

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

Lab Instructions - Session 11
Geometric Image Transformations

Translation
We want to translate the image with the vector . Translation is a special case of ant ,)t = (x ty
affine transformation in which . The 2 by 3 matrix can represent A xx′ = + t 0A = A t]M = [
an affine transformation. Thus, a translation is represented by the 2 by 3 matrix .0 t]M = [
Then we can translate the image by applying the affine transformation using theM
cv2.warpAffine function. Run the following script to translate an image with the vector (tx,
ty).

File: translation.py
import cv2
import numpy as np

I = cv2.imread('karimi.jpg')

translations in x and y directions

tx = 100
ty = 40

use an affine transformation matrix (2x3)

M = np.array([[1, 0, tx],
 [0, 1, ty]]).astype(np.float32)

output_size = (I.shape[1],I.shape[0]) # output image size
#output_size = (I.shape[1]+200, I.shape[0]+200);

J = cv2.warpAffine(I,M,output_size)

cv2.imshow('I',I)
cv2.waitKey(0)

cv2.imshow('J',J)
cv2.waitKey(0)

#! use a homography transformation matrix (3x3)

#H = np.array([[1, 0, tx],

[0, 1, ty],

[0, 0, 1]]).astype(np.float32)

#K = cv2.warpPerspective(I,H, output_size)

#cv2.imshow('K',K)

#cv2.waitKey(0)

cv2.destroyAllWindows()

● Change tx and ty and see the result. Set one or both of them to a negative
value.

● We have chosen the output image size (output_size) as the original image
size. Change the output image size (e.g. to the one commented out in the
code: #output_size = ...) and see the result.

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

You can also apply translation using a 3 by 3 homography matrix given to the
cv2.warpPerspective function. Uncomment the following part in the code and display
the resulting image K.
#! use a homography transformation matrix (3x3)

H = np.array([[1, 0, tx],

 [0, 1, ty],

 [0, 0, 1]]).astype(np.float32)

K = cv2.warpPerspective(I,H, output_size)

cv2.imshow('K',K)

● Notice that the 3 by 3 matrix H is the matrix M plus an extra row [0 0 1].
Compare the images K and J and observe that they are identical.

Euclidean (Rigid) transformation
The following code rotates the image with an angle th around the origin (pixel
location (0,0)). For a rotation about the origin, the 2 by 3 affine transformation matrix
is where is the 2 by 2 rotation matrix. We can also add a translation [R 0] M = R
vector in which case [R t] M =

File: rigid.py
import cv2
import numpy as np

I = cv2.imread('karimi.jpg',0)

tx = 0
ty = 0

th = 20 # angle of rotation (degrees)
th *= np.pi / 180 # convert to radians

M = np.array([[np.cos(th),-np.sin(th),tx],
 [np.sin(th), np.cos(th),ty]])

J = cv2.warpAffine(I,M, (I.shape[1], I.shape[0]))

cv2.imshow('I',I)
cv2.imshow('J',J)

cv2.waitKey(0)

● Why have we converted the rotation angle to radians?
● Change the translation vector elements tx and ty and see the result.

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

Task 1:
In the above example, we saw how to rotate around the origin (pixel 0,0). We can
also rotate around an arbitrary point by adding a proper translation vector.c ,) c = (x cy
This can be done by translating any point with the translation (so that moves to− c c
the origin), rotating around the origin, and translating back with the translation vector

The transformation then becomes . + c R(x) c R x (c c). x′ = − c + = + − R

The following python code keeps rotating the image I around the origin (0,0). Run the
code and see the result. You need to change the code so the image is rotated about
its center c. (c has been computed in the code). You are not allowed to use the
cv2.getRotationMatrix2D function.

File: task1.py
import cv2
import numpy as np

I = cv2.imread('karimi.jpg',0)

center of the image

c = np.array([[I.shape[1]/2.0], [I.shape[0]/2.0]])

for theta in range(0,360):
 th = theta * np.pi / 180 # convert to radians

 R = np.array([[np.cos(th),-np.sin(th)],
 [np.sin(th), np.cos(th)]])

 t = np.zeros((2,1)) # you need to change this!

 # concatenate R and t to create the 2x3 transformation matrix
 M = np.hstack([R,t])

 J = cv2.warpAffine(I,M, (I.shape[1], I.shape[0]))

 cv2.imshow('J',J)

 if cv2.waitKey(10) & 0xFF == ord('q'):
 break

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

Similarity transform
A similarity transformation consists of translation, rotation and global scaling. The
transformation matrix is . The following code adds a scale factor s to the [sR t] M =
previous examples to apply a similarity mapping.

File: similarity.py
import cv2
import numpy as np

I = cv2.imread('karimi.jpg')

tx = 100
ty = 60

th = 20 # angle of rotation (degrees)
th *= np.pi / 180 # convert to radians

s = 0.6 # scale factor

M = np.array([[s*np.cos(th),-s*np.sin(th),tx],
 [s*np.sin(th), s*np.cos(th),ty]])

output_size = (I.shape[1], I.shape[0])
J = cv2.warpAffine(I,M, output_size)

cv2.imshow('I',I)
cv2.imshow('J',J)

cv2.waitKey(0)

● Set the scale factor to a number > 1 (e.g. s =2) and see the result.
● How can we change the size of the output image accordingly?

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

Affine transformation
The affine transformation is in the form of where is an arbitrary 2 by 2 Ax t, x′ = + A
matrix. Thus, . [A t] M =

File: affine.py
import cv2
import numpy as np

I = cv2.imread('karimi.jpg')

t = np.array([[30],
 [160]], dtype=np.float32)

A = np.array([[.7, 0.8],
 [-0.3, .6]], dtype=np.float32)

M = np.hstack([A,t])

output_size = (I.shape[1], I.shape[0])
J = cv2.warpAffine(I,M, output_size)

cv2.imshow('I',I)
cv2.imshow('J',J)

cv2.waitKey(0)

● Notice that the parallel line remain parallel.
● Change the elements of matrix A and see the results.
● What happens when matrix A is diagonal?

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

Perspective transformation (Homography)
A perspective transformation (projective transformation or homography) can be
represented by a 3 by 3 matrix H. Look at the following example. It adds some
perspective to the above affine transformation:

File: perspective.py
import cv2
import numpy as np

I = cv2.imread('karimi.jpg')

t = np.array([[30],
 [160]], dtype=np.float32)

A = np.array([[.7, 0.8],
 [-0.3, .6]], dtype=np.float32)

M = np.hstack([A,t])

perspective effect

p = np.array([[0.001,0.002, 1]]);

H = np.vstack([M,
 p]);

output_size = (I.shape[1], I.shape[0])
J = cv2.warpPerspective(I,H, output_size)

cv2.imshow('I',I)
cv2.imshow('J',J)
cv2.waitKey(0)

● Change the values of p[0] and p[1] and see what happens. Set them to 0 or

negative values.

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

Estimating a homography transformation from
point correspondences
If we have a set of 2D points in one image and a set of corresponding, x , .. , x x1 2 . m
points in the second image, we can estimate a transformation which, y , .. , y y1 2 . m
maps each point to its corresponding point (or sometimes a point close to). xi yi yi

In the next example, we have two photographs of a painting taken from different
views. Thus, the relation between them is a homography.

We want to map the first image to the second. We have found four pairs of
corresponding points (corners of the frame) in both images. Using four point
correspondences we can estimate a perspective transformation matrix H using the
function cv2.getPerspectiveTransform. We then apply the transformation to the
first image. Run the following file and see the results.

File: compute_perspective.py
import cv2
import numpy as np

I1 = cv2.imread('farshchian1.jpg')
I2 = cv2.imread('farshchian2.jpg')

points1 = np.array([(82,14),
 (242,17),

 (241, 207),

 (81, 206)]).astype(np.float32)

points2 = np.array([(46,75),
 (196,61),

 (220,227),

 (76,251)]).astype(np.float32)

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

for i in range(4):
 cv2.circle(I1, (points1[i,0], points1[i,1]), 3, [0,0,255],2)

 cv2.circle(I2, (points2[i,0], points2[i,1]), 3, [0,0,255],2)

compute homography from point correspondences

H = cv2.getPerspectiveTransform(points1, points2)

output_size = (I2.shape[1], I2.shape[0])
J = cv2.warpPerspective(I1,H, output_size)

cv2.imshow('I1',I1)
cv2.waitKey(0)

cv2.imshow('I2',I2)
cv2.waitKey(0)

cv2.imshow('J',J)
cv2.waitKey(0)

● Can you think of an application for this, considering that I1 has a better quality

than I2?
● How can you transform I2 to I1?

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

Task 2: Perspective Correction
Look at the following traffic sign. We want to correct
the perspective and extract the sign plate as if we
are looking at it from the front. The transformed
image J must exactly contain the sign plate (and
not other parts of the image). We have already
found the coordinates of the four corners of the sign
plate and stored them in the array points1.
Complete the task by changing the following code.
You need to find the proper transformation matrix H and apply it to the image.

File: task2.py

import numpy as np
import cv2

I = cv2.imread('sign.jpg')

p1 = (135,105)
p2 = (331,143)
p3 = (356,292)
p4 = (136,290)

points1 = np.array([p1,p2,p3,p4], dtype=np.float32)

n = 480
m = 320
output_size = (n,m)

J = np.zeros((m,n)) # delete this!!

mark corners of the plate in image I

for i in range(4):
 cv2.circle(I, (points1[i,0], points1[i,1]), 5, [0,0,255],2)

cv2.imshow('I', I);
cv2.imshow('J', J);

cv2.waitKey()

K. N. Toosi University of Technology

