REVIEW Lecture 17:

- Stability (Heuristic, Energy and von Neumann)
- Hyperbolic PDEs and Stability, CFL condition, Examples
- **Elliptic PDEs**
 - FD schemes: direct and iterative
 - Iterative schemes, 2D: Laplace, Poisson and Helmholtz equations
 - Boundary conditions, Examples
 - Higher order finite differences
 - Irregular boundaries: Dirichlet and von Neumann BCs
 - Internal boundaries
- **Parabolic PDEs and Stability**
 - Explicit schemes
 - Von Neumann
 - Implicit schemes: simple and Crank-Nicholson
 - Von Neumann
 - Examples
2.29 Numerical Fluid Mechanics
Fall 2011 – Lecture 18

REVIEW Lecture 17, Cont’d:

• Parabolic PDEs and Stability, Cont’d
 – Explicit schemes (1D-space)
 • Von Neumann
 – Implicit schemes (1D-space): simple and Crank-Nicholson
 • Von Neumann
 – Examples
 – Extensions to 2D and 3D
 • Explicit and Implicit schemes
 • Alternating-Direction Implicit (ADI) schemes

Finite Volume Methods

\[\frac{d}{dt} \int_{CV_{\text{fixed}}} \rho \phi dV + \int_{CS} \rho \phi (\vec{v} \cdot \vec{n}) dA = -\int_{CS} \vec{q} \cdot \vec{n} dA + \sum \int_{CV_{\text{fixed}}} s_{\phi} dV \]

• Integral and conservative forms of the cons. laws
• Introduction

\[\frac{\partial \rho \phi}{\partial t} + \nabla \cdot (\rho \phi \vec{v}) = -\nabla \cdot \vec{q} + s_{\phi} \]
TODAY (Lecture 18): FINITE VOLUME METHODS

• Introduction to FV Methods

• Approximations needed and basic elements of a FV scheme
 – FV grids
 – Approximation of surface integrals (leading to symbolic formulas)
 – Approximation of volume integrals (leading to symbolic formulas)

• Summary: Steps to step-up FV scheme

• Examples: One Dimensional examples
 – Generic equations
 – Linear Convection (Sommerfeld eqn.): convective fluxes
 • 2nd order in space, 4th order in space, links to CDS
 – Unsteady Diffusion equation: diffusive fluxes
 • Two approaches for 2nd order in space, links to CDS
References and Reading Assignments

FINITE VOLUME METHODS: Introduction

• Finite Difference Methods are based on a discretization of the differential form of the conservation equations.

• Finite Volume Methods are based on a discretization of the integral forms of the conservation equations:

\[
\frac{d}{dt} \int_{CV} \rho \phi dV + \int_{CS} \rho \phi (\vec{v} \cdot \vec{n}) dA = \int_{CS} -q_{\phi} \cdot \vec{n} \ dA + \sum \int_{CV} s_{\phi} \ dV
\]

Advective (convective) fluxes Other transports (diffusion, etc) Sum of sources and sinks terms (reactions, etc)

• Basic ideas/steps to set-up a FV scheme:
 – Grid generation (CVs):
 • Divide the simulation domain into a set of discrete control volumes (CVs)
 • For maintenance of conservation, important that CVs don’t overlap
 – Discretize the integral/conservation equation on CVs:
 • Satisfy the integral form of the conservation law to some degree of approximation for each of the many contiguous control volumes
 – Solve the resultant discrete integral/flux equations
FV METHODS: Introduction

• FV approach has two main advantages:
 – Ensures that the discretization is conservative, locally and globally
 • Mass, Momentum and Energy are conserved in a discrete sense
 • In general, if discrete equations are summed over all CVs, the global conservation equation are retrieved (surface integrals cancel out)
 • These local/global conservations can be obtained from a Finite Difference (FD) formulation, but they are natural/direct for a FV formulation
 – Does not require a coordinate transformation to be applied to irregular meshes
 • Can be applied to unstructured meshes (arbitrary polyhedra in 3D or polygons in 2D)

• In our examples, we will work with

\[
\frac{d}{dt} \int_{V(t)} \rho \phi dV + \int_{S(t)} \rho \phi \cdot (\vec{v} \cdot \vec{n}) dA = -\int_{S(t)} \vec{q}_\phi \cdot \vec{n} dA + \int_{V(t)} s_\phi dV
\]

where \(V(t) \) is any discrete control volume. We will assume for now that they don’t vary in time: \(V(t) = V \)
FV METHODS
Several Approximations Needed

• To integrate discrete CV equation:

\[
\frac{d}{dt} \int_V \rho \phi dV + \int_S \rho \phi (\vec{v}.\vec{n}) dA = -\int_S q_\phi \vec{n} dA + \int_V S_\phi dV
\]

– A “time-marching method” needs to be used to integrate \(\Phi = \int_V \rho \phi dV \) to the next time step(s)

\[
\frac{d}{dt} \int_V \rho \phi dV = \frac{d\Phi}{dt}
\]

– Total flux estimate \(F_\phi \) required at the boundary of each CV

\[
\int_S F_\phi \vec{n} dA = \int_S \rho \phi (\vec{v}.\vec{n}) dA + \int_S q_\phi \vec{n} dA
\]

 e.g. \(F_\phi = \) advection + diffusion fluxes

– Total source term (sum of sources) must be integrated over each CV

\[
S_\phi = \int_V s_\phi dV
\]

• Hence cons. eqn. becomes:

\[
\frac{d\Phi}{dt} + \int_S F_\phi \vec{n} dA = S_\phi
\]

• These needs lead to basic elements of a FV scheme, but we need to relate \(\Phi \) and \(\phi \)
FV METHODS
Several Approximations Needed, Cont’d

• “Time-marching method” for CV equation: \[\frac{d\Phi}{dt} + \int_s \overrightarrow{F}_\phi \cdot \vec{n} \, dA = S_\phi \]
 – The average of \(\phi \) over a CV cell, \(\bar{\Phi} = \frac{1}{V} \int_v \rho \phi dV \), satisfies

\[V \frac{d\bar{\Phi}}{dt} + \int_s \overrightarrow{F}_\phi \cdot \vec{n} \, dA = S_\phi \]

(since \(\frac{d}{dt} \int_v \rho \phi dV = \frac{d}{dt} (\frac{1}{V} \int_v \rho \phi dV) \))

for \(V \) fixed in time.

– Hence, after discrete time-integration, we would have updated the cell-averaged quantities \(\bar{\Phi} \)

• For the total flux estimate \(F_\phi \) at CV boundary: “Reconstruction” of \(\phi \) from \(\bar{\Phi} \)
 – Fluxes are functions of \(\phi \) => to evaluate them, we need to represent \(\phi \) within the cell
 – This can be done by a piece-wise approximation which, when averaged over the CV, gives back \(\bar{\Phi} \)
 – But, each cell has a different piece-wise approximation => fluxes at boundaries can be discontinuous. Two example of remedies:
 • Take the average of these fluxes (this is a non-dissipative scheme, analogous to central differences)
 • Flux-difference splitting
FV METHODS
Basic Elements of FV Scheme

1. Given Φ for each CV, construct an approximation to $\phi(x, y, z)$ in each CV and evaluate fluxes F_ϕ
 - Find ϕ at the boundary using this approximation, evaluate fluxes F_ϕ
 - This generally leads to two distinct values of the flux for each boundary

2. Apply some strategy to resolve the flux discontinuity at the CV boundary to produce a single F_ϕ over the whole boundary

3. Integrate the flux F_ϕ to obtain $\int_S F_\phi \cdot \vec{n} \, dA$: Surface Integrals

4. Compute S_ϕ by integration over each CV: Volume Integrals

5. Advance the solution in time to obtain the new values of Φ

$$V \frac{d\Phi}{dt} + \int_S F_\phi \cdot \vec{n} \, dA = S_\phi$$

Time-Marching
Different Types of FV Grids

- Usual approach (used here):
 - Define CVs by a suitable grid
 - Assign computational node to CV center
 - Advantages: nodal values will represent the mean over the CV at high(er) accuracy (second order) since node is centroid of CV

- Other approach:
 - Define nodal locations first
 - Construct CVs around them (so that CV faces lie midway between nodes
 - Advantage: CDS approximations of derivatives (fluxes) at boundaries are more accurate (faces are midway between two nodes)
Different Types of FV Grids, Cont’d

- Other specialized variants
 - Cell centered vs. Cell vertex

- Structured:
 - All mesh points lie on intersection two/three lines

- vs. Unstructured:
 - Meshes formed of triangular or quadrilateral cells in 2D, or tetrahedra or pyramids in 3D
 - Cells are identified by their numbers (can not be identified by coordinate lines, e.g. \(i,j\))

- Remarks
 - Discretization principles the same for all grid variants
 - => For now, we work with (a): Cell centered (\(i,j\) is the center of the cell, similar to FD)
 - In 3D, a cell has a finite volume (but if unit distance perpendicular to plane is assumed, it behaves as 2D)
 - What changes are the relations between various locations on the grid and accuracies
Approximation of Surface Integrals

• Typical (cell centered) 2D and 3D Cartesian CV (see conventions on 2 figs)

• Total/Net flux through CV boundary
 – Is sum of integrals over four (2D) or six (3D) faces:
 \[\int_S \vec{F}_\phi \cdot \vec{n} \, dA = \sum_k \int_{S_k} f_\phi \, dA \]
 – For now, we will consider a single typical CV surface, the one labeled ‘e’

• To compute surface integral, \(\phi \) is needed everywhere on surface, but \(\overline{\Phi} \) only known at nodal (CV center) values \(\Rightarrow \) two successive approximations needed:
 – Integral estimated based on values at one or more locations on the cell face
 – These cell faces values approximated in terms of nodal values
1D surfaces (2D CV)

- Goal: estimate \(F_e = \int_{S_e} f \phi \, dA \)
- Simplest approximation:
 midpoint rule (2nd order)

 - \(F_e \) is approximated as a product of the integrand at cell-face center (itself approximation of mean value over surface) and the cell-face area

\[
F_e = \int_{S_e} f \phi \, dA = \overline{f_e} S_e = f_e S_e + O(\Delta y^2) \approx f_e S_e
\]

 - Since \(f_e \) is not available, it has to be obtained by interpolation
 - Has to be computed with 2nd order accuracy to preserve accuracy of midpoint rule
Approximation of Surface Integrals, Cont’d

- Goal: estimate \(F_e = \int_{S_e} f_\phi \, dA \)

- Another 2^{nd} order approximation:

 Trapezoid rule

 - \(F_e \) is approximated as:
 \[
 F_e = \int_{S_e} f_\phi \, dA \approx S_e \frac{f_{ne} + f_{se}}{2} + O(\Delta y^2)
 \]

 - In this case, it is the fluxes at the corners \(f_{ne} \) and \(f_{se} \) that need to be obtained by interpolation

 - Have to be computed with 2^{nd} order accuracy to preserve accuracy

- Higher-order approximation of surface integrals require more than 2 locations

 - Simpson’s rule (4^{th} order approximation):
 \[
 F_e = \int_{S_e} f_\phi \, dA \approx S_e \frac{f_{ne} + 4f_e + f_{se}}{6} + O(\Delta y^4)
 \]

 - Values needed at 3 locations

 - To keep accuracy of integral: e.g. use cubic polynomials to estimate these values from \(\Phi_p \)’s nearby

Notation used for a Cartesian 2D and 3D grid. Image by MIT OpenCourseWare.
Approximation of Surface Integrals, Cont’d

2D surface (for 3D problems)

• Goal: estimate \(F_e = \int_{S_e} f \phi \, dA \) for 3D CV

• Simplest approximation: still the midpoint rule (2\(^{nd}\) order)
 – \(F_e \) is approximated as:

\[
F_e = \int_{S_e} f \phi \, dA \approx S_e f_e + O(\Delta y^2, \Delta z^2)
\]

• Higher-order approximation (require values elsewhere e.g. at vertices) possible but more complicated to implement for 3D CV

• Integration easy if variation of \(f_e \) over 2D surface is assumed to have specific easy shape to integrate, e.g. 2D polynomial interpolation, then integration
Approximation of VOLUME Integrals

• Goal: estimate

\[S_\phi = \int_V s_\phi \, dV \]

\[\overline{\Phi} = \frac{1}{V} \int_V \rho \phi \, dV \]

• Simplest approximation: product of CV volume with the mean value of the integrand (approximated by the value at the center of the node \(P \))

 – \(S_\phi \) approximated as:

\[S_\phi = \int_V s_\phi \, dV = \overline{s_\phi} \, V \approx s_\phi \, V \]

• Exact if \(s_\phi \) is constant or linear within CV

• 2nd order accurate otherwise

• Higher order approximation require more locations than just the center
Approximation of VOLUME Integrals

- Goal: estimate \(S_\phi = \int_V s_\phi \, dV \)

\[\Phi = \frac{1}{V} \int_V \rho \phi \, dV \]

- Higher order approximations:
 - Requires \(\Phi \) values at other locations than
 - Obtained either by interpolating nodal values or by using shape functions/polynomials

- Consider 2D case (volume integral is a surface integral) using shape functions
 - Bi-quadratic shape function leads to a 4\(^{th}\) order approximation (9 coefficients)
 \[s(x, y) = a_0 + a_1 x + a_2 y + a_3 x^2 + a_4 y^2 + a_5 xy + a_6 x^2 y + a_7 xy^2 + a_8 x^2 y^2 \]
 - 9 coefficients obtained by fitting \(s(x,y) \) to 9 node locations (center, corners, middles)
 - For Cartesian grid, this gives:
 \[S_p = \int_V s_\phi \, dV = \Delta x \Delta y \left[a_0 + \frac{a_3}{12} \Delta x^2 + \frac{a_4}{12} \Delta y^2 + \frac{a_8}{144} \Delta x^2 \Delta y^2 \right] \]

Only four coefficients (linear dependences cancel), but they still depend on the 9 nodal values.
Approximation of VOLUME Integrals, Cont’d
2D and 3D

• 2D case example, Cont’d
 – For a uniform Cartesian grid, one obtains the 2D integral as a function of the 9 nodal values:

\[
S_p = \int_V s_\phi \, dV = \frac{\Delta x \Delta y}{36} \left[16s_p + 4s_s + 4s_n + 4s_w + 4s_e + s_{se} + s_{sw} + s_{ne} + s_{nw} \right]
\]

 – Since only value at node P is available, one must interpolate to obtain values at surface locations
 – Has to be at least 4th order accurate interpolation to retain order of integral approximation

• 3D case:
 – Techniques are similar to 2D case: above 4th order approx directly extended
 – For Higher Order
 • Integral approximation formulas are more complex
 • Interpolation of node values are more complex
Approx. of Surface/Volume Integrals:
Classic symbolic formulas

• Surface Integrals \[F_e = \int_{S_e} f_\phi \, dA \]

– 2D problems (1D surface integrals)
 • Midpoint rule (2nd order): \[F_e = \int_{S_e} f_\phi \, dA = \bar{f}_e S_e = f_e S_e + O(\Delta y^2) \approx f_e S_e \]
 • Trapezoid rule (2nd order): \[F_e = \int_{S_e} f_\phi \, dA \approx S_e \frac{(f_{ne} + f_{se})}{2} + O(\Delta y^2) \]
 • Simpson’s rule (4th order): \[F_e = \int_{S_e} f_\phi \, dA \approx S_e \frac{(f_{ne} + 4f_e + f_{se})}{6} + O(\Delta y^4) \]

– 3D problems (2D surface integrals)
 • Midpoint rule (2nd order): \[F_e = \int_{S_e} f_\phi \, dA \approx S_e f_e + O(\Delta y^2, \Delta z^2) \]
 • Higher order more complicated to implement in 3D

• Volume Integrals: \[S_\phi = \int_V s_\phi \, dV, \quad \Phi = \frac{1}{V} \int_V \rho \phi dV \]

– 2D/3D problems, Midpoint rule (2nd order): \[S_p = \int_V s_\phi \, dV = \bar{s}_p V \approx s_p V \]

– 2D, bi-quadratic (4th order, Cartesian): \[S_p = \frac{\Delta y}{36} \left[16 s_p + 4 s_s + 4 s_a + 4 s_w + 4 s_e + s_{se} + s_{sw} + s_{ne} + s_{nw} \right] \]
Summary: 3 basic steps to set-up a FV scheme

• Grid generation ("create CVs")

• Discretize integral/conservation equation on CVs

 – This integral eqn. is: \(\frac{d\Phi}{dt} + \int_S \overline{F}_\phi \cdot \vec{n} \, dA = S_\phi \)

 – Which becomes for \(V \) fixed in time: \(V \frac{d\overline{\Phi}}{dt} + \int_S \overline{F}_\phi \cdot \vec{n} \, dA = S_\phi \)

 where \(\overline{\Phi} = \frac{1}{V} \int_V \rho \phi dV \) and \(S_\phi = \int_V s_\phi \, dV \)

 – This implies:

 • The discrete state variables are the averaged values over each cell (CV): \(\overline{\Phi}_p \)'s

 • Need rules to compute surface/volume integrals as a function of \(\phi \) within CV

 • Evaluate integrals as a function of \(\phi_e \) values at points on and near CV.

 • Need to interpolate to obtain these \(\phi_e \) values on and near CV from averaged \(\overline{\Phi}_p \)'s of nearby CVs

 • Other approach: impose piece-wise function \(\phi \) within CV, ensures that it satisfies \(\overline{\Phi}_p \)'s constraints, then evaluate integrals (surface and volume)

 • Select scheme to resolve/address discontinuities

• Solve resultant discrete integral/flux eqns: (Linear) algebraic system for \(\overline{\Phi}_p \)'s
One-Dimensional Examples: Generic 1D FV

• Grid generation (fixed CVs)
 – Consider equispaced grid: \(x_j = j\Delta x \)
 – Control volume \(j \) extends from \(x_{j-1/2} \) to \(x_{j+1/2} \)
 – Boundary values are: \(\phi_{j\pm1/2} = \phi(x_{j\pm1/2}) \)
 – Boundary total fluxes (convective+diffusive) are: \(f_{j\pm1/2} = f(\phi_{j\pm1/2}) \)
 – Average cell and source values:
 \[
 \bar{\Phi}_j(t) = \frac{1}{V} \int_V \rho \phi \, dV = \frac{1}{\Delta x} \int_{x_{j-1/2}}^{x_{j+1/2}} \phi(x,t) \, dx
 \]
 \[
 S_j(t) = \int_V s_{\phi_j} \, dV = \int_{x_{j-1/2}}^{x_{j+1/2}} s_{\phi}(x,t) \, dx
 \]

• Discretize generic integral/conservation equation on CVs
 – The integral form \(V \frac{d\bar{\Phi}}{dt} + \int_S \bar{F}_\phi \bar{n} \, dA = S_\phi \) becomes:
 \[
 \frac{d}{dt} \left(\Delta x \, \bar{\Phi}_j \right) + f_{j+1/2} - f_{j-1/2} = \int_{x_{j-1/2}}^{x_{j+1/2}} s_{\phi}(x,t) \, dx
 \]
One-Dimensional Examples, Cont’d

Note: Cell-average vs. Center value

• With $\xi = x - x_j$ and a Taylor series expansion

$$
\Phi_j(t) = \frac{1}{\Delta x} \int_{x_{j-1/2}}^{x_{j+1/2}} \phi(x,t)dx
= \frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} \left[\phi_j + \xi \frac{\partial \phi}{\partial x} \bigg|_j + \frac{\xi^2}{2} \frac{\partial^2 \phi}{\partial x^2} \bigg|_j + R_2 \right] d\xi
= \phi_j + \frac{\Delta x^2}{24} \frac{\partial^2 \phi}{\partial x^2} \bigg|_j + O(\Delta x^4)
$$

$\Rightarrow \quad \Phi_j(t) = \phi_j + O(\Delta x^2)$

• Thus: cell-average value and center value differ only by second order term
One-Dimensional Example I

Linear Convection (Sommerfeld) Eqn:

\[\frac{\partial \phi(x,t)}{\partial t} + c \frac{\partial \phi(x,t)}{\partial x} = 0 \]

- With convection only, our generic 1D eqn.

\[\frac{d(\Delta x \Phi_j)}{dt} + f_{j+1/2} - f_{j-1/2} = \int_{x_{j-1/2}}^{x_{j+1/2}} s_\phi(x,t) \, dx \]

becomes:

\[\frac{d(\Delta x \Phi_j)}{dt} + f_{j+1/2} - f_{j-1/2} = 0 \]

- Compute surface/volume integrals as a function of \(\phi \) within CV
 - Here impose/choose first piecewise-constant approximation to \(\phi(x) \):
 \[\phi(x) = \Phi_j \quad \forall \ x_{j-1/2} \leq x \leq x_{j+1/2} \]
 - This gives simple flux terms. The only issue is that they differ depending on the cell from which the flux is computed:
 \[f_{j+1/2}^L = f(\Phi_{j+1/2}^L) = c\Phi_j \]
 \[f_{j+1/2}^R = f(\Phi_{j+1/2}^R) = c\Phi_{j+1} \]
 \[f_{j-1/2}^L = f(\Phi_{j-1/2}^L) = c\Phi_{j-1} \]
 \[f_{j-1/2}^R = f(\Phi_{j-1/2}^R) = c\Phi_j \]
One-Dimensional Example I
Linear Convection (Sommerfeld) Eqn, Cont’d

• Now, we have obtained the fluxes at the CV boundaries in terms of the CV-averaged values

• We need to resolve the flux discontinuity ⇒ average values of the fluxes on either side, leading the (2nd order) estimates:

\[\hat{f}_{j-1/2} = \frac{f_{j-1/2}^L + f_{j-1/2}^R}{2} = \frac{c\phi_{j-1} + c\phi_j}{2} \]

\[\hat{f}_{j+1/2} = \frac{f_{j+1/2}^L + f_{j+1/2}^R}{2} = \frac{c\phi_j + c\phi_{j+1}}{2} \]

• Substitute into integral equation

\[\frac{d}{dt}(\Delta x \bar{\phi}_j) + f_{j+1/2} - f_{j-1/2} \approx \frac{d}{dt}(\Delta x \bar{\phi}_j) + \hat{f}_{j+1/2} - \hat{f}_{j-1/2} = \frac{d}{dt}(\Delta x \bar{\phi}_j) + \frac{c\phi_j + c\phi_{j+1} - c\phi_{j-1} + c\phi_j}{2} \]

\[\Rightarrow \Delta x \frac{d\phi_j}{dt} + \frac{c\phi_{j+1} - c\phi_{j-1}}{2} = 0 \]

• With periodic BCs, storing all cell-averaged values into a vector \(\bar{\Phi} \)

\[d \frac{\bar{\Phi}}{dt} + \frac{c}{2\Delta x} B_p(-1,0,1)\bar{\Phi} = 0 \]

(where \(B_p \) is a circulant tri-diagonal matrix, P for periodic)
• The resultant linear algebraic system is circulant tri-diagonal (for periodic BCs)

\[\frac{d}{dt} \Phi + \frac{c}{2\Delta x} B_\rho((-1,0,1))\Phi = 0 \]

• This is as the 2nd order CDS!, except that it is written in terms of cell averaged values instead of center values
 – It is also 2nd order in space
 – Has same properties as classic CDS:
 • Non-dissipative (check Fourier analysis or eigenvalues of \(B_\rho \), which are imaginary), but can provide oscillatory errors
 • Stability (recall tables for FD schemes, linear convection eqn.) of time-marching
 – If centered in time, centered in space, explicit: stable with CFL condition: \(\frac{c \Delta t}{\Delta x} \leq 1 \)
 – If implicit in time: unconditionally stable for all \(\Delta t, \Delta x \)
2.29 Numerical Fluid Mechanics
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.