
Lecture 20

Massively Parallel Algorithms:

Sorting, Counting Distinct Elements

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics

K. N. Toosi University of Technology

Spring 2021

1/14



2/14

MPC: recap

▸ N input data size, M machines

▸ S = o(N) memory size per machine

▸ Each machine communicates at most S words in each
round



3/14

Sum of N integers

Each machines computes its local sum and sends it up to the
coordinator.

▸ √
N < S ≤ N

▸ M = N
S

▸ # rounds = 1

▸ 2 ≤ S ≤ √
N

▸ M = N
S

▸ # rounds = logSN



4/14

Sorting N integers

Input Data: N integers {a1, a2, . . . , aN}
Assumption: The input integers are distinct (no repetitions).

The input is partitioned among the machines. Each machine
gets S = O(N2/3) elements. M = O(N1/3)
Output: The rank of each element is known by some machine.



5/14

A parallel algorithm inspired by quicksort

Stage 1: selecting potential pivots

▸ The machines select a random subset X of the elements.
Each element is picked with probability p = N1/3 logN

N . We
call these elements potentially pivot elements.

▸ The machines communicate their selected elements. At
the end of this stage, the machines all know the random
subset X.



6/14

Stage 2: local ranks for the potential pivots

▸ For each x ∈X, the machines compute local-rank(x):
how many elements in their input is smaller than x.

▸ For each x ∈X, the machines send (x, local-rank(x)) to
the coordinator.



7/14

Stage 3: computing the pivots

▸ Having received the local ranks, the coordinator computes
the (global) rank of each potential pivot x ∈X.

▸ For each N2/3 length interval in {1, . . . ,N}, the
coordinator selects an element from the potential pivots
X that has a rank with that interval.

▸ The coordinators sends the selected pivots to all
machines.



8/14



9/14

Lemma: With high probability, there exists a potential pivot
from each N2/3 length interval.

Proof: Each element is picked probability p = N1/3 logN
N . In

expectation, number of elements selected from a rank interval
is logN .

Using Chernoff bound, with high probability there is at least
one elements from each interval.

Let p1, p2, . . . , pN1/3 be the selected pivots.

Consider the real intervals:

I1 = (−∞, p1], I2 = (p1, p2], . . . , IN1/3
+1 = (pN1/3 ,+∞)

Machine Mi will be responsible for the elements in the interval
Ii



10/14

Stage 4: sending the elements to the responsible machines

▸ Each machine, for each element y in its local memory,
sends y to the machine Mj where

y ∈ Ij = (pj−1, pj)

▸ Each machine locally sorts the received elements.

Let Si be the sorted lists owned by machine Mi. The final list
S1, S2, . . . , SM is sorted in the increasing order.



11/14



12/14

Round complexity of each stage

▸ Stage 1: each machine selects O(logN) potential pivots
in expectation. With high probability (Chernoff bound),
number of selected pivots is O(logN).

The potential pivots are broadcasted to other machines.
There are O(N1/3) machines. This can be done in one
round. Recall the communication limit is S = O(N2/3).

▸ Stage 2: Each machine sends O(N1/3 logN) words to the
coordinator. This can be done in 2 rounds using a
broadcast tree of depth 2.

▸ Stage 3: The coordinator sends N1/3 number of pivots to
all machines. This can be done in 1 round.



13/14

▸ Stage 4: The machines sends the elements to their
responsible machines. Each machine has O(N2/3)
elements. Each real interval has at most O(N2/3)
elements in it. This stage can also be done in O(1)
round.

[ Theorem] There is a O(1) round MPC algorithm for sorting
N numbers where each machine has O(N2/3) space.

Question: What about the general case when S = nε?
[ Theorem] There is a O(1/ε) round MPC algorithm for
sorting N numbers where each machine has O(N ε) space.

See Parallel Algorithms (Chapter 6) by Mohsen Ghaffari.



14/14

Question: What if the numbers are not distinct?

One idea is to perturb the numbers so that all numbers
become distinct. We can do this by adding a small random ε
to all numbers. (With high probability all numbers are distinct
now.) We sort the perturbed numbers and then scrap the
added noise.

Question: A MPC algorithm for counting distinct elements?


