
Protecting cookies against Cross-site scripting attacks using

cryptography

S. MOHAMMADI

Department of Industrial Engineering, K.N. Toosi

University of Technology, Tehran, Iran

FARHAD KOOHBOR

Department of Industrial Engineering, K.N.

Toosi University of Technology, Tehran, Iran

Abstract

XSS attacks are the number one attacks in

the Web applications. Web applications

are becoming the dominant way to

provide access to online services. In this

paper however we will deal with

protecting some resources such as cookies

using cryptography.

Our research proposes a method to

confute attackers in using stolen cookies

by encrypting the data that will be stored

in the cookie. We assume that users

profile can be stored in a cookie, so we

should encrypt such data with a dynamic

key driving from some dynamic inputs.

Each time user logging in web site a new

key will be generated and will be stored in

the data base. Also we suppose that the

data base is protecting by server side

mechanism and we will only deal with

client side protecting.

Introduction

Cross-site scripting (XSS) is a type of

computer security vulnerability typically

found in web applications that enables

malicious attackers to inject client-side

script into web pages viewed by other

users see fig1. An exploited cross-site

scripting vulnerability can be used by

attackers to bypass access controls such

as the same origin policy. Cross-site

scripting carried out on websites were

roughly 80% of all security vulnerabilities

documented by Symantec as of 2007[1].

At the same time, web application

vulnerabilities are being discovered and

disclosed at an alarming rate. Web

applications often make use of JavaScript

code that is embedded into web pages to

support dynamic client-side behavior. This

script code is executed in the context of

the user’s web browser. To protect the

user’s environment from malicious

JavaScript code, browsers use a sand-

boxing mechanism that limits a script to

access only resources associated with its

origin site. Unfortunately, these security

mechanisms fail if a user can be lured into

downloading malicious JavaScript code

from an intermediate, trusted site. In this

case, the malicious script is granted full

access to all resources (e.g.,

authentication tokens and cookies) that

belong to the trusted site. Such attacks

are called cross-site scripting (XSS)

attacks.

The expression "cross-site scripting"

originally referred to the act of loading the

attacked, third-party web application from

an unrelated attack site, in a manner that

executes a fragment of JavaScript

prepared by the attacker in the security

context of the targeted domain [2].

Notably Facebook, LiveJournal, MySpace

and Orkut have all been hit by these

attacks. XSS attacks can be self-

propagating [3]. The JavaScript language is

widely used to enhance the client-side

display of web pages [4]. Secure execution

of JavaScript code is based on a

sandboxing mechanism, which allows the

Advances in E-Activities, Information Security and Privacy

ISBN: 978-960-474-258-5 22

code to perform a restricted set of

operations only. That is, JavaScript

programs are treated as untrusted

software components that have only

access to a limited number of resources

within the browser. Also, JavaScript

programs downloaded from different sites

are protected from each other using a

compartmentalizing mechanism, called

the same-origin policy. This limits a

program to only access resources

associated with its origin site. Even though

JavaScript interpreters had a number of

flaws in the past, nowadays most web

sites take advantage of JavaScript

functionality. The problem with the

current JavaScript security mechanisms is

that scripts may be confined by the sand-

boxing mechanisms and conform to the

same-origin policy, but still violate the

security of a system. This can be achieved

when a user is lured into downloading

malicious JavaScript code (previously

created by an attacker) from a trusted

web site. Such an exploitation technique is

called a cross-site scripting (XSS) attack

[5].

Types of XSS attacks

Three distinct classes of XSS attacks exist:

DOM-based attacks, stored attacks, and

reflected attacks [6]. In a stored XSS

attack, the malicious JavaScript code is

permanently stored on the target server

(e.g., in a database, in a message forum,

or in a guestbook). In a DOM-based

attack, the vulnerability is based on the

Document Object Model (DOM) of the

page. Such an attack can happen if the

JavaScript in the page accesses a URL

parameter and uses this information to

Fig. 1- A typical cross-site scripting

scenario.

Advances in E-Activities, Information Security and Privacy

ISBN: 978-960-474-258-5 23

write HTML to the page. In a reflected XSS

attack, on the other hand, the injected

code is ‘‘reflected’’ off the web server,

such as in an error message or a search

result that may include some or all of the

input sent to the server as part of the

request. Reflected XSS attacks are

delivered to the victims via e-mail

messages or links embedded on other

web pages. When a user clicks on a

malicious link or submits a specially

crafted form, the injected code travels to

the vulnerable web application and is

reflected back to the victim’s browser.

The reader is referred to [7] for

information on the wide range of possible

XSS attacks and the damages the attacker

may cause. There are a number of input

validation and filtering techniques that

web developers can use in order to

prevent XSS vulnerabilities [8] However,

these are server-side solutions over which

the end-user has no control.

Defense approaches

To disallow script execution in untrusted

web content, a web application might

possibly take one of the following

approaches.

 Content Filtering. The application may

attempt to detect and remove all scripts

from untrusted HTML before sending it to

the browser.

Browser Collaboration. The application

may collaborate with the browser by

indicating which scripts in the web page

are authorized, leaving the browser to

ensure the authorization policy is upheld.

Content filtering. Content filtering is

otherwise known as sanitization. This

defense technique uses filter functions to

remove potentially malicious data or

instructions from user input. Filter

functions are applied after user input is

read by a web application, but before the

input is employed in a sensitive operation

or output to the web browser.

Removal of scripts from untrusted content

is a difficult problem for web applications

that permit HTML markup in user input

such as blog, wiki and social networking

applications. These applications are

expanding and proliferating rapidly [9],

[11], thus the growing need for robust XSS

defenses. The WordPressblog platform is

one popular application that empowers

anonymous users to control the

presentation of their blog comments. It

does so by permitting input of structured

HTML elements for text formatting

(e.g., for bold, <i> for italics). Content

filtering baseddefenses for this type of

application face a difficult challenge:

allowing all benign HTML user input, while

simultaneously blocking all potentially

harmful scripts in the untrusted output.

Simply disallowing HTML syntax control

characters is not a practical filtering

solution for these applications because

every control character that can be used

to introduce attack code also has a

legitimate use in some benign, non-script

context. For example, the < character

needs to be present in hyperlinks and text

formatting, and the "character needs to

be present in generic text content. Both

are legitimate and allowed user inputs,

but can be abused to mount XSS attacks.

Advanced content filters try to anticipate

how untrusted content will be interpreted

by the client web browser’s parser, as it is

the browser parser that makes crucial

decisions about script execution. To be

completely effective in eliminating XSS, a

filter function must necessarily model the

full range of parsing behaviors pertaining

to script execution for several browsers.

Advances in E-Activities, Information Security and Privacy

ISBN: 978-960-474-258-5 24

This is a very difficult problem, as

diligently documented in the XSS Cheat

Sheet [11], which describes a wide variety

of parsing quirks exhibited by different

browsers. Quirks are essentially

anomalous browser parser behavior that

either contradicts language standards

Or account for conditions not well defined

by these standards (such as how to parse

malformed HTML). They are sometimes

intentionally introduced and retained in a

browser’s code base to correctly render

existing web sites that depend on the

quirks of older browsers. Quirks vary by

browser, are complex to model, not

entirely understood and not all known

(especially for closed-source browsers).

Therefore, from a web application

perspective, the task of implementing

correct and complete content filter

functions is very difficult, if not

impossible.

Browser collaboration. Robust prevention

of XSS attacks can be achieved if web

browsers are made capable of

distinguishing authorized from

unauthorized scripts. This vision was first

espoused in BEEP [12], wherein this

approach was implemented by (a)

creating a server–browser collaboration

protocol to communicate the set of

authorized scripts, then (b) modifying the

browser to understand this protocol and

enforce a policy denying unauthorized

script execution.

Cookies and cross-site scripting

A cookie, also known as a web cookie,

browser cookie, and HTTP cookie, is a

text string stored by a user's web browser.

A cookie consists of one or more name-

value pairs containing bits of information,

which may be encrypted for information

privacy and data security purposes. The

cookie is sent as an HTTP header by a web

server to a web browser and then sent

back unchanged by the browser each time

it accesses that server. A cookie can be

used for authentication, session tracking

(state maintenance), storing site

preferences, shopping cart contents, the

identifier for a server-based session, or

anything else that can be accomplished

through storing textual data. As text,

cookies are not executable. Because they

are not executed, they cannot replicate

themselves and are not viruses. However,

due to the browser mechanism to set and

read cookies, they can be used as

spyware. Anti-spyware products may

warn users about some cookies because

cookies can be used to track people.

 Many web applications rely on session

cookies for authentication between

individual HTTP requests, and because

client-side scripts generally have access to

these cookies, simple XSS exploits can

steal these cookies [13]. To mitigate this

particular threat (though not the XSS

problem in general), many web

applications tie session cookies to the IP

address of the user who originally logged

in, and only permit that IP to use that

cookie[14]. This is effective in most

situations (if an attacker is only after the

cookie), but obviously breaks down in

situations where an attacker is behind the

same NATed IP address or web proxy—or

simply opts to tamper with the site or

steal data through the injected script,

instead of attempting to hijack the cookie

for future use[14]. Another mitigation

present in IE (since version 6), Firefox

(since version 2.0.0.5), Safari (since

version 4) and Google Chrome, is a

HttpOnly flag which allows a web server to

set a cookie that is unavailable to client-

side scripts. While beneficial, the feature

Advances in E-Activities, Information Security and Privacy

ISBN: 978-960-474-258-5 25

does not fully prevent cookie theft nor can

it prevent attacks within the browser [15].

Cryptography

Until modern times cryptography referred

almost exclusively to encryption, which is

the process of converting ordinary

information (plaintext) into unintelligible

gibberish (i.e., ciphertext)[16]. Decryption

is the reverse, in other words, moving

from the unintelligible ciphertext back to

plaintext. A cipher (or cypher) is a pair of

algorithms that create the encryption and

the reversing decryption. The detailed

operation of a cipher is controlled both by

the algorithm and in each instance by a

key. This is a secret parameter (ideally

known only to the communicants) for a

specific message exchange context. Keys

are important, as ciphers without variable

keys can be trivially broken with only the

knowledge of the cipher used and are

therefore useless (or even counter-

productive) for most purposes.

Historically, ciphers were often used

directly for encryption or decryption

without additional procedures such as

authentication or integrity checks.

Symmetric-key cryptography

Symmetric-key cryptography refers to

encryption methods in which both the

sender and receiver share the same key

(or, less commonly, in which their keys are

different, but related in an easily

computable way). This was the only kind

of encryption publicly known until June

1976[17].

Public-key cryptography

Symmetric-key cryptosystems use the

same key for encryption and decryption of

a message, though a message or group of

messages may have a different key than

others. A significant disadvantage of

symmetric ciphers is the key management

necessary to use them securely. Each

distinct pair of communicating parties

must, ideally, share a different key, and

perhaps each ciphertext exchanged as

well. The number of keys required

increases as the square of the number of

network members, which very quickly

requires complex key management

schemes to keep them all straight and

secret. The difficulty of securely

establishing a secret key between two

communicating parties, when a secure

channel does not already exist between

them, also presents a chicken-and-egg

problem which is a considerable practical

obstacle for cryptography users in the real

world.

Proposed method

As we stated a cookie can be stolen and

the privacy of its user can be violated.

There is some solution to prevent

attackers to steal cookies by XSS attacks

as mentioned above. Although this

methods maybe robust and effective but

they cannot prevent the stealing of the

cookie in some circumstances. Consider

another situation in which the user can

get his (her) cookie and change some data

stored in it. for example suppose that the

attacker is an employee, hear he (she) can

change his (her) access level by getting

and changing related data in his (her)

cookie .the second situation is worse

because it is not the case XSS. To prevent

the attackers or bad employees from

misusing the cookie we propose the

encryption of the date stored in a cookie

by some encryption algorithms. For

example suppose that there is web site

named www.trusted.com that uses cookie

to handle membership and access levels

Advances in E-Activities, Information Security and Privacy

ISBN: 978-960-474-258-5 26

in the site. The cookie contains username,

password, access level credentials and

other valuable data. Here the attacker or

bad employee can steal the cookie and

retrieve all valuable data from the cookie.

Bad employee can change his (her) cookie

to access more resource.

To encrypting the data we propose the

triple DES algorithm, because it is simple

and fast. Here the question is that how we

should create the key and where we

should reserve it and how we should

consider the stolen key. If we use the

dynamic key we can confute the attacker

because the key will be change each time

the user signing in the site. To create the

dynamic key we use some fix and dynamic

inputs consist of username, password, the

system millisecond clock and a random

number with system millisecond clock as a

seed. These inputs will be merged and

hashed and the hash value is our

favorable key. After retrieving the key it

will be used to encrypt the valuable data

and then will be stored in the database for

decrypting the data stored in the cookie.

As soon as the user logged out the key will

be deleted and a new key will be

generated in the next login see fig2.

Implementation of proposed method

 public class Cryptography
 {
 public static void makeED(int id, string userName, string PassWord)

 {
 Random rnd = new Random(DateTime.Now.Millisecond);

 int NewRND = rnd.Next(-1000000000, 1000000000);
 string ed = id + userName + PassWord + NewRND.ToString() +
DateTime.Now.Second.ToString() + DateTime.Now.Millisecond.ToString();

 ED NewED = new ED();

 ed = ed.GetHashCode().ToString();

 NewED.SP_TBLMB_ED(1, id, ed);

 }
 public static string Encrypt(string toEncrypt, bool useHashing, int

id)

 {

 byte[] keyArray;

 byte[] toEncryptArray = UTF8Encoding.UTF8.GetBytes(toEncrypt);

 ED NewED = new ED();

 DataTable dt = NewED.SP_TBLMB_ED(2, id);

 string Ed = dt.Rows[0]["ED"].ToString();

 if (useHashing)

 {

 MD5CryptoServiceProvider hashmd5 = new

MD5CryptoServiceProvider();

Advances in E-Activities, Information Security and Privacy

ISBN: 978-960-474-258-5 27

 keyArray =

hashmd5.ComputeHash(UTF8Encoding.UTF8.GetBytes(Ed));

 hashmd5.Clear();

 }

 else

 keyArray = UTF8Encoding.UTF8.GetBytes(Ed);

 TripleDESCryptoServiceProvider tdes = new

TripleDESCryptoServiceProvider();

 tdes.Key = keyArray;

 tdes.Mode = CipherMode.ECB;

 tdes.Padding = PaddingMode.PKCS7;

 ICryptoTransform cTransform = tdes.CreateEncryptor();

 byte[] resultArray =

 cTransform.TransformFinalBlock(toEncryptArray, 0,
 toEncryptArray.Length);

 tdes.Clear();

 return Convert.ToBase64String(resultArray, 0,
resultArray.Length);

 }
 public static string Decrypt(string cipherString, bool useHashing,

int id)

 {
 byte[] keyArray;

 byte[] toEncryptArray = Convert.FromBase64String(cipherString);

 ED NewED = new ED();
 DataTable dt = NewED.SP_TBLMB_ED(2, id);

 string Ed = dt.Rows[0]["ED"].ToString();

 if (useHashing)

 {

 MD5CryptoServiceProvider hashmd5 = new

MD5CryptoServiceProvider();
 keyArray =
hashmd5.ComputeHash(UTF8Encoding.UTF8.GetBytes(Ed));

 hashmd5.Clear();

 }

 else
 keyArray = UTF8Encoding.UTF8.GetBytes(Ed);

 TripleDESCryptoServiceProvider tdes = new
TripleDESCryptoServiceProvider();

 tdes.Key = keyArray;

 tdes.Mode = CipherMode.ECB;

 tdes.Padding = PaddingMode.PKCS7;

 ICryptoTransform cTransform = tdes.CreateDecryptor();

 byte[] resultArray =

cTransform.TransformFinalBlock(toEncryptArray, 0, toEncryptArray.Length);

Advances in E-Activities, Information Security and Privacy

ISBN: 978-960-474-258-5 28

 tdes.Clear();

 return UTF8Encoding.UTF8.GetString(resultArray);

 }

 }

Fig. 2- Our proposed method

Advances in E-Activities, Information Security and Privacy

ISBN: 978-960-474-258-5 29

Conclusion

One of the most prolific problems

plaguing the security sector today is Cross

Site Scripting (XSS). Yet it is rarely taken

seriously. XSS exploits web application

vulnerabilities which impact on the end

user, so few application developers or

their organizations pay much attention to

XSS. To develop secure web applications,

you have to avoid these three pitfalls,

inadequate handling of malicious inputs,

deficiencies of native execution models,

and inadequate support for enforcing

same origin policies. When checking

inputs, the easy problems are easy to

solve, and the difficult problems are

difficult. If you know that a particular

input should be an integer, you can make

sure that your application only accepts

integers. Writing a filter that catches all

possible encodings of dangerous inputs is

hard.

In this paper however we introduced a

novel method to protecting misuse of

stolen cookie by encrypting the stored

data and changing the key every time the

user logging in. in future we will focus on

using public-key algorithm to protecting

the stolen cookie.

References

[1] Symantec Internet Security Threat

Report: Trends for July-December 2009

[2] Grossman, Jeremiah (July 30, 2008).

The origins of Cross-Site Scripting (XSS).

[3] S. Kamkar, “I’m popular,” 2008,

description and technical explanation of

the JS.Spacehero (a.k.a. “Samy”) MySpace

worm.

[4] D. Flanagan.

JavaScript:TheDefinitiveGuide.December2

001. 4thed.Google. Google suggest; 2009.

[5] D. Endler. The Evolution of Cross Site

Scripting Attacks. Technical report,

iDEFENSE Labs, 2008.

[6] S. Cook. A web developer’s guide to

cross-site scripting. Technical report, SANS

Institute, 2008.

[7] CERT. Advisory CA-2000-06: malicious

HTML tags embedded in client web

requests

[8] CERT. Understanding malicious

content mitigation for web developers,

2007.

[9] OECD Directorate for Science,

Technology and Industry, Participative

Web and User-Created Content: Web 2.0,

Wikis and Social Networking. OECD

Publishing, Oct. 2008, ch. 2, pp. 19–25.

[10] B. Newton, “The hyper-growth of

web 2.0 applications,” Mar. 2008,

seminar. [Online].

[11] T. Berners-Lee, R. Fielding, and L.

Masinter, “Uniform resource identifier

(URI): Generic syntax,” Jan. 2008, RFC

3986. [Online].

[12] T. Jim, N. Swamy, and M. Hicks,

“Defeating script injection attacks with

browser-enforced embedded policies,” in

16
th

 International World Wide Web

Conference, Banff, AB, Canada,May 2008.

[13] Sharma, Anand (February 3, 2008).

"Prevent a cross-site scripting attack".

IBM. Retrieved May 29, 2008

Advances in E-Activities, Information Security and Privacy

ISBN: 978-960-474-258-5 30

[14] ModSecurity: Features: PDF Universal

XSS Protection". Breach Security.

Retrieved June 6, 2008.

[15] Ajax and mashup security OpenAjax

Alliance , retrived June 9, 2009

[16] David Kahn, The Codebreakers, 2006,

ISBN 0-684-83130-9

[17] Whitfield Diffie and Martin Hellman,

"New Directions in Cryptography", IEEE

Transactions on Information Theory, vol.

IT-22, Nov. 1976, pp: 644–654

Advances in E-Activities, Information Security and Privacy

ISBN: 978-960-474-258-5 31

