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Lp Samplers and Their Applications: A Survey

GRAHAM CORMODE, University of Warwick

HOSSEIN JOWHARI, K. N. Toosi University of Technology

The notion of Lp sampling, and corresponding algorithms known as Lp samplers, have found a

wide range of applications in the design of data stream algorithms and beyond. In this survey we

present some of the core algorithms to achieve this sampling distribution based on ideas from

hashing, sampling and sketching. We give results for the special cases of insertion-only inputs,

lower bounds for the sampling problems, and ways to efficiently sample multiple elements. We

describe a range of applications of Lp drawing on problems across the domain of computer

science, from matrix and graph computations, as well as to geometric and vector streaming

problems.
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1 INTRODUCTION
Random sampling is an indispensable tool in computation over massive data sets. In

addition to its wide applications in generating small summaries of data, it also acts as

the main building block in the design of many algorithms and estimation procedures.

However despite its simplicity and common use, sampling turns into a challenging

puzzle when it is applied to distributed and dynamic data sets. Specifically in the area

of data streams and distributed computing where serious limitations on storage space

and communication cost are imposed, a naive implementation of sampling could take a

lot of resources and even in some cases become impractical. For instance, consider the

scenario where an Internet Service Provider with tens of millions of clients requires

samples from the recent activities of its clients for performance tuning purposes.

Or consider the case where a financial institution demands samples from the recent

updates (withdrawals and deposits) on the current accounts of its clients. In both cases

data is constantly evolving and possibly distributed across several servers. Sampling

methods that assume data is static and resides in the main memory are not applicable
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in these scenarios. For another example consider a data stream that corresponds to all

visits to a website. We would like every visitor to have some chance to be sampled,

but for those who visit more frequently to be disproportionately more likely to be

selected—say, proportional to the square of the number of visits. Sampling with such

a distribution under space limitations can be difficult to achieve if the visits are spread

out in time, and the actual number of visits accumulates gradually.

To tackle these challenges, the model of Lp sampling has emerged as a way to

capture a variety of sampling distributions and scenarios, including those described

above. Concurrently, a number of algorithms and applications that (approximately)

achieve the required sampling distributions are known. Informally, for a parameter

p, an Lp sampler should sample an element proportional to the p’th power of its

frequency in a stream of observations. Note that the stream of observations may

include deletions of already observed data which is in particular hard to handle under

strict memory limitations. To address this, techniques and data summaries are used

that support linear operations—i.e., given two independent streams of updates, we

can add/substract the corresponding (summaries) sketches to get a sample from the

union/difference of the streams. In fact it is this linear property of such samplers that

makes them very powerful in practice.

To explain the model more formally we start with a key definition.

Definition 1.1. Let x ∈ Rn be a non-zero vector. For p > 0, the (exact) Lp distribution

corresponding to x is a distribution on [n] that takes i with probability
|xi |p

∥x ∥pp
, where

∥x ∥p = (
∑n

i=1 |xi |
p )1/p is the Lp norm of x . For the limiting case of p = 0, we define

the Lp distribution corresponding to x to be the uniform distribution over non-zero

coordinates of x .

A perfect Lp -sampler is a randomized algorithm such that given a stream of updates

on the coordinates of an initially zero vector x , it outputs a pair (i,xi ) where i is
distributed according to the Lp distribution of x and fails only if x is the zero vector.

Note that for the stream of observations the updates correspond to the additions and

subtractions of the individual element frequencies.

While we do not know how to achieve exactly this distribution without having the

entire vector x kept in memory, fortunately there are polylogarithmic space algorithms

that get arbitrary close. It is worth mentioning that all of the applications of these

samplers that we know of do not require the exact distribution. In fact it would be

interesting to identify a (non-artificial) application where this requirement is strongly

required.

Thus an approximate Lp -sampler is allowed some probability of failure, and the

distribution of its output is required to be close to the Lp distribution. More formally,

an approximate Lp sampler is parameterized as follows.

Definition 1.2. An approximate Lp sampler with relative error ε and additive error

∆, conditioned on no failure, outputs the index i ∈ [n] with a probability pi in the

range

pi ∈ (1 ± ε)
|xi |

p

∥x ∥
p
p

± ∆,
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i.e. we tolerate some imprecision in the sampling probability compared to the target

distribution. The sampler is often implemented as a randomized algorithm, and so can

have an additional paramter δ , meaning that it may fail with probability at most δ
and output no sample at all

∗

We remark that in almost all existing samplers the additive error parameter ∆ can

be reduced to O(n−c ) where c is an arbitrary constant without affecting the space

and update time complexities. Therefore in the rest of the paper when we refer to an

approximate Lp sampler algorithm, it is implicitly the case that ∆ = O(n−1) unless it
is explicitly stated otherwise.

Throughout the article, we maintain the distinction that Lp sampling refers to the

objective of sampling according to the (approximate) Lp distribution, while Lp samplers

are algorithms (and their corresponding data structures) which allow this sampling

to be performed. Therefore, we study Lp samplers through the lens of computational

complexity: what is the space required (as a function of n, ε and δ ) by the algorithm;

what is the time required to process an update in the data stream; and what is the

time required to extract a sample from the stored data structure. We focus on the first

two of these criteria, and look for Lp samplers with fast update time and small space

usage.

The current state of the art for approximate Lp samplers is shown in Figure 1. Here,

we distinguish between the general update case (updates on xi ’s can be both positive

and negative), and the positive update case (negative updates are disallowed). Each

of these results is described in more detail throughout this survey. The table uses a

parameter m to help draw out the similarities between the various costs: for each

method,m gives the leading term for the space and time cost, and suppresses lower

order factors in logn and log 1/δ ). The fact that we can write the costs in this form

across different values ofm is primarily due to similarities in the underlying algorithms

and their constructions – there does not seem to be any greater significance ofm than

notational convenience.

1.1 Preliminaries and Related Topics
The treatment in this survey assumes some level of familiarity with concepts from

randomized algorithms, such as hash functions to map data elements in a pseudo-

random but repeatable fashion, and tools for analysis from concentration of measure.

We present definitions and basic results below, and refer to textbooks such as those of

Motwani and Raghavan [64] and Mitzenmacher and Upfal [62] for further details.

Data model. Throughout this article, we consider data that can be modeled as a

vector x of frequencies. The vector x is defined by a sequence of (integral) increments

or decrements to individual coordinates. That is, x ∈ ZnM where ZM is the set of

integers within the range [−M,M] whereM = nO (1)
. We also restrict the updates to

the coordinates of x to integers within the same range. These assumptions capture

most of the applications of Lp sampling, while allowing a broad range of algorithms.

Limited independence hash functions. Algorithms for Lp sampling are inherently

randomized, and are often defined using hash functions h, which map input values

∗
Note that we could consider this equivalent to setting δ = ∆ and augmenting the output space with an

element ∅ such that x∅ = 0. However, for clarity, we keep these parameters separate.
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p (ε,∆,δ ) space usage update time Note

General Updates O(m log
2 n log 1/δ ) O(m logn log 1/δ )

p = 0 (0,n−2,δ ) m = 1 [49],[23]

p ∈ (0, 2)/{1} (ε,n−2,δ ) m = 1

εp [49]

p = 1 (ε,n−2,δ ) m =
log(1/ε )

ε [49]

p = 2 (ε,n−2,δ ) m = 1

ε2 logn [49],[7]

p ∈ (0, 2) (0, 0,δ ) m = 1 [46]

p = 2 (0, 0,δ ) m = logn [46]

Positive Updates O(m logm logn log 1/δ ) O(m logm log 1/δ )

p ∈ (0, 2)/{1} (ε,n−2,δ ) m = 1

εp [49],[11]

p = 1 (ε,n−2,δ ) m =
log(1/ε )

ε [49],[11]

p = 2 (ε,n−2,δ ) m = 1

ε2 logn [7],[49],[11]

Special Cases

p = 0 (ε, 0, 0) O
(
log(1/ε )

ε logn
)

O
(
log(1/ε )

ε

)
Min-wise sampling

p = 1 (0, 0, 0) O(logn) O(1) Reservoir sampling

p = 2,

unit weights

(0, 0,δ ) O(
√
n log 1/δ ) O(1) Random sampling

Fig. 1. State of the art for approximate Lp samplers.

from a domain of size n to a bounded output domain of size d . It would be convenient

to assume that hash functions are drawn uniformly from the space of all functions.

However, we are often concerned with the space used by our algorithms. To describe a

random function requires a large amount of space, since we need to encode the output

value for each distinct input. Consequently, we will often rely on limited independence

hash functions, drawn from a smaller family. These can be described more compactly,

but are sufficiently random to allow formal guarantees to be proven. A common

requirement is for k-wise independence: over the random choice of the hash function,

the probability that any k distinct elements are mapped to a particular combination of

output values is uniform, i.e. 1/dk . Such hash functions are easy to construct.

Lemma 1.3. [16] A function drawn from a family of k-wise independent hash functions
can be encoded in O(k logn) bits.

The subsequent lemma is used in the analysis of some of the constructions.

Lemma 1.4. [69, Thm. 5] If X is the sum of k-wise random variables each of which is

confined to the interval [0, 1] with µ = E[X ], then for δ ≥ 0 and k ≤ ⌊min{δ ,δ 2}µe−1/3⌋,
we have Pr(|X − µ | ≥ δµ) ≤ e−⌊k/2⌋

.
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Min-wise Independence. A different model of limited independence hash func-

tions is given by the notion of min-wise independent hash functions, introduced by

Broder [13, 14]. These are heavily used to define Lp sampling procedures (and in

particular L0 sampling): algorithms apply a min-wise hash function to permute the

input, and keep information about elements which map to the smallest few observed

values.

A family of functions H = {hi : [n] → [n]} is ε-min-wise independent if for any

X ⊂ [n] and x ∈ [n] − X we have

Pr

h∈H
[h(x) < minh(X )] =

1

|X | + 1
(1 ± ε).

Note that here, the probability is over the random choice of a member h from

the family H . When X is restricted to subsets of size at most s , the family is called

(ε, s)-min-wise independent. Small (approximate) min-wise independent families of

hash functions in particular are useful in design of L0 samplers. The algorithm samples

a hash function from the family and then keeps track of information pertaining to the

element from the stream that achieves the smallest hash value. The algorithm only

needs to keep a sample hash function and a minimum candidate. As result the space

of the algorithm principally depends on the size of the family of the hash function,

which determines the space needed to represent the sampled function. We shall see

the application of this idea in Section 2.2. The following result by Indyk [45] shows

that O(log(1/ε))-wise independent hash functions are indeed also ε-min-wise hash

functions. Given efficient constructions for k-wise independent hash functions, this

implies that only O(log(1/ε) logn) bits are needed to store a sample ε-min-wise hash

function.

Lemma 1.5. There exist constants c and c ′ > 1 such that for any ε > 0 and s ≤ εn/c
any c ′ log(1/ε)-wise independent family H of functions is (ε, s)-min-wise independent.

Lp Approximation and Frequency Moments. Algorithms for estimating the Lp
norms of vectors have had a central role in shaping the progress of data stream

algorithms. One of the first problems to be addressed in this area is to estimate the k’th
frequency moment of an input stream (denoted Fk ). The problem is to compute the

sum over all characters a of the k’th power of the frequency of a, i.e. Fk =
∑

a f (a)k . If
we define x as the frequency vector of the stream, then Fk = ∥x ∥kk , the k’th power of

its Lk norm. Hence, Fk estimation is often addressed with solutions for Lp estimation.

By definition, Lp sampling has a tight relationship with Lp norms and related

algorithms. In fact, Lp sampling can be regarded as an influential byproduct of research

in Lp estimation algorithms. One direction is almost immediate. Lp samplers can be

used to estimate Lp norms, although in an inefficient way
†
. Not surprisingly, Lp

estimators are also used in the design of Lp samplers as a subroutine. In particular the

following result is a main ingredient of the algorithm in Section 2. We remark that the

factor 2 in the lemma is arbitrary and can be replaced by any constant factor.

†
For example, we could add an extra coordinate to the input vector with weight w , and repeatedly take

samples from this modified vector. The fraction of times that the extra coordinate is returned can be used to

infer the total Lp weight of the input vector. One can carry out this process with geometrically increasing

parallel guesses for w to ensure that there is some guess of w that is not too large or too small. We later

give a more efficient construction to estimate Lp norms via L2 sampling.
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Lemma 1.6. [5, 50] For any p ∈ [0, 2], there is a streaming algorithm that processes the

vector x defined as a sequence of updates to coordinates. The algorithm stores O(logn)
bits of space and outputs a value r satisfying ∥x ∥p ≤ r ≤ 2∥x ∥p with high probability

(i.e. the probability that the estimate fails to fall in this range is polynomially small in n).

Vector Approximation and Sparse Recovery. Lp sampling also borrows ideas and

techniques from vector approximation and sparse recovery. This in turn is another

important line of research in computation over data streams and massive data sets. In

vector approximation the goal is to recover a vector from a stream of updates using

small space with as little error as possible. Well-known measures of error are L1 and L2
norms which are implemented by two popular summary structures known as Count-

Min [24] and Count-Sketch [17]. In sparse recovery, the aim is to recover a vector that

is particularly sparse, meaning that it has a small number of non-zero coordinates.

More precisely, for 0 ≤ c ≤ n, we call the vector x ∈ Rn c-sparse if all but at most c
coordinates of x are zero. When dealing with vectors that are not strictly c-sparse, we
will use a measure of sparsity based on the residual norm after removing the c largest
entries. Formally, we define the tail error Err

c
p (x) = min ∥x − x̂ ∥p , where x̂ ∈ Rn

ranges over all the c-sparse vectors. As we see in Section 2, some implementations of

Lp sampling use Count-Sketch to approximately recover a vector which corresponds

to the input with entries rescaled by random factors.

Briefly speaking, the Count-Sketch data structure applied to input vector x with pa-

rameter c (denoted by Count-Sketchc (x)) usesO(logn) random functions to distribute

the coordinates among 6c different sums. Additionally each coordinate is multiplied

with a random number from {−1,+1} before it is added to its associated sums. All ran-

dom hash functions and random coefficients are selected from pairwise independent

families. The estimated value of a coordinate is the median value of the corresponding

sums (each multiplied by the coordinate’s random sign). We have the following lemma

regarding the accuracy of Count-Sketch.

Lemma 1.7. [17] For any x ∈ Rn and c ≥ 1 we have |xi − x∗i | ≤ Err
c
2
(x)/c1/2 for

all i ∈ [n] with high probability, where x∗ is the output of the Count-Sketchc (x). As a
consequence we also have

Err
c
2
(x) ≤ ∥x − x̂ ∥2 ≤ 10 Err

c
2
(x)

with high probability, where x̂ is the c-sparse vector best approximating x∗ (i.e., x̂i = x∗i
for the c coordinates i with |x∗i | highest and is x̂i = 0 for the remaining n−c coordinates).

1.2 A Brief History
Inspired by its wide range of applications in the design of streaming algorithms, the no-

tion of Lp sampling and Lp samplers were introduced and formalized by Monemizadeh

and Woodruff [63]. The authors also showed examples where these samplers are used

as building blocks in solutions for some data stream problems. However instances of

Lp sampling and in particular L0 sampling appeared earlier in the context of distinct

sampling where the goal is to sample each element that appears in the stream of data

uniformly, irrespective of the number of times that it appears. Specifically the works of

Cormode et al. [25] and Frahling et al. [37] have tackled L0 sampling within different

contexts and have given similar solutions for this problem. Inspired by database appli-

cations, the work of Cormode et al. [25] considered querying the inverse distribution
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of a dynamic frequency vector subject to insertion and deletions of characters. More

precisely, if f (a) is the number of occurrences of character a in the stream, we want to

to learn about the cardinality of f −1(i), the fraction of characters that appear exactly i
times in the stream. For notational convenience, we write f −1(i) to denote this fraction,
following [25]. One way to estimate f −1(i), is to get a sample character (along with its

count) where each character with non-zero count has equal chance to be sampled. In

other words, sampling a random pair (a, f (a)) such that f (a) , 0 with probability 1/k
where k is the number of non-zero coordinates in f . Similarly the work of Frahling

et al. [37], inspired by geometric applications, is concerned with getting a sample of

points (on a plane for instance) subject to insertion and deletion operations. Here the

data set can be viewed as a two-dimensional matrix where each insertion or deletion

of a point increments or decrements the value of a corresponding cell and the the goal

is to sample a non-zero cell in the matrix. More details of these applications is given

below. To date, there has been limited empirical study of Lp sampling, and the impact

has primarily been within the context of Theoretical Computer Science. The works of

Cormode et al. [25] and Cormode and Firmani [23] have provided implementation and

evaluation for L0 sampling, showing that samples can be drawn from this distribution,

at a storage cost in the region of tens of kilobytes per sampler.

1.3 The Broader Landscape of Stream Sampling Algorithms
The model of Lp sampling is but one sampling distribution, and many other approaches

to sampling have been presented in the computational and statistical literature. Re-

stricting our focus to methods proposed in the context of sampling from streams of

data, in this section we provide a brief overview of the landscape, and draw connections

to Lp sampling, which remains our main focus.

Reservoir sampling. The simplest sampling objective in streams of data is to main-

tain a uniform sample of the elements so far (without replacement), while new elements

arrive online. This can be achieved quite straightforwardly by an algorithm which

maintains a sample with the correct distribution over the stream seen so far, and which

then selects each new element into the sample (and ejects a currently sampled element)

with the appropriate probability [35, 56, 74]. Extensions to the case where elements

arrive with an associated weight is a little more involved, and requires sampling based

on random values drawn from the exponential distribution parametrized by the weight

of each element [32]. This model of uniform sampling coincides with L1 sampling in

the case of insert-only streams, and leads to a space efficient algorithm, discussed in

more detail in Section 2.3.

Other sampling distributions. Across the various areas that have considered the

problem of sampling from a stream of observations, such as network management, and

database maintenance, a number of other approaches to stream sampling have been

proposed, which imply various sampling distributions over the input. In some cases

these are heuristic or hard to formalize as a precise distribution, but they may still

have some desirable properties, such as providing unbiased estimates, or minimizing

variance over certain queries. For example, the ‘sample and hold’ approach arises when

we may see many occurrences of the same item, and we wish to estimate the number of

occurrences. Each element is sampled uniformly, but then all subsequent occurrences
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of elements currently in the sample are counted exactly [34, 42]. Other notable methods

include Priority Sampling [31], Threshold Sampling [30], Variance Optimal (VarOpt)

sampling [19], Adaptive Sample and Hold [34, 42], and Fair Sampling [29]. A common

feature of these methods is that they apply in the model when elements only arrive,

or equivalently, that weights of elements are positive. By contrast, most of the work

in Lp sampling is relevant to the case when elements may depart as well as arrive, or

more generally, when elements are subject to weight updates that can be both positive

and negative.

Sampling based on hashing. As we see in subsequent sections, a key technical

feature of Lp sampling algorithms is the use of randomly-chosen hash functions to

ensure that when an element is seen multiple times, it is handled in the same way

each time. This concept has also been used in a number of methods for sampling from

streams of data, possibly observed at distributed locations. In its simplest form, this

involves retaining information about elements whose hash values satisfy a certain

property, to form the sample. For example, interpreting hash values as real numbers in

the range [0, 1], we might retain all elements whose hash value falls in [0, 0.1] to obtain
an (expected) 10% sampling rate. The notion of min-wise independent hash functions

introduced above is used to sample elements uniformly over all permutations. This

approach of keeping information about elements with the smallest hash values is

referred to variously as bottom-k or k-mins sample [20, 72]. Since it is not influenced

the associated weight of items, it is closest to L0 sampling. The main difference in

emphasis is again that L0 sampling allows negative weights, which are not well-

handled by the bottom-k and k-mins approaches: when the weight of a sampled

element becomes zero due to the cancellation of positive and negative updates, the

algorithm needs to recover a different sample element, which is not addressed in the

k-mins/bottom-k work.

Sampling in Graph Streams. A notable special case in stream sampling is when the

stream is considered to be formed of a stream of edges, which collectively define a

graph. Here, the sampling problem is considered more challenging, since we typically

are interesting in estimating properties of the sampled graph that go beyond single

edges, such as connectivity properties or estimating the prevalence of small substruc-

tures (e.g. cliques). Consequently, much effort has been devoted to sampling methods

in graphs, based on various exploration models such as random walks [67], the forest

fire model [57], respondent sampling [43, 68] and many more [1]. Lp sampling has

similarly found applications in graphs, most notably in answering connectivity ques-

tions (see Section 3.2). As with the previous examples, the main difference is that Lp
sampling emphasises the dynamic case (edges can be added and removed), while other

graph sampling results work on the arrivals-only model.

2 LP SAMPLING ALGORITHMS
There are a number of algorithms which solve the Lp sampling problem with different

properties and for different ranges of p. We begin with one that captures a very

general case, and in subsequent subsections we describe algorithms that capture more

specialised cases.
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2.1 Canonical Lp sampling algorithm
In this section we describe the Lp sampling algorithm given in [49] for p ∈ (0, 2].‡

Other algorithms for this problem are somewhat similar in nature, and this primitive

algorithm achieves a strong space/accuracy tradeoff. The basic logic of the sampler

is as follows. The input vector x = (x1, . . . ,xn) is scaled by random coefficients

u = (u
−1/p
1
, . . . ,u

−1/p
n ), where each ui is picked uniformly at random from (0, 1). Let

z = (x1u
−1/p
1
, . . . ,xnu

−1/p
n ) be the scaled vector. Our sample will be determined by the

largest elements of z. Due to the random choice of u, each entry in z has some chance

to be largest, but those that correspond to larger values in x have a greater chance

then those for smaller values. Formalizing this intuition allows us to show that this

achieves the desired sampling distribution.

To this end, the important observation is Pr[u−1i ≥ τ ] = 1/τ and hence by setting the

threshold τ to ∥x ∥
p
p /|xi |

p
, we get Pr[|zi | ≥ ∥x ∥p ] = |xi |

p/∥x ∥
p
p . Therefore, assuming

we have access to z and ∥x ∥p , we look for the index i ∈ [n] with weight |zi | ≥ ∥x ∥p
and output the pair (i, zi ) as our sample. However, as we explain below, this idealized

scenario can fail and produce an undesirable outcome for several reasons:

• First and foremost, it could be the case that no index reaches the threshold of

∥x ∥p and as result we end up with no samples. As we shall see, we can limit the

probability of this event by repeating the sampler a large enough number of

times and taking the first successful trial.

• Another source of error comes from the fact that, due to space limitations, we

do not have full access to the scaled vector z and the norm ∥x ∥p . To handle this

problem, the algorithm keeps an approximation of the scaled vector using a

Count-Sketch data structure and sets the threshold based on an approximate

norm r , where ∥x ∥p ≤ r ≤ 2∥x ∥p . The latter compromise does not affect the

sampling distribution but the former could affect the outcome. As we will see in

the proof of Lemma 2.1, with appropriate choice of parameters in the Count-

Sketch data structures, the introduced error is not significant.

• Third and equally important, even if we had full access to z, it could be that for

the choice of u there are several indices that reach the threshold of r = O(∥x ∥p )
and we end up with more than one ‘winning’ index. To limit the probability

of this event, we raise the threshold of being selected as the chosen sample to

a higher level (namely to
r

ε1/p ). This limits the probability of multiple indices

exceeding the threshold, at the expense of increasing the chance that none do.

• Finally to avoid having to store the scaling factors u, the algorithm selects

the random coefficients ui from a k-wise independent distribution for small k .
The associated proof demonstrates that this is almost as good as using fully

independent coefficients.

When these concerns have been addressed, the approach is appealing. The sampling

is based entirely on data stored in sketches which are linear transformations of the

input. This means that the algorithm is quite flexible, and can easily handle updates to

the data in the form of positive and negative updates to components, multiple observers

‡
In principle, the same approach could work for Lp sampling for p > 2. However, this parameter regime

has attracted little study or application in the literature, so we do not address it.
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Algorithm 1: The approximate Lp -sampler with success probability Θ(ε)

Initialization.
• Set k = 2⌈log(2/ε)⌉ .
• Select ui ∈ [0, 1] for i ∈ [n] from a k-wise independent distribution.

• Setm =


O(log(1/ε)) if p = 1

O(ε−1 logn) if p = 2

O(ε−max(0,p−1)) otherwise (p ∈ (0, 2) \ {1})

Processing the stream.
Update the required sketches to compute Count-Sketchm(z), ẑ, s and r where:

• z ∈ Rn is the vector x scaled by u
• ẑ is the bestm-sparse approximation of z∗ = Count-Sketchm(z)
• s is a real with ∥z − ẑ∥2 ≤ s ≤ 2∥z − ẑ∥2
• r is a real with ∥x ∥p ≤ r ≤ 2∥x ∥p .

Output.
• Find i with |z∗i | maximal.

• If s > ε1−1/pm1/2r or |z∗i | < ε−1/pr output fail else output i as the sample.

combining their observations, and so on. We present a pseudo-code description of the

algorithm in Algorithm 1. Note that the algorithm is described for success probability

Θ(ε). We have the following lemma concerning Algorithm 1.

Lemma 2.1. Let p ∈ (0, 2]. The probability that Algorithm 1 outputs the index i ∈ [n]

conditioned on a fixed value for r ≥ ∥x ∥
p
p is (ε +O(ε2)) |xi |

p

rp +O(n
−c ).

The proof of this lemma for the cases of p ∈ (0, 2) is shown in [49]. In this survey,

we present of an extension of this proof to the case of p = 2. For the most part, the

extended proof follows the same line of reasoning that is used for other values of p.
For that reason we keep the parameter p in our proof and explicitly make a note of it

when p is restricted to a fixed value.

Proof of Lemma 2.1 for the case of p = 2. We can neglect the low probability

events of obtaining bad estimates of the various norms, as these simply affect the

overall probability of success by negligible amounts. Hence, we can assume the values

r and s are within the desired bounds. Namely,

∥x ∥p ≤ r ≤ 2∥x ∥p (1)

∥z − ẑ∥2 ≤ s ≤ 2∥z − ẑ∥2 ≤ 20 Err
m
2
(z) (2)

|z∗i − zi | ≤ Err
m
2
(z)/m1/2

for all i ∈ [n] (3)

Before we proceed we remark that values s and r are easily computable using the

sketching algorithm of Lemma 1.6. Now we enumerate the ways in which we could

obtain a bad estimate, and bound their probability in each case.

(I) First we consider the case where s > ε1−1/p (m)1/2r which causes the algorithm to

output fail. Assume that the algorithm would otherwise have chosen to output the

index i . To handle this case, we show that conditioned on ui = t where t is any fixed

value, the probability that s goes beyond ε1−1/p (m)1/2r is bounded byO(ε + n−d ). This
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means no matter how large the coordinate i is, the tail error term s will be controlled
with sufficiently high probability. To prove this, we bound the probability of the event

20 Err
m
2
(z) ≥ ε1−1/p (m)1/2∥x ∥2 conditioned on ui = t for any fixed t . Together with

the inequalities (1) and (2), this will prove our claim. For the rest of this part we set

p = 2. This is where the proof differs from the cases p ∈ (0, 2).
Recall that Err

m
2
(z) is the L2 norm of z after the largestm coordinates are set to

zero. First we show that, with large enough probability, at mostm coordinates of z are
larger than a threshold T = ε1/2∥x ∥2. The absence of these heavy coordinates from

the error term Err
m
2
(z) will enable us to use (a variant of) a Chernoff bound to put an

upper bound on the mass of the non-heavy coordinates. Without loss of generality

assume that the entries of z are indexed in increasing order of absolute value, so that

the index i achieving the maximal value in z is i = n. For each j ∈ [n − 1] we define

the indicator random variables z ′j as follows:

z ′j =

{
1 if |zj | > T
0 Otherwise

(4)

Let Z ′ =
∑

j ∈[n−1] z
′
j . We have E[z ′j ] = |x j |

2/T 2
, from the definition of zj and the

previously calculated probability of exceeding any given threshold. Therefore, by

linearity of expectation and using T 2 = ε ∥x ∥2
2
, we have that E[Z ′] ≤ ε−1. Since

m = Ω(logn/ε), from the concentration of Z ′
provided by k-wise independence (see

Lemma 1.4) it follows Pr[Z ′ ≥ m − 1] = O(ε) as needed.
Now we define z ′′j = z2j /T

2
for all j ∈ [n − 1]. Let Z ′′ =

∑
j ∈[n−m] z

′′
j . We have

Err
m
2
(z) = TZ ′′1/2

where Z ′′ =
∑

j ∈[n−m] z
′′
j . Recall that we choose the indexing so

that the largest entries of z are given the largest indices. Therefore we only need to

prove an upper bound on Z ′′
. First we analyze E[z ′′i ]. A direct attempt to calculate this

expectation runs into problems, since there is a small chance that ui will be very small,

which leads to a very high expectation. To avoid this, we condition on not having a

very small value of ui , the probability of which is correspondingly small. This ensures

that the expectation does not grow too large. To this end let M ′
be the event that

ui ≥ n−5 for all i ∈ [n − 1]. Note that Pr[M ′] ≥ 1 − n−4. Now conditioned on M ′
, we

can bound E[z ′′i ]. Namely,

E[z ′′i | M ′] =
|xi |

2

T 2
E[ 1

ui
| M ′] =

|xi |
2

T 2

(
1

1 − n−5

∫
1

n−5

du

u

)
≤

10|xi |
2

T 2
logn.

Thus, summing over all i ∈ [n −m], we have E[Z ′′ | M ′] = O(ε−1 logn).
Now let M be the event Z ′ < m − 1. Observe that, conditioned on M which is the

case with probability 1 −O(ε), we have z ′′j ∈ [0, 1] for all j ∈ [n −m]. Thus, putting

all this together, we can bound the probability of Z ′′
exceedingm = O(ε−1 logn) by

O(ε + n−d ) for some constant d ≥ 1 using a variant of the Chernoff-style bound from

Lemma 1.4 as we did for analyzing Z ′
. Then, with probability 1−O(ε +n−d ) (removing

the conditioning on M andM ′
), we have Err

m
2
(z) ≤ (εm)1/2∥x ∥2, as required.

(II) Another undesirable event is that zi exceeds the threshold ε
−1/pr but z∗i underesti-

mates and as result i is not sampled. This case also leads to the algorithm outputting

fail. A symmetrical event is when zi is less than ε−1/pr while z∗i overestimates and

goes beyond the threshold. In this case, the algorithm does not necessarily output

fail, but may report the index i incorrectly.

11



We bound the probability of both these cases together as one undesirable event.

By inequality (3) and the assumption that s ≤ ε1−1/p (m)1/2r , the additive error in

estimating each zi is at most rε1−1/p . Therefore this event could happen only when zi
falls in the interval

[rε−1/p − rε1−1/p , rε−1/p + rε1−1/p ].

For this to hold ui must be chosen from the interval

(ε−1/p + ε1−1/p )−p
|xi |

p

rp
≤ ui ≤ (ε−1/p − ε1−1/p )−p

|xi |
p

rp
.

We can analyze this range by studying

(ε−1/p − ε1−1/p )−p − (ε−1/p + ε1−1/p )−p = ε((1 − ε)−p − (1 + ε)−p )

= ε

(
(1 + ε)p − (1 − ε)p

(1 − ε2)p

)
= ε

(
O(ε)

Ω(1)

)
= O(ε2)

where we make use of the fact that ε < 1

2
, 0 < p ≤ 2.

Therefore the probability of this event is proportional to the size of the interval,

which is hence O(ε2 |xi |
p/rp ) as required.

(III) A third bad outcome is that |zi | > ε−1/pr but the algorithm outputs another

coordinate i ′ , i because z∗i′ ≥ z∗i . We show that the probability of multiple coordinates

exceeding the threshold is small. Suppose |z∗i′ | ≥ ε−1/pr . This means ui′ < ε |xi |
p/rp

which happens with probabilityO(ε |xi′ |
p/rp ). By the union bound the probability that

such an index i ′ exists is O(ε ∥x ∥
p
p /r

p ) = O(ε). Using pairwise independence we can

argue that the same bound holds after conditioning on |zi | > ε−1/pr .

We have covered all the possible bad outcomes. From the above arguments it follows

that the total probability of the bad outcomes is bounded by O(ε + n−d ). This finishes
the proof of the lemma. □
To boost the success probability we repeat Algorithm 1 O(1/ε log 1/δ ) times in

parallel and take the outcome of the first successful trial. Considering the space

requirements for maintaining the related sketches the following result holds.

Theorem 2.2. For δ > 0, ε > 0 and p ∈ (0, 2] there is an O(ε) relative error Lp
sampler with failure probability at most δ and additive error ∆ = O(n−c ) where c is an
arbitrary constant. The algorithm uses Op (ε

−max(1,p)
log

2 n log 1/δ ) space for p < {1, 2}

while for p = 1 and p = 2 the space usages are O(ε−1 log(1/ε) log2 n log 1/δ ) and
O(ε−2 log3 n log 1/δ ) respectively.

Perfect Lp Sampling. Recently, Jayaram and Woodruff [46] extended this approach

to show space efficient perfect Lp samplers. In other words, for p ∈ (0, 2) they give

Lp samplers with zero error in the sampling distribution (∆ = 0, ε = 0) using only

O(log2 n log(1/δ )) space. This matches the space complexity of the best approximations

Lp in terms of dependence onn andδ while removing the dependence on ϵ . Considering
the results of [51], this resolves the space complexity of Lp sampling for p ∈ (0, 2). For

12



p = 2, the space complexity of [46] is O(log3 n log(1/δ )) which matches the space of

the best approximate sampler without dependence on ε .
The overall logic of the Jayaram-Woodruff sampler follows the above canonical

sampling algorithm. The input vector is multiplied by scaling factors drawn from

a specific distribution and then the coordinate that achieves the maximum scaled

value is picked as the chosen sample under the condition that certain (statistical) tests

are passed. The chief point of deviation is to use the exponential distribution for the

scaling factor, instead of the uniform distribution. Recall that t is an exponentially

distributed random variable with mean 1/λ when Pr[t > x] < 1 − eλx . The idea of
using exponential distribution has previously shown fruitful in design of space efficient

algorithms for estimating the frequency moments Fk for large k [6]. In addition to this,

a different statistical test is applied to determine when to report the sampled item.

2.2 The L0 Sampler
The above algorithm clearly doesn’t work in the case p = 0 since (among other

reasons) the scaling factors would be set asu−1/0i . Instead, we look to an algorithm that

randomly selects subsets of possible coordinates to keep information on. Recall that,

conditioned on no failure, a ε-relative error L0 sampler with additive error ∆ should

return a non-zero coordinate with probability (1± ε)/∥x ∥0 +∆. Almost all the existing

L0 sampler algorithms follow a similar pattern. To explain, consider the following

ideal scenario. Assume t = Θ(∥x ∥0) is known beforehand and the algorithm is able

to sample all possible coordinates independently at a rate of O(1/t) producing the

(implicit) vector x ′
where x ′

i equals xi for each sampled coordinate and zero elsewhere.

In expectation we have ∥x ′∥0 = O(1) and further each non-zero coordinate of x has

equal chance of appearing in x ′
. Given x ′

, the problem of L0 sampling reduces to

a simpler problem of building a data structure to allow recovery of a vector with

small Hamming weight. Formally speaking the recovery problem (also known as the

randomized k-structure [41]) is defined as follows:

Definition 2.3. (The Sparse Recovery Problem). Given parameter s ∈ [n], the
goal is to recover the vector x ∈ Rn defined by a stream of additions and subtractions

on its coordinates. The algorithm should list all the non-zero coordinates of x (with

their values) conditioned on ∥x ∥0 ≤ s otherwise it should be reported that ∥x ∥0 > s .
An algorithm for this problem is allowed to err in the latter case where ∥x ∥0 > s and
outputs y , x with probability γ < 1/4.

There are a variety of solutions to this problem, which tradeoff the space required

to perform the sparse recovery (the primary objective) against other factors such

as the time to encode and decode, numerical stability, and bit complexity of the

calculations. Using ideas from decoding Reed-Solomon codes over finite fields, it is

possible to describe a deterministic procedure to efficiently recover an s-sparse vector
from 2s linear measurements (see [58], section 12.9). An example of such a procedure

(extended to the field of complex numbers) is given by Akçakaya and Tarokh [3] where

the recovery time is O(s2), assuming constant time arithmetic operations. There are

alternative methods with the same number of measurement but the recovery procedure

involves the solution of a large linear program [15]. The L0-sampler described in [23]

uses a time-efficient randomized sparse recovery procedure using O(s logn log(s/γ ))

13



Algorithm 2: A high-level description of the L0 sampler

Initialization.
• Randomly choose h : [n] → [n3] from a set of O(logn)-wise independent
functions.

• Initiate independent instances of the sparse recovery Rj (s,γ ) for j ∈ [O(logn)]
with s = O(log 1/δ ) and γ = O(1) where the instance Rj processes a random

sub-vector of x .

Processing the stream.
Given the update (i,u):

• For all j ∈ [O(logn)], if h(i) ≤ n3/2j pass the update (i,u) to Rj (s,γ ).
• Update the sketch for computing ∥x ∥0 ≤ r ≤ 2∥x ∥0.

Output.
• Let j be the smallest such that 2

j ≥ r .
• If the j-th sparse recovery outputs dense then output fail.

Otherwise let x ′
be the recovered vector.

• If x ′ = 0 output fail.

• Else select the non-zero coordinate i that attains the minimum h(i) and return

(i,x ′
i ) as the sample.

bits of space where γ is the success probability of the procedure. The update time

of the algorithm in [23] is O(log(s/γ )) while the recovery time is O(s log(s/γ )). The
same space bound is shown by Ganguly [40]. The only problem here is the algorithm

may output a wrong vector y , x (even if the input vector is s-sparse.) To decrease

the probability of such an outcome, we can add a simple randomized test to detect

outputting y , x . For concreteness, we use this approach as the foundation of our

presentation of a canonical and near optimal instantiation of an L0 sampling algorithm.

First, we state the result for sparse recovery.

Lemma 2.4. Given a vector x , defined by a stream of positive and negative updates,

there is a randomized O(s logn log(s/γ )) space algorithm Z(s,γ ) that outputs y = x
with probability 1 − γ provided that x is s-sparse, otherwise it either outputs dense or a
vector y , x . In either case, the probability of returning y , x is at most O(n−c ).

Proof. Let R ′(s,γ ) denote the sparse recovery procedure defined in [23]. Note that

R ′(s,γ ) outputs x with probability γ if x is s-sparse. We supplement R ′(s,γ ) with
a simple equality test. Over the prime field (Fp )

n
, where p is a suitably large prime

p = O(nc ), we maintain a inner product “fingerprint” r .x where r = (r0, r
2

0
, . . . , rn−1

0
)

and r0 is a random element of the field. Let y be the output of R ′(s,γ ) in case it outputs

a vector. If r .x = r .y then we output y as the answer otherwise we output dense.

The correctness of this procedure follows by considering the probability that r0 is a
solution to the polynomial r .(x − y) = 0. This is a polynomial of degree n, so the

chance that a randomly chosen r0 happens to be a root of this polynomial is n/p, which
can be bounded as polynomially small in n, as required. The space cost is dominated

by that of the sparse recovery procedure R ′
. □
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To remove the simplifying assumption of having prior knowledge of O(∥x ∥0), we
repeat the algorithm that down-samples the coordinates in parallel with different

guesses 2, 4, 8, . . . , 2 ⌊logn ⌋ for ∥x ∥0. To sample a sub-vector, we select a k-wise in-
dependent random hash function h : [n] → [n3] and use it in the following way:

sampling the i-th coordinate with probability 1/t is simulated by the event h(i) ≤ n3/t .
Last, the estimation procedure needs to determine the appropriate level of sampling

to interrogate. One solution to this is that in parallel we run an algorithm to get a

factor 2 approximation of ∥x ∥0 with high probability (see the Initialization stage of

Algorithm 2). In the end, we consider the instance based on the guess that is closest to

the outcome of the ℓ0-estimation procedure. A simpler alternative, at the expense of

slightly increased costs, is to interrogate the data structure at each level of sampling,

starting with the lowest probability of sampling, until a level with a non-zero vector

is recovered. This slightly slows down the recovery step if many levels have to be

inspected, and requires a modified proof to bound the error probability.

Studying the overall algorithm (presented as Algorithm 2), we have that if the

sparse recovery outputs a zero vector or declares dense, the algorithm will output

fail. Setting γ to a small enough constant and considering the fact that the sparse

recovery procedure outputs a wrong vector with probability at most O(n−c ), this will
result in a zero relative error L0 sampler with additive error O(n−c ) using O(log2 n)
bits of space.

Theorem 2.5. There is a zero relative error L0 sampler with additive error ∆ = O(n−c )
and δ failure probability that takesO(log2 n log 1/δ log log 1/δ ) bits of space. The update
time and recovery time of the algorithm is bounded by a polynomial in log(n).

Proof. The algorithm succeeds if the level j we choose to interrogate has at least

one element from the input mapping there, and is not too dense, so that we can

recover. We have chosen the parameter s so the probability of this event can be

bounded with a Chernoff-like bound to occur with sufficiently high probability. It can

then be argued that the sampling is uniform. Formally, in order to guarantee that Θ(1)
non-zero coordinates are sampled with probability 1 − δ we consider the level where

s = O(log 1/δ ) non-zero coordinates are sampled in expectation.

The result then follows from Lemma 1.4, and the other properties are immediate.

Further details of this approach can be found in [23]. □

We note that this algorithm compromises slightly on the space bound in order to

provide a simpler algorithm and analysis. In particular, the log log 1/δ can be removed,

at the expense of making multiple passes over the data structure and invoking a

deeper mathematical result on the structure of random hypergraphs for the analysis.

Specifically, one can use the “Invertible Bloom Filter” structure due to Eppstein and

Goodrich to provide the sparse recovery procedure [33].

2.3 Insert-only Streams
Insert-only L1 sampling. If we only allow positive updates, in the case of p = 1 the

sampling problem becomes significantly more straightforward. For instance, the

classical reservoir sampling [55] suggests a simple solution for L1 sampling for insert-

only streams. The basic algorithmmaintains the sum of items weights as s , and chooses
to replace the current sample with the new element of weight u with probability u/s .
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Algorithm 3: L1 sampler for positive updates

Initialization.
• Set the current sample coordinate t = 0.

• Set v = 0.

• Set the sum s = 0.

Processing the stream.
Given an update (i,u):

• Add u to s .
• With probability

u
s set t = i and let v = u.

• Else, if i is the current sample add 2u to v .

Output.
Return t as the sampled coordinate and v as an estimate for xt .

The probability of retaining an element at the end of the stream is exactly its weight

divided by the sum of all weights. In Algorithm 3 we give pseudocode for a version

of this algorithm which additionally provides an unbiased estimate for the sum of

weights of all ocurrences of the sampled element within the whole stream.

Lemma 2.6. Fix i ∈ [n]. The Algorithm 3 without failure outputs i with probability

exactly xi/∥x ∥1. Conditioned on outputting i , E[v] = xi .

Proof. Letu1, . . . ,um be the sequence of updates without the label of the coordinate.

Let sk =
∑k

j=1 uj be the sum of the first k updates and let ui1 , . . . ,uir be the updates
corresponding to the i-th coordinate. By definition sm = ∥x ∥1 and xi = ui1 + . . . + uir .
For d ∈ [r ], let Eid be the event where a replacement happens in the id -th step and no

replacement happens afterwards. We have

Pr[Eid ] =

(
uid
sid

) (
sid+1 − uid+1

sid+1

)
. . .

(
sm − um

sm

)
=
uid
sm

Let Fi be the event of outputting i . Since the corresponding events {Eid } are disjoint,
it follows that

Pr[Fi ] =
r∑

d=1

Pr[Eid ] =
ui1 + . . . + uir

sm
=

xi
∥x ∥1
,

as desired.

For the second part, we have

Pr[Ejd |Fi ] =
Pr[Eid ∩ Fi ]

Pr[Fi ]
=
uid
xi
.

Consequently

E[v |Fi ] =
r∑

d=1

(
uid
xi

)
(uid + 2uid+1 + . . . + 2uir )

=
1

xi

r∑
d=1

(uid )(uid + 2uid+1 + . . . + 2uir )
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=
1

xi

©«
r∑

d=1

u2id + 2
r∑

d=1

r∑
j=d+1

uidui j
ª®¬

=
1

xi

(
r∑

d=1

uid

)
2

=
x2i
xi
= xi .

□

The space usage is O(log(mM)) bits whenM is the weight of the heaviest update.

Insert-only L0 sampling. The case for L0 sampling with an insert-only stream is some-

what similar. Again, we see each update in turn, and decide whether or not to make

the new update (i,u) to be the sampled item based on a test. However, to achieve the

desired sampling distribution, we base the test on i alone, and use a min-wise hash

function to determine the sampled element. Specifically, we select the element that

achieves the smallest hash value of the selected min-wise hash function as the sampled

item. We can additionally maintain the sum of the associated weights u. This obtains
an approximate L0 sample using O(log(1/ε) + logn) space, as a direct consequence of
the properties of min-wise hashing as defined in Lemma 1.5.

Insert-only L2 sampling. For the special case of p = 2 under unit-weight updates

there is a perfect Lp sampler with constant failure probability and O(
√
n) space usage.

Assuming the input is restricted to positive unit updates, the sampler works by taking

O(
√
n) random indices from the input and checking if there is any identical pair among

the samples. If the sampler does not find an identical pair it declares failure otherwise

it outputs a random index that is found among the identical pairs. It is not hard to

show that, conditioned on no failure, this sampler outputs the index i with probability

x2i /∥xi ∥
2

2
. A birthday paradox-like argument shows that the probability of failure is at

most a constant. For streams with length Ω(n), this algorithm can be implemented in

O(1) update time. This gives the claimed result in Figure 1
§
.

Insert-only Lp sampling: general case. For other p values, the space cost is a little

higher (see the state of the art in Figure 1), but still lower than for the general case

with arbitrary insertions and deletions. In this case, we use the same exact procedure

defined in Algorithm 3 except that to estimate the coordinates of the scaled vector z,
we use the following recent result by Braverman et al. [11] instead of CountSketch.

Lemma 2.7. [11, Cor. 7] Given a sequence of positive integer updates defining the vector

f ∈ [M]n , there is a streaming algorithm that, with probability at least 3/4, returns a

vector
ˆf where | ˆfi − fi | ≤ Err c

2
(f )/c1/2 using O(c log c logn) bits of space.

2.4 Sampling Multiple Items
Most applications require multiple samples of the data and as the number of samples

increases, the efficiency of the sampling component itself can become a concern. The

straightforward solution to obtain s samples is to run O(s) independent instances of
the sampler in parallel which introduces an O(s) factor in the update time and space

usage respectively. Some increase in space usage seems inevitable as we have to store

§
This approach of sampling and looking for duplicates may be folklore; it was described to the authors by

T. S. Jayram
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each individual sample, however for better update times there are alternative solutions

with faster processing times than the naive solution. In this direction, Barkay et al. [9]

have shown an L0 sampler withO(log s
δ ) update time andO(s log s

δ ) sample extraction

time, at the expense of relaxing the independence requirement of the samples. The

extracted samples are guaranteed to be O(log 1

δ )-wise independent which is sufficient

for most applications. The algorithm is somewhat similar to the L0 algorithm that

we described in Section 2.2. It samples the domain [n] at exponentially decreasing

rates hence producing O(logn) sub-streams from the original stream. To save the

space for keeping the random numbers (for generating the samples), the algorithm

uses a O(log 1

δ )-wise independent source of randomness. For each level the algorithm

maintains a fast s-sparse recovery sketch to recover s non-zero elements. Once an

element is received it is processed by the corresponding levels and if necessary the

associated s-sparse recovery sketches are updated. In the end of the stream a level

with L0 = Θ(s) is chosen and Θ(s) elements are successfully recovered which are

guaranteed to be O(log 1

δ )-wise independent.

McGregor et al. [60] give a solution for fast Lp sampling where p ∈ (0, 2] without
the need to sacrifice the independence of the samples. Here we briefly describe the

high level ideas of their solution. Assume we want to take s weighted samples from the

vector y = (|x1 |
p , . . . , |xn |

p ). To accomplish this, in parallel we run two procedures.

First we recover the heavy coordinates of y using a heavy hitter algorithm. These

coordinates are more likely to be sampled, so it makes sense to recover them and

store them individually. Second, we hash the coordinates into O(s) buckets using a

random hash function. (The latter is repeated in parallel for a fixed number of times.)

The important observation here is that most buckets will be good, meaning that their

total weight would be less than O(1/s)∥y∥1. As a result with high probability at most

O(logn) coordinates from each bucket will appear in a set of s samples. Consequently,

we need only to maintain O(logn) local samplers for each bucket. To get one sample

from the entire vector, we choose a random bucket from the good buckets (including

the bucket set aside for the heavy hitters) relative to its total weight. Then from that

bucket we draw a local sample and that will be the final sample. We refer the reader

to [60] for full details.

2.5 Lower bounds
Communication complexity has shown to be very productive in obtaining space lower

bounds for streaming algorithms. Since Lp samplers are streaming algorithms, space

lower bounds for Lp samplers have been obtained from analyzing the related ‘universal

relation’ communication game, which originally has been used to get circuit lower

bounds [53, 54, 71]. In the universal relation communication game URn , two binary

vectors are given to players Alice and Bob where Alice holds x ∈ {0, 1}n and Bob

holds y ∈ {0, 1}n . It is promised that x , y and the goal is to output an index i such
xi , yi . The deterministic communication complexity of the universal relation game

is well studied and it is already three decades old (see [52, 71]). It is known that every

deterministic protocol needs to transmit at least n + 1 bits to solve URn . On the other

hand, there was not much interest in the randomized complexity of the universal

relation until two decades later when a connection with Lp samplers was discovered

in the work [49].
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To understand how a communication lower bound forURn results in a space lower

bound for Lp samplers, note that any approximate Lp sample (forp ≥ 0) from the vector

z = x −y returns a coordinate i where zi , 0 and hence it must be xi , yi . This means

that Alice and Bob can use an Lp sampler algorithm to solve their universal relation

problem with low failure rate, as follows. Assuming a shared source of randomness,

Alice runs the Lp sampler over her updates of z (generated from the vector x) and
sends the content of the memory to Bob where the execution of the algorithm is

resumed on the updates generated from y. As result we get a one-way protocol for

URn with failure probability δ where δ is the failure probability of the Lp sampler.

Authors in [49] have shown that any randomized one-way communication proto-

col for URn with constant probability of success requires a message of size at least

Ω(log2 n) bits, hence proving a lower bound of Ω(log2 n) for Lp samplers with constant

failure rate.

The lower bound for URn is established through a reduction from the Augmented

Indexing problem. In an instance of Augmented Indexing AINDm,k , Alice holds a

vector x ∈ [k]m and Bob is given an arbitrary prefix of x , say x1 . . . xi−1. Here k
andm are positive integers. At the end, Bob should output xi , the ith coordinate of

x . It is known that in any one-way randomized protocol with shared randomness

and δ < (1 − 3

2k ) failure probability, Alice should transmit at least Ω((1 − δ )m logk)
bits [61]. The reduction from AINDm,k to URn works by setting k = 2

t
andm = t

where t = Θ(logn) in the Augmented Indexing problem while δ is assumed to be a

constant. Alice converts her input x ∈ [2t ]t to a binary vector x ′
of length n as follows.

Each coordinate xi is replaced with the concatenation of 2
t−i

copies of a unit basis

vectorw of length 2
t
, where the xi -th coordinate ofw is set to 1while the rest are zero.

Thus, the first coordinate x1 is replaced with a binary vector of length 2
t−1

2
t = 2

2t−1
.

The second coordinate x2 is replaced with a binary vector of length 2
2t−2

, the third

with 2
2t−3

, and so on in an exponentially decreasing manner. The total length of x ′
is

therefore 2
2t − 2

t
. We choose t so that n = 2

2t − 2
t
. Bob performs the same kind of

conversion on his input x1 . . . xi−1 except that for missing numbers he replaces them

with zero vectors of corresponding lengths, to obtain his vector y ′
of length n. Now if

Alice and Bob run a universal relation protocol on x ′
and y ′

with constant probability

of success, the result will reveal some index from a block, corresponding to index j
where i ≤ j ≤ m. From the way we created x ′

from x , the position of the index reveals

the value of x j . If we can assume that the protocol outputs a uniformly random index

from where x ′
and y ′

differ, then with constant probability Bob obtains a non-zero

index in a block corresponding to the i-th coordinate of x , due to the greater number

of copies of this part of the input. We then note that any randomized universal relation

protocol can be transformed into a one where Bob does indeed sample a uniformly

random position from the set of conflicting positions without extra communication.

Recently Kapralov et al. [51] have strengthened the lower bound for the universal

relation to Ω(min{n, log(1/δ ) log2 n
log(1/δ ) }) for arbitrary failure probability δ and

p ∈ [0, 2). This nearly establishes the tightness of the upper bound given in [49]

for constant ε .
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3 APPLICATIONS
We have so far focused on how to achieve the desired Lp sampling distributions

algorithmically, either exactly or approximately. In this section, we further motivate

the importance of these techniques by studying some of the applications to which

these methods have been put. In many cases, the problems tackled here had previously

(explicitly or implicitly) been regarded as open, demonstrating the value of Lp sampling.

By and large, these applications fall within the scope of Theoretical Computer Science,

although many of these results may be considered foundational in data analytics and

machine learning.

With respect to parameter p, the case of p = 0, i.e. L0 sampling, has found the

most applications. In almost every data stream scenario where distinct sampling over

insert-only inputs is applicable, L0 sampling can be used to extend results to handle

item deletions as well. In the most prominent example, this has led to a variety of

streaming algorithms for dynamic geometric problems. But most surprisingly, L0
sampling has been utilized in deciding connectivity in graph streams and various

other graph-related questions (see Figure 1 in [51] for a longer list of graph algorithms

which make use of L0 sampling). We briefly elaborate on some of these connections.

We have organized the applications into four main categories based on the nature

of the problems and application areas: Matrix sampling and computation (Section 3.1),

encompassing problems in regression and low-rank approximation; Graph Stream (Sec-

tion 3.2), covering connectivity and subgraph counting; Dynamic geometric streams

(Section 3.3), concerning spanning trees and width of a point set, and concluding with

some miscellaneous applications (Section 3.4) on text and vector streams.

3.1 Matrix Computations

Matrix Sampling And Applications in Linear Algebra. The area of randomized

numerical linear algebra (RNLA) is concerned with providing fast randomized and

approximate solutions to large linear algebra problems. As the input size to these

problems grows large, traditional methods which seek exact solutions do not scale

well enough, and we are often content to tradeoff some error in the solution for a

more feasible computation. Applications are often found for problems in machine

learning and data analysis, such as regression. A variety of techniques are used here, in

particular random projections for dimensionality reduction. Some of these techniques

either directly or implicitly make use of ideas from Lp sampling.

Given a matrix A with dimension n × d , the row Lp sampling problem asks us to

sample a row index i with probability proportional to ∥A(i)∥
p
p , where A

(i)
denotes row

i of A . This can be achieved by a simple reduction to vector Lp sampling, as follows.

Consider linearizing matrix A to a vector a of dimension nd in some canonical fashion.

We can apply Lp sampling to the vector a. When the sampled element aj corresponds
to an entry in row i of A, we consider i to have been sampled. It is immediate from

the definition of Lp sampling that the probability of sampling row i is proportional

to

∑d
j=1A

p
i, j = ∥A(i)∥

p
p , as required. This enables subsequent applications in linear

algebra:

Leverage Scores and Regression. The regression problem is a central problem in linear

algebra. Give an n × d matrix A and n dimensional response vector y, we seek to find
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a coefficient vector x to minimize ∥Ax − y∥p . The most common case of p = 2 is the

well-known least-squares problem, where we aim to find x to minimize the squared

error between Ax and y.
One way to understand regression is via the leverage scores of matrix A, defined as

the squared Euclidean row-norms of the left-singular vectors of A. Equivalently, these
can be expressed so that the leverage score of the ith row A(i)

is A(i)(ATA)+(A(i))T ,

where
+
denote the Moore-Penrose pseudoinverse. An early result on the approximate

regression is due to Drineas, Mahoney and Muthukrishnan [28]. They prove that

(with high probability) it suffices to solve a version of the problem where rows of A
(and the corresponding entries of y) are sampled, according to a distribution over the

lengths of the (left) singular vectors of the singular value decomposition (SVD) ofA, i.e.
the leverage scores. This distribution is essentially the L2 row sampling distribution

over A’s singular vectors. Drineas et al. [27] show how to put this into a small space

algorithm to efficiently perform this sampling in the streaming model of computation.

The algorithm first takes an appropriate random projection of the data matrix, and

forms the (pseudo)inverse of the projected data which can be composed with the Lp
sampling applied to the input data to build a data structure which encodes the Lp
sampling distribution applied to the (approximate) leverage scores.

Thus equipped with methods to sample according to the leverage score distribution,

a number of other applications in linear algebra are possible. For example, Dasgupta

et al. [26] extend to regression for other p values in the range (0, 2], involving a step
equivalent to Lp row sampling at the heart of the algorithm. Other applications of

leverage scores and their generalizations that could appeal to Lp sampling includes the

work of Alaiou and Mahoney [4] and Cohen, Musco and Musco [21]. Both papers make

use of ridge leverage scores to aid in sampling columns for kernel ridge regression

and low-rank approximation approximation (these modify the definition of leverage

scores by adding a regularization term to the covariance matrix).

Distributed Low Rank Approximation. Approximating a large matrix by a small matrix

has numerous applications in processing massive data sets [10]. One particular formu-

lation of this problem has been studied by Frieze et al. [39] where the authors consider

the problem of low-rank matrix approximation. In this problem, given a matrixAwith

dimension n × d , the goal is to find a matrix D∗
of rank at most k so that

| |A − D∗ | |2F ≤ min

D,rank(D)≤k
| |A − D | |2F + ε | |A| |

2

F

where D∗
can be represented compactly. Here | |A| |2F is called the Frobenius norm of A

and equals

∑
i, j A

2

i, j . The approach represents D∗
in a factorized form: it samples a set

of rows from A according to an appropriate distribution, and writes D as a product

between A and the sampled rows. This compact description of D∗
can be found in

poly(k, 1/ε) time (in particular, independent of n and d) under the assumption that

one can sample the rows of A efficiently.

The required sampling distribution turns out to be the L2 sampling distribution: the

algorithm assumes access to an efficient sampler that samples the ith row A(i)
with

probability at least c
∥A(i ) ∥2

2

∥A∥2F
for some constant c ≤ 1.

Woodruff and Zhong [75] have studied this problem in the distributed server model

where the global matrix A is distributed across s servers in the following fashion. The
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server i ∈ [s] holds a slice of the input, namely the matrix Ai
where A = f (

∑s
i=1A

i ).

The function f is applied entry-wise to the matrix

∑s
i=1A

i
. In the simplest setting f is

the identity function but it could be any polynomial function. Moreover, in Woodruff

and Zhong’s formulation the servers only communicate with the server which is

responsible for computing the low-rank approximation of A. As we noted earlier, the

algorithm of [39] computes the low-rank approximation from sampled rows of A.
It follows that the main challenge in solving the distributed version is to efficiently

sample a row of A according to the aforementioned distribution and with respect

to a function of interest f . In particular for the softmax function (described below),

Woodruff and Zhong give a solution that uses Lp sampling as a subroutine.

The softmax (Generalized Mean) function GM with parameter p is defined over n

positive reals x1, . . . ,xn as follows: GMp (x1, . . . ,xn) = ( 1n (
∑
x
p
i ))

1

p
. For p = 1, this is

simply the usual mean(.) function, while for large p, it approaches the max function.

Now suppose each server i ∈ [s] holds the local matrix M i ∈ Rn×d . Here the global
data A is defined as follows:

Ai, j = GMp (|M
1

i, j |, . . . , |M
s
i, j |).

To cast the problem in the terms that we described above, we can assume each server

t ∈ [s] raises his entries to the power of p and locally computes the matrix At
where

At
i, j =

1

s (M
t
i, j )

p
. Now the global matrix isA = f (

∑s
i=1A

i ) where f is the x1/p function.

Recall that we want to sample the ith row of A with probability c |A(i ) |2

| |A | |2F
for some

constant c ≤ 1. Given matrix A, we can sample a row by sampling a random entry

of the matrix (after raising the entries to the power of 2) and then take the row

that contains the sampled entry. Since A is not immediately available, we simulate

this process by picking a sample entry of the matrix

∑s
t=1A

t
according to an L2/p

distribution over the entries of Ai
’s using an L2/p sampler. This produces the same

outcome.

For the implementation, each server sends the CountSketch computation of its local

L2/p sampler to the first sever. The first server extracts the final sample from the linear

combination of the sketches. In total this requires only poly(logn, s) communication

between the servers.

Estimating CascadedAggregates. Initial work in data stream processing considered

how to estimate simple aggregates over the input (such as Fk ). A more general question

is what more complicated functions can be evaluated. For example, consider compound

computations that first apply one function on subsets of the raw data, then aggregate

partial results via additional functions. This is captured in the notion of “cascaded

aggregates”, and a canonical example are the cascaded frequency moments applied to

a matrix of data. Given a n × d matrix A, the aggregate Fk (Fp )(A) is defined as

n∑
i=1

(

d∑
j=1

|Ai, j |
p )k .

Monemizadeh and Woodruff [63] suggested an algorithm for approximating Fk (Fp )
that uses Lp sampling as subroutine. Their algorithm is a clever generalization of an

earlier Fk estimation algorithm by Jayram and Woodruff [47]. Assuming k ≥ 1, given

a vector b = (b1, . . . ,bn), the Fk -estimation algorithm in [47], in order to compute
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Fk (b) =
∑n

i=1 |bi |
k
, takes n1−1/kpoly(ε−1 log(nd)) samples from [n] (coordinate IDs),

where i ∈ [n] is sampled with probability |bi |/∥b∥1. The algorithm in fact requires

such samples from random subsets of coordinates of size 2
l
, for each l ∈ [logn]. To

apply this algorithm to the cascaded aggregate function, coordinates of the vector b

are seen as the Fp norms of the rows of the matrixA— namely, bi =
∑d

j=1 |Ai j |
p
. To be

more precise, let A(l) denote the random matrix derived by taking l random rows of A
uniformly at random. The algorithm runs the sampler on the matrices A(l), obtaining
an entry in a given row i with probability

(1 ± ε)

∑d
j=1 |A(l)i, j |

p∑
i ∈A(l )

∑d
j=1 |A(l)i, j |

p
.

The sampled row IDs are then fed to the Fk estimation algorithm of [47] to get

an estimate of the cascaded aggregates. Algorithm 4 shows the main steps of the

procedure.

Algorithm 4: Approximating Fk (Fp ) of matrix An×d by Lp sampling

Initialization.
• Set T = n1−1/kpoly(ε−1 log(nd)).
• For l ∈ [logn], let A(l) be a random subset of 2

l
rows of A.

Processing the Stream.
• Run Lp -sampler algorithm T times in parallel on each A(l).
• Feed row IDs of the samples from the A(l) into the 1-pass Fk -algorithm of [47].

Output.
Return the output of the Fk -algorithm of [47] as the estimate for Fk (Fp ) of
An×d .

3.2 Graph Streams

Graph connectivity and spanning forests. Given a stream consisting of edge ar-

rivals, computing a spanning forest of the end graph G = (V ,E) is an easy task. We

start with an empty forest F . We include the newly arrived edge e in F iff including e
does not introduce a cycle in F . Clearly at the end F will be a spanning forest ofG and

the space complexity of the algorithm is only O(|V | log |V |). In fact it has been shown

that the space bound is tight [70]. However, the question becomes more challenging

when edges can be removed as well as inserted to the graph. The algorithm which

maintains a forest cannot repair the spanning forest in the presence of edge deletions

unless one keeps track of all the edges in stream which requires space linear in |E |.
In a seminal work, Ahn et al. [2] developed an elegant solution for this problem

that generates a linear sketch of size O(|V | log3 |V |) from the input stream using L0-
sampling as a subroutine. The constructed linear sketch is then used to test connectivity

(and other properties as well) in an offline stage. Here we briefly mention some of the

key ideas of the this algorithm. More details can be found in [2, 59].

The algorithm of Ahn et al. (here abbreviated as the AGM algorithm) simulates a

simple recursive (offline) procedure, based on Boruvka’s spanning tree algorithm. The
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recursive procedure starts with a graph G0 = G(V ,E) and through a series of rounds,

shrinks the graph to produce smaller graphs G1,G2, . . . by picking edges to contract

and unifying the nodes of contracted edges. The process is continued until every

connected component is shrunk into a single isolated node. In more detail, in every

round of the algorithm for each node v ∈ V a random neighbor u ∈ Γ(v) is chosen
and then u and v are collapsed to form a super-nodew whose neighbors are the union

of the neighbors of u and v . Note that in one round, multiple nodes can collapse into

a single super-node, if multiple edges incident on the same node are selected. The

resulting graph on super-nodes is interpreted as a simple graph, i.e. multi-edges are

treated as a single edge, and self-loops are ignored. In each round, we repeat the edge

contraction process, and terminate the rounds when no edges remain. What remains

at the end are the connected components of the original graph, each collapsed into an

isolated super-node. Moreover, we can interpret the collection of edges selected for

contraction as corresponding to a spanning forest of the original graph.

The crux of the AGM algorithm is to allow this offline procedure to be simulated

based on a small amount of information captured from the input stream, via sampling,

without having to revisit the input. We assume that the nodes are labeled with integers,

so that for any edge (i, j) then either i < j or j < i . The algorithm represents the

adjacency list of each node vi as a vector ai ∈ {−1, 0, 1}(
n
2
)
so that |ai

(i, j) | = 1 ⇐⇒

(i, j) ∈ E. If we encode these vectors via an L0 sampler, then sampling an element

provides a neighbor of vi . This allows the first step of the above offline algorithm

to be simulated. However, a naive encoding of the edge information would make

it difficult to simulate subsequent steps of the edge-contraction algorithm. The key

technical contribution of the AGM algorithm is to define an edge encoding so that we

can combine information from a subset of nodes V ′
so that we can sample edges from

the cut (V ′,V \V ′).

Given an edge (vi ,vj ) ∈ E, its representation is encoded in two different ways, once

in the adjacency list of vi , and once in the list for vj . That is, the (i, j)-th coordinate in

ai is set to 1 if i < j , otherwise it is set to −1. All other coordinates are set to 0. Hence,

in one of the two vectors the edge is encoded by a +1 and in the other it is encoded by

a −1. Given a subset of nodes V ′
, if we sum all the corresponding vectors then entries

corresponding to edges between nodes vi ∈ V ′
and vj ∈ V ′

sum to zero and so cancel

out. As a result, if we can sample from the non-zero entries of this aggregated vector

for V ′
, we obtain an edge from the cut. This is possible, due to the linear property

of the L0 sampling algorithms: we can obtain an L0 sampler for the sum of a set of

vectors by combining the L0 samplers for each vector in the set.

So to simulate the whole process, the vectors ai are defined (implicitly) from the

input stream. For each vector ai an L0 sketch sk(ai ) is built as the stream is processed.

The contraction process is applied after the whole stream is processed. Using the L0
sketches, we choose a random neighbor for each node and contract the edges (vi ,vj )
by merging the corresponding sketches sk(ai ) and sk(ai ). One caution here is that

reusing the same sketch for sampling in multiple rounds may lead to dependency

issues (i.e. it is not clear how to argue that subsequent random choices are independent

of earlier ones). To get around this problem, we buildO(logn) independent sketches for
each vertex vi and each time we want to build a sketch of a super-node that contains

vi we use a fresh sketch sk(ai ) instead of reusing the old ones. We are guaranteed
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that the algorithm concludes inO(logn) rounds with high probability, and so we have

sufficient independent sketches with high probability. Since we can now simulate each

round of the offline edge contraction algorithm using the sketches, the correctness of

the AGM algorithm follows quite directly.

It is natural to ask whether this upper bound can be improved, in terms of the

magnitude of the poly-logarithmic factor, either by modifications to the Lp sampling

approach or otherwise. In particular, the algorithm does not require that an edge is

sampled uniformly from the cut, only that some edge is chosen arbitrarily from the

cut edges. It might seem that this relaxation could allow an improved space algorithm.

However, this question has recently been settled in the negative:O(|V | log3 |V |) space is

necessary, as well as sufficient, as shown byNelson and Yu [65]. Similar to lower bounds

discussed in Section 2.5, the hardness is shown via the communication complexity

of the Universal Relation problem, in the special case when Alice’s input is a strict

subset of Bob’s.

Wedge sampling and triangle counting. A wedge in a graphG = (V ,E) is a simple

path of length two. A wedge is called closed if its endpoints are connected via an edge

(thus forming a triangle). A wedge that is not closed is called open. Because of its close

relationship with triangles, wedge counting and sampling has gained attention in

related studies [48, 60, 66]. Here we show an application of L2 sampling to the problem

of wedge sampling. We assume that the input stream is a sequence of edge insertions

that defines a simple undirected graph.

A straightforward algorithm for sampling wedges is composed of two steps: first

pick a random vertex v ∈ V with probability pv =
(
deg(v)

2

)
/W . We call this the wedge

distribution of the graph. Second, we sample two neighbors of v uniformly at random.

Clearly this solution generates a sample wedge with the desired distribution but

requires foreknowledge of the degree distribution, which is not feasible in one pass

over the stream. To circumvent this problem, McGregor et al. [60] implement the

solution in two passes using a polylog space algorithm. In the first pass a vertex v is

sampled with probability qv = deg(v)2/
∑
v deg(v)

2
using a L2 sampler. Note that this

is different from the wedge distribution but as we see in the proof of Lemma 3.1 as

long asm ≥ 6n the result will be close enough. (The constant factor here is arbitrary.)

In the subsequent pass, two independent random edges on v are picked. If the random

edges are different, a sample wedge is returned otherwise the algorithm declares

failure. Algorithm 5 describes the sampling procedure. The following lemma shows

that with constant probability the algorithm successfully outputs a sample wedge

from a distribution close to the wedge distribution.

Lemma 3.1. Conditioned on m ≥ 6n, there is a two pass algorithm that takes

O(ε−2 log2 n) space and outputs a random wedge where each wedge has the probability

of (1 ± ε) 1

W for being selected. The algorithm reports fail with probability at most 1/3.

Proof. We assume the L2 sampler fails with probability at most 1/4. Let F be the

event that Algorithm 5 outputs fail. This occurs if the L2 sampler fails or if we happen

to sample the same edge twice. We bound this probability as follows:

Pr[F ] ≤
1

4

+
∑
v ∈V

1

deg(v)

deg(v)2∑
v ∈V deg(v)2

(1 ± ε)
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Algorithm 5: Two-pass algorithm for sampling a wedge using L2 samplers

First pass:
• Run an ε-relative error L2 sampler to sample a vertex v with probability

proportional to deg(v)2.
• If the sampler returns no vertex, output fail.

Second pass:
• Sample edges e1 and e2 from {(v,u) : u ∈ Γ(v)} with replacement.

• If e1 = e2 output fail otherwise output (e1 : e2) as the sampled wedge.

=
1

4

+

∑
v ∈V deg(v)∑
v ∈V deg(v)2

(1 ± ε)

≤
1

4

+
2m

4m2/n
(1 ± ε) ≤ 1/3.

Let F ′
be the event that the algorithm outputs FAIL in the second pass. We show,

conditioned on ¬F ′
, the probability of sampling any fixed wedge is within (1 ± ε)1/W .

For this, let ω = (e1 : e2) be a fixed wedge centered on vertex u. Let Eω be the event

associated with sampling ω. Note that Eω means that the algorithm has sampled u
and e1 , e2. We have

Pr[Eω |¬F
′] =

Pr[Eω ∧ ¬F ′]

Pr[¬F ′]

=
deg(u)2∑

v ∈V deg(v)2
(1 ± ε)

(
2

deg(u)2

) / (
1 −

∑
v ∈V deg(v)∑
v ∈V deg(v)2

(1 ± ε)

)
=

2(1 ± ε)∑
v ∈V deg(v)(deg(v) − 1)

= (1 ± ε)
1

W
The space complexity is dominated by the space usage of the L2 sampler. This finishes

the proof of the lemma. □

It is worth mentioning that, conditioned onW ≥ m, Madhav et al. [48] gives a 1-pass

algorithm that outputs a random wedge using O(
√
n) space. The algorithm works by

sampling edges uniformly at random and checking if two edges of a wedge have been

sampled. By a similar argument to birthday paradox, one can show that sampling

O(m/
√
W ) edges is enough to find at least one wedge with constant probability. Simple

information theoretic arguments show that this space bound is in fact optimal for

one-pass algorithms. Hence, there is an exponential gap between what is possible in

one-pass, and what is possible in two (using Lp sampling).

3.3 Dynamic Geometric Streams
Random sampling is widely used in the design of sublinear algorithms for geometric

problems. Specifically in situations where the input data is described by a set of

points p1, . . . ,pn that lie in a typically low dimensional space such as Rd , a small

representative subset of points is often enough to calculate the cost of an approximate

solution for the entire set. Various approximate summary structures for geometric

26



data such as ε-nets, ε-approximations and customized coresets can be constructed

from a small sample of data [38, 44, 73]. This makes random sampling a powerful tool

in tackling large geometric data. Moreover, thanks to L0 sampling, sampling-based

solutions have the potential to be extended to dynamic scenarios where the input data

may include deletions of (already inserted) points. In fact, as we mentioned earlier

in this survey, one of the first L0 sampling algorithms [37] was designed to solve a

dynamic geometric problem. (We shortly elaborate on this application here.) Following

the work [37], variants of the L0 sampling technique have been used in approximating

the width of a point set [8], in construction of coresets for geometric optimizaiton

problems [38] and k-means and k-median clustering [12, 36, 38].

To explain how L0 is used within the context geometric problems, we briefly describe

the dynamic geometric setting. We assume the stream consists a series of insertions

and deletions of points from a low dimensional discrete space such asX = {0, . . . ,D}d .
Corresponding to each point in the spaceX (sometimes referred to as a cell), we have a

component in an integer-valued vectorv ∈ N |X |
. Whenever a point p ∈ X is inserted

(or deleted), the corresponding component in v is incremented (or decremented).

Therefor vi indicates the number of copies of the point from the i-th cell that are

present in our input data. We assume each deletion corresponds to an insertion that

has happened before, so the components of v never become negative. It should be

clear that an L0 sample from vectorv gives us a random point from the stream (that

is not deleted yet). Since vectorv has (D + 1)d components, the space usage of the L0
sampler is bounded by O(d log2 n) where D = poly(n).
Now having explained the basic scenario, we begin with a simple toy problem.

Suppose in the stream of points p1, . . . ,pn we want to find a point that is farthest

away from the origin. In other words, we would like to find pmax where

∥pmax ∥ = max

i
{∥pi ∥}

To make the problem even simpler, assume the points come from the one dimensional

discrete interval [0 . . .D] where D is a power of 2. For insertion-only streams this

problem is trivial. However for dynamic streams where inserted point could be deleted

later, a space efficient solution is not so obvious. We show how we can apply L0
sampling to find an approximate solution where at the end a point pk is reported such

that

1

2

∥pmax ∥ ≤ ∥pk ∥ ≤ ∥pmax ∥.

The idea is to keep track of a set of sub-intervals of [0 . . .D]. For each interval

I1 =

[
D

2

. . .D

]
, I2 =

[
D

4

. . .
D

2

)
, I3 =

[
D

8

. . .
D

4

)
, . . . , IlogD = [1 . . . 1]

we maintain an L0 sampler with probability of failure δ . Let Si be the sampler cor-

responding to the interval Ii . On the arrival of an update for point p (insertion or

deletion), we update all the samplers Si where p ∈ Ii . At the end of the stream, we

take samples from each Si . For each i , Si either declares fail or returns a sample

point qi . Let k be the smallest i ∈ [logD] such that Si has not failed. The algorithm

reports qk as the solution.

We have the following claim. The proof follows from the description of the algo-

rithm.
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Claim 3.2. Let Im be the smallest interval that contains pmax . With probability 1 − δ ,
Sm returns a sample point. Moreover, conditioned on Sm returning a sample, we have

1

2
∥pmax ∥ ≤ ∥qm ∥ ≤ ∥pmax ∥.

Since we maintain logD samplers, the space usage is bounded by

O(logD log
2 n log(1/δ )). It is fairly straightforward to extend this algorithm to

a higher dimension. For instance in the plane, we just need to maintain L0 samplers

for a set of nested quadrants of [0 . . .D]2 and at the end report a point based on the

outcome of the samplers. The cost remains O(logD) samplers (with some geometric

calculations needed to determine which samplers to represent each arriving point in).

Similarly, it is straightforward to provide a relative error approximation, by increasing

the number of samplers to O( 1ϵ logD).

Width of Points. A similar idea to what we just described has been used in the work

by Andoni and Nguyen [8] to estimate the width of a set of dynamic points using L0
sampling. The width of a set of points S = {p1, . . . ,pn} is the minimal distance between

a pair of hyperplanes that sandwiches S . When restricted to a certain direction, the

directional width of S with respect to the unit vectoru denote byWu (S) is the minimal

distance between a pair of hyperplanes perpendicular to the vector u that sandwiches

S . Suppose q is a point on a hyperplane that is in the middle of the two sandwiching

hyperplanes. Then the directional width with respects to the direction u and the

middle point q denoted byWu,t (S) equals

2max

i
|u .pi −v .q |

Here x .y is the dot product of the vectors x and y. Imagining each |u .pi −v .q | is like
a point on the one dimensional line, the problem translates to the toy problem that

we discussed above. Of course the challenge in estimating the width is to cover all

directions u and the middle points q, which forms the main focus of [8]. Once the

reduction has been made, this particular subproblem is easily solved by L0 sampling.

Minimum Euclidean Spanning Tree. The work by Frahling et al. [37] is based on

a more sophisticated use of L0 sampling. Their goal is to maintain the cost of an

approximate minimum spanning tree over a set of points in a low dimensional space.

The stream consists of series of insertions and deletions of points. Note that here the

edges of the underlying graph are implicit; the weight of each edge is proportional

to the distance between the corresponding endpoints. Using a well-known reduction

described by Chazelle et al. [18], the problem of estimating the cost of the minimum

spanning tree is reduced to estimating the number of connected components. Since

we are concerned about the application of L0 sampling, we omit the details of the

reduction and highlight the part where the sampler is used.

Let ct denote the number of connected components of the underlying geometric

graph Gt
where Gt

contains all the edges with weight at most t . Estimates of ct for
various values of t are then used to approximate the cost of the minimum spanning tree.

To estimate ct , Frahling et al. [37] use the randomized algorithm of [18]. This algorithm

estimates the number connected components by performing BFS-like explorations

starting from a random set of vertices. Since the depth of the BFS explorations is

limited, to simulate the algorithm in the streaming context, it is enough to sample a set

of points (starting vertices) and obtain all the points that are located within a certain

28



radius of the sampled points. When the input is dynamic, the sub-problem of graph

sampling is implemented using L0 sampling. To obtain the neighborhood information

of each sampled point, Frahling et al. [37] use a modified vectorv∗
(instead ofv) where

eachv∗
i is a large D

d
-ary number that encodes the neighborhood information of the

corresponding cell within a certain radius. Whenever an update happens in a cell, all

the corresponding components associated with neighboring cells are also updated.

As result, when we sample a component ofv∗
, we also obtain information regarding

the points that lie within a certain radius of of the sample. In a typical setting, the

large Dd
-ary numbers increase the space usage of the L0 sampler from O(d log2 n) to

O(d2 log2 n).

3.4 Miscellaneous streaming problems

Finding Duplicates. The duplicate finding problem is a somewhat abstract problem

introduced to demonstrate of the extreme challenges that arise in data stream process-

ing. Given a data stream of length n + 1 over the alphabet [n], we are guaranteed that

there must be (at least) one character that appears twice in the stream; the problem is

to output some a ∈ [n] that does indeed appear more than once. In a generalization

of the problem, we are given an input stream of length n − s ≤ n over the alphabet

[n]. The key to finding a solution is to reduce the question to a sampling one, where a

sufficient amount of the probability mass is associated with samples that correspond

to duplicate elements. For this problem, Jowhari et al. [49] gave an O(s logn + log2 n)
bits algorithm using L1-sampling. Here we mention the main ideas of the algorithm

for the special case where the length of the stream is n+ 1 in the proof of the following

lemma.

Lemma 3.3. There is a one-pass O(log2 n log( 1δ )) space algorithm such that given a

stream of length n + 1 over the alphabet [n] returns an i ∈ [n] or declare fail. The
probability of declaring failure is at most δ while the probability of outputting a non-

duplicate is O(n−c ) for a constant c .

Proof. In the following we describe how the problem is reduced to L1 sampling.

We define the vector x ∈ {−n, . . . ,n}n based on the input stream as follows. The

coordinate xi equals the number of times the character i appears in the stream after

subtracting 1 from it. So if character i appears 4 times in the stream the coordinate xi
would equal 3. Now this vector has some features that are important for our purpose.

First, the strictly positive coordinates in x represent the duplicate characters. xi = −1

means that i did not appear in x while xi = 0 indicates that i is non-duplicate character
in the stream. Importantly for the purpose of finding duplicates, the total weight of

positive coordinates is bigger than the total weight of the negative ones. That is,( ∑
i :xi>0

xi

)
>

( ∑
i :xi<0

|xi |

)
.

Putting these facts together, it means that if we take samples from x according to its

L1 distribution, there is a good chance (at least 1/2) that we hit upon a strictly positive

coordinate in x , in other words we find a duplicate character.

Taking L1 samples from x is easy. To do this, the algorithm treats the input stream

as updates to an (initially zero) vector which at the end becomes the vector x . The
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algorithm then subtracts 1 from each coordinate of x before carrying out the sampling

procedure. If the L1 sampler returns a negative coordinate or returns no samples we

declare fail otherwise with high confidence we can claim that the returned coordinate

is a real duplicate. To boost the probability of success we can repeat the sampling in

parallel and take the first successful trial. □

Estimating Fp for p > 2. As we observed in Section 2, existing Lp samplers rely on

getting an approximation of ∥x ∥p to get a sample from the stream. As we see in this

section, these samplers themselves can be applied to the problem of approximating

∥x ∥p for p > 2when the stream is restricted to positive updates. More precisely we can

approximate Fp for p > 2 using L2 samplers. Coppersmith and Kumar [22] outlined the

approach to estimating Fp for p > 2 based on sampling according to what we would

now describe as the L2 distribution, and scaling up the estimated frequency of the

sampled element to provide an estimator for Fp . However, at the time of publication,

no such samplers were known. Monemizadeh and Woodruff [63] subsequently took

this outline and instantiated it with their first construction of an L2 sampler. In more

detail, the algorithm works by taking T = O(n1−2/kk2/ε2) L2 samples of the input

vector. A high-level description of the algorithm is written out as Algorithm 6.

Algorithm 6: Estimating Fk using L2 sampling

Initialization.
• Set ε ′′ = ε/(4k)
• Set T = O(n1−2/k/ε ′′2).

Processing the stream.
• Run an ε-relative error L2-sampler 4T times in parallel.

• In parallel, run an algorithm to approximate F2(x) within 1 + ε/4 factor with
success probability 7/8.

Output.
• Let the first T output frequencies from the L2 sampler be ai1 ,ai2 , . . . ,aiT .
• If more than 3T of the L2-samplers output fail, declare fail.

• Denote the output of the F2 estimation by F̃2.

• Return G = F̃2
T

∑T
j=1 |ai j |

k−2
as the estimate for Fk .

Theorem 3.4. For k > 2, there is a O(k2ε−4n1−2/k log2 n) space algorithm for approx-

imating Fk within 1 + ε factor.

Proof. To simplify the notation, we write F2 and Fk respectively to denote the

second and the k-th frequency moment of the underlying vector. In the following we

assume the estimation procedure does not declare fail so that the algorithm gathers

the required number of samples. We also assume that the estimate of F2 succeeds in
meeting its error bound of εF2/4. For any j ∈ [T ], we have

E[|ai j |
k−2] =

n∑
i=1

(1 ± ε ′′)
|ai |

2

F2
(|ai |(1 ± ε ′′))k−2
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= (1 ± ε ′′)k−1
Fk
F2
.

Consequently, by our choice of ε ′′, we have

E[G] = T (1 ± ε ′′)k−1(1 ± ε/4)
FkF2
TF2

= (1 ± ε/2)Fk .

Since the samples are independent and F̃2 < 2F2, we have

Var[G] =
4F 2

2

T 2

T∑
i=1

Var[|ai j |
k−2]

=
4F 2

2

T 2
T

n∑
i=1

(1 ± ε ′′)
|ai |

2

F2
(|ai |(1 ± ε ′′))2k−4

≤
4F 2

2
eε (2k−4)/4k

T

n∑
i=1

(
2|ai |

2

F2

)
|ai |

2k−4

= O

(
F2F2k−2

T

)
= O

(
n1−2/kF 2k

T

)
= O(ε2F 2k )

Here the last statement follows from Hölder’s inequality (See [63] for details). Using

Chebyshev’s inequality with appropriate rescaling of constants, we get

Pr[|G − E[G]| ≥
ε

4

E[G]] ≤ 1/16.

That is, there is constant probability of obtaining an estimate of Fk within the

desired accuracy bound. To analyze the space complexity, the space usage of the

algorithm is dominated by the total space needed to run the L2 samplers. Since we are

only concerned with positive updates, each sampler takes only O(1/ε2 log2 n) space
(see Section 2.3) . This proves the claimed space bound. □

4 CONCLUDING REMARKS
The notion of Lp sampling and the existence of efficient Lp samplers, have enabled

a number of applications and solutions to previously open problems in algorithms.

These have addressed data which is statistical, graph structured and geometric in

nature. New problems are being addressed by these techniques either directly, or by

methods inspired by Lp sampler algorithms. We anticipate further advances using

these approaches to be developed in the coming years, and new efforts to make these

algorithms more practical for implementation.

The sampling algorithms themselves are relatively simple and can be implemented

building on implementations of sketches and sparse-recovery algorithms. However,

the space required to provide sufficiently strong guarantees of success becomes large,

due to the number of repetitions required. Lower bounds suggest that the asymptotic

dependence on parameters ε and δ is unavoidable, but there may be scope to improve

constant factors, or identify additional special cases for which more efficient samplers

exist. Such improvements to the practicality of Lp samplers is an important open

problem which could lead to greater applicability of these algorithms.
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