Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon | o4l Ry @
Spring 2025 J’bd, /:"{}'J'fu’vjﬁb .

K. N. TOOSI UNIVERSITY OF TECHNOLOGY

Lab Instructions - session 4

1. Image Noise Models and Simulation

Digital images are often corrupted by noise, which is any unwanted random variation in pixel
values . Noise can arise during image capture (sensor noise, photon statistics), transmission (bit
errors), or processing. We commonly model noise as a random process with a specific
probability distribution. Three widely-used noise models in imaging are:

Gaussian Noise (additive white Gaussian noise): Noise values follow a normal distribution. This
is a typical assumption for sensor read-out noise or thermal noise in images. It is independent of
the image signal and affects each pixel independently (often modeled as zero-mean with some
variance o?).

Salt-and-Pepper Noise (snow noise): Random pixels are flipped to black or white (extreme
values), like sprinkling salt and pepper on the image . This typically arises from sharp, sporadic
disturbances like faulty sensor elements or transmission errors. It's characterized by sparsely
occurring bright and dark pixel defects amidst normal pixels. Only a certain fraction p of pixels
are corrupted.

Task 1: Simulating Noise Addition

In this task, you will generate synthetic noise and add it to an image to observe the effects of
different noise models. We will use OpenCV (cv2) and NumPy for this.

Mathematical Notes: Salt-and-pepper can be described as a bimodal distribution:
P(n=0)=p/2 P(n=255)=p/2 P(n=no change) =1—p_ You can use np.random.choice
for this purpose.

https://www.codecogs.com/eqnedit.php?latex=P(n%20%3D%200)%20%3D%20p%2F2#0
https://www.codecogs.com/eqnedit.php?latex=P(n%20%3D%20255)%20%3D%20p%2F2#0
https://www.codecogs.com/eqnedit.php?latex=P(n%20%3D%20%5Ctext%7Bno%20change%7D)%20%3D%201-p#0

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon | o4l Ry @
Spring 2025 J}b‘-’r» /:"{’jfuvfﬁb .

K. N. TOOSI UNIVERSITY OF TECHNOLOGY

lab4-taskl.py

import cv2
import numpy as np

Load image in grayscale and convert to float [0,1]
I = cv2.imread('lenna.png', cv2.IMREAD_GRAYSCALE)
I = I.astype(np.float32) / 255.0 # shape: (H, W)

Function to add Gaussian noise
def add_gaussian_noise(img, sigma=0.05):
TODO: Generate a noise array using np.random.randn scaled by sigma.
Example: noise = np.random.randn(*img.shape) * sigma
TODO: Add the noise to the input image.
TODO: Clip the resulting values to ensure they remain in the [0,1] range.
pass

Function to add salt-and-pepper noise
def add_salt_pepper_noise(img, p=0.02):
TODO: Create a copy of the image to modify.
TODO: Determine the number of pixels to alter based on the given p
TODO: Randomly choose indices for salt (set to 1.0) and pepper (set to 0.0).
pass

Generate noisy images using your implementations
gauss_noisy = add_gaussian_noise(I, sigma=0.1)
sp_noisy = add_salt_pepper_noise(I)

Convert the noisy images back to uint8 for saving or displaying
cv2.imwrite('noisy_gaussian.png', (gauss_noisy * 255).astype(np.uint8))
cv2.imwrite('noisy_saltpepper.png', (sp_noisy * 255).astype(np.uint8))

e Vary the noise parameters (sigma and p) and observe how the image degradation
changes. For Gaussian noise, how does increasing o affect the image?

e Plot or examine the histogram of the noise for each case to verify it matches the
expected distribution.

e Mathematically, if you add two independent Gaussian noises with variances 0. and 02? to
an image, what is the distribution of the combined noise? What would be its variance?

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon | o4l Ry @
Spring 2025 J’bd, /:".:)fl'fu"':ﬁb .

K. N. TOOSI UNIVERSITY OF TECHNOLOGY

Task 2: Dynamic "Snow" Noise Simulation

Older analog televisions displayed a dynamic snow noise (salt and paper noise) when tuned to
a missing channel — essentially random black/white pixel patterns varying over time (this is like
salt-and-pepper or Gaussian noise that changes every frame). In this task, you will create an
animation of an image corrupted by continually changing noise, and allow user interaction to
control noise intensity.

Instructions: Using OpenCV, write a script that:

Reads an image in grayscale and normalizes it to [0,1] float.
Continuously in a loop, adds a newly generated Gaussian noise array to the image to
produce a noisy frame, and displays it (e.g., using cv2.imshow).
e Each loop iteration should use a different noise realization (so the noise pattern moves
every frame).
Run at ~30 frames per second (cv2.waitKey(33) in the loop).
e Use keyboard controls:
o Press 'u' to increase the noise standard deviation (make the image noisier).
o Press 'd' to decrease the noise standard deviation (make it cleaner).

o Press 'q' to quit the loop.

You can start from the template below and fill in the missing parts (pass statements):

lab4-task2.py

import numpy as np
import cv2

Load the image in grayscale and normalize to [0,1]
I = cv2.imread('cameraman.jpg', cv2.IMREAD_GRAYSCALE)
I = I.astype(np.float32) / 255.0 # Ensure pixel values are in [0,1]

noise_sigma = 0.05 # initial noise standard deviation

while True:
TODO: Create a noise image N using a Gaussian distribution with mean @ and
variance noise_sigma”2.
Hint: Use np.random.randn with the shape of I and multiply by noise_sigma.
N = np.random.randn(*I.shape) * noise_sigma # complete if needed

TODO: Add the noise to the original image and clip the result to ensure
values remain in [0,1].

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon o4l Ry @
Spring 2025 J}b‘-’r» ﬁwﬁ?}’ .

K. N. TOOSI UNIVERSITY OF TECHNOLOGY

cv2.imshow('Snow Noise', 3J)
key = cv2.waitKey(33) & OxFF

TODO: Adjust noise_sigma based on key input:
if key == ord('u'):

elif key == ord('d"):

elif key == ord('q'):
break

cv2.destroyAllWindows ()

e What does normalizing the image to [0,1] (the line with
I.astype(np.float32)/255.8) accomplish in terms of noise addition?

e Why should the noise image be regenerated inside the loop instead of outside? What
happens if you create N once before the loop and reuse it every frame?

e Ensure your code never uses a negative noise_sigma. Why is a negative standard
deviation meaningless for noise generation?

2. Filtering Fundamentals: Spatial Convolution and Frequency
Perspective

Now that we can produce noisy images, the next step is to filter them to recover a cleaner
image. Smoothing filters work by averaging pixels with their neighbors, reducing variance due to
noise. The most basic way to do this is via convolution with a smoothing kernel.

Image Convolution: In 2D, convolution of an image I(x,y) with a kernel A(z,y) (of size mxn)
produces an output /(,¥) given by:

J@y) =Y > o) I(z—u, y—v),

u=—a v=—>b

https://www.codecogs.com/eqnedit.php?latex=I(x%2Cy)#0
https://www.codecogs.com/eqnedit.php?latex=h(x%2Cy)#0
https://www.codecogs.com/eqnedit.php?latex=J(x%2Cy)#0
https://www.codecogs.com/eqnedit.php?latex=J(x%2Cy)%20%3D%20%5Csum_%7Bu%3D-a%7D%5E%7Ba%7D%5Csum_%7Bv%3D-b%7D%5E%7Bb%7D%20h(u%2Cv)%5C%2C%20I(x-u%2C%5C%3By-v)%2C#0

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon | o4l Ry @
Spring 2025 J’bd, /:‘éliu"’f&‘y .

K. N. TOOSI UNIVERSITY OF TECHNOLOGY

where the kernel size is (2a +1) X (20 +1) (e.g., for a 3x3

kernel, a = b = 1). Each output pixel is a weighted sum of neighboring input pixels. If h(u,v) are
all positive and sum to 1, this operation smooths the image (local averaging). This is essentially
a low-pass filter — it passes

low-frequency (smooth) variations and attenuates high-frequency components (like sharp noise
or edges) .

2.1 Mean Filter (Box Filter)

The simplest smoothing kernel is a box filter — all ones in an m x m neighborhood, normalized
bym?. This gives an output pixel that is the average of an m x m patch of the image. For
example, a 3x3 mean filter kernel is:m x m neighborhood, normalized bym?. This gives an
output pixel that is the average of an m x m patch of the image. For example, a 3x3 mean filter
kernel is:m x m neighborhood, normalized bym?. This gives an output pixel that is the average
of an m x m patch of the image. For example, a 3x3 mean filter kernel is:

111
h:llll
Y11 1]

Task 3: Implementing a Box Blur

Let's apply a box filter to a noisy image and see the result. OpenCV provides a function
cv2.blur(src, ksize) that does this, or the more general cv2.filter2D(src,
ddepth, kernel) for custom kernels. We can also create the kernel manually with NumPy.

Instructions:

e Load an image (you can use the noisy image from Task 1, or a clean image to just see
the blurring effect).

e Create a box kernel of size mxm (choose m, e.g., 5 or 7). This kernel should have all
values = 1/(m*m).

e Usecv2.filter2D to apply the kernel to the image. Compare with using cv2.blur for
verification.

e Try different kernel sizes and observe the differences.

https://www.codecogs.com/eqnedit.php?latex=(2a%2B1)%5Ctimes(2b%2B1)#0
https://www.codecogs.com/eqnedit.php?latex=a%3Db%3D1#0
https://www.codecogs.com/eqnedit.php?latex=h(u%2Cv)#0
https://www.codecogs.com/eqnedit.php?latex=m%5Ctimes%20m#0
https://www.codecogs.com/eqnedit.php?latex=m%5E2#0
https://www.codecogs.com/eqnedit.php?latex=m%5Ctimes%20m#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B1%7D%7B9%7D%5Cbegin%7Bbmatrix%7D1%20%26%201%20%26%201%5C%5C%201%20%26%201%20%26%201%5C%5C%201%20%26%201%20%26%201%5Cend%7Bbmatrix%7D#0

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon 4 . j Ry @
Spring 2025 J’bp&"'/:‘l:}"fu’vfﬁb .

K. N. TOOSI UNIVERSITY OF TECHNOLOGY

lab4-task3.py

import numpy as np
import cv2

Load an image (using the noisy image from Task 1, or a clean image) in
grayscale

I = cv2.imread('noisy_gaussian.png', cv2.IMREAD_GRAYSCALE)
I = I.astype(np.float32) / 255.0 # Normalize to [0,1]
m=7 # Filter size (try 3, 5, 7, 11, etc.)

=== TODO: Create an mxm box filter kernel ===

Use np.ones to create an array of ones and divide by (m*m) to normalize.
kernel = None # <-- Student to fill in

=== TODO: Apply convolution to blur the image using cv2.filter2D ===
J = None # <-- Student to fill in

+H+

=== TODO: Convert the result to uint8 and save or display it ===
For example, use cv2.imwrite to save the result.

e Trym=3, 5, 9, 15.How does the choice of kernel size affect the output?
e \Why do we divide the kernel by (m *m)? What would happen if we don't?
e Use OpenCV’s cv2.blur(I, (m,m)) to perform the same operation. Confirm it

produces the same result as your filter2D approach.
e Suppose you apply two 3x3 mean filters sequentially (one after the other). Is the result
different from a single 5x5 filter?

2.2 Gaussian Filter

A Gaussian filter uses a kernel shaped by the Gaussian (normal) distribution. In 1D, a
Gaussian kernel of width m (odd) and standard deviation has values

Gli] =

()

2o 20%) In 2D, the kernel is the outer product of two 1D Gaussians (since
a 2D Gaussian function is separable into x and y components). Gaussian filters give more
weight to the center pixel and nearest neighbors, and less weight to farther pixels, according to

https://www.codecogs.com/eqnedit.php?latex=(m*m)#0

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon | o4l Ry @
Spring 2025 J’bd, /:".:)fl'fu"':ﬁb .

K. N. TOOSI UNIVERSITY OF TECHNOLOGY

the Gaussian curve. This tends to preserve central detail
slightly better than a box filter for the same kernel size.

OpenCV has cv2.GaussianBlur(src, ksize, sigmaX) for this. Alternatively, we can
build a Gaussian kernel manually or use cv2.getGaussianKernel.

Task 4: Implementing Gaussian Blur
We will create a Gaussian filter and apply it, then compare with the box filter results.
Instructions:

e Decide on a kernel size m (say 13) and optionally a . If ¢ is not specified, OpenCV will
choose one based onm .
e Use cv2.getGaussianKernel(m, sigma) to geta 1D Gaussian kernel of length m.

This returns an mx1 matrix.
e Compute a 2D Gaussian kernel by multiplying the 1D kernel with its transpose (to get an

m#m kernel).
e Applyitwithcv2.filter2D, or simply call cv2.GaussianBlur.
Experiment with different m and oo.

lab4-task4.py

import numpy as np
import cv2

Load the noisy image in grayscale and normalize to [0,1]
I = cv2.imread('noisy_gaussian.png’,
cv2.IMREAD_GRAYSCALE).astype(np.float32) / 255.0

m=5 # Filter size (try different values, e.g., 3, 13, 21)

=== TODO: Create a 1D Gaussian kernel using cv2.getGaussianKernel ===
Use sigma=0 to let OpenCV choose sigma automatically.
gld = None # <-- Student to complete

=== TODO: Create a 2D Gaussian kernel by taking the outer product of gid
with its transpose ===
Gkernel = None # <-- Student to complete

print("1D Gaussian kernel (m=%d):" % m, gld.flatten())
print("2D Gaussian kernel sum:", Gkernel.sum())

https://www.codecogs.com/eqnedit.php?latex=m%C3%97m#0
https://www.codecogs.com/eqnedit.php?latex=m#0

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon | o4l Ry @
Spring 2025 J’bd, /:"{}'J'fu’vjﬁb .

K. N. TOOSI UNIVERSITY OF TECHNOLOGY

=== TODO: Apply the Gaussian filter using cv2.filter2D (or
cv2.GaussianBlur)
J_gauss = None # <-- Student to complete

=== TODO: Convert the result to uint8 and save or display it ===

e Observe the printed 1D Gaussian kernel values. Are they roughly centered and
symmetric? Do they sum to 1? Try different kernel sizes m. Note that if you increase m,
OpenCV’s default o also increases (roughly proportional to m). The blur gets stronger.
You can also manually specify a fixed sigma independent of m.

e Compare the result of a 13x13 Gaussian filter with a 13x13 box filter on the same noisy
image. Which one does a better job at reducing noise while preserving detail?

2.3 Median Filter (Non-Linear)

Not all filters are convolution-based linear filters. The median filter is a classic example of a
non-linear filter that is very effective for salt-and-pepper noise. Instead of averaging, the
median filter takes an mxm neighborhood and replaces the center pixel with the median value
of those pixels. This way, outlier pixel values (extremely high or low, like salt or pepper noise) in
the neighborhood are discarded in favor of a value that is more representative of the local
surroundings.

Key property: A median filter can remove salt-and-pepper noise almost completely if the noise
specks are smaller than the filter window, while preserving edges better than a mean filter. This
is because an edge consists of a sharp transition — averaging would produce a new
intermediate value (blurring the edge), whereas median will pick one of the existing values from
either side of the edge, thus the edge (if not too thin) remains at least partially intact.

OpenCV’s cv2.medianBlur(src, ksize) performs median filtering (ksize should be odd).

Task 5: Removing Salt-and-Pepper Noise with Median Filter
Instructions:

e Take a noisy image with salt-and-pepper noise (for example, sp_noisy from Task 1,
after converting to uint8 if needed).

e Apply cv2.medianBlur(sp_noisy, ksize) with an odd kernel size (try 3, 5, or 7).
Save or display the result and compare it to using a mean filter on the same input.

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon | o4l Ry @
Spring 2025 J}b‘-’r» /:a'{’jfuvfﬁb .

K. N. TOOSI UNIVERSITY OF TECHNOLOGY

lab4-task5.py

import cv2
import numpy as np

Assume sp_noisy_img is a uint8 grayscale image with salt-and-pepper
noise
sp_noisy_img = cv2.imread('noisy_saltpepper.png', cv2.IMREAD_GRAYSCALE)

Apply median filter with a 5x5 kernel

denoised_med5 =

Apply median filter with a 3x3 kernel for comparison
denoised_med3 =

cv2.imwrite('denoised_median5.png’', denoised_med5)
cv2.imwrite('denoised_median3.png', denoised_med3)

e Compare the 3x3 vs 5x5 median filter results on salt-and-pepper noise. A larger window
can eliminate larger noise spots, but might start to round off corners or thin lines. What is
the smallest window size that completely removes the salt-and-pepper noise in your
image?

e Try a mean (box) filter of size 3x3 or 5x5 on the same salt-and-pepper noisy image.
Does it remove the noise effectively? What differences do you see compared to median
filter?

e Why is the median filter particularly suited for impulse noise?

3. Edge-Preserving Filtering

Bilateral Filter

The bilateral filter is a popular edge-preserving smoother. It extends Gaussian smoothing by
incorporating intensity difference into the weighting. In a bilateral filter, a pixel’s neighbors that
have a similar intensity to the pixel are given more weight than those with very different
intensity (which are likely across an edge).

In formula form, for a pixel P, the bilateral filter output is:

I filtered(p) = —ZI) £+([H(q) — I(p)I) 95(llg — pl))

p qeN

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon o4l Ry @
Spring 2025 Jﬁbg_,{ /:"-:)’J'J’U’V:Er//b _

K. N. TOOSI UNIVERSITY OF TECHNOLOGY

Parameters for the bilateral filter are typically:

e d (diameter of the filter kernel in pixels, or you can specify a spatial sigma instead),
e sigmaColor,
e sigmaSpace.

In OpenCV: cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace) does the job

Applying Bilateral Filter
bilateral.py

import cv2
import numpy as np

-
]

cv2.imread('lenna.png’') # load color image
I.astype(np.float32)/255.0

[
1}

Add noise for testing
noise = np.random.randn(*I.shape) * 0.05
noisy_color = np.clip(I + noise, 0.0, 1.0)

noisy_color_uint8 = (noisy_color * 255).astype(np.uint8)

Bilateral filter parameters

d = 9 # diameter of pixel neighborhood (if set to »>0). If =0, it uses
sigmaSpace to determine.

sigma_color = 0.1

sigma_space = 15

denoised_bilateral = cv2.bilateralFilter(noisy_color_uint8 , d,
sigma_color, sigma_space)
cv2.imwrite('denoised_bilateral.png’,
(denoised_bilateral*255).astype(np.uint8))

e Change sigma_color higher (e.g., 0.3 or 0.5 on [0,1] scale). What happens to the
image? (It will blur more aggressively, possibly washing out some edges as if it were
closer to a normal Gaussian blur.)

e Change sigma_space higher (e.g., 50 pixels). What happens? (The filter considers a
larger neighborhood, so it can smooth over wider areas, maybe connecting areas that
shouldn’t be connected if c_color allows it.)

e Try asmaller sigma_color (like 0.05). Now noise might remain because the filter is
very strict about intensity differences — it won’t average pixels unless they are extremely
similar.

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon | o4l Ry @
Spring 2025 J’bd, /:‘éliu"’f&‘y .

K. N. TOOSI UNIVERSITY OF TECHNOLOGY

e Compare bilateral filtering time vs a Gaussian of similar
kernel size. Bilateral is computationally heavier (it's doing a lot more work per pixel). For
large images, bilateral can be slow.

4. Integrated Challenge

Task 6: Noise + Filter Demo
implement:

Add a certain amount of Gaussian noise continuously (as in Task 2’s loop).
Depending on user key press:

o 'n': No filtering — just show the noisy image (baseline).

o 'b':Box filter — apply averaging filter on the noisy image.

o 'g': Gaussian filter — apply Gaussian blur on the noisy image.
‘m': Median filter — apply median filtering on the noisy image.

o

o

"1": Bilateral filter (think I for bilateral) — apply bilateral filtering on the noisy

image.

e Keys to adjust parameters:

o '+'/'-":Increase or decrease the kernel size m for box/gaussian/median filters
(make sure to keep it odd and within a reasonable range).

o '."[I"," (period/comma): Increase or decrease o_color for the bilateral filter (if
relevant).

o 'u'/'d':Increase or decrease the noise sigma.

e Display the filtered result in a window named e.g. "Denoising Demo". Print out status
messages or parameter values to the console when they change, so the user knows
what's happening.

e 'q' toquit.

At low noise, any filter might make it look overly smooth — you might prefer mode 'n'.

At moderate noise, see how median vs bilateral vs Gaussian compare, especially near
edges or fine details.

Find an “optimal’” filter and parameter setting for a given noise level subjectively.

Which filter produces the best visual result for Gaussian noise?

If you use salt-and-pepper noise instead of Gaussian in this demo, which filter would you
switch to?

e How does performance (speed) vary among the filters as you increase m?

Spring 2025

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon U’{V’M’Fﬂ%’ @

K. N. TOOSI UNIVERSITY OF TECHNOLOGY

References

1. OpenCV: Smoothing Images

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_filtering/py_filtering.html

	Lab Instructions - session 4
	Noise Modeling and Filtering
	1. Image Noise Models and Simulation
	Task 1: Simulating Noise Addition
	Task 2: Dynamic "Snow" Noise Simulation

	2. Filtering Fundamentals: Spatial Convolution and Frequency Perspective
	2.1 Mean Filter (Box Filter)
	Task 3: Implementing a Box Blur
	
	
	
	2.2 Gaussian Filter
	Task 4: Implementing Gaussian Blur
	2.3 Median Filter (Non-Linear)
	Task 5: Removing Salt-and-Pepper Noise with Median Filter

	3. Edge-Preserving Filtering
	Bilateral Filter
	Applying Bilateral Filter

	4. Integrated Challenge

