
Using Logically Hierarchical Meta Web Services to Support Accountability in
Mashup Services

Ali Khalili , Shahriar Mohammadi

IT Group - Faculty of Industrial Engineering
K. N. Toosi University of Technology, Tehran, Iran

ali@ajaxian.ir , smohammadi40@yahoo.com

Abstract

Mashups are next generation of web applications;

they integrate and remix different sources on the web
in a creative approach to provide rich and novel
experiences for users. Furthermore, mashups
introduce a new class of integration technologies for
implementing Situational Applications (i.e.
applications that come together for solving some
immediate business problems). While mashup services
provide flexibility and speed in delivering new valuable
services to consumers, the issue of accountability
associated with the mashups remains largely ignored
by the industry. Pushing mashups to enterprises
without attention to accountability problems involves
many risks. In this paper, a new model is proposed to
resolve accountability issues in mashup services. The
proposed model uses PKI (Public Key Infrastructure)
in conjunction with Logically Hierarchical Meta Web
Services to support identification and traceability of
web services in mashups and consequently provides a
trusted environment for enterprise mashups.

1. Introduction

Web 2.0 is becoming popular among people who
are interested in creating or providing more useful
services on the Internet [8]. The promise of remixing
existing online services and data into entirely new
online applications in a rapid, inexpensive manner,
often referred to as mashups, has captured the
software industry’s imagination since the release of
first major example, HousingMaps.com, in early 2005.
Since then, mashups have offered the potential to
finally make widespread software reuse a reality,
enable SOA (Service Oriented Architecture) initiatives
to achieve positive ROI, and radically drive down the
cost of application development while satisfying large
applications backlogs that plague organizations almost
everywhere [10]. Mashups establish an emerging trend
called “Situational Applications” where applications
are constructed “on the fly” for some transient need.

The core Web 2.0 principles are “simple, low-
barrier and fast” and “every user himself is the center
on internet”. For meeting these goals, mashups allow
consumers to draw upon content retrieved from
external data sources (web services, data store, and
web application) to create entirely new and innovative
services [11].

While mashup services bring flexibility and speed
in delivering new valuable services to consumers, the
legal implications of using this technology are
significant. Researchers in law conclude that the
development of mashup web services is fraught with
potential legal liabilities that require careful
consideration [16].

The issue of accountability associated with the
mashup practice remains largely ignored by the
industry. Current formal practices suggest that the
mashup developer and original content source owner
disclaim any warranties. This appears to be temporarily
acceptable since most services from Web 2.0 sites are
free to internet users. This means that as long as
consumers accept the terms and conditions, the issue of
accountability is largely avoided. Notwithstanding, as
these services mature to be used in enterprises or
involve some payment, such an approach may no
longer be tenable to all parties [2].

Accountability in mashup services includes
authentication of all the parties involved and
traceability in service composition. In this paper we
aim to solve the former by using PKI (Public Key
Infrastructure) and assigning a digital certificate to
each web service involved in mashup service; and then
by creating a “Hierarchical Meta Web Services” to
track execution of nested web services, solve the latter.
A Meta Web Service is a third-party web service that is
responsible for monitoring workflow of a mashup
service without affecting internal operations of it.

The rest of the paper is organized as following. In
section 2, we are going to present a background about
mashup services, PKI and JSON. In section 3, we
analyze accountability implications in mashup
services. In section 4, we describe our proposed model
for accountable mashup services that is based on PKI

2008 IEEE Asia-Pacific Services Computing Conference

978-0-7695-3473-2/08 $25.00 © 2008 IEEE

DOI 10.1109/APSCC.2008.55

410

2008 IEEE Asia-Pacific Services Computing Conference

978-0-7695-3473-2/08 $25.00 © 2008 IEEE

DOI 10.1109/APSCC.2008.55

410

and hierarchical Meta Web Services. Finally we
conclude in section 5 and express the future works.

2. Background

2.1. Overview of Web Mashups

The term mashup (also mash up and mash-up)
stems from pop music (notably hip-hop); it refers to
practice of producing a new song by mixing two or
more existing pieces. In the context of Internet, a
mashup is a web application that combines data from
more than one source into a single integrated tool [1].
Based on the concept of service composition in Service
Oriented Architecture (SOA), mashup provides
flexible and dynamic services with rich experience [2].

Mashups have recently emerged as a powerful
applications development platform that combines
multiple sets of data streams into a unified user
experience [13]. The ProgrammableWeb.com has been
an important resource in charting the development of
mashups. According to the ProgrammableWeb, the
number of mashups exceeds 3000, and is growing
steadily at the rate of approximately 3 mashups a day.
Most of the current mashups are ad-hoc, non-
commercial experiments, built by users as an
entertainment (Figure 1). Nevertheless, with maturing
the technology, it is predicted that mashups and
composite applications will be the dominant model
(80%) for creating composite enterprise applications
by 2010 [14]. Forrester [15] projects that the enterprise
mashup market will reach nearly $700 million by 2013
and software vendors with mashup platforms will be
ready to grab "the lion's share" of the market.

Figure 1. Different Types of Mashups

Security is a big concern in mashup services.

Because mashups bring together content from multiple
sources, they must somehow circumvent the traditional
same origin web security model to obtain third-party
data. Often web developers are forced to choose
between security and functionality [12]. There are
many proposed methods to address the security
problems of cross-domain communications in mashup

services. These proposals can be largely divided into
three groups: proposals working with unmodified
browsers; extensions to HTML requiring browser
modifications; solutions based on browser plugins [5].

Two prominent methods that work with unmodified
browsers are Subspace [12] and SMash [5]. One of the
deficiencies of Subspace is that it requires complete
trust of the component providers in the mashup
provider as their code is executed in DNS domains
controlled by the mashup provider [5]. In this paper,
we choose to use SMash because of its compatibility
and comprehensiveness in comparison to other
approaches. In addition it uses a message-passing
interaction style instead of a shared-memory style and
is appropriate for our purpose.

2.2. Public Key Infrastructure (PKI)

A Public-key infrastructure (PKI) is a system for
publishing the public-key values used in public-key
cryptography. A PKI integrates digital certificates,
public-key cryptography, and certificate authorities
into total, enterprise-wide network security architecture
[7]. In this paper we use PKI for two purposes:

1. Identifying the parties involved in mashup
service

2. Internal communications of parties involved in
mashup service.

2.3. JavaScript Object Notation (JSON)

JSON (JavaScript Object Notation) [6] is a
lightweight data-interchange format. It is easy for
humans to read and write. It is easy for machines to
parse and generate. It is based on a subset of the
JavaScript Programming Language, Standard ECMA-
262 3rd Edition - December 1999. JSON is a text
format that is completely language independent but
uses conventions that are familiar to programmers of
the C-family of languages, including C, C++, C#, Java,
JavaScript, Perl, Python, and many others. These
properties make JSON an ideal data-interchange
language. JSON is built on two structures:

• A collection of name/value pairs. In various

languages, this is realized as an object, record,
struct, dictionary, hash table, keyed list, or
associative array.

• An ordered list of values. In most languages, this
is realized as an array, vector, list, or sequence.

In this paper, we choose to use JSON format for
specifying orchestration and choreography of mashup
services because it is a lightweight format in

411411

comparison to standard xml-based formats like
WSBPEL [9] and can be evaluated quickly in client
browser.

3. Accountability in Mashup Services

The meaning of the term accountability appears to
vary considerably and is dependent upon the context.
Traditionally the topic of accountability has attracted
much interest with focus on the e-commerce
transaction. According to Kailar, accountability is “the
property whereby the association of a unique originator
with an object or action can be proved to a third party”.
The definition implies non-repudiation in an e-
commerce transaction [2]. In [3], accountability is
defined in multihop message communications that is
similar to communication in mashups environment. It
considers accountability as non-repudiation of
following cases:

• Non-repudiation of Origin
• Non-repudiation of Receipt
• Non-repudiation of Submission
• Non-repudiation of Delivery

In [2], an extensive research on the concept of

accountability and its meaning for mashup services is
performed and accountability for multiple parties is
defined, see Table 1 below.

Table 1. Accountability for Multiple Parties
Accountability in services refers to the obligation
that several persons, groups, or organizations
assume for the execution and fulfillment of a
service. This obligation includes:
• Answering, providing an explanation or

justification, for the execution of that
authority and/or fulfillment of that
responsibility;

• Full disclosure on the results of that execution
and/or fulfillment;

• Undeniable liability for those result (non-
repudiation); and

• Obtain trusted agreement of accountability
from all entities involved in the service. Who
in turn are bound to the obligations set out
above.

According to these definitions, we focus on two
aspects of accountability:

1. Authentication: Identifying all the parties
involved in a mashup service.

2. Non-Repudiation: traceability in composition
of mashup services and monitoring internal
interactions.

Furthermore, we consider security solutions for
cross-domain mashup communications that is
necessary for implementing our proposed model.

4. The Proposed Model

Our proposed model as shown in Figure 2 uses a
third-party web service called Meta Web Service
(MWS) as well as a Communication Bus for each
mashup service. Before describing these components,
we should consider the following assumptions:

• A digital certificate is assigned to each web
service involved in mashup service for
authenticating identity of it.

• Meta Web Services rely on a commonly
accepted agreement between mashup service
providers. MWS uses a secure and robust
infrastructure that is considered trustful for all
mashup services.

• Mashup services use a commonly accepted
assembly model and have a regular
communication model.

Considering these assumptions, each mashup
service that want to be accountable must add a
MWS to its communication bus.

Figure 2. The Proposed Model

4.1. Meta Web Services (MWS)

A Meta Web Service is a web service that includes
information about another web services, it has some
procedures to track actions of another web service. In
the context of mashups, a MWS is a third-party web
service that is responsible for monitoring workflow of
a mashup service without affecting internal operations
of it. Each MWS receives the following information
about a mashup service:
• Orchestration: Decomposes capability of mashup

in terms of the functionality required from other
services. An orchestration as expressed in [4],

412412

must necessarily define three aspects: (1) the
participants in the composition; (2) the control-
flow governing the order and choice between
executions of these participants (3) the data-flow
governing what is communicated between these
participants. In our proposed model we consider a
Communication Bus as expressed in [5] for
coordination of services in mashups (Figure
3).Web services are isolated from each other and
can only communicate with each other through the
mediated channels. The communication bus is a
publish/subscribe system with many to-many
channels on which messages are published and
distributed. Permission of each web service to read
and write on each channel is clearly defined in this
architecture. For example in Figure 3, web service
A can publish to Channel 1 and Channel 3 and is
subscribed to Channel 2 and Channel 3, Meta Web
Service is a read-only web service that is
subscribed to all channels.

Figure 3. Mashup Communication Bus

We use a simple JSON [6] format for specifying
orchestration of a mashup service (Table 2). This
format is similar to WS-BPEL [9] standards. In this
format, "partnerLinks" define the different parties
involved in the process, "variables" define the data
variables used by the process, "invoke" indicate
invoking some Web service’s operation, "sequence" is
used for defining a sequential execution order, and
"flow" is used for parallel execution.

Table 2. An Example for Specifying Orchestration
of Mashup Services using JSON format

• Choreography: Decomposes capability of

mashup in terms of interaction with the mashup
service. The choreography defines how to
communicate with the mashup service in order to
consume its functionality. As described in
Orchestration, we can define a simple JSON
format similar to WS-CDL [17] for specifying
choreography of a mashup service. Since it is
beyond the scope of this paper, we ignore
describing the details.

• Other Managerial Information: Includes
nonfunctional properties such as version
information, accuracy (the error rate generated by
the mashup service), financial (the cost-related and
charging-related properties of a mashup service),
owner (the person or organization to which the
mashup service belongs), etc.

4.1.1. Logically Hierarchical Meta Web Services

To support accountability in mashup services, we

need a hierarchical infrastructure for Meta Web
Services. In fact there is only one MWS provider,
however since it uses a hierarchical data model for
sharing data between various instances of itself, we can
view our model as logically hierarchical meta web
services. Each MWS have information about involved
parties in related mashup service that can be atomic
web services or mashups that have their own MWS.

413413

Meta Web Services are created in a bottom-up manner
so each MWS receives information about its sub
MWSs. We can demonstrate these relations using a
directed acyclic graph (Figure 4).

Figure 4. Bottom-Up Creation of Meta Web

Services

While registering a new MWS for a mashup service

we may encounter exceptional states that result in
creating cycle in tree (e.g. Figure 5). We can easily
prevent these situations by checking the condition of
occurring them before registration of new MWS.

Figure 5. Exceptional State in Creating New Meta

Web Service

4.2. Accountability Support

Logically Hierarchical Meta Web Services in
conjunction with PKI provide a robust infrastructure to
address accountability issues in mashup services. Each
MWS have information about internal interactions
within its related mashup and DFS (Depth First
Search) algorithm can be used to trace execution of a
mashup service (Figure 6).

Figure 6. Tracing Execution of a Mashup Service

DFS algorithm as shown in Table 3, traces
execution of a mashup service and can determine the
origin of violation if there was any problem in system.

Table 3. Traceability by Using Meta Web Services

5. Conclusion

In this paper, a new model for supporting
accountability in mashup services is proposed. The
proposed model uses PKI and Logically
Hierarchical Meta Web Services to support
identification and traceability of web services in
mashups. Each mashup services that want to be
accountable must add a MWS to its communication
bus. A MWS is a third-party web service that is
responsible for monitoring workflow of a mashup
service without affecting internal operations of it. In
this approach mashup services that are generated in
bottom-up manner can be traced top-down using
their Meta web service information.

Solving accountability issues in mashup services
opens new doors for enabling enterprise mashups
and lubricate rising situational applications. We
envisage further evaluation of our model by
implementing several instances of MWS in a real
world mashup project and testing usability of our
model.

414414

6. References

[1] Mashup (web application hybrid),
http://en.wikipedia.org/wiki/Mashup_(web_application_hybr
id)

[2] J. Zou and C.J. Pavlovski, “Towards accountable
enterprise mashup services”, IEEE International Conference
on e-Business Engineering (ICEBE 2007), 24-26 Oct. 2007,
pp. 205-212

[3] S. Bhattacharya, R. Paul, “Accountability issues in
multihop message communication”, Proceedings of IEEE
Symposium on Application-Specific Systems and Software
Engineering and Technology, March 1999, pp.74–81.

[4] D. Fensel, H. Lausen, J. de Bruijn, M.Stollberg, D.
Roman, A. Polleres ,and J. Domingue, Enabling Semantic
Web Services -The Web Service Modeling Ontology, Springer
Berlin Heidelberg, Germany, 2007.

[5] F. De Keukelaere, S. Bhola, M. Steiner, S. Chari,and S.
Yoshihama, “SMash: Secure Component Model for Cross-
Domain Mashups on Unmodified Browsers”, International
World Wide Web Conference Committee (IW3C2), 21–25
April 2008

[6] JSON (JavaScript Object Notation), http://www.json.org/

[7] W. Kou, Payment technologies for E-commerce,
Springer-Verlag , New York, 2003

[8] Y. Nakano, Y. Yamato, M. Takemoto,and H. Sunaga,
“Method of creating web services from web applications”,
IEEE International Conference on Service-Oriented
Computing and Applications(SOCA'07), 2007

[9] Web Services Business Process Execution Language
Version 2.0, 11 April 2007, http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[10] The 10 top challenges facing enterprise mashups,
October 16th, 2007,
http://blogs.zdnet.com/Hinchcliffe/?p=141

[11] X. Liu,Y. Hui, W. Sun,and H. Liang, “Towards Service
Composition Based on Mashup”, IEEE Congress on
Services, July 2007, pp. 332-339

[12] C. Jackson, and H. Wang, “Subspace: Secure cross-
domain communication for web mashups”, 16th International
Conference on the World-Wide Web, 2007, pp. 5-10

[13] N. Kulathuramaiyer, “Mashups: Emerging Application
Development Paradigm for a Digital Journal”, Journal of
Universal Computer Science, 2007, Vol. 13(4), pp. 531–542

[14] Gartner's top 10 strategic technologies for 2008, October
09, 2007,
http://www.computerworld.com/action/article.do?command=
viewArticleBasic&articleId=9041738

[15] G. O. Young, “The Mashup Opportunity-How To Make
Money In The Evolving Mashup Ecosystem”, May 6, 2008,
http://www.forrester.com/Research/Document/Excerpt/0,721
1,44213,00.html

[16] R.S. Gerber, “Mixing It up on the Web: Legal Issues
Arising from Internet Mashup”, Intellectual Property &
Technology Law Journal, Apsen Publishers, Aug. 2006, Vol.
18(8)

[17] Web Services Choreography Description Language
Version 1.0, 17 December 2004,
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/

415415

