

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

Lab Instructions - session 9
Image Pyramid, Multiscale corner detection

Image Downsampling
We intend to downsize the following image by a factor of s (default
s=4). The following code reduces the size of the image by selecting
every s pixels both in the x and y directions (that is I[::s, ::s, :]).
The output image, however, looks a bit weird. So, we need to do a
little better than just picking every s pixels. Run the following code.
Notice that initially J, Jb and Jg (three images displayed in the
second row of the figure) are all the same.

File: downsize.py
import numpy as np
import cv2
from matplotlib import pyplot as plt

I = cv2.imread('karimi.jpg')
s = 4; # downsize with a factor of s

Downsize by sampling every s pixels:

J = I[::s, ::s, :]

Jb = Jg = J

blur with a box filter, then downsample

ksize = s + 1;

Ib = cv2.boxFilter(I, -1, (ksize,ksize))

Jb = Ib[::s, ::s, :]

blur with a Gaussian filter, then resample

sigma = (s+1)/np.sqrt(12) # equivant sigma for Guassian kernel

Ig = cv2.GaussianBlur(I, (0,0),sigma)

Jg = Ig[::s, ::s, :]

f, ax = plt.subplots(2,3, gridspec_kw={'height_ratios': [s,1]})

do not change this (turns off the axes)

for a in ax.ravel():
 a.axis('off')

ax[0,1].set_title('Original')
ax[0,1].imshow(I[:,:,::-1])

ax[1,0].set_title('Downsized')
ax[1,0].imshow(J[:,:,::-1], interpolation='none')

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

ax[1,1].set_title('Box Blur + Downsized')
ax[1,1].imshow(Jb[:,:,::-1], interpolation='none');

ax[1,2].set_title('Gaussian Blur + Downsized')
ax[1,2].imshow(Jg[:,:,::-1], interpolation='none');

plt.show()

● What do you think is wrong with the output image. Why is this happening?
● Redefine Jb by uncommenting the three lines after the line # blur with a

box filter, then downsample. To create Jb, we first blur the image with a
box filter and then downsample as before. How does this change the output
image?

● Uncomment the three lines after the line # blur with a Gaussian filter,
then resample to redefine Jg. This is the same as Jb, but this time a
Gaussian filter is used for blurring instead of a box filter. See the result.

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

Image pyramid
An image pyramid is created by repeatedly blurring and
downsampling an image. The opencv function pyrDown creates
the next level of the pyramid from the previous level. A
pyramid can be created by repeatedly calling this function. The
following code creates an image pyramid and displays it. Here,
the pyramid gets stored in a python list (not a numpy array).

File: pyramid.py
import numpy as np
import cv2
from matplotlib import pyplot as plt

I = cv2.imread('karimi.jpg')

psize = 6 # size of the pyramid (no. of levels)

building the pyramid

J = I.copy()
Pyr = [J] # the first element is simply the original image
for i in range(psize-1):
 J = cv2.pyrDown(J) # blurs, then downsamples by a factor of 2
 Pyr.append(J)

display the pyramid

do not bother about the next two lines

size_list = [2**(psize-i-1) for i in range(psize)]
f, ax = plt.subplots(1,psize, gridspec_kw={'width_ratios': size_list})

do not change this (turns off the axes)

for a in ax.ravel():
 a.axis('off')

for l in range(psize):
 ax[l].set_title('l=%d'%l)
 J = Pyr[l]
 ax[l].imshow(J[:,:,::-1], interpolation='none');

plt.show()

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

Multiscale corner detection:
We have 3 images saved to the files kntu1.jpg, kntu2.jpg and kntu4.jpg. All images
are of the same size (800 by 800 pixels). However, the logo in images kntu2.jpg and
kntu4.jpg are respectively 2 and 4 times smaller than the logo in kntu1.jpg.

kntu1.jpg kntu2.jpg kntu4.jpg

We want to find the correct window size for detecting Harris corners in each of these
images. For this, we run the Harris corner detection algorithm for window sizes 2, 4,
8, 16, 32 and 64 for each image. Run the following code and find a proper window
size for detecting corners in kntu1.jpg. The logo has 78 corners.

File: multiscale_corner.py
import cv2
import numpy as np

I = cv2.imread('kntu1.jpg')
G = cv2.cvtColor(I,cv2.COLOR_BGR2GRAY)
G = np.float32(G)

for k in range(1,7):
 win_size = 2**k # 2^k
 soble_kernel_size = 3 # kernel size for gradients
 alpha = 0.04
 H = cv2.cornerHarris(G,win_size,soble_kernel_size,alpha)
 H = H / H.max()

 C = np.uint8(H > 0.01) * 255
 nc,CC = cv2.connectedComponents(C);

 J = I.copy()
 J[C != 0] = [0,0,255]
 cv2.putText(J,'winsize=%d, corners=%d'%(win_size, nc-1),(20,40), \
 cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),2)

 cv2.imshow('corners',J)

 if cv2.waitKey(0) & 0xFF == ord('q'):
 break

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

● What is the first win_size for which the algorithm detects the right number of
corners?

● Test the above code on kntu2.jpg and kntu4.jpg. In each case take note of the
smallest win_size for which the algorithm correctly detects the corners. What
do these numbers say?

Task 1:
We want to use the above concept to decide the logo is how many times larger or
smaller in one image compared to the other. To do this, we write a function named
first_correct_winsize which finds the smallest window size (as a power of 2, i.e.
2,4,8,16,32,64) that correctly detects all the 78 corners. By comparing the window
size for two images you can compare the sizes of the logos. Just fill the function
body and leave the rest of the code unchanged.

File: task1.py
import cv2
import numpy as np

NO_CORNERS = 78

def first_correct_winsize(I):
 "find the smallest win_size for which all corners are detected"
 # write your code here

 return 4 # incorrect

I1 = cv2.imread('kntu1.jpg')
I2 = cv2.imread('kntu4.jpg')

s1 = first_correct_winsize(I1)
s2 = first_correct_winsize(I2)

J = np.concatenate((I1,I2), 1)

if s1 < s2:
 txt = 'Logo 1 is %d times smaller than logo 2'%(s2/s1)
elif s1 > s2:
 txt = 'Logo 1 is %d times larger than logo 2'%(s1/s2)
else:
 txt = 'Logo 1 is about the same size as logo 2'

cv2.putText(J,txt,(20,40), \

 cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),2)

cv2.imshow('scale',J)
cv2.waitKey(0)

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

Multiscale corner detection with image
pyramid
An alternative approach is to keep the Harris window size fixed and change the
image size instead. In the following, we use a fixed window size (win_size = 4) and
run the corner detection algorithm for different image sizes in an image pyramid. Run
the code and see the result. Then move on quickly to task 2.

File: multiscale_corner_pyramid.py
import cv2
import numpy as np

I = cv2.imread('kntu1.jpg')

psize = 6 # size of the pyramid (no. of levels)

building the pyramid

J = I.copy()
Pyr = [J] # the first element is simply the original image
for i in range(psize-1):
 J = cv2.pyrDown(J) # blurs, then downsamples by a factor of 2
 Pyr.append(J)

for k in range(psize): # k = 0,1,..., psize-1
 J = Pyr[k]
 G = cv2.cvtColor(J,cv2.COLOR_BGR2GRAY)
 G = np.float32(G)

 win_size = 4 # do not change this
 soble_kernel_size = 3 # kernel size for gradients
 alpha = 0.04
 H = cv2.cornerHarris(G,win_size,soble_kernel_size,alpha)
 H = H / H.max()

 C = np.uint8(H > 0.01) * 255
 nc,CC = cv2.connectedComponents(C);

 J[C != 0] = [0,0,255]

 JJ = np.zeros(I.shape,dtype=I.dtype)
 JJ[:J.shape[0],:J.shape[1],:] = J;

 cv2.putText(JJ,'scale=1/%d, corners=%d'%(2**k, nc-1),(360,30), \
 cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),2)

 cv2.imshow('corners',JJ)

 if cv2.waitKey(0) & 0xFF == ord('q'):
 break

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

Task 2
The job is the same as task 1. But this time we do it using an image pyramid. This
time you need to write a function called first_correct_scale which finds the first
image scale in a pyramid that correctly detects all the 78 corners. By comparing the
image scales for the two images you will find their relative size. Notice that you just
need to add a little piece of code and fill in the function body after the line saying
#! write your code here! *********************

File: task2.py
import cv2
import numpy as np

NO_CORNERS = 78

def first_correct_scale(I):
 "find the smallest scale for which all corners are detected"

 psize = 6 # size of the pyramid

 # building the pyramid
 J = I.copy()
 Pyr = [J] # the first element is simply the original image
 for i in range(psize-1):
 J = cv2.pyrDown(J) # blurs, then downsamples by a factor of 2
 Pyr.append(J)

 for k in range(psize): # k = 0,1,..., psize-1
 J = Pyr[k]
 G = cv2.cvtColor(J,cv2.COLOR_BGR2GRAY)
 G = np.float32(G)

 win_size = 4 # do not change this!!
 soble_kernel_size = 3 # kernel size for gradients
 alpha = 0.04

 #! write your code here! ***
 nc = 79 # !!! delete this line!

 if nc-1 == NO_CORNERS: # if the connected components
 return 2**k

I1 = cv2.imread('kntu1.jpg')
I2 = cv2.imread('kntu4.jpg')

sc1 = first_correct_scale(I1)
sc2 = first_correct_scale(I2)

J = np.concatenate((I1,I2), 1)

if sc1 < sc2:
 txt = 'Logo 1 is %d times smaller than logo 2'%(sc2/sc1)

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

elif sc1 > sc2:
 txt = 'Logo 1 is %d times larger than logo 2'%(sc1/sc2)
else:
 txt = 'Logo 1 is about the same size as logo 2'

cv2.putText(J,txt,(20,40), \

 cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),2)

cv2.imshow('scale',J)
cv2.waitKey(0)

Have some fun!
[This is not part of your lab] Run the next code and see the result. You will learn
how to do this soon. For the time being, just run it. You can use our own photo.

File: create_pyramid.py

import numpy as np
import cv2

I = cv2.imread('karimi.jpg')
m,n,_ = I.shape

P1 = np.array([[0,0], [0, m-1], [n-1,0], [n-1,m-1]])

psize = 7 # size of the pyramid (no. of levels)

J = np.ones((600,500,3), dtype=np.uint8)*255
m2,n2,_ = J.shape

v = np.array([(n2/2,0)])
P2 = np.array([(0,4*m2/5),
 (5*n2/6,m2),

 (3*n2/12,7*m2/12),

 (n2,8*m2/12)])

cv2.line(I, (0,0), (0,m-1), (1,1,1),4)

cv2.line(I, (0,0), (n-1,0), (1,1,1),4)

cv2.line(I, (n-1,m-1), (0,m-1), (1,1,1),4)

cv2.line(I, (n-1,m-1), (n-1,0), (1,1,1),4)

for i in range(4):
 cv2.line(J, (v[0,0],v[0,1]), (P2[i,0],P2[i,1]), (0,0,0),2)

p21 = P2[1].copy()

for i in range(psize):
 H, status = cv2.findHomography(P1, P2)
 K = cv2.warpPerspective(I, H, (J.shape[1],J.shape[0]))
 msk = K.max(axis=2) != 0
 J[msk,:] = K[msk,:]

 cv2.line(J, (v[0,0],v[0,1]), (p21[0],p21[1]), (0,0,0),2)

 cv2.imshow('',J)

K. N. Toosi University of Technology

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 1398 (2019)
K. N. Toosi University of Technology

 cv2.waitKey()

 P2 = (P2 + v)/2

References

● OpenCV-Python Tutorials - Image Pyramids

K. N. Toosi University of Technology

https://docs.opencv.org/3.4/dc/dff/tutorial_py_pyramids.html

