

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1397 (2018)

Lab Instructions - session 10
SIFT detection, description and matching

The following code detects SIFT key points for a sequence of images and displays
their location. The function (method) ​sift.detect​ returns a list of keypoints and the
function ​drawKeypoints​ displays them. Run the code to see the results. Press any
key to see the next image. Press ‘q’ to quit.

File: ​sift_detect.py
import​ numpy ​as​ np
import​ cv2
import​ glob

for​ fname ​in​ glob.glob(​'*.jpg'​):
 ​I​ = cv2.imread(fname)
 ​G​ = cv2.cvtColor(I,cv2.COLOR_BGR2GRAY)

 ​#sift = cv2.FeatureDetector_create("SIFT") # opencv 2.x.x
 ​sift​ = cv2.xfeatures2d.SIFT_create() ​# opencv 3.x.x
 # if the above fails use "sift = cv2.SIFT()"

 ​keypoints​ = sift.detect(G,​None​)

 cv2.drawKeypoints(G,keypoints,I)

 ​# ​cv2.drawKeypoints(G,keypoints,I, flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

 ​# display keypoint properties
 ​# for kp in keypoints:
 ​# print '-'*40
 ​# print 'location=(%.2f,%.2f)'%(kp.pt[0], kp.pt[1])
 ​# print 'orientation angle=%1.1f'%kp.angle
 ​# print 'scale=%f'%kp.size

 cv2.putText(I,​"Press 'q' to quit, any key for next image"​,(20,20), \
 cv2.FONT_HERSHEY_SIMPLEX, .5,(255,0,0),1)

 cv2.imshow(​'sift_keypoints'​,I)

 ​if​ cv2.waitKey() & 0xFF == ​ord​(​'q'​):
 ​break

What do you think about the location of the sift features? Some of them are located
in the flat regions (e.g. sky, etc.) of the image. Why do you think this happens?

To get more insight about the detected SIFT keypoints, add the flag
cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS​ to the ​cv2.drawKeypoints ​function:

cv2.drawKeypoints(G,keypoints,I,flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1397 (2018)

Now, for each feature, you can see the natural scale and the assigned orientation.
● As you can see some features have two or more orientations. These are in

fact different features with the same location and scale (but different
orientation). Can you tell why this happens from what you learnt in the class?

● Can you tell now why some keypoints are located in the flat regions of the
image? Notice that the circle drawn for each feature is only proportional to the
scale region for which sift keypoint is detected. The actual region might span
a larger area.

To get information about the key points, you can access the fields of the keypoint
object. Uncomment the for loop in your code to print some information about each
keypoint:
#! print keypoint properties

for kp in keypoints:

 print '-'*40

 print 'location=(%.2f,%.2f)'%(kp.pt[0], kp.pt[1])

 print 'orientation angle=%1.1f'%kp.angle

 print 'scale=%f'%kp.size

● You can see that the location of each keypoint (​kp.pt​) does not have integer
coordinates (the feature is not exactly located at a pixel). Can you tell why
from what you learnt in the class?

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1397 (2018)

Towards feature matching
We have taken pictures of a book from two different perspectives (​book1.jpg​ and
book2.jpg​). As you can see, the orientation and scale of the book are different in two
images. Let us detect the SIFT features and compare them.

Run the following piece of code to compare the sift features in the book.
File: ​sift_compare.py
import​ numpy ​as​ np
import​ cv2

I1​ = cv2.imread(​'book1.jpg'​)
G1​ = cv2.cvtColor(I1,cv2.COLOR_BGR2GRAY)

I2​ = cv2.imread(​'book2.jpg'​)
G2​ = cv2.cvtColor(I2,cv2.COLOR_BGR2GRAY)

#sift = cv2.FeatureDetector_create("SIFT") # opencv 2.x.x

sift​ = cv2.xfeatures2d.SIFT_create() ​# opencv 3.x.x
if the above fails use "sift = cv2.SIFT()"

keypoints1​ = sift.detect(G1,​None​)
keypoints2​ = sift.detect(G2,​None​)

cv2.drawKeypoints​(G1,keypoints1​,I1, flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
cv2.drawKeypoints​(​G2,keypoints2,​I2, flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

concatenate the two images

I​ = np.concatenate((I1,I2), axis=1)

cv2.imshow(​'sift_keypoints1'​,I)
cv2.waitKey()

● Can you detect feature points in both images whose location, scale and
orientation match?

● Can you detect keypoints with two or more orientations such
that only one of the orientations matches with a keypoint in
the other image? Look at the following patch for example:

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1397 (2018)

Feature description and matching
Now, we want to do what you did with your eyes in the previous example
automatically. First, run the following code and see the output.

File: ​sift_match.py
import​ numpy ​as​ np
import​ cv2

I1​ = cv2.imread(​'book2.jpg'​)
G1​ = cv2.cvtColor(I1,cv2.COLOR_BGR2GRAY)

I2​ = cv2.imread(​'scene.jpg'​)
G2​ = cv2.cvtColor(I2,cv2.COLOR_BGR2GRAY)

sift​ = cv2.xfeatures2d.SIFT_create() ​# opencv 3
use "sift = cv2.SIFT()" if the above fails

keypoints1​ = sift.detect(G1,​None​)
keypoints2​ = sift.detect(G2,​None​)

cv2.drawKeypoints(G1,keypoints1,I1, \

 flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.drawKeypoints(G2,keypoints2,I2, \

 flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

print​ ​"No. of keypoints1 ="​, ​len​(keypoints1)
print​ ​"No. of keypoints2 ="​, ​len​(keypoints2)

compute disriptor vectors

keypoints1​, ​desc1​ = sift.compute(G1, keypoints1); ​# opencv 3
keypoints2​, ​desc2​ = sift.compute(G2, keypoints2); ​# opencv 3

print​ ​"Descriptors1.shape ="​, desc1.shape
print​ ​"Descriptors2.shape ="​, desc2.shape

pause here!!

raw_input​(​"Press ENTER to continue..."​)

brute-force matching

bf​ = cv2.BFMatcher(crossCheck=​False​)

for each descriptor in desc1 find its

two nearest neighbours in desc2

matches​ = bf.knnMatch(desc1,desc2, k=2)

good_matches​ = []
alpha​ = 0.75
for​ m1,m2 ​in​ matches:
 ​# m1 is the best match
 ​# m2 is the second best match
 ​if​ m1.distance < alpha *m2.distance:

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1397 (2018)

 good_matches.append(m1)

I​ = cv2.drawMatches(I1,keypoints1,I2,keypoints2, good_matches, ​None​)

cv2.imshow(​'sift_keypoints1'​,I)
cv2.waitKey()

What is the output of the following lines?
print "No. of keypoints1 =", len(keypoints1)

print "No. of keypoints2 =", len(keypoints2)

● How many keypoints have been found in each image?

The 2D numpy arrays desc1 and desc2 represent the set of descriptors for each
image. The following line prints their dimensions.
print "Descriptors1.shape =", desc1.shape

print "Descriptors2.shape =", desc2.shape

● How do you interpret the shapes of desc1 and desc2?

The line ​matches = bf.knnMatch(desc1,desc2, k=2) ​for each keypoint descriptor in
the first image finds its ​best match​ and its ​second best match​ among the descriptors
of the second image (​desc2​). The line ​if m1.distance < alpha * m2.distance
makes the algorithm only accept the best match if the distance to the first match is
smaller than ​alpha ​times distance to the second match, where alpha = 0.75 here.

● Change the value of ​alpha​ and see the result. Explain how changing alpha
affects the result.

Instead of
keypoints1​ = sift.detect(G1,​None​)
keypoints1​, ​desc1​ = sift.compute(G1, keypoints1);

you can combine the two steps and write:

keypoints1​, ​desc1​ = sift.detectAndCompute(G1,​None​)

● Why do you think SIFT detection and description are also implemented as

separate functions? Where ​sift.detect​ or ​sift.compute​ can be useful?

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1397 (2018)

Task 1
We have pictures of a bunch of objects (files ​obj1.jpg, obj2.jpg, …, obj9.jpg​). Your
task is to find out if the object exists in the scene image (file ​scene.jpg​). The
algorithm is to find the matched feature points between each object and the scene
image. If the number of good matches is greater than a certain threshold (e.g. 30
matches) you decide that the object is present in the scene. You need to complete
the following code to accomplish your task.
file: ​task1.py
import​ numpy ​as​ np
import​ cv2
import​ glob

sift​ = cv2.xfeatures2d.SIFT_create() ​# opencv 3
use "sift = cv2.SIFT()" if the above fails

I2​ = cv2.imread(​'scene.jpg'​)
G2​ = cv2.cvtColor(I2,cv2.COLOR_BGR2GRAY)
keypoints2​, ​desc2​ = sift.detectAndCompute(G2, ​None​);

fnames​ = glob.glob(​'obj?.jpg'​)
fnames.sort()

for​ fname ​in​ fnames:

 ​I1​ = cv2.imread(fname)
 ​G1​ = cv2.cvtColor(I1,cv2.COLOR_BGR2GRAY)
 ​keypoints1​, ​desc1​ = sift.detectAndCompute(G1, ​None​);
 cv2.drawKeypoints(G1,keypoints2,I1)

 ​good_matches​ = []

 ​I​ = cv2.drawMatches(I1,keypoints1,I2,keypoints2,good_matches, ​None​)

 ​no_matches​ = ​len​(good_matches)
 ​if​ no_matches > 30:
 ​txt​ = ​"Object found! (matches = %d)"​%no_matches
 ​else​:
 ​txt​ = ​"Object not found! (matches = %d)"​%no_matches

 cv2.putText(I,txt,(20,40),cv2.FONT_HERSHEY_SIMPLEX, 1,(255,0,0),3)

 cv2.imshow(​'keypoints'​,I)

 ​if​ cv2.waitKey() & 0xFF == ​ord​(​'q'​):
 ​break

References
● OpenCV-Python Tutorials - SIFT

K. N. Toosi University of Technology

https://docs.opencv.org/3.1.0/da/df5/tutorial_py_sift_intro.html

