
Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

Lab Instructions - session 8
Corner Detection

Corner Detection
We want to find the corners in the following image. Harris corner
detector gives a score for each pixel telling how similar the local
structure is to a corner. The following code tries to count the number
of corners in the image. But there is a problem with the code.

File: detect_corners.py
import cv2
import numpy as np

I = cv2.imread('square.jpg')
G = cv2.cvtColor(I,cv2.COLOR_BGR2GRAY)

G = np.float32(G)
window_size = 2
soble_kernel_size = 3 # kernel size for gradients
alpha = 0.04
H = cv2.cornerHarris(G,window_size,soble_kernel_size,alpha)

normalize C so that the maximum value is 1

H = H / H.max()

C[i,j] == 255 if H[i,j] > 0.01, and C[i,j] == 0 otherwise

C = np.uint8(H > 0.005) * 255

connected components

nc,CC = cv2.connectedComponents(C);

to count the number of corners we count the number

of nonzero elements of C (wrong way to count corners!)

n = np.count_nonzero(C)

Show corners as red pixels in the original image

I[C != 0] = [0,0,255]

cv2.imshow('corners',C)
cv2.waitKey(0) # press any key

font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(I,'There are %d corners!'%n,(20,40), font, 1,(0,0,255),2)
cv2.imshow('corners',I)
cv2.waitKey(0) # press any key

cv2.destroyAllWindows()

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

● Why does the method not work for finding the number of corners? Zoom the
image next to the corners to see why.

● Uncomment the line nc,CC = cv2.connectedComponents(C)to find the
connected components of C. Using that fix the number of corners. Notice that
background is counted as a separate connected component, thus, the number
of connected components will be equal to nc-1.

● Non-maximum suppression is an alternative to connected components for
counting the corners. Think about its advantages and disadvantages.

Corner Detection
The following code loops through a bunch of images and finds the locations with
large harris score. It then performs connected components analysis on thresholded
Harris scores and computes the centre of each connected component as the corner
location. Next, it refines the corner locations using the cv2.cornerSubPix
function.

File: test_corner.py
import cv2
import numpy as np
import glob

fnames = glob.glob('*.jpg')
for filename in fnames:
 I = cv2.imread(filename)
 G = cv2.cvtColor(I,cv2.COLOR_BGR2GRAY)
 G = np.float32(G)

 window_size = 3
 soble_kernel_size = 3 # kernel size for gradients
 alpha = 0.04
 H = cv2.cornerHarris(G,window_size,soble_kernel_size,alpha)
 H = H / H.max()

 C = np.uint8(H > 0.01) * 255
 J = I.copy()
 J[C != 0] = [0,0,255]
 cv2.imshow('corners',J)
 if cv2.waitKey(0) & 0xFF == ord('q'):
 break

 # plot centroids of connected components as corner locations
 nC, CC, stats, centroids = cv2.connectedComponentsWithStats(C)

 J = I.copy()
 for i in range(1,nC):
 cv2.circle(J,(int(centroids[i,0]),int(centroids[i,1])),3,(0,0,255))
 cv2.imshow('corners',J)
 if cv2.waitKey(0) & 0xFF == ord('q'):
 break

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

 # fine-tune corner locations
 criteria=(cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER,100,0.001)
 corners=cv2.cornerSubPix(G,np.float32(centroids),(5,5),(-1,-1),criteria)
 J = I.copy()
 for i in range(1,nC):
 cv2.circle(J,(int(corners[i,0]),int(corners[i,1])), 3, (0,0,255))
 cv2.imshow('corners',J)
 if cv2.waitKey(0) & 0xFF == ord('q'):
 break

● There seems to be a lot of corners in highly textured areas. Why?
● In some images some of the corners have not been found. Can you guess

why? Zooming in might help. Change the parameter window_size and see the
effect on such corners.

Task 1: Find polygons
You need to find all the polygons in the
following image, and for each polygon detect
the number and location of vertices (corners).
Complete the file task1.py. Notice that you
need to apply cv2.connectedComponents
twice: once for separating each shape, and
once for detecting the corners of each shape.
Change the parameter window_size (and
possibly other parameters) in the Harris corner detector until you get the correct
result.

File: task1.py
import cv2
import numpy as np

I = cv2.imread('polygons.jpg')
G = cv2.cvtColor(I,cv2.COLOR_BGR2GRAY)
ret, T = cv2.threshold(G,220,255,cv2.THRESH_BINARY_INV)
nc1,CC1 = cv2.connectedComponents(T)

for k in range(1,nc1):
 Ck = np.zeros(T.shape, dtype=np.float32)
 Ck[CC1 == k] = 1;
 Ck = cv2.GaussianBlur(Ck,(5,5),0)
 Ck = cv2.cvtColor(Ck,cv2.COLOR_GRAY2BGR)
 # Now, apply corner detection on Ck

 font = cv2.FONT_HERSHEY_SIMPLEX
 cv2.putText(Ck,'There are %d vertices!'%(100),(20,30), font, 1,(0,0,255),1)

 cv2.imshow('corners',Ck)

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

 cv2.waitKey(0) # press any key

References
● OpenCV-Python Tutorials - Harris Corner Detection

K. N. Toosi University of Technology

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_features_harris/py_features_harris.html#harris-corners

