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Abstract
User navigation Understanding gives both the researchers 

and firms the opportunity to design better interfaces, gain more 
active users and richer studies of online social interactions.
This study is based on the clickstream data, collected over 15 
days period, summarizing HTTP session of over 25000 valid 
requests of Middle east users from popular social networks 
like Facebook, Instagram, twitter, and LinkedIn. The data were 
gathered from a social network aggregator website, which 
enables users to connect their profile of multiple social net-
works into one site. This analysis retrieves the key factors of 
the social network workloads in Middle East countries, for 
example, how frequently people connect to social networks 
and for how long they stay connected, and what type of activi-
ty they do and from which sequences of activity they often use
the OSN services. Additionally this process is studied from 
geographic perspective and the results discussed on a distance 
basis probability.
Keywords:Online Social Networks, User Behavior, Session, 
Clickstream, Social Network Aggregator

1. Introduction
Over the past few years, social structure plays an im-
portant fundamental role in modern and civilized socie-
ties.
Online social networks (OSNs) have become extremely 
popular. Nielsen report states that, social media have 
excess email and became the most popular online activi-
ty[1]. More than 60 percent of online users among the 
world take part in social network activities [1] and it 
forms more than one fifth of their time spent on the In-
ternet. [2] These facts show that Social Networks re-
garded as one of the most, if not the only, important 
parts of online experience. Users able to find their 
friends, share and upload content, and publish infor-
mation through “status” updates. The natural need of 
human kind to socialize can be regarded as one of the 
most significant reasons for which people spend their 
times on online social networks, for instance, take a look 

at wide variety of uses in online social environments, 
from finding professionals and getting familiar to their 
area of expertise (ex. LinkedIn) to hang out with friends
and sharing content to others (Google+ & Facebook).
Virtual online community nowadays plays inseparable 
role in people’s life. This fact illustrates why users tend 
to spread their activities among more OSNs.[3].
Internet penetration among young proportions of devel-
oping countries is more than 65 percent [4], also most of 
them are users of social networks like Facebook, 
Google+ , Twitter, etc. For instance, Facebook reaches 
about 1.11 billion monthly active users as of March 
2013 [5]. Google+ has over 500 million users with just 
17 months since launched as beta in June 2011 [6]; and 
Twitter is now experiencing more than 300 million 
Tweets per day [7].
In past researches, lack of organized and comprehensive 
research on e-commerce scope of developing countries 
(i.e. Iran) is obvious. Some sporadic efforts had been 
done, but there was no comprehensive research.
Understanding user behavior and navigation in Online 
Social Networks have an indispensable role in develop-
ment of more effective social network sites,[8] which in 
turn can contribute to better privacy policies.
Developing precise models for understanding the user 
behavior in Social Networks is of great  importance, 
because it influences embedded brand perception 
through social networks.[1] for instance, analysis of 
member’s activity in embedded brand communities in 
OSNs makes the organization able of expanding their 
influence on their online customers alongside with gain-
ing trust and reputation in virtual online communities.
Only few recent researches studied the impact of ob-
tained data from OSNs. As an example, permanent mes-
sages from a user to his own friends. [9, 10].
When we survey user activities as workload to the 
OSNs, their activities could not be presented as “appar-
ent” activities. A perfected approach to research OSN 
influences in middle-east could be studying clickstream 
data that includes all activities of users of those coun-
tries in Social Network sites. [1, 11] an appropriate 
study contains data of visible interactions and can dis-
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tribute accurate and get a comprehensive perspective of 
the OSN workload in Mena countries.[1]
In this paper an in-depth analysis of OSN workloads 
based on middle-east user clickstreams and their tenden-
cy to e-commerce channel collected through a social 
network aggregator presented.  According to the re-
searches, social network aggregators provide users with 
an interface for accessing multiple online social net-
works in one server [1] and gathers information together 
under a single username. In this paper a popular social 
network aggregator named “KLOUT.com” used for sur-
vey analysis.
Implementing a survey like [1], this research obtained a 
workload dataset. The dataset included activity data for 
more than 50,000 middle-east users who accessed vari-
ous OSNs through the social network aggregator.
Using the clickstream data, three types of analyses had 
been conducted. First, traffic and session patterns of 
OSN workloads characterized (Section 4). The frequen-
cy the people connect to OSN sites and the length of the 
connection examined. Based on the data, best fit models 
of session length distributions and formulas provided. 
New analysis strategy, developed, which could be called
the workload model, to characterize user tendency to e-
commerce communities embedded into OSNs (Section 
5). The workload model captures dominant user activi-
ties and the transition rates between activities. 
To gain insight into how users interact within a given 
social network, the Facebook website user activity ana-
lyzed along the social graph (Section 6). The analysis 
indicates how often users visit their friends online pro-
files, photos, and videos. The model also reveals that, in 
terms of physical distance, users usually tend to interact 
mainly with local e-commerce sites and vendors.
In summary, this study provides an in-depth analysis 
into the usage of OSN services and the users’ tendency 
to interact with e-commerce vendors in Middle East 
countries from the viewpoint of a social network aggre-
gator. The workload data analyzed in the paper provides 
an accurate insight of how users navigate when they 
connect to OSN sites. Furthermore, data analysis sug-
gests several interesting insights into how users interact 
with friends in OSNs.

2. Literature Review
2.1 Dataset

There has been a rich set of studies, analyzing user be-
havior and data usage throughout OSNs.[12] mentioned 
seven unique intentions of users to use Facebook: social 
connection, shared identities, content, social investiga-
tion, social network surfing, and status updating. Albeit, 
[2] stated that more than 56% social networking users 
have used social networking sites for spying on their 
partners.
There have been a few efforts using click stream data to 
analyze user navigation, especially middle-eastern users,
in OSNs.[13] studied OSN clickstream data which is

extracted from network traffic and trying to distinguish 
the user navigation patterns in OSNs, such as Facebook.
In their paper [14], they used data of a Chinese OSN to 
gather information on users’ profile visits and concluded 
that silent interplays are much more superior than visible 
interactions.
2.2 Geo-Location
Epidemic use of mobile devises, especially smart 
phones, to share personal data on online social networks, 
added global perspectives to online social interactions 
and, consequently to the study of OSNs. In their survey 
[2], they highlighted location based services as one of 
the most growing interests of online social users. Anoth-
er research conducted to this matter also investigated the 
influence of geographic information emerged from so-
cial is positive on operation improvement caching of 
multimedia files in a Content Delivery Network (CDN). 
The results of this study showed that improvement of 
the cache hits, sequel the improvement of cache policies 
regardless of social and geographic information. [15]

3. Research Methodology
The dataset used in this paper is workload data collected 
and provided by social network aggregator.

3.1 Data Description
The clickstream data that analyzed were collected over a 
15-day period (January 15 through January 30, 2013). 
The dataset consist of summaries of general profiles 
information of users in OSNs who connected their data 
content to the social aggregator and the aggregator as-
sessed user’s navigation and activation within social 
networks. The dataset summarizes requests, including 
information such as users comments, activation time, 
status updates, followers, picture uploads, friends con-
nection, IP address of the user, login ID, URL of the 
social network site. After discarding events with missing 
fields or inappropriate for this survey, there were more 
than 25,000 valid requests. According to [16] the ma-
jority of the signals used to calculate the aggregator’s
score are derived from combinations of attributes, such 
as the ratio of reactions you generate compared to the 
amount of content users share.

Table 1: Summary of clickstream data

OSNs # Users # Sessions # Requests
Facebook 18,956 39,712 114,920
Twitter 11,752 20,306 27,089

LinkedIn 949 965 1226
Instagram 17,411 41,731 113,264
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Table 2: Variations of Sample

3.2 OSN Session Characteristics
The length and the frequency in which people connect to 
OSN sites are regarded as two important factors in this 
survey. To estimate these quantities, the frequency and 
duration of sessions for each user measured.

3.3 Modeling OSN Sessions
To understand the dynamics of user login and logout 
processes from a system’s perspective, the session inter-
arrival times measured. Here, a case study for Insta-
gram also presented. For better understanding, we utilize 
a time series	t(i),i	 = 	1,2,3,…	 to denote the arrival time 
of the ith session in the trace. The time series a(i) is 
defined as t(i	 + 	1) − t(i) and it denotes the inter-
arrival time of ith and i	 + 	1th sessions, where work-
loads may belong to different users. The probability 
distribution function for the lognormal distribution is 
given by

f(x) = 1
σx√2π

e
�(���(�)��)�

���

         (1)

With parameters μ = 2.419 and σ = 1.173
The distribution was fitted to a Zipf (zeta) distribution of 
the form βx�� with parameters α = 1.465 andβ =
4.358, which is a discrete distribution commonly used 
in the modeling of rare events. This distribution implies
that workload lengths are highly variable when users 
connect to online social networks. Such high variability 
is in order with the contexts seen in web surfing.

4. User Navigation Patterns in OSNs
In this section a comprehensive perspective of user be-
havior in OSNs by characterizing the type, frequency, 
and sequence of activities users engage in is presented. 
With expansion of new analysis strategy in order to fit 
Mena users, which called the clickstream model[1], to 
identify and elaborate representative user interactions in 
OSNs based on obtained data.

4.1 User Activities in OSNs
In this study, there are 5 distinct types of activities that 
concerns. These activities grouped into the following 
categories: Search, Status updates, Photo & Video, Pro-

file, Communities, and Other. Table 3 displays the list of 
these 5 activities with the number and fraction of users 
who engaged in the corresponding activity at least once
and the number and fraction of the requests.
The statistics of user activity in Table 3 signifies inter-
esting information about middle-eastern user navigation. 
First disposition to the communities are evident both in 
terms of the number of users and the request volume. In 
fact, online users of Mena countries guided through e-
commerce sites by OSN communities. Second, there is a 
huge amount of tendency to photo and video uploads, 
because looking at the advertisements about e-
commerce web sites takes less time in comparison to 
read. So, it is natural to expect users’ disposition to pho-
tos & videos. Interestingly, [13] made very similar ob-
servations for the Hi5 social network. Moreover, Social 
awareness cause a person to be more concerned about 
his/her privacy on the Internet.[17]
Third most popular activity is related to search. As a 
result users need to search and find their friends, their 
birthdays, their online activities, and connections via 
online social networks. As [1] observed, it is a part of 
one of the most common behavior across all categories 
which is browsing, although they  have been categorized 
browsing into four categories, this study focuses on the 
relations and connections between navigation in OSNs 
and e-commerce tendency, especially brand equity and 
brand reputation, as a channel for firms to trade. Thus,
this research concerns mostly on transitions of activities 
between 5 categories discussed before.

Table 3: Enumeration of All Activities and Their Concurrencies
Category # Users (%) #Requests (%)
Search 8,525 16.9 18244 25.5

Status Update 5,496 10.9 7961 11.1

Photo & Video 16,601 32.7 18730 26.1

Communities 15,917 31.6 21617 30.2

Other 3,814 7.6 5109 7.1

Total 50353 71661

4.2 Transition from one activity to another
For understanding the user activity sequence, a first-
order Makarov chain constructed based on sequence of 
activities from all categories. Table 4 shows the tenden-
cy probability to transmit over categories to e-
commerce.
For better understanding of 5 main categories in this 
paper, X-means clustering algorithm from [18] used 
which extends the popular K-means algorithm.[19]. A 
key advantage of X-means over K-means is that the al-
gorithm not only provides the clusters, but also esti-
mates the best possible number of clusters. Therefore, 
it’s not necessary to decide a priori the number of typi-

Gender
Male                                    59.3%

         Female                                40.7%

Age

              >16                                26.1%
16 – 25                              40.4%
26 – 35                              30.6%

              35+                                 2.9%
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cal sessions. X-means algorithm finds clusters by mini-
mizing the sum of the squared distances between each 
vector and the cluster’s centroid, a vector that represents 
the averaged properties of each group. The distance be-
tween two vectors is computed by the Euclidean dis-
tance as follows:

D = �∑ (x� − y�)��
��� (2)

Where n is the size of any vector and x and y are the two 
vectors.

Table 4: Tendency to Interact Across Categories

Category Entire log (8 
days) Days 1-4 Days 5-8

Search 0.68 +0.03 -0.01
Status 0.17 -0.01 0.00

Photo & Video 0.37 +0.04 +0.03

Profile & 
Friends 0.69 0.00 +0.02

Communities 0.89 +0.06 +0.03

Other 0.12 0.00 -0.01

4.3 Transition from one category to another
Finally the sequence of user activities at the level of 
categories examined (Fig. 1). Nodes represent the transi-
tion between two categories. Edges with probability 
smaller than 0.04% were removed to reduce the figure 
complexity. It is observed that most users initiated their 
sessions from Profile & Friends, Status Updates, and 
Photos & Videos as mentioned earlier and leads to 
communities at final session’s workloads.

4.4 How interaction patterns affect content popu-
larity

When users share any data on the web, the content 
typically is not accessible for every Internet users eve-
rywhere. On the other hand, when users upload content 
on OSNs, they aimed to obtain audience, such as 
friends, acquaintances, co-workers and etc.[1]. As an 
example, the audience is explicitly tagged by the user.
For instance, video or photo content when uploaded in 
Facebook is visible on your friend’s timeline but user 
can limit the presentation only to the close friends or the 
people who was tagged in picture.

This survey analyzes the characteristics of the con-
tent popularity as an attempt to quantify the interaction 
patterns which affect the popularity of e-commerce 
communication’s embedded in OSNs.

Table 5: the Frequency of Clusters in OSNs

Request (%)
Cluster 1 41.2
Cluster 2 25.8
Cluster 3 18
Cluster 4 8.6
Cluster 5 6.4

4.5 Interactions over Physical distance
The last facet studied in this paper is geographical

aspects of social interactions which plays an indispensi-
ble role in OSN relation with OSNs. There is distance 
for generated content to be consumed in e-commerce 
relations. Suppose that OSNs original infrastructure de-
signed to deliver social content progressively, helps to 
identify the geographical aspects of social interactions 
which snarls potential opportunities for sanitation on the 
fundamental designing aspects of OSN content delivery. 
[1] The location information available in user profiles is 
in free text form. For this purpose the location of over 
20000 users identified. In total, the identified users lo-
cated in 4,297 different cities among 8 middle-east 
countries. From this purpose results show the probability 
of interaction varies as a function of the physical dis-
tance between two users. As physical distance between 
users is getting longer, their interest probability in their 
friend’s uploaded data based on longitude and latitude is 
going to be reduced.

It is evident that there is a significant correlation be-
tween friendship, and physical proximity in the OSNs
and relation to e-commerce interactions. It is also ob-
served a strong correlation between the probability of 
interaction and the probability of forming friendship 
links. This is expected as users tend to interact more 
with their friends in the social graph. This suggests that 
users in the social network tend to be geographically 
closer to each other when the interaction occurs mainly 
due to the presence of social links.

Fig. 1 Transition Probability Among categories
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5. Discussion &Conclusion
In this paper, a thorough characterization of online 

social network workloads and their relation to influence 
on e-commerce channel presented. A detailed click-
stream data of over 50000 users in middle-east countries 
in an 8-day period summarized, and the data collected 
from social network aggregator website, which after a 
single authentication enables users to connect to multi-
ple social networks such as Facebook, Instagram, twit-
ter, and LinkedIn. The statistical and distributional 
properties of most of the important variables of OSN 
sessions analyzed.

Also, this study is designed to examine the effects of 
OSNs on interactions in e-commerce and tendency to 
use this channel in middle-east countries. According to 
the results of survey, the following guidelines are of-
fered in the direction of positive growth of social net-
work influence on e-commerce interactions:
1. By increasing the number of embedded brand com-

munities in social networks
2. Using all aspects of social networks abilities to be 

more active and more highlighted communities.
3. Banks and finance institution’s attendance in online 

social networks such as Facebook, or LinkedIn, as a 
community could be very lucrative.
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