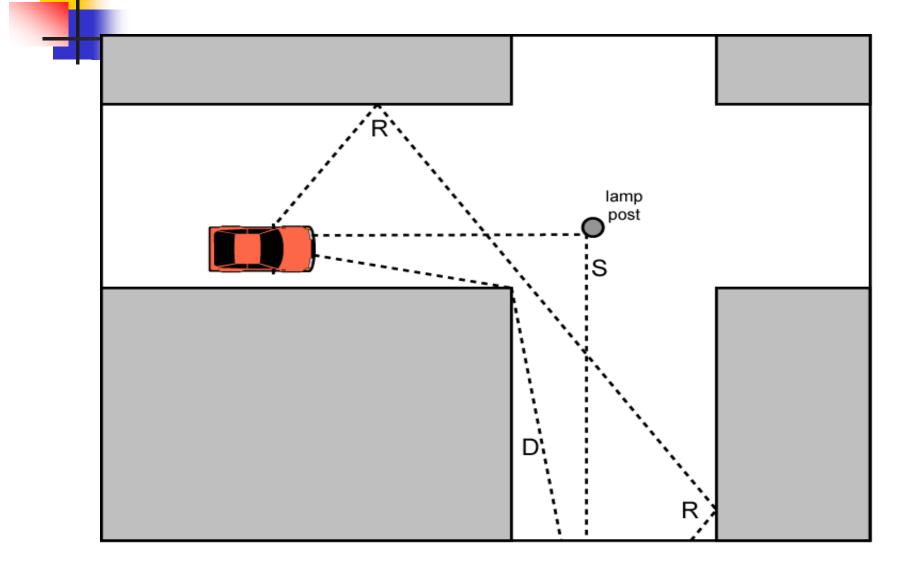

Cellular Mobile Communication-1

رکتر ممامرپور استار گروه مفابرات, رانشکره مهنرسی برق رانشگاه صنعتی خ.ن. طوسی ۱۴۰۲ نیمسال اول ۱۴۰۲ Vyp.kntu.ac.ir/kmpour/

معرفی کتاب درس اصول دانغ، منتى تۇر نسرالدىن مى مخابرات بی سیم و سیار (با اصلامات و مباحث جدید) (تکنولوژی مفابرات باند پهن بی سیم) تاليف : دكتر كمال محامديور استاد دانشگاه صنعتی خواجه نصیر الدین طوسی

Frequency Bands

- There are many types of cellular services; before delving into details, focus on basics (helps navigate the "acronym soup")
- Cellular network/telephony is a *radio*-based technology; radio waves are electromagnetic waves that *antennas* propagate
- Most signals are in the 850 MHz, 900 MHz, 1800 MHz, and 1900 MHz frequency bands


Cell phones operate in this frequency range (note the *logarithmic* scale)

Multipath Propagation

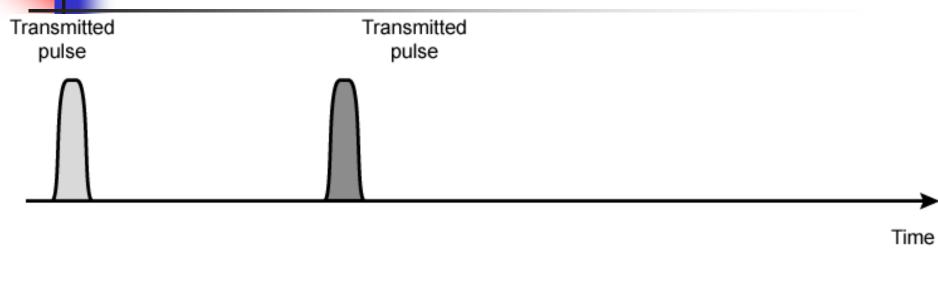
Reflection

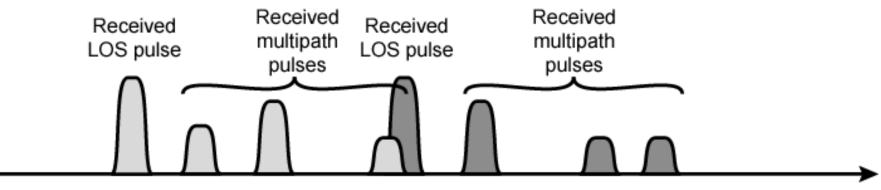
- Surface large relative to wavelength of signal
- May have phase shift from original
- May cancel out original or increase it
- Diffraction
 - Edge of impenetrable body that is large relative to wavelength
 - May receive signal even if no line of sight (LOS) to transmitter
- Scattering
 - Obstacle size on order of wavelength
 - Lamp posts etc.
- If LOS, diffracted and scattered signals not significant
 - Reflected signals may be
- If no LOS, diffraction and scattering are primary means of reception

Reflection, Diffraction, Scattering

Mobile Radio Propagation Effects

- Signal strength
 - Strength of signal between BS and mobile unit strong enough to maintain signal quality at the receiver
 - Not strong enough to create too much cochannel interference
 - Noise varies
 - Automobile ignition noise greater in city than in suburbs
 - Other signal sources vary
 - Signal strength varies as function of distance from BS
 - Signal strength varies dynamically as mobile unit moves
- Fading
 - Even if signal strength in effective range, signal propagation effects may disrupt the signal


Effects of Multipath Propagation


Signals may cancel out due to phase differences

Inter-symbol Interference (ISI)

- Sending narrow pulse at given frequency between fixed antenna and mobile unit
- Channel may deliver multiple copies at different times
- Delayed pulses act as noise making recovery of bit information difficult
- Timing changes as mobile unit moves
 - Harder to design signal processing to filter out multipath effects

Two Pulses in Time-Variant Multipath

Fading

- Time variation of received signal
- Caused by changes in transmission path(s)
- E.g. atmospheric conditions (rain)
- Movement of (mobile unit) antenna

Types of Fading

Fast fading

- Rapid changes in strength over distances about half wavelength
 - 900MHz wavelength is 0.33m
 - 20-30dB
- Slow fading
 - Slower changes due to user passing different height buildings, gaps in buildings etc.
 - Over longer distances than fast fading
- Flat fading
 - Nonselective
 - Affects all frequencies in same proportion
- Selective fading
 - Different frequency components affected differently

Cellular Network

- Base stations transmit to and receive from mobiles at the assigned spectrum
 - Multiple base stations use the same spectrum (spectral reuse)
- The service area of each base station is called a cell
- Each mobile terminal is typically served by the 'closest' base statio
 - Handoff v
 Handoff v
 Handoff v
 Base Station 2
 Base Station 2
 Base Station 3
 Public Switched Aslephone Network (PSTN)

Principles of Cellular Networks

- Underlying technology for mobile phones, personal communication systems, wireless networking etc.
- Developed for mobile radio telephone
 - Replace high power transmitter/receiver systems
 - Typical support for 25 channels over 80km
 - Use lower power, shorter range, more transmitters

Cellular Network Organization

Multiple low power transmitters

100w or less

Area divided into cells

- Each with own antenna
- Each with own range of frequencies
- Served by base station
 - Transmitter, receiver, control unit
- Adjacent cells on different frequencies to avoid crosstalk

Operation of Cellular Systems

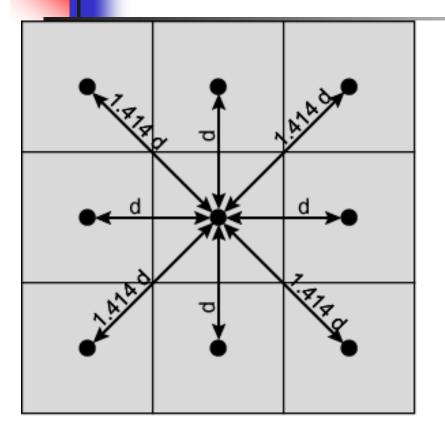
- Base station (BS) at center of each cell
 - Antenna, controller, transceivers
- Controller handles call process
 - Number of mobile units may in use at a time
- BS connected to mobile telecommunications switching office (MTSO)
 - One MTSO serves multiple BS
 - MTSO to BS link by wire or wireless
- MTSO:
 - Connects calls between mobile units and from mobile to fixed telecommunications network
 - Assigns voice channel
 - Performs handoffs
 - Monitors calls (billing)

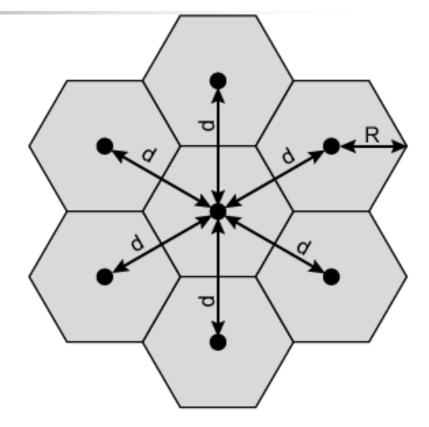
Frequency Reuse

- Power of base transceiver controlled
 - Allow communications within cell on given frequency
 - Limit escaping power to adjacent cells
 - Allow re-use of frequencies in nearby cells
 - Use same frequency for multiple conversations
 - 10 50 frequencies per cell
- *E.g.*
 - N cells all using same number of frequencies
 - *K* total number of frequencies used in systems
 - Each cell has *K*/*N* frequencies
 - Advanced Mobile Phone Service (AMPS) K=395, N=7 giving 57 frequencies per cell on average

Characterizing Freq. Reuse

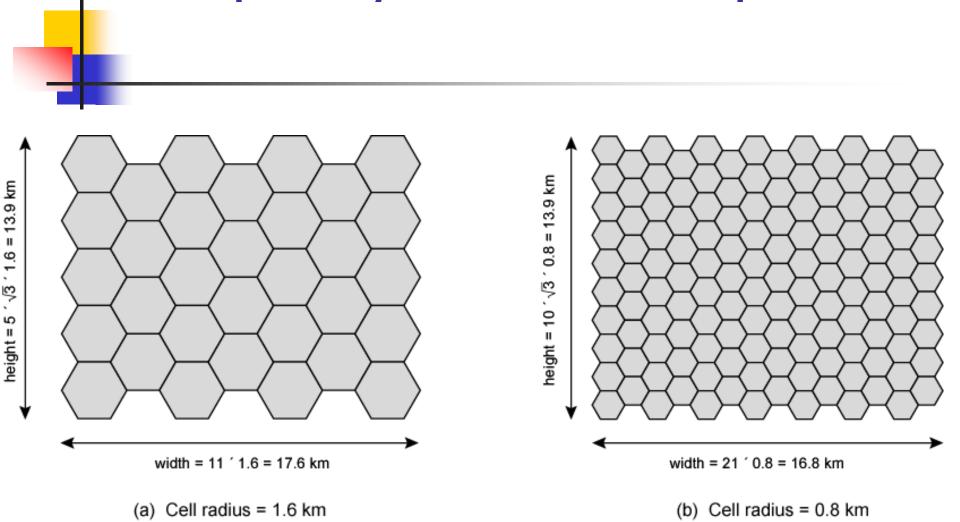
- D = minimum distance between centers of cells that use the same band of frequencies (called co-channels)
- R = radius of a cell
- d = distance between centers of adjacent cells (d = R)
- N = number of cells in repetitious pattern
 - Reuse factor
 - Each cell in pattern uses unique band of frequencies
- Hexagonal cell pattern, following values of N possible
 - $N = I^{2} + J^{2} + (I \times J), \quad I, J = 0, 1, 2, 3, ...$
- Possible values of N are 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, ...
- D/R= $\sqrt{3N}$
- D/d = \sqrt{N}

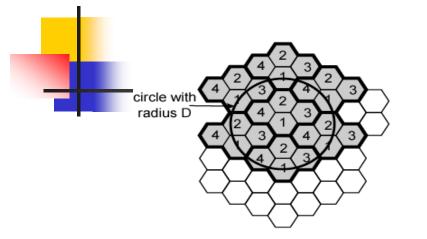

Shape of Cells

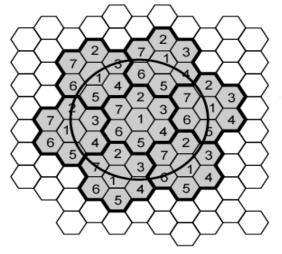

Square

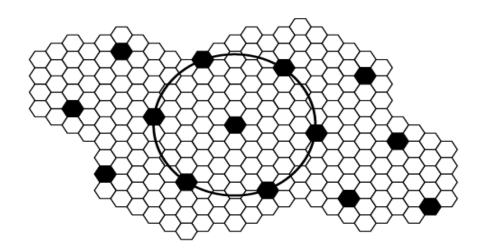
 $\sqrt{2}$ Width *d* cell has four neighbours at distance *d* and four at distance *d*

- Better if all adjacent antennas equidistant
 - Simplifies choosing and switching to new antenna
- Hexagon
 - Provides equidistant antennas
 - Radius defined as radius of circum-circle
 - Distance from center to vertex equals length of side
 - Distance between centers of cells radius *R* is $\sqrt{3}R$
 - Not always precise hexagons
 - Topographical limitations
 - Local signal propagation conditions
 - Location of antennas


Cellular Geometries


(a) Square pattern

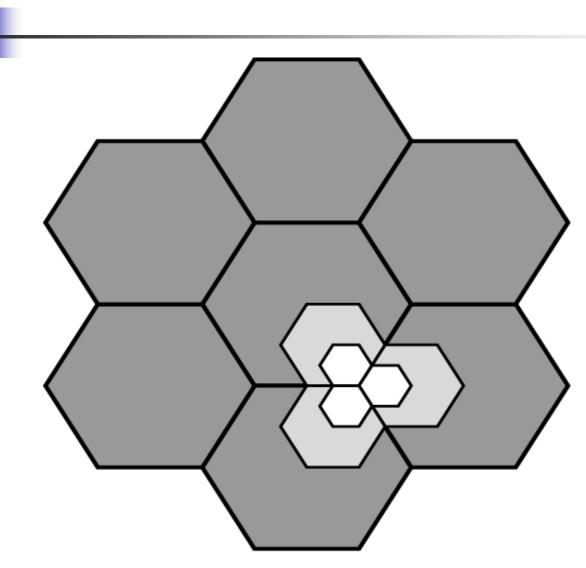

(b) Hexagonal pattern


Frequency Reuse Example

Frequency Reuse Patterns

- (a) Frequency reuse pattern for N = 4
- (b) Frequency reuse pattern for N = 7

(c) Black cells indicate a frequency reuse for N = 19


Increasing Capacity (1)

- Add new channels
 - Not all channels used to start with
 - Frequency borrowing
 - Taken from adjacent cells by congested cells
 - Or assign frequencies dynamically
 - Cell splitting
 - Non-uniform distribution of topography and traffic
 - Smaller cells in high use areas
 - Original cells 6.5 13 km
 - 1.5 km limit in general
 - More frequent handoff
 - More base stations

Increasing Capacity (2)

- Cell Sectoring
 - Cell divided into wedge shaped sectors
 - 3 6 sectors per cell
 - Each with own channel set
 - Subsets of cell's channels
 - Directional antennas
- Microcells
 - Move antennas from tops of hills and large buildings tops of small buildings and sides of large buildings
 - Even lamp posts
 - Form microcells
 - Reduced power
 - Good for city streets, along roads and inside large buildings

Cell Splitting

Design Factors

- Propagation effects
 - Dynamic
 - Hard to predict
- Maximum transmit power level at BS and mobile units
- Typical height of mobile unit antenna
- Available height of the BS antenna
- These factors determine size of individual cell
- Model based on empirical data
- Apply model to given environment to develop guidelines for cell size
- E.g. model by Okumura et al refined by Hata
 - Detailed analysis of Tokyo area
 - Produced path loss information for an urban environment
 - Hata's model is an empirical formulation
 - Takes into account variety of environments and conditions

Other Functions

Call blocking

- During mobile-initiated call stage, if all traffic channels busy, mobile tries again
- After number of fails, busy tone returned
- Call termination
 - User hangs up
 - MTSO informed
 - Traffic channels at two BSs released
- Call drop
 - BS cannot maintain required signal strength
 - Traffic channel dropped and MTSO informed
- Calls to/from fixed and remote mobile subscriber
 - MTSO connects to PSTN
 - MTSO can connect mobile user and fixed subscriber via PSTN
 - MTSO can connect to remote MTSO via PSTN or via dedicated lines
 - Can connect mobile user in its area and remote mobile user

Network Generations

Cellular Network Generations

- It is useful to think of cellular Network/telephony in terms of *generations*.
 - 0G: Briefcase-size mobile radio telephones
 - 1G: *Analog* cellular telephony
 - 2G: Digital cellular telephony
 - 3G: *High-speed* digital cellular telephony (including *video telephony*)
 - 4G: IP-based "anytime, anywhere" voice, data, and multimedia telephony at *faster* data rates than 3G
 - (to be deployed in 2012–2015)

برخى استانداردهاى نسل اول

1946: Mobile Tel. Service (MTS), US

Unique TX, half-duplex, No handovers & Roaming, manually searches for an idle channel

1964: Improved MTS (IMTS), US

full-duplex, automatic searching for an idle channel, direct dialing & number identification signaling

- 1978: National autotel.(Natel-A), Switzerland
- 1984: Natel-B, Switzerland

استانداردهای نسل اول...

First Generation(1G), Analoge Cellular

- Analogue Transmission, Cellular concepts
- Narrowband channel for voice
- Frequency reuse & handover, FDMA 1979: Nippon Telephone & Telegraph (NTT), Japan 1981: Nordic Mobile Telephone (NMT), Sweden 1983: Advance Mobile Phone Service (AMPS), US
- Mobile sends MIN/ESN to network for automated billing, etc.
 - 1986: Natel-C (NMT), switzerland
 - 1986: C-Netz, Germany
- Introduces authentication card (magnetic) stripe, memory chip, smart card processor

خلاصه تكنولوژي هاي نسل اول

	NTT	NMT	AMPS	TACS	C-450
	(Japan)	(Scandinavian)	(N. America)	(UK)	(W. Germany)
Company	Nippon	Ericsson Radio	ATT		
	T&T	System			
Year of Introduction	1979	1981	1983	1985	1985
Multiple Access	FDMA	FDMA	FDMA	FDMA	FDMA
Transmit Frequency					
 Base Station 	870 - 885	463 - 467.5	870 - 890	935 - 960	461.3 - 465.74
 Mobile Station 	925 - 940	453 - 457.5	825 - 845	890 - 915	451.3 - 455.74
Tx & Rx Spacing	55 (MHz)	10 (MHz)	45 (MHz)	45 (MHz)	10 (MHz)
Channel Bandwidth	25/6.25	25 & 12.5	30	25	20
(kHz)					
# of channels	600/2400	1999	666/832	1000	222
Coverage Area (km)	1.8-40.0	5 - 10	2-25	2-20	5-30
Audio Signal					
 Modulation 	FM	FM	FM	FM	FM
• F. Deviation	5 (kHz)	5 (kHz)	12 (kHz)	9.5 (kHz)	4 (kHz)
Control Signal					
 Modulation 	FSK	FSK	FSK	FSK	FSK
• FM (kHz)	4.5	3.5	8	6.5	2.5
Data Rate kbps	0.3	1.28	10	8	5.28
Error control on	Check on	Predetermined	Majority	Majority	Retransmit if
control channels	signals sent	from message	Decision	Decision	error occur
	back	content			

1G, Summery

- Circuit-switched technology.
- FDMA (Frequency Division Multiple Access).
- Analog system.
- Basic mobility.
- Poor voice quality.
- Poor security.

AMPS

American Mobile Phone System

Two 25-MHz bands are allocated to AMPS

- One from BS to mobile unit (869–894 MHz)
- Other from mobile to base station (824–849 MHz)
- Bands is split in two to encourage competition
 - In each market two operators can be accommodated
- Operator is allocated only 12.5 MHz in each direction
- Channels spaced 30 kHz apart
 - Total of 416 channels per operator
- Twenty-one channels allocated for control
- 395 to carry calls
- Control channels are 10 kbps data channels
- Conversation channels carry analog using frequency modulation
- Control information also sent on conversation channels in bursts as data
- Number of channels inadequate for most major markets
- For AMPS, frequency reuse is exploited

AMPS Control Channels

21 full-duplex 30-kHz control channels

Transmit digital data using FSK

- Data are transmitted in frames
- Control information can be transmitted over voice channel during conversation
 - Mobile/base station inserts burst of data
 - Turn off voice FM transmission for about 100 ms
 - Replacing it with an FSK-encoded message
 - Used to exchange urgent messages
 - Change power level
 - Handoff