) and (12.56) form the state-space equations for the control of
distributed-mass systems and are a direct generalization of Equations (7.1) and (7.2) for the
control of lumped-mass systems.
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As discussed in the preceding sections, the input or control variable u(x, f) can be either
distributed or lumped in nature. In either case the general assumption is that the function
u(x, t) separates in space and time. The most common form taken by the control u(x, r)
describes the situation in which several time-dependent control forces are applied at various
points in the domain of the structure. In this case

u(x, t)= i O(x — x;)u,(1) (12.57)

i=1

where the m control forces of the form u,(f) are applied to the m locations x;. Note that
this formulation is consistent with the development of combined dynamical systems of
Section 12.4.

The output, or measurement, of the system is also subject to the physical constraint that
most devices are lumped in nature. Measurements are most often proportional to a state or
its derivatives. In this case, y(x, #) takes the form

y(x, t):icjﬁ(x—xj)z(x, 1) (12.58)

where ¢ ; are measurement gains of each of the p sensors located at the p points, x i in the
domain of the structure.

The concepts of controllability and observability are of course equally as critical for
distributed-mass systems as they are for lumped-mass systems. Unfortunately, a precise
definition and appropriate theory is more difficult to develop and hence is not covered
here. Intuitively, however, the actuators and sensors should not be placed on nodes of the
vibrational modes of the structures. If this practice is adhered to, then the system will be
controllable and observable. This line of thought leads to the idea of modal controllability
and observability (see, for instance, Goodson and Klein, 1970).

An optimal control problem for a distributed-parameter structure can be formulated fol-
lowing the discussion in Section 7.4 by defining various cost functionals. In addition, pole
placement and state feedback schemes can be devised for distributed-parameter systems,
generalizing the approaches used in Chapter 7. Note, however, that not all finite-dimensional
control methods have direct analogs in distributed-parameter systems. This lack of analogy
is largely due to the difference between functional analysis and linear algebra.

CHAPTER NOTES

This chapter discusses the analysis of the forced response and control of structures with
distributed mass. Section 12.2 presents standard, well-known modal analysis of the forced
response of a distributed-mass system. Such an approach essentially reduces the distributed-
mass formulation to a system of single-degree-of-freedom models that can be analyzed by the
methods of Chapter 1. Section 12.3 examines some design specifications for distributed-mass
systems in modal coordinates. One cannot assign design criteria to each mode independently,
as is sometimes suggested by using modal coordinates.

Section 12.4 examines a method of calculating the response of hybrid systems, i.e., systems
composed of both distributed-mass elements and lumped-mass elements. Several authors
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have approached this problem over the years. Most recently, Nicholson and Bergman (1986)
produced a series of papers (complete with computer code) discussing combined dynamical
systems based on beam equations. Their paper is essentially paraphrased in Section 12.4.
Banks et al. (1998) clarify the existence of normal modes in combined dynamical systems.
The papers by the Bergman group also contain an excellent bibliography of this area. The
importance of the analysis of combined dynamical systems is indicated in Section 12.5 on
passive control. The most common passive vibration suppression technique is to use an
absorber or an isolator. The theory by Bergman et al. provides an excellent analytical tool for
the design of such systems. An alternative and very useful approach to vibration design and
passive control is to use layers of material and high damping (loss factor). This approach is
discussed extensively in the book by Nashif, Jones, and Henderson (1985), which provides
a complete bibliography.

Section 12.6 discusses the concept of modal control for distributed-mass structures with
distributed actuators and sensors. This material is expanded in a paper by Inman (1984).
The details of using a modal control method are outlined by Meirovitch and Baruh (1982)
and were originally introduced by Gould and Murray-Lasso (1966). Gibson (1981) discusses
some of the problems associated with using finite-dimensional state models in designing
control laws for distributed-mass systems. This result has sparked interest in nonmodal con-
trol methods, an example of which is discussed in Section 12.7. The material of Section 12.7
is taken from the paper by Bailey and Hubbard (1985).

Section 12.8 presents a very brief introduction to formulating the control problem in the
state space. Several books, notably Komkov (1970) and Lions (1972), discuss this topic
in more detail. A more practical approach to the control problem is presented in the next
chapter. Tzou and Bergman (1998) present a collection of works on the vibration and control
of distributed-mass systems.
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PROBLEMS

12.1

12.2

12.3
124
12.5

12.6

12.7

12.8

12.9

12.10

Calculate the response of the first mode of a clamped membrane of Equation (9.86)
subject to zero initial conditions and an applied force of

f(x, v, 1) =3sint6(x — 0.5)6(y — 0.5)

Derive the modal response [i.e., a,(t)] for the general system given by Equa-
tion (12.1) and associated assumptions if, in addition to f(x, ¢), the system is subject
to initial conditions of the form

w(x, 0) =w,, w,(x,0) =w,

Use the notation of Equations (12.3) through (12.8).

Calculate an expression for the modal participation factor for problem (12.1).
Define a modal logarithmic decrement for the system of Equation (12.1) and calculate
a formula for it.

Derive Equation (12.36) from Equation (12.35) by performing the suggested inte-
gration. Integrate the term containing @),” 4 times using the homogeneous boundary
conditions and again using Equation (12.35) to evaluate ©@".

Discuss the possibility that the sum in Equation (12.37) can be truncated because

4 4 __ 8
Saman - CYOSh

for some choices of m and n.

Show that the complex stiffness is a consistent representation of the equation of

motion by substituting the assumed solution A e’ into Equation (10.14). What

assumption must be made on the operators L, and L,?

(a) Calculate the terms g(E), a,(z, E), and O,(t, E) explicitly in terms of the
modulus E for a damped free beam of unit length.

(b) Next, substitute e(1+in) for E in your calculation and compare your result
with the same beam having a damping operator of L, =2nl, where [ is the
identity operator.

Formulate an observer equation for a beam equation using the state-space formulation

of Section 12.8.

Consider the transverse vibration of a beam of length ¢, modulus E, and mass

density p. Suppose an accelerometer is mounted at the point x = £/2. Determine the

observability of the first three modes.
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Approximations of
Distributed-parameter
Models

13.1 INTRODUCTION

This chapter is devoted to examining approximations of distributed-parameter systems with
lumped-parameter models. Since the solutions of distributed-parameter systems are often
given in terms of an infinite series, and since only a few configurations have closed-form solu-
tions, there is a need to cast distributed-parameter systems into finite-dimensional systems
that can easily be solved numerically. In addition, control and design are well developed for
lumped-parameter systems, providing further motivation to approximate distributed systems
with the more easily manipulated lumped systems. From the experimentalist point of view,
most common measurement methods only ‘see’ a finite (dimensional) number of points.

In this chapter, several common methods of approximating distributed-mass structures
by lumped-mass models are presented. Most of these methods eliminate the spatial depen-
dence in the solution technique by discretizing the spatial variable in some way, effectively
approximating an eigenfunction with an eigenvector. This chapter ends with a discus-
sion of the effects of active control of distributed-mass structures and the accuracy of the
approximation.

13.2 MODAL TRUNCATION

Since the solution of the vibration problem given by
w,, (x, 1) + Lyw,(x, 1) + Lyw(x, t) = f(x, 1), xe (13.1)

plus appropriate boundary conditions is of the form

w1 =3 a,(06,(2) (13.2)

n=1

Vibration with Control D. J. Inman
© 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01051-7
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which converges uniformly, it is possible to approximate the solution by

wy (x, 1) = ; a,(0d,(x) (13.3)

where N is finite. This finite sum approximation ignores the sum given by

=)

we(x, )= 3 a,(t)$,(x) (13.4)

n=N+1

called the residual. The modes in this sum are called the truncated modes, i.e., the functions
¢, (x) for values of the index n=N + 1 — oco. The assumption is that the residual solution
is small, i.e., that ||wg(x, f) || < &. This assumption is often satisfied by physical structures,
giving rise to the statement that structures behave like low-pass filters.

Substitution of Equation (13.3) into Equation (13.1) yields

2 [a,(D)¢,(x) + a,L,$,(x) + a,() L, (x)] = ; b,(1)¢,(x) (13.5)

where f(x, r) has also been expanded in terms of the functions ¢, (x) with coefficients b, (t).
Premultiplying Equation (13.5) by ¢,,(x) and integration over {2 yields two possibilities.
Note that the sum is now finite, so that convergence is not a problem. First, if L, L, =L,L,
on the appropriate domain, then Equation (13.5) becomes N decoupled ordinary differential
equations of the form

i, (1) + M, (1) + APa, (1) = b, (1) (13.6)
In matrix form this becomes
Ia+ Apa+ Aga=f (13.7)
which can then be analyzed by the methods of Chapter 5. Here, A;, and Ay are diagonal
matrices and a and f are N vectors of obvious definition.
If the commutivity condition does not hold, then Equation (13.6) becomes
Ia+Da+ Aga=f (13.8)
where the elements of D are

dijZ/ $.Lip;d (13.9)

and the functions ¢;(x) are the eigenfunctions of L,. The boundary conditions are incorpo-
rated in the matrices D, A), and Ay automatically by virtue of the integration. The initial
conditions on a(¢) are defined by

a,(0) = / w(x, 0)d,(x)d2  and @, (0)= f w,(x, 0),(x) A2 (13.10)
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In both cases it is required that wg(x,t) be as small as possible, i.e., that the higher
modes do not contribute much to the solution. In practice this is often so. For instance,
N =3 is often adequate to describe the longitudinal vibration of a simple cantilevered beam
(recall example 12.3.1). Equations (13.6) and (13.8) are finite-dimensional approximations
of Equations (13.1) derived by truncating the higher modes of the response of the structure
(i.e., setting wg, = 0) and as such are referred to as a truncated modal model.

13.3 RAYLEIGH-RITZ-GALERKIN APPROXIMATIONS

The Rayleigh quotient was introduced in Section 11.7 as a means of approximating the
natural frequencies of a conservative system. Ritz used this concept to calculate an approx-
imate solution for the eigenfunctions (mode shapes) in terms of an assumed series of trial
functions. This approach is similar to modal truncation but, rather than using the exact mode
shapes as the expanding basis, any complete set of basis functions that satisfy the boundary
conditions is used. In other words, the Rayleigh—Ritz (as it is usually called) approximation
does not require any knowledge of the eigenfunctions. Furthermore, the Rayleigh quotient
can be written in terms of energy, rather than in terms of the eigenvalue problem, reducing
the number of derivatives and boundary conditions that need to be satisfied by the choice
of ‘trial’ functions.

Trial functions are functions that (a) satisfy the boundary conditions or at least some of
them, (b) are orthogonal to each other, and (c) have enough derivatives to be fit into the equa-
tion of motion. Trial functions are further divided up into those that satisfy all of the boundary
conditions (called comparison functions) and those that satisfy only the geometric boundary
conditions (called admissible functions). In forming the sum of Equation (13.5) there are
three classifications of functions that can be used:

1. Eigenfunctions. These satisfy the equation of motion plus all the boundary conditions.
Comparison functions. These are orthogonal and satisfy all the boundary conditions (but
not the equation of motion).

3. Admissible functions. These are orthogonal and satisfy only the geometric boundary
conditions (i.e. things like displacements and slopes).

Boundary conditions are classified as either (a) natural boundary conditions (those that
involve force and moment balances) or (b) geometric boundary conditions (those that satisfy
displacement and slope conditions at the boundary).

Using trial functions eliminates the need to know the eigenfunctions of the structure
before approximating the system. Let {6,(x)} be a linearly independent set of basis functions
that are complete in a subspace of D(L,) and satisfy the appropriate boundary conditions.
The Nth approximate solution of Equation (13.1) is then given by the expression

wy(x, 1) = ian(t)ﬁn(x) (13.11)

n=1

Likewise, f(x, ) is approximated by

fulx, )= ibn(t)Gn(X) (13.12)
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Substitution of Equations (13.9) and (13.10) for w(x, ¢) and f(x, f) in (13.1), respectively,
yields
N N
Z [a(t)an + dn(t)Llen + an(t)LZQn] = Z bn(t)on(x) (1313)
n=1

n=1

Premultiplying Equation (13.13) by 6,,(x) and integrating (thus using the boundary condi-
tions) yields the finite-dimensional approximation

M5 + Dk + Kx =f£(1) (13.14)

where the matrices M, D, and K and the vector f are defined by

my = [0,0,d0 (13.15)
dij:/HiLIdoQ (13.16)
k,,:/@,.Lzajd(z (13.17)
f,:/f(x, 1)6,d 0 (13.18)

Unlike the coefficient matrices of the modal truncation scheme of Equations (13.7) and
(13.8), the matrices M, D, and K in this case are not necessarily diagonal. Note, however,
that they are symmetric as long as the operators L, and L, are self-adjoint. The order, N,
of the finite-dimensional approximation [Equation (13.11)] is chosen so that w,(x, t) is as
small as possible for the purpose at hand. Note that the difference between the functions
¢,(x) in Section 13.2 and the 6,(x) in this section is that the ¢,(x) are eigenfunctions of the
stiffness operator. In this section the trial functions 6, (x) are chosen in a somewhat arbitrary
fashion. Hence, this method is also called the assumed mode method. The bottom line with
approximation methods is that, the closer the trial function to the exact eigenfunction (mode
shape), the better is the estimate. If, in fact, an exact set of mode shapes is used, and the
damping is proportional, the approximation will be exact.

Starting with the Rayleigh quotient, the Ritz method minimizes the quotient over the
coefficients of expansion for ¢(x) and provides an approximation of the system natural
frequencies and mode shapes for undamped systems. Let the approximate spatial dependence
have the form

$(x) =2 cibi(x) (13.19)

where the ¢,(x) are the trial functions and the constants c¢; are to be determined. Recall
the statement of the operator eigenvalue problem resulting from separation of variables, as
given in Equation (10.7). Rewriting Equation (10.7) with the mass density placed on the
right-hand side yields

Lo(x) = Apd(x) (13.20)
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subject to the appropriate boundary conditions. Multiplying Equation (13.20) by ¢(x) and
integrating yields the Rayleigh quotient

A= fo $(x)Lp(x) dx _ E (13.21)

i pd(D)p(x)dx D

where

4 4
N= / d()Ld(x)dx  and D= / pd(x)b(x) dx
0 0

The Ritz approximation process is to substitute Equation (13.19) into Equation (13.21) and
compute the coefficients c; that minimize the Rayleigh quotient given by Equation (13.21).
Differentiating Equation (13.21) with respect to the coefficients c; yields

D<3N> N<8D>
a ) . N D

dc; D? dc; dc;

1

since D is never zero. Equation (13.22) computes the values of the expansion coefficients
that minimize the Rayleigh quotient and hence allow the approximation of the eigenvalues.
Next, consider writing N and D in terms of the constants ¢; using Equation (13.19). With
a little manipulation, it can be shown (see problem 13.11) that Equation (13.22) is the
generalized eigenvalue—eigenvector problem

Ke=AMc (13.23)

where the column vector ¢ consists of the expansion coefficients c¢; . The elements of the
‘mass’ and ‘stiffness’ matrix are given by

Ja 14
ky=[ &L (x)dx  and  my=[ p (1)) dx (13.24)
0 0

The solution of the generalized eigenvalue problem (13.23) yields an approximation of
the eigenvalues A, and hence the natural frequencies. The eigenvectors ¢ approximate the
eigenfunctions of the system and hence the mode shapes. The number of approximated
frequencies and mode shapes is N, the number of trial functions used in Equation (13.19).

The power of this approach is in finding approximate solutions when Equation (13.20)
cannot be solved analytically, such as for odd boundary conditions and/or for spatially
varying coefficients such as p(x) and EI(x). Note that, if exact eigenfunctions are used, exact
frequencies result. Also note that the boundary conditions come into play when evaluating
the integrals in Equation (13.24).

13.4 FINITE ELEMENT METHOD

Probably the most popular method of representing distributed-mass structures is the finite
element method (FEM). This section presents a very brief introduction to the topic. A classic
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reference for FEM is Hughes (2000). The method divides the structure of interest into
subsections of finite size, called finite elements. These elements are connected to adjacent
elements at various points on their boundaries, called nodes. Once this procedure is finished,
the distributed-mass structure is represented by a finite number of nodes and elements
referred to as a finite element grid, or mesh.

The displacement of each element is approximated by some function of the spatial vari-
ables between nodes. The next step in the finite element analysis (often abbreviated FEA)
is to calculate the energy in each element as a function of the displacement. The total
energy of the structure is then expressed as the sum of the energy in each element. External
forces are included by using the principle of virtual work to derive forces per element.
Lagrange’s equations (see, for instance, Meirovitch, 2001) are then applied to the total
energy of the structure, which yields the approximate equations of motion. These equations
are finite-dimensional. This procedure is illustrated in the following example.

Example 13.4.1

This example considers the longitudinal vibration of a bar of length ¢ and derives a finite element
stiffness matrix of the bar. The bar of Figure 13.1 is configured as one finite element with a node
at each end. The axial stiffness is regarded as time independent throughout the element, so that the
displacement must satisfy

d2
A o xc.0) (13.25)
dx?
Integrating this expression yields
ux)=cix+c,  x€(0,0) (13.26)

where ¢, and ¢, are constants of integration. At each node, the value of u is allowed to be a time-
dependent coordinate denoted by u, (¢), as labeled in the figure. Using these as boundary conditions,
the constants ¢; and ¢, are evaluated to be

c; =u(r) (13.27)
1) — t
¢ = M (13.28)
u,(t) u,(t)
Element
1 | ——uxn
2

Figure 13.1 Two-node, one-element model of a cantilevered beam.
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so that u(x, ) is approximated by
u(x, z)=(1 —%) ul(t)+%u2(t) (13.29)
Next, the nodal forces f; and f, are related to the displacement u(x) by
EAW (0)=—1, EAW (0) =, (13.30)
or
Uy — i

Uy — Uy
EA =—f, FA—
¢ h ¢

— 1 (13.31)

where the prime indicates differentiation with respect to x. This last expression can be written in
the matrix form

Ku=f (13.32)

where u(t) =[u, (1) u, ()", £=[f,(t) fo(1)]" and

EAT 1 -1
KZT[—l 1] (1333)

Here, the vector u(?) is called the nodal displacement vector, the vector f(¢) is called the nodal
force vector, and the matrix K is the element stiffness matrix.

In example 13.4.1, note that the displacement in the element is written in the form
u(x, t) =a,(x)u,(t) + a,(x)u, (1) =a’ (x)u(t) (13.34)

where a(x) = [a,(x) a,(x)]". The functions u,() and u,(f) are the time-dependent nodal
displacements, and in example 13.4.1 they approximate u(0,?) and u(¢,t) respectively.
The functions a,(x) and a,(x) are called shape functions, or interpolation functions.
In the example, a,(x) = (1 — x/¢) and a,(x) = (x/£). However, the shape functions are not
unique in general. They are referred to as interpolation functions because they allow the
displacement to be specified, or interpolated, at points along the structure that lie between
nodes. As will be illustrated in the following, the solution of the dynamic finite element
equations yields only the nodal displacements u,(f) and u, (7).

Next, a dynamic model is needed. A mass matrix is required that is consistent with
the preceding stiffness matrix for the bar element. The mass matrix can be determined
from an expression for the kinetic energy of the element, denoted by 7(¢) and defined by

T(t):% fo p(x)u, (x, 1) dx (13.35)

Substitution of u,(x, t) from Equation (13.32) yields

(1) = % /0 *p(0)iT (Na(x)aT (7 (1) dx (13.36)
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or
1 4
1(1) = S8 (1) [ / p(x)a(x)a’ (x) dx} u(t) (13.37)

The expression in brackets is clearly a matrix that is defined as the element mass matrix,
denoted by M. Examination of Equation (13.37) indicates that the mass matrix is given by

M= / " p(na(a’ () dx (13.38)

Since the mass matrix is calculated by using the same shape functions as the stiffness
matrix, the resulting mass matrix is called a consistent mass matrix. An alternative means of
constructing the mass matrix is just to lump the mass of the structure at the various nodes.
If this is done, the result is called an inconsistent mass matrix.

Note that the stiffness matrix of Equation (13.36) can also be represented in terms of the
shape functions a(r). Examination of the potential energy in the system yields (for the bar
of example 13.4.1)

K= f " EA(a(val (v) dx (13.39)
0

With K defined by Equation (13.31), the potential energy per element, denoted by V(z), is
given by

V(t) = %uT(t)Ku(t) (13.40)

Example 13.4.2

Calculate the consistent mass matrix for the bar element of example 13.4.1. Substituting the shape
functions of Equation (13.29) into equation (13.38) yields

1—x

LT L=
_ 1 1—x x _pt|2 1
M_pfo ¢ [ - Z] ax=" [1 ) (13.41)
¢

These definitions of the finite element mass and stiffness matrix can be assembled by using the poten-
tial and kinetic energies along with Lagrange’s equations to formulate the approximate equations of
a distributed parameter structure.

Recall that Lagrange’s equations (see, for instance, Thomson, 1988) simply state that the
equations of motion of an n-degree-of-freedom structure with coordinates u; can be calculated
from the energy of the structure by

[a (ar)} L (13.42)

a\ai )| ou; " ou;

where the f; denote external forces.
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With Lagrange’s equations, the equations of motion of a structure modeled by one or more
finite elements can be derived. This is done by first modeling the structure of interest as sev-
eral finite elements (like the bar of examples 13.4.1 and 13.4.2). Next, the total energy of each
element is added to produce the total energy of the distributed structure. Then Lagrange’s
equations are applied to produce the dynamic equations for the structure. The procedure is
best illustrated by the following example.

Example 13.4.3

Again, consider the bar element of examples 13.4.1 and 13.4.2 and use these to model the vibration
of a cantilevered bar. In this example, the clamped free bar will be modeled by three (an arbitrary
choice) finite elements — and hence four nodes — as depicted in Figure 13.2. Note that, because of
the clamped boundary condition, u, (f) =0. Taking this into consideration, the total potential energy,
denoted by Vi (1), is the sum of the potential energy in each element:

V(1) =iVi(t) (13.43)

i=1

With ¢/3 substituted for £ in Equation (13.33) and the appropriate displacement vector u, V()

becomes
v =3EAT O Tt -17Jo0 L 3EA T 1 -1[w
700 | u, -1 1| uy 20 | uy -1 1| uy

; (13.44)
n 3EA [ u, I =11 u;
20 Uy —1 1 Uy
Calculating the derivatives of V with respect to u; yields
vy
du,
2 -1 u
v, 3EA 2
TT == |-l 2 -l||u (13.45)
"3 0 —1 1| u
vy
duy
uy(t) uy(t) us(t) ua(t)
/ Elenients
1 [ 2 T 3] —uxn
2\ 3 4
Nodes /
X

Figure 13.2 Four-node, three-element model of a cantilevered beam.
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where the coefficient of the displacement vector u= [u, u; u,]” is the global stiffness matrix, K,
for the entire structure based on a three-element finite approximation.
Calculation of the total kinetic energy 7T(¢) yields

1pAe [To7" T2 1770 ] T2 1][i ;1772 1] [
T_218Ha2:| [1 2} [h2]+[i¢3 Ui [ Fla | |0 2| (349
Calculation of the various derivatives of T required for Lagrange’s equations yields
d (dT
dt \ dit,
d (dT _ pAL
dt \di; ) | 18
d (oT
dt \ duy
where the coefficient of i is the consistent mass matrix of the three-element finite element
approximation.

Substitution of Equations (13.45) and (13.47) into Lagrange’s equation [Equation (13.42)] yields
the three-degree-of-freedom model of the undamped bar as

(13.47)

o~ &
[ NN
=

Mii+Ku=0 (13.48)

This last expression can be solved for the vibration response of the undamped bar at the nodal
point. The response between nodes can be interpolated by using the shape functions (or interpolation
functions), i.e., u(x, 1) =a’u.

These procedures can be generalized to any type of distributed-mass structure or combination
of structures. The matrices M and K that result are similar to those that result from the
Rayleigh—Ritz method. In fact, the finite element method can be thought of as a piecewise
version of the Rayleigh—Ritz method. For an accurate representation of a response, 10-20
elements per wavelength of the highest frequency of interest must be used.

13.5 SUBSTRUCTURE ANALYSIS

A distributed-mass structure often yields a large-order finite element model with hundreds
or even thousands of nodes. This is especially true of large, complicated, and/or very
flexible structures. Substructure analysis is a method of predicting the dynamic behavior
of such a complicated large-order system by first dividing the model up into several parts,
called substructures, and analyzing these smaller parts first. The dynamic solution of each
substructure is then combined to produce the response of the entire structure.

Let the n-dimensional vector x denote the coordinates of a large finite element model.
First, divide the structure up into parts according to the modal coordinates via the following
scheme:

X

X= [Xl] (13.49)
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Here, x, represents those nodes associated with the first substructure, and x, represents the
nodes associated with the second substructure. Let X, and x, be further partitioned into those
coordinates that are unique to substructure 1 and those that are common to x; and x,. Divide
X, into internal coordinates x;; and common coordinates X,, i.e., X] = [XlTl XCT]T. Likewise,
the nodal coordinates for the second substructure, X,, are partitioned as

X, = [le} (13.50)

The subset of nodes x, is the same in both x; and Xx,.

Next, partition the mass and stiffness matrices for each of the two (could be N < n) parts
according to internal (x,;) and external (x,.) coordinates. Let 7, and V, denote the kinetic
energy and potential energy, respectively, in substructure 1. These energies are

=[] [ ] )

=l TES ERIE e
Likewise, the energy in substructure 2 is

=[RS s

w3V T8RRI s

Next, the modes u; of each substructure are calculated by assuming that the common
coordinates (also called connecting nodes) are free and not really constrained by the rest of
the structure, i.e., that the coordinates satisfy the equation of motion

el O RG EOl]e o

for each substructure (j =1, 2). Equation (13.55) is obtained by using the energy expressions
of Equations (13.51) through (13.54) substituted into Lagrange’s equations. Each of the
dynamic substructure equations (13.55) is next solved for the system eigenvalues and eigen-
vectors. Let [¢T.(n) ¢7(n)]” denote the nth eigenvector of substructure 1. The modal matrix
of substructure 1, denoted by ¢(1), is the square matrix defined by

o= 40 D@ bu)_[40]

where ¢,;(1) and ¢, are rectangular matrix partitions of ¢(1). These partitions are used to
define a new coordinate q(1) by

X, = ["h} _ [¢¢1)] a(l) (13.56)

X(T
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This yields

x;=¢;(1)q(1) (13.57)
where it should be noted that ¢,;(1), a rectangular matrix, relates the internal coordi-
nates of substructure 1, X,;, to the new coordinate (1) yet to be determined. This procedure

can be repeated using the information from the second substructure to determine ¢,(2) and
to define q(2). These quantities are related by

X, =$;(2)q(2) (13.58)

The substitution of Equation (13.57) into the expressions for the energy [Equations (13.51)
and (13.52)] yields

LTa T Ter M (1) ¢T(HM (1) [a(1)

T(”:E[ %, } [ M(1)i(1) M..(1) H %, } (13.59)
LTa() ] [¢F (K1) S (K1) ] [a(1)

V(”ZE[ xc} [ K, (1),(1) M,.(1) H xc} (13.60)

Similar expressions are obtained for the energies of the second substructure, 7'(2) and
V(2), by substitution of Equation (13.58) into Equations (13.53) and (13.54). The total
energy in the complete structure is now considered to be defined by [T(1) + 7(2)] and
[V(1) +V(2)].

These energy expressions are substituted into Lagrange’s equations to produce the equa-
tions of motion in terms of substructure quantities. Lagrange’s equations for the system
are

o (DM, (1) (1) 0 & (HM,.(1) q(1)
0 ¢:(2M;(2)$:(2) b (2)M,.(2) q(2)
o (DK;(1);(1) 0 o (DK.(1) q(1)
+ 0 $:(2)K;;(2)$;(2) ¢! (2)K,.(2) q(2) | =0
Kcz(1)¢t(1) Kcz(2)¢t(2) Krr(l) +ch(2) X

This last expression constitutes a substructure representation of the original struc-
ture. The solution of Equation (13.61) is determined by any of the methods discussed in
Chapter 3. The matrix coefficients are determined by analyzing each substructure indepen-
dently. Equations (13.57) and (13.50) are used to recover the solution in physical coordinates
from the solution of the substructure equations given by (13.61). Each of the quantities in
Equation (13.61) are determined by solving the two substructures separately. Each of these
is of an order less than the original system. Equation (13.61) is also of an order less than
the original structure. In fact, it is of order n minus the order of x.. Hence, the response of
the entire structure X,, can be obtained by analyzing several systems of smaller order.
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13.6 TRUNCATION IN THE PRESENCE OF CONTROL

The majority of practical control schemes are implemented by actuators and sensors that are
fixed at various points throughout the structure and hence behave fundamentally as lumped-
mass elements rather than as distributed-mass elements. In addition, most control algorithms
are based on finite-dimensional lumped-mass models of small order. Thus, it is quite natural
to use a ‘truncated’ model or other finite-dimensional approximation of distributed-mass
structures when designing control systems for them.

This section examines the problem of controlling the vibrations of a distributed-mass
structure by using a finite number of lumped-mass actuators and sensors acting at various
points on the structure. The approach discussed here is first to cast the structure into an
infinite-dimensional matrix equation that is transformed and then truncated. A combination
of modal methods and impedance methods is used to solve a simple structural control
problem. The goal of the section is to present a simple, representative method of reducing
vibration levels in flexible mechanical structures.

Consider a distributed-mass structure described by a partial differential equation of
the form

Ly(x, t) = f(x, 1), xe (13.62)

and associated boundary and initial conditions. Here, the functions y(x, ¢) and f(x, ¢) are in
LY (), y(x, ) being the system output, and f(x, ) the system input. This model is an abbre-
viated formulation of the structures presented in Chapter 9. In terms of the notation of
Chapter 9, the operator L is of the form

82

L__
or?

a
) +Li () +La() (13.63)
where the output equation is just y(x, ) = w(x, ). If the operator L had an easily calculated
inverse, the solution would be given by y(x, ) = L™! f(x, £). To that end, consider taking the
Laplace or Fourier transform on the temporal variable of Equation (13.62). This yields

Ly(x, s) = f(x, ) (13.64)

plus boundary conditions. For ease of notation, no special distinction will be made between
y in the time domain and y in the s domain (i.e., between y and its transform), as the
remainder of the section deals only with the transformed system.

The control problem of interest here is one that could be implemented by sensors and
actuators acting at discrete points along the structure, which may have dynamics of their
own. Suppose that the structure is measured at m points along its length, labeled by x!.
Let y(s) denote an m x 1 column vector with the ith component defined as y(x/, s), i.e., the
time-transformed output (displacement) measured at point x,. In addition, r actuators are
used to apply time-dependent forces u;(¢), or transformed forces u,(s), at the r points x/.
The control action, denoted by f.(x, s), can be written as

59) = X200 = X (9) =1 () (13.65)
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Here, r(x) is an r x 1 vector with ith component §(x — x/'), the Dirac delta function, and
u(s) is an r x 1 vector with ith component u;(s).
Negative feedback is used, so that the total force applied to the structure is given by

S, 9) = foa(x, 8) = fo(x, 5) (13.66)

where f.,(x, s) represents an externally applied disturbance force and f,(x, s) represents the
control forces. With the actuator just described, Equation (13.66) becomes

f(x, ) = fox(x, ) —r"u(s) (13.67)

To complete the feedback loop, u(s) must depend on the output, or measured response, of
the structure. Let H(s) be an r x m transfer matrix defining the dependence of the control
action on the output via the expression

u(s) = H(s)y(s) (13.68)
so that Equation (13.67) becomes

f(x,8) = fo =1 ()H(5)y (5) (13.69)

This last expression represents output feedback control. An alternative here would be to use
state feedback control, as discussed in Chapter 7.

Next, consider casting the problem into modal coordinates. Let {W;(x)} be a set of basis
functions in £§(£2) and consider £L%;(x), also in LS (£2). Then

L%:i)\ij(s)g’j(x) (13.70)

where A;;(s) is an expansion coefficient. Note that, if A;;(s) =0 for i # j, then Equa-
tion (13.70) becomes

LY, (x) = A,(5) V() (13.71)

so that the expansion coefficient, A;(s) = A;(s), is an eigenvalue of the operator L with
eigenfunction W;(x). The A;(s) are also called modal impedances (see Section 10.4 for
conditions under which this is true).

Example 13.6.1

For a pinned—pinned uniform beam in transverse vibration of length ¢ with no damping

v, (x) = % sin(k,x) (13.72)

2

N
A (s)= [kﬁ‘l + ﬁ] EI (13.73)
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where

Expanding the functions y(x, s) and f(x, s) in terms of this same set of basis functions,
{¥,(x)}, yields

Y0 8) = 3 di(5) W () (13.74)

and

9= () ¥ ) (13.75)

i=1

The expansion coefficients d,(s) are called the modal response coefficients and the coeffi-
cients ¢;(s) are called the modal input coefficients.
Next, compute (assuming proper convergence, i.e., that ¥; is an eigenfunction of L)

Ly=3d,()LW(x) = f(x, ) (1376
i=1
or
A V() = Y ()W) (13.77)

Note that for Equation (13.77) it is assumed that the ¥;(x) are, in fact, the eigenfunctions of L.
Using the orthogonality of the {W¥,(x)}, Equation (13.77) implies that

Ai(8)d;(s) = ¢;(s) (13.78)
for each index i, so that
c;(s)
Ai(s) = m (13.79)

This gives rise to the interpretation of A;(s) as a ‘modal impedance’. Note also that, as before,

¢@)=/"ﬂXJyz(on (13.80)
0
and

QQ:LﬂL@%@MQ (13.81)
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If L is not self-adjoint and/or the functions ¥;(x) are not the normal modes of the sys-
tem, then this procedure can be completed using the orthogonality of the complex set of
basis functions. In this coupled case, substitution of Equation (13.70) into Equation (13.76)
yields

idi(s) |:§ /\ij(s)q,j(x):| =§Cj(s)‘l’j(x) (13.82)

i=1

Multiplying Equation (13.82) by ¥;(x), the conjugate of ¥, (x), and integrating over (2
yields

IXICINOEAD (1389)

where the summation over the index j has been eliminated by the assumed orthogonal-
ity of the set { W, (x)}. Equation (13.83) constitutes the equivalent version of Equation (13.78)
for the case in which the system does not possess classical normal modes.

Next, consider applying linear feedback control in a modal coordinate system defined
by the set {¥,(x)}. Equation (13.78) can be written as a single infinite-dimensional matrix
equation of the form

Ad=c (13.84)

where A is the co x oo modal impedance matrix with the ijth element defined by A;;(s)
and ¢ and d are oo x 1 column matrices defined by c¢;(s) and d,(s) respectively. Defining
W (x) as the oo x 1 column matrix of eigenfunctions W;(x), the other relevant terms can be
written as

=)

o= X)) = (¥ (13.85)

f@@=ig@%@=€@wm (13.56)
and 7

Y5, 9) = 3 d, () W) = ()W () (1387)

i=1

where the various column vectors have the obvious definitions. For instance, the vector e(s)
is the vector of expansion coefficients for the external disturbance force f,,, with components
e;(s), and so on.

A measurement matrix, denoted by M, can be defined by

M;;=V;(x) (13.88)
which is an m x co matrix and relates d(s) directly to y(s) by

y(s) =Md(s) (13.89)
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Likewise, an r x co modal coefficient matrix, denoted by R, can be defined by
R, :/ﬂr,«(x)llfj(x) 40 (13.90)
which relates r(x) to ¥(x) by
r(x) =RW¥(x) (13.91)
Using the orthogonality of W;(x), the inner product

f W)W (x) dO =1, (13.92)

where I, denotes the oo x oo identity matrix with elements [, ¥;(x)¥,(x) d2 =§,;. Note
that, if W(x) is complex, then the transpose should be interpreted as the conjugate transpose.
Multiplying Equation (13.91) by W7 from the right and integrating over {2 yields

R= / r(x) W (x) dQ (13.93)
0
This last expression provides a more useful definition of the modal coefficient matrix R.
A relationship between R, ¢, and e can be found by substituting Equations (13.85) and
(13.86) into Equation (13.67). This yields
cW=e"¥—-r'u (13.94)
Since r’u is a scalar, this can also be written as
¢’ (s)W(x) =e’ (s)W(x) —u’ (s)r(x) (13.95)
Multiplication from the right by W7 (x) and integrating over {2 yields

c(s) /! W)W (x) d2=¢' () /! W)W (x) 42— (5) f! (W (x) 2 (1396)

Using Equations (13.92) and (13.93) then yields

¢’ (s)=e’(s) —u’(5)R (13.97)
or
c(s) =e(s) — RTu(s) (13.98)
Equation (13.84) now becomes
Ad(s) =e(s) — Ru(s) (13.99)

or upon substitution of Equation (13.68) for u(s)

Ad(s) =e(s) — R"H(s)y(s) (13.100)
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Using Equation (13.89), the last term in Equation (13.100) can be placed in terms of d(s)
to yield

Ad(s) = e(s) — R"H(s)Md(s) (13.101)
Assuming that A~! exists, this last expression can be manipulated to yield
[I.+A7'0(s)]d(s) = A"e(s) (13.102)

where Q(s) = RTH(s)M. Equation (13.102) represents the closed-loop configuration for the
output feedback control of a distributed-parameter structure in terms of infinite-dimensional
matrices.

If the infinite matrix inverse A" exists, if the inverse of the impedance matrix [I, + A~ Q]
can be calculated, and if the functions {¥;(x)} are known, Equation (13.102) along with
Equation (13.74) yields the response d(s) in terms of the input, e(s). Several common
examples, such as uniform beams and plates of simple geometry, satisfy these assumptions.
Unfortunately, in many practical cases these assumptions are not satisfied, and the matrix A
must be truncated in some fashion. Even in cases where A~! can be calculated, the control
O(s) may be such that [I + A~1Q] is difficult to calculate. In cases where truncation of the
model is required, Equation (13.102) provides a convenient formula for studying the effects of
truncation in the presence of control.

As was true for the procedure of Section 7.8, the truncation method presented here
is based on partitioning the various infinite-dimensional matrices of Equation (13.102).
Let A, denote the matrix formed from the matrix A~ by partitioning off the first n rows
and all the columns. Using this notation, the matrix A~! is partitioned as

_ ATl AL
Al = [A"';’ A } (13.103)

In a similar fashion, the matrices M, R, and Q are partitioned as

M= [an MI’HOO] (13'104)
T
RT = [ﬁ;r} (13.105)
and
0., O ]
e nn noo 13. 106
Q I:Qoon Qoooo ( )
The submatrices of Q can all be written in terms of R, M, and H as
an :RZ;rHan (13107)
0,..=R! HM,,, (13.108)

QOO"[ = R:OrHan (13'109)
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and
Quoe =R, HM,. (13.110)

Substitution of these partitioned matrices into Equation (13.102) yields the partitioned system

L+ 2,0, +A10., A Qo + A0 d, | _[A,) Al]le,
AL O, +AL0,, L+ ASO+AL O | de | [As AL ]|e

oon 0000 o0

(13.111)

Here, the response vector d and the input vector e have also been partitioned, dividing these
infinite-dimensional vectors into an n x 1 finite-dimensional part and an oo x 1 infinite-
dimensional part.

The various partitions of Equation (13.103) can be used to interpret the effects of truncating
the modal description of a structure at n modes in the presence of a control law. Structures
are generally thought of as low-pass filters in the sense that A, ' — 0 as n — oo. Thus, for
structures it is reasonable to assume that the matrix A_L is zero for some value of n.

Sensors often behave like low-pass filters as well, so that it is also reasonable to assume
that M, is the zero matrix. This, in turn, causes Q. = Q. = 0. If the actuators are slow
enough, it can also be argued that R”, =0, which causes Q,., = O.... =0. With these three
assumptions, the system of Equation (13.111) is reduced to

In +A7)1 nn O dn A;rll A;olo en
[ A—‘EQ I ][d }:[A‘ll 0 ||e (13.112)

This can be written as the two coupled vector equations

I, +A,10,)d,=A,le, + A, e, (13.113)

nn

and

A5 Qnd, +d = A€, (13.114)
These last two equations provide a simple explanation of some of the problems encountered
in the control of distributed-mass structures using truncated models.

First, consider the case with e, = 0. This corresponds to a ‘band-limited” input. That is, the
external disturbance provides energy only to the first » modes. In this case, Equation (13.105)
becomes

d,=(,+4,0,)'A,e, (13.115)

Equation (13.115) can now be used to solve the control problem, i.e., to calculate Q,, such
that the response d,, has a desired form. In fact, Equation (13.115) is equivalent to first approx-
imating a distributed-parameter system by a finite-dimensional system and then designing a
finite-dimensional control system for it. However, this is slightly misleading, as can be seen
by considering Equation (13.114).
Rearrangement of Equation (13.114) yields
d,=A_le,—A_0,d, (13.116)

ocon—n
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This states that, unless the dynamics of the structure decouple (i.e., A} =0), or unless it can
be argued that A7} is small, the higher, uncontrolled modes of the response d., will be
excited by the control action, Q,,. Such unwanted excitation is called control spillover.

In the case where A is close to zero, Equation (13.115) provides a good approximation
to the control problem for distributed-mass structures. In fact, the requirement that e, =0
provides a criterion for determining the proper order, n, to be chosen for the approximation
for a given disturbance. The value of n is chosen so that e_ is approximately zero.

Next, consider the case where the sensors are not low-pass filters, i.e., M, # 0, so that

0, #0. In this case the first partition of Equation (13.111) yields

(I,+4,,0,)d,+A,0,.d, =A,le, (13.117)
The equation describing d,, is recoupled to the truncated dynamics constrained in the vector
d,.. If the term Q, ., is erroneously neglected and Equation (13.115) is used to design the
control system, then the resulting solution d, will be in error, and the resulting calculation
of R and H will be in error. The response will suffer from what is often referred to as
observation spillover, meaning that the sensors have caused a coupling of the truncated
system with the neglected modes, producing error in the closed-loop response.
A similar problem arises if the actuators are ‘fast’, i.e., if R;r # 0. In this case, Equa-
tions (13.113) and (13.114) become

(I + 20000+ A0 0)d, = ALe, (13.118)
and

(A O+ A,L0,)d = A e, (13.119)
Again, the introduction of the term Q_,, associated with high-speed actuator excitation,
couples the equation for the solution d,, and the truncated, or residual, solution d. Thus, if
R”  is not actually zero and Equation (13.115) is used to compute the control law, error will
result. The interpretation here is that R”, = excites the neglected modes, d, and hence causes
energy to appear in the neglected part of the model. This again causes control spillover.

13.7 IMPEDANCE METHOD OF TRUNCATION AND
CONTROL

The modal description of a structure presented in the previous section lends itself to an inter-
pretation of potential problems encountered when using point actuators and sensors in
designing a control system for a distributed-mass structure. In this section an alternative
approach is presented that uses the modal equation [Equation (13.102)] but, rather than
truncating the response, uses an impedance method to calculate the closed-loop response
vector d.

The sensor—actuator admittance (inverse of impedance) matrix Y (s) is defined by

Y(s)=MA"'(s)R" (13.120)
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and is related to the dynamic stiffness matrix. Note that Y (s) is a finite-dimensional matrix,
the elements of which are infinite sums.

Consider again the infinite matrix description of the structural control problem, as formu-
lated in Equation (13.102). This expression can be written as
Id+ A'RTHMd = A""e (13.121)
From Equation (13.89), the vector Md can be replaced with y to yield
Id+A"'RTHy=A""e (13.122)

Multiplying this expression by M yields

y+MA'RTHy=MA""e (13.123)

y+Y(s)H(s)y=MA""e (13.124)
This can be written as

[I,+Y(s)H(s)][y=MA""e (13.125)

where [, is the m x m identity matrix. Thus, the coefficient of y is a finite-dimensional
matrix. Assuming that the coefficient of y has an inverse, Equation (13.125) can be written as

y=[I,+Y(s)H(s)|'"M A" "e (13.126)
This expression can be substituted into Equation (13.122) to yield

d={I

o — AT'RTH[I, + Y(s)H(s)]'M}A'e (13.127)
which expresses the system response, d, in terms of the disturbance input, e. Equa-
tion (13.127) represents the impedance method of dealing with truncation in the con-
trol of distributed-mass structures, as developed by Berkman and Karnopp (1969). The
open-loop system, as represented by A, still needs to be truncated using the low-pass filter
argument of the previous section, i.e., A7l = A;l. However, the feedback control por-
tion is now finite-dimensional and of low order (i.e., equal to the number of measurement
points or sensors). Hence, truncation or partitioning of an inverse matrix is required in order
to compute the control. Instead, the elements of the matrix [I,, + Y (s)H(s)], which are all
infinite sums, can be first calculated and/or truncated. Then, the exact inverse can be calcu-
lated. Thus, the value of the truncation index for the structure and that for the control can
be separately chosen. This approach also allows for the inclusion of actuator dynamics due
to the presence of the matrix H(s). The following example serves to clarify this method.

Example 13.7.1

Consider the transverse vibrations of a pined—pinned beam with an actuator providing dynamics
(or an impedance), Z, (s), acting at point x,. Also, consider a single displacement-measuring sensor,
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located at x,, so that y(x) is the scalar quantity w(x,, s), i.e., so that the index m = 1. Let ¥;(x)
denote the modes (or eigenfunctions) of the pinned—pinned beam without the actuator attached.
From Equation (13.88), the matrix M becomes the 1 x oo vector

M=[¥(x,) ¥,(x) ---] ¥(x))
Likewise, from Equation (13.82) the matrix R becomes the 1 x oo vector
R=[¥(x)) ¥5(x,) - ]¥(x))

The matrix H(s) in this case is just the scalar element H(s) =Z,(s).
The sensor actuator admittance matrix becomes the scalar element

Y(s)=MA™'RT = i/\l_l(s)llff(x,)
i=1

where the A,(s) are the open-loop system eigenvalues, since A(s) is diagonal in this example (i.e.,
A(s) consists simply of the eigenvalues of the structure).
The response can now be computed from Equation (13.119) to be

(AW (e [ AW ()]

d(s)=| A7"(s) — =
4+ 5 A (W)

It is important to note that the response (or, more exactly, the Laplace transform of the response)
is calculated here by truncating (approximating) the structural dynamics A~'(s) and A~'W(x,)
independently of the control. The actuator representation, Z,(s), is not truncated at all in this
example. This is in contrast to the completely modal approach of the previous section.

As the example illustrates, the modal impedance inversion technique described in this section
reduces the problem of truncation in the presence of control from one of approximating an
infinite-order matrix with a finite-order matrix to that of approximating infinite sums with
partial finite summations.

CHAPTER NOTES

This chapter introduces some methods of approximating distributed-mass models of struc-
tures with lumped-mass models more suitable for digital computing. Section 13.2 introduced
the obvious and popular method of modal truncation.

Modal methods are quite common and can be found in most texts. See, for instance,
Meirovitch (1980, 2001), for a more complete discussion. The Ritz—Galerkin method of
Section 13.3 is again very common and is found in most vibration texts at almost every
level. The common name of Raleigh—Ritz has always been surrounded with a bit of contro-
versy over who actually first penned the method, and this is nicely settled in Leissa (2005).
The finite element method briefly discussed in Section 13.4 is currently the most often used
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and written about method. An excellent short introduction to finite element methods can be
found in Meirovitch (1986). A more comprehensive approach can be found in the excellent
book by Shames and Dym (1985) or the more advanced treatment by Hughes (2000).

Meirovitch’s (1980) book contains a complete treatment of the substructure methods
discussed in Section 13.5, as does the paper by Hale and Meirovitch (1980). The paper
by Craig (1987) reviews the related topic of component mode methods. Sections 13.6 and
13.7, dealing with the topic of truncation and control system design, are taken directly
from the paper by Berkman and Karnopp (1969), which was one of the first papers written
in this area. Many other approaches to this same problem can be found in the literature. The
survey paper by Balas (1982) provides a useful introduction to the topic.
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PROBLEMS

13.1 Estimate the amount of energy neglected in a three-mode approximation of a fixed—
fixed beam of length ¢ in the longitudinal vibration.

13.2 Calculate a three-mode approximation of a clamped square plate using modal
truncation.

13.3 Use trigonometric functions and perform a Ritz—Galerkin approximation for a trans-
versely vibrating beam (undamped) that is clamped at one end and attached to a spring
with constant £ and mass m at the other end. Use three terms. Calculate the natural
frequencies and compare them with those obtained by the method of Section 12.4.

13.4 Compare the finite element model of example 13.4.1 with a three-mode Ritz—Galerkin
model of the same structure. How do the eigenvalues compare with those of the
distributed-parameter model?



356

13.5

13.6

13.7

13.8

13.9

13.10

13.11

APPROXIMATIONS OF DISTRIBUTED-PARAMETER MODELS

Show that the matrices M and K defined by the finite element method of Section 13.4
are both symmetric (in general).

Derive the finite element matrix for a transversely vibrating beam modeled with
three elements.

Consider a three-degree-of-freedom system with mass matrix M =1 and stiffness
matrix

3 -1 0
K=|-1 15 =5
0 -5 5

that corresponds to three masses connected in series by three springs. Define two
substructures by letting substructure 1 be the first two masses and substructure
2 be the remaining mass. Calculate the coefficient matrices of Equation (13.61).
Calculate A(s) for a cantilevered beam in transverse vibration. Use this information
to calculate the matrix A~'.

For problem (13.8), suppose that a disturbance force of sin 2¢ is applied to the
structure at the midpoint and calculate the value of the index n such that e is
negligible. For simplicity, set each of the physical parameter values to unity.
Recalculate the equations of example 13.7.1 using two elements as part of the control,
i.e. z,(s) and z,(s), acting at points x, and x,, respectively.

Derive Equations (13.23) and (13.24) for the case N =2, by substituting the sum
of Equation (3.19) into the Rayleigh quotient and taking the indicated derivatives.
(Hint: Use the fact that L is self-adjoint and write the two derivative equations as
one equation in matrix form.)
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Comments on Units

This text omits units on quantities wherever convenient in order to shorten the presentation
and to allow the reader to focus on the development of ideas and principles. How-
ever, in an application of these principles the proper use of units becomes critical. Both
design and measurement results will be erroneous and could lead to disastrous engineering
decisions if they are based on improper consideration of units. This appendix supplies
some basic information regarding units, which will allow the reader to apply the techniques
presented in the text to real problems.

Beginning physics texts define three fundamental units of length, mass, and time and
consider all other units to be derived from these. In the International System of units, denoted
by SI (from the French ‘Systéme International’), the fundamental units are as follows:

Quantity Unit name Unit abbreviation

Length meter m
Mass kilogram kg
Time second S

These units are chosen as fundamental units because they are permanent and reproducible
quantities.

The United States has historically used length (in inches), time (in seconds), and force
(in pounds) as the fundamental units. The conversion between the US Customary system
of units, as it is called, and the SI units is provided as a standard feature of most scientific
calculators and in many text and notebook covers. Some simple conversions are

1kg =2.2046226221b
45N =11bf
2.54%x102m=1in

As most equipment and machines used in the United States in vibration design, control, and
measurement are manufactured in US Customary units, it is important to be able to convert
between the two systems. This is discussed in detail, with examples, by Thomson (1988).

Vibration with Control D. J. Inman
© 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01051-7
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In vibration analysis, position is measured in units of length in meters (m), velocity in
meters per second (m/s), and acceleration in meters per second squared (m/s*). Since the
basic equation of motion comes from a balance of force, each term in the equation

mx(t) + cx(t) + kx(t) = f(t) (A.1)

must be in units of force. Force is mass times acceleration, kgm/s®. This unit is given
the special name of Newton, abbreviated N (i.e., 1N = 1kgm/s?). The coefficients in
equation (A.1) then must have the following units:

Quantity  Unit symbol  Unit abbreviation

Mass m kg
Damping ¢ kg/s
Stiffness & kg/s*

Note that stiffness may also be expressed in terms of N/m, and damping (viscous friction)
in terms of N m/s, and these units are normally used. Using other formulae and definitions
in the text, the following units and quantities can be derived (some are given special names
because of their usefulness in mechanics):

Quantity Unit name Abbreviation Definition
Force newton N kgm/s’
Velocity — — m/s
Acceleration — — m/s’
Frequency hertz Hz 1/s
Stress pascal Pa N/m?
Work joule J Nm
Power watt W Jis
Area moment of inertia — — m*
Mass moment of inertia — — kg/m’
Density — — kg/m’
Torque — — N/m
Elastic modulus — — Pa

Because vibration measurement instruments and control actuators are often electromechanical
transducers, it is useful to recall some electrical quantities. The fundamental electrical
unit is often taken as the ampere, denoted by A. Units often encountered with transducer
specification are as follows.

Quantity Unit name Abbreviation Definition
Electrical potential ~ volt v W/A
Electrical resistance ohm Q V/A
Capacitance farad F As/V
Magnetic flux weber Wb Vs

Inductance henry H Vs/N
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The gains used in the control formulation for vibration control problems have the units
required to satisfy the units of force when multiplied by the appropriate velocity or displace-
ment term. For instance, the elements of the feedback matrix G, of Equation (7.18) must
have units of stiffness, i.e., N/m.

Often these quantities are too large or too small to be convenient for numerical and
computer work. For instance, a newton, which is about equal to the force exerted in moving
an apple, would be inappropriately small if the vibration problem under study is that of a
large building. The meter, on the other hand, is too large to be used when discussing the
vibration of a compact disc in a stereo system. Hence, it is common to use units with prefixes,
such as the millimeter, which is 10’ m, or the gigapascal, which is 10° Pa. Of course, the
fundamental unit kilogram is 10° g. The following table lists some commonly used prefixes:

Factor 1072 10° 107 107 1072 10® 108 10°
Prefix pico- nano- micro- milli- centi- kilo- mega- giga-
Abbreviation P n M m c k M G

For example, a common rating for a capacitor is microfarads, abbreviated wF.

Many of the experimental results given in the text are discussed in the frequency domain in
terms of magnitude and phase plots. Magnitude plots are often given in logarithmic coordi-
nates. In this situation, the decibel, abbreviated db, is used as the unit of measure. The decibel
is defined in terms of a power ratio of an electrical signal. Power is proportional to the
square of the signal voltage, so that the decibel can be defined as

Vi
1db=20log,, —
210 7

where V|, and V, represent different values of the voltage signal (from an accelerome-
ter, for instance).
The phase is given in terms of either degrees (°) or radians (rad).
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Mathematics

B.1 VECTOR SPACE

Fundamental to the discipline of matrix theory as well as the operator theory of functional
analysis is the definition of a linear space, also called a vector space. A linear space, denoted
by V, is a collection of objects (vectors or functions in the cases of interest here) for which
the following statements hold for all elements x, y, z € V (this denotes that the vectors X, y,
and z are all constrained in the set V) and for any real-valued scalars « and 8:

x+yeV, axeV.

X+y=y+x.

(x+y)+z=x+(y+z).

There exists an element 0 € V such that Ox =0.
There exists an element 1 € V such that 1x =x.
a(Bx) = (ap)x.

(a+ B)x=ax+ Bx.

a(x+y)=ax+ ay.

NN R W=

The examples of linear spaces V used in this text are the set of real vectors of dimension 7,
the set of complex vectors of dimension 7, and the set of functions that are square integrable
in the Lebseque sense.

B.2 RANK

An extremely useful concept in matrix analysis is the idea of rank introduced in Section 3.2.
Let R™*" denote the set of all m x n matrices with m rows and n columns. Consider the
matrix A € R”*"_If the columns of matrix A are considered as vectors, the number of linearly
independent columns is defined as the column rank of matrix A. Likewise, the number of
linearly independent rows of matrix A is called the row rank of A. The row rank of a matrix
and the column rank of the matrix are equal, and this integer is called the rank of matrix A.

Vibration with Control D. J. Inman
© 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01051-7
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The concept of rank is useful in solving equations as well as checking stability of a system
(Chapter 4) or the controllability and observability of a system (Chapter 7). Perhaps the best
way to determine the rank of a matrix is to calculate the singular values of the matrix of
interest (see Section 7.7 and the following comments). The rank of a matrix can be shown
to be equal to the number of nonzero singular values of the matrix. The singular values also
provide a very precise way of investigating the numerical difficulties frequently encountered
in situations where the rank of the matrix is near the desired value. This shows up as very
small but nonzero singular values, as discussed following Equation (8.53).

A simple procedure to calculate the singular values of a matrix A, and hence determine
its rank, is provided by calculating the eigenvalues of the symmetric matrix:

~ 0AT"
Az[AO]

If A€ R™" of rank r, the first r eigenvalues of A are equal to the singular values of A, the
next r eigenvalues are equal to the negative of the singular values of A, and the remaining
eigenvalues of A are zero. The rank of A is thus the number of positive eigenvalues of the
symmetric matrix A.

B.3 INVERSES

For A € R™*" the linear equation
Ax=Db

with det A # 0 has the solution x =A~'b, where A~! denotes the unique inverse of matrix A.
The matrix A~! is the matrix that satisfies

AT'A=AAT" =1,

Next, consider A € R™*". If m > n and if the rank of A is n, then there exists an n x m matrix
A, of rank n such that

ALA = In

where I, denotes the n x n identity matrix. The matrix A; is called the left inverse of A. If,
on the other hand, n > m and the rank of A is m, then there exists an n x m matrix Ap of
rank m, called a right inverse of A, such that

Where 1, denotes the m x m identity matrix. If m =n = rank A, then A is nonsingular and
Ag=A,=A"".

Consider the matrix A”A and note that it is an n x n symmetric matrix. If A is of rank n
(this requires that m > n), then ATA is nonsingular. A solution of

Ax=Db
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for A € R™" can then be calculated by multiplying both sides of this last expression by
(ATA)7'AT, which yields

x=(A"A)"'A"b

The quantity (ATA)~'AT is called the generalized inverse of A, denoted by A.

The matrix A" is also called a pseudoinverse or Moore—Penrose inverse and can be
expressed in terms of a singular-value decomposition (Section 7.7) of matrix A. In the
notation of Section 7.7, any matrix A € R™*" can be expressed in terms of its singular-value
factors as

A=U3V"

where 2 denotes the diagonal matrix of singular values of A and U and V are orthogonal.
For the case where m > n, if the rank of A is r, then the last n — r (or m — r if m < n)
singular values are zero, so that 3, has the partitioned form

3,0
=[]

where the zeros indicate matrices of zeros of the appropriate size and 3, is an r x r diagonal
matrix of the nonzero singular values of A. Define the matrix 3/ by

,_[=10
¥=[%)

The matrix A" can be shown to be
AT=vsUuT

which is the singular-value decomposition of the generalized inverse. This last expression
constitutes a more numerically stable way of calculating the generalized inverse than using
the definition (ATA~1)AT.

The following Moore—Penrose conditions can be stated for the pseudoinverse. If A € R"*"
has the singular-value decomposition A = U3 VT, then AT =V U7 satisfies

AATA=A
ATAAT =AT
(AAT)T = AAT
(ATA)T =A'A

The matrix A" satisfying all four of these conditions is unique. If A has full rank, then A" is
identical to the left (and right) inverse just discussed.

Finally, note that the least-squares solution of the general equation Ax =b calculated by
using the generalized inverse of A is not a solution in the sense that x =A~'b is a solution
in the nonsingular case but is rather a vector x that minimizes the quantity ||Ax — bl|.



364 SUPPLEMENTARY MATHEMATICS

The preceding is a quick summary of material contained in most modern texts on linear
algebra and matrix theory, such as the excellent text by Ortega (1987). Computational issues
and algorithms are discussed in the text by Golub and Van Loan (1983), which also mentions
several convenient software packages. In most cases, the matrix computations required in
the vibration analysis covered in this text can be performed by using standard software
packages, most of which are in the public domain.
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Absorber
tuned, 146, 148
vibration, 24, 145, 146
Accelerometer, 224
Active control, 25, 158
Actuator, 25, 27
Actuator dynamics, 345, 353
Adjoint boundary conditions, 300, 301
Adjoint operator, 299
Admittance matrix, 354
Aliasing, 226, 227
Almost everywhere function, 292
Amplitude, 146, 224
Analysis
design sensitivity, 155
functional, 312, 361
modal
complex exponential method, 235
eigensystem realization analysis (ERA), 238,
240, 244
experimental (EMA), 221, 232
time domain method, 235,
238, 244
substructure, 342
Analyzer, 225-226, 228, 231, 232
Antialiasing filter, 227
Apparent mass, 15
Appended boundaries, 258, 262
Argand plane plot, 17
Assumed mode method, 336
Asymmetric matrix, 47, 90
Asymmetric system, 109

Autocorrelation function, 230-231

Auxiliary problem, 284-285
Average signal, 230

Balanced system
internally, 195
Banach space, 294
Bandwidth, 11
Basis, 60, 66
Beam equations
Euler-Bernoulli, 261
Timoshenko, 260, 261
Beam vibration
layered, 268
Bessel’s inequality, 296
BIBO stability, 135-136
Biharmonic operator, 267
Biorthogonality, 71
Block diagram, 16
Bode magnitude plot, 18
Bode phase plot, 18
Bode plot, 17, 18
Boundary(ies)
appended, 257, 258, 262
divergence, 119
flutter, 119
stability, 118-119
Boundary conditions
adjoint, 300, 301
geometric, 270, 335
natural, 270, 335
Boundary control

Asymptotically stable system, 22, 100-101, bounded function, 134, 299

103-104, 107 bounded-input, bounded-output stability (BIBO), 23,
Asymptotic stability, 103-104, 117 134, 138
Asymptotic state estimator, 186 Bounded operator, 299-300, 303
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Bounded sequence, 303
Bounded stability, 135

Canonical forms, 71
Cauchy sequence, 294
Characteristic equation, 5, 60, 252
Characteristic roots, 57
Characteristic values, 22, 74, 253
Circle fit method, 235
Circulatory matrix, 42, 108
Circulatory system, 43, 107-108
Closed-loop control, 25, 26, 27
Closed-loop stability, 115
Closed-loop system, 25, 27, 169, 171
Coefficient(s)
digital spectral, 227
Fourier, 225, 296, 304, 323
influence
damping, 52
flexibility, 51
inertial, 51
stiffness, 50-51
matrix, 41, 47, 57, 138, 344
modal input, 347
spectral, 225, 227-228
undetermined, method of, 9, 158
Coercive operator, 306
Coherence function, 232
Column rank, 361
Combined dynamical system, 320
Compact operator, 303
Completely continuous operator, 303
Completely state controllable
system, 172
Completeness, 254, 294
Complete set, 296
Complete space, 296
Complex conjugate transpose, 62
Complex modulus, 324, 325
Complex stiffness
Kimball-Lovell, 325
Compliance, 15, 17
Condensation
mass, 163
Conjugate transpose, 62, 65, 349
Connecting nodes, 343
Conservative system
gyroscopic, 43
nongyroscopic
undamped, 63, 128
stability, 101
Consistent mass matrix, 340
Constant
modal, 139, 234
of proportionality, 5, 50-52
time, 160
Constraint damping, 43
Constraint damping matrix, 42, 43

Continuous function, 285, 287, 295, 303

Continuous operator, 303
Control

active, 158-160

boundary, 328

closed-loop, 25, 26, 27, 169

distributed parameter system, 345-352

feedback, 44-49
output, 189-190
stability, 113-116
of states, 26, 44, 175
gain, 26
ideal, 200
independent, 202, 203, 206
modal, 198-201, 202-206, 326-328
modal pole placement, 202
nonmodal distributed, 328-329
open-loop, 25
optimal, 179-185
passive, 158160
structural, 169
vibration, 24, 180, 325
Controllability
modal, 330
Controllability grammian, 193
Controllability matrix, 172
Controllability norm, 174
Control law, 25, 170
Control methods
modal, 198-199, 208, 326
Control spillover, 201, 352
Control system
feedback, 44-49
Control vector, 170
Convergence
norm, 294
strong, 294
Coordinate(s)
decoupled, 130, 133, 201
modal, 130, 134, 199, 202
natural, 130
normal, 130, 136
vector, 128
Cost function, 148, 149, 152
Courant minimax principle, 307
Critical damping curve, 81
Critically damped response, 8
Critically damped structure, 7-8, 310
Critically damped system, 8, 77
Cross-correlation function, 231
Cross-spectral density, 231
Curve(s)
critical damping, 81
magnification, 11, 12, 233
transmissibility, 146, 147

Damped gyroscopic system, 106—-107
Damped membrane equation, 270
Damped natural frequency, 6, 233
Damped nongyroscopic system, 43



Damped plate equation, 270
Damped structure

critically, 7-8, 310

mixed, 311
Damped system

critically, , 8, 77

pervasively, 107

stability, 22-24
Damper, 4-8, 9
Damping

constraint, 43, 71

extensional, 325

external, 43, 271

internal, 50, 271

layer

free, 325
unconstrained, 325

mixed, 78, 311, 317

Rayleigh, 75

semidefinite, 103—104, 107

viscous, 270-271
Damping curve

critical, 81
Damping influence coefficient, 52
Damping matrix, 42, 52, 75, 81, 103, 155
Damping operator, 271
Damping ratio(s)

modal, 76, 139, 154, 155
Damping ratio matrix, 153
Dashpot, 5, 80, 145
Decade, 18, 222
Decay envelope, 19
Decay rate, 160
Decibel, 18, 359
Decoupled coordinates, 130, 204
Decrement

logarithmic, 19, 20, 160
Definiteness of a matrix, 42, 46, 78
Deflection

static, 2
Degeneracy, 73
Degenerate eigenvector, 119
Degenerate lambda matrix, 75, 119
Delta

Kronecker, 61, 62
Delta function

Dirac, 12, 285, 317
Density

cross-spectral, 231
Dependent eigenvector, 58, 71, 104
Dependent vectors, 60, 69
Design

modal, 318-319

vibration, 66, 148, 357
Design sensitivity, 155-157
Determinant

matrix, 59, 279
DFT, 225
Diagonal matrix, 61-62, 71-72, 153, 199
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Digital Fourier transform (DFT), 225, 227, 228, 238

Digital spectral coefficients, 227
Dimension

matrix, 40, 135, 202, 353
Dirac delta function, 12, 285
Direct method of Lyapunov, 103, 105, 328
Discriminant, 5, 310
Displacement

initial, 3, 41, 131, 255
Displacement vector

nodal, 47, 162, 339
Distributed control

nonmodal, 328-329
Distributed parameter system, 271
Divergence boundary, 119
Divergent instability, 22, 23
Domain, 235-241
Dot product, 40, 60
Driving forces, 23, 223
Driving frequency, 17, 136
Dynamic stiffness, 15
Dynamic stiffness matrix, 353

Eigenfunction(s)

of a beam, 253, 276, 280, 354

normalized, 278, 280

orthonormal, 303, 306
Eigenfunction expansion, 278, 299, 303
Eigensolution

sensitivity, 155, 157, 240, 320
Eigenstructure, 177, 179, 254, 303
Eigenstructure assignment, 176-179

Eigensystem realization algorithm (ERA), 238,

240, 244

Eigenvalue(s)

of a beam, 277, 280

estimation of, 81-88, 306-307

inequalities for, 83

invariant, 61

of a matrix, 63

membrane, 309

of a system, 83, 84, 101, 237, 253
Eigenvalue placement, 158
Eigenvalue problem

matrix, 57, 58, 323
Eigenvector(s)

degenerate, 119

dependent, 69, 72, 235

left, 71, 87

of a matrix, 58, 61, 62, 64, 66, 75, 76, 103

normalized, 62, 70, 76, 130, 157, 196
perturbation of, 87, 93, 155
right, 71, 75, 95
of a system, 128, 235
Elastic restoring forces, 1
Electromagnetic shaker, 223
Element stiffness matrix, 339
EMA, 221
Enclosure theorems, 308-309
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Envelope
decay, 19
Equality, 297, 309
Equation
beam
characteristic, 321, 323
damped membrane, 270
damped plate, 270
Euler-Bernoulli, 261
Lagrange’s, 40, 338
linear, 88, 117, 205, 223, 228, 362, 542
Lyapunov, 116, 184
nonlinear, 52
Riccati, 181
Timoshenko, 256, 257, 260
Equilibrium
stable, 99, 103
ERA, 238
Error matrix, 84
Estimate
eigenvalue, 81-88, 306-307
natural frequency, 2, 17, 21, 25, 65, 81, 209,
222,233,317
Estimated state vector, 186, 189
Estimator
asymptotic state, 186
open-loop, 186
Euler—Bernoulli beam equations, 261
Euler’s formulas, 4, 67, 102
Excitation frequency, 10
Expansion theorem, 69, 296-297
Experimental modal analysis (EMA), 138, 142, 221, 232
Extensional damping, 325
External damping, 43, 270-271
External forces, 41, 43

Fast Fourier transform (FFT), 225, 228
Feedback
output, 114, 170, 176, 177, 346, 350
position, 208-211
state, 26, 44, 175, 176, 186, 190, 346
state variable, 170, 176, 202
velocity, 44, 49, 170, 177, 202, 204
Feedback control
output, 25, 189, 346, 350
stability, 113-116
of states, 44, 346
Feedback control system, 44—49
Feedback gain matrix, 175, 176
FEM, 337
FFT, 225, 228
Filter(s)
antialiasing, 227
Kalman, 190
Finite element, 161-162
Finite element method (FEM), 337-342
First mode shape, 68
Flexibility influence coefficient, 51
Flutter boundary, 119

Flutter instability, 22
Follower force, 48
Force(s)
driving, 9, 14, 23, 137, 146, 147, 222, 223, 233
elastic restoring, 1
external, 8, 41, 43, 123, 136
follower, 48
Forced response
stability, 23, 134-136
Force vector
nodal, 339
Formally self-adjoint operator, 300
Fourier coefficient, 225, 296, 304
Fourier series, 225, 254, 296
Fourier transform
digital (DFT), 225, 228, 238
fast, 225, 228
Free layer damping, 325
Frequency(ies)
of applied force, 9
driving, 9, 11, 17, 49, 81, 136, 147
excitation, 10
modal, 76, 91, 204
natural
damped, 6, 75
sensitivity, 155
undamped, 76, 137, 316, 317
Nyquist, 227
Frequency domain methods, 14, 235, 238
Frequency methods, 14-19
Frequency response, 16-17, 20, 138-140, 232-233
Frequency response function (FRF), 16, 17, 233
Frequency of vibration
natural, 63
FRF, 16
Function(s)
almost everywhere, 292, 293
autocorrelation, 230-231
bounded, 254
coherence, 232
continuous, 285, 303
cost, 148, 152, 180, 185
cross-correlation, 231
Dirac delta, 12, 285, 317
frequency response (FRF), 16, 17, 21, 233
Green'’s, 284-288, 321
influence, 285
interpolation, 339
Lyapunov, 101, 328
objective, 148, 149, 151
piecewise continuous, 254, 287
shape, 339, 342
square integrable, 292
step, 12, 13, 24
transfer, 14-19, 191
unit impulse, 12
window, 228
Functional analysis, 306



Gain, 26, 44, 175, 178
Gain control, 26
Generalized Hankel matrix, 239
Generalized infinite matrix, 323
Generalized inverse
left, 177
right, 178
Geometric boundary conditions, 270, 335
Gerschgorin circles, 85
Global stiffness matrix, 342
Grammian
controllability, 193
observability, 193, 197
Greatest lower bound, 306
Green’s function, 284-288, 321
Grid, 338
Guyan reduction, 164
Gyroscope, 43, 47
Gyroscopic matrix, 42
Gyroscopic system
conservative, 47, 106
damped, 106-107
stability, 104-106
undamped, 43, 104, 107

Half-power points, 21, 233
Hammer

impact, 223-224

impulse, 12
Hankel matrix, 239, 240
Hanning window, 228, 229
Harmonic motion

simple, 1
Hilbert space

separable, 295
Homogeneous solution, 9, 123, 133
Hurwitz matrix, 117, 118
Hurwitz test, 117
Hybrid system, 320

Ibrahim time domain (ITD)
method, 235
Ideal control, 200
Identity matrix, 42, 44, 125, 240, 349
Impact hammer, 223, 224
Impedance
modal, 346
Impedance matrix, 348, 350
Impulse function
unit, 12
Impulse hammer, 223
Impulse response, 13
Inconsistent mass matrix, 162, 340
Indefinite matrix, 42, 78, 81, 161
Independent control, 202, 203, 206
Independent vectors, 60
Inertance, 15, 21
Inertial influence coefficient, 51
Inertia matrix, 41
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Infinite matrix
generalized, 323
Influence coefficient(s)
damping, 52
flexibility, 51
inertial, 51
stiffness, 50
Influence function, 285
Initial displacement, 3, 41, 131, 255
Initial velocity, 3, 6, 13
Inner product, 40, 292-293, 295
Input coefficients
modal, 347
Input matrix, 44, 45
Instability
divergent, 22, 23
flutter, 22, 23, 119
Integral operator, 287, 303
Integration
Lebesgue, 292-293
Riemann, 291-292
Internal damping, 50, 271
Internally balanced system, 195
Interpolation function, 339
Invariance, 61, 73
Invariant eigenvalues, 61
Inverse
generalized
left, 177
right, 178
left, 362
matrix, 45
Moore—Penrose, 363
operator, 284, 287, 298
product of square matrices, 45
right, 362
Inverse Laplace transform, 26, 124
Inverse matrix, 353
Inverse problem(s), 221, 222
Irreducible realization, 191, 192
ITD, 235

Jordan’s theorem, 72

Kalman filters, 190

Kimball-Lovell complex stiffness, 325
Kronecker delta, 61, 62

KTC theorem, 107, 110

Lagrange multipliers, 148
Lagrange’s equations, 40, 338,
341, 344
Lagrange stability, 135
Lag value, 231
Lambda matrix
degenerate, 75
simple, 75
Laplace operator, 264

369



370 INDEX

Laplace transform

inverse, 26, 124, 191
Latent roots, 74, 236
Latent vector, 74-75
Law

control, 25-26, 170, 176, 182
Layer damping

free, 325

unconstrained, 325
Layered beam vibrations, 268, 326
Layered structure, 271, 325
Leakage, 228
Lebesgue integration, 292-293
Left eigenvector, 71
Left generalized inverse, 177
Left inverse, 362
Left singular vectors, 193
Linear equation, 52, 88, 117, 205, 228
Linear functional, 299
Linear independence, 60, 292
Linearly independent vectors, 60
Linear regulator problem, 180, 181
Linear space, 292, 293, 295
Linear spring, 27, 28, 262
Logarithmic decrement, 19-20, 160
Longitudinal vibration, 256, 271, 285
Loss factor, 12, 325
Luenberger observer, 190
Lumped-parameter system, 39, 123-142
Lyapunov equation, 116, 184
Lyapunov function, 101, 328
Lyapunov stability, 99-101

Magnification curve, 11, 12, 146, 233
Magnification factor, 11
Marginal stability, 120
Markov parameters, 239
Mass
apparent, 15
Mass condensation, 163
Mass loading, 223
Mass matrix
consistent, 340
inconsistent, 162, 340
Mass operator, 271
Matrix(es)
addition, 59, 140
admittance, 354
asymmetric, 41, 90, 108
canonical, 71-23
circulatory, 42
column rank, 361
constraint damping, 42, 43, 71
controllability, 172
damping, 41, 42, 46, 81, 93, 153
damping ratio, 153
definiteness, 42, 46
determinant, 263
diagonal, 61-62, 71, 127

dimension, 39, 40, 135
eigenvalue, 57, 58, 64
eigenvector, 278
error, 84
feedback gain, 44, 175, 176, 179
generalized infinite, 323
generalized inverse, 177-178, 363
gyroscopic, 42
Hankel

generalized, 239
Hurwitz, 117
identity, 42, 44, 58, 62, 207, 362
impedance, 348, 350
indefinite, 42, 81, 117
inertia, 41
input, 44, 45, 190
inverse

Moore—Penrose, 363
lambda, 75-76, 133
mass

consistent, 340

inconsistent, 162, 340
modal, 75, 128, 133, 343
negative definite, 42, 104, 185
negative semidefinite, 42
nonnegative definite, 42
nonsingular, 61, 72, 191, 199
normal, 68, 75, 76, 130
null space, 103, 297
observability, 173, 174
orthogonal, 62, 70, 76, 130, 181, 193
orthogonally similar, 62
perturbation of, 86, 87, 206
positive definite, 42, 43, 46, 64, 89, 107,

112, 194

positive semidefinite, 42, 46, 117
principle minor, 66, 154
product of, 45, 78, 89, 108
pseudoinverse, 363
pseudosymmetric, 108, 109
rank, 60, 104, 110, 135, 193, 361
receptance, 138, 139, 140, 233, 241
residue, 139
resolvent, 124
Riccati, 181
row rank, 361
sign variable, 42
similar, 62
similarity transformation, 61, 71, 73, 164
singular, 91
skew symmetric, 41, 42, 43, 46
square, 40, 41, 58, 125, 177, 343
square root of, 64, 71, 89, 108
state, 44, 74, 90, 135, 196
state transition, 127
stiffness

dynamic, 15, 353

element, 339

global, 342



symmetric, 41, 42, 65, 67, 71, 83, 84, 86, 156, 302, 362

symmetrizable, 108
times a scalar, 42, 58, 59
trace, 73
transpose, 41, 62, 108
uncertainty in, 206, 207
unperturbed, 86
upper triangular, 72, 89
viscous damping, 41
weighting, 62, 180, 182, 214
Matrix coefficients, 41, 52, 138
Matrix eigenvalue problem, 57, 58, 323
Matrix exponential, 125
Matrix Riccati equation, 181
MDOEF system, 39
Mean
signal, 230
Mean square value
root, 229, 230
Membrane
damped, 270
eigenvalue, 309
Mesh, 338
MIMO system, 192, 204
Minimal realization, 191
Minimum time problem, 180
Mixed damped structure, 311
Mixed damping, 78
Mobility, 15, 17, 21
Modal analysis
complex exponential method, 235

eigensystem realization algorithm (ERA), 238, 240,

244, 247

experimental (EMA), 221, 243

time domain method, 235, 238
Modal analysis techniques, 19
Modal constant, 139, 234
Modal control, 198-201, 202-206,

326-328
Modal controllability, 330
Modal control methods, 198
Modal coordinates, 130, 200, 202, 346
Modal damping ratio(s), 76
Modal design criteria, 318-319
Modal expansion, 176, 296, 304, 322
Modal frequency, 138, 232-235
Modal impedance(s), 346
Modal input coefficients, 347
Modal matrix, 75, 128, 129, 132,
173, 175

Modal model

truncated, 335
Modal observed, 173, 174
Modal parameters, 153, 240
Modal participation factors, 318, 323
Modal pole placement control, 202
Modal testing, 221-245
Modal time to peak, 319
Modal truncation, 333-335
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Mode(s)

normal, 68, 75, 76, 153, 281

rigid body, 102, 130, 266

truncated, 334, 335, 345, 351
Model(s)

modal, 50, 241, 335

physical, 50, 241

reduced-order (ROM)

internally balanced, 196

response, 138, 241

spatial, 241

truncated, 345, 351
Model reduction, 161-164
Mode shape(s)

first, 68

sensitivity of, 255
Mode(s) of vibration

natural, 253
Modulus

complex, 324
Monotonicity principle, 308
Monotonicity theorem

second, 309
Moore—Penrose inverse, 363
Motion

periodic, 2, 4, 9

simple harmonic, 1
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Multiple degree of freedom (MDOF) system, 52, 57, 58,

93, 101, 160
Multiple-input, multiple-output system
(MIMO), 192

Natural boundary conditions, 270, 335
Natural coordinates, 130
Natural frequency(ies)
damped, 6, 75, 233
sensitivity, 155, 157, 159, 166, 222
undamped, 10, 20, 67, 76, 153
Natural frequency of vibrations, 63
Natural mode(s) of vibration, 253

Negative definite matrix, 42, 104, 105, 185

Negative semidefinite matrix, 42
Neutral plane, 267
Nodal displacement vector, 339
Nodal force vector, 339
Node(s)

connecting, 343
Nongyroscopic system

damped, 43

undamped conservative, 158
Nonhomogeneous response, 132
Nonhomogeneous system, 123
Nonlinear equation, 52
Nonlinear programming, 148
Nonlinear spring, 27, 28
Nonmodal distributed control, 328-329
Nonnegative definite matrix, 42
Nonsingular matrix, 61, 72, 73, 191, 199
Nontrivial solution, 59, 251
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Norm

controllability, 174, 193

of a matrix, 84
Normal coordinates, 130
Normalization, 278, 317
Normalized eigenfunction, 278,

280, 317

Normalized eigenvector, 62, 70, 130, 157
Normalized vector, 130
Normal mode, 68, 75, 76, 281
Normal mode system, 75, 76, 281
Norm convergence, 294
Normed linear space, 293, 294, 295
Null space, 103-104, 297
Nyquist frequency, 227
Nyquist plot, 17, 18, 235

Objective function, 148, 151
Observability, 171-176
Observability grammian, 193
Observability matrix, 173, 174, 240
Observation spillover, 201, 352
Observer

Luenberger, 190

state, 186, 187, 189
One-to-one operator, 298
Open-loop control, 25, 26
Open-loop estimator, 186
Open-loop system, 25, 158, 169,

203, 353

Operator

adjoint, 299

biharmonic, 267

bounded, 298, 299

coercive, 306

compact, 303-304

continuous

completely, 303

damping, 271

equality, 297

formally self-adjoint, 300

integral, 287, 298, 303

inverse, 284, 298

Laplace, 264

linear functional, 299

mass, 271

one-to-one, 298

positive definite, 302, 315

positive semidefinite, 42, 302

self-adjoint, 300, 301, 303

stiffness, 256, 271, 279
Optimal control, 179-185
Optimization, 148-153
Orthogonality, 71, 253, 293
Orthogonally similar matrix, 62
Orthogonal matrix, 70, 76, 89, 130, 181
Orthogonal vectors, 60, 82, 293
Orthonormal eigenfunction, 303
Orthonormal vectors, 61, 67

Oscillation
output feedback, 114
output feedback control, 189, 346
period of, 14, 19
Overdamped response, 7
Overdamped structure, 7, 8, 78, 310, 311
Overdamped system, 8, 78
Overshoot, 13, 206, 326

Parseval’s equality, 297
Participation factors

modal, 318
Particular solution, 9, 131
Passive control, 25-26, 158, 324-326
Passive system, 43
Peak-picking

quadrature, 21, 22
Peak-picking method, 21, 233
Peak resonance, 11
Peak time, 13, 319
Performance index, 179, 180
Performance robustness, 206
Period of oscillation, 14, 19
Periodic motion, 2, 4, 9
Perturbed matrix, 86
Pervasively damped system, 107
Pfliiger’s rod, 47
Phase shift, 2, 9, 17, 318
Physical model, 50, 241
Piecewise continuous function, 287
Piezoelectric polymer, 328
Plant, 16, 26, 35, 169
Plate vibrations, 264, 270
Plot

Argand plane, 17

Bode

magnitude, 21
phase, 18

Nyquist, 17, 18, 235
Pole(s), 15, 16, 216
Pole placement, 158
Position feedback, 49, 208-211

Positive definite matrix, 65, 89, 107, 112, 113, 193

Positive definite operator, 303
Positive semidefinite matrix, 117

Positive semidefinite operator, 42, 46, 83, 102,

105, 302

Power spectral density (PSD), 231
Principle

Courant minimax, 307

monotonicity, 308, 309

superposition, 123
Principle minor of a matrix, 65, 117
Proportionally damped system, 107
PSD, 231
Pseudoconservative system, 108
Pseudoinverse, 363
Pseudosymmetric Matrix, 108
Pseudosymmetric system, 108



Quadratic form of a matrix, 42, 46, 104
Quadrature peak picking, 21, 22
Q value, 12

Range, 27, 152, 224, 297
Range space, 297
Rank
column, 361
matrix, 60, 104, 193, 361
row, 361
Ratio
damping
modal, 76, 139, 153, 166
transmissibility, 146, 147
Rayleigh damping, 75
Rayleigh quotient, 82, 306, 307, 335, 337
Realization
irreducible, 191, 192
minimal, 191
system, 190
Reanalysis, 155
Receptance, 138, 139, 233-234, 235, 241
Receptance matrix, 138, 140, 241
Reciprocity, 139
Redesign, 155-157
Reduced order model (ROM)
internally balanced, 196
Reduction
Guyan, 164, 192
model, 161-164
Relative stability, 160, 161
Residual, 334
Residue, 139
Residue matrix, 139
Resolvent matrix, 124, 127
Resonance
peak, 11
Resonance sharpness factor, 12
Resonance testing, 19
Response
critically damped, 8
forced, 8-14, 123-142, 315-331
frequency, 16, 17, 21, 138-140
impulse, 13, 14
nonhomogeneous, 123
overdamped, 7
speed of, 160
steady state, 9, 13, 17, 24
total, 133, 150
total time, 10, 251
transient, 9, 13, 14, 123, 324
underdamped, 6
Response bounds, 136-137
Response model, 138, 140, 241
Riccati equation, 181
Riccati matrix, 181
Riemann integration, 291
Riemann-Lebesgue lemma, 296
Riesz—Fischer theorem, 296
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Riesz representation theorem, 299-300
Right eigenvector, 71
Right generalized inverse, 178
Right inverse, 362
Right singular vectors, 193
Rigid body mode, 102
Rise time, 160
Ritz—Galerkin approximation, 335-337
Robustness
performance, 206
stability, 206
Robust system, 206
ROM, 195
Root mean square value, 229, 230
Roots
characteristic, 57
latent, 74
Row rank, 361

Sampling theorem, 227
SDOF, 1, 233
Second method of Lyapunov, 101, 102
Second monotonicity theorem, 309
Self-adjoint operator

formally, 300
Self excited vibrations, 22, 35

Semidefinite damping, 103—-104, 107, 113, 119, 172

Sensitivity

design, 155

eigensolution, 155

of mode shapes, 155

of natural frequency, 155, 157
Separable Hilbert space, 295
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Separation of variables, 250, 254, 269-270, 271, 276,

278, 280, 282, 284, 291, 320, 336
Separation theorem
Sturmian, 83
Settling time, 14, 24, 160, 206
Shaft vibration, 257
Shannon’s sampling theorem, 227
Shape
mode
first, 68
sensitivity of, 155, 157
Shape function, 339, 340, 342
Shift, 61
Signal
average, 229-230
stationary, 229
Signal conditioner, 224
Signal mean, 230
Sign variable matrix, 42
Similar matrix, 61-62, 64, 72
Similarity transform, 61, 73

Similarity transformation matrix, 61, 71, 73, 76, 108, 162

Simple harmonic motion, 1
Simple lambda matrix, 74-75, 93, 133
Single degree of freedom (SDOF), 1
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Single-input, single-output system (SISO), 160, 186, 190,
204, 210
Singular matrix, 45, 46, 59, 63, 91, 102, 110, 115, 193,
194, 362
Singular-value decomposition (SVD), 194
Singular values, 193-195, 197, 208, 215, 240, 362-363
Singular vectors
left, 193
right, 193
SISO system, 204, 210
Skew-symmetric matrix, 41, 46, 48
Solution
homogeneous, 9, 115, 123, 129, 133, 185
nontrivial, 59, 251, 252, 266
particular, 9-10, 30, 131, 133, 134
trivial, 5, 251, 280
Space
Banach, 294
complete, 296
Hilbert, 291, 295
linear
complete, 294
normed, 293-294
null, 103-104, 107, 109, 297, 298, 303
range, 297
state, 44, 116, 123, 198, 329
vector, 40, 292, 295, 361
Span, 60
Spanning set, 295
Spatial model, 241
Spectral coefficient, 225, 227, 228
Speed of response, 160, 326
Spillover
control, 201, 352
observation, 201, 352
Spring
linear, 27-28, 262, 292, 293, 294, 297, 361
nonlinear, 27-28
Spring—mass—damper system, 4-5, 8, 9, 28
Spring-mass system, 1, 81, 146, 244, 321
Square integrable function, 295
Square matrix, 40, 41, 58, 61, 72, 108, 109, 343
Square root of a matrix, 78
Stability
asymptotic, 103-104, 114, 117, 172, 184,
185, 186
bounded, 135
bounded-input, bounded-output (BIBO), 23,
134-135
closed loop, 210
conservative system, 101
damped system, 22
forced response, 23, 134
gyroscopic system, 104
Lagrange, 24, 135, 138
Lyapunov, 24, 99, 100
marginal, 22
relative, 160, 161
state space, 116

Stability boundary(ies), 118, 119
Stability margin, 161
Stability robustness, 206-208
Stable equilibrium, 99, 103
Stable system
marginally, 22, 120
State feedback, 26, 44, 175-176, 181, 182, 186, 187,
189-190, 200, 326
State matrix, 44
State observer, 186, 187, 189
State space, 44, 116, 123, 198, 329
State space stability, 116
State transition matrix, 127
State variable feedback, 170, 176, 190, 202, 207
State vector
estimated, 186-187, 189
Static deflection, 2, 24, 150, 284
Stationary signal, 229
Steady state response, 9-10, 13, 14, 16, 17, 24, 26, 127,
137-138, 146, 147, 148, 150, 160, 270, 275
Step function, 12, 13, 24
Stiffness
dynamic, 209, 235-236, 244, 342, 343, 353
Kimball-Lovell complex, 325
Stiffness influence coefficient, 50
Stiffness matrix
dynamic, 353
element, 339
global, 342
Stiffness operator, 256, 271, 336
Stinger, 223
Strain gauge, 224-225
Strong convergence, 294
Structural control, 1, 169, 208, 345, 353
Structural modification, 155, 158
Structure
critically damped, 8, 311
layered, 268, 325
mixed damped, 311, 317
overdamped, 8
underdamped, 7, 234
Sturmian separation theorem, 83
Subspace, 297
Substructure analysis, 342
Superposition principle, 123
SVD, 194
Symmetric matrix, 42, 64, 67
Symmetrizable matrix, 112
Symmetrizable system, 108, 110, 119
System(s)
asymmetric, 109,
asymptotically stable, 100-101, 103, 107, 109, 117,
120, 185, 193, 194, 207-208
balanced
internally, 195
circulatory, 43, 107-108
closed-loop, 25, 169
combined dynamical, 320
completely state controllable, 172



conservative

gyroscopic, 43

undamped nongyroscopic, 63, 128
control, 44, 169
critically damped, 8, 77, 80
distributed parameter, 249
eigenvalue, 140, 343, 354
eigenvector, 74, 139-140, 236, 237
feedback control, 44
gyroscopic

conservative, 47, 106

damped, 45, 106, 119
hybrid, 320
internally balanced, 195
lumped parameter, 39, 123
modal coordinated, 199, 348

multiple degree of freedom (MDOF), 39, 52, 54, 57,
58, 79, 80, 93, 101, 138, 153, 160, 233
multiple-input, multiple-output (MIMO), 169, 192

nongyroscopic

damped, 43, 128, 132

undamped

conservative, 63

nonhomogeneous, 123
normal mode, 75, 76, 281
open-loop, 25, 115, 158, 169, 203, 353, 354
overdamped, 7, 8, 78
passive, 43
pervasively damped, 107
proportionally damped, 75, 107
pseudoconservative, 108
pseudosymmetric, 108, 109
robust, 206
single degree of freedom (SDOF), 1 passim
single-input, single-output (SISO), 160, 186
spring-mass, 1
spring—mass—damper, 4
stable

marginally, 22, 120
symmetrizable, 108, 109
undamped gyroscopic, 43, 104-105, 107
underdamped, 7, 12, 13, 14, 19, 30, 32, 78,

91, 136

System identification theory, 222
System realization, 190

Test
Hurwitz, 117
Testing
modal, 221
resonance, 11, 19
vibration, 1, 15, 18, 221
Theorems
enclosure, 308-309
expansion, 69, 296
Jordan’s, 72
KTC, 107, 110
Riesz—Fischer, 296
Riesz representation, 299, 300

INDEX

second monotonicity, 309
separation, 83, 187
Shannon’s sampling, 227
Sturmian separation, 83
3dB down point, 11, 21
Time
modal, 319
peak, 13, 24
rise, 160
settling, 14, 24, 160, 206
Time constant, 160
Timoshenko beam equations, 260
Torsional vibration, 257
Total response, 123, 133, 160
Total time response, 10
Trace of matrix, 73
Tracking problem, 180
Transducer, 222
Transfer function, 14, 191
Transform
Fourier
digital, 225, 226, 227, 228, 238
fast (FFT), 225, 228
Laplace
inverse, 26, 124, 125, 127, 191, 283
Transformation
similarity, 61, 71, 73, 76, 108, 194
Transform methods, 282
Transient response, 9, 13—14, 133, 160, 324
Transition matrix
state, 127
Transmissibility, 146
Transmissibility curves, 146
Transmissibility ratio, 146
Transpose
conjugate
complex, 4, 6, 22, 62, 75, 293, 311
of a matrix, 41, 175
of a vector, 40, 75
Transverse vibration, 260, 267, 268, 328
Trial functions, 335-337
Triangle inequality, 293, 294
Trivial solution, 5, 251-252, 280
Truncated modal model, 335
Truncated modes, 334, 345
Tuned absorber, 146, 148

Unconstrained layer damping, 325

Undamped gyroscopic system, 43, 104, 105, 107
Undamped natural frequency, 10, 20, 78, 153

Undamped nongyroscopic
conservative system, 63, 128

Underdamped response, 6

Underdamped structure, 12, 241
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Underdamped system, 7, 13, 14, 19, 30, 32, 33, 78, 91

Undetermined coefficients
method of, 9

Uniformly bounded sequence, 303

Unit impulse function, 12
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Units, 357 Velocity
Unit vector, 60, 61 initial, 3, 6, 13, 41, 98, 129, 283
Unperturbed matrix, 86 Velocity feedback, 44, 49, 326
Upper triangular matrix, 72, 89 Vibration(s)
beam
Variation of parameters, 125, 126, 130 layered, 268, 326
Vector(s) control, 24, 180, 215, 325, 328, 359
basis, 60 design, 66, 145, 148, 180, 272, 331, 357

longitudinal, 256, 260, 271, 276, 282
membrane, 265, 270

complete set, 66
conjugate transpose, 62, 65

control, 170 modes, 68, 253, 316, 330
coordinates, 128 natural frequencies, 64, 71, 83, 158, 253
dependent, 60 natural modes, 253
independent, 60, 66, 71 plate, 264, 270
latent, 74, 75 self-excited, 22, 35
linearly independent, 60, 62, 64 shaft, 257
nodal displacement, 339 string, 249
nodal force, 339 torsional, 257
normalized, 62, 68, 70, 76, 83 transverse, 260, 267, 268, 328
orthogonal, 60 Vibration absorber, 24, 145, 146, 147, 148, 158, 209
orthonormal, 61, 67, 68 Vibration isolation, 145, 146, 147
singular Vibration testing, 221
left, 193 Viscous damping, 270
right, 193 Viscous damping matrix, 41
state
estimated, 185-190 Weighting matrices, 180, 182, 183, 214
transpose, 40, 75 Window
unit, 60-61, 258, 284 Hanning, 228, 229

Vector space, 40, 292, 295, 361 Window function, 228
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