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The two-dimensional viscous incompressible fluid flow around a circular cylinder near a moving ground

is numerically simulated. In a moving ground one eliminates the influence of the ground boundary layer,

which is a crucial factor in the numerical simulation of the flow around a body moving in a close vicinity to

a flat ground. A Lagrangian mesh-free vortex method is used to calculate global and local quantities of high

Reynolds number flow of 1.0�105. This method is modified to take into account the sub-grid scale

phenomena through a second-order velocity structure function model adapted to the Lagrangian scheme.

In the present algorithm vortices with a Lamb core are generated only on the circular cylinder surface to

ensure that the no-slip condition is satisfied and that the circulation is conserved. On the ground it is only

sufficient to ensure the impermeability condition. Based on the experimental results available in the

literature, the critical drag behaviour was found to be directly related to a global change in the near wake

structure of the cylinder.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The aerodynamic loads acting on bluff bodies are induced by
complex flow fields and are of scientific importance in engineering
problems. A number of applications can be found in mechanical,
civil and naval engineering that employ circular–cylindrical struc-
tures, such as tall buildings, bridge piers, chimneys, periscopes,
heat exchangers tubes, cables, wires, and so on.

In scientific terms, the flow around circular cylinders includes a
variety of fluid dynamics phenomena, such as separation, vortex
shedding and the transition to turbulence. The mechanisms of
vortex shedding and its suppression have significant effects on the
various fluid-mechanical properties of practical interest such as
flow-induced forces, vibrations and noises and the efficiencies of
heat and mass transfer. For a better and easy understanding of the
physics, therefore, it is reasonable to focus our attention on the flow
around bodies of simple geometry such as a circular cylinder.
Cylinders having a two-dimensional structure are very suitable for
restricting the complexity and thus observing the fundamental
features of the flow.

The fluid flow around a circular cylinder close to a plane wall
is influenced not only by the Reynolds number but also by the
gap between the cylinder and the ground, h, characterized by the
gap ratio h/d (d is the cylinder diameter). The fundamental effects
of gap ratio have been successfully observed by Taneda (1965),
Roshko et al. (1975), Bearman and Zdravkovich (1978), Grass et al.
(1984), Zdravkovich (1985a), Lei et al. (1999) and Lin et al. (2005).
ll rights reserved.
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As the gap ratio becomes smaller the influence of the ground
boundary layer becomes important and the mechanisms resulting
from its interaction with the body boundary is still unclear despite
several intensive studies reported so far. Roshko et al. (1975)
measured the time-averaged drag and lift coefficients, CD and CL,
for a circular cylinder placed near a fixed wall in a wind tunnel at
Re¼2.0�104, which lies in the upper-subcritical flow regime; they
showed that the CD rapidly decreased and CL increased as the
cylinder came close to the wall. Zdravkovich (1985b) measured the
time-averaged drag force for a circular cylinder at 4.8�104o
Reo3.0�105 and reported that the rapid decrease in drag occurred
as the gap was reduced to less than the thickness of the boundary
layer d/d on the ground, and concluded that the variation of CD was
dominated by h/d rather than by the conventional gap ratio h/d. He
also noted that the CL could be significantly affected by the state of
the boundary layer, although it was insensitive to the thickness of
the boundary layer.

Zdravkovich (2003) reported the drag behaviour for a circular
cylinder placed near a moving ground running at the same speed as
the freestream for high Reynolds number of 2.5�105, which lies
within the critical flow regime rather than the subcritical flow
regime. The experiment made by Zdravkovich (2003) showed some
differences to all the above studies. First, practically no boundary
layer developed on the ground. Second, the decrease in drag due to
the decrease in h/d did not occur in the measurements. The
differences encountered were attributed to the non-existence of
the wall boundary layer or the high Reynolds number.

In a recent work, Nishino (2007) presented experimental results
of a circular cylinder with an aspect ratio of 8.33, with and without
end-plates, placed near and parallel to a ground running at the
same speed as the freestream, where substantially no boundary
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layer develops to interfere with the cylinder. Measurements were
carried out at two upper-subcritical Reynolds numbers of 0.4�105

and 1.0�105. The results produced new insights into the physics of
the phenomenon. According to the experiments for the cylinder
with end-plates, on which the oil flow patterns were observed to be
essentially two dimensional, the drag rapidly decreases as h/d
decreases to less than 0.5 but becomes constant for h/d less than
0.35, unlike the usually obtained results with a fixed ground.

Due to difficulties in measuring details of the time depending
fluid flow, the utilization of numerical simulations could be a
powerful tool to be used in this kind of analysis.

This paper describes a mesh-free method used to calculate
global and local quantities of high Reynolds number flow around a
circular cylinder located near a moving ground. The two-dimen-
sional aerodynamic characteristics are investigated at a Reynolds
number of 1.0�105 using turbulence modeling, which employs a
second-order velocity structure function of the filtered field
(Alcântara Pereira et al., 2002). The vortex method with turbulence
modeling is used to analyze the influence of the moving ground
running at the same speed as the freestream on the flow and force
characteristics. Therefore comparisons are made with experimen-
tal results presented by Nishino (2007).

Vortex methods have been developed and applied for analysis of
complex, unsteady and vortical flows, because they consist of
simple algorithm based on physics of flow (Kamemoto, 2004).
Vortex cloud modeling offers great potential for numerical analysis
of important problems in fluid mechanics. With the Lagrangian
formulation (e.g. Chorin ,1973; Leonard, 1980; Sarpkaya, 1989;
Alcântara Pereira et al., 2004; Stock, 2007) a grid for the spatial
discretization of the fluid region is not necessary. In addition, with
the vortex method the attention is only directed to the regions of
high activities, which are the regions containing vorticity; on the
contrary, Eulerian schemes consider the entire fluid domain
independent of the fact that there are sub-regions where less
important, if any, flow activity can be found. Finally with the
Lagrangian tracking of the vortices, one does not need to consider
the far away boundary conditions. This is of importance in the wake
region (which is not negligible in the flows of present interest)
where turbulence activities are intense and unknown, a priori.
2. Governing equations and vorticity dynamics

Consider the flow around a circular cylinder immersed in a large
fluid region bounded by a moving plane surface as shown in Fig. 1.
A uniform incoming flow with freestream velocity U from left to
right is assumed, where the coordinates system is fixed on the
cylinder. The fluid is Newtonian with constant properties and
flowing in a two-dimensional plane; the compressibility effects are
neglected. Fig. 1 shows the domainO with boundary S¼S1[S2[SN,
S1 being the body surface, S2 the moving plane running at the same
speed as the incident flow and SN the far away boundary.

Due to the no-slip condition, a shear flow is set on the cylinder
surface and, as a consequence, vorticity is generated. The vorticity
Moving ground
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Fig. 1. Flow around a circular cyl
that develops in the body boundary layer is carried downstream
into the viscous wake; further developments of this wake will be
influenced by the presence of the nearby moving ground.

As there is no shear flow on the surface of the moving ground, no
vorticity is generated as already mentioned. However, it is worth to
mention the necessity of imposing the impermeability condition on
this surface.

The fluid flow is governed by the continuity and the Navier–
Stokes equations, which can be written in the form:

@ui

@xi
¼ 0, ð1Þ

@ui

@t
þuj

@ui

@xj
¼�

1

r
@p

@xi
þ2

@

@xj
ðuþutÞSij

h i
, ð2Þ

where the summation convention applies. The above governing
equations were filtered (ui ¼ uiþuui, uui denotes the fluctuation
field), u is the fluid kinematics viscosity coefficient, ut is the eddy
viscosity coefficient, r is the fluid density, Sij is the deformation
tensor of the filtered field and p is the pressure.

The large structures are governed by Eq. (2) and the eddy-
viscosity assumption (Boussinesq’s hypothesis) is used to model
the sub grid scale tensor Tij ¼�2utSij (Smagorinsky, 1963).

The impermeability condition on the cylinder and ground
surfaces is given by

un ¼ vn, at S1 and S2, ð3Þ

where vn¼0 is the normal component of the surface velocities.
The no-slip condition is imposed only on the cylinder surface

ut ¼ vt, at S1, ð4Þ

where vt is the tangential component of the surface velocities. On
the cylinder surface vt¼0and on the moving ground vt¼U.

One assumes that, far away, the perturbation caused by the body
and moving ground fades as

9u9-U, at S1: ð5Þ

In order to take into account the local activity of turbulence,
Métais and Lesieur (1992) considered that the small scales may not
be too far from isotropy and proposed to use the local kinetic-
energy spectrum E(kc) at the cut-off wave number (kc) to define the
eddy viscosity ut. Using a relation proposed by Batchelor (1953) the
local spectrum at kc is calculated with a local second-order velocity
structure function F2 of the filtered field (Lesieur and Métais, 1996):

F2ðx,D,tÞ ¼ :uðx,tÞ�uðxþr,tÞ:2

:r: ¼ D: ð6Þ

where the velocities uðxþrÞ are calculated over the surface of a
sphere of radius D.

From the Kolmogorov spectrum the eddy viscosity can be
written as a function of F2:

utðx,D,tÞ ¼ 0:105C�ð3=2Þ
k D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2ðx,D,tÞ

q
, ð7Þ

where Ck¼1.4 is the Kolmogorov constant. The great computa-
tional advantage of this formulation over the Smagorinsky (1963)
S∝

inder near a moving ground.



A.M. Bimbato et al. / J. Wind Eng. Ind. Aerodyn. 99 (2011) 7–17 9
model is that in Eq. (6) the notion of velocity fluctuations
(differences of velocity) is used instead of the rate of deformation
(derivatives).

Alcântara Pereira et al. (2002) adapted the definition of the
second-order velocity structure function F2 to the Lagrangian
scheme in 2-D as

F2 ¼
1

NV

XNV

l ¼ 1

:uðxÞ�uðxþr1Þ:
2

l

s0ut

:rl:

 !ð2=3Þ

: ð8Þ

In Eq. (8), NV is the number of discrete vortices of the cloud
found in the region defined by the distances r1¼0.1s and r2¼2.0s
from the centre of each vortex particle, wheres is the core radius of
a Lamb vortex (Eq. 16), which is used as a model for the discrete
vortices of the cloud. A correction (s0ut/99rl99)

2/3 is necessary due to
the fact that the NV vortices are not located at equal distance from
the centre of each investigated vortex particle.

F2 represents a local statistical average of square velocity
differences between free vortices located in the region defined by
the distances r1¼0.1s and r2¼2.0s from the centre of each vortex
particle. Physically, this function represents the flow fluctuation
(turbulent activities) in the neighborhood of the vortex located at x.

The Reynolds number is defined as

Re¼
Ud

u
, ð9Þ

where d is the cylinder diameter. The dynamics of the fluid motion,
governed by the boundary-value problems (1)–(5) can be alter-
natively studied by taking the curl of Eq. (2), obtaining the new 2-D
vorticity transport equation:

@o
@t
þuUro¼ 1þu�t

Re
r2o, ð10Þ

in which o is the only non-zero component of the vorticity vector
and

u�t ¼
ut

u
: ð11Þ
3. The discrete vortex method with turbulence model

3.1. Discrete vortex method (large scale simulation)

The vortex method proceeds by representing the continuous
vorticity field by a cloud of elemental vortices; each vortex is
characterized by a vorticity distribution, Bsi (the cut-off function), a
circulation strength Gi, a core size si and its location xi. Thus, the
vorticity field is expressed by

xðx,tÞ �xhðx,tÞ ¼
XZ

i ¼ 1

GiðtÞBsi
ðx-xiðtÞÞ: ð12Þ

where Z is the number of point vortices of the cloud used to
simulate the vorticity field.

In this paper, the vorticity diffusion is simulated using the
random walk method, so it is assumed that the core sizes are
uniform(si¼s), and it is used the Gaussian distribution as the cut-
off function; this choice of the cut-off function leads to the Lamb
vortex (Leonard, 1980); thus

BsðxÞ ¼
1

ps2
exp �

9x92

s2

 !
: ð13Þ

The random walk method was introduced by Chorin (1973) and
is formulated essentially as a fractional method. An integral form
solution to the random walk problem is given by

oðx,tÞ ¼

Z 1
�1

ðGðx,y,tÞ�Gðx�y,tÞÞf ðyÞdy, ð14Þ
where

Gðx,y,tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pðð1þu�t Þ=ReÞt
p e�ðx�yÞ2=4ðð1þ u�t Þ=ReÞt and u�t ¼ 0: ð15Þ

However, when using the above described random walk scheme
one departs from the Navier–Stokes equations which, in some
sense, imply a ‘‘laminar diffusion process’’. In this context the core
sizes are not changed. In the present paper the core sizes are
evaluated locally, only where the flow is turbulent, which means a
‘‘turbulent diffusion of vorticity’’.

The value of the velocity structure function, which measures the
turbulent manifestations, is statistically sound only if the neigh-
borhood of each vortex particle is sufficiently populated with other
vortex particles. If u�t is not zero, the turbulent activities are
evaluated and the core sizes are modified under the following
formula:

s0ut
¼ 4:48364

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt 1þu�t
� �

Re

s
: ð16Þ

The expression proposed by Mustto et al. (1998) is obtained
when u�t ¼ 0 in Eq. (16).

The vorticity transport is simulated numerically by convecting
the particles with the local fluid velocity and using a random walk
displacement wj�(w1j,w2j) to account for the diffusion (molecular
and turbulent) effects. The convection of each vortex particle (j) is
governed by the equation:

dxj

dt
¼ uðxj,tÞ, ð17Þ

and, according to the random walk method (Alcântara Pereira et al.,
2002) the diffusive displacement of each vortex particle (j) is given by

wj � ðw1j,w2jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dt 1þu�t

� �
Re

ln
1

P

� �s
cosð2pQ Þþ isinð2pQ Þ½ �,

j¼ 1,Z, ð18Þ

where i¼
ffiffiffiffiffiffiffi
�1
p

; P and Q are random numbers between 0.0 and 1.0.
The velocity field u(x,t) can be split into three parts (Hirata et al.,

2008):

uðx,tÞ ¼ uiðx,tÞþubðx,tÞþuvðx,tÞ: ð19Þ

The contribution of the incident flow is represented by ui(x,t) in
Eq. (19). For a uniform oncoming flow its components take the form:

ui1 ¼ 1 and ui2 ¼ 0: ð20Þ

The body and moving ground contribute to ub(x,t) in Eq. (19),
which can be obtained, for example, using the boundary element
method (Katz and Plotkin, 1991). The two components can be
written as

ubiðxj,tÞ ¼
XNP

k ¼ 1

ckci
jkðxjðtÞ�xkÞ, i¼ 1,2 and j¼ 1,Z, ð21Þ

where NP is the total number of source flat panels representing the
body and moving ground. It is assumed that the source strength per

length is constant such that ck¼const. and ci
jkðxjðtÞ�xkÞ is the i

component of the velocity induced at vortex j by a unit strength
source flat panel located at k.

The velocity uv(x,t) due to the vortex interactions is obtained
from the vorticity field by means of the Biot–Savart law:

uvðx,tÞ ¼

Z
ðr � GÞðx�x0Þxðx0,tÞdx0

¼

Z
Kðx�x0Þxðx0,tÞdx0 ¼ ðK�xÞðx,tÞ ð22Þ

where K¼r�G is the Biot–Savart kernel, G is the Green’s function
for the Poisson equation and n represents the convolution



Fig. 2. Time history of drag and lift coefficients for an isolated circular cylinder.
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operation. In two dimensions the Biot–Savart law is written
explicitly as

uvðx,tÞ ¼
�1

2p

Z
ðx-x0Þ �oðx0,tÞ

9x-x092
: ð23Þ

The two components of Eq. (23) can be written as

uviðxj,tÞ ¼
XZ

k ¼ 1

Gkci
jkðxjðtÞ�xkðtÞÞ, i¼ 1,2 and j¼ 1,Z, ð24Þ

where Gk is the k-vortex strength and ci
jkðxjðtÞ�xkðtÞÞ is the i

component of the velocity induced at vortex j by a unit strength
vortex located at k.

The pressure calculation starts with the Bernoulli function,
defined by Uhlman (1992) as

Y ¼
p

r
þ

u2

2
, u¼ 9u9: ð25Þ

Kamemoto (1993) used the same function and starting from the
Navier–Stokes equations was able to write a Poisson equation for
the pressure. This equation was solved using a finite difference
scheme. Here the same Poisson equation was derived and its
solution was obtained through the following integral formulation
(Shintani and Akamatsu, 1994):

HYi�

Z
S

YrXiUendS¼

ZZ
O
rXiUðu�xÞdO�

1

Re

Z
S
ðrXi �xÞUendS,

ð26Þ

where H¼1 in the fluid domain, H¼0.5 on the boundaries, X is a
fundamental solution of the Laplace equation and en is the unit
vector normal to the solid surfaces.

The drag and lift coefficients are expressed by

CD ¼�
XNP

k ¼ 1

2ðpk�p1ÞDSk sinbk ¼�
XNP

k ¼ 1

CPDSk sinbk ð27Þ

CL ¼�
XNP

k ¼ 1

2ðpk�p1ÞDSk cosbk ¼�
XNP

k ¼ 1

CPDSk cosbk, ð28Þ

where DSk is the length and bk is the angle of both the kth-panel.

3.2. Turbulence modeling (micro-scale simulation)

The concept of eddy viscosity, ut, as defined by Eq. (7), has to be
considered in order to take into consideration the micro-scale
manifestations of the turbulence.

In the numerical simulation, consider a discrete vortex of the
cloud, which is located at point L. The value of the velocity structure
function F2, which measures the turbulence manifestations, is
statistically sound only if the neighborhood of L is sufficiently
populated with other point vortices. It is sufficient to assume that
this happens if(NV/A)Z5000, where NV is the number of point
vortices in the region of area A, defined by two circumferences
centred in L and with radius r1¼0.1s and r2¼2.0s (Alcântara
Pereira et al., 2002).

It is important to observe that the viscous diffusion of vorticity
was taken care of using the random walk method. In addition to the
molecular diffusion, where necessary, the turbulent diffusion is
accounted for by variation in the core radius.
Table 1
Mean lift and drag coefficients for an isolated circular cylinder.

Re¼1.0�105
CD CL St ACL

Blevins (1984) 1.20 – 0.19 –

Mustto et al. (1998) 1.22 – 0.22 –

Present simulation 1.25 0.02 0.19 1.19
4. Discussion and results

4.1. Isolated cylinder

To have an insight over the numerical results we first considered
the flow around an isolated cylinder. This allows us to analyze its
consistency and define some numerical parameters, as for example,
the number of panels used to define the cylinder. For this particular
configuration, we used NP¼300 source flat panels with constant
density. The simulation was performed up to 1000 time steps with
a value ofDt¼0.05 for dimensionless time step. The time increment
is given by Dt¼2pK/NP, 0oKo1 (Mustto et al., 1998).

The numerical analysis is conducted over a series of small
discrete time steps Dt for each of which a discrete vortex element
Gk is shed from circular cylinder surface element (panel). The
intensity Gk of these newly generated vortices is determined using
the no-slip condition (Eq. (4)). During each time every vortex
element will move to e-layer normal to the panels through a
displacement e¼s0¼0.001d given by Ricci (2002).

The aerodynamic loads computations are evaluated between
t¼30.0 and 50.0 (Fig. 2). The results of the numerical simulation are
presented in Table 1; the results of Blevins (1984) are experimental
ones with 10% uncertainty and those of Mustto et al. (1998) are
obtained using the vortex method associated with the Circle
Theorem without turbulence model. The Strouhal number is
defined as

St ¼
fd

U
, ð29Þ

where f is the detachment frequency of vortex.
The agreement between the present results and the experi-

mental values is very good for the Strouhal number. The present
drag coefficient shows a higher value as compared to the experi-
mental result. The mean numerical lift coefficient, although very
small, is not zero. The differences encountered are attributed
mainly to the inherent three-dimensionality of the real flow for
such a value of the Reynolds number (Re¼1.0�105), which is not



Fig. 4. Near wake behaviour for an isolated circular cylinder at an instant

represented by point A.

Fig. 5. Near wake behaviour for an isolated circular cylinder at an instant

represented by point B.
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modeled in the simulation. On the other hand, the Strouhal number
is insensitive to these three-dimensional effects.

Computed values for time-evolution drag and lift coefficients
are plotted in Fig. 2. Fig. 3 shows plots of instantaneous pressure
distributions on the cylinder surface. Pressure distributions A, B, C,
D and E are related to instants A, B, C, D and E as indicated in Fig. 2.
The vortex shedding effect can be seen in oscillations of the lift and
drag coefficients. As soon as the numerical transient is over and the
periodic steady state regime is reached (from t¼20 on, approxi-
mately) the lift coefficient shows a mean variation between �1.16
and 1.22, approximately, with a dimensionless frequency (Strouhal
number) about twice the frequency of the drag coefficient, in
accordance to the physics involved in the flow. Fig. 2 indicates that
the fluctuation of CD has twice the frequency of CL, because it
fluctuates once for each of upper and lower shedding. For future
discussions the mean amplitude of the lift coefficient curve is
indicated by ACL

and displayed in Table 1.
Instant A is defined by a maximum value of the lift coefficient; at

this moment a large clockwise vortex structure (in fact a cluster of
vortices) is detaching from the upper surface and moving toward
the viscous wake; this structure is indicated in Fig. 4. As this
structure moves downstream it pushes away an anti-clockwise
structure that was stationed behind the cylinder and the drag
coefficient increases.

At instant B the anti-clockwise structure detaches from the
cylinder surface and is incorporated into the viscous wake; this
process creates a low pressure region at the rear part of the cylinder
which is associated to the high drag value (Figs. 3 and 5).

At this moment a new anti-clockwise vortex structure that has
already started at the low side of the cylinder surface can be
observed. The above described sequence of events repeats all over
again. Therefore, the lowest value of the lift coefficient is observed
when another cluster, now rotating in the anti-clockwise direction,
leaves the body surface (point C in Figs. 3 and 6).

Gerrard (1966) has given an equivalent physical description of
the mechanics of the vortex-formation region. A key factor in the
Fig. 3. Instantaneous pressure distributions on
formation of a vortex-street wake is the mutual interaction between
the two separating shear layers. It is postulated that a vortex
continues to grow, fed by circulation from its connected shear
the surface of an isolated circular cylinder.



Fig.6. Near wake behaviour for an isolated circular cylinder at an instant repre-

sented by point C.

Fig. 7. Predicted pressure distributions for an isolated circular cylinder at

Re¼1.0�105.

Table 2
Summary of results for drag coefficient on the flow around a circular cylinder near a

plane boundary.

h/d Nishino (2007)

without

end-plates

Nishino

(2007) with

end-plates

Roshko

et al. (1975)

Present

simulation

0.00 – – 0.795 –

0.05 0.965 – 0.857 1.199

0.10 0.958 – – 1.154

0.15 0.952 – 0.954 1.305

0.20 0.939 – – 1.441

0.25 0.933 – 1.029 1.451

0.30 0.930 – – 1.366

0.35 0.931 – – –

0.40 0.922 – 1.136 1.398

0.45 0.926 1.311 – 1.389

0.50 0.924 1.323 – 1.371

0.60 0.920 1.373 1.281 1.390

0.80 0.899 1.385 – 1.341

0.90 – – 1.266 –

1.00 0.881 1.375 – 1.307

1.50 0.854 1.337 – 1.283

1.80 – – 1.243 –

2.00 0.845 1.304 – 1.246

3.00 – – 1.234 –
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layers, until it is strong enough to draw the opposing shear layers
across the near wake. The approach of oppositely signed vorticity, in
sufficient concentration, cuts off further supply of circulation to the
growing vortex, which is then shed and moves off downstream.

Computed value of the mean pressure coefficient along the
cylinder surface is compared with other results available in the
literature. Fig. 7 shows the mean pressure distribution calculated
for an isolated circular cylinder to be compared with the potential
flow pressure distribution, the pressure distribution presented by
Mustto et al. (1998) and the experimental values presented by
Blevins (1984). The present result agrees very well with the
experimental ones, except in a small neighborhood of y�781.
From Fig. 7 one can observe that the predicted separation point
occurs at around y¼831, while the experimental value (Blevins,
1984) is around y¼821. Another experimental investigation made
by Son and Hanratty (1969) determined a value of y¼781 for the
separation angle. A very interesting observation was made by
Achenbach (1968) for Re¼1.0�105 (subcritical flow); it was found
that the laminar boundary layer separates at y¼781. Just before
transition into the critical region at Re¼2.6�105 the boundary
layer is still laminar and separates at an angle y¼941. Hence
separation takes place in the laminar mode as experimentally
expected for a subcritical Reynolds number forming free shear
layer. An immediate transition to turbulence close to the cylinder is
observed accompanied by a very short recirculation region.
4.2. Circular cylinder near a moving ground

To study the mechanisms of the ground effect a ground running
at the speed of the freestream flow is used. In doing so no boundary
layer develops on the ground surface to interfere with the body
boundary layer and to modify the viscous wake. The key features of
this flow are extensively discussed in the experimental work of
Nishino (2007). Although the fundamental effects of the gap ratio
(h/d) on the flow and force characteristics have been observed, the
relation between destruction of the orderly Kármán vortex street
and the significant drag reduction is still unclear .

For the numerical simulation we used the same 300 panels for
the cylinder surface plus 300 panels to represent the moving
ground. As already mentioned, no vorticity is generated on the
ground surface, which avoids the development of a viscous
boundary layer.

Table 2 presents values of the drag coefficient for circular
cylinder placed at different values of the gap. One can easily
observe three gap regimes given by Nishino (2007): large-gap
(h/d40.50), intermediate-gap (0.35oh/do0.50) and small-gap
(h/do0.35) regimes.

Nishino (2007) measured the drag coefficient at two upper-
subcritical Reynolds numbers (0.4�105 and 1.0�105); according
to him an essentially two-dimensional flow around a cylinder with
end-plates was observed, which was confirmed by analysing the
surface oil flow patterns. Significant effects of the gap ratio were
observed on the near wake structure and also on the time-averaged
drag coefficient. For the large-gap regime, large-scale Kármán-type
vortices were generated just behind the cylinder, resulting in
higher drag coefficients of about 1.3. For the intermediate-gap
regime, the Kármán-vortex shedding became intermittent, and
hence the time-averaged drag coefficient decreased as h/d was
reduced from 0.50 to 0.35. For the small-gap regime a dead fluid
zone was created, bounded by two nearly parallel shear layers, each
producing only small-scale vortices. For the cylinder without end-
plates, on the other hand, no such significant effects of h/d were
observed either on the near wake structure or on the drag
coefficient.

Roshko et al. (1975) measured the time-averaged drag and lift
coefficients for a circular cylinder placed near a fixed wall in a wind
tunnel at Re¼2.0�104, which lies in the upper-subcritical flow
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regime, and showed that CD rapidly decreased and CL increased as
the cylinder came close to the wall.

The column 5 of Table 2 shows the present numerical results for
the time-averaged drag coefficient acting on a circular cylinder in
moving ground. The aerodynamic forces computations are eval-
uated between t¼30 and 50. The following analysis for the drag
behaviour is based on Fig. 8(a).

The results from Nishino (2007) obtained with a running ground
show that the drag acting on the cylinder without end-plates
remains more or less constant. A cylinder with end-plates presents
the same behaviour but at a higher value of the drag coefficient; it is
worth to observe that in this situation, due to experimental
difficulties, Nishino (2007) was not able to perform the tests for
small-gap regime.

The results presented by Roshko et al. (1975) show that drag
decreases as the gap ratio decreases, starting for the intermediate-
gap regime; these results were obtained with a fixed ground.

The results from the present study obtained with a running
ground show that the drag remains almost constant for the large
and intermediate-gap regimes as predicted by the experiments of
Nishino (2007); the values are a little higher, however. For the
small-gap regime the drag decreases as the gap ratio decreases and,
unfortunately, there are no experimental results to compare with.

Fig. 8(b) shows that the lift coefficient curve obtained numeri-
cally follows quite well the values obtained experimentally, except
when 0.20oh/do0.50 where the calculated values are smaller. For
smaller values of the gap ratio there are no experimental values
available when the end-plates are added to the cylinder in the
experiments from Nishino (2007). However, it is worth to observe
that all the experimental and numerical results indicate the same
limiting value for really small-gap.

Fig. 9 shows the instantaneous pressure distributions on the
cylinder surface when the ground is moving; this sample refers to
the gap ratio h/d¼0.45. The pressure distributions A, B, C, D and E
correspond to points A, B, C, D and E indicated in Fig. 10. At the
instant represented by the point A one can clearly observe a low
pressure distribution on the rear surface of the cylinder, leading to
a maximum value of the drag curve; at the same time a high
pressure distribution is found on the lower surface, which leads to a
high lift value. The pressure distribution of instant B is almost
Fig. 8. Time-averaged drag and lift coefficients vs. gap ratio fo
symmetrical with respect to the x-axis while maintaining low
values at the rear part, thus explaining the almost zero value of the
lift curve and a high value of the drag curve. Similar observations
can be made about the pressure distributions and the lift and drag
curves’ behaviour at the other instants.

Some important features of the curves presented in Fig. 10 are
(i)
r diffe
The CD curve oscillates at a frequency that is twice the
frequency of the CL curve.
(ii)
 Due to the proximity of the moving ground, the CD curve
presents a pair of small extreme values (small departure of the
maximum and minimum values from the mean drag value)
followed by a pair of large extreme values (large departure of
the maximum and minimum values from the mean drag value).
(iii)
 As the gap ratio diminishes, the small extreme values become
even smaller and eventually disappear. Therefore, the drag and
lift curves oscillate at the same frequency.
Fig. 11 shows the near field flow pattern at instant A; at this
instant we observe a maximum value of the CL curve and a ‘‘small’’
maximum value of the CD curve (Fig. 10). The analysis of the flow
pattern at instant right before and after instant A shows that a
cluster of vortices is moving on the upper side of the cylinder
surface (leading to a high value of the lift) and pushes the anti-
clockwise vortex structure toward the viscous wake; this vortex
structure is deformed and somehow stretched by the presence of
the nearby moving ground, leading to a ‘‘small’’ maximum value of
the drag curve.

A similar analysis can be done for all the other instants identified
in Fig. 10; the near field flow pattern for those instants is shown in
Figs. 12–14. For instance, in Fig. 12 the near field flow pattern at
instant B is depicted. At this instant a clockwise vortex structure is
observed at the rear part of the cylinder surface; this vortex
structure is also deformed by the action of the previous anti-
clockwise structure that pulls it away from the body surface. This
configuration is one, responsible for a ‘‘small’’ minimum value of
the CD curve, and an almost zero value for the CL curve. Figs. 13
and 14 are associated to instants C and D at which the extreme
rent end conditions: (a) drag force and (b) lift force.



Fig. 9. Instantaneous pressure distribution on the surface of a circular cylinder using moving ground for h/d¼0.45.

Fig. 10. Time history of drag and lift for a circular cylinder using moving ground for

h/d¼0.45.

Fig. 11. Near wake behaviour using moving ground at an instant represented by

point A for h/d¼0.45.
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values of the CD are ‘‘large’’, observing that the near field vortex
structure does not deform.

Fig. 15 shows the time variation of the drag and lift coefficients
for the gap ratio h/d¼0.05. From this figure one can observe the
tendency to the cessation of the periodic vortex shedding due to the
presence of a plane wall placed in the close vicinity of the cylinder.
The variation of the Strouhal number with the gap ratio is
presented in Table 3; it is clear that the Strouhal number decreases
as the gap ratio decreases, with the maximum decrease of about
50%. This decrease agrees with the fast decay of the time-averaged

drag coefficient in experiments from Nishino (2007).
Fig. 16 is associated to instant C in which the extreme value of
the CD curve is high and Fig. 17 shows plots of instantaneous
pressure distributions on the cylinder surface. It is clear at instant C
from Fig. 17 that the pressure distribution generates a downward
force, which tends to push the cylinder toward the wall boundary.
The numerical result for the gap ratio h/d¼0.05 suggests that the
drag reduction of a circular cylinder in ground effect is directly
related to the cessation of the Kármán vortex shedding. Further
investigations are required, however, to fully resolve this issue.

Fig. 18 shows the position of the wake vortices for the gap ratio
h/d-N at the last step of the computation (t¼50) where we can
clearly observe formation and shedding of large eddies in the wake.
We can also visualize the vortex pairing process, where the vortices
rotate in opposite directions and are connected to each other by a
vortex sheet. The rightmost part of the wake corresponds to the
numerical transient that occurs before a periodic steady state
regime is reached. Finally, for a not so small gap (Fig. 19), the wake
seems to be formed by a series of ‘‘mushroom’’ type vortex
structure, which will be destroyed far away by the moving ground.



Fig. 12. Near wake behaviour using moving ground at an instant represented by

point B for h/d¼0.45.

Fig. 13. Near wake behaviour using moving ground at an instant represented by

point C for h/d¼0.45.

Fig. 14. Near wake behaviour using moving ground at an instant represented by

point D for h/d¼0.45.

Fig. 15. Time history of drag and lift for a circular cylinder using moving ground for

h/d¼0.05.

Table 3
Present simulation: Strouhal number for different distances between the circular

cylinder and the plane boundary.

h/d St

0.05 0.10

0.10 0.13

0.15 0.16

0.20 0.17

0.25 0.20

0.30 0.20

0.40 0.20

0.45 0.20

0.50 0.20

0.60 0.20

0.80 0.20

1.00 0.21

1.50 0.21

2.00 0.21
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Therefore, the moving plane has significant effect on the vortex
shedding.

Further investigations are necessary to fully understand the
drag behaviour as well as the interaction between boundary layers
when the gap is very narrow in comparison with the cylinder
diameter: Fig. 20 gives us some hints.
Fig. 16. Near wake behaviour using moving ground at an instant represented by

point C for h/d¼0.05.
5. Conclusions

In this study of vortex shedding, destruction of the vortex street
and drag reduction of a circular cylinder near a moving ground have
employed a numerical Lagrangian technique, called the vortex
method. All the simulations are carried out with a high value of the
Reynolds number of 1.0�105 using turbulence modeling. The
present numerical results are in good agreement with the limited
amount of experimental data available in the literature. The use of
global and local quantities combined to the near field flow pattern
observations can be used to understand the complex mechanisms
that lead to the origin and the time evolution of the aerodynamic
loads. The instantaneous pressure distribution on the cylinder
surface allows one to follows, in time, its evolution. This feature can
be of importance when the body is oscillating near a ground plane
and in many other situations of practical interest. It becomes
obvious that one has a powerful tool if the time evolution of the
pressure distribution is analyzed simultaneously with the inte-
grated loads (lift and drag).

As already used in the experimental work dealing with the
aerodynamic of high speed racing cars, the moving ground model
used in the numerical simulations (although with a simple



Fig. 17. Instantaneous pressure distribution on the surface of a circular cylinder using moving ground for h/d¼0.05.

Fig. 18. Final position of the vortices for the flow past an isolated circular cylinder at Reynolds number of 1.0�105.

Fig. 19. Final position of the vortices for the flow past a circular cylinder in moving ground for h/d¼0.45 at Reynolds number of 1.0�105.

Fig. 20. Final position of the vortices for the flow past a circular cylinder in moving ground for h/d¼0.05at Reynolds number of 1.0�105.
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geometrical form body) is able to predict the main features of the
flow around a body in close proximity of a flat surface. The
methodology developed in this paper is greatly simplified by the
utilization of the vortex method.
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