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1 Introduction  

 

Obtaining the natural frequencies and mode shapes of a structure like beam, plate, etc. due to 

the presence of fluid is generally known as the fluid-structure interaction (FSI) problem. These 

problems are covering a broad area of applications in engineering and marine industries, such 

as the vibration problem of offshores, ship structures, reservoirs, dams and signaling problems 

of submarines and torpedoes. Nowadays, using the composite plates comparing to other metal 

alloys, in applications like; civil, astronautic industries, etc. because of the better strength to 

weight ratio of them is increasingly growing. Thus, a good understanding of the dynamic 

interaction between an elastic plate and fluid is necessary. In addition, the existence of fluid 

around the structure causes the kinetic energy to increase considerably. Consequently, the 

natural frequencies of the plate coupled with fluid significantly decrease in comparison with 

those of the plate in the air. Therefore, it is essential to find the natural frequencies of the 

structures immersed in or in contact with fluid, since the natural frequencies in contact with 

fluid are different from those in air. Both analytical and numerical methods have been used for 

FSI problems in literatures. The analytic approaches are restricted to some special cases, and 

the numerical methods, such as fluid finite element method (FFEM) and boundary element 

method (BEM) could be used for general cases.  
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However, the FFEM and BEM naturally require a huge time for modeling and computations, 

in addition, there is some difficulties to explain the qualitative effects of fluid. The analytic 

approach for the addressed problem was initiated by Rayleigh [1] at 1877. He calculated the 

increase of inertia of a rigid disc vibrating in a circular aperture. Haddara and Cao [2] derived 

and approximate expression of the modal added masses for cantilever rectangular plate 

horizontally submerged in fluid, using analytical and experimental data. They also studied the 

effects of the boundary conditions and submergence depth. Watanabe et al. [3] studied the 

forced vibration of floating rectangular plates under the moving loads using the FEM. They 

reported that the depth of fluid has a considerable effect on dynamical response of plate. Zhou 

and Cheung [4] investigated vibration characteristic of a rectangular plate in contact with fluid 

on one side, employing the Rayleigh-Ritz approach. In their study, the fluid is filled in a rigid 

rectangular domain, which has a free surface and is infinite in the length direction. Bermudez 

et al. [5] using the FEM, studied the free and forced vibration of rectangular plate on 

incompressible finite fluid. Kerboua and Lakis [6] proposed a semi-analytical method for 

vibration of pontoon-type plates affected by fluid flow.  

First, a solution was initiated by an analytical implicit response for fluid problem; then, 

another solution for the vibration of plate was found using FEM and final equations was 

combined as an eigenvalue problem. Khorshidi [7, 8], addressed the problem of linear free 

vibration of a rectangular thin plate partially in contact with fluid. Natural frequencies and wet 

mode shapes of the plate coupled with fluid, using the Rayleigh-Ritz method was the results of 

his works. Hosseini-Hashemi et al. [9] proposed a semi-analytical solution for the free vibration 

of multi-span, moderately thick, rectangular plate. In their work, the resulting Galerkin equation 

was solved by application of the Rayleigh-Ritz minimization method. Hosseini-Hashemi et al. 

[10] studied the free vibration of a rectangular submerging plate for six different boundary 

conditions. Bakhsheshi and Khorshidi [11], studied the free vibration of a FGM rectangular 

plate, partially in contact with fluid. Their work was based on the Rayleigh-Ritz method. 

Rezvaani et al. [12] studied the fluid virtual added mass effect on the natural frequencies of the 

plate. First, they addressed the problem, analytically, and then, they used some experimental 

tests and software simulations in ANSYS for validation of their results. Robinson and Palmer 

[13] performed vibration analysis for a rectangular plate floating on a body of fluid. They 

derived the transfer function for a harmonic point load, but their analysis is valid only for a 

finite number of lower frequency modes.  

In this paper, free and forced vibration of the rectangular composite CLPT plate, floating on 

the surface of an inviscid fluid; using the modal analysis expansion method, has been 

investigated and the natural frequencies and mode shapes of the FSI for the simply supported 

edges has been extracted. The previous similar works have not focused on the composite plate; 

therefore, the modal expansion method used for the forced vibration analysis, has been used for 

the first time here. Similar works concerning the FSI problem have differences in both modeling 

and solution methodology. Some of the similar works have considered an infinite physical 

domain for the fluid, while in this paper we considered limited domains. Hence, similar works 

used different methods to find the solutions, like as Fourier transformation method, etc. while 

we used the method of modal expansion. The analysis presented in this paper is of a FSI 

problem in which the plate and the fluid modes are compatible. First, a rectangular composite 

plate with unspecified edge condition; floating on a body of incompressible fluid, is considered. 

After addressing the combined governing equation, free motion in the combined mode is 

investigated, then, the constraints on the mode shapes are developed. Afterward, natural 

frequencies of composite plate with and without fluid has been calculated and the results are 

compared with the other works. Also, with consideration of length to width ratio of plate, the 

effects of aspect ratio have been considered.  
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Finally, dynamic deflection response of plate for three important cases; concentrated harmonic 

loading, distributed harmonic pressure loading and step pressure load, using the above 

mentioned modal expansion method has obtained. Then, frequency response of the FSI has 

been extracted.  

 

2 Physical Modeling and Formulation  

 

Here we consider the physical model of a horizontal, rectangular, composite plate floating on 

the surface of a body of liquid, where 𝑎, 𝑏 and ℎ represent the length, width and the thickness 

of the rectangular plate, respectively. 𝐹 Denotes the fluid domain and 𝑆𝑓𝑠 denotes the surface 

between fluid and the plate. The weight of the plate is assumed to be supported by the buoyancy 

forces and the dry surface of the plate is under a varying external pressure  𝑝(𝑥1, 𝑥2, 𝑡), while 

the pressure acting on the wet surface is 𝑝′(𝑥1, 𝑥2, 𝑡) as shown in figure (1).  

The governing equation of the forced vibration of the rectangular orthotropic composite plate 

in contact with fluid, neglecting the effects of the rotatory inertia and shear deformation effects 

can be written as [13]:  

𝜌𝑝ℎ
𝜕2𝑤

𝜕𝑡2
+ (𝐷11

𝜕4

𝜕𝑥1
4 + 2(𝐷12 + 2𝐷66)

𝜕4

𝜕𝑥1
2𝜕𝑥2

2 + 𝐷22

𝜕4

𝜕𝑥2
4) 𝑤 = 𝑝′(𝐱, 𝑡) − 𝑝(𝐱, 𝑡) 

(1)  

 

Where 𝜌𝑝 is the mass density of plate and 𝐷𝑖𝑗‘s are bending stiffness coefficients of the 

composite plate [14], which are introduced as:  

𝐷11 =
𝐸11ℎ

3

12(1 − 𝜈12𝜈21)
𝐷12 = 𝜈21𝐷11

𝐷22 =
𝐸22ℎ3

12(1 − 𝜈12𝜈21)
𝐷66 = 𝐺12

ℎ3

12

 

 

 

(2)  

Property relations for the laminates of the composite, in the case that local and global 

coordinates does not coincide and have a counterclockwise angle 𝜃, are included in the 

appendix II.  

 
 

Figure 1 Rectangular composite plate floating on a fluid of constant depth 𝑑  

𝑭𝒍𝒖𝒊𝒅 𝑫𝒐𝒎𝒂𝒊𝒏 

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝐴𝑥𝑖𝑠 

𝒙 = (𝑥1, 𝑥2) 

𝑊𝑒𝑡 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 ∶ 𝑃′(𝐱, 𝑡) 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑂𝑛 

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙  
𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 : 𝑃(𝐱, 𝑡) 𝑂 

𝑥1 

𝑥2 

𝑧 

𝑑 
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The assumptions for dynamic modeling of the fluid are including: (a) fluid is homogeneous and 

incompressible, (b) low-amplitude oscillations of fluid are assumed and (c) fluid is inviscid and 

its motion irrotationaly. According to these assumptions of velocity potential 𝜙(𝑥1, 𝑥2, 𝑧, 𝑡), 

Laplace equation is hold:  

∇2𝜙 ≜
𝜕2𝜙

𝜕𝑥1
2 +

𝜕2𝜙

𝜕𝑥2
2 +

𝜕2𝜙

𝜕𝑧2
= 0 

 

(3)  

The fluid surface condition is derived from the unsteady Bernoulli equation. In this analysis, 

we consider problems where there is heavy fluid loading, such that the weight of the fluid is 

significant. However, confining the analysis for low-frequency, low-amplitude oscillations, in 

which particle velocities are small, the convective inertia terms can be ignored. Thus, the 

pressure at any point in the fluid domain is presented by, 𝑃, where:  

𝑔𝑧 +
𝑃

𝜌𝑓
−

𝜕𝜙

𝜕𝑡
= 0 

 

(4)  

At the surface of the fluid, if we assume that the deflection of the plate is smaller than the 

fluid depth, this equation becomes:  

𝜌𝑓𝑔𝑤(𝑥1, 𝑥2, 𝑡) + 𝑃′(𝑥1, 𝑥2, 𝑡) − 𝜌𝑓 (
𝜕𝜙

𝜕𝑡
)|

𝑧=0
= 0 

 

(5)  

Now, substituting 𝑃′(𝐱, 𝑡) from equation (5) in equation (1), partial differential equation 

governing the forced vibration of a rectangular composite CLPT plate floating on fluid, could 

be extracted:  

𝜌𝑝ℎ
𝜕2𝑤

𝜕𝑡2
− 𝜌𝑓 (

𝜕𝜙

𝜕𝑡
)|

𝑧=0
+ (𝐷11

𝜕4

𝜕𝑥1
4 + 2(𝐷12 + 2𝐷66)

𝜕4

𝜕𝑥1
2𝜕𝑥2

2 + 𝐷22

𝜕4

𝜕𝑥2
4) 𝑤 

+𝜌𝑓𝑔𝑤 = −𝑃(𝐱, 𝑡) 

 

(6)  

At the interaction domain of plate-fluid, if one assume that the displacements are small, this 

led to equating velocities [13] and we have:  

− (
𝜕𝜙(𝐱, 𝑧, 𝑡)

𝜕𝑧
)|

𝑧=0

=
𝜕𝑤(𝐱, 𝑡)

𝜕𝑡
 

 

(7)  

 

3 Free Vibrations  

 

Here we consider the response of the fluid and the plate in any one combined modes. Separable 

solutions are assumed for the displacement response and the velocity potential, so that:  

𝑤(𝐱, 𝑡) = 𝜓(𝐱)𝑇(𝑡) 

𝜙(𝐱, 𝑧, 𝑡) = 𝑈(𝐱)𝐹(𝑧)𝐺(𝑡) 

 

 (9)  

Where, 𝜓(𝐱) describes the horizontal spatial variation of 𝑤 and 𝑇(𝑡) is the time variation. 𝑈(𝐱), 

𝐹(𝑧) and 𝐺(𝑡) are the horizontal, vertical and temporal variation of  𝜙. Then, substituting from 

Eqs. (8)-(9) in equation (7) and some simplifications would result a new form for the velocity 

potential 𝜙(𝐱, 𝑧, 𝑡) as below:  

𝜙(𝐱, 𝑧, 𝑡) = −𝜓(𝐱)
𝐹(𝑧)

(
𝑑𝐹(𝑧)

𝑑𝑧
)|

𝑧=0

�̇�(𝑡) 
 

 (10)  

and substituting this velocity potential in Laplace equation, results two separate differential 

equations:  
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∇2𝜓(𝐱) + 𝜇𝜓(𝐱) = 0 

𝑑2𝐹(𝑧)

𝑑𝑧2
− 𝜇𝐹(𝑧) = 0 

(11)  

 

(12)  
 

Where, the parameter 𝜇 in this equations is a constant real number. Those solutions with 𝜇 as a 

complex number, have no physical interpretation in wave theory and we ignore them. Now at 

the bed of the fluid container, there is no normal component of velocity and Neumann boundary 

condition holds, (
𝜕𝜙

𝜕𝑧
)|

𝑧=−𝑑
= 0. Then using equation (12), one can see:  

𝐹(𝑧) = 𝑐1 cosh(𝜆(𝑧 + 𝑑)) ,     𝜇 = 𝜆2 (13)  

 

3-1 Mode Shapes and Natural Frequencies  

 

For free vibrations in any one combined mode, expressions (8) and (10) are substituted in 

equation (6) and it is supposed  𝑃(𝑥1, 𝑥2, 𝑡) = 0, which gives:  

 

(𝜌𝑝ℎ + 𝑚𝑓)�̈�(𝑡) + 𝐾𝑇(𝑡) = 0 

(𝐷11

𝜕4

𝜕𝑥1
4 + 2(𝐷12 + 2𝐷66)

𝜕4

𝜕𝑥1
2𝜕𝑥2

2 + 𝐷22

𝜕4

𝜕𝑥1
4) 𝜓 + (𝜌𝑓𝑔 − 𝐾)𝜓 = 0 

(14)  

 

(15)  

 

Where, 𝑚𝑓 = 𝜌𝑓 (
coth(𝜆𝑑)

𝜆
) is added mass effect initiated from the fluid and 𝐾 is a constant 

real parameter and will be accurately calculated later. Now considering a separable solution for 

𝜓(𝐱) in Cartesian coordinates, 𝜓(𝐱) = 𝜂1(𝑥1)𝜂2(𝑥2), and applying equation (11), for 

nontrivial solutions, gives:  

𝑑2𝜂1(𝑥1)

𝑑𝑥1
2 + 𝛾1

2𝜂1(𝑥1) = 0 

𝑑2𝜂2(𝑥2)

𝑑𝑥2
2 + 𝛾2

2𝜂2(𝑥2) = 0 

 

(16)  

 

(17)  

Where 𝛾1 and 𝛾2 are constant parameters such that, 𝛾1
2 + 𝛾2

2 = 𝜇, which have general 

solutions:  

𝜂1(𝑥1) = 𝑎1 cos(𝛾1𝑥1) + 𝑏1 sin(𝛾1𝑥1) 
𝜂2(𝑥2) = 𝑎2 cos(𝛾2𝑥2) + 𝑏2 sin(𝛾2𝑥2) 

 (18)  

 (19)  

 

Where 𝑎𝑖, 𝑏𝑖 (𝑖 = 1,2) are constants which should be determined by substituting appropriate 

edge conditions. It should be noted that, mode shapes, unknown constants 𝛾1 and 𝛾2 and the 

promised parameter 𝐾 would be calculated using the mentioned boundary conditions.  

 

3-2 Simply Supported Boundary Condition  

 

As an example, a rectangular plate (𝑎 × 𝑏) floating on a fluid tank (𝑎 × 𝑏 × 𝑑) is considered, 

as shown in figure (2).  
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Figure 2 Mode shape and simply supported edge restraints for a rectangular  

composite plate floating on a rectangular fluid tank 

 

The plate edges are constrained to have zero deflections and are in the mathematical form as:  

𝑤(𝐱, 𝑡)|𝑥1=0,𝑎 = 𝑤(𝐱, 𝑡)|𝑥2=0,𝑏 = 0 (20)  

And also, there is no component of fluid velocity normal to the tank walls. Thus,  

(
𝜕𝜙

𝜕𝑥1
)|

𝑥1=0,𝑎

= 0 

(
𝜕𝜙

𝜕𝑥2
)|

𝑥2=0,𝑏

= 0 

 

(21-1)  

 

(21-2)  

After applying these conditions to Eqs. (18)-(19), leads to finding parameters 𝛾𝑖 as 𝛾1 = 𝛾1𝑚 =
𝑚𝜋

𝑎
 and 𝛾2 = 𝛾2𝑛 =

𝑛𝜋

𝑏
, and the surface displacements mode shapes as:  

𝜓𝑚𝑛(𝑥1, 𝑥2) = 𝑎𝑚𝑛 sin (
𝑚𝜋

𝑎
𝑥1) 𝑠𝑖𝑛 (

𝑛𝜋

𝑏
𝑥2) ,     𝑚, 𝑛 = 1,2,3, … 

(22)  

These happen to be orthogonal. Normalizing so that, ∬ 𝜓𝑚𝑛𝜓𝑝𝑞𝑑𝑥1𝑑𝑥2𝐴
= 𝐴𝛿𝑚𝑝𝛿𝑛𝑞, 

where 𝐴 is the area of the plate and 𝛿𝑚𝑝 is the Kronecker delta function , gives:  

𝜓𝑚𝑛(𝐱) = {
2 sin (

𝑚𝜋

𝑎
𝑥1) 𝑠𝑖𝑛 (

𝑛𝜋

𝑏
𝑥2) 𝑚, 𝑛 ≠ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(23)  

Now, substituting these mode shapes in to equation (15), leads to finding constant parameter 

𝐾:  

𝐾 = 𝐾𝑚𝑛 = 𝜌𝑓𝑔 + 𝐷11 (
𝑚𝜋

𝑎
)

4

+ 2(𝐷12 + 2𝐷66) (
𝑚𝜋

𝑎
)

2

(
𝑛𝜋

𝑏
)

2

+ 𝐷22 (
𝑛𝜋

𝑏
)

4

 
 

(24)  

And using the equation (15), natural frequencies of the rectangular composite plate in contact 

with fluid; with simply supported edges, are:  

𝜔𝑓𝑚𝑛
= [

𝐾𝑚𝑛

𝜌𝑝ℎ + 𝜌𝑓 (
coth(𝜆𝑚𝑛𝑑)

𝜆𝑚𝑛
)
]

1
2

 

 

(25)  

 

3-3 Results and Validation of free vibration  

 

In this section, the analytically found natural frequencies are validated, for the case without of 

fluid and then, for the FSI case. An important point could be seen in relation (25), that is if we 

𝑭𝒍𝒖𝒊𝒅 𝑫𝒐𝒎𝒂𝒊𝒏 
𝑑 

𝑧 

𝑥1 

𝜓𝑗𝑘(𝐱) 𝜓𝑗𝑘 
𝑥1=0

= 0 𝜓𝑗𝑘 
𝑥1=𝑎

= 0 
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ignore the fluid terms in this equation (𝜌𝑓 = 0), natural frequencies of a composite plate without 

fluid are found, separately. In the other words, the fluid affected terms in equation (25), are 

separate from the plate terms, which are known as virtual added mass terms [12]. Parameters 

and engineering constants which are used in this research are listed in appendix I.  

For the case 𝜌𝑓 = 0 (without fluid), non-dimensional natural frequencies of the composite plate 

are defined as, �̅�𝑎𝑚𝑛
= 𝜔𝑎𝑚𝑛

(
𝑏

𝜋
)

2

√
𝜌𝑝ℎ

𝐷22
, and are equal to:  

�̅�𝑎𝑚𝑛
= [�̅�11 (

𝑏

𝑎
)

4

𝑚4 + �̅�12 (
𝑏

𝑎
)

2

𝑚2𝑛2 + 𝑛4]

1
2

 

 

(26)  

 

Where �̅�11 =
𝐷11

𝐷22
 and �̅�12 = 2 (

𝐷12

𝐷22
+ 2

𝐷66

𝐷22
) are the non-dimensional stiffness constants of 

the composite plate. Comparison of this results with references [14] and [15] are presented in 

tables (1) and (2), respectively.  

As one can see in table (1), fundamental non-dimensionalized natural frequencies of a lamina 

is decreasing with increase in the number of modes. The results of table (2) show that, the 

natural frequencies of a lamina is greater than a laminated three layer composite, initiating from 

decreasing of the stiffness to mass ratio.  

In the following, if we put 𝑚 = 𝑛 = 1 in the equation (25), fundamental natural frequencies 

of composite plate will be calculated. The variation of this frequencies as a function of aspect 

ratio of plate (𝑎 𝑏⁄ ), are shown in figure (3).  

Table 1 Non-dimensionalized frequencies of laminated composite plate, �̅�𝑎𝑚𝑛
, according to 

               the CLPT plate, in comparison with reference [14] 

 

2E/1E 

 

(m,n) 

o0 

Present work  Reference [14]  
10 (1,1) 3.6674 3.672 

10 (2,2) 14.6697 14.690 

10 (3,3) 33.0068 33.053 

10 (4,4) 58.6788 58.692 

10 (5,5) 91.6856 91.701 

20 (1,1) 4.8451 4.847 

20 (2,2) 19.3804 19.388 

20 (3,3) 43.6059 43.623 
20 (4,4) 77.5216 77.530 

20 (5,5) 121.1275 121.133 
 

 

Table 2 Non-dimensionalized frequencies of laminated composite plate, �̅�𝑎𝑚𝑛
, according to the 

            CLPT plate, in comparison with reference [15] 

 

2E/1E 

Mode number  

)o/45o45-/o(45 

𝑎
ℎ⁄ = 0.05 𝑎

ℎ⁄ = 0.02 

Present work  Reference 

[15]  Present work  Reference 

[15]  
40 1 3.6575 3.646 1.5782 1.576 

40 2 13.5160 13.506 4.9042 4.837 

40 3 23.1569 23.001 11.3677 11.227 
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Figure 3 Non-dimensionalized fundamental frequencies, �̅�𝑎11

, as a function of plate aspect ratio (𝑎 𝑏⁄ ),  

for symmetric (0𝑜/90𝑜)s graphite-epoxy laminated plate, with 
𝐸11

𝐸22
= 10 

 

In figure (3), as much as the aspect ratio is growing, the values of fundamental natural 

frequencies of composite plate are considerably decreasing; which means for a plate with 

constant width, the more the length of plate is larger, the less the value of fundamental natural 

frequency is.  

For the second case (𝜌𝑓 ≠ 0), the square values of fundamental natural frequencies of the FSI 

system are:  

�̅�𝑓𝑚𝑛

2 =

𝜌𝑓𝑔
𝐷22

(
𝑏
𝜋)

4

+ (�̅�11 (
𝑏
𝑎)

4

𝑚4 + �̅�12 (
𝑏
𝑎)

2

𝑚2𝑛2 + 𝑛4)

1 + (
𝜌𝑓

𝜌𝑝
) (

𝑏
𝜋)

1
ℎ

coth (𝑑 (
𝑏
𝜋)

−1
√(

𝑏
𝑎)

2

𝑚2 + 𝑛2)

√(
𝑏
𝑎
)

2

𝑚2 + 𝑛2

 

 

 

 

(27)  

 

Comparing the analytical values of �̅�𝑓𝑚𝑛
 from equation (27), with those of reported in reference 

[16] are shown in table (3). This comparison shows that, addition of fluid to the system causes 

a considerable decrease in amount of natural frequencies of plate, and also, the differences 

between the natural frequency values are initiated from approximate solution method used in 

reference [16], which are in an acceptable level.  

In figure (4), non-dimensionalized natural frequencies of FSI in comparison with those of 

without fluid as a function of aspect ratio are shown.  

 
Table 3 Non-dimensionalized natural frequencies of isotropic plate floating on fluid �̅�𝑓𝑚𝑛

,  

                according to the CLPT 

2E/1E  (m,n) Present work  Reference [16]  

10 (1,1) 2.1689 2.3708 

10 (2,2) 10.5534 11.106 

10 (3,3) 25.9073 26.245 

10 (4,4) 48.4198 50.274 

10 (5,5) 78.1633 81.045 

20 (1,1) 2.8673 3.001 

20 (2,2) 13.9522 14.337 

20 (3,3) 34.2509 35.184 
20 (4,4) 64.0136 67.136 

20 (5,5) 103.3361 105.037 
 

𝑎
𝑏⁄  

𝜔
𝑎

1
1
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Figure 4 Comparison between non-dimensionalized fundamental frequencies, �̅�𝑎11

 and �̅�𝑓11
, 

              as plate aspect ratio 𝑎 𝑏⁄  varies, for symmetric (0𝑜/90𝑜)s graphite-epoxy laminate, with 
𝐸11

𝐸22
= 10  

 

It can be interpreted from figure (4), that the natural frequencies of FSI system are considerably 

smaller than the plate without fluid. The reason of this is that adding fluid to the system, causes 

increase in kinetic energy of the system and subsequently, it causes decreasing the natural 

frequencies, and this is why the fundamental natural frequency curve of FSI is below that of the 

plate without fluid.  

 

4 Forced Vibrations  

 

In section 3, general solution of the plate displacement and velocity potential function of fluid, 

in any one combined mode, were analytically calculated. Now, the modal expansion of the 

displacement and velocity potential could be presented in the form of:  

𝑤(𝐱, 𝑡) = ∑ ∑ 𝜓𝑗𝑘(𝐱)𝑇𝑗𝑘(𝑡)

∞

𝑘=1

∞

𝑗=1

 

𝜙(𝐱, 𝑧, 𝑡) = − ∑ ∑ 𝜓𝑗𝑘(𝐱)

∞

𝑘=1

∞

𝑗=1

cosh (𝜆𝑗𝑘(𝑧 + 𝑑))

𝜆𝑗𝑘 sinh(𝜆𝑗𝑘𝑑)
�̇�𝑗𝑘(𝑡) 

 

(28)  

 

 

(29)  

Where, 𝜆𝑗𝑘 equals to  𝜆𝑗𝑘 = √(
𝑗𝜋

𝑎
)

2

+ (
𝑘𝜋

𝑏
)

2

.  

 

Now, substituting expressions (28) and (29) into equation (6), and then multiplying the resulted 

equation by 𝜓𝑗𝑘(𝐱) and integrating over the surface of the plate, 𝐴, gives:  

 

∬ 𝜓𝑗𝑘(𝐱){∑ ∑[𝑀𝑗𝑘�̈�(𝑡) + 𝐾𝑗𝑘𝑇(𝑡)]𝜓𝑗𝑘(𝐱)

∞

𝑘=0

∞

𝑗=0

}𝑑𝑥1𝑑𝑥2
𝐴

= − ∬ 𝜓𝑗𝑘(𝐱){𝑃(𝐱, 𝑡)}𝑑𝑥1𝑑𝑥2
𝐴

 

 

 

 (30)  

Where, 𝑀𝑗𝑘 = (𝜌𝑝ℎ + 𝜌𝑓
coth(𝜆𝑗𝑘𝑑)

𝜆𝑗𝑘
).  

It is possible to simplify the analysis at this stage by assuming that the mode shapes of the liquid 

loaded plate are orthogonal. Those given in equation (23) happen to be orthogonal, but in 

general, this is not so. However, for a sufficiently thin plate with simply supported edges, 

oscillating at low frequency, the motion is dominated by the liquid. Liquid-coupled plate modes 

can then be approximated by the surface response of a body of liquid with a smooth and 
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continuous surface. For problems of this nature, the normalization condition of the plate 

∬ 𝜓𝑗𝑘(𝐱)𝜓𝑞𝑟(𝐱)
𝐴

= 𝐴𝛿𝑗𝑘𝛿𝑞𝑟 is assume to hold. Thus, equation (30) becomes a series of 

decoupled modal expressions, which could be used for finding time responses.  

 

4-1 Time Response  

 

In this section, time response of the forced vibrations of FSI system in any position, for three 

case of (a) unit harmonic external excitation with frequency of 𝜔 applied at point 𝐱𝟎, (b) 

distributed harmonic pressure excitation and (c) distributed unit step pressure excitation, will 

be calculated.  

For the case (a), external force applied to the FSI equals to, 𝑃(𝐱, 𝑡) = 𝛿(𝐱 − 𝐱𝟎) sin(𝜔𝑡) 

and if we assume that the plate has been initially at rest, initial values of the system could be 

considered as 𝑇(0) = �̇�(0) = 0. However, dynamical steady state deflection of the forced 

vibration of FSI system, in any one combined mode, is:  

𝑤(𝐱, 𝑡) = ∑ ∑ 𝐿𝑗𝑘 sin (
𝑗𝜋𝑥1

𝑎
) sin (

𝑘𝜋𝑥2

𝑏
)

∞

𝑘=1

∞

𝑗=1

sin(𝜔𝑡) 
 

(31)  

Where, 𝐿𝑗𝑘 =
−2𝜓𝑗𝑘(𝐱𝟎)

𝑎𝑏{𝐾𝑗𝑘−𝜔2𝑀𝑗𝑘}
. Dynamic response curve of the steady state forced vibration of 

the FSI, at point 𝐱𝟎 = (
𝑎

2
,
𝑏

2
), is shown in figure (5).  

Displacement as a function of time in figure (5), shows a harmonic behavior with frequency 

𝜔 = 5
𝑟𝑎𝑑

𝑠𝑒𝑐 . Also, considering mode numbers, 𝑚 = 𝑛 = 50, amplitude of vibrations in equation 

(31), converges to 0.38021𝜇𝑚.  

For the case (b), external force applied is 𝑃(𝐱, 𝑡) = 𝑃0 sin(𝜔𝑡), with 𝑃0 = 0.5𝑘𝑃𝑎 and initial 

values are the same as case (a). Then, dynamical steady state deflection of the forced vibration 

of FSI system, in any one combined mode, is:  

𝑤(𝐱, 𝑡) = ∑ ∑ 𝑅𝑗𝑘 sin (
𝑗𝜋𝑥1

𝑎
) sin (

𝑘𝜋𝑥2

𝑏
)

∞

𝑘=1

∞

𝑗=1

sin(𝜔𝑡) 
 

 (32)  

 

Where 𝑅𝑗𝑘 =
−4𝑃0𝑆𝑗𝑘

𝑗𝑘𝜋2{𝐾𝑗𝑘−𝜔2𝑀𝑗𝑘}
 and 𝑆𝑗𝑘 = [(−1)𝑗+𝑘 − (−1)𝑗 − (−1)𝑘 + 1]. In the following, 

dynamic response of the steady state forced vibration, at 𝐱𝟎 = (
𝑎

2
,
𝑏

2
), is shown in figure (6).  

 
Figure 5 Dynamical response to harmonic point load 𝐹(𝑡) = 𝑃𝑜 sin(𝜔𝑡), for a symmetric (0𝑜/90𝑜)s  

graphite-epoxy laminate composite floating on fluid, 
𝐸11

𝐸22
= 10 
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Figure 6 Dynamical response to harmonic distributed force 𝐹(𝑡) = 𝑃𝑜 sin(𝜔𝑡), for 

a symmetric (0𝑜/90𝑜)s graphite-epoxy laminate composite floating on fluid, 
𝐸11

𝐸22
= 10 

 

This figure shows a harmonic behavior with the frequency 𝜔 = 5
𝑟𝑎𝑑

𝑠𝑒𝑐 . Also, considering mode 

numbers 𝑚 = 𝑛 = 50, amplitude of vibrations in equation (32), converges to 6.986𝜇𝑚. 

For the case (c), external force applied is 𝑃(𝐱, 𝑡) = 𝑃0𝑢(𝑡 − 0), with 𝑃0 = 0.5𝑘𝑃𝑎 and initial 

values are the same as the previous cases. Then, dynamical steady state deflection of the forced 

vibration of FSI system, in any one combined mode, is:  

𝑤(𝐱, 𝑡) = ∑ ∑ 𝐻𝑗𝑘 sin (
𝑗𝜋𝑥1

𝑎
) sin (

𝑘𝜋𝑥2

𝑏
)

∞

𝑘=1

(1 − cos (𝜔𝑓𝑗𝑘
𝑡))

∞

𝑗=1

 
 

 (33)  

Where 𝐻𝑗𝑘 is 
−4𝑃0𝑆𝑗𝑘

𝑗𝑘𝜋2𝐾𝑗𝑘
. Dynamic response of the steady state forced vibration, is shown in 

figure (7). This figure shows a harmonic behavior and despite two previous cases, frequencies 

of vibration are equal to natural frequencies of the FSI system.  

 

4-2 Frequency Response  

 

In this section, first we apply an external concentrated excitation to the center of the plate and 

then, the Domain-Frequency response will be found. For this purpose, equation (30) should be 

written as a series of decoupled modes as:  

𝑀𝑗𝑘�̈�(𝑡) + 𝐾𝑗𝑘𝑇(𝑡) = −
∬ 𝜓𝑗𝑘𝑃(𝐱, 𝑡)𝑑𝑥1𝑑𝑥2𝐴

𝐴
 

 

 (34)  

Consider now the time response at 𝐱 to an unit, harmonic, point load at  𝐱𝟎, of frequency 𝜔. 

Then 𝑃(𝐱, 𝑡) = 𝑒𝑖𝜔𝑡𝛿(𝐱 − 𝐱𝟎) and substituting in equation (34), forced vibration equation for 

any decoupled mode would be resulted as:  

 

 
Figure 7 Dynamical response to harmonic distributed force 𝐹(𝑡) = 𝑃𝑜 sin(𝜔𝑡), for  

                      a symmetric (0𝑜/90𝑜)s graphite-epoxy laminate composite floating on fluid, 
𝐸11

𝐸22
= 10  
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𝑀𝑗𝑘�̈�(𝑡) + 𝐾𝑗𝑘𝑇(𝑡) = − (
𝜓𝑗𝑘(𝐱)

𝐴
)𝑒𝑖𝜔𝑡 

 

 (35)  

If it is assumed that 𝑇(𝑡) = 𝑌𝑗𝑘(𝜔)𝑒𝑖𝜔𝑡, then substituting in equation (35), 𝑌𝑗𝑘(𝜔) could be 

found:  

𝑌𝑗𝑘(𝜔) =
−𝜓𝑗𝑘(𝐱𝟎)

𝐴(𝐾𝑗𝑘 − 𝜔2𝑀𝑗𝑘)
 

 

(36)  

So, from equation (28), the response at 𝐱 to an unit, harmonic, point loaded at 𝐱𝟎 could be 

found. On the other hand, the displacement could be written as 𝑤(𝐱, 𝑡) = 𝐺(𝐱, 𝐱𝟎, 𝜔)𝑒𝑖𝜔𝑡, 

where 𝐺(𝐱, 𝐱𝟎, 𝜔) is the frequency domain transfer function. Now, if we show the transfer 

function as 𝐺(𝐱, 𝐱𝟎, 𝜔) = 𝜓𝑗𝑘(𝐱)𝐻𝑗𝑘(𝜔)𝜓𝑗𝑘(𝐱𝟎), the domain 𝐻𝑗𝑘(𝜔) as a function of 

frequency 𝜔 is:  

𝐻𝑗𝑘(𝜔) =
−1

𝐴𝐾𝑗𝑘 (1 − (
𝜔

𝜔𝑗𝑘
)

2

)

 
 

(37)  

 

Drawing the frequency domain 𝐻𝑗𝑘(𝜔) for a specific range of frequency 𝜔, domain-frequency 

curve would be resulted as figure (8). As we can interpret from figure (8), frequency domain 

curve have some peaks at the place of points shown with numbers 1 to 5 and each of this peaks 

are showing a natural frequency of the system. For the case without fluid, these peaks happen 

sooner, meaning that, the values of natural frequency of the FSI are lower than those of without 

fluid. The frequency domain analysis is important, because when dealing with the instability or 

happening of natural frequencies, it is hard to find any explanation by time domain analysis 

and, hence, the explanation turned to be very logical when one uses the frequency analysis and 

the peaks are initiated from presence of natural frequencies. Actually, it may not have any 

special physical meaning but we could use it as a tool for finding and even comparing natural 

frequencies of the plate with or without fluid. As one can see in figure (8), for the case without 

fluid, natural frequencies (peaks) happen sooner, meaning that the values of the natural 

frequency of FSI are lower than those of without fluid. The more the fluid depth 𝑑 is increasing, 

the less the amplitude 𝐻𝑗𝑘(𝜔) will increase. As a result, we can say that increasing the fluid 

depth 𝑑 causes an increase in the natural frequency, hence, it causes a delay in happening of the 

peaks in figure (8). The frequency response function for the plate supported by liquid is similar 

to the standard result obtained for the case without fluid, with added mass and stiffness, 𝜌𝑓𝑔 

and 𝜌𝑓 (
coth(𝜆𝑗𝑘𝑑)

𝜆𝑗𝑘
), respectively. This is equivalent to adding a layer of liquid of depth 

(
coth(𝜆𝑗𝑘𝑑)

𝜆𝑗𝑘
), moving with the plate. As the liquid level is deeper, the thickness of the layer is 

approaching  
1

𝜆𝑗𝑘
. As the mode number increases, the effect of this layer decreases.  

 
Figure 8 Frequency response, amplitude as a function of frequency plot for 

composite plate floating on fluid (dash line) and without fluid (solid line) 
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5 Conclusions  

 

The main objective of this paper is the analytical free and forced vibration analysis of the 

composite plate floating on fluid. For this purpose, natural frequencies and mode shapes for 

free vibration were obtained, then, frequency response of forced vibration was calculated, 

analytically. As a result of this study, it was found that, increasing the number of lamina in 

composite plate, causes a considerable decrease in the natural frequencies. Also, the more the 

aspect ratio of the plate is, the less the fundamental natural frequencies of FSI are. Natural 

frequencies of a plate in presence of fluid are lower than those of without fluid. Forced vibration 

response of FSI, with external load of type harmonic concentrated force and harmonic 

distributed pressure, have vibration frequency equal to excitation frequency. Although, for the 

case of step loading, FSI oscillates with natural frequency of system. Adding fluid under the 

plate in FSI, causes an increase in mass and stiffness of the plate.  
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Nomenclatures  

 

𝑎:    length of the plate  

𝑏:    width of the plate  

𝑑:    depth of the fluid tank  

𝐸𝑖𝑗:    Young modulus  

𝐺𝑖𝑗:    shear modulus  

𝑔:    gravitational acceleration  

ℎ:    thickness of the plate 

 

Greek Symbols  

𝜈𝑖𝑗:    Poison ratio  

𝜌𝑓:    fluid mass density  

𝜌𝑝:    plate mass density 
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Appendix I  

 

 

 
Table 4 Values of parameters and engineering properties used for  

                                    validation of results  

Engineering constant 

or parameter 
Values  Unit  

𝜌𝑓 1000 3kgm 

𝜌𝑃 2440 3kgm 
𝑎 0.5 M 
𝑏 0.2 M 
ℎ 0.01 M 
𝑑 2 M 
𝑔 9.81 2-ms 

𝜈12 0.25 -  
𝐸11 9260x10 2-Nm 

𝐸22 9, 26 x10913 x10 2-Nm 
𝐺12 220.5E 2-Nm 
𝐺13 220.5E 

2-Nm 
𝐺23 220.2E 2-Nm 

 

 

 

Appendix II  

 

Let (𝑥, 𝑦, 𝑧) denotes the global coordinate system used to write the governing equations of a 

laminate, and let (𝑥1, 𝑥2, 𝑥3) the local material coordinates of a typical layer of composite plate 

in the laminate such that 𝑥3-axis is parallel to 𝑧-axis (i.e., the 𝑥1𝑥2-plane and the 𝑥𝑦-plane are 

parallel) and 𝑥1-axis is oriented at an angle of +𝜃 counterclockwise from the 𝑥-axis. see figure 

(9).  

The relations between the generalized plane stress coefficients for the 𝑘-th layer; �̅�𝑖𝑗
{𝑘}

, and 

plane stress-reduced stiffnesses; 𝑄𝑖𝑗
{𝑘}

, are as below:  

�̅�11
{𝑘}

= 𝑄11 cos4(𝜃) + 2(𝑄12 + 2𝑄66) sin2(𝜃) cos2(𝜃) + 𝑄22 sin4(𝜃) 

�̅�12
{𝑘}

= (𝑄11 + 𝑄22 − 4𝑄66) sin2(𝜃) cos2(𝜃) + 𝑄12(sin
4(𝜃) + cos4(𝜃)) 

�̅�22
{𝑘}

= 𝑄11 sin4(𝜃) + 2(𝑄12 + 2𝑄66) sin2(𝜃) cos2(𝜃) + 𝑄22 cos4(𝜃) 

�̅�66
{𝑘}

= (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66) sin2(𝜃) cos2(𝜃) + 𝑄66(sin
4(𝜃) + cos4(𝜃)) 

 

And the relations between 𝑄𝑖𝑗
{𝑘}

 and engineering properties of the composite material are:  

𝑄11
{𝑘}

=
𝐸11

{𝑘}

(1 − 𝜈12
{𝑘}

𝜈21
{𝑘}

)
𝑄22

{𝑘}
=

𝐸22
{𝑘}

(1 − 𝜈12
{𝑘}

𝜈21
{𝑘}

)

𝑄12
{𝑘}

=
𝜈21

{𝑘}
𝐸11

{𝑘}

(1 − 𝜈12
{𝑘}

𝜈21
{𝑘}

)
𝑄66

{𝑘}
= 𝐺12

{𝑘}
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And also, bending stiffness coefficients of composite plate; 𝐷𝑖𝑗, are presented as:  

 

 

 
                                     

Figure 9 A lamina with local and global coordinates systems [14] 

𝐷𝑖𝑗 =
1

3
∑ {�̅�𝑖𝑗

{𝑘}(𝑧𝑘+1
3 − 𝑧𝑘

3)}

𝑁

𝑘=1

     (𝑖, 𝑗 = 1,2,6) 
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 کیده چ
 

 به وسیله تئوریقرار گرفته است.  سیال مورد بررسی -مسئله تداخل سازهآنالیز مودال برای  ،در این مقاله

های طبیعی و شکل مودهای به منظور محاسبه فرکانس تحلیلیبسته یک پاسخ  ،ایهای لایهکلاسیک ورق

: عمده فرضیات صورت گرفته شاملسازی دینامیکی سیال؛ در مدلسیال استخراج گردیده است.  -سیستم سازه

معادله دیفرانسیل مشتق جزئی در ادامه؛ باشد. ال میجریان سیغیرویسکوزی و غیرچرخشی بودن  ،همگنی

 به دست آمده است. سیال  -م ترکیبی سازهحاکم بر ارتعاش سیست

ها با نتایج دیگر مقالات پرداخته به مقایسه آن ،به منظور اعتبارسنجی صحت معادلات و نتایج به دست آمده

رای بگاه تاثیر نسبت ابعادی ورق کامپوزیتی بر فرکانس طبیعی سیستم بررسی شده است. آنشده است. 

بار فشاری گسترده هارمونیک و  ،بار متمرکز هارمونیک مختلف شاملسه حالت بارگذاری ارتعاش اجباری؛ 

 گرفته است. ها ترسیم گردیده و مورد بررسی قرارآندر هر حالت پاسخ زمانی در نظر گرفته شده و  ،ایهلپ

 سیال تحت بارگذاری هارمونیک استخراج شده است.  -پاسخ فرکانسی سیستم ورق ،چنینهم
 


