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Vibration Analysis of a Rectangular
Composite Plate in Contact with Fluid

In this paper, modal analysis of the fluid-structure
interaction has been investigated. Using classical laminated
plate theory, a closed form solution for natural frequencies
of FSI is extracted. For fluid, homogenous, inviscid and
irrotational fluid flow is assumed. Then, a combined
governing equation for the plate-fluid system is derived. In
order to validate the equations and results, they are
compared with results reported in other literatures. The
vibration behavior for different plate length to width ratios
H. Rahmaneif§are also studied. For the forced vibration, three cases;
MSc. Graduate @ harmonic point load, distributed loading and step pressure
loading; are performed and for each case, the time response
of plate-fluid system is obtained. Also, frequency response
of plate-fluid system has been achieved for harmonic load.
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1 Introduction

Obtaining the natural frequencies and mode shapes of a structure like beam, plate, etc. due to
the presence of fluid is generally known as the fluid-structure interaction (FSI) problem. These
problems are covering a broad area of applications in engineering and marine industries, such
as the vibration problem of offshores, ship structures, reservoirs, dams and signaling problems
of submarines and torpedoes. Nowadays, using the composite plates comparing to other metal
alloys, in applications like; civil, astronautic industries, etc. because of the better strength to
weight ratio of them is increasingly growing. Thus, a good understanding of the dynamic
interaction between an elastic plate and fluid is necessary. In addition, the existence of fluid
around the structure causes the kinetic energy to increase considerably. Consequently, the
natural frequencies of the plate coupled with fluid significantly decrease in comparison with
those of the plate in the air. Therefore, it is essential to find the natural frequencies of the
structures immersed in or in contact with fluid, since the natural frequencies in contact with
fluid are different from those in air. Both analytical and numerical methods have been used for
FSI problems in literatures. The analytic approaches are restricted to some special cases, and
the numerical methods, such as fluid finite element method (FFEM) and boundary element
method (BEM) could be used for general cases.
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However, the FFEM and BEM naturally require a huge time for modeling and computations,
in addition, there is some difficulties to explain the qualitative effects of fluid. The analytic
approach for the addressed problem was initiated by Rayleigh [1] at 1877. He calculated the
increase of inertia of a rigid disc vibrating in a circular aperture. Haddara and Cao [2] derived
and approximate expression of the modal added masses for cantilever rectangular plate
horizontally submerged in fluid, using analytical and experimental data. They also studied the
effects of the boundary conditions and submergence depth. Watanabe et al. [3] studied the
forced vibration of floating rectangular plates under the moving loads using the FEM. They
reported that the depth of fluid has a considerable effect on dynamical response of plate. Zhou
and Cheung [4] investigated vibration characteristic of a rectangular plate in contact with fluid
on one side, employing the Rayleigh-Ritz approach. In their study, the fluid is filled in a rigid
rectangular domain, which has a free surface and is infinite in the length direction. Bermudez
et al. [5] using the FEM, studied the free and forced vibration of rectangular plate on
incompressible finite fluid. Kerboua and Lakis [6] proposed a semi-analytical method for
vibration of pontoon-type plates affected by fluid flow.

First, a solution was initiated by an analytical implicit response for fluid problem; then,
another solution for the vibration of plate was found using FEM and final equations was
combined as an eigenvalue problem. Khorshidi [7, 8], addressed the problem of linear free
vibration of a rectangular thin plate partially in contact with fluid. Natural frequencies and wet
mode shapes of the plate coupled with fluid, using the Rayleigh-Ritz method was the results of
his works. Hosseini-Hashemi et al. [9] proposed a semi-analytical solution for the free vibration
of multi-span, moderately thick, rectangular plate. In their work, the resulting Galerkin equation
was solved by application of the Rayleigh-Ritz minimization method. Hosseini-Hashemi et al.
[10] studied the free vibration of a rectangular submerging plate for six different boundary
conditions. Bakhsheshi and Khorshidi [11], studied the free vibration of a FGM rectangular
plate, partially in contact with fluid. Their work was based on the Rayleigh-Ritz method.
Rezvaani et al. [12] studied the fluid virtual added mass effect on the natural frequencies of the
plate. First, they addressed the problem, analytically, and then, they used some experimental
tests and software simulations in ANSYS for validation of their results. Robinson and Palmer
[13] performed vibration analysis for a rectangular plate floating on a body of fluid. They
derived the transfer function for a harmonic point load, but their analysis is valid only for a
finite number of lower frequency modes.

In this paper, free and forced vibration of the rectangular composite CLPT plate, floating on
the surface of an inviscid fluid; using the modal analysis expansion method, has been
investigated and the natural frequencies and mode shapes of the FSI for the simply supported
edges has been extracted. The previous similar works have not focused on the composite plate;
therefore, the modal expansion method used for the forced vibration analysis, has been used for
the first time here. Similar works concerning the FSI problem have differences in both modeling
and solution methodology. Some of the similar works have considered an infinite physical
domain for the fluid, while in this paper we considered limited domains. Hence, similar works
used different methods to find the solutions, like as Fourier transformation method, etc. while
we used the method of modal expansion. The analysis presented in this paper is of a FSI
problem in which the plate and the fluid modes are compatible. First, a rectangular composite
plate with unspecified edge condition; floating on a body of incompressible fluid, is considered.
After addressing the combined governing equation, free motion in the combined mode is
investigated, then, the constraints on the mode shapes are developed. Afterward, natural
frequencies of composite plate with and without fluid has been calculated and the results are
compared with the other works. Also, with consideration of length to width ratio of plate, the
effects of aspect ratio have been considered.
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Finally, dynamic deflection response of plate for three important cases; concentrated harmonic
loading, distributed harmonic pressure loading and step pressure load, using the above
mentioned modal expansion method has obtained. Then, frequency response of the FSI has
been extracted.

2 Physical Modeling and Formulation

Here we consider the physical model of a horizontal, rectangular, composite plate floating on
the surface of a body of liquid, where a, b and h represent the length, width and the thickness
of the rectangular plate, respectively. F Denotes the fluid domain and S¢s denotes the surface
between fluid and the plate. The weight of the plate is assumed to be supported by the buoyancy
forces and the dry surface of the plate is under a varying external pressure p(xq, x5, t), while
the pressure acting on the wet surface is p' (x4, x5, t) as shown in figure (1).

The governing equation of the forced vibration of the rectangular orthotropic composite plate
in contact with fluid, neglecting the effects of the rotatory inertia and shear deformation effects
can be written as [13]:

0w

GE 9" 0"
pphﬁ + <D116_xf +2(Dy1; + ZDes)W + Dy, 6_x§> w=p'(x,t) —p(xt)

(1)

Where p,, is the mass density of plate and D;;‘s are bending stiffness coefficients of the
composite plate [14], which are introduced as:

D Enh’ D D
= = v
11 12(1 — vipvyy) 12 2111 )
E22h3 h3 ( )
D5, D¢o = Gy

B 12(1 = vy3v24) 12

Property relations for the laminates of the composite, in the case that local and global
coordinates does not coincide and have a counterclockwise angle 6, are included in the
appendix I1.

Horizontal Axis

External x = (xq1,%5)

Pressure : P(x,t)

Figure 1 Rectangular composite plate floating on a fluid of constant depth d
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The assumptions for dynamic modeling of the fluid are including: (a) fluid is homogeneous and
incompressible, (b) low-amplitude oscillations of fluid are assumed and (c) fluid is inviscid and
its motion irrotationaly. According to these assumptions of velocity potential ¢ (xq, x5, 2, t),
Laplace equation is hold:

0%¢p 09%¢p 0%¢
2.5 A —
Ve s dx? * dx3 T2 =0 (3)

The fluid surface condition is derived from the unsteady Bernoulli equation. In this analysis,
we consider problems where there is heavy fluid loading, such that the weight of the fluid is
significant. However, confining the analysis for low-frequency, low-amplitude oscillations, in
which particle velocities are small, the convective inertia terms can be ignored. Thus, the
pressure at any point in the fluid domain is presented by, P, where:

+ P_oo_ 0
At the surface of the fluid, if we assume that the deflection of the plate is smaller than the
fluid depth, this equation becomes:

' ¢
prgw(xy, Xz, t) + P'(xy, x5, 1) — py (E) o =0 (5)

Now, substituting P'(x,t) from equation (5) in equation (1), partial differential equation
governing the forced vibration of a rectangular composite CLPT plate floating on fluid, could
be extracted:

h62W (6¢)
Pelt gz ~ Priae

a* a* a*
o + <D11 a_xf + 2(D12 + 2D66) W + D22 a—xg_> w (6)

+prgw = —P(x,t)
At the interaction domain of plate-fluid, if one assume that the displacements are small, this
led to equating velocities [13] and we have:

_ <6¢(X, Z, t))

B ow(x,t)
ot )

dz

z=0
3 Free Vibrations

Here we consider the response of the fluid and the plate in any one combined modes. Separable
solutions are assumed for the displacement response and the velocity potential, so that:

w(x, t) = ()T (t)
¢(x,2,t) = UX)F(2)G(¢) 9)

Where, 1(x) describes the horizontal spatial variation of w and T (t) is the time variation. U (x),
F(z) and G (t) are the horizontal, vertical and temporal variation of ¢. Then, substituting from
Egs. (8)-(9) in equation (7) and some simplifications would result a new form for the velocity
potential ¢(x, z, t) as below:

5(%,7,8) = —p(x) D)

(dF (Z))

dz z=0

and substituting this velocity potential in Laplace equation, results two separate differential
equations:

T(t) (10)
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VA(x) + pp(x) = 0 (11)
d?F(z)
1z M@)=0 (12)

Where, the parameter u in this equations is a constant real number. Those solutions with u as a
complex number, have no physical interpretation in wave theory and we ignore them. Now at
the bed of the fluid container, there is no normal component of velocity and Neumann boundary

condition holds, (Z—f) .= 0. Then using equation (12), one can see:
z=—

F(z) = c;cosh(A(z+d)), u=22 (13)

3-1 Mode Shapes and Natural Frequencies

For free vibrations in any one combined mode, expressions (8) and (10) are substituted in
equation (6) and it is supposed P(xq,x,,t) = 0, which gives:

(pph +m)T(®) +KT() = 0 (14)
64 64 64
(Dn ot + 2(D12 + 2Dgg) ax%ox2 + Dy, a_xf) Y+ (prg—K)p=0 (15)
coth(Ad)

Where, my = py ( 7 ) is added mass effect initiated from the fluid and K is a constant
real parameter and will be accurately calculated later. Now considering a separable solution for
Y(x) in Cartesian coordinates, ¥ (x) = n,(x1)n,(x,), and applying equation (11), for
nontrivial solutions, gives:

d2771(x1)

T +yin(x) =0 (16)

d*1n,(x,)

— 7 T VEma(x) =0 (17)
X2

Where y; and y, are constant parameters such that, y? + yZ = u, which have general
solutions:

n1(x1) = a4 cos(y1x1) + by sin(y1x4) (18)
n2(x3) = a; cos(y,x,) + by sin(y,x;) (19)

Where a;, b; (i = 1,2) are constants which should be determined by substituting appropriate
edge conditions. It should be noted that, mode shapes, unknown constants y, and y, and the
promised parameter K would be calculated using the mentioned boundary conditions.

3-2 Simply Supported Boundary Condition

As an example, a rectangular plate (a x b) floating on a fluid tank (a X b X d) is considered,
as shown in figure (2).
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Figure 2 Mode shape and simply supported edge restraints for a rectangular
composite plate floating on a rectangular fluid tank

The plate edges are constrained to have zero deflections and are in the mathematical form as:

w(x, t)|x1=0,a =w(x, t)|x2=0,b =0 (20)
And also, there is no component of fluid velocity normal to the tank walls. Thus,
Gl =0
0x:1/1, _o4 B (21-1)
d
G@ =0 (21-2)
i)ACZ x2==0,b

After applying these conditions to Eqgs. (18)-(19), leads to finding parameters y; aSy; = ¥Yim =
mrm nm -
— and y, = yon = o and the surface displacements mode shapes as:

mm nm
Wmn (X1, X3) = Qppp SN (TXI) sin (sz), m,n =123, .. (22)

These happen to be orthogonal. Normalizing so that, ffA YmnWpqdx1dxy; = Abpp0ng,
where A is the area of the plate and &,,,, is the Kronecker delta function , gives:

ZSin(TX)SiTL(EX) m,n+0
%mh{ a * b ? ’ (23)
0 otherwise
Now, substituting these mode shapes in to equation (15), leads to finding constant parameter
K:

miy 4 mm\2 nm\2 nm\*4
And using the equation (15), natural frequencies of the rectangular composite plate in contact
with fluid; with simply supported edges, are:

N =

Konn (25)

poh + oy (coth(/lmnd)>

Amn

Wy =

3-3 Results and Validation of free vibration

In this section, the analytically found natural frequencies are validated, for the case without of
fluid and then, for the FSI case. An important point could be seen in relation (25), that is if we



Vibration Analysis of a Rectangular Composite Plate in ... 73

ignore the fluid terms in this equation (o, = 0), natural frequencies of a composite plate without
fluid are found, separately. In the other words, the fluid affected terms in equation (25), are
separate from the plate terms, which are known as virtual added mass terms [12]. Parameters
and engineering constants which are used in this research are listed in appendix |.

For the case py = 0 (without fluid), non-dimensional natural frequencies of the composite plate

2
. _ b h
are defined as, w,, = wq, (;) /’;L and are equal to:
22

1
2

N N
Eamn = IDll (a) m4 + D12 (a) mznz + n4l (26)
Where D;; = 22 and Dy, = 2 (22 + 225¢) are the non-dimensional stiffness constants of
D33 D33 D33

the composite plate. Comparison of this results with references [14] and [15] are presented in
tables (1) and (2), respectively.

As one can see in table (1), fundamental non-dimensionalized natural frequencies of a lamina
is decreasing with increase in the number of modes. The results of table (2) show that, the
natural frequencies of a lamina is greater than a laminated three layer composite, initiating from
decreasing of the stiffness to mass ratio.

In the following, if we put m = n = 1 in the equation (25), fundamental natural frequencies
of composite plate will be calculated. The variation of this frequencies as a function of aspect
ratio of plate (%/,), are shown in figure (3).

Table 1 Non-dimensionalized frequencies of laminated composite plate, @,,, ., according to
the CLPT plate, in comparison with reference [14]

00
Reference [14] Present work (m,n) EJ/E,

3.672 3.6674 (1,1) 10
14.690 14.6697 (2,2) 10
33.053 33.0068 (3,3) 10
58.692 58.6788 4,4) 10
91.701 91.6856 (5,5) 10

4.847 4.8451 (1,2) 20
19.388 19.3804 (2,2) 20
43.623 43.6059 (3,3) 20
77.530 77.5216 (4,4) 20
121.133 121.1275 (5,5) 20

Table 2 Non-dimensionalized frequencies of laminated composite plate, @,,, ., according to the
CLPT plate, in comparison with reference [15]

(45°/-45°/45°)

a — a —
/n = 0.02 /p = 0-05 Mode number
Reference Present work Reference Present work EA/E,
[15] [15]
1.576 1.5782 3.646 3.6575 1 40
4.837 49042 13.506 13.5160 2 40

11.227 11.3677 23.001 23.1569 3 40
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Figure 3 Non-dimensionalized fundamental frequencies, @, , as a function of plate aspect ratio (a/b),
for symmetric (0°/90°)s graphite-epoxy laminated plate, with ? =10
22

In figure (3), as much as the aspect ratio is growing, the values of fundamental natural
frequencies of composite plate are considerably decreasing; which means for a plate with
constant width, the more the length of plate is larger, the less the value of fundamental natural
frequency is.

For the second case (py # 0), the square values of fundamental natural frequencies of the FSI

system are:
L) (0 ()t 2 () e )
1 coth (d (g)_l / 3)2 m2 + n2> (27)

1+ (5 @5 =
( ) () m?+n?

fmn

e

Comparing the analytical values of @, from equation (27), with those of reported in reference
[16] are shown in table (3). This comparison shows that, addition of fluid to the system causes
a considerable decrease in amount of natural frequencies of plate, and also, the differences
between the natural frequency values are initiated from approximate solution method used in
reference [16], which are in an acceptable level.

In figure (4), non-dimensionalized natural frequencies of FSI in comparison with those of
without fluid as a function of aspect ratio are shown.

Table 3 Non-dimensionalized natural frequencies of isotropic plate floating on fluid @y, ,
according to the CLPT

Reference [16] Present work (m,n) Ei/E2
2.3708 2.1689 (1,1) 10
11.106 10.5534 (2,2) 10
26.245 25.9073 (3,3) 10
50.274 48.4198 (4,4) 10
81.045 78.1633 (5,5) 10
3.001 2.8673 (1,1) 20
14.337 13.9522 (2,2) 20
35.184 34.2509 (3,3) 20
67.136 64.0136 (4,4) 20

105.037 103.3361 (5,5) 20
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‘311

Figure 4 Comparison between non-dimensionalized fundamental frequencies, @, , and @y, ,

as plate aspect ratio a/b varies, for symmetric (0°/90°); graphite-epoxy laminate, with = 110
Ez2

It can be interpreted from figure (4), that the natural frequencies of FSI system are considerably
smaller than the plate without fluid. The reason of this is that adding fluid to the system, causes
increase in kinetic energy of the system and subsequently, it causes decreasing the natural
frequencies, and this is why the fundamental natural frequency curve of FSI is below that of the
plate without fluid.

4 Forced Vibrations
In section 3, general solution of the plate displacement and velocity potential function of fluid,

in any one combined mode, were analytically calculated. Now, the modal expansion of the
displacement and velocity potential could be presented in the form of:

wx,6) = ZZw,-k(x)Tjk(o (28)
j=1k=1
cosh ]k(z+d))_
= . 29
$(x,2,t) = JZNZW (i) (29)

Where, 4, equalsto A = (%)2 + (%) :

Now, substituting expressions (28) and (29) into equation (6), and then multiplying the resulted
equation by 1, (x) and integrating over the surface of the plate, A, gives:

HA Yk (%) ii[ T + KT ()| (X) ¢ dx1dx,

=T; (30)

- ﬂ Y O{P(x,t)}dx,dx,

Where, Mj;, = (pph + ps —COth(l "d)).
]k
It is possible to simplify the analysis at this stage by assuming that the mode shapes of the liquid
loaded plate are orthogonal. Those given in equation (23) happen to be orthogonal, but in
general, this is not so. However, for a sufficiently thin plate with simply supported edges,
oscillating at low frequency, the motion is dominated by the liquid. Liquid-coupled plate modes
can then be approximated by the surface response of a body of liquid with a smooth and
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continuous surface. For problems of this nature, the normalization condition of the plate

ffA Yk X)Pqr(X) = Adji 04y is assume to hold. Thus, equation (30) becomes a series of
decoupled modal expressions, which could be used for finding time responses.

4-1 Time Response

In this section, time response of the forced vibrations of FSI system in any position, for three
case of (a) unit harmonic external excitation with frequency of w applied at point xq, (b)
distributed harmonic pressure excitation and (c) distributed unit step pressure excitation, will
be calculated.

For the case (a), external force applied to the FSI equals to, P(x,t) = 6(x — X¢) sin(wt)
and if we assume that the plate has been initially at rest, initial values of the system could be
considered as T(0) = T(0) = 0. However, dynamical steady state deflection of the forced
vibration of FSI system, in any one combined mode, is:

w(x, t) = i i Ljx sin ( ) sin <k7';x2> sin(wt) (31)
=1 k=1

=21 jx (Xo)
ab{K jk—w?M i}’

Where, Ljj, = Dynamic response curve of the steady state forced vibration of

the FSI, at point xo = (gg) is shown in figure (5).

Displacement as a function of time in figure (5), shows a harmonic behavior with frequency

rad

w = 5sec, Also, considering mode numbers, m = n = 50, amplitude of vibrations in equation
(31), converges to 0.38021+™,

For the case (b), external force applied is P(x,t) = P, sin(wt), with P, = 0.5%F¢ and initial
values are the same as case (a). Then, dynamical steady state deflection of the forced vibration
of FSI system, in any one combined mode, is:

w(x,t) = i i Rji sin (jnax1> sin (kzxz) sin(wt) (32)

:k:

_4’POSjk
jkTL’z{Kjk—szjk}

Where Rjy, and Sj = [(=1)/*% — (=1)/ — (=1)¥ + 1]. Inthe following,
dynamic response of the steady state forced vibration, at x, = (% g) is shown in figure (6).

x10”

w(Xg, t)(m)

B S R S S S S S
t (sec)
Figure 5 Dynamical response to harmonic point load F(t) = P, sm(wt) for a symmetric (0°/90°)s

graphite-epoxy laminate composite floating on fluid, E” =10
22
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Figure 6 Dynamical response to harmonic distributed force F(t) = P, sm(wt) for
a symmetric (0°/90°)s graphite-epoxy laminate composite floating on f|UId R

rad
This figure shows a harmonic behavior with the frequency w = 5sec. Also, considering mode
numbers m = n = 50, amplitude of vibrations in equation (32), converges to 6.986™.
For the case (c), external force applied is P(x,t) = Pyu(t — 0), with P, = 0.5%¢ and initial
values are the same as the previous cases. Then, dynamical steady state deflection of the forced
vibration of FSI system, in any one combined mode, is:

w(x, t) = Z Z ik sm( ﬂxl) sin (k72x2> (1 — cos (cufjkt)) (33)

] 1k=
Where Hjy, |s fo ”‘ . Dynamic response of the steady state forced vibration, is shown in

figure (7). This flgure shows a harmonic behavior and despite two previous cases, frequencies
of vibration are equal to natural frequencies of the FSI system.

4-2 Frequency Response

In this section, first we apply an external concentrated excitation to the center of the plate and
then, the Domain-Frequency response will be found. For this purpose, equation (30) should be
written as a series of decoupled modes as:

M T(6) + Ky T (6) = L lp"""P(Z' Ddx,dx; (34)

Consider now the time response at x to an unit, harmonic, point load at x,, of frequency w.

Then P(x,t) = e!®t§(x — X,) and substituting in equation (34), forced vibration equation for
any decoupled mode would be resulted as:

w(Xo, t) (m)

L . L L (
0 0.005 0.01 0. 015 0.02 0.025 0.03

t (sec)

Figure 7 Dynamical response to harmonic distributed force F(t) = P, sin(wt), for
a symmetric (0°/90°)s graphite-epoxy laminate composite floating on fluid, ? =10
22
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MjkT(t) + K T(t) = — <l/)]kT(X)> plot )

If it is assumed that T'(t) = Y}, (w)e'*, then substituting in equation (35), Y;;(w) could be
found:

—Pjx(Xo)

Ky = w2My,) %)
So, from equation (28), the response at x to an unit, harmonic, point loaded at x, could be

found. On the other hand, the displacement could be written as w(x,t) = G(X,Xq, w)e“t,

where G (x,xg, w) is the frequency domain transfer function. Now, if we show the transfer

function as G(x,Xg, w) = Y X Hj(w)Pjr(Xe), the domain Hj(w) as a function of

frequency w is:

-1

AKjy. <1 - (%f) -

Drawing the frequency domain Hj, (w) for a specific range of frequency w, domain-frequency
curve would be resulted as figure (8). As we can interpret from figure (8), frequency domain
curve have some peaks at the place of points shown with numbers 1 to 5 and each of this peaks
are showing a natural frequency of the system. For the case without fluid, these peaks happen
sooner, meaning that, the values of natural frequency of the FSI are lower than those of without
fluid. The frequency domain analysis is important, because when dealing with the instability or
happening of natural frequencies, it is hard to find any explanation by time domain analysis
and, hence, the explanation turned to be very logical when one uses the frequency analysis and
the peaks are initiated from presence of natural frequencies. Actually, it may not have any
special physical meaning but we could use it as a tool for finding and even comparing natural
frequencies of the plate with or without fluid. As one can see in figure (8), for the case without
fluid, natural frequencies (peaks) happen sooner, meaning that the values of the natural
frequency of FSI are lower than those of without fluid. The more the fluid depth d is increasing,
the less the amplitude H;,(w) will increase. As a result, we can say that increasing the fluid
depth d causes an increase in the natural frequency, hence, it causes a delay in happening of the
peaks in figure (8). The frequency response function for the plate supported by liquid is similar
to the standard result obtained for the case without fluid, with added mass and stiffness, prg

Hj (w) =

and pf (W) respectively. This is equivalent to adding a layer of liquid of depth
(M) moving with the plate. As the liquid level is deeper, the thickness of the layer is
jk

approaching % As the mode number increases, the effect of this layer decreases.
jk

10”1 e 2) 3) @ |(5)

mplitude (dB)

A

=
e,

w (Hz) =

Figure 8 Frequency response, amplitude as a function of frequency plot for
composite plate floating on fluid (dash line) and without fluid (solid line)
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5 Conclusions

The main objective of this paper is the analytical free and forced vibration analysis of the
composite plate floating on fluid. For this purpose, natural frequencies and mode shapes for
free vibration were obtained, then, frequency response of forced vibration was calculated,
analytically. As a result of this study, it was found that, increasing the number of lamina in
composite plate, causes a considerable decrease in the natural frequencies. Also, the more the
aspect ratio of the plate is, the less the fundamental natural frequencies of FSI are. Natural
frequencies of a plate in presence of fluid are lower than those of without fluid. Forced vibration
response of FSI, with external load of type harmonic concentrated force and harmonic
distributed pressure, have vibration frequency equal to excitation frequency. Although, for the
case of step loading, FSI oscillates with natural frequency of system. Adding fluid under the
plate in FSI, causes an increase in mass and stiffness of the plate.
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Nomenclatures

a: length of the plate

b: width of the plate

d: depth of the fluid tank

E;;: Young modulus
shear modulus

Gij:
g: gravitational acceleration
h: thickness of the plate

Greek Symbols

v;j- Poison ratio

pr:  fluid mass density
pp. plate mass density
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Appendix I
Table 4 Values of parameters and engineering properties used for
validation of results
Unit Values Engineering constant
or parameter
kgm3 1000 pr
kgm?® 2440 Pp
M 0.5 a
M 0.2 b
M 0.01 h
M 2 d
ms 9.81 g
- 0.25 V1o
Nm2 260x10° Eqq
Nm 13 x10°, 26 x10° E,,
Nm 0.5E22 Gy,
Nm2 0.5E2, Gi3
Nm2 0.2E2 Ga3
Appendix Il

Let (x,y, z) denotes the global coordinate system used to write the governing equations of a
laminate, and let (x4, x,, x3) the local material coordinates of a typical layer of composite plate
in the laminate such that x5-axis is parallel to z-axis (i.e., the x; x,-plane and the xy-plane are
parallel) and x; -axis is oriented at an angle of +6 counterclockwise from the x-axis. see figure

(9).
5k}

The relations between the generalized plane stress coefficients for the k-th layer; Q; 1 |

(1)
5] !

and

plane stress-reduced stiffnesses; Q::”, are as below:

01 = 1, cos*(8) + 2(Q1z + 2Qg) sin2(8) cos?(8) + Q,; sin*(6)
01 = (Qu1 + Q22 — 4Q46) sin2(6) cos2(8) + Q1 (sin*(8) + cos*(6))
01 = Q1 5in*(8) + 2(Q1z + 2Qss) sin2(6) cos2(H) + Qz, cos*(6)

0 = (@11 + Q22 — 2012 — 2Qgs) sin2(6) cos2(8) + Qs (sin*(6) + cos*(6))

And the relations between Ql.{]'.‘} and engineering properties of the composite material are:
k) _ E k) _ ES)
PTEE) TE)
iy v g

_ W _ oK)
12 {k}. {k} 66 12
(1 ~Vi2 Va1 )
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And also, bending stiffness coefficients of composite plate; D;;, are presented as:

jo

Figure 9 A lamina with local and global coordinates systems [14]

N
1IN (-
Dy = §Z {Qi{f}(zxﬁﬂ - Zﬁ)} (i,j =126)
k=1
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