

Fundamentals of Computer Vision (Undergrad)
Spring 1397 (2018)

Pedestrian Detection using
HoG Descriptors and SVM
Amirrad Kimiaei
MohammadReza Raei

Overview
In this project, you are going to implement a simple pedestrian detector using HOG feature
descriptors and an SVM classifier.

Goals
1. Compute HoG features from images of a given data set, and extract image patches

(both positive and negative examples).

2. Train an SVM classifier to perform classification and detection tasks.

Specifications
You need to train a pedestrian detector on the ​INRIA Person Dataset
(​http://pascal.inrialpes.fr/data/human​). All details about the formats, positive examples'
bounding boxes, etc. are described in the link. Just to clarify some obscurities:

http://pascal.inrialpes.fr/data/human/
http://pascal.inrialpes.fr/data/human

 1

1-The positive images are extracted from the original images and located (in two different
sizes) in directories starting with the patch size (96X160H96, etc.).

2- According to the webpage, you should only use the 64x128 central part of these images.
The reason why the pictures have been widened in both width and height is brought on the
page.

3-Dividing the dataset to Train and Test are up to you. Although dataset providers seem to
have fixed this, you are free to choose any portion of the dataset for training and the rest
for testing.

4-Negative images are ​not​ provided in 64x128 patches. Read the documentation for details
on how to build negative patches from negative images provided. ​Building the negative
data is all up to you​.

The next step is building a HoG Descriptor. The concept of HoG (Histogram of Oriented
Gradients) was explained in the class. Look ​Here​ for a reminder.

OpenCV comes with a class called ​HOGDescriptor​. This is the HoG feature extractor for
your project. Find the official documentation ​here​.

The class has few constructors; probably the most important one is the one taking the
address of an xml file containing the HoG parameters. (The parameters can also be passed
directly to the constructors but since the number of parameters are longer than you would
expect, the first method is preferable.) Here is the format of the xml file where you can see
each parameter as a tag:

<?​xml version=​"1.0"​?>
<​opencv_storage​>
<​HOG​ type_id=​"opencv-object-detector-hog"​>
<​winSize​>35 35</​winSize​>
<​blockSize​>5 5</​blockSize​>
<​blockStride​>5 5</​blockStride​>
<​cellSize​>5 5</​cellSize​>
<​nbins​>9</​nbins​>
<​derivAperture​></​derivAperture​>
<​winSigma​>4.</​winSigma​>
<​histogramNormType​>L2</​histogramNormType​>
<​L2HysThreshold​>2.0000000000000001e-01</​L2HysThreshold​>
<​gammaCorrection​>1</​gammaCorrection​>
<​nlevels​>64</​nlevels​>
</​HOG​>
</​opencv_storage​>

If you know the details of the algorithm, you should be familiar with these parameters.
Regardless, this ​article​ provides a good explanation of the parameters.

The next steps involve extracting features using the descriptor. The compute function

https://www.learnopencv.com/histogram-of-oriented-gradients/
https://docs.opencv.org/3.4.1/d5/d33/structcv_1_1HOGDescriptor.html
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

 2

calculates the features. It only takes an image as input and returns the HOG feature
vector.

Now we have to train an SVM classifier. OpenCV provides its own implementation of SVM.
But since OpenCV’s SVM is not properly documented, we will be using the SVC (support
vector classifier) class in the ​scikit-learn​ library, a very popular machine learning package.
Find the documentation ​here​. We provide you with a sample code on how to build an
SVM model, evaluate its accuracy, and feed the model’s final parameters to the
HOGDescriptor​ as a classifier:

from​ sklearn.svm ​import​ *
import​ itertools
#builds the model based on parameters provided

svm=SVC(kernel=​'sigmoid'​,gamma=​'auto'​,C=​0.01​,max_iter=​-1​,tol=​1e-4​,coef0=​1​)
#training the model

svm.fit(image_features, labels)

#printing the score of our model

print​ svm.score(Test_data, Test_Label)
#the remaining section of the code puts the final support vector params in

correct order ​for​ feeding to our HOGDescriptor
supportvectors.append(np.dot(svm.dual_coef_,svm.support_vectors_)[​0​])
supportvectors.append([svm.intercept_])

supportvectors = list(itertools.chain(*supportvectors))

#passing the model params to HOG

HOG.setSVMDetector(np.array(supportvectors, dtype=np.float64))

One crucial fact about OpenCV’s SVM detector is that it takes the SVM parameters in the
following order: the coefficients of support vectors machine followed by the intercept
(constant) of the model. To test the model, the next line of code returns the bounding
box for the found objects:

rects, weights = HOG.detectMultiScale(img, winStride=(5,5),scale=1.1,

padding=(0,0),finalThreshold=0,useMeanshiftGrouping=0)

The parameters for this function are explained ​here​.

You are now set to do the project. Good Luck!

http://scikit-learn.org/
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://www.pyimagesearch.com/2015/11/16/hog-detectmultiscale-parameters-explained/

