
Lecture 18

Parallel Computing and Big Data

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics

K. N. Toosi University of Technology

Spring 2021

1/17

2/17

Parallel Processing: Basic Idea

Speeding up via breaking large tasks into (independent)
sub-tasks and executing them in parallel.

▸ Sequential time (stime):
Time to finish the job in sequential manner

▸ Parallel time (ptime, wall-clock time):
Time to finish the job using parallel processes

3/17

Models for parallel computing
▸ PRAM (shared memory)

▸ Multi-threading

Java, Python, ...

▸ OpenMP

C,C++, Fortran

▸ CUDA (GPU)

▸ Message Passing (local memory)

▸ MPI (C++)

▸ MapReduce, Hadoop

▸ Spark

4/17

Theoretical Models for Parallel Computing

▸ Circuit Complexity

▸ PRAM (Parallel Random Access Model)

▸ MPC (Massively Parallel Computing)

▸ ...

5/17

Circuit Complexity

aka Non-uniform complexity

How many AND, OR, NOT gates are needed to compute a
boolean function f ∶ {0,1}n → {0,1} ?

total number of circuits : time complexity

depth of the circuit: parallel time complexity

6/17

[Theorem] For any boolean function f ∶ {0,1}n → {0,1},
there is a circuit with depth 4 and 2n+1 gates.

Related Complexity Classes:

▸ AC: Functions solvable with (unbounded fan-in) circuits
with O(logO(1) n) depth and nO(1) number of gates.

unbounded fan-in gate: a gate with multiple inputs

▸ AC0: Functions solvable with (unbounded fan-in) circuits
with O(1) depth and nO(1) number of gates.

▸ NC: Functions solvable with (bounded fan-in) circuits
with O(logO(1) n) depth and nO(1) number of gates.

▸ NCk: Functions solvable with (bounded fan-in) circuits
with O(logO(k) n) depth and nO(1) number of gates.

7/17

Circuit Complexity

Examples:

▸ AND of n bits: f(x1, . . . , xn) = x1 ∧ . . . ∧ xn
AC: (depth= 2, number of gates = 1)

NC: (depth= logn, number of gates = n − 1)

8/17

Circuit Complexity

Examples:

▸ XOR of n bits: f(x1, . . . , xn) = x1 + . . . + xn mod 2

AC: (depth= O(logn
log logn), number of gates = nO(1))

NC: (depth= O(logn), number of gates = O(n))

Planar Perfect Matching ∈ NC Perfect Matching ∈ NC?

9/17

Abstract Theoretical Models: PRAM

▸ Exclusive read exclusive write (EREW)

▸ Concurrent read exclusive write (CREW)

▸ Exclusive read concurrent write (ERCW)

▸ Concurrent read concurrent write (CRCW)

10/17

∀k ∈ [n], Sk =
k

∑
i=1

a[i]

n processors

logn parallel time

11/17

PRAM: Merging sorted arrays

n processors: P1, . . . , Pn

Pi binary searches array B to find how many numbers in B are
greater than A[i]. Requires logn comparisons.

Having this information, the processor Pi puts A[i] in its right
position in the output array.

logn parallel time

12/17

PRAM (CRCW): find max

(n
2
) processors. n distinct

numbers.

For i ∈ [n], processor Pi
writes m[i] = T.

Processor Pij compares a[i]
and a[j]. If a[i] < a[j]
writes m[i] = F

O(1) parallel time

13/17

Abstract Theoretical Models: MPC

Massively Parallel Computing

▸ N input data size, M machines
▸ S memory size per machine

14/17

At first, input data is distributed among machines. Each
machine gets a part of the input. We assume S = o(N).
Typically S = O(N ε) for some ε < 1.

If S ≥ N , we could give all data to a single machine which can
solve the entire problem locally.

Computation is done in rounds.

In each round, the machines do local computations on their
share of the input. Then in a synchronous manner they
communicate with each other.

Each machine transmits at most O(S) words in each round!

With these assumptions, the real bottleneck is the number of
rounds.

15/17

MPC for graph problems

▸ Big graph G = (V,E) with m edges on n vertices

▸ Input size N = O(m)

▸ Each machine gets a subset of the edges (repetitions?)

▸ We assume number of machines M = O(mS)

▸ Strongly super-linear memory S = O(n1+ε) when ε ∈ (0,1]

▸ Near linear memory S = Õ(n)

▸ Strongly sub-linear memory S = O(nε) when ε < 1

16/17

Broadcasting trees

Every machines sends at most S words in each round.

Suppose machine number 0 wants to broadcast n words to all
M machines. How many rounds does it take?

Suppose S = n1+ε (super-linear case). If M ≥ nε broadcasting
cannot be done in one round.

using a broadcast tree, this can be done in O(1
ε) rounds.

17/17

In the first round, machine 0 sends n words to machines
1, . . . , nε. (second level of the tree)

In the second round, each machine in the second level sends n
words to nε new machines (third level)

After O(1
ε) rounds, all M ≤ n2 machines have received the

words.

