

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 2024

Lab Instructions - session 3
Working with videos, histograms

Part 1: Reading and displaying videos
You can see a short video clip called ‘kntu-computer.avi’. The following code
opens this file and displays it. You can also find the source file in your instructions
folder, named ‘read_video.py’.

import numpy as np
import cv2

create a VideoCapture object
cap = cv2.VideoCapture('kntu-computer.avi')

sometimes this is needed:
#if not cap.isOpened():
cap.open();

while True:
 # Capture frame-by-frame
 ret, I = cap.read()

 if ret == False: # end of video (perhaps)
 break

 cv2.imshow('win1',I) # Display I

 key = cv2.waitKey(33) # ~ 30 frames per second

 if key == ord('q'): # exit when “q” is pressed
 break
 # replace the above with "if key 0xFF == ord('q')"
 # if it fails

cap.release()
cv2.destroyAllWindows()

●​ What happens by pressing "q" before the video finishes? (replace "key ==

ord('q')" by "key & 0xFF == ord('q')" if the above fails.
●​ key = cv2.waitKey(33) creates a delay of 33 milliseconds. What

happens if you increase or decrease this value? Change it to 3 or 300 and
see what happens.

●​ replace cv2.waitKey(33)by cv2.waitKey(0)or cv2.waitKey() and
see what happens.

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 2024

Writing a video on the disk
Open the file “lab3_task1.py”. It reads a video file named ‘eggs.avi‘ and saves the
frames into another video file named ‘eggs-reverse.avi‘.Run the file.

import numpy as np​
import cv2​
​
create a VideoCapture object​
cap = cv2.VideoCapture('eggs.avi')​
​
get the dimensions of the frame​
you can also read the first frame to get these​
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # width of the frame​
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # height of the frame​
​
fourcc = cv2.VideoWriter_fourcc(*'XVID') # choose codec​
​
opencv 2.x:​
#w = int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH)) ​
#h = int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)) ​
#fourcc = cv2.cv.CV_FOURCC(*'XVID')​
​
create VideoWriter object w by h, 30 frames per second​
out = cv2.VideoWriter('eggs-reverse.avi',fourcc, 30.0, (w,h))​
​
while True:​
 ret, I = cap.read()
​
 if ret == False: # end of video (or error)​
 break​
 # write the current frame I​
 out.write(I)​
​
cap.release()​
out.release()

Task 1:
Change the above file so that the video frames are saved in reverse order.
Therefore, in the end, the file ‘eggs-reverse.avi‘ should be a backward playback
of ‘eggs.avi’. You can use python lists for buffering the frames if you need to:

buffer = []
while True:
 …
 buffer.append(I) # add frame I at the end of the buffer

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 2024

Part 2: Histograms
Here, we use matplotlib (not OpenCV) to plot histograms. Open the file
‘lab3_task2.py’.

import cv2​
import numpy as np​
from matplotlib import pyplot as plt​
​
fname = 'crayfish.jpg'​
#fname = 'office.jpg'​
​
I = cv2.imread(fname, cv2.IMREAD_GRAYSCALE)​
​
f, axes = plt.subplots(2, 3)​
​
axes[0,0].imshow(I, 'gray', vmin=0, vmax=255)​
axes[0,0].axis('off')​
​
axes[1,0].hist(I.ravel(),256,[0,256]);​
​
plt.show()

“plt.subplots(2,3)” creates a 2 by 3 array of subplots (2 rows, 3 columns). By
running the above code, you can see that only the first column of the subplots are
used (axes[0,0] and axes[1,0]). The image is plotted in axes[0,0] and its histogram in
axes[1,0].

●​ What does “I.ravel()“ do in the above? Why has it been used?

Task 2:
(a) We want to linearly expand the histogram to get a better contrast. Determine
points a and b for linear histogram expansion according to the image below:

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 2024

Now, create an image J in which the histogram has been expanded. You may use
the following piece of code.

J = (I-a) * 255.0 / (b-a)
J[J < 0] = 0
J[J > 255] = 255
J = J.astype(np.uint8)

plot the image J and its histogram in the second column of the subplots (axes[0,1]
and axes[1,1]).

●​ What does the above piece of code do?

(b) You can perform histogram equalization in OpenCV using the following function.

K = cv2.equalizeHist(I)​

plot the image K and its histogram in the third column of the subplots (axes[0,2] and
axes[1,2]).

●​ Compare the linearly histogram-expanded image with the histogram
equalization.

●​ Do this for a bunch of other images in your folder (crayfish.jpg, map.jpg,
train.jpg, branches.jpg, terrain.jpg). Note that you need to change a and b for
each image.

Task 3:
In this task, you should implement the equalizeHist function and then use it to
enhance the contrast of Pasargadae. Open the file 'lab3_task3.py' and complete

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 2024

the required functions. For this task, you are not allowed to use functions for
calculating the histogram and cumulative distribution function (CDF). You should
implement them from scratch. The final result should look like the example below:

Now, apply your equalizeHist implementation to 'task3p1.png' and 'task3p2.png'
and answer the following question.display both side by side.

●​ If two images have the same histogram, does it mean they look identical? why
or why not?

●​ If two images have the same histogram before equalization, will their
equalized versions also be identical? why or why not?

●​ In what real-world applications might comparing histograms be useful? What
are the limitations of using histograms for image comparison?

Extra Score
●​ Can you think of a way of automatically obtaining a and b in Task2 (a) for

arbitrary images? Write a Python code to implement it.

Task 4:
Now, implement an image classification function that categorizes an image based on
its histogram characteristics. You may use the following steps:

mean_intensity = np.mean(I)
std_dev = np.std(I)

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 2024

dark_pixels = np.sum(hist[:50]) / I.size
bright_pixels = …

Task: Set appropriate threshold values and complete the
classification logic
category = ""

if mean_intensity < 50 and dark_pixels > 0.5:
 category = "Underexposed"

 # ToDo
 elif ...

Plot the image and its histogram using subplots.

●​ What threshold values should be chosen to categorize an image as
underexposed, overexposed, low contrast, or well-balanced?

●​ How does the histogram distribution help in making this classification?
●​ How does the standard deviation (std_dev) of pixel intensities in an image

help in determining its contrast level?

​

Task 5 :

Write a Python program that takes a grayscale image as input and inverts its colors
(i.e., transforms black to white and white to black). Display both the original and
inverted images side by side.

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 2024

●​ Where can we Use grayscale image inversion?
●​ Does inverting a grayscale image affect its histogram? why or why not?

References
●​ https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_histograms/p

y_histogram_begins/py_histogram_begins.html#histograms-getting-started
●​ https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_histograms/p

y_histogram_equalization/py_histogram_equalization.html#py-histogram-equa
lization

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_histograms/py_histogram_begins/py_histogram_begins.html#histograms-getting-started
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_histograms/py_histogram_begins/py_histogram_begins.html#histograms-getting-started
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_histograms/py_histogram_equalization/py_histogram_equalization.html#py-histogram-equalization
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_histograms/py_histogram_equalization/py_histogram_equalization.html#py-histogram-equalization
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_histograms/py_histogram_equalization/py_histogram_equalization.html#py-histogram-equalization

	Lab Instructions - session 3
	Part 1: Reading and displaying videos
	Writing a video on the disk

	Task 1:
	Part 2: Histograms
	Task 2:
	Task 3:
	Extra Score

	Task 4:
	References

