| Assembly and Machine <br> Language - Spring 1397 (2018) <br> Final Exam | Instructor: <br> B. Nasihatkon | Khordad 1397-June 2018 |
| :--- | :--- | :--- |
| Name: | ID: |  |

- All programs are written in the 32-bit mode on an x86 platform.

Question 1 The C function on the left receives an array of integers plus its length as arguments and returns the sum of squared elements of the array. Complete the assembly program on the right to call the sumsqr function on the array "array" defined in the data segment, and then print the computed sum of squared elements using the printf function from the C standard library. You are not allowed to use the print_int function. (20 points)


Question 2 Here, we do the opposite of what was done in Question 1. Now, the sumsqr function is written in assembly and is called from C . On the left you can see how the sumsqr function is called. Complete the assembly code on the right to write the body of the sumsqr function. Use appropriate directives (global, extern, etc.) if needed. Observe all C calling conventions. (20 points)

K. N. Toosi University of Technology

Question 3 (20 points)


Question 4 Consider a 3D vector $u=[x, y, z]$. The size of the vector is equal to $\|u\|=\sqrt{x^{2}+y^{2}+z^{2}}$. The corresponding normalized vector is $\bar{u}=u /\|u\|=[x /\|u\|, y /\|u\|, z /\|u\|]$. In the following assembly program, the vector $u$ has been stored in data segment as double precision floating point variables (in addresses u , $u+8$ and $u+16$ ). Write an assembly program to normalize the vector $u$. The normalization must be done in-place, that is the normalized vector $\bar{u}$ must also get stored in addresses $u, u+8$ and $u+16$. ( 25 points)

| label | command | arguments |
| :--- | :--- | :--- |
| segment .data |  |  |
| u: | dq $4.0,3.0,2.0$ |  |
| segment .text |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |


| label | command | arguments |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

Question 5 What does the following C code print? Write down the output in the box on the right. Do not forget the new lines. ( 15 points)

```
int arr[10] = {10,20,30,40,50,60,70,80,90,100};
int cms[10];
asm volatile ("mov ebx, 0 ;"
    "cld ;"
    "loop1: ;"
    "lodsd ;"
    "add eax, ebx ;"
    "stosd ;"
    "mov ebx, eax ;"
    "loop loop1 ;"
    :
    :"S" (arr), "D" (cms), "c" (10)
    :"memory", "ebx", "eax");
for (int i = 0; i < 10; i++)
    printf("%3d, %3d\n", arr[i], cms[i]);
```

