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Abstract

Viscous flow past two circular cylinders of different diameters is simulated by using a finite element method. The diameter ratio between the

small cylinder and the large one is 0.25. The Reynolds number based on the diameter of the cylinders is 500 for the large cylinder and 125 for

the small cylinder. The gap between the small cylinder and the large cylinder ranges from 0.05 to 1.0 times the diameter of the large cylinder.

The position angle of the small cylinder relative to the flow direction ranges from 0 to p. The effects of the gap ratio between the two cylinders and

the position angle of the small cylinder on drag and lift coefficients, pressure distributions around the cylinders, the vortex shedding frequencies

from the two cylinders and flow characteristics are investigated. The magnitudes and frequencies of the fluctuating forces acting on the two

cylinders are compared with those on a single cylinder of an equivalent diameter.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Flow around two circular cylinders of different diameters

is relevant to flow around two pipelines in offshore oil and

gas engineering. Due to certain technical requirements and

economical considerations, a piggyback pipeline is some-

times laid together with the main pipeline. The piggyback

pipeline could be a control umbilical used to control subsea

wells from the platform. It is often of a different diameter

from the main pipeline. Laying the two pipelines together

reduces installation costs. Strapping at a certain intervals

along the pipeline is preferable for lay and enables the lines

to be stabilized as a single line on the seabed. It is expected

that the existence of the piggyback pipeline will have some

influences on the hydrodynamic forces on the main pipeline

and thus, the way to design the pipeline with a piggyback

line. Due to the lack of knowledge on such effects in the

offshore oil and gas industry, the current design practice of

pipelines simplifies the two pipelines as a single pipe of an

equivalent diameter (equals to the sum of the two diameters
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and the gap between the two cylinders). The validity of the

equivalent diameter design concept has not been well

investigated.

Flow past two cylinders, in a tandem or a side-by-side

arrangement represents an important and remarkably

complex flow configuration. A variety of flow patterns,

characterized by the behavior of the wake region, may be

discerned as the arrangement of the two circular cylinders is

changed. Zdravkovich [1,2] showed that when more than one

body was placed in a fluid flow, the resulting forces and

vortex shedding pattern were completely different from those

on a single body at the same Reynolds number. Most of the

recent studies on this topic were concerned with flow past

two cylinders of identical diameters. The results with a side-

by-side configuration of two cylinders of the same diameter

by Bearman and Wadcock [3], Williamson [4] and Kim and

Durbin [5] showed that only one wake was formed when the

distance between the centers of cylinders (L) is below about

2.2 times of the cylinder diameter (D). Meneghini et al. [6]

studied the flow past two circular cylinders of the same

diameter in tandem and side-by-side arrangements for

Reynolds number ReZ200. For the tandem arrangement,

they observed a negative drag on the downstream cylinder

and that the vortices were shed only from the downstream

cylinder if the gap between the centers of the two cylinders

is less than 3D. A repulsive force between the two cylinders
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Fig. 1. Definition figure.
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was observed by Meneghini et al. [6] when the gap is less

than 2D for the side-by-side arrangement. Mittal et al. [7]

studied the case of two cylinders in tandem and staggered

arrangements. The main result observed in the study of

Mittal et al. [7] was that the drag on the downstream cylinder

increases when it is placed at a staggered arrangement.

Fluid forces on a large circular cylinder can be reduced by

a proper placement of a relatively small circular cylinder near

the large cylinder. Strykowski and Sreenivasan [8] investi-

gated the suppression of the vortex shedding from a circular

cylinder by introducing a small circular cylinder at low

Reynolds numbers. Sakamoto et al. [9] and Sakamoto and

Haniu [10] studied the suppression of the fluid force acting on

a square cylinder and a circular cylinder, respectively, at high

Reynolds number in subcritical regime. Dalton et al. [11] also

simulated the suppression of lift force on a circular cylinder

by a small cylinder numerically. The above researchers

classified the method for suppressing fluid forces into two

categories: one is due to the control of the boundary layer and

the other is due to the control of the shear layers separated

from the cylinder surface.

In this study, flow past two circular cylinders of different

diameters is investigated numerically. It should be noted that

the small cylinder discussed in this study represent a practical

pipeline rather than a fluid flow control device. The aim of

this study is to investigate the effects of the arrangement of

the two cylinders on the vortex shedding flow behind the

two-cylinder system. The Navier-Stokes equations are solved

using a finite element method. The diameter ratio between the

small cylinder and the large cylinder is 0.25. The Reynolds

number based on the diameter of the cylinders is 500 for the

large cylinder and 125 for the small cylinder. The gap

between the small cylinder and the large cylinder ranges from

0.05 to 1.0 times the diameter of the large cylinder. The

position angle of the small cylinder relative to the flow

direction ranges from 0 to p. The effects of the gap ratio

between the two cylinders and the position angle of the small

cylinder on drag and lift coefficients, pressure distributions

around the cylinders, the vortex shedding frequencies from

the two cylinders and flow characteristics are investigated.

The magnitudes and frequencies of the forces acting on the

two cylinders are compared with those on a single cylinder of

the equivalent diameter.

It is understood that the flow investigated in this study is

three-dimensional since the Reynolds number base on the

large cylinder is greater than the critical Reynolds number of

200 [12,13]. However, the two-dimensional simulations

carried out in the present study suit the major purposes of

the study. The major aims of this study are to quantify the

effects of the piggyback pipeline on the main pipeline and

validate the equivalent diameter approach. Since, most of the

numerical results on the large cylinder and the two-cylinder

system are compared with their single cylinder counterparts, it

is expected the three-dimensional effects will be largely

canceled out in the comparison process. The flow is

considered to be perpendicular to the axes of the cylinders.
It is recognized that the Reynolds number investigated in

the present study is relatively small in comparison with

typical values of the Reynolds number for prototype pipelines.

This is based on following considerations. First of all, small

values of Reynolds number allow a direct solution of the

Navier-Stokes equations being carried out with affordable

computational costs. The advantage of the direct solution of

the Navier-Stokes equations is that numerical results are not

contaminated by potential errors introduced by a turbulence

model. The use of a fine computational mesh will

substantially reduce the errors introduced by inadequate grid

resolution in the direct solution of the Navier-Stokes

equations, especially for cases of small Reynolds number

flows. Secondly, the inherent three-dimensionality for this

particular flow is relatively weak at small values of Reynolds

number. Finally, it is well understood that the vortex shedding

characteristics from a circular cylinder are less dependent on

Reynolds number within the subcritical Reynolds number

regime. The Reynolds number investigated in the present

study is within the subcritical regime. In addition, it is

expected that the trends of the effects of the small cylinder on

the flow around the large cylinder are independent on the

values of Reynolds number in the subcritical regime.
2. Governing equations and numerical method

The two cylinders considered in this study are shown in

Fig. 1. The small cylinder represents the piggyback pipeline

and the large cylinder represents the main pipeline. The

position of the small cylinder can be uniquely determined by

the gap between the two cylinders, the diameters of

the cylinders and the angle a as shown in Fig. 1. The flow is

in the positive direction of the x-axis. q is an angle in the

counterclockwise direction, starting from the positive direction

of the x-axis, as shown in Fig. 1.

The two-dimensional Navier-Stokes equations together with

the continuity equation are solved using a three-step finite

element method. The three-step finite element method

employed in this study shares enough similarities with the

method by Jiang and Kawahara [14] and will not be detailed

here. It has been demonstrated elsewhere [14] that the temporal

integration used in the present study is of third-order accuracy.



Fig. 3. Detail computational mesh near the cylinder.
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The drag and lift force per unit length on the cylinder are

calculated as

Fd Z

ð2p

0

ðKp cos qK2nu sin qÞRdq (1)

Fl Z

ð2p

0

ðKp sin qdq C2nu cos qÞRdq (2)

where Fd and Fl are the total drag and lift forces, respectively,

R (ZD/2) is the cylinder radius, u is the vorticity defined as

uZ(vv/vxKvu/vy)/2 and q is the position angle measured from

the positive direction of the horizontal axis of the cylinder and

positive anticlockwise as shown in Fig. 1. The first term at the

right hand side of either Eq. (1) or Eq. (2) represents the

contribution of the pressure, while the second term represents

the contribution of the shear stress. The drag and lift are then

normalized by rU2/2 to get the drag and lift coefficients Cd and

Cl as

Cd Z
Fd

rU2D=2
; Cl Z

Fl

rU2D=2
(3)

where U is the free-stream velocity, D is a characteristic

dimension of the cylinder.
3. Validation of the numerical model

To validate the numerical model, uniform flow past a

singular cylinder for the Reynolds number ranging from 10 to

1000 is simulated. A rectangular flow field of 28D!16D is

divided into 24,458 unstructured finite elements. The total

nodal point number is 13,609. The cylinder is located at the

mid-height of the computational domain and the distance

between the cylinder center and the inlet is 8D. A typical

computational mesh is shown in Fig. 2 and the local mesh near

the cylinder surface is shown in Fig. 3. A total of 160 nodal

points are placed on the circumference of the cylinder. The

structured four-node quadrilateral elements are used near the

cylinder surface. In the rest of the calculation domain, three-

node triangular elements are used. The minimum mesh size in

the radial direction near the cylinder is about 0.01D. The non-

dimensional time step of 0.0025 is used in all the computations.
Fig. 2. Computational mesh for flow past a single cylinder.
At the inflow boundary, the velocity components are

specified and pressure is determined from the momentum

equations. Symmetric boundary conditions are prescribed on

the two lateral boundaries. On the non-slip cylinder surface,

zero velocity components are specified and the pressure is

obtained by applying the momentum equations in the

direction normal to the boundaries. On the outflow boundary,

zero normal derivatives of the velocity components and

pressure are specified [15,16]. To promote the onset of vortex

shedding, an artificial perturbation, corresponding to a

clockwise rotation of the cylinder followed by a counter-

clockwise rotation, is introduced for a short time at the early

stage of the simulation [17].

Fig. 4 shows the time history of the computed drag and lift

coefficients for ReZ200. The vortex shedding can be observed

from the time history of the fluctuating force coefficients.

Meneghini et al. [6] summarized the results of the Strouhal

number for ReZ200 from different numerical model and

experiments. The Strouhal number predicted by the present

model for ReZ200 is 0.196, which is identical to the numerical

result by Meneghini et al. [6]. In Fig. 5, the computed time-

averaged drag coefficients for Reynolds number from 10 to 100

are compared with the experimental data by Tritton [18] and

the finite difference results by Lei et al. [19]. The difference

between the two numerical results in Fig. 5 is small, and both

sets of the numerical results agree well with the experimental
Fig. 4. Time history of the force coefficients for ReZ200 (singular cylinder).



Fig. 5. Comparison of the mean drag coefficient.

Fig. 7. The finite elements near the two cylinders for G/DZ0.1 and aZp/4.
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data. Fig. 6 shows the comparison of the Strhoual number

variations with the Reynolds number for Re!1000. The two

solid lines in the same figure are the envelope lines for the

experimental data measured by Roshko [20] (reproduced from

Ref. [17]). The Strouhal number is defined in terms of the

cylinder diameter (D), the free-stream velocity (U), and the

frequency (f) of the oscillation of the lift coefficient as

St Z fD=U (4)

It is seen that the present results and the results by Lei et al.

[19] agree well with the experimental data for Reynolds

number Re!200. For Reynolds number ReO200, the Strouhal

numbers predicted in this study and those by Lei et al. [19] are

slightly higher than the experimental data. This was

demonstrated to be due to the three-dimensional effect for

this particular flow since both the present study and the study

by Lei et al. are two-dimensional simulations [19].
4. Flow past two circular cylinders of different diameters

The numerical model is then applied to study the flow past

two circular cylinders as shown in Fig. 1. The effects of the gap

between the two cylinders and the angular position of the small

cylinder on the vortex shedding are studied. The ratio of the

small cylinder diameter (d) to the large cylinder diameter (D) is

d/DZ0.25. The Reynolds numbers based on the large cylinder

and that on the small cylinder are 500 and 125, respectively.
Fig. 6. Comparison of the Strouhal number.
Simulations are carried out for the gap ratio G/D ranging from

0.05 to 1.0 and the position angle a ranging from 0 to p. In all

computations, a rectangular computational domain is used. The

large cylinder is located at 8D from the inflow boundary. The

distance between the large cylinder and the outgoing boundary

is 20D. The two lateral boundaries are located at 8D away from

the large cylinder.

Fig. 7 shows a typical finite element mesh near the cylinders

for G/DZ0.1 and aZp/4. The structured four-node quad-

rilateral elements are employed near the surfaces of both

cylinders. The rest of the computation domain is discretized

using three-node triangular elements. The surfaces of the large

and small cylinders are discretized using 160 and 80 nodal

points, respectively. The total nodal point number is 14,104

and the total element number is 26,490 for the case of G/DZ
0.1 and aZp/4. In the other cases, the nodal point number is

around 14,000 to 16,000. The mesh characteristics near the

cylinders for other cases investigated in this study are very

similar to the case shown in Fig. 7. In all calculations, the non-

dimensional computational time (Ut/D) step is set to 0.0025.

The simulations are carried out up to the non-dimensional time

of Ut/DZ200. In all of the cases studied, regular vortex

shedding is observed for Ut/DO50. The analyses carried out

hereafter are based on the results for Ut/DO50.
4.1. Force coefficients
4.1.1. Force coefficients on the large cylinder

Fig. 8 shows the time-averaged drag and lift coefficients on

the large cylinder. For the purpose of comparison, the force

coefficients on a single cylinder (G/DZN) are also plotted in

Fig. 8. It can be seen from Fig. 8 that the effect of the small

cylinder on the mean force coefficients is more significant for

the smaller gap ratios (G/DZ0.05 and 0.1) and near side-by-

side locations of the small cylinder (around aZ0.5p).

Specifically, the mean drag on the large cylinder is increased

significantly for the smaller gap ratios (G/DZ0.05 and 0.1) and

the near side-by-side locations of the small cylinder (around

aZ0.5p) (Fig. 8(a)). The maximum increase in the mean drag

coefficient on the large cylinder is about 65% at G/DZ0.05

and aZ0.5p. The level of the mean drag decreases at around



Fig. 8. Time averaged force coefficients on the large cylinder.
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aZ0.5p as the gap ratio G/D increases. It is interesting to

observe that the mean drag coefficient on the large cylinder is

generally smaller than its single cylinder counterpart (G/DZ
N) for the larger gap ratios (G/DZ0.2, 0.4 and 1.0) except for

the case of a around 0.5p. In addition, the mean drag

coefficient on the large cylinder decreases when the small

cylinder is either behind (0!a!0.25p) or in front of (0.75p!
a!p) the large cylinder regardless of the gap ratio (G/D).

Sakamoto et al. [9] found that the reduction of the mean drag

on the large cylinder as the small cylinder is located in the front

edge of the large cylinder is caused by the displacement of the

separation point along the upper surface of the large cylinder.

This is also a part of the reasons for considerable drag reduction

observed in the present study. It can be seen from Fig. 11(a)

that the separation points on both top and bottom sides of the

large cylinder moved further downstream for the case of aZ0.

Sakamoto et al. [9] also found that the reduction of the mean

drag on the large cylinder as the small cylinder is located at the

rear edge of the large cylinder is due to the interference of

the small cylinder to the interactions of the shear layers from

the top and bottom edges of the large cylinder. It can be seen

from Fig. 11(a) that the effect of the small cylinder interference

is to increase the base pressure on the large cylinder. The

observed effects of the small cylinder on the mean drag

coefficient of the large cylinder may be better explained by
Fig. 9. Time averaged force coeffi
examining the pressure distribution around the large cylinder in

details. This will be carried out in Section 4.2.

The effects of the small cylinder on the mean lift coefficient

of the large cylinder are more or the less similar to those

observed for the mean drag coefficient (Fig. 8(b)). In general,

the existence of the small cylinder causes a negative mean lift

when the small cylinder is located near the top side of the large

cylinder (around aZ0.5p). The mean lift can be positive when

the small cylinder is located near either the upstream or

downstream parts of the large cylinder, depending on the gap

ratio between the large cylinder and the small cylinder. The

mean lift is zero when the small cylinder is placed either

directly in front of (aZp) or directly behind (aZ0?) the large

cylinder, as expected. The effect of the small cylinder is more

significant for smaller gap ratios as in the case for the mean

drag.
4.1.2. Force coefficients on the small cylinder

Fig. 9 shows the mean drag and lift coefficients on the small

cylinder. It can be seen from Fig. 9(a) that the mean drag on the

small cylinder is relatively independent of the range of the gap

ratios examined. However, the mean drag on the small cylinder

is indeed affected by the angular location of the small

cylinder. The mean drag coefficient is larger than its single

cylinder counterpart (G/DZN) when the small cylinder is
cients on the small cylinder.



Fig. 10. Normalized total mean force coefficients on the two-cylinder system.
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located at around the top side of the large cylinder (0.3p!a!
0.75p). The mean drag coefficient on the small cylinder is

smaller than its single cylinder counterpart when the small

cylinder is placed outside this area. The mean drag coefficient

on the small cylinder decreases as it is moved into the wake of

the large cylinder.

It can be seen from Fig. 9(b) that the mean lift on the small

cylinder is dependent on both the gap ratio and the angular

location of the small cylinder when the small cylinder is away

from the wake region of the large cylinder (aO0.3p). It can be

observed from Fig. 9(b) that the smaller the gap, the larger the

mean lift coefficient increases. The mean lift on the small

cylinder is positive upward when the small cylinder is outside

of the wake region of the large cylinder. The maximum mean

lift takes places at aZ0.75p and G/DZ0.05.
4.1.3. Total force coefficients on the two-cylinder system

Total forces acting on the two-cylinder system are of great

importance to pipeline designs. Due to the lack of knowledge

on this topic, the current design practice of pipelines simplifies

the two cylinders as a single pipe of an equivalent diameter

(DeZDCdCG) and then uses the force coefficients derived

for a single pipeline to calculate total forces. There are
Fig. 11. Time averaged pressure distribution along the perimeter of large cylinder,

isolated cylinder for ReZ500.
concerns that such a design concept may not be representative

of the real situation.

To examine the validity of the equivalent diameter concept

in terms of hydrodynamic forces, the total mean force

coefficients (based on the equivalent diameter) acting on the

two cylinders are normalized using the corresponding mean

drag coefficient acting on a cylinder of an equivalent diameter

and are plotted in Fig. 10. Cde is the mean drag coefficient on a

single cylinder of the equivalent diameter in Fig. 10. It can be

seen from Fig. 10(a) that the total mean drag coefficient on the

cylinders is generally smaller than its counterpart on an

equivalent cylinder for most of the gap ratios and angular

locations of the small cylinder except for very small gap ratios,

i.e. G/DZ0.05 and G/DZ0.1, where total mean drag

coefficient is greater than that on the equivalent cylinder for

roughly 0.25p!a!0.75p. It seems to be true that the smaller

the gap ratio, the larger total mean drag coefficient on the two

cylinders is. At the minimum gap ratio examined (G/DZ0.05),

the total mean drag coefficient could be 1.5 times as large as

that on the equivalent cylinder when aZ0.5p. For aZ0.5p,

the total mean lift force coefficient on the two cylinders is

non-zero for smaller gap ratios G/DZ0.05 and 0.1. The mean

lift could be downward or upward depending on the location of

the small cylinder. For G/DZ0.2, 0.4 and 1.0, the total mean
aZ0; , aZ0.25p; , aZ0.5p; , aZ0.75p; aZp; - - -,



Fig. 12. Time averaged pressure distribution along the perimeter of small cylinder, aZ0; , aZ0.25p; , aZ0.5p; , aZ0.75p; aZp; - - -,

isolated cylinder for ReZ500.
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lift is very small and is independent of the location of the small

cylinder.

4.2. Pressure distribution

Fig. 11 shows the time averaged pressure coefficient along

the perimeter of the large cylinder with the small cylinder

located at different positions at two typical gap ratios

investigated. For the purpose of the comparison, distribution

of time averaged pressure coefficient along an isolated circular

cylinder at the same Reynolds number as the one based on the

large cylinder diameter is also included in the figure. The

pressure coefficient Cp is defined as

Cp Z
2ðpKp0Þ

rU2
(5)

where p0 is the pressure at a faraway location upstream the

cylinders.

Fig. 11(a) shows the mean pressure coefficient distribution

along the perimeter of the large cylinder at G/DZ0.05. It can

be clearly seen from Fig. 11(a) that the existence of the small

cylinder affects the mean pressure distribution on the large

cylinder. The effect of the small cylinder is significant when
Fig. 13. Time histories of the force coeffi
it is located at around side-by-side locations (aZ0.25p, 0.5p

and 0.75p) but less at other two locations. When the small

cylinder is located directly behind the large cylinder (aZ0),

it has little effect on the pressure distribution along the

upstream part of the large cylinder. However, the mean

pressure along the downstream part of the large cylinder

increases. The presence of the small cylinder at the trailing

edge of the large cylinder prevents the interaction of the

vortices across the centerline of the wake and thus, affects

the drag and lift on the large cylinder. When the small

cylinder is located directly in front of the large cylinder

(aZp), it has little effect on the pressure distribution along

the downstream part of the large cylinder and causes a slight

pressure decrease along the upstream of part of the cylinder.

When the small cylinder is moved towards upstream side of

the large cylinder from the wake side of the cylinder (aZ0),

the mean pressure distribution on the large cylinder becomes

asymmetric and the pressure coefficient on the downstream

side of the large cylinder decreases. The asymmetry and

reduction in the wake pressure reach their extremes at

aZ0.5p. It is believed that these are the factors responsible

for the large values of drag and lift observed at G/DZ0.05

and aZ0.5p in Fig. 8.
cients for G/DZ0.05 and aZ0.5p.
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It can be seen from Fig. 11(b) that the effects of the small

cylinder on the mean pressure distribution along the large

cylinder become weaker as the gap ratio G/D increases,

although the trends are very similar for the two gap ratios. This

indicates that the interaction between the small cylinder and the

large cylinder is rather weak at this gap ratio.

Fig. 12 shows the time averaged pressure coefficients along

the perimeter of the small cylinder. It can be seen that the

pressure distribution on the small cylinder is strongly affected

by the location of the small cylinder and relatively less

dependent on the gap ratio. This is mainly because that the

approaching flow conditions for the small cylinder are very

different as it is located at different relative positions to the

large cylinder. For example, at aZ0, the pressure coefficient

on the small cylinder is almost a negative constant because
Fig. 14. Instantaneous vorticity contours behind t
the whole cylinder is immersed in the wake of the large

cylinder where the pressure is very small. It is also seen that the

pressure distributions are symmetric when the small cylinder is

located on the symmetric line at aZ0 and aZp. For other

cases, the pressure distribution is no symmetric. The stagnation

point on the small cylinder shifts to the upper side of the

cylinder for aZp/4, and to the lower side of the cylinder for

aZ3p/4 and p/2. This is the reason for the negative mean lift at

aZp/4 and a positive one at aZ3p/4 and p/2 as shown in

Fig. 9(b).

4.3. Characteristics of vortex shedding from the two cylinders

It has been demonstrated in the Sections 4.1 and 4.2 that the

presence of the small cylinder in the vicinity of the large
he two cylinders for G/DZ0.05 and aZp/2.



Fig. 15. Time history of the force coefficients for G/DZ0.1 and aZ0.5p.
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cylinder induces significant variations of the mean drag, mean

lift and the mean pressure distribution on the large cylinder. It

is believed that these variations are the direct results of the

interactions of vortex shedding from both cylinders. Therefore,

the understanding of the vortex shedding characteristics from

the two cylinders is of fundamental interests to both

practitioners and scientists.

4.3.1. Shedding modes

It is expected that shedding of vortices from the cylinders

has different modes, depending mainly on the gap between the

two cylinders (G/D). Generally speaking, there will be two

shedding processes from the small and large cylinders

separately and the interactions between the shedding processes

will be weak when the gap between the two cylinders is large.

The shedding frequency from the small cylinder will be

roughly about four times of that from the large cylinder as the

diameter of the large cylinder is four times of that of the small

cylinder. When the gap ratio is small enough, it is possible that

two separate shedding processes will merge and the two

cylinders behave as a single object as far as shedding from

them is concerned. Strong shedding interactions are expected at

intermediate gap ratios.

Although the level of the interactions between the two

shedding processes may be dependent on the angular location

of the small cylinder, it is found that the above-mentioned

shedding modes exist for the position angle of the smaller

cylinder a form 0.125p and 0.875p. Therefore, the numerical

results for aZp/2 will be used to facilitate the discussions in

this section.

Fig. 13 shows the time history of the force coefficients on

the large and small cylinders for the case of G/DZ0.05 and

aZ0.5p, where Cdl and Cll are the drag and lift coefficients

on the large cylinder and Cds and Cls are the drag and lift

coefficients on the small cylinder correspondingly. It can be

seen from Fig. 13 that both drag and lift coefficients on the

large and small cylinders oscillate at regular frequencies

where the frequencies of the drag are about two times of

those of the lift correspondingly. This is one of the typical
characteristics of the vortex shedding from an isolated

circular cylinder. The frequencies of the drag and lift on

both cylinders are approximately equal to the shedding

frequency from a single cylinder of an equivalent diameter

(DCdCG). This suggests that the flow around the two

cylinders is similar to the flow around a single cylinder when

the gap ratio is 0.05 and aZ0.5p. Fig. 14 shows

instantaneous vorticity contours behind the two cylinders

from dimensionless time Ut/DZ190–195 for the same case.

Regular vortex shedding behind the two cylinders can be

clearly observed from Fig. 14. It is seen that the gap plays

little role in the shedding process. The strength of the shear

layer from the lower edge of the small cylinder is very weak

and is dominated by the shedding from the outer sides of the

two cylinders. This is consistent with what was observed

from the time histories of the drag and lift in Fig. 13. The

vortex shedding behavior from the small cylinder can be

examined by the small time increment during Ut/DZ190 and

Ut/DZ191 in Fig. 14. Regular vortex shedding from the

small cylinder would have been observed at the smaller time

interval if it existed. It can be seen from Fig. 14 that there

are no shedding of vortices from the lower edge of the small

cylinder and the upper tip of the large cylinder. It is quite

obvious that the vortices shed from the bottom edge of the

large cylinder interact with those shed from the top edge of

the small cylinder, forming a single row of wake. There is

only one wake from the two cylinders. It is referred to as

single-wake shedding mode.

Fig. 15 shows the time history of the force coefficients on

the large and small cylinders for the case of G/DZ0.1 and aZ
0.5p. The drag and lift coefficients on the large cylinder

oscillate in a similar way to those obtained as in the case of G/

DZ0.05. An interesting phenomenon is found at this gap ratio

(G/DZ0.1). The drag coefficient on the small cylinder

oscillates at a low frequency while the lift coefficient oscillates

at a much higher frequency. The time history of the lift

coefficient at this gap ratio (G/DZ0.1) on the small cylinder is

of the typical characteristics of a superposed process of the

different frequencies. For this particular case, it seems that



Fig. 16. Instantaneous vorticity contours behind the two cylinders for G/DZ0.1 and aZp/2.

Fig. 17. Time history of the force coefficients for G/DZ0.3 and aZ0.5p.
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Fig. 18. Instantaneous vorticity contours behind the two cylinders for G/DZ0.3 and aZp/2.
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the low frequency component predominates. It can be clearly

seen that the high frequency component is superposed on the

low frequency component. The low frequency component

seems to have a frequency close to the frequency of vortex

shedding from a circular cylinder of an equivalent diameter.

The high frequency component has a frequency corresponding

to the frequency of vortex shedding from a circular cylinder of

a diameter around that of the small cylinder. It is likely that

shedding from the small cylinder co-exists with the single-

wake shedding mode at this gap ratio but the shedding from

the small cylinder is rather weak. Fig. 16 shows instantaneous

vorticity contours behind the two cylinders for roughly

one vortex shedding period. In addition to the regular

vortex shedding behind the two cylinders as seen for

the case of G/DZ0.05, the changes in the wake structure

behind the small cylinder are more obvious than the case with
G/DZ0.05. The non-dimensional period of the regular vortex

shedding from the small cylinder would be around one if it

does exist. It can be seen from Fig. 16((a)–(f)) that although no

obvious regular shedding of vortices from the small cylinder

exists, a vortex is shed regularly from the gap between two

cylinders at a non-dimensional period of around 1.0. It is

believed that the shedding of the vortices from the gap is due

to the interactions of the shear layers from the bottom edge of

the small cylinder and the top edge of the large cylinder and is

responsible for the high frequency lift on the small cylinder as

shown in Fig. 15. It is not difficult to see that the vortex

shedding is transiting from the single-wake mode to the two

shedding mode at this gap ratio (G/DZ0.1).

Fig. 17 shows the time history of the force coefficients on

the large and small cylinders for the case of G/DZ0.3 and

aZ0.5p. It can be seen from Fig. 17 that although the drag



Fig. 19. Critical gap ratio below which the single-wake shedding mode exists.
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and lift coefficients on the large cylinder still oscillate mainly

at the low frequency, there are clearly high frequency

components superposed on the low frequency drag and lift.

It is obvious that the low frequency corresponds to the

frequency of the vortex shedding from the large cylinder and

the high frequency corresponds to the shedding frequency

from the small cylinder. This becomes more obvious if the

drag and lift on the small cylinder are examined (Fig. 17).

The lift on the small cylinder clearly oscillates at a frequency

corresponding to the shedding frequency from the small

cylinder and the high frequency component on the drag

becomes stronger. This suggests that there exist two vortex

shedding processes behind the two cylinders, i.e. one from

the large cylinder and the other from the small cylinder. This

is further confirmed by examining the vorticity contours

behind the cylinders as shown in Fig. 18. It is clearly seen in

Fig. 18 that two shedding processes exist behind the two

cylinders and the two shedding processes interact with each

other. This mode is referred to as interaction shedding mode.

As the gap ratio further increases, it is observed from the

numerical results that the interactions between the two
Fig. 20. Power spectra of the lift forces on the large c
shedding processes become weaker and the shedding behind

the two cylinders become relatively independent. This is called

the two-wake mode. Due to the page limit of the paper, these

figures are not presented here.

The three vortex shedding modes discussed above exist

for the position angle of the smaller cylinder a form 0.125p

and 0.875p. If the two cylinders are in near tandem

arrangement, the flow pattern around the downstream

cylinder is affected by the shedding from the upstream

cylinder for the gap G/D investigated in this study. However,

the single-wake mode exits for small gaps regardless of

angular location of the small cylinder. The critical gap ratio

below which the shedding is in the single-wake shedding

mode is dependent on the angular location of the small

cylinder. Fig.19 shows the critical ratio for different angular

locations of the small cylinder. It can be seen that the critical

gap ratio is very small and almost a constant for 0.125p!
a!0.625p. The critical gap ratio increases sharply when the

angular location is outside this range.
4.3.2. Power spectra of the fluctuating lift force

Fourier analyses of the lift coefficients on the cylinders are

carried out for all the gap ratios and angular locations. Fig. 20

shows the power spectra of the fluctuating lift on the large

cylinder for aZ0.5p and different values of G/D. The spectra

of the lift on the large cylinder have one dominant sharp peak

frequency for large and small values of gap ratio G/D. For

small values of G/D, since there is only one wake behind the

cylinders, the power spectra have only one peak frequency.

This confirms the single-wake shedding mode at small gap

ratios. For large values of G/D, since there are two shedding

processes behind the two cylinders and the interaction between

the shedding from the large cylinder and the shedding from the

small cylinder is weak, the lift is dominated by the shedding
ylinder for aZ0.5p and different values of G/D.



Fig. 21. Power spectrum of the lift forces on the small cylinder for aZ0.5p and different G/D.
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from the large cylinder and only one dominant sharp peak is

detected in the power spectrum. For the medium gap ratios

the spectra are broad banded because of the interaction of the

wakes behind the two cylinders.

Fig. 21 shows the power spectra of the lift on the small

cylinder for aZ0.5p and different values of G/D. It is seen that

for G/DZ0.1, the power spectra has multiple peak frequencies

and the power at these peak frequencies is of similar order of

magnitudes. This confirms the previous finding that the vortex

shedding is in the transitional mode at this gap ratio. As the gap
Fig. 22. Power spectrum of the total lift f
ratio increases to G/DZ0.2 and 0.3, the multiple peak

frequency is still a dominant feature of the power spectra.

This indicates strong interactions between the two shedding

processes. The fundamental frequency becomes more domi-

nant as the gap ratio further increases. This indicates the

interaction between the two shedding processes become

weaker as the gap ratio becomes larger.

Fig. 22 shows the power spectra of the total lift on two

cylinders for aZ0.5p and different values of G/D. The

normalized frequency is based on the large cylinder diameter
orces for aZ0.5p and different G/D.



Fig. 23. Strouhal number.
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for the purpose of comparison. It can be seen that the power

spectra of the total lift are very similar to those of the large

cylinder. This is because the force on the large cylinder

dominates the total force.
Fig. 24. Normalized Strouhal number, G/DZ0.05; , G/DZ0.1; , G/DZ0.2; ,

G/DZ0.5; , G/DZ1.0; , G/DZN.
4.3.3. Shedding frequency

The Strouhal number of the lift force on the cylinders is

studied. The definitions of the Strouhal number for the small,

large and the equivalent cylinders are based on their

independent diameters.

Fig. 23 shows the Strouhal numbers of the lift coefficients

for G/DZ0.05, 0.1, 0.2 and 0.5. For G/DZ0.05 and 0.1, it is

found that the lift force on the large cylinder and total lift force

almost fluctuate at the same dimensional frequency. This is

because the shedding frequency of the total lift is completely

dominated by the frequency of the lift on the large cylinder,

regardless of the angular location and the gap ratio. For G/DZ
0.05 and 0.1, it is observed that the power spectra of the lift

force on the small cylinder have several sharp peak frequencies

as the position angle a is around 0.25p to 0.5p (as shown in

Fig. 21(b) and (c)). In these cases, all values of the Strouhal

number based on the sharp peak frequencies are plotted in

Fig. 23. For G/DZ0.2 and 0.5, the power spectra of the lift

force on both of the large cylinder and the small cylinder are

either multi-peak or broad-banded (Figs. 20(c) and 21(d)). For

the broad-banded spectra, several maximum peak frequencies

are plotted in Fig. 23. The interaction of the vortexes becomes

drastic for these gap ratios as discussed in Section 4.3.1.

The dimensional frequency of the lift on the small cylinder

is the same as those of the large cylinder (the Strouhal number

of the small cylinder is one-fourth of that of the large cylinder)

for the large and small values of the position angle of the small
cylinder. It is quite obvious that the two cylinders act as a

single body for small gap ratios and as independent bodies as

for large gap ratios.

Fig. 24 shows the Strouhal number normalized using the

values of the Strouhal number corresponding to a single

cylinder. For the lift with multi-peak frequencies or broad-

banded spectra, the Strouhal number in Fig. 24 is based on

the frequency corresponding to the maximum power. It can

be seen from Fig. 24 that the frequency for the large

cylinder is generally smaller than that of a single cylinder at

the same Reynolds number. The frequency for the small

cylinder is larger than that of a single cylinder except for G/

DZ0.05. For G/DZ0.05, the lift on the small cylinder

fluctuates in the same frequency as that of the large

cylinder. For G/D ranging from 0.05 to 0.5, the Reynolds

number based on the equivalent cylinder diameter is 650 to

875, and the computed Strouhal number for an isolated

cylinder by those Reynolds number ranges from 0.233 to

0.236. These values are close to a value of 0.227, which is



Fig. 25. RMS of the force coefficients on the large cylinder, G/DZ0.05; , G/DZ0.1; , G/DZ0.2; , G/DZ0.5; , G/DZ1.0; - - -, G/DZN.
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the Strouhal number of a single cylinder for ReZ500. So,

the normalized Strouhal number of the total lift is about De/

D times that of the large cylinder. The minimum Strouhal

number of the lift on the large cylinder and the total lift

occurs at G/DZ0.3. This indicates the strongest interaction

between the large and small cylinders. The influence of the

small cylinder is strongest at G/DZ0.3. It can be seen that

the actual Strouhal number of the total lift is greater than

that on the equivalent cylinder except for G/DZ0.3 in the

computed ranges of G/D.
4.3.4. Root-Mean-Square (RMS) forces

The RMS force coefficients on the cylinders are studied.

Fig. 25 shows the RMS force coefficients on the large cylinder.

The RMS force coefficients on an isolated cylinder at the same

Reynolds number is also plotted in Fig. 25 for the purpose of

comparison. The RMS drag coefficient is smaller than that of a

single cylinder as the small cylinder is located in front of or

behind the large cylinder, and larger as the small cylinder is at

the side of the large cylinder. At a very small value of G/D,

the RMS lift on the large cylinder is larger than that on an

isolated cylinder if the small cylinder is located at the side of
Fig. 26. RMS of the force coefficients on the small cylinder, G/DZ0.05; , G
the large cylinder. The RMS lift on the large cylinder is smaller

than that on an isolated cylinder, at larger values of G/D.

Fig. 26 shows the RMS force coefficients on the small

cylinder. The RMS drag coefficients on the small cylinder are

much larger than that on an isolated cylinder at the same

Reynolds number except for aZp. It is seen that the RMS lift

on the small cylinder for aZp is much smaller than that for

aZ0. For aZ0, the smaller cylinder is immersed in the wake

of the large cylinder. The vortices shed from the upper and the

lower edges of the large cylinder induce a large value of lift on

the small cylinder. For aZp, there would not be vortices shed

from the small cylinder at small value of G/D. The vortices

shed behind the small cylinder may be weaker than those shed

from behind of the large cylinder at larger values of G/D. So,

the lift for aZp on the small cylinder is much smaller than that

for aZ0.

Fig. 27 shows the RMS of the total force coefficient on two

cylinders. The total force coefficients on two cylinders are

based on the equivalent cylinder diameter (DeZDCdCG).

Because the force component of the large cylinder is

dominative in the total force coefficient, the variation of

the total RMS force coefficient is very similar to that on the

large cylinder. For larger value of G/D, both the RMS drag
/DZ0.1; , G/DZ0.2; , G/DZ0.5; , G/DZ1.0; - - -, G/DZN.



Fig. 27. RMS of the force coefficients on the two-cylinder system, , G/DZ0.05; , G/DZ0.1; , G/DZ0.2; G/DZ0.5; , G/DZ1.0; - - -, G/DZN.
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and lift coefficients become smaller because the equivalent

cylinder diameter becomes larger.
5. Conclusions

In this study, vortex shedding from two cylinders of

different diameters is studied numerically. The two-dimen-

sional Navier-Stokes equations are solved by using a finite

element method. The flow is calculated for a broad range of gap

ratios and angular locations of the small cylinder. The effects of

the gap ratio and the angular location of the small cylinder on

the vortex shedding are investigated. The major results can be

summarized as follows:

1. For the position angle of the smaller cylinder a form 0.125p

and 0.875p, the shedding flow behind the two cylinders can

be classified into three types. For the very small gap ratio,

there is only one wake behind the two cylinders. It is

referred to as single-wake shedding mode. At medium gap

ratios, there exist strong interactions between the vortex

shedding from the large cylinder and the shedding from the

small cylinder. This is called interaction mode. For very

large gap ratios, the interaction between the shedding from

the two cylinders becomes very weak. This is called two-

wake mode. If the two cylinders are in near tandem

arrangement, the flow pattern around the downstream

cylinder is always affected by the shedding from the

upstream cylinder for the gap G/D investigated in this

study, but the single-wake shedding mode does exist in case

of small G/D.

2. The time-averaged mean drag forces on the large and the

small cylinders attain the maximum values as a is around

p/2. The mean drag force on the large cylinder increases

with increase of gap ratio as a is around p/2. However, the

gap ratio does not affect the drag on the small cylinder very

much. For a given gap ratio, the mean lift on the large

cylinder attains its maximum value as aZp/2, whereas the

maximum mean lift force on the small cylinder is found at

aZ3p/4.
3. The total mean drag on the two cylinders is generally

smaller than its counterpart on an equivalent cylinder for

most of the gap ratios and angular locations of the small

cylinder except for very small gap ratios, i.e. G/DZ0.05

and G/DZ0.1, where total mean drag on the two cylinders

is greater than that on the equivalent cylinder for roughly

0.25p!a!0.5p. The smaller the gap ratio, the larger

total mean drag is. At the minimum gap ratio examined

(G/DZ0.05), the total mean drag could be 1.5 times as

large as that on the equivalent cylinder when aZ0.5p. For

aZ0.5p, the total mean lift force on the two cylinders is

non-zero for smaller gap ratios G/DZ0.05 and 0.1. The

total mean lift could be downward or upward depending on

the location of the small cylinder. For G/DZ0.2, 0.4 and

1.0, the total mean lift is very small.

4. Vortex shedding frequency for the large cylinder is

generally smaller than that of a single cylinder at the

same Reynolds number. The frequency for the small

cylinder is larger than that of a single cylinder except for

G/DZ0.05. For G/DZ0.05, the lift force on the small

cylinder fluctuates in the same frequency as that of the large

cylinder. The minimum Strouhal number of the lift on the

large cylinder occurs at G/DZ0.3. The Strouhal number of

the total fluctuating lift is always smaller than that on the

equivalent cylinder.

5. The RMS force coefficients on the large cylinder, the small

cylinder and the RMS of total force coefficients are strongly

affected by the location of the small cylinder and the gap

ratio. The RMS forces coefficients generally increase as the

gap ratio decreases and the small cylinder approaches to the

side-by-side location.

6. Since, the present study is carried out at a rather small

Reynolds number, the findings reported in this study need

to be verified before they can be employed in pipeline

designs.

7. It is recognized that the diameter ratio of the large and small

cylinders will also affect the hydrodynamic forces on

the cylinders and vortex shedding behavior from the two

cylinders and this will be investigated in a future study.
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