Lecture 18

Parallel Computing and Big Data

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics Faculty of Mathematics K. N. Toosi University of Technology

Spring 2021

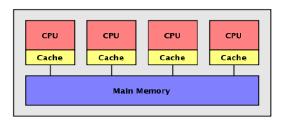
Parallel Processing: Basic Idea

Speeding up via breaking large tasks into (independent) sub-tasks and executing them in parallel.

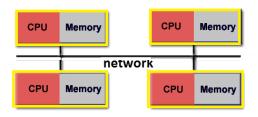
- Sequential time (stime): Time to finish the job in sequential manner
- Parallel time (ptime, wall-clock time):
 Time to finish the job using parallel processes

Models for parallel computing

PRAM (shared memory)



- Multi-threading
 Java, Python, ...
- OpenMP
 C,C++, Fortran
- CUDA (GPU)
- Message Passing (local memory)



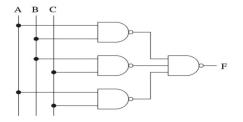
- ► MPI (C++)
- MapReduce, Hadoop
- Spark

Theoretical Models for Parallel Computing

- Circuit Complexity
- PRAM (Parallel Random Access Model)
- MPC (Massively Parallel Computing)

Circuit Complexity

aka Non-uniform complexity



How many AND, OR, NOT gates are needed to compute a boolean function $f:\{0,1\}^n \to \{0,1\}$?

total number of circuits : time complexity

depth of the circuit: parallel time complexity

[Theorem] For any boolean function $f : \{0,1\}^n \rightarrow \{0,1\}$, there is a circuit with depth 4 and 2^{n+1} gates.

Related Complexity Classes:

- AC: Functions solvable with (unbounded fan-in) circuits with O(log^{O(1)} n) depth and n^{O(1)} number of gates.
 unbounded fan-in gate: a gate with multiple inputs
- ► AC₀: Functions solvable with (unbounded fan-in) circuits with O(1) depth and n^{O(1)} number of gates.
- NC: Functions solvable with (bounded fan-in) circuits with O(log^{O(1)} n) depth and n^{O(1)} number of gates.
- ► NC_k: Functions solvable with (bounded fan-in) circuits with O(log^{O(k)} n) depth and n^{O(1)} number of gates.

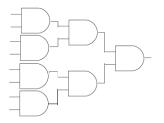
Circuit Complexity

Examples:

• AND of n bits: $f(x_1, \ldots, x_n) = x_1 \land \ldots \land x_n$

AC: (depth= 2, number of gates = 1)

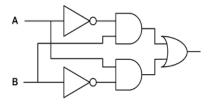
NC: (depth= $\log n$, number of gates = n - 1)



Circuit Complexity

Examples:

- XOR of n bits: $f(x_1, \ldots, x_n) = x_1 + \ldots + x_n \mod 2$
 - AC: (depth= $O(\frac{\log n}{\log \log n})$, number of gates = $n^{O(1)}$)
 - NC: (depth= $O(\log n)$, number of gates = O(n))

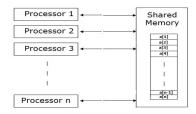


A xor B = A'B + AB'

Planar Perfect Matching $\in NC$

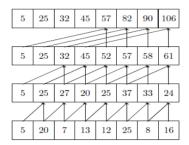
Perfect Matching $\in NC?$

Abstract Theoretical Models: PRAM



- Exclusive read exclusive write (EREW)
- Concurrent read exclusive write (CREW)
- Exclusive read concurrent write (ERCW)
- Concurrent read concurrent write (CRCW)

CREW PRAM for Prefix Sum

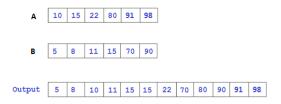


$$\forall k \in [n], \quad S_k = \sum_{i=1}^k a[i]$$

n processors

 $\log n$ parallel time

PRAM: Merging sorted arrays



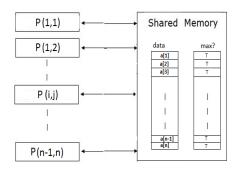
n processors: P_1, \ldots, P_n

 P_i binary searches array B to find how many numbers in B are greater than A[i]. Requires $\log n$ comparisons.

Having this information, the processor P_i puts A[i] in its right position in the output array.

 $\log n$ parallel time

PRAM (CRCW): find max



 $\binom{n}{2}$ processors. *n* distinct numbers.

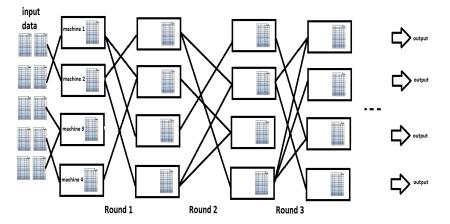
For $i \in [n]$, processor P_i writes m[i] = T.

Processor P_{ij} compares a[i]and a[j]. If a[i] < a[j]writes m[i] = F

O(1) parallel time

Abstract Theoretical Models: MPC

Massively Parallel Computing



- \blacktriangleright N input data size, M machines
- ► S memory size per machine

At first, input data is distributed among machines. Each machine gets a part of the input. We assume S = o(N). Typically $S = O(N^{\epsilon})$ for some $\epsilon < 1$.

If $S \ge N$, we could give all data to a single machine which can solve the entire problem locally.

Computation is done in rounds.

In each round, the machines do local computations on their share of the input. Then in a synchronous manner they communicate with each other.

Each machine transmits at most O(S) words in each round!

With these assumptions, the real bottleneck is the number of rounds.

MPC for graph problems

- Big graph G = (V, E) with m edges on n vertices
- Input size N = O(m)
- Each machine gets a subset of the edges (repetitions?)
- We assume number of machines $M = O(\frac{m}{S})$
- Strongly super-linear memory $S = O(n^{1+\epsilon})$ when $\epsilon \in (0, 1]$
- Near linear memory $S = \tilde{O}(n)$
- Strongly sub-linear memory $S = O(n^{\epsilon})$ when $\epsilon < 1$

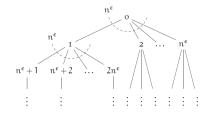
Broadcasting trees

Every machines sends at most S words in each round.

Suppose machine number 0 wants to broadcast n words to all M machines. How many rounds does it take?

Suppose $S = n^{1+\epsilon}$ (super-linear case). If $M \ge n^{\epsilon}$ broadcasting cannot be done in one round.

using a broadcast tree, this can be done in $O(\frac{1}{\epsilon})$ rounds.



In the first round, machine 0 sends n words to machines $1,\ldots,n^\epsilon.$ (second level of the tree)

In the second round, each machine in the second level sends n words to n^ϵ new machines (third level)

After $O\bigl(\frac{1}{\epsilon}\bigr)$ rounds, all $M \leq n^2$ machines have received the words.