

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1397 (2018)
K. N. Toosi University of Technology

Lab Instructions - session 4
Noise and Filtering

Adding Gaussian noise to image.
File: add_gaussian_noise.py

import numpy as np
import cv2

I = cv2.imread('isfahan.jpg', cv2.IMREAD_GRAYSCALE);

convert I to floating point from unsigned integer

Note: For displaying floating point images the maximum

intensity has to be 1 instead of 255

I = I.astype(np.float) / 255

create the noise image

sigma = 0.04 # notice maximum intensity is 1
N = np.random.randn(*I.shape) * sigma

add noise to the original image

J = I+N; # or use cv2.add(I,N);

cv2.imshow('original',I)
cv2.waitKey(0) # press any key to exit

cv2.imshow('noisy image',J)
cv2.waitKey(0) # press any key to exit

cv2.destroyAllWindows()

● What does the line I = I.astype(np.float) / 255 do?
● An asterisk "*" before an argument in a python function call, gives elements

of the argument (which is typically a tuple) as argument to the function. In the
above, if I.shape = (200,300), then np.random.randn(*I.shape) is
the same thing as np.random.randn(I.shape[0],I.shape[1]).
Similarly, if I.shape = (200,300,3) for a color image, then
np.random.randn(*I.shape) is equivalent to
np.random.randn(I.shape[0],I.shape[1],I.shape[2]).

● Try different values of sigma and see the result. What is the effect of
small/large sigma on noise?

● Change cv2.IMREAD_GRAYSCALE to cv2.IMREAD_COLOR in imread (or
remove this argument) and see the result.

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1397 (2018)
K. N. Toosi University of Technology

Task 1:
We want to simulate white noise (snow noise or Barfak in Persian!) in the old
analogue TVs. We read an image, and then, in every iteration of a loop we add a
different randomly generated Gaussian noise to it. We show the image at around 30
frames per second (Hence the command cv2.waitKey(33)). Notice that you need
to create a new noise image at every new frame (in most cases with the same
sigma). Your program must increase or decrease the intensity of noise when user
presses the keys ‘u’ or ‘d’ respectively. Read the file snow_noise.py and change it
to create this demo. Notice that sigma should never get negative.

File: snow_noise.py

import numpy as np
import cv2

I = cv2.imread('isfahan.jpg', cv2.IMREAD_GRAYSCALE);
I = I.astype(np.float) / 255

sigma = 0.04 # initial standard deviation of noise

while True:

 J = I; # change this line so J is the noisy image

 cv2.imshow('snow noise',J)

 # press any key to exit
 key = cv2.waitKey(33)
 if key & 0xFF == ord('u'): # if 'u' is pressed
 pass # increase noise
 elif key & 0xFF == ord('d'): # if 'd' is pressed
 pass # decrease noise
 elif key & 0xFF == ord('q'): # if 'q' is pressed then
 break # quit

cv2.destroyAllWindows()

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1397 (2018)
K. N. Toosi University of Technology

Image Smoothing/Blurring
Smoothing an image with a box kernel
file: blur_box.py

import numpy as np
import cv2

I = cv2.imread('isfahan.jpg').astype(np.float64) / 255;

display the original image

cv2.imshow('original',I)
cv2.waitKey()

creating a box filter

m = 7 # choose filter size

create an m by m box filter

F = np.ones((m,m), np.float64)/(m*m)
print F

Now, filter the image

J = cv2.filter2D(I,-1, F)
cv2.imshow('blurred',J)
cv2.waitKey()

cv2.destroyAllWindows()

● Alter the value of m and see what happens.
● Why the division by (m*m) in F = np.ones((m,m), np.float64)/(m*m)?
● You can also apply a box filter to an image using the cv2.boxFilter function.

https://goo.gl/G66fqG

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1397 (2018)
K. N. Toosi University of Technology

Smoothing with a Gaussian Kernel
Here, we first create a one-dimensional Gaussian kernel. Then make a
two-dimensional Gaussian kernel out of the 1D kernel, and apply the 2D kernel to
the image.
file: blur_gaussian.py
import numpy as np
import cv2

I = cv2.imread('isfahan.jpg').astype(np.float64) / 255;

m = 13; # we will create an m by m filter

create a 1D Gaussian filter

Fg = cv2.getGaussianKernel(m, sigma=-1);
by setting sigma=-1, the value of sigma is computed

automatically as: sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8

print Fg
print Fg.shape # Fg is 1-dimensional (m by 1)

exit() # delete this to continue

Now we create a 2D filter
We use matrix multiplication to create an m by m 2D filter

out of "m by 1" and "1 by m" 1D filters, which in this case happens

to be the same thing as correlation between 1D filters

Fg = Fg.dot(Fg.T) # an "m by 1" matrix multiplied by a "1 by m" matrix

print Fg
print Fg.shape

exit() # delete this to continue

filter the image with the Gaussian filter

Jg = cv2.filter2D(I,-1, Fg)

cv2.imshow('original',I)
cv2.waitKey()

cv2.imshow('blurred_Gaussian',Jg)
cv2.waitKey()

cv2.destroyAllWindows()

● Alter the value of m and see what happens. Notice that altering m will alter
filter sigma = 0.3*((m-1)*0.5 - 1) + 0.8. You can also give sigma explicitly.

● You can simply gaussianBlur function instead. Also, look here.

http://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html#void%20GaussianBlur(InputArray%20src,%20OutputArray%20dst,%20Size%20ksize,%20double%20sigmaX,%20double%20sigmaY,%20int%20borderType)
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_filtering/py_filtering.html#d-convolution-image-filtering

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1397 (2018)
K. N. Toosi University of Technology

Task 2:
This is an extension to Task 1. This time we also filter the noisy image using box and
Gaussian filters. You need to complete the file noise_filter_demo.py. Your program
must have the following functionalities:

● press the ‘b’ key: use box filter
● press the ‘g’ key: use Gaussian filter
● press the ‘+’ key: increase filter size m
● press the ‘-’ key: decrease filter size m
● press the ‘u’ key: increase noise intensity
● press the ‘d’ key: decrease noise intensity
● press the ‘q’ key: quit the program

File: noise_filter_demo.py

import numpy as np

import cv2

I = cv2.imread('isfahan.jpg').astype(np.float64) / 255;

noise_sigma = 0.04 # initial standard deviation of noise

m = 1; # initial filter size,
with m = 1 the input image will not change

filter = 'b' # box filter

while True:

 if filter == 'b':

 # filter with a box filter
 F = np.ones((m,m), np.float64)/(m*m)

 elif filter == 'g':

 # filter with a Gaussian filter

 pass

 # add noise to image

 J = I + N;

 # filtered image

 K = cv2.filter2D(J, -1, F);

 cv2.imshow('img', K)

 key = cv2.waitKey(30) & 0xFF

 if key == ord('b'):

 filter = 'b' # box filter

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1397 (2018)
K. N. Toosi University of Technology

 print 'Box filter'

 elif key == ord('g'):

 filter = 'g' # filter with a Gaussian filter
 print 'Gaussian filter'

 elif key == ord('+'):

 # increase m

 m = m + 2

 print 'm=',m

 elif key == ord('-'):

 # decrease m
 if m >= 3:

 m = m - 2

 print 'm=', m

 elif key == ord('u'):

 # increase noise

 pass

 elif key == ord('d'):

 # decrease noise

 pass

 elif key == ord('q'):

 break # quit

cv2.destroyAllWindows()

● Change the noise intensity. In each case try to find the optimal filter size m.
● Compare the Gaussian filter with the box filter. Which one performs better?

References
1. https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_filtering/py_fi

ltering.html#filtering

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_filtering/py_filtering.html#filtering
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_filtering/py_filtering.html#filtering

