

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1397 (2018)

Lab Instructions - session 6
Connected Components, Thresholding, Morphology

Connected Components
We intend to find the connected components (i.e. groups of
connected pixels) in the following image (​img1.bmp​). The
image is binary-valued: the pixel intensity levels are either ​0
or ​255​.

File: ​connected_components.py
import​ numpy ​as​ np
import​ cv2

I​ = cv2.imread(​'img1.bmp'​, cv2.IMREAD_GRAYSCALE)
n​,​C​ = cv2.connectedComponents(I);

print​ ​"n=%d"​%n
print​ np.unique(I)
print​ np.unique(C)

cv2.imshow(​'I'​, I)
cv2.waitKey(0) ​# press any key to continue...

for​ k ​in​ ​range​(n):

 ​# show the k-th connected component
 ​Ck​ = np.zeros(I.shape, dtype=I.dtype)
 ​Ck​[C == k] = 255;

 cv2.imshow(​'C%d'​%k, Ck)
 cv2.waitKey(0) ​# press any key to continue...

I​ = cv2.cvtColor(I,cv2.COLOR_GRAY2BGR)

font​ = cv2.FONT_HERSHEY_SIMPLEX

note: background is also counted as a connected component by openCV

cv2.putText(I,​'There are %d connected components!'​%(n-1),(20,40), font,
1,(0,0,255),2)

cv2.imshow(​'Num'​, I)
cv2.waitKey(0)

● What are the values of ​n, np.unique(I)​ and ​np.unique(C)​? Why?
● What does ​Ck​[C == k] = 255​ do?
● Why n=9 while there are only 8 connected components? Why the first

connected components looks like an inverted version of the original.

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1397 (2018)

Task 1: Bean Counting!
We want to count the number of beans in the
following image. I have written a code which
transforms the image to grayscale and then
thresholds the image, setting the pixel intensities
above 127 to 255 and the others to 0. It then
counts the connected components of the
thresholded image. But the code does not work as
intended. Your job as a ​bean counter​ is to fix the
bugs and count the number of beans in the image.

By the way, there are ​48​ beans! :)
File: ​bean_counting.py
import​ numpy ​as​ np
import​ cv2

I​ = cv2.imread(​'beans.jpg'​)
G​ = cv2.cvtColor(I,cv2.COLOR_BGR2GRAY)

ret​, ​T​ = cv2.threshold(G,127,255,cv2.THRESH_BINARY)

cv2.imshow(​'Thresholded'​, T)
cv2.waitKey(0) ​# press any key to continue...

erosion

kernel = np.ones((5,5),np.uint8)

T = cv2.erode(T,kernel)

cv2.imshow('After Erosion', T)

cv2.waitKey(0) # press any key to continue...

n​,​C​ = cv2.connectedComponents(T);

font​ = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(T,​'There are %d beans!'​%(n-1),(20,40), font, 1, 255,2)
cv2.imshow(​'Num'​, T)
cv2.waitKey(0)

● What does ​cv2.threshold​ ​do? What are its first, second and third
arguments?

● What are the two major problems with the above approach?
● Uncomment the 4 lines after the line (not including) ​## erosion
● Run the code. What does ​cv2.erode​ do?
● The erosion kernel size is ​(5,5)​. Change it until you get the desired result (48

beans).

K. N. Toosi University of Technology

https://docs.opencv.org/3.0-beta/modules/imgproc/doc/miscellaneous_transformations.html?highlight=cv2.threshold#cv2.threshold
https://docs.opencv.org/3.0-beta/modules/imgproc/doc/filtering.html?highlight=cv2.erode#cv2.erode

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1397 (2018)

Task 2: Simple Background Subtraction
Consider the following pair of images. In the second image, few toys have been
placed in the scene.

The following code tries to count the number of toys by subtracting the two images,
thresholding the result and then counting the connected components. Your job is to
fix this code to get the correct number of toys and find the biggest toy.
File: ​task2.py

import​ numpy ​as​ np
import​ cv2

I1​ = cv2.imread(​'scene1.jpg'​)
I2​ = cv2.imread(​'scene2.jpg'​)

cv2.imshow(​'Image 1 (background)'​, I1)
cv2.waitKey(0)

cv2.imshow(​'Image 2'​, I2)
cv2.waitKey(0)

K​ = np.​abs​(np.int16(I2)-np.int16(I1)) ​# take the (signed int) differnce
K​ = K.​max​(axis=2) ​# choose the maximum value over color channels
K​ = np.uint8(K)
cv2.imshow(​'The difference image'​, K)
cv2.waitKey(0)

threshold​ = 80
ret​, ​T​ = cv2.threshold(K,threshold,255,cv2.THRESH_BINARY)
cv2.imshow(​'Thresholded'​, T)
cv2.waitKey(0)

opening

kernel = np.ones((5,5),np.uint8)

T = cv2.morphologyEx(T, cv2.MORPH_OPEN, kernel)

cv2.imshow('After Openning', T)

cv2.waitKey(0)

closing

kernel = np.ones((10,10),np.uint8)

T = cv2.morphologyEx(T, cv2.MORPH_CLOSE, kernel)

cv2.imshow('After Closing', T)

cv2.waitKey(0)

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1397 (2018)

n​,​C​ = cv2.connectedComponents(T);

J​ = I2.copy()
J​[T != 0] = [255,255,255]
font​ = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(J,​'There are %d toys!'​%(n-1),(20,40), font, 1,(0,0,255),2)
cv2.imshow(​'Number'​, J)
cv2.waitKey()

connected components with statistics

n,C,stats, centroids = cv2.connectedComponentsWithStats(T);

for i in range(n):

print "-"*20

print "Connected Component: ", i

print "center= %.2f,%.2f"%(centroids[i][0], centroids[i][1])

print "left= ", stats[i][0]

print "top= ", stats[i][1]

print "width= ", stats[i][2]

print "height= ", stats[i][3]

print "area= ", stats[i][4]

j = n-1 # j: index of largest connected component (change this line)

J[C == j] = [0,0,255] # Paint the largest connected component in RED

cv2.imshow('Largest Toy in red', J)

cv2.waitKey()

● Change the threshold variable and see the result. Find a reasonable
threshold (it does not need to give the correct result.)

● Uncomment the four lines after the line ​## opening​. Run the code. What does
the opening operator do? Change the kernel size and see the results.

● Uncomment the four lines after the line ​## closing​. Run the code. What does
the closing operator do?

● Tune the threshold, opening kernel size and closing kernel size until you get
the desirable result, finding all the toys and their number.

● Uncomment all the lines after ​## connected components with statistics​. It
gives statistics about each connected component including centroid, left-most
pixel location, top-most pixel location, width, height and area (number of
pixels) of each connected component. We want to detect ​Jenab Khan​ (the
biggest toy) in the image and paint it in red. Currently the code paints the last
connected component (​j=n-1​). Use the statistics to find the connected
component with ​largest area​, and paint the biggest toy in red.

References
● OpenCV-Python Tutorials - Image Thresholding
● OpenCV-Tutorials - Structural Analysis and Shape Descriptors
● OpenCV-Python Tutorials - Morphological Transformations

K. N. Toosi University of Technology

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_thresholding/py_thresholding.html#thresholding
https://docs.opencv.org/3.0-beta/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=connectedcomponents
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html#morphological-ops

