Lecture 16

Graph Sketches: Dynamic Spanning Forest

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics
K. N. Toosi University of Technology

Spring 2021



Spanning forest

Given a graph G = (V, E), a spanning forest of G is a forest
F=(V,E)

» B'c B,

» Adding an edge e € E/E’ to F does not change the
number of connected components in F.

Fact: a graph can have multiple spanning forests.



Spanning forest: applications

» Algorithm design: intermediate step in designing graph
algorithm (connectivity and path finding)

» Graph analysis: spanning forest gives the connected
components of a graph.

» Network design: Minimum number of links to keep the
nodes connected.



Computing a spanning forest
Given a graph on n vertices and m edges, we can compute a
spanning forest in time O(m) and O(m) space (BFS/DFS

graph traversal).

What if the graph is dynamic (edges are inserted and deleted)

and we have to maintain a spanning forest?

1 edge stream
Gy Gy @ G G W & @ Gy @
/A A A A A S A A &
. Y G e S G § { AL
) OICHOIONONONG
+ - + o+ -



Spanning forest: insert-only streams

When the stream is series of edge insertions, maintaining a
spanning forest is easy.

If the new inserted edge e does not create a cycle it is added
to the forest otherwise it is ignored.

insertion insertion insertion insertion

R EGEG

e b

edge e is inserted edge e is inserted edge e is inserted edge e is inserted

Space usage: O(nlogn) bits per-edge time: 7



Spanning forest: dynamic graphs

When the edges, in addition to being inserted, are deleted as
well it is not clear how to maintain a spanning forest without
storing all existing edges.

insertion deletion

edge e is inserted edge e is deleted



Dynamic spanning forest via £ sampling

[Ahn, Guha, McGregor, 2012] There is a randomized algorithm
for maintaining a spanning forest under insertion/deletion of
edges that uses O(nlog®n) bits of space. The algorithm uses
{y sampling as a subroutine.

ly sampling: Given a stream of positive and negative updates
on a vector x € R", a ¢, sampler is a randomized algorithm
that returns a random non-zero coordinate i € [n] where the
probability of returning each non-zero coordinates is

1 1

+—.
l2lo ~ ne

With probability at most ¢, the algorithm might declare failure
and return no sample. The algorithm uses O(log” nlog(%)) bits
of space.




Computing the connected components

Lets consider a simpler problem: report the connected
components after all edge-insertion/deletions are done.

The algorithm is based on a simple strategy:

Each time pick a random edge and merge its two endpoints
into a super-node. Continue this process until no edge remains.
In the end, the isolated super-nodes represent the connected
components.










In the end, the connected components remain as isolated
super-nodes.

G O




We can pick a random edge by ¢y sampling the adjacency
matrix A.

>

[}
© =2 a a o
© =2 A o =
© =2 © = -
A © A a A
© = o o o

However, in addition to this, we want to be able to sample an
edge from the cut (S,V/S) when S is a super-node. How can
we do this?




Suppose the vertices are labeled by numbers in {1,2,... n}.

For each node i € V', we define a vector u; € {-1,0, +1}(§) as
follows.

> If the edge (i,7) exists and i < j then we set the
coordinate u;(7,j) = +1

» If the edge (7,7) exists and i > j then we set the
coordinate u;(7,j) = -1

(12 (13) (14 (15 (23 24 25 (4 (65 45
W #1 ¢ + 0 0 0 0 0 0 0

(2) w4 0 0 0 # +# 0 0 0 0
“e Wb o 4 0 0 4 0 0 # 0 o0
(27 ' ° u 0 0 4 0 0 El 0 4 0 o+
(4) s 0 0 o0 0o 0 0 0o 0 o0 A

uf+u2+ud+ud 0 0 0 0 0 0 0 0 0+



The vector u;, + ..
S = {uil, N ,uir}.

u1
o u2
\
’e uf+u2

>

ul

u2

u3

u4

u1+u2+u3+u4

(1.2)

+1

-

+1

-1

(13)

+1
0

+1

(14)

+1

0

+1

+1

.+ u,;, corresponds to the super-node

(1.5) (23) (24) (25 (34) (35) 48
0o 0 o 0 0 0 0

0 +1 +1 0 0 0 0

0 0 0 0 0 o o
0 1+ 0 0 o o
0 - 0 0o+ o o
0 0 -1 0 - 0+



For each vector u;, we maintain an ¢, sampling sketch sk(u;).
Sk(“l)? Sk(u2)7 R Sk(un)

If we want to sample an edge from the cut (S,V/S) where
S ={i1,4,...,i,}, we use the sketch

sk(uw;, +wiy, +...+uy,)




There is one problem: if we contract the edges, one edge at a
time, we may end up using the sketch sk(w;) multiple times
(n -1 times!)

lp sample u; : sk(u)
Uy sample ug + usy : sk(ug + us)
lp sample uq + s + ug : sk(wg + ug + us)

lo sample wy + Ug + ...+ Up 1 Sk(Up +Us + ...+ Uy q)

@co




The ¢y sample drawn from u; + us will depend on the £,
sample drawn from u;. Dependency!!

We should not use the sketch sk(w;) multiple times because it
will cause dependency issues.

If we could query a sketch multiple times we could find all
neighbors of a node by using only O(log®n) bits of spacel!
This is impossible because one cannot compact €2(n) bits of
information in log® n bits of space.

v2

How to avoid using a sketch multiple times?



Lets assume there is no isolated vertex in the input graph
G=(V,E).

The algorithm works in multiple rounds. In the first round we
do the following:

» For each vertex i € V', we maintain an independent £,
sampling sketch sky(u;).

» We ¢y sample the vector u; using the sketch sk;i(wu;). As
result, for each vertex ¢ € V', we find a random neighbor
of 7.

> We find at least § random edges in the first round.

» We contract the random edges and create the
super-nodes.



In each round, number of nodes drops by a factor of %

number of nodes in the first round = n
number of nodes in the second round < 3

As result, the algorithm finishes in at most logn rounds.



In each round we use fresh ¢, sampling sketches for all vertices.

Since there are at most logn rounds, for each vertex we need
to maintain logn number of independent ¢, sampling sketches.

In each round, we pick one of the sketches that are not used
previously.

In total, we use nlogn number of ¢y sketches. Each sketch
takes O(log2 n) bits of space. Therefore the space complexity
is O(nlog®n) bits.



