
 
 
 

Simulation of fluid−flexible structure interaction 
 
 

Wei-Xi Huang1 & Hyung Jin Sung1 
 

1Department of Mechanical Engineering, KAIST, Korea 
 
 
Keywords: Fluid−structure interaction, Immersed boundary method, Flexible body, Numerical simulation 
 
Abstract: Systems involving flexible bodies interacting with surrounding fluid flow are commonplace, but are 
challenging to model numerically on account of their complex geometries and freely moving boundaries. In the 
present study, we developed an immersed boundary method (IB) for simulating fluid−flexible structure interactions. 
Our method is based on an efficient Navier-Stokes solver adopting the fractional step method and a staggered 
Cartesian grid system. The fluid motion defined on an Eulerian grid and the structure motion defined on a moving 
Lagrangian grid are independently solved, and their interaction is formulated using a momentum forcing. The 
proposed method was applied to simulating flow over flexible filaments with inextensibility constraint, and was then 
extended to simulate 3D flag motion in a uniform flow. Toward bio-mimetic applications, we also simulated a 
valveless pump and an energy harvesting eel by utilizing the 1D filament model, and a swimming jellyfish and a 
deformable disk by utilizing the 2D structure model. 
 
 
1. Introduction 

 
Systems involving flexible bodies interacting with 

surrounding fluid flow are commonplace – for example 
flapping flags and swimming fishes – and are becoming 
increasingly prevalent in biofluid engineering 
applications. Such phenomena are challenging to model 
numerically on account of their complex geometries 
and freely moving boundaries, which give rise to 
complicated fluid dynamics. In these systems, the 
flexible body acts on the surrounding fluid, forcing it to 
move with the moving boundary. On the other hand, 
the fluid exerts forces on the flexible body through 
pressure differences and viscous shear stresses. 
Together, these interactions between the fluid and the 
flexible-body can give rise to self-sustained oscillations 
such as the flapping of a flag. The fluid-flexible 
structure interaction is also an essential aspect of the 
tail and wing motions of swimming and flying animals. 
Even for active flapping motions such as those of 
swimming and flying animals, the flapping frequency 
cannot be selected arbitrarily (Wang 2000). Recent 
studies have disclosed a simple relationship between 
the flapping frequency, amplitude and forward speed 
for a wide range of species of animals to fly or swim 
with high propulsive efficiency (Triantafyllou et al. 
2000; Taylor et al. 2003; Fish & Lauder 2006). Hence, 
study of the fluid-flexible structure interaction behavior 
sheds light on such biological processes. Moreover, it is 
of importance in areas such as paper engineering 
(Watanabe et al. 2002a, b), socio-medical conditions 

(e.g., human snoring; Huang 1995), ocean/river power 
generation (Allen & Smits 2001; Taylor et al. 2001), 
and so on. In the present study, an IB method is 
developed for simulating fluid−flexible structure 
interactions. 

 
2. Problem formulation 

 
The incompressible viscous fluid flow is governed 

by the N-S equations and the continuity equation, 
2
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where u is the velocity vector, p is the pressure, ρ0 is 
the fluid density, μ is the fluid dynamic viscosity, and f 
is the momentum forcing applied to enforce the no-slip 
boundary condition along the IB. 

The structure motion is defined on a moving 
Lagrangian grid. For a flexible filament described by a 
1D curvilinear coordinate system, the equation of 
motion is written as 
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where s is the arclength, X is the position, ρ1 is density 
difference between the structure and the surrounding 
fluid, σ is the tension force along the filament axis, γ is 
the bending rigidity, F is the Lagrangian forcing 
exerted on the filament by the surrounding fluid. For a 



deformable surface defined on a 2D curvilinear 
coordinate system, which is moving in 2D or 3D fluid 
domain, the equation of motion is generalized as 

2 2 22

1 2
, 1

1

ij ij
i j i j i j i js s s s s st

ρ σ γ

ρ

=

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
= −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂∂ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
+ −

∑X X X

g F

. (4) 

Since the Lagrangian grid passes across the fixed 
Eulerian grid as the structure moves in the fluid domain, 
the fluid-structure interaction is formulated through the 
momentum forcing. In the present study, we evaluate 
the momentum forcing at the Lagrangian points 
directly from the time-discretized equation of motion of 
the structure, i.e. 
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where RHS regroups the elastic force terms and the 
gravity force term for simplicity, and 1n

ib
+%X  represents 

an estimation of the new position of the fluid point. In 
computation, 1n

ib
+%X  is estimated as 

1n n n
ib ib ib t+ = + Δ%X X U , (6) 

where n
ibX  is the position of the fluid point at the 

present time step and n
ibU  is the fluid velocity 

interpolated at the Lagrangian point Xn. The velocity 
interpolation is expressed as 
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where δ denotes the Dirac delta function. 
In practice, we found that the coefficient −1/∆t2 in 

Eq.(5) becomes very large because ∆t is usually given a 
small value. As a result, a stable solution may not be 
obtained. Hence, we adopt a relaxation of Eq.(5) as 
follows 
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where κ is a large negative constant. After obtaining the 
Lagrangian momentum forcing term, we transform it to 
the Eulerian form using the Dirac delta function 
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In the computations, the Eulerian momentum forcing is 
actually distributed across several grids in width 
according to the support of the smoothed 
approximation of the Dirac delta function (Peskin 
2002). 

 
3. Numerical method 

 
The discretized N-S equations can be written as 
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where N, G, L and D are the linearized discrete 
convective operator, the discrete gradient operator, the 
discrete Laplacian operator, and the discrete divergence 
operator, respectively. The velocity boundary 
conditions for the momentum equations and the 
continuity equation have been imposed on mbc and cbc, 
respectively. In this study, we adopt the fractional step 
method to solve Eqs.(10) and (11) on a staggered 
Cartesian grid. The velocity components and 
momentum forcing are defined on the staggered grid, 
whereas the pressure is applied at the centers of cells. 
Fully implicit time advancement is employed, with the 
Crank-Nicholson scheme being used for the 
discretization of the diffusion and convection terms. 
Decoupling of the velocity and pressure is achieved by 
block LU decomposition in conjunction with 
approximate factorization (Kim et al. 2002). 

We use the operator K to represent the discretized 
form of the elastic force, i.e., 

e K=F X .  (12) 

The discretized form of the equation of structure 
motion is then written as 
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where the elastic force term is treated implicitly, the 
momentum forcing term Fn is calculated using Eq.(8), 
and the last term, BC, is the boundary condition vector 
which contains the known positions at the fixed 
boundary. After rearrangement, Eq.(13) becomes 

1n nA + =X R .  (14) 

Here A=I−∆t2K, where I is the unit matrix, and Rn ≡ 
Xn+∆tUn−1+∆t2Fr·g/g−∆t2Fn+∆t2BC by applying Un = 
(Xn−Xn−1)/∆t. To solve Eq.(14), we need to know the 
initial position and velocity of the flag. We found that 
symmetry and positive-definiteness of the matrix A are 
preserved in this study. Hence, the conjugate gradient 
method can be utilized to solve Eq.(14) in an efficient 
manner due to its fast convergence rate. 

The overall process of the present numerical 
algorithm is summarized as follows: 
(1) At the nth time step, we know the fluid velocity 

field and the structure position Xn and velocity Un. 
Estimate the new position of the fluid point. Then 
calculate the Lagrangian momentum forcing Fn 
using Eq.(8). 

(2) Spread the Lagrangian momentum forcing to the 
Eulerian grid using Eq.(9). Solve Eqs.(10) and 
(11) to obtain the updated fluid velocity field and 
pressure field. Interpolate the fluid velocity at the 
IB and calculate the new position of the fluid 
point. 

(3) Substitute Fn into Eq.(14) and solve this equation 
to obtain the structure position at the new time 
step, as well as the structure velocity, i.e. Un+1 = 
(Xn+1−Xn)/∆t. This ends one time step marching. 

 
4. Numerical results 

 
4.1. Flow over a flexible filament 

 



When a flexible filament is placed in a uniform flow, 
the computational domain is −2≤x≤6 and −4≤y≤4. The 
filament is simply supported at its leading edge and is 
free at its trailing edge. The inextensibility condition is 
applied when solving the filament motion equation, i.e. 
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Fig.1 shows the instantaneous vorticity contours over a 
filament for Re=200 and γ=0.001 at four instants that 
approximately span a flapping period, i.e. t=9.2, 10.0, 
10.8 and 11.6. The filament achieves a self-sustained 
flapping state, and symmetric vortices are shed 
alternately from the free end at the moment when it is 
most bent. When we increase Re to 500 and decrease γ 
to 0.0001, two positive and two negative vortices are 
shed sequentially from the filament, as shown in Fig.2. 
In this system each vortex is split into two small 
vortices by the bending of the free end. We can see that 
the production of a small vortex procession is a 
combined effect of the Reynolds number and bending 
rigidity. Interestingly, a previous study of the flow 
around a swimming eel also observed that two 
same-sign vortices were shed per tail beat (Müller et al. 
2001; Tytell et al. 2004). 

t=9.2

 

t=10.0

 

t=10.8

 

t=11.6

 
Fig.1 Instantaneous vorticity contours of a uniform 

flow over a filament for Re=200 and γ=0.001. 
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Fig.2 Instantaneous vorticity contours of a uniform 

flow over a filament for Re=500 and γ=0.0001. 
 
To study the bistable property of the present system, 

we consider both L=0.5 and L=1.0. The node numbers 
along the filament (N) for these systems are 64 and 32, 
respectively. The behaviors of filaments with simply 
supported (BC1) and clamped (BC2) boundary 
conditions at the fixed end are compared. For the short 
filament (Fig.3a), by setting a large initial disturbance 
a=0.03, self-sustained flapping eventually develops for 

both BC1 and BC2, although the filament with BC2 
requires a longer time to reach the equilibrium state. On 
the other hand, by setting a small value of a=0.01, the 
initial disturbance decays gradually and the filament 
comes to rest at the stretched-straight state. For a small 
initial disturbance, the motion is mostly limited to the 
region close to the free end; hence there is little 
difference between BC1 and BC2 in Fig.3a when the 
motion is decaying. For the longer filament (Fig.3b), a 
self-sustained flapping state quickly develops for both 
BC1 and BC2 with an initial disturbance a=0.01, and 
slowly develops for a small initial disturbance a=0.001. 
In all of our simulations of filaments of length L=1.0, 
the flapping state eventually developed no matter how 
small the initial disturbance. This is consistent with the 
experimental finding that the stable stretched-straight 
state disappears and only the flapping state remains if L 
is sufficiently large (Zhang et al. 2000). More results 
on flow over flexible filaments have been presented in 
Huang et al. (2007). 

 

 
Fig.3 Time history of the free end position of the 

filament with (a) L=0.5; (b) L=1.0. 
 

4.2. A flapping flag in a uniform flow 
 
In the present simulations, the computational 

domain for fluid flow is a 3D rectangular box, 
extending from (−1, −4, −1) to (7, 4, 1) in the 
streamwise (x), transverse (y) and spanwise (z) 
directions, respectively. The fixed boundary of the flag 
(s1=0) is aligned with the z-axis, and the flow is coming 
along the x-axis. The flag is initially held at an angle of 
a=0.1π from the xz plane. Fig.4 shows instantaneous 
flag positions during a flapping period at Re=500 and 
Fr=0. At t=16.86 and 18.54, the trailing edge reaches 
its maximum transverse position, while at t=17.94 and 
19.68 we can see that a wave is traveling along the 
longitudinal (s1) direction. Small wavy motions are 
apparent on the flag surface, although the main wave 
remains uniform in the s2-direction. As shown in Fig.5, 
vortex rings are formed behind the flag. Interestingly, 
the vortex shedding from the trailing edge forms an 
O-shaped structure, while that from the side edges 
forms a Ω-shaped structure that is connected to the 
O-shaped structure at the bottom.  

Then we take into account the effects of the gravity 
force. The direction of the gravity force is along the 



spanwise (z) direction, i.e. g/|g|=(0,0,−1). We use 
Re=500 and Fr=0.2 in this simulation. Fig.6 shows 
instantaneous images of the flag positions at four time 
instants. It is shown that the flag is sagging down at 
t=15.60, and the upper corner of the trailing edge 
undergoes a fast rolling motion near the maximum or 
minimum transverse position from t=13.98 to 14.46. 
The instantaneous 3D vortical structures around the 
flag are shown in Fig.7. The O-shaped structures are 
still evident, whereas the Ω-shaped structures are 
disrupted due to the sagging-down of the flag and the 
fast rolling of its upper corner. 

 

 

  
Fig.4 Instantaneous positions of a flapping flag at 

Re=500 and Fr=0. 

 

 
Fig.5 Vortical structures shedding from the flapping 

flag at Re=500 and Fr=0. 

 

 
Fig.6 Instantaneous positions of a flapping flag at 

Re=500 and Fr=0.2. 

 

 
Fig.7 Vortical structures shedding from the flapping 

flag at Re=500 and Fr=0.2. 
 

4.3. A swimming jellyfish 
 
Similar with Zhao et al. (2008), a 2D model of 

jellyfish is shown in Fig.8. The initial top and bottom 
surfaces are described by 

( ) ( ) ( )( )2 4,s s s sγ β α γ η γ= − −0X ,  (16) 

where α=0.03, β=1.0, γ=2.6, η=0.05 for the top and 
α=0.02, β=0.2, γ=2.45, η=0.045 for the bottom. A 
stretched grid is adopted, i.e. s=tanh(λs0)/tanh(s0) for 
−1≤ s0≤1, where λ=1.8 for the top and λ=1.5 for the 



bottom. As a result, the grid is distributed more closely 
at the tips.  

 

 
Fig.8 The Lagrangian gird for a two-dimensional 

jellyfish at the initial stage. 
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Fig.9 Swimming of a jellyfish at Re=300: velocity field 

and jellyfish positions. 
 
The jellyfish is moving forward by contracting and 

relaxing its body repeatedly. The body force in a period 
is modeled by 
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where r denotes the distance between the force point 
and the left tip, and X21 denotes the vector pointed from 
the force point to its symmetric counterpart. Eq.(17) 
indicates that the body force is only exerted near the 
tips and at the beginning stage of each period, which is 
50 in this simulation. 

The flow domain is a 4×4 box where the no-slip 
condition is applied at all the four boundaries. Fig.9 
shows the body positions of a swimming jellyfish and 
the induced flow field at Re=300. Since the density of 
jellyfish is close to its surrounding fluid, we use a small 
density difference, ρ1 ⁄ ρ0=0.1, and the gravity force is 
neglected in this simulation. At the beginning stage, the 
jellyfish is deformed fast due to the body force, and a 
vortex ring is formed near the tips. Then the body is 
contracting by the inertial force, and the vortex ring is 
ejected from the tips, which push the body to move 
forward. After the two tips reach their maximum 
deformation, the body begins relaxation, and a reversed 
vortex ring is formed between the tips, which is much 
weaker then the first one. During the relaxation phase, 
the body is still moving forward by the inertial force. 

The effect of density ratio, ρ =ρ1 ⁄ ρ0, is evaluated in 
Fig.10, which shows time histories of the forward 
velocity of point A (see Fig.8). The curves for different 
ρ have similar shapes, but that of large ρ lags more due 
to the inertial force. When ρ≤0.1, the curves are 
collapsed, indicating that the results for sufficient small 
ρ are converged to that of the neutral buoyant case.  

 

 
Fig.10 Time history of the forward velocity of point A 

(marked in Fig.8) for different structure densities. 
 

4.4. A deformable ring moving through a 
channel with contraction 

 
The initial shape of a deformable ring is circular, 

and the grid distribution is shown in Fig.11. The radii 
of the inner and outer circles are dented by ri and ro, 
respectively, and the thickness, a= ro− ri, is 0.2 in this 
simulation, which is scaled by the diameter of the outer 
circle. The ring interacts with the fluid only along its 
outer edge, while the inner edge is developing freely. In 
the peripheral direction, a periodic boundary condition 
is adopted. 

The channel has a length of 16 in the streamwise 
direction and a width of 2 in the normal direction. At 
the middle of channel, there are half-circle rigid 
obstacles on the upper and lower walls, both of which 
have radii of 0.6. A flow with a parabolic velocity 
profile is given as the initial flow field. The no-slip 



conditions on the contraction surfaces and the outer 
edge of the deformable ring are satisfied by the IB 
method. 

 

 
Fig.11 The Lagrangian grid for a deformable ring at the 

initial stage. 
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Fig.12 A deformable ring moving through a channel 
with contraction at Re=100: velocity field and ring 

positions. 
 

Fig.12 shows the instantaneous velocity field and 
the ring positions at Re=100. Before encountering the 
contraction part, the ring moves by following the fluid 
flow with slight deformation. It is then compressed due 
to the lubrication force when moving through the 
contraction part, without contacting with the rigid walls. 
After passing the contraction part, the ring is relaxed 
with elastic oscillations, which decay faster at lower 
Reynolds numbers. 

 
5. Conclusions 

 
Systems involving flexible bodies interacting with 

surrounding fluid flow are not only commonplace in 
our daily life but also of significance in engineering. In 
the present study, we developed an IB method for 
simulating fluid−flexible structure interactions. The 
proposed IB method is based on an efficient 
Navier-Stokes solver adopting the fractional step 
method and a staggered Cartesian grid system. The 
fluid motion defined on an Eulerian grid and the 
structure motion defined on a moving Lagrangian grid 
are independently solved, and their interaction is 
formulated using a momentum forcing. Transformation 
between the Lagrangian and Eulerian variables is 
realized using a smoothed Dirac delta function. 

The proposed method was first applied to simulating 
a uniform flow around a flexible filament with 
inextensibility constraint. The mechanism by which 
small vortex processions are produced was attributed to 
the increase of Reynolds number and the decrease of 
bending rigidity. The bistable property of the system 
was observed by altering the filament length. Next, we 
extended our method for the 3D simulation of a 
flapping flag in a uniform flow. The flag motion 
equation was derived using the energy method. When 
the gravity force is excluded, the flag flaps almost 
uniformly along the spanwise direction, with an 
O-shaped vortical structure shedding from the trailing 
edge connected by a Ω-shaped structure shedding from 
both side edges. When the gravity force is included, the 
resulting sagging-down of the flag and rolling-up of the 
upper-corner deform the vortical structures. 

Toward bio-mimetic applications, we simulated a 
swimming jellyfish. Contraction of the body produces 
and ejects a vortex ring, which push the body to move 
forward. The effect of density difference was 
investigated. It is shown that results for sufficient small 
density difference are converged to that of the neutral 
buoyant case. A deformable ring moving through a 
channel with contraction was then simulated. The ring 
is compressed by the contraction part due to the 
lubrication force, and is relaxed with elastic oscillations 
after passing the contraction part. 

Beside the above examples, we have simulated 
several other problems, e.g. multiple filaments in 
side-by-side and tandem alignments, a deformable loop 
as a 2D body, a valveless pump and an energy 
harvesting eel. Moreover, results on both 2D and 3D 
numerical models of the aortic valve will be also 
presented in the lecture. 
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