

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

Lab Instructions - session 13
Image Classification

Mohammad Akbarizadeh

NOTE: You will need to have the scikit-learn and scikit-image libraries installed:

pip install scikit-learn

pip install scikit-image

Read and Display data
In the folder “dataset”, you can find 32 by 32 images of Persian handwritten digits.
Browse through the subfolders and look at the images.

Task 1
Write a program that reads the images from the dataset and randomly displays four
examples of each Persian digit.

Two class classification using SVM
In the following code, we use a Support Vector Machine (SVM) classifier to classify
images into two classes. We simply vectorize each image and feed it as features to
the SVM. To save your precious time, the classifier is saved to a file from which you
can later load your model. You can see the accuracy of the model presented as
output.

File: svm_classifier.py

import numpy as np
import cv2
from sklearn.svm import SVC
from sklearn.externals import joblib
import os
import random

dataset = './dataset/train/{}/'

train_images_list1 = os.listdir(dataset.format('1'))
train_images_list0 = os.listdir(dataset.format('0'))

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

train_images_list1.sort()
train_images_list0.sort()

train_labels = [1 for i in range(len(train_images_list1))]
train_labels.extend([0 for i in range(len(train_images_list0))])

input_data = []

for addr in np.ravel([train_images_list0, train_images_list1]):
 I = cv2.imread(os.path.join('dataset/train/{}/'.format(str(addr[2])),
addr))

 input_data.append(I.ravel())

classifier = SVC(gamma='auto')
file_name = 'saved_svm.sav'

if not os.path.isfile(file_name):
 classifier.fit(input_data, train_labels)
 joblib.dump(classifier, file_name)

else:
 classifier = joblib.load(file_name)

idx = [random.randint(0, 120) for i in range(10)]
test_input = [input_data[i] for i in idx]
test_labels = [train_labels[i] for i in idx]
results = classifier.predict(test_input)
print('predictions: ', results)

● Print the train labels. How are related to the images?

Displaying the accuracy
In order to examine the accuracy of our classifier, we must test it using some test
data and see if our classifiers answers match the labels we wanted or not. As you
can in previous code some test labels are available. You can print the accuracy by
dividing the correct predictions by the total number of predictions.
Add the following piece of code to the previous code to print the accuracy.

print('Accuracy: ', (np.sum(results == test_labels) / len(results)) * 100,

'%')

Task 2
As you can understand from the previous code, the accuracy is calculated on the
train data. This is not a good way to evaluate a classifier, because it can overfit the
training data (work very well on the training data), but perform poorly when tested on
the new (unseen) data. Your task is to examine the accuracy of the classifier both on
the train data and the test data.

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

Task 3
So far, we have done a two-class classification. Your task is to perform classification
on all 10 digits and display the train and test accuracies just like task 2. Your
classifier must take all the ten digits as input and classify them.

The HoG feature
The following code extracts the HoG features from an image and displays them. Try
it on different images and see the results.
File: displaying_HoG_features.py

from skimage import exposure
from skimage import feature
import cv2
import numpy as np

logo = cv2.imread('01.jpg')

(H, hogImage) = feature.hog(logo, orientations=9, pixels_per_cell=(8, 8),
 cells_per_block=(2, 2), transform_sqrt=True,
block_norm="L1",
 visualize=True)
hogImage = exposure.rescale_intensity(hogImage, out_range=(0, 255))
hogImage = hogImage.astype("uint8")

cv2.imshow("HOG Image", hogImage)
cv2.waitKey(0)

● How do you interpret the displayed HoG features? How are they related to the
image gradients?

Task 4
Write a program to do the classification but instead of giving the vectorized image as
input, give the HoG feature as input to the SVM and display the accuracy of your
model.

LBP features
Local Binary Patterns (LBP) is a fast and effective visual features used for image
classification. The following code extracts the LBP features and displays them.

File: displaying_LBP_features.py

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

import numpy as np
import cv2
from skimage import feature

fname = '01.jpg'

numPoints = 28
radius = 3

image = cv2.imread(fname, cv2.IMREAD_GRAYSCALE)
lbp = feature.local_binary_pattern(image, numPoints, radius)
J = np.copy(lbp)
J = np.array(J, dtype=np.float32)
cv2.imshow('J', J)
cv2.waitKey(0)

Task 5
Repeat Task 4 using the LBP features.

Task 6
Repeat task 5 using both HoG and LBP features.

References and further reading
Local Binary Patterns
different versions of LBP
HoG-LBP human detector (paper)
scikit-learn SVM
Histogram of Oriented Gradients

K. N. Toosi University of Technology

https://www.pyimagesearch.com/2015/12/07/local-binary-patterns-with-python-opencv/
https://arxiv.org/pdf/1611.09099v1.pdf
https://ieeexplore.ieee.org/document/5459207
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://www.learnopencv.com/histogram-of-oriented-gradients/

