Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon L{;‘Un«”/:%iib"f&b @
Spring 1398 (2019) K. M. TOOSI UNIVERSITY OF TECHNOLOGY o

K. N. Toosi University of Technology

Lab Instructions - session 12
Feature-based Image Alignment, RANSAC

Robust estimation with RANSAC

Remember how SIFT feature points were matched in two images. Look at the code
below to remind yourself. Run the file and see the result.

File: sift_match_ransac.py

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon J@”Mriﬁ%, @
Spring 1398 (2019) K. H.TDOSIUNIVERSIIT?OFTECHNDLOGY wr
K. N. Toosi University of Technology

apply RANSAC
pointsl = [keypointsl[m.queryIdx].pt for m in good matches]
pointsl = np.array(pointsl,dtype=np.float32)

H I I

points2 = [keypoints2[m.trainIdx].pt for m in good matches]
points2 = np.array(points2,dtype=np.float32)

H, mask = cv2.findHomography (pointsl, points2, cv2.RANSAC,5.0) # 5 pixels margin
mask = mask.ravel () .tolist()

print (mask)

HH

good matches = [m for m,msk in zip(good matches,mask) if msk == 1]
I = cv2.drawMatches (Il,6keypointsl,I2,keypoints2, good matches, None)

cv2.imshow('sift keypointsl', I)
cv2.waitKey ()

As you can see, even after removing a number of the false matches using the
distance ratio test (m1.distance < alpha *m2.distance), some of the mismatches
still persist. We want to remove them using RANSAC. Since we know that the
transformation between the source and target objects is a homography, we can use
the function cv2. findHomography With the option cv2.ransac to remove the outliers
and estimate a homography 5. Uncomment the following lines from the code. It
redefines the list good_matches by further removing the outliers using RANSAC.
Rerun the code to draw the new "good_matches" and see the result.

apply RANSAC

pointsl = [keypointsl[m.queryIdx].pt for m in good matches]
pointsl = np.array(pointsl,dtype=np.float32)

points2 = [keypoints2[m.trainIdx].pt for m in good matches]
points2 = np.array(points2,dtype=np.float32)

H, mask = cv2.findHomography (pointsl, points2, cv2.RANSAC,5.0)

mask = mask.ravel () .tolist ()

good matches = [m for m,msk in zip(good matches,mask) if msk == 1]

e Remember, for every member m of the list good_matches, m.queryldx and
m.trainldx were the indices of the keypoints in the first and second images
respectively. What is keypoints1[m.queryIdx].pt? What are the shapes of
pointsl and pointsZ?

e Print the variable mask. What does it represent?

e What does the following line do?
good matches = [m for m,msk in zip(good matches,mask) if msk == 1]

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon L(;@_Mffﬁ:()f, @
Spring 1398 (2019) K. H.TOOS!UNIVERSIIT?OI'TECHNOLOGY i
K. N. Toosi University of Technology

Task 1: Image alignment

We want to transform the first image =
to its location in the second image. .
This can be done using the
cv2.warpPerspective function you
used before and the transformation
matrix H obtained using RANSAC.
Complete the following code to do
this. The code alternatingly displays &
the second image and the

transformed source object. In the current code, the homography H is just the identity
matrix. You need to set it to the correctly estimated homography.

File: task1.py

import numpy as np
import cv2
import glob

sift = cv2.xfeatures2d.SIFT create() # opencv 3
use "sift = cv2.SIFT()" if the above fails

I2 cv2.imread('scene. jpg')
G2 = cv2.cvtColor(I2,cv2.COLOR_BGR2GRAY)

keypoints2, desc2 = sift.detectAndCompute (G2, None); # opencv 3

fnames = glob.glob('ocbj?.jpg')
fnames.sort ()
for fname in fnames:
Il = cv2.imread (fname)
Gl = cv2.cvtColor(Il,cv2.COLOR BGR2GRAY)
keypointsl, descl = sift.detectAndCompute (Gl, None); # opencv 3

H = np.eye (3,dtype=np.float32) # this needs to be changed!!

J = cv2.warpPerspective (I1, H, (I2.shape[l],I2.shape[0]))

alternatingly show images I2 and J

ind = 0;
imgs = [I2, J]
while 1:

ind = 1-ind

cv2.imshow ('Reg’',imgs[ind])
key = cv2.waitKey (800)

if key & OxFF == ord('q'):
exit ()
elif key & OxFF != OxFF:
break

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon U’;@”Mv@":%, @
Spring 1398 (2019) K. N.TDOSIUNI\I'ERS:T\"OFTECHNBLOGY wr
K. N. Toosi University of Technology

Task 2: Draw object outline

In this task, we want to draw the outline of each object in the scene. The outline (a
quadrilateral) can be drawn by drawing four lines with the cv2.line function. The four
corners of the first image can be transformed to their locations in the second image
using the function cv2.perspectiveTransform (look at the code). Notice that this
function accepts the points in the form of (x,y) and not (y,x). Complete the following
to perform Task 2.

File: task2.py

import numpy as np
import cv2
import glob

sift = cv2.xfeatures2d.SIFT create() # opencv 3
use "sift = cv2.SIFT()" if the above fails

I2 cv2.imread('scene. jpg')
G2 cv2.cvtColor (I2,cv2.COLOR BGR2GRAY)
keypoints2, desc2 = sift.detectAndCompute (G2, None); # opencv 3

fnames = glob.glob('obj?.jpg')
fnames.sort ()
for fname in fnames:

I1
Gl

cv2.imread (fname)
cv2.cvtColor (I1,cv2.COLOR BGR2GRAY)

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon L{;‘Un«”/:%lib"f&b @
Spring 1398 (2019) K,N-WUNI\!ERS;WOF‘IECHWLDGY o

K. N. Toosi University of Technology

K. N. Toosi University of Technology

