’ o B,
Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon 4,/ J| U; . J, @
Spring 2025 J o /:4} UV:E//}

K. M. TOOSI UNIVERSITY OF TECHNOLOGY

Lab Instructions - session 2

Reading and displaying a grayscale image:

>>> import numpy as np

>>> import cv2

>>> I = cv2.imread('lake.jpg', cv2.IMREAD GRAYSCALE)
>>> I.shape

>>> I.dtype

>>> I[10,20]

>>> cv2.imshow('Lake', I)

>>> cv2.waitKey (5000)

>>> cv2.destroyAllWindows ()

>>> color_image = cv2.imread('lake.]jpg')

>>> gray I = cv2.cvtColor(color_ image, cv2.COLOR BGR2GRAY)
>>> gray I.shape

>>> gray I.dtype

>>> cv2.waitKey (5000)

>>> cv2.destroyAllWindows ()

>>> cv2.imshow('Grayscale (Direct)',6I)

>>> cv2.imshow ('Grayscale (Converted)',6 gray I)

>>> cv2.waitKey (0)

>>> cv2.destroyAllWindows ()

Reading a color image:

>>> I = cv2.imread('lake.jpg', cv2.IMREAD UNCHANGED)
>>> I.shape

>>> I.dtype

>>> I = cv2.imread('lake.]jpg')

>>> I.shape

>>> I.dtype

>>> I[10,20]

>>> cv2.imshow('lake.jpg', I)
>>> cv2.waitKey ()

>>> cv2.destroyAllWindows ()

Side note: if we use cv2.waitKey() without waiting time, it will wait for the user to
press a key to continue.



’ o B,
Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon | b, r JI 4l o &% @
Spring 2025 G Kﬂé;ﬂ?j’

K. M. TOOSI UNIVERSITY OF TECHNOLOGY

Display the image using matplotlib:

>>> from matplotlib import pyplot as plt
>>> plt.imshow (TI)
>>> plt.show()

e Are the image colors strange? Remember scipy/matplotlib use the RGB
system, while opencv uses the BGR system. Reading an image with opencv
and displaying with matplotlib makes the blue and red channels swapped.

>>> plt.imshow (I[:,:,::-1])
>>> plt.show()

Remember, I[:,:,::-1] reverses the order of the last dimension (the channels)
and hence converts BGR (opencv) to RGB (for displaying with matplotlib).
Could you suggest another way using cv2 for the above conversion?

Set the green channel equal to zero
remember openCV uses BGR: Blue: 0, Green: 1, Red: 2

>> I[:,:,1] =0
>>> plt.imshow (I[:,:,::-1])
>>> plt.show()

Saving an image

>>> cv2.imwrite('lake nogreen.jpg', I)

Displaying ‘red’, ‘green’ and ‘blue’ channels

Open a code editor and write the following code (or open the file brg1.py in the
instructions folder). It displays the original image, the blue channel, the green
channel and the red channel of the image when the keys ‘o', ‘b’, ‘g’ and ‘r’ are
pressed respectively. Notice that the green channel is brighter in green areas. So are
the red and blue channels.

import cv2
import numpy as np

I = cv2.imread('lake.jpg"')




Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon UJ’QMW%’ @

Spring 2025

N

K. N. TOOSI UNIVERSITY OF TECHNOLOGY

Task 1:

The above code shows the B, G and R channels as grayscale images. Change the
above code so that the blue channel is displayed in the blue, green channel in the
green, and red channel in red. Notice that since these are color images they have to
be mxnx3 arrays. For a purely red image, the green and blue channels are entirely
zero. The following code might help:

Alternatively, you can create a copy of an image and change it:




' o b,
Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon Al y 5 @
Spring 2025 U?u /:% mﬁb

K. M. TOOSI UNIVERSITY OF TECHNOLOGY b

Blending two images

Method 1:

e \What does the above piece of code do?

e Whatdoes K[::2,::2,:] = J[::2,::2,:] do? (notice that
J[::2,::2,:] represents every second row and every second column of J)

e Why have we written K = I.copy()instead of K = I?

Method 2

e \What is the difference between methods 1 and 2?

numpy addition vs opencv addition




’ o B,
Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon | b, r JI 4l o &% @
Spring 2025 G /:5:’;(',"’;’?;,

K. M. TOOSI UNIVERSITY OF TECHNOLOGY

>>> a+b
>>> cv2.add(a,b)

e What is the difference between a+b and cv2.add(a,b)? Which one do you
think should be used for adding up images?

Blending with arbitrary ratios
0.8 of image I plus .2 of image J.

K = np.clip((0.8*I + 0.2*J), 0, 255) .astype(np.uint8)

e Why have we used .astype (np.uint8)? print ((0.8*I) .dtype) to see why.

K = cv2.addWeighted(I,0.8,J3,0.2, 0)
K = cv2.addWeighted(I,0.1,J3,0.9, 0)
K = cv2.addWeighted(I,0.3,3,0.7, 0)

For floating point variables alpha, beta and gamma, running

cv2.addWeighted (I,alpha,J, beta,gamma)

is similar to running

np.clip((alpha*I + beta*J + gamma), 0, 255) .astype(np.uint8)

Task 2:

Make an animated smooth transition from the image I to the J. You can use
“cv2.waitKey(n)” to delay for n milliseconds.

Task 3:

Create a smooth animation that changes image I from grayscale to color.
Hint: Grayscale images have equal values in all three color channels.




' o B,
Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon A2 & @
Spring 2025 UJ;U“ /:‘)."7 Fﬂpb

K. M. TOOSI UNIVERSITY OF TECHNOLOGY

References

e https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_core/py_table_of conten
ts_core/py table of contents core.html#py-table-of-content-core

e https://opencv-python-tutroals.readthedocs.io/en/latest/py tutorials/ ui/
image display/py image display.html



https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_core/py_table_of_contents_core/py_table_of_contents_core.html#py-table-of-content-core
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_core/py_table_of_contents_core/py_table_of_contents_core.html#py-table-of-content-core
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_gui/py_image_display/py_image_display.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_gui/py_image_display/py_image_display.html

	Lab Instructions - session 2 
	Reading and displaying a grayscale image: 
	Reading a color image: 
	Display the image using matplotlib: 
	Set the green channel equal to zero 
	Saving an image 
	Displaying ‘red’, ‘green’ and ‘blue’ channels 

	Task 1: 
	Blending two images 
	Method 1: 
	Method 2 
	numpy addition vs opencv addition 
	‌Blending with arbitrary ratios 


	Task 2: 
	Task 3: 
	References 


