Fundamentals of Computer Vision - Spring 1397 - Final Exam	Instructor: B. Nasihatkon	دانتگاه منعی خواجه سیرالدین طوی K. N. TOOSI UNIVERSITY OF TECHNOLOGY
Name:	ID:	Khordad 1397 - June 2

Question 1 - Harris Corner Detection (20 points)

Consider the following image:

_	I					
	0	0	1	4	9	
	1	0	5	7	11	
	1	4	9	12	16	
	3	8	11	14	16	
	8	10	15	16	20	

Х

Х

Х

Х

Х

Х

Х

Compute the Harris matrix

$$H = \sum_{(x,y)\in W} \begin{bmatrix} I_x(x,y)^2 & I_x(x,y)I_y(x,y) \\ I_x(x,y)I_y(x,y) & I_y(x,y)^2 \end{bmatrix}$$

for the 3 by 3 highlighted window. In the above formula $I_x = dI/dx$, $I_y = dI/dy$, and *W* is the window highlighted in the image.

A) First, compute the derivatives using the differentiation kernels shown above. No normalization (division by 2) is needed. (5 points).

	_		I_y	= dI/d	dy				
х	х	х	х	х		Х	Х	Х	>
Х				х		Х			
Х				х	ĺ	Х			
Х				х	ĺ	Х			
х	х	х	х	х	ĺ	Х	Х	Х	>

B) Now compute the Harris Matrix based on the derivative matrices. (10 points).

$$H = \sum_{(x,y)\in W} \begin{bmatrix} I_x(x,y)^2 & I_x(x,y)I_y(x,y) \\ I_x(x,y)I_y(x,y) & I_y(x,y)^2 \end{bmatrix}$$

C) Compute the Harris cornerness score $C = det(H) - k trace(H)^2$ for k = 0.04. What do we have here? A corner? An edge? Or a flat area? Why? (5 points)

Question 2 - Scale Space / SIFT Detection (20 points)

The matrices in the left column are the output of applying Gaussian filters with different bandwidths for a single octave in the SIFT detection algorithm. There is a **single** sift keypoint in the scale space. Your job is to find it. (This is **before** removing the edges and low contrast points, and sub-pixel tuning). Report the x, y and scale of the key point. As a reference, for the highlighted cell at scale=2, the scale-space location is (x=3, y=1, scale=2).

To find the keypoint, you first need to build the Difference of Gaussian Images in the scale-space. The key points are found at the locations of extrema in scale-space as explained in the class. Fill in the Difference of Gaussian values and locate the key point. Why is this a SIFT key point?

Hint: The keypoints do not exist in the in the first and last scale.

Gaussian Filtered

Images

				-
25	22	20	17	
25	28	19	17	
20	19	19	17	
15	15	15	15	

25	20	20	16
25	30	19	16
19	17	19	16
13	13	14	14

24	18	20	14
25	32	19	15
18	16	19	14
12	12	13	13

22

24

16

11

15

35

16

11

20

18

18

11

12

14

13

12

Difference of Gaussian Images

scale = 4			

20	10	20	8
20	37	10	8
16	8	20	10
12	10	9	10

K. N. Toosi University of Technology

Question 3 - Image Transformations (25 points)

A) The image below on the left has undergone an **affine** transformation y = Mx + t to create the image on the right. The locations of the transformed points A', B' and D' are marked in the transformed image. Calculate the affine transformation (the 2 by 2 matrix M, and the vector t) from the point correspondences (A, A'), (B, B'), and (D, D'). (10 points)

B) Compute the coordinates of C' and E'. (5 points)

C) Apply the following homography transformation to the input image of part A (the image on the left). Derive the corresponding transformed points A', B', C', D', E', and draw the output image (10 points).

Γ	2	-2	2]
	-1	2	2
L	0.5	0.5	1

Question 4 - RANSAC (15 points)

We want to do panorama using homographies for stitching images. We find a number of matches between the key points of two consecutive images, out of which at most 40 per cent are outliers. We run the RANSAC algorithm for 100 iterations. Derive a lower-bound on the probability of detecting the outliers (and hence correctly estimating the homography).

Here is the relation between the probability of getting at least one sample with all inliers (p), the minimum number of point matches to compute the transformation (s), and the proportion of outliers (e):

$$(1-p) = (1-(1-e)^s)^N$$

Question 5 - SVM (20 points)

We intend to train a 2-class SVM on data points below. The data is linearly separable. Your task is to determine the support vectors, and compute the optimal **w** and **b** for the SVM classifier. Hint: find all potential sets of support vectors, for each of them, compute **w** and **b**, and choose the one with the widest margin).

