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Example: Rigid Body

Frame 1:

xi = [ A1 ]2×4

[
Xi

1

]
4×1

[x1· · ·xn ] = [ A1 ]2×4

[
X1 · · ·Xn

1 · · · 1

]
4×n

Frame 2:

yi = [ A2 ]2×4

[
Xi

1

]
4×1
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Example: Rigid Body
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Example: Rigid Body
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Subspace Clustering

Data lying on a mixture of subspaces.
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Subspace Clustering

Data lying on a mixture of subspaces.

No. of subspaces + dimensions + bases + segmentation
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Applications

Motion Segmentation [Rene Vidal et al. 2008]

Video Shot Segmentation [Le Lu and R. Vidal 2006]

Illumination Invariant Clustering [J. Ho et al. 2003]

Image Segmentation [Alen Yang et al. 2008]

Image Representation and Compression [Wei Hong et al. 2005]

Linear Hybrid Systems Identification [Rene Vidal et al. 2003]
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Solutions

Random Sample Consensus (RANSAC) [Martin Fischler and R. Bolles 1981]

Mixture of Probabilistic PCA [Michael Tipping and C. Bishop 1999]

Generalized PCA (GPCA) [Rene Vidal et al. 2005]

Locally Linear Manifold Clustering (LLMC) [Alvina Goh and R. Vidal 2007]

Agglomerative Lossy Compression (ALC) [Yi Ma et al. 2007]

Sparse Subspace Clustering (SSC) [Ehsan Elhamifar and R. Vidal 2009]

Low-Rank Subspace Clustering (LLR) [Guangcan Li et al. 2010]
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Sparse Representation

Represent y as a linear combination of the smallest possible
subset of the vectors {x1, x2, . . . , xn}.

min‖a‖0 s.t. y = Xa

where X = [x1x2 · · · xn].

NP-hard

Use L1-minimization:

min‖a‖1 s.t. y = Xa

L1/L0 equivalence
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Main Theorem

For each xi solve:

ai = arg min ‖a‖1 s.t. xi = Xa, ai = 0

Construct a graph whose nodes are xi and each node xi is
connected to the node xj if the j-th element of ai is nonzero.

Theorem

If the subspaces are independent, the graphs of different subspaces
are disconnected.

Find the connected components
In practice spectral clustering using [a1a2 . . . an]
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Example

Figure: An example of an SSC graph
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Noise and Outliers

Noise

min‖a‖1+λ‖e‖2

s.t.

xi = X−ia + e

ai = 0

Outliers

min‖a‖1+λ‖e‖1

s.t.

xi = X−ia + e

ai = 0
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Open Problems

Noise and Outliers

Extension to manifolds

Graph Connectivity in each subspace
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A Simple Example
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Preparation
Adding Negative Points

xi =
∑

j 6=i ajxj X
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Preparation

ai = arg min ‖a‖1

s.t.

xi = Xa,

ai = 0

ai = arg min 1Ta

s.t.

xi = X± a,

a � 0,

ai = 0
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Geometry of Polytopes

L1 minimization and geometry of polytopes [David Donoho 2005]

xi = X−ib = X−i
b

‖b‖1
· ‖b‖1

xi = X−i pα,

where

‖p‖= 1,p � 0

α : to be minimized

X−i p : convex hull of X−i
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Geometry of Polytopes

maximize β s.t. βxi ∈ hull(X−i )

21/35



Assumptions

Indivisible subspaces?

Degenerate Cases

Assumption

No d points lie in a (d−1)-dimensional subspace.

Assumption

The facet of each polytope(X−i ) on which yi lies has exactly d
points on it.
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Neighbourhood Cones

Theorem

Two points are neighbours iff their neighbourhood cones strictly
intersect.
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Projection on Unit Hypersphere
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2D Case
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3D Case
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3D Case

residual holes for one connected component

Topologically open disks.
Area: < half-sphere. (⇐ Gauss-Bonnet Theorem)
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What about d ≥ 4?

No residual holes

Search for counterexamples
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Towards a Counterexample

Observations from 3D
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≥4D case
Counterexample

Data around two great circles:

[cos θ, sin θ, 0, 0]T

[ 0, 0, cos θ, sin θ]T

X± = XC1 ∪ XC2

XC1 : [cos kπ
m , sin kπ

m , ± δ, ± δ]T

XC2 : [ ± δ, ± δ, cos kπ
m , sin kπ

m ]T

29/35



≥4D case
Counterexample

Disconnected for:

δ ∈ (∆,
√

2
2
−∆)

∆ = f(m)

(a) δ = ∆ + ε (b) δ = ∆ + ε

(c) δ =
√

2
2 −∆− ε (d) δ =

√
2

2 −∆ + ε

Figure: Orthographic projection to 3D
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Is Connectivity Generic?

In the counterexample ray(xi ) hits the interior of the facet.
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Conclusion

The importance of Subspace Clustering

Advantages of Sparse Subspace Clustering

For d = 2 and d = 3 it will not fail,

Caution must be taken for d ≥ 4,

A post processing stage, etc.
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Thanks
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Questions?

? ? ? ?
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