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Lab Instructions - session 4  

Noise Modeling and Filtering 
 

1. Image Noise Models and Simulation 

Digital images are often corrupted by noise, which is any unwanted random variation in pixel 
values . Noise can arise during image capture (sensor noise, photon statistics), transmission (bit 
errors), or processing. We commonly model noise as a random process with a specific 
probability distribution. Three widely-used noise models in imaging are: 

Gaussian Noise (additive white Gaussian noise): Noise values follow a normal distribution. This 
is a typical assumption for sensor read-out noise or thermal noise in images. It is independent of 
the image signal and affects each pixel independently (often modeled as zero-mean with some 
variance σ²).  

Salt-and-Pepper Noise (snow noise): Random pixels are flipped to black or white (extreme 
values), like sprinkling salt and pepper on the image . This typically arises from sharp, sporadic 
disturbances like faulty sensor elements or transmission errors. It’s characterized by sparsely 
occurring bright and dark pixel defects amidst normal pixels. Only a certain fraction p of pixels 
are corrupted. 

 

 

 

 

 

Task 1: Simulating Noise Addition 

In this task, you will generate synthetic noise and add it to an image to observe the effects of 
different noise models. We wil‌l use OpenCV (cv2) and NumPy for this.  

Mathematical Notes: Salt-and-pepper can be described as a bimodal distribution: 
, , . You can use np.random.choice 

for this purpose. 

 

 

https://www.codecogs.com/eqnedit.php?latex=P(n%20%3D%200)%20%3D%20p%2F2#0
https://www.codecogs.com/eqnedit.php?latex=P(n%20%3D%20255)%20%3D%20p%2F2#0
https://www.codecogs.com/eqnedit.php?latex=P(n%20%3D%20%5Ctext%7Bno%20change%7D)%20%3D%201-p#0
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lab4-task1.py 

import cv2​
import numpy as np​
​
# Load image in grayscale and convert to float [0,1]​
I = cv2.imread('lenna.png', cv2.IMREAD_GRAYSCALE)​
I = I.astype(np.float32) / 255.0  # shape: (H, W)​
​
# Function to add Gaussian noise​
def add_gaussian_noise(img, sigma=0.05):​
    # TODO: Generate a noise array using np.random.randn scaled by sigma.​
    # Example: noise = np.random.randn(*img.shape) * sigma​
    # TODO: Add the noise to the input image.​
    # TODO: Clip the resulting values to ensure they remain in the [0,1] range.​
    pass​
​
# Function to add salt-and-pepper noise​
def add_salt_pepper_noise(img, p=0.02):​
    # TODO: Create a copy of the image to modify.​
    # TODO: Determine the number of pixels to alter based on the given p​
    # TODO: Randomly choose indices for salt (set to 1.0) and pepper (set to 0.0).​
    pass​
​
# Generate noisy images using your implementations​
gauss_noisy = add_gaussian_noise(I, sigma=0.1)​
sp_noisy = add_salt_pepper_noise(I)​
​
# Convert the noisy images back to uint8 for saving or displaying​
cv2.imwrite('noisy_gaussian.png', (gauss_noisy * 255).astype(np.uint8))​
cv2.imwrite('noisy_saltpepper.png', (sp_noisy * 255).astype(np.uint8)) 
 

 

●​ Vary the noise parameters (sigma and p) and observe how the image degradation 
changes. For Gaussian noise, how does increasing σ affect the image? 

●​ Plot or examine the histogram of the noise for each case to verify it matches the 
expected distribution. 

●​ Mathematically, if you add two independent Gaussian noises with variances σ₁² and σ₂² to 
an image, what is the distribution of the combined noise? What would be its variance? 
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Task 2: Dynamic "Snow" Noise Simulation 

Older analog televisions displayed a dynamic snow noise (salt and paper noise) when tuned to 
a missing channel – essentially random black/white pixel patterns varying over time (this is like 
salt-and-pepper or Gaussian noise that changes every frame). In this task, you will create an 
animation of an image corrupted by continually changing noise, and allow user interaction to 
control noise intensity. 

Instructions: Using OpenCV, write a script that: 

●​ Reads an image in grayscale and normalizes it to [0,1] float. 
●​ Continuously in a loop, adds a newly generated Gaussian noise array to the image to 

produce a noisy frame, and displays it (e.g., using cv2.imshow). 
●​ Each loop iteration should use a different noise realization (so the noise pattern moves 

every frame). 
●​ Run at ~30 frames per second (cv2.waitKey(33) in the loop). 
●​ Use keyboard controls: 

○​ Press 'u' to increase the noise standard deviation (make the image noisier). 
○​ Press 'd' to decrease the noise standard deviation (make it cleaner). 
○​ Press 'q' to quit the loop. 

You can start from the template below and fill in the missing parts (pass statements): 

 

      lab4-task2.py 

import numpy as np​
import cv2​
​
# Load the image in grayscale and normalize to [0,1]​
I = cv2.imread('cameraman.jpg', cv2.IMREAD_GRAYSCALE)​
I = I.astype(np.float32) / 255.0  # Ensure pixel values are in [0,1]​
​
noise_sigma = 0.05  # initial noise standard deviation 

 

while True:​
    # TODO: Create a noise image N using a Gaussian distribution with mean 0 and 

variance noise_sigma^2.​
    # Hint: Use np.random.randn with the shape of I and multiply by noise_sigma.​
    N = np.random.randn(*I.shape) * noise_sigma  # complete if needed​
​
    # TODO: Add the noise to the original image and clip the result to ensure 

values remain in [0,1].​
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​
    cv2.imshow('Snow Noise', J)​
 

key = cv2.waitKey(33) & 0xFF​
​
    # TODO: Adjust noise_sigma based on key input:​
    if key == ord('u'):​
        ​
    elif key == ord('d'):​
​
    elif key == ord('q'):​
        break​
​
cv2.destroyAllWindows()​
 

 

 

●​ What does normalizing the image to [0,1] (the line with 
I.astype(np.float32)/255.0) accomplish in terms of noise addition? 

●​ Why should the noise image be regenerated inside the loop instead of outside? What 
happens if you create N once before the loop and reuse it every frame? 

●​ Ensure your code never uses a negative noise_sigma. Why is a negative standard 
deviation meaningless for noise generation? 

 

 

 

2. Filtering Fundamentals: Spatial Convolution and Frequency 
Perspective 

Now that we can produce noisy images, the next step is to filter them to recover a cleaner 
image. Smoothing filters work by averaging pixels with their neighbors, reducing variance due to 
noise. The most basic way to do this is via convolution with a smoothing kernel. 

Image Convolution: In 2D, convolution of an image  with a kernel  (of size m×n) 
produces an output  given by: 

 

 

https://www.codecogs.com/eqnedit.php?latex=I(x%2Cy)#0
https://www.codecogs.com/eqnedit.php?latex=h(x%2Cy)#0
https://www.codecogs.com/eqnedit.php?latex=J(x%2Cy)#0
https://www.codecogs.com/eqnedit.php?latex=J(x%2Cy)%20%3D%20%5Csum_%7Bu%3D-a%7D%5E%7Ba%7D%5Csum_%7Bv%3D-b%7D%5E%7Bb%7D%20h(u%2Cv)%5C%2C%20I(x-u%2C%5C%3By-v)%2C#0
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where the kernel size is  (e.g., for a 3×3 
kernel, ). Each output pixel is a weighted sum of neighboring input pixels. If  are 
all positive and sum to 1, this operation smooths the image (local averaging). This is essentially 
a low-pass filter – it passes  

 

low-frequency (smooth) variations and attenuates high-frequency components (like sharp noise 
or edges) . 

2.1 Mean Filter (Box Filter) 

The simplest smoothing kernel is a box filter – all ones in an  neighborhood, normalized 
by . This gives an output pixel that is the average of an  patch of the image. For 
example, a 3×3 mean filter kernel is:  neighborhood, normalized by . This gives an 
output pixel that is the average of an  patch of the image. For example, a 3×3 mean filter 
kernel is:  neighborhood, normalized by . This gives an output pixel that is the average 
of an  patch of the image. For example, a 3×3 mean filter kernel is: 

 . 

 

 

 

Task 3: Implementing a Box Blur 

Let's apply a box filter to a noisy image and see the result. OpenCV provides a function 
cv2.blur(src, ksize) that does this, or the more general cv2.filter2D(src, 
ddepth, kernel) for custom kernels. We can also create the kernel manually with NumPy. 

Instructions: 

●​ Load an image (you can use the noisy image from Task 1, or a clean image to just see 
the blurring effect). 

●​ Create a box kernel of size m×m (choose m, e.g., 5 or 7). This kernel should have all 
values = 1/(m*m). 

●​ Use cv2.filter2D to apply the kernel to the image. Compare with using cv2.blur for 
verification. 

●​ Try different kernel sizes and observe the differences. 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=(2a%2B1)%5Ctimes(2b%2B1)#0
https://www.codecogs.com/eqnedit.php?latex=a%3Db%3D1#0
https://www.codecogs.com/eqnedit.php?latex=h(u%2Cv)#0
https://www.codecogs.com/eqnedit.php?latex=m%5Ctimes%20m#0
https://www.codecogs.com/eqnedit.php?latex=m%5E2#0
https://www.codecogs.com/eqnedit.php?latex=m%5Ctimes%20m#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B1%7D%7B9%7D%5Cbegin%7Bbmatrix%7D1%20%26%201%20%26%201%5C%5C%201%20%26%201%20%26%201%5C%5C%201%20%26%201%20%26%201%5Cend%7Bbmatrix%7D#0
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lab4-task3.py 

  import numpy as np 
import cv2​
​
# Load an image (using the noisy image from Task 1, or a clean image) in 

grayscale​
I = cv2.imread('noisy_gaussian.png', cv2.IMREAD_GRAYSCALE)​
I = I.astype(np.float32) / 255.0  # Normalize to [0,1]​
​
m = 7  # Filter size (try 3, 5, 7, 11, etc.) 

​
# === TODO: Create an m×m box filter kernel ===​
# Use np.ones to create an array of ones and divide by (m*m) to normalize.​
kernel = None  # <-- Student to fill in​
​
# === TODO: Apply convolution to blur the image using cv2.filter2D ===​
J = None  # <-- Student to fill in​
​
# === TODO: Convert the result to uint8 and save or display it ===​
# For example, use cv2.imwrite to save the result. 

 
●​ Try m=3, 5, 9, 15. How does the choice of kernel size affect the output?  
●​ Why do we divide the kernel by ? What would happen if we don’t? 
●​ Use OpenCV’s cv2.blur(I, (m,m)) to perform the same operation. Confirm it 

produces the same result as your filter2D approach. 
●​ Suppose you apply two 3×3 mean filters sequentially (one after the other). Is the result 

different from a single 5×5 filter?  

 

 
 

 

2.2 Gaussian Filter 

A Gaussian filter uses a kernel shaped by the Gaussian (normal) distribution. In 1D, a 
Gaussian kernel of width m (odd) and standard deviation  has values 

. In 2D, the kernel is the outer product of two 1D Gaussians (since 
a 2D Gaussian function is separable into x and y components). Gaussian filters give more 
weight to the center pixel and nearest neighbors, and less weight to farther pixels, according to 

 

https://www.codecogs.com/eqnedit.php?latex=(m*m)#0
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the Gaussian curve. This tends to preserve central detail 
slightly better than a box filter for the same kernel size. 

OpenCV has cv2.GaussianBlur(src, ksize, sigmaX) for this. Alternatively, we can 
build a Gaussian kernel manually or use cv2.getGaussianKernel. 

 

Task 4: Implementing Gaussian Blur 

We will create a Gaussian filter and apply it, then compare with the box filter results. 

Instructions: 

●​ Decide on a kernel size m (say 13) and optionally a σ. If σ is not specified, OpenCV will 
choose one based on m . 

●​ Use cv2.getGaussianKernel(m, sigma) to get a 1D Gaussian kernel of length m. 
This returns an m×1 matrix. 

●​ Compute a 2D Gaussian kernel by multiplying the 1D kernel with its transpose (to get an 
 kernel). 

●​ Apply it with cv2.filter2D, or simply call cv2.GaussianBlur. 
●​ Experiment with different  and σ . 

lab4-task4.py 

import numpy as np​
import cv2​
​
# Load the noisy image in grayscale and normalize to [0,1]​
I = cv2.imread('noisy_gaussian.png', 

cv2.IMREAD_GRAYSCALE).astype(np.float32) / 255.0​
​
m = 5  # Filter size (try different values, e.g., 3, 13, 21)​
​
# === TODO: Create a 1D Gaussian kernel using cv2.getGaussianKernel ===​
# Use sigma=0 to let OpenCV choose sigma automatically.​
g1d = None  # <-- Student to complete​
​
# === TODO: Create a 2D Gaussian kernel by taking the outer product of g1d 

with its transpose ===​
Gkernel = None  # <-- Student to complete​
​
print("1D Gaussian kernel (m=%d):" % m, g1d.flatten())​
print("2D Gaussian kernel sum:", Gkernel.sum())​
​

 

https://www.codecogs.com/eqnedit.php?latex=m%C3%97m#0
https://www.codecogs.com/eqnedit.php?latex=m#0
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# === TODO: Apply the Gaussian filter using cv2.filter2D (or 

cv2.GaussianBlur) ===​
J_gauss = None  # <-- Student to complete​
​
# === TODO: Convert the result to uint8 and save or display it === 

●​ Observe the printed 1D Gaussian kernel values. Are they roughly centered and 
symmetric? Do they sum to 1? Try different kernel sizes m. Note that if you increase m, 
OpenCV’s default σ also increases (roughly proportional to m). The blur gets stronger. 
You can also manually specify a fixed sigma independent of m. 

●​ Compare the result of a 13×13 Gaussian filter with a 13×13 box filter on the same noisy 
image. Which one does a better job at reducing noise while preserving detail? 

 

 

2.3 Median Filter (Non-Linear) 

Not all filters are convolution-based linear filters. The median filter is a classic example of a 
non-linear filter that is very effective for salt-and-pepper noise. Instead of averaging, the 
median filter takes an m×m neighborhood and replaces the center pixel with the median value 
of those pixels. This way, outlier pixel values (extremely high or low, like salt or pepper noise) in 
the neighborhood are discarded in favor of a value that is more representative of the local 
surroundings. 

Key property: A median filter can remove salt-and-pepper noise almost completely if the noise 
specks are smaller than the filter window, while preserving edges better than a mean filter. This 
is because an edge consists of a sharp transition – averaging would produce a new 
intermediate value (blurring the edge), whereas median will pick one of the existing values from 
either side of the edge, thus the edge (if not too thin) remains at least partially intact. 

OpenCV’s cv2.medianBlur(src, ksize) performs median filtering (ksize should be odd). 

 

Task 5: Removing Salt-and-Pepper Noise with Median Filter 

Instructions: 

●​ Take a noisy image with salt-and-pepper noise (for example, sp_noisy from Task 1, 
after converting to uint8 if needed). 

●​ Apply cv2.medianBlur(sp_noisy, ksize) with an odd kernel size (try 3, 5, or 7). 
●​ Save or display the result and compare it to using a mean filter on the same input. 
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lab4-task5.py 

import cv2​
import numpy as np​
​
# Assume sp_noisy_img is a uint8 grayscale image with salt-and-pepper 

noise​
sp_noisy_img = cv2.imread('noisy_saltpepper.png', cv2.IMREAD_GRAYSCALE)​
​
# Apply median filter with a 5x5 kernel​
denoised_med5 = ​
# Apply median filter with a 3x3 kernel for comparison​
denoised_med3 =​
​
cv2.imwrite('denoised_median5.png', denoised_med5)​
cv2.imwrite('denoised_median3.png', denoised_med3) 
 

 

●​ Compare the 3×3 vs 5×5 median filter results on salt-and-pepper noise. A larger window 
can eliminate larger noise spots, but might start to round off corners or thin lines. What is 
the smallest window size that completely removes the salt-and-pepper noise in your 
image?  

●​ Try a mean (box) filter of size 3×3 or 5×5 on the same salt-and-pepper noisy image. 
Does it remove the noise effectively? What differences do you see compared to median 
filter? 

●​ Why is the median filter particularly suited for impulse noise? 

 

 

3. Edge-Preserving Filtering  

Bilateral Filter 

The bilateral filter is a popular edge-preserving smoother. It extends Gaussian smoothing by 
incorporating intensity difference into the weighting. In a bilateral filter, a pixel’s neighbors that 
have a similar intensity to the pixel are given more weight than those with very different 
intensity (which are likely across an edge). 

In formula form, for a pixel , the bilateral filter output is: 
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Parameters for the bilateral filter are typically: 

●​ d (diameter of the filter kernel in pixels, or you can specify a spatial sigma instead), 
●​ sigmaColor, 
●​ sigmaSpace. 

In OpenCV: cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace) does the job. 

Applying Bilateral Filter 
bilateral.py 

import cv2​
import numpy as np​
​
I = cv2.imread('lenna.png')  # load color image​
I = I.astype(np.float32)/255.0​
​
# Add noise for testing​
noise = np.random.randn(*I.shape) * 0.05​
noisy_color = np.clip(I + noise, 0.0, 1.0) 

 

noisy_color_uint8 = (noisy_color * 255).astype(np.uint8)​
​
# Bilateral filter parameters​
d = 9  # diameter of pixel neighborhood (if set to >0). If =0, it uses 

sigmaSpace to determine.​
sigma_color = 0.1  ​
sigma_space = 15 ​
​
denoised_bilateral = cv2.bilateralFilter(noisy_color_uint8 , d, 

sigma_color, sigma_space)​
cv2.imwrite('denoised_bilateral.png', 

(denoised_bilateral*255).astype(np.uint8)) 

 

●​ Change sigma_color higher (e.g., 0.3 or 0.5 on [0,1] scale). What happens to the 
image? (It will blur more aggressively, possibly washing out some edges as if it were 
closer to a normal Gaussian blur.) 

●​ Change sigma_space higher (e.g., 50 pixels). What happens? (The filter considers a 
larger neighborhood, so it can smooth over wider areas, maybe connecting areas that 
shouldn’t be connected if σ_color allows it.) 

●​ Try a smaller sigma_color (like 0.05). Now noise might remain because the filter is 
very strict about intensity differences – it won’t average pixels unless they are extremely 
similar. 
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●​ Compare bilateral filtering time vs a Gaussian of similar 
kernel size. Bilateral is computationally heavier (it’s doing a lot more work per pixel). For 
large images, bilateral can be slow. 

 

 

4. Integrated Challenge 

Task 6: Noise + Filter Demo 

implement: 

●​ Add a certain amount of Gaussian noise continuously (as in Task 2’s loop). 
●​ Depending on user key press: 

○​ 'n': No filtering – just show the noisy image (baseline). 
○​ 'b': Box filter – apply averaging filter on the noisy image. 
○​ 'g': Gaussian filter – apply Gaussian blur on the noisy image. 
○​ 'm': Median filter – apply median filtering on the noisy image. 
○​ 'l': Bilateral filter (think l for bilateral) – apply bilateral filtering on the noisy 

image. 
●​ Keys to adjust parameters: 

○​ '+' / '-': Increase or decrease the kernel size m for box/gaussian/median filters 
(make sure to keep it odd and within a reasonable range). 

○​ '.' / ',' (period/comma): Increase or decrease σ_color for the bilateral filter (if 
relevant). 

○​ 'u' / 'd': Increase or decrease the noise sigma. 
●​ Display the filtered result in a window named e.g. "Denoising Demo". Print out status 

messages or parameter values to the console when they change, so the user knows 
what's happening. 

●​ 'q' to quit. 
●​ At low noise, any filter might make it look overly smooth – you might prefer mode 'n'. 
●​ At moderate noise, see how median vs bilateral vs Gaussian compare, especially near 

edges or fine details. 
●​ Find an “optimal” filter and parameter setting for a given noise level subjectively. 
●​ Which filter produces the best visual result for Gaussian noise?  
●​ If you use salt-and-pepper noise instead of Gaussian in this demo, which filter would you 

switch to? 
●​ How does performance (speed) vary among the filters as you increase m? 
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References 
1. OpenCV: Smoothing Images 

 

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_filtering/py_filtering.html
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