
JOURNAL OF COMPUTING, VOLUME 3, ISSUE 7, AUGUST 2011, ISSN 2151-9617

HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/

WWW.JOURNALOFCOMPUTING.ORG 1

An Effective Approach to Web Services
Composition When Large Scales of Data

Flows are Available
Azam. Andalib, Shahriar. Mohammadi, and Mehregan. Mahdavi

Abstract— Undoubtedly, Web is one of the most significant technologies in the last decade that provides a wide information

publication and has made it possible to present services via computers in the whole world. Also, it is considered as one of the

main factors of entering computers to the daily life of humans. The web services are the applicable programs that are

accessible via web, by human being and other programs, independent from programming language. Moreover, they can be

located and invoked through web. Development of providing services by institutions and organizations via internet has

increased the demand for commercial interactions and links (especially Business to Business-B2B interactions) and the new

technologies like web services are presented to make these links. With improvement of web services and development of their

usage, the new concepts regarding the combination of simple services to make a complicated one, have been raised. Our

research is concerned with developing an efficient model for composing web services when large scale data flows are

available.Our goal is to enhance the potential of web services by focusing on new aspects of their composition by using of

Deputy Servers.

Index Terms—web services, web services composition, Deputy Server, Orchestration

—————————— ——————————

1 INTRODUCTION

owadays, the main usage of World Wide Web is to
have an interactive access to the documents and
applicable programs[1]. Web services (also called

simply services) are self-describing, platform-agnostic
computational elements that support rapid, lowcost and
easy composition of loosely coupled distributed applica-
tions [9]. From a technical standpoint, Web services are
modular applications that can be described, published,
located, invoked and composed over a variety of net-
works (including the Internet): any piece of code and any
application component deployed on a system can be
wrapped and transformed into a network-available ser-
vice, by using standard (XML-based) languages and pro-
tocols (e.g., WSDL, SOAP, etc.). The promise of Web ser-
vices is to enable the composition of new distributed ap-
plications/solutions: when no available service can satisfy
a client request, (parts of) available services can. If the
web develops in order to support the links between Web
Services, it will considerably improve in terms of range
and power.

The composition of web services to handle crackly
transaction like as finance services is gaining considerable
momentum as a way to enable business-to-business (B2B)
collaboration [13]. Web services allow organizations to

share costs, skills, and resources by joining their applica-
tions and systems [3].

World Wide Web was proposed by Tim Berners-Lee in
1989[3] in order to publish the web pages and make links
between them and it has unbelievably expanded during
these years [2]. Web services, are web based applicable
programs that could be established or invoked inde-
pendently by software or other services [4]. Service Ori-
ented Architecture (SOA), has facilitated the procedure of
flexible and loosely coupled programming, hence this
architecture as a fundamental factor for interoperability
will be discussed[5]. Infact the main and basic services of
organizations are available in the form of Web services
through their portal for their visiting users. Ease of ser-
vice combination and combined construction of service
applications is discussed as basic a feature in service ori-
ented architecture [15].

 The purpose of this paper is to emphasis on the re-
quirements of applying the web services in order to
achieve a more valuable goal. Then we explain current
solutions for compositing web services briefly to achieve
this goal and finally we introduce a new model for im-
proving implicit methods.

2 INTRODUCTION TO WEB SERVICES

Every service that is accessible via Internet, uses the mes-
sage transferring system based on the XML (Extensible
Markup Language) standards and does not depend on an
operating system or a programming language is a Web
service [7].

The World Wide Web Consortium which is the pres-
tigious reference in Web, defines the Web services as fol-

————————————————

 A.Andalib –Department of It, University of Guilan , Rasht and Depart-
ment of SE, Islamic Azad University-Roudsar Branch, Roudsar, Guilan,
Iran. E-mail: azam_andalib@ yahoo.com.

 S.Mohammadi–K.N.Toosi University of Technology,Tehran, Iran.E-mail:
smohammadi40@yahoo.com.

 M.Mahdavi– Departmant of Computer Science and Engineering. Universi-
ty of Guilan, Rasht, Guilan, Iran. E-mail:mehregan.mahdavi@gmail.com.

N

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 2, FEBRUARY 2011, ISSN 2151-9617

HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/

WWW.JOURNALOFCOMPUTING.ORG 2

lows: "a Web service is a software system that is designed
to protect machine to machine interactions on a network
and have a definition which is processed by a machine
called WSDL (Web Services Description Language). This
service has an interface that is presented as an under-
standable language for the machine. The other systems
make connection with this service by the method which is
defined in this interface, and through sending message"
[8]. In other words, a Web service is a software service
that is realized with a URL (Uniform Resource Locator)
and its public interfaces are described and identified by
using XML.

Generally speaking, using Web services can cause a
general advantage which is no need to coding again. Alt-
hough, this advantage is for using the classes too, but in
using the classes in every project they need to be added,
while in Web services the methods can be applied. By
working with classes in various applications with several
methods, it is possible to work with different classes. In
other words, the work that is done is different in every
time which reduces the legibility and also makes the de-
velopment difficult. But, by using Web service, every time
an especial Web service according to a specific Web ser-
vice’s method is used, regardless of being in any applica-
tion [7].

3 WEB SERVICES COMPOSITION MODELS

IT organizations need the versatility to reconcile to cus-
tomer requirements and changing market situation. But
existing solutions do not directly support Web services
standards and, as a result, IT organizations may be capti-
vated to take a short-term solution and create their own
proprietary protocols for composing services. Web ser-
vices orchestration, decentralized orchestration and cho-
reography standards are efforts that can be long-term
solutions for business communications [11]. By connect-
ing services through open, standards-based methods,
organizations withhold themselves the burden of main-
taining those proprietary interfaces.we explain these
standards and at the end of this article we will introduce
a new efficient method for web services composition [14].

3.1 Orchestration Model

Orchestration method is an executable business process
[10] that may communicate with both internal and exter-
nal Web services. Service orchestration is a centralized
approach which insulates control and data flow. We need
Control flow to control/orchestrate the workflow, where-
as data flow relates to the the tasks that compose the ac-
tual applications. It describes how Web services can
communicate at the message level, including the business
logic and execution order of the communications [18].
These interactions can span applications and/or organi-
zations, so they result in a long-lived, transactional pro-
cess. With orchestration, the process is always controlled
from the viewpoint of one of the business parties. In this
model, all communication is directed via a central process
(workflow engine) for both the control and data flow [17].

In the Web service world, Web Services Business Pro-

cess Execution Language (WS-BPEL) [19] has become the
de facto standard for orchestration. With WS-BPEL, the
workflow can be specified without the need to accommo-
date any of the services, with help of the central process
providing the workflow logic.

Fig. 1. Orchestration Model

3.2 Choreography Model

This method is more collaborative in nature. Each party
describes the part they play in the interaction. Choreog-
raphy tracks the sequence of messages that may involve
multiple parties and also multiple sources. It is done with
the public message exchanges that tide between multiple
Web services [19].

This decentralized solution does away with the cen-
tralized process and instead each collaborating service is
aware of its portion in the workflow. In Service choreog-
raphy, the collaborating services exchange messages in
order to coordinate execution of the workflow. We should
notice that in order for this collaboration to take place, the
Web services need to be corrected so that they are aware
of the related workflows. The characteristics have been
put forth for Web service choreography in the Web Ser-
vices Choreography Description Language (WS-CDL)
[21]. This method has so far not been widely used, nor are
there many implementations of the specification.

Fig. 2. Choreography Model

Orchestration differs from choreography. it describes a

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 2, FEBRUARY 2011, ISSN 2151-9617

HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/

WWW.JOURNALOFCOMPUTING.ORG 3

process flow between services, controlled by a single par-
ty but, choreography tracks the sequence of messages
involving multiple parties, where no one party truly
“owns” the conversation.

3.3 Decentralized Orchestration

Decentralized Orchestration is another solution for being
used by web services. In this model, a centralized work-
flow is analyzed and divided into smaller workflows [18].
Each workflow engine orchestrates its own partition of
the workflow.

We need multiple workflow engines to execute the
partitioned workflows (each executing its own partition).
In this method, potential bottlenecks that we could see in
the previous methods, will be removed. Decentralized
orchestration was found to minimize the amount of traffic
in the workflow but this approach increases the complexi-
ty of the workflow design and execution, while deadlock
can be built [20]. Furthermore this model needs parallel
programming that can cause to additional challenges.

Fig. 3. Decentralized Orchestration Model

5 AN EFFICIENT ALTERNATIVE MODEL FOR WEB

SERVICES COMPOSITION WITH DEPUTR

SERVERS

In our model, the data flow is decentralized [16] while the
control flow remains centralized. Applications with this
method have advantages compared to other central-
ized/distributed control and data flow. To accomplish
this, Deputy Servers are used in the system. The contribu-
tion of this model is the introduction of the Deputy Serv-
er. This server is participated with the workflow engine,
but strives to be a non-disruptive extension to the tradi-
tional orchestration model.The workflow engine negoti-
ates with the Deputy Servers using the control flow. The
servers carry out Web service invocations instead of the
workflow engine.

Deputy Servers will need to communicate with three
parts: the central workflow engine, other Deputy Servers
and the Web services. Interaction of Deputy Servers with

each other exposes the desired interface for them.
As mentioned earlier in our model, data flow is decen-

tralized. Instead of sending all data back to the workflow
engine, data can stay on the Deputy Servers. Because of
the workflow continues, the data on a Deputy Server,
should be sent to other Deputy Servers. Deputy Servers
provide Web service requests and receive Web service
responses. Requests are either received from the work-
flow engine or another Deputy Server or they may be the
response from a previous request. Responses will either
be stored, or forwarded to another Deputy Servers or the
workflow engine. So a full SOAP protocol stack [6] is not
a necessity at the Deputy Server.

Wheras in the traditional systems, the workflow en-
gine communicates with the Web services, this is not re-
quired in our model. Instead, the workflow engine does
the same work by sending workflow Web service interac-
tion to the Deputy Servers (they would act as pass-
through services). The workflow engine, should coordi-
nate the execution of the workflow by using control mes-
sages. These messages may be sent to the Deputy Servers
that require them or perhaps forwarded by other Deputy
Servers.

Fig. 4. A New Model with Deputy Servers

5.1 Concept of Deputy Server

Deputy Servers need to interact with three actors: the work-
flow engine, other Deputy Servers and the workflow web
services. The expectation is that the minimising the cost of
data handling and communicating control flow messages is
not as beneficial as minimising the cost of communicating
the large data flows associated with the workflows. In Depu-
ty Server with another Deputy Server (D-D) interactions of
our model, data flow is decentralized. Instead of sending all
data back to the workflow engine, data may remain on the
Deputy Server. In order for the workflow to continue, the
data on a Deputy Server, would have to be sent to another
Deputy Server. This requirement shows that a mechanism
exists for exchanging data messages between Deputy Serv-

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 2, FEBRUARY 2011, ISSN 2151-9617

HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/

WWW.JOURNALOFCOMPUTING.ORG 4

ers.
The second interaction is related to Deputy Server and

workflow web servise. Deputy Servers make web service
requests and receive their responses. Although, Deputy
Servers neither create web service requests (they may
construct them from available data) nor do they use the
responses. Requests are either received from another
Deputy Server or the workflow engine, or alternatively,
they can be the response from a previous request. Re-
sponses on the other hand will either be stored, or for-
warded to another Deputy Server or the workflow en-
gine. Therefore a full SOAP protocol stack is not a obli-
gate at the Deputy Server.

The last case is the interaction between Deputy Server
and workflow engine. The workflow engine remains the
centralized orchestrator for the workflow. Whereas tradi-
tionally in systems like BPEL [12], the workflow engine
interacts with the web services, this is not required in our
model. Instead, the workflow engine may accomplish the
same tasks by delegating workflow web service interac-
tion to the Deputy Servers, which would act as pass-
through services. The workflow engine must be able to
coordinate the execution of the workflow with control
messages (now directed at Deputy Servers). These control
messages could be sent directly to the Deputy Server that
requires them, or may be forwarded by other Deputy
Servers. For the purposes of this paper, a decentralized
control flow is not considered, and thus the workflow
engine would communicate directly with Deputy Servers.

Fig. 5. Deputy Server Ineractions

Deputy Servers should accomplish two basic func-
tions: invoking web services operations and allowing the
workflow engine to dictate the data flow. Being able to
invoke web services has a simple solution, by making the
Deputy Server as a web service client. Of course, the
workflow engine would dictate when and how a Deputy
Server would invoke a web service. Also the workflow
engine would be responsible for controlling the data flow
between itself and the Deputy Servers and for controlling

the data flow between Deputy Servers.

5.2 Storage in Our Model

The Deputy Server needs to save responses from web ser-
vices. As scientific workflows may deal with large scales of
data, and the Deputy Server may be handling multiple re-
quests concurrently, keeping responses in memory may not
be possible. Whether or not to store responses to permanent
storage cannot be specified by the workflow engine, be-
cause the Deputy Server may be handling requests from
multiple workflow engines. This role will instead be the re-
sponsibility of the Deputy Server and will be based on the
current state and available resources of the machine on
which it executes. This presents a level of non-determinism
into the performance evaluation of our model since the dif-
frent workload of the machine effects the performance of the
Deputy Server. A force-write policy could be enforced so
that all data is always store to permanent storage, although
this too may hamper performance.

5.3 State in Our Model

Whether or not Deputy Servers require to maintain state
largely depends on whether a synchronous or asynchronous
communication method is done for Deputy Server-
workflow engine interactions. With asynchronous commu-
nication, the workflow engine instructs the Deputy Server
on what tasks to execute and then terminate its link. The
Deputy Server would accomplish the required action and
once completed, initiate a new connection with the work-
flow engine. To execute this, it would have to maintain state
information for pending requests, by mapping tasks identifi-
ers to network connections.

If synchronous communication is used, it is possible to
relax the state maintenance requirement. In synchronous
communication, the workflow engine keeps its connec-
tion to the Deputy Server open for per request and waiting
for its response.

Regardless of the communication method used, some
state will always need to be maintained at the Deputy
Server. The reason is because it will need to store web
service response which may be used for any number of
various web service requests. In other words, there is no
guarantee that a web service response will be consumed
immediately. Also the Deputy Server is in a position to
help the workflow engine for optimising the workflow
through using of statistics. Although analysis of the statis-
tics is not the responsibility of the Deputy Server, but the
Deputy Servers should record metrics that can be ana-
lysed. For example, for each request-response pair, the
size of the request and response should be recorded, also
the delay between making the request and when the first
bytes of the response are received. This is especially true,
where the performance of our model needs to be ana-
lysed.

5.4 Data Handling In Our Model

As web services can be developed by multiple organisations,
the web services involved in a workflow may not share a
common interface. This could extend both to the message
and type formats used. There are some scenarios where data

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 2, FEBRUARY 2011, ISSN 2151-9617

HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/

WWW.JOURNALOFCOMPUTING.ORG 5

transformations might be needed: Typed values [22]: One
web service may indicate a boolean value with an integer
type, another with a text value, and yet another could use
boolean value. Headers: One web service may require head-
ers for all its messages, whereas another might not. General
transformations: The output of one web service operation
cannot be supplied as input to another web service operation
unaltered. It might be necessary to drop elements, add new
ones or somehow modify the response.

Fig. 6. Invoking a Web Service

Fig. 7. Storing Data on a Deputy Server from a Workflow Engine

Fig. 8. Storing Data on a Deputy Server from a Deputy Server

 5.5 Concept of Workflow Web Services

Web services used in existing workflows may not be availa-
ble inside the experiment test bed for this project. Therefore,
web services will have to be otherwise provided. One such

way is by introducing a simple web service into the system
that can be used to construct new workflows.

Computation costs of the WWS are not an issue for this
project, since its purpose is to examine the effect of per-
formance due to communication costs. As existing web
services (or data sources) will not be available in the ex-
periment test bed, the web services used should be able to

generate data to be included in their responses. To be able
to be used as input for other web services, the specifica-
tion of the input and output data should be compatible
(considering data transformations will not be used). To
allow for variability in the experiments conducted, the
amount of data returned by WWS should be configurable.
Fig. 9. Retrieving Data Located on a Deputy Server

5.6 Concept of Workflow Engine

In the traditional models, the workflow engine may main-
tain state (e.g., for each current workflow execution instance,
what are the requests that are pending) of the different WWS
in order to determine what to do next in the workflow. The
introduction of Deputy Servers however, necessitates that
state be maintained for them as well. State information in
this case could be what data exist on which Deputy Servers,
with what identifiers are they tagged, etc.

The implemented workflow engine provides the func-
tionality of a traditional workflow engine, as well as the
ability to interact with Deputy Servers of our workflow
architecture as all interactions with Deputy Servers and
workflow web services are of the form of web service op-
erations, the workflow engine includes web service cli-
ents to interact with both of them. In addition to control-
ling the workflow, the workflow engine implementation
serves the purpose of logging the results of the work-
flows. The workflow engine uses the log results to calcu-
late certain statistical metrics at runtime. These logs and
metrics form the basis of the experimental results and
their analysis. The workflow engine is also responsible for
loading the experiment configurations.

4 CONCLUSION

As applications continue to move away from the desktop
and onto the network, the importance of well-performing
web applications increases. Whereas many of the migratory
desktop applications make their transition as lightweight
web applications with few data demands, not all applica-
tions are created equal.

It can be claimed that the valuable steps are the review
of the posed challenges in area of combining the services
and optimizing them. Applying the composite Web ser-

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 2, FEBRUARY 2011, ISSN 2151-9617

HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/

WWW.JOURNALOFCOMPUTING.ORG 6

vices has many commercial benefits for organizations.
Firstly, it reduces the time of producing process that
cause to reduce the time for products to reach to the mar-
ket. Secondly, producing the applications with available
services decreases the business risks of software produc-
ing and avoids dealing with new software errors. Thirdly,
by using available Web services, organizations’ need for
several new skills will decrease which also cause to save
in cost of software production. Finally, by using available
Web services it is possible to choose the best service from
several options which leads to better softwares in terms of
quality. Therefore we explained the advantages of com-
bining Web services and existing methods and finally
discussed a model for Web services composition in order
to optimize former compound methods, based on the use
of deputy servers.

 In the first methods, cost and data exchange, time re-
duction, response time improvement, and centralized
control of communication between different services to
provide appropriate services to the customer is aimed. In
the improved models main goal is, the cost and time re-
duction associated with large current data (especially re-
petitive data). One of our model considerable advantages,
is in a large volume data transaction where simultaneous
respond to many requests is needed, the result of tradi-
tional storage in this volume (Work Flow Engine) may be
impractical while in this case the optimized approach will
partition data into different deputy servers leading re-
cording volume decrement and makes it practical. Anoth-
er important advantage is that, in Web services without a
deputy server, data exchange should only operate with
the Work Flow Engine that might be located in far dis-
tances. As a solution near domain deputy servers can be
identified to transfer data through them in a lower time
with less cost. In the optimized model entire data base
has been distributed on multiple servers so the processing
power is increased and lateral services can be provided
without any traffic enhancement or work overflows.

In other word this paper attempts to evaluate the per-
formance of a proposed alternative to existing workflow
execution models. Our effective orchestration model at-
tempts to eliminate the bottlenecks in today’s centrally-
coordinated methods. It does so my relieving the load of
the central bottleneck by keeping data closer to where it is
used. It means the placement of the Deputy Servers can
improve the performance of our model as compared to
the traditional model. For example, in traditional model,
all data have to be sent to the workflow engine which can
be at a remote situation (compared to the Web services).
In our model a Deputy Server can be placed near the Web
services (for example in the same domain), so they cause
to a lower cost for data transfer.

REFERENCES

[1] N. Milanovic, and M. Malek, “Cuurent Solutions for Web Ser-

vice Composition,” Proc. IEEE Symp. Interner Computing, No-

vember-December 2004.
[2] T. Berners-Lee and J. Hendler, and O.Lassila “The Semantic

Web,” Scientific American, 501(5):pp. 28-37, May. 2001.

[3] A.Masri, and E.Mahmoud “Investigating Web Services on the

World Wide Web,” Proc. 17th International Conf. World Wide Web

(www)-for QWS-WSDLs Dataset Version 1.0, pp. 795-804, April

2008.

[4] R. Pessoa, “A survey of Service Composition Approaches,”

Proc. Conf. Enterprise Distributed Object Computing Conference

Workshops, pp. 238-251, 2008.
[5] Z. Mahmood, “Enterprise Application Integeration based on

Service Oriented Architecture,” International Journal of Comput-
ers, vol. 1, no. 3, pp. 135-139, 2007.

[6] E. Cerami, Web Services Essentials-Distributed Applications with

XML-RPC, SOAP, UDDI, and WSDL. Publisher: O'Reilly, pp. 1-

24, ISBN:0-596-00224-6, First Edition February 2002.

[7] H. Hass, and A. Brown, “Web Service Glossary,” Technical

Report, WWW Working Group Note, Feb. 2004.

[8] D. Booth, and C. Liu, “Web Services Description Language

(WSDL) Version 2.0,” W3C Technical Reports and Publications,

Primer W3C Working Draft, August 2005.

[9] A. Oussalah, and M. Lina, “Toward the Definition of the Loose

Coupling Notion in a Composite Service,” Proc. IEEE Symp.

Computer Engineering and Applications (ICCEA), pp. 339-343,

March 2010.
[10] A. Alamri, M. Eid, and A. Elsaddik, “Classification of the state-

of-the-art Dynamic Web Services Composition Techniques,” J.
Classification,University of Ottawa,Canada,Int.J Web and Grid
Services, vol. 2, no. 2, , Apr. 2006.

[11] J. Ge YuhUi Qiu Shiqun Yin, “Web Services Composition

Method Based on OWL,” Proc. International Conf. Computer Sci-

ence and Software Engineering, pp. 74-77, 2008.

[12] B. Mathew, and P. Sarang, Business Process Execution Language for

Web Services. An Architect and Developers Guide to Orchestra-

tion Web Services Using BPEL4WS, pp. 92-104, 2006.

[13] B. Benatallah, Q.Z Sheng and M. Dumas “The Self-Serve Envi-

ronment for Web Services Composition,” Proc. IEEE Symp. In-

ternet Computing (SCC ’06), January 2003.

[14] S. Dustdar, and W. Schreiner “A Survey on Web Services Com-

position,” Technical University of Vienna Systems-Information Sys-

tems Institute, http://www.infosys.tuwien.ac.at. 2004.

[15] L.J Zhang, “SOA and Web Services,” Proc. IEEE Symp. Service

Computing (SCC ’06), Sept 2006.

[16] B. Benatallah and Q. Sheng, "The Self-Serv Project Uses a P2P-

based Orchestration Model to Support the Composition of Mul-

tienterprise Web Services," IEEE Computer Society Trans. Internet

Computing, vol. 3, pp. 40-48, January 2003.

[17] N. Kyprianou, “Web Service Orchestration,” Master of Science

dissertation, Dept. of Informatics., Edinburgh Univ., 2008.

[18] Y. Rao, B. Qin Feng, J. Cang Han, and Z. Chao Li “A Security

Integrated Model for Web Services,” Proc. IEEE Symp. Machine

Learning and Cybernetics (ICLMC ’05), pp. 2953-2958, Aug 2004,

doi:10.1109/ICLMC.2004.1378538.
[19] G. Chafle, S. Chandra, V. Mann, and M. GowriNanda “De-

cetralized Orchestration of Composite Web Services,” Proc.

13th. International World Wide Web Conf. Alternate Track Papers

And Posters, pp. 8-16, 2004.

[20] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon

“Web Services Choreography Description Language Version

1.0,” W3C Technical Report, W3C Working Draft, Dec. 2004.

[21] M. Weski, Business Process Management: Concepts, Languages,

Architectures. Springer, pp. 123-135, Sep. 2007.

[22] Nikos. Kyprianou“ Hybrid Web Services orchestration,”

Maaster of Science thesis, school of information,2008.

