
Lecture 16

Graph Sketches: Dynamic Spanning Forest

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics

K. N. Toosi University of Technology

Spring 2021

1/20



2/20

Spanning forest

Given a graph G = (V,E), a spanning forest of G is a forest
F = (V,E′

)

▸ E′
⊆ E.

▸ Adding an edge e ∈ E/E′ to F does not change the
number of connected components in F .

Fact: a graph can have multiple spanning forests.



3/20

Spanning forest: applications

▸ Algorithm design: intermediate step in designing graph
algorithm (connectivity and path finding)

▸ Graph analysis: spanning forest gives the connected
components of a graph.

▸ Network design: Minimum number of links to keep the
nodes connected.



4/20

Computing a spanning forest

Given a graph on n vertices and m edges, we can compute a
spanning forest in time O(m) and O(m) space (BFS/DFS
graph traversal).

What if the graph is dynamic (edges are inserted and deleted)
and we have to maintain a spanning forest?



5/20

Spanning forest: insert-only streams

When the stream is series of edge insertions, maintaining a
spanning forest is easy.

If the new inserted edge e does not create a cycle it is added
to the forest otherwise it is ignored.

Space usage: O(n logn) bits per-edge time: ?



6/20

Spanning forest: dynamic graphs

When the edges, in addition to being inserted, are deleted as
well it is not clear how to maintain a spanning forest without
storing all existing edges.



7/20

Dynamic spanning forest via `0 sampling

[Ahn, Guha, McGregor, 2012] There is a randomized algorithm
for maintaining a spanning forest under insertion/deletion of
edges that uses O(n log3 n) bits of space. The algorithm uses
`0 sampling as a subroutine.

`0 sampling: Given a stream of positive and negative updates
on a vector x ∈ Rn, a `0 sampler is a randomized algorithm
that returns a random non-zero coordinate i ∈ [n] where the
probability of returning each non-zero coordinates is

1

∥x∥0

±

1

nc
.

With probability at most δ, the algorithm might declare failure
and return no sample. The algorithm uses O(log2 n log(1

δ )) bits
of space.



8/20

Computing the connected components
Lets consider a simpler problem: report the connected
components after all edge-insertion/deletions are done.

The algorithm is based on a simple strategy:

Each time pick a random edge and merge its two endpoints
into a super-node. Continue this process until no edge remains.
In the end, the isolated super-nodes represent the connected
components.



9/20



10/20



11/20

In the end, the connected components remain as isolated
super-nodes.



12/20

We can pick a random edge by `0 sampling the adjacency
matrix A.

However, in addition to this, we want to be able to sample an
edge from the cut (S,V /S) when S is a super-node. How can
we do this?



13/20

Suppose the vertices are labeled by numbers in {1,2, . . . , n}.

For each node i ∈ V , we define a vector ui ∈ {−1,0,+1}(
n
2
) as

follows.

▸ If the edge (i, j) exists and i < j then we set the
coordinate ui(i, j) = +1

▸ If the edge (i, j) exists and i > j then we set the
coordinate ui(i, j) = −1



14/20

The vector ui1 + . . . +uir corresponds to the super-node
S = {ui1 , . . . , uir}.



15/20

For each vector ui, we maintain an `0 sampling sketch sk(ui).

sk(u1), sk(u2), . . . , sk(un)

If we want to sample an edge from the cut (S,V /S) where
S = {i1, i2, . . . , ir}, we use the sketch

sk(ui1 +ui2 + . . . +uir)



16/20

There is one problem: if we contract the edges, one edge at a
time, we may end up using the sketch sk(u1) multiple times
(n − 1 times!)

`0 sample u1 ∶ sk(u1)

`0 sample u1 +u2 ∶ sk(u1 +u2)

`0 sample u1 +u2 +u3 ∶ sk(u1 +u2 +u3)

...
`0 sample u1 +u2 + . . . +un−1 ∶ sk(u1 +u2 + . . . +un−1)



17/20

The `0 sample drawn from u1 +u2 will depend on the `0
sample drawn from u1. Dependency!!

We should not use the sketch sk(ui) multiple times because it
will cause dependency issues.

If we could query a sketch multiple times we could find all
neighbors of a node by using only O(log3 n) bits of space!
This is impossible because one cannot compact Ω(n) bits of
information in log3 n bits of space.

How to avoid using a sketch multiple times?



18/20

Lets assume there is no isolated vertex in the input graph
G = (V,E).

The algorithm works in multiple rounds. In the first round we
do the following:

▸ For each vertex i ∈ V , we maintain an independent `0
sampling sketch sk1(ui).

▸ We `0 sample the vector ui using the sketch sk1(ui). As
result, for each vertex i ∈ V , we find a random neighbor
of i.

▸ We find at least n
2 random edges in the first round.

▸ We contract the random edges and create the
super-nodes.



19/20

In each round, number of nodes drops by a factor of 1
2 .

number of nodes in the first round = n
number of nodes in the second round ≤

n
2

As result, the algorithm finishes in at most logn rounds.



20/20

In each round we use fresh `0 sampling sketches for all vertices.

Since there are at most logn rounds, for each vertex we need
to maintain logn number of independent `0 sampling sketches.

In each round, we pick one of the sketches that are not used
previously.

In total, we use n logn number of `0 sketches. Each sketch
takes O(log2 n) bits of space. Therefore the space complexity
is O(n log3 n) bits.


