

Assembly and Machine
Language - Spring 1397 (2018)
Final Exam

Instructor:
B. Nasihatkon

Name: ID: Khordad 1397 - June 2018

● All programs are written in the 32-bit mode on an x86 platform.

Question 1 The C function on the left receives an array of integers plus its length as
arguments and returns the sum of squared elements of the array. Complete the assembly
program on the right to call the sumsqr function on the array "array" defined in the data
segment, and then print the computed sum of squared elements using the printf function
from the C standard library. You are not allowed to use the print_int function. (20 points)

#include <stdio.h>

int sumsqr(int a[], int n) {
 int s = 0;

 for (int i = 0; i < n; i++)
 s += a[i] * a[i];

 return s;
}

label command arguments

segment .data

array: dd 1, 2, -2, 4, -3, 2

segment .text

extern

global

main:

 mov eax, 1

 int 0x80

Question 2 Here, we do the opposite of what was done in Question 1. Now, the sumsqr
function is written in assembly and is called from C. On the left you can see how the
sumsqr function is called. Complete the assembly code on the right to write the body of the
sumsqr function. Use appropriate directives (global, extern, etc.) if needed. Observe all C
calling conventions. (20 points)

#include <stdio.h>

extern int sumsqr(int a[],int n);

int main() {
 int array[6] = {1,2,-2,4,-3,2};

 int s = sumsqr(array,6);

 printf("%d\n", s);

 return 0;
}

label command arguments

segment .text

sumsqr:

 push ebp

 mov ebp, esp

loop1: lodsd

 loop loop1

K. N. Toosi University of Technology

Question 3 (20 points)

segment .text

f:
 push ebp
 mov ebp, esp

 mov ecx, [ebp+8]
 cmp ecx, 0
 jg recur
 mov eax, 1
 jmp endl
recur:
 dec ecx
 push ecx
 call f
 add esp, 4

 shl eax, 1

endl:

 pop ebp
 ret

A) Analyse the assembly function f
defined on the left. What does it compute?
Ignore the empty boxes for now. (12
points)

B) Change the function f so it can be
called from within a C program (like
below). Fill in the empty boxes in the
assembly program to do so. If no changes
are needed, mention this explicitly in the
corresponding box. (8 points)

#include <stdio.h>

extern int f(int n);

int main() {

 printf("%d\n", f(10));

 return 0;
}

Question 4 Consider a 3D vector . The size of the vector is equal tox, y, z]u = [

. The corresponding normalized vector is|| u || = √x y2 + 2 + z2
In the following assembly program, the vector has/||u|| [x / ||u||, y / ||u||, z / ||u||].ū = u = u

been stored in data segment as double precision floating point variables (in addresses u,
u+8 and u+16). Write an assembly program to normalize the vector u. The normalization
must be done in-place, that is the normalized vector must also get stored in addressesū
u, u+8 and u+16. (25 points)

K. N. Toosi University of Technology

label command arguments

segment .data

u: dq 4.0, 3.0, 2.0

segment .text

label command arguments

Question 5 What does the following C code print? Write down the output in the box on
the right. Do not forget the new lines. (15 points)

int arr[10] = {10,20,30,40,50,60,70,80,90,100};
int cms[10];

asm volatile ("mov ebx, 0 ;"
 "cld ;"
 "loop1: ;"
 "lodsd ;"
 "add eax, ebx ;"
 "stosd ;"
 "mov ebx, eax ;"
 "loop loop1 ;"
 :

 :"S" (arr), "D" (cms), "c" (10)
 :"memory", "ebx", "eax");

for (int i = 0; i < 10; i++)
 printf("%3d, %3d\n", arr[i], cms[i]);

K. N. Toosi University of Technology

