Assembly and Machine Language Homework 4

Your task is to write a program to read an integer from the input, calculate the number of trailing zeros of its factorial, and print the Greatest Common Divisor (GCD) of the input and the counted zeros, that is GCD(n, trailing_zeros(n!)).

This must be implemented both in C and Assembly (in files tailing_zeros.c and trailing_zeros_asm.asm respectively). Furthermore, the part calculating the GCD must be implemented as a C function (in file gcd.c) which is called both from the C and Assembly codes. This means that, after calculating the number of trailing zeros, you must call the C function gcd (in file gcd.c) to calculate the GCD of the two numbers both in your assembly and C codes, and print the return value obtained from the gcd function.

The "hw4.zip" file consists of this items:
trailing_zeros_asm.asm
trailing_zeros.c
gcd.c
main.c
testcase

The file "testcase" contains some input/output pairs to test your code. Testing your functions takes place in the file "main.c", which calls the "trailing_zeros" and "trailing_zeros_asm" functions, compares their outputs with those in the "testcase", and prints the execution time.

You also, need to write your own Makefile to compile/assemble, and link your code and create the finale executable named test.

Your program must get compiled and run with the following command:
make \&\& ./test

To summarize, your task is:

1. Write the function "trailing_zeros" in C inside the file trailing_zeros.c. The prototype is int trailing_zeros (int n);
2. Write the function "trailing_zeros_asm" in assembly and in the file trailin_zeros_asm.asm.
3. Write the "gcd" function (in file gcd.c) in C. This function is to be called both from the "trailing_zeros_asm" function and the "trailing_zeros" function.
4. Write a Makefile to compile and like everything and create an executable called test.

Please notice that files and functions' names must not change. Except "trailing_zeros.c", "trailing_zeros_asm.asm", "gcd.c" and "Makefile", other files must remain untouched. Notice that you do not need to compute the factorial of a number to calculate the number of trailing zeros.

Example:

Input:
6

The factorial of 6 is 720 . There is one zero at its end. The largest common divisor of 6 and 1 is 1.

Output:

