

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 2024

Lab Instructions - session 6
Connected Components, Thresholding, Morphology

Connected Components
We intend to find the connected components (i.e. groups of
connected pixels) in the following image (img1.bmp). The
image is binary-valued: the pixel intensity levels are either 0
or 255.

File: connected_components.py
import numpy as np​
import cv2​
​
I = cv2.imread('img1.bmp', cv2.IMREAD_GRAYSCALE)​
n,C = cv2.connectedComponents(I);​
​
print("n=%d"%n)
print(np.unique(I))​
print(np.unique(C))​
​
cv2.imshow('I', I)​
cv2.waitKey(0) # press any key to continue...​
​
for k in range(n):​
​
 # show the k-th connected component​
 Ck = np.zeros(I.shape, dtype=I.dtype)​
 Ck[C == k] = 255;​
​
 cv2.imshow('C%d'%k, Ck)​
 cv2.waitKey(0) # press any key to continue...​
​
I = cv2.cvtColor(I,cv2.COLOR_GRAY2BGR)​
​
font = cv2.FONT_HERSHEY_SIMPLEX ​
​

note: background is also counted as a connected component by openCV​
cv2.putText(I,'There are %d connected components!'%(n-1),(20,40), font,
1,(0,0,255),2)​
​
cv2.imshow('Num', I)​
cv2.waitKey(0)

●​ What are the values of n, np.unique(I) and np.unique(C)? Why?
●​ What does Ck[C == k] = 255 do?
●​ Why n=9 while there are only 8 connected components? Why the first

connected components look like an inverted version of the original.

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 2024

Task 0: Random Colors!
You have already detected connected
components in a grayscale image using
cv2.connectedComponents. Currently, each
component is shown as a separate binary
image. Let’s now improve the visualization
by assigning a random color to each
connected component and showing them all
together in a single RGB image.

Hints:

Use the following lines to guide your implementation:

Create an output image with 3 channels (RGB)
output = np.zeros((C.shape[0], C.shape[1], 3), dtype=np.uint8)

Assign a random color to each component (except background)
np.random.seed(42)
colors = [np.random.randint(0, 255, size=3).tolist() for _ in range(n)]

Fill output image with color for each label
for i in range(n):
 output[C == i] = colors[i]

●​ What does output[C == i] = colors[i] do ?

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 2024

Task 1: Coin Counting!
We want to count the number of coins in the following image (coins.jpg). The image
contains several coins placed on a plain background.
You are provided with code that loads the image and converts it to grayscale. Your
task is to threshold the image properly, so that the coins appear white (foreground)
and the background is black. Then, using cv2.connectedComponents, count how
many coins are present in the image.

File: coin_counting.py
import numpy as np​
import cv2​
​
I = cv2.imread('coins.jpg')​
G = cv2.cvtColor(I,cv2.COLOR_BGR2GRAY)​

#Step 0: Invert the grayscale image so that coins become white and
background becomes black
This helps with better thresholding and connected component detection

cv2.imshow('Grayscale', G)
cv2.waitKey(0) # press any key to continue...
Step 1: Try applying a threshold
Replace 127 with a value you find appropriate
ret, T = cv2.threshold(G, 127, 255, cv2.THRESH_BINARY)

cv2.imshow('Thresholded', T)
cv2.waitKey(0)

Step 2: Try improving segmentation using morphological operations
You can try erosion to separate connected objects or remove noise
You may also use dilation to fill holes inside coins

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 2024

Uncomment and try adjusting the kernel size
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
T = cv2.erode(T, kernel)
cv2.imshow('After Erosion', T)
cv2.waitKey(0)

kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15, 15))
T = cv2.dilate(T, kernel)
cv2.imshow('After Dilation', T)
cv2.waitKey(0)

Step 3: Count connected components
n, C = cv2.connectedComponents(T)

print("Number of connected components (including background):", n)
print("Estimated number of coins:", n - 1)

font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(T, 'There are %d coins!' % (n - 1), (20, 40), font, 1, 255,
2)
cv2.imshow('Result', T)
cv2.waitKey(0)

●​ What does cv2.threshold do? What are its first, second and third
arguments?

●​ What are the two major problems with the above approach?
●​ What does cv2.erode and cv2.dilate do?
●​ Why might the thresholded image include small white noise points that are not

coins? how to fix it ?
●​ What happens if two coins are touching? How does erosion help? What

kernel size works best ?

https://docs.opencv.org/3.0-beta/modules/imgproc/doc/miscellaneous_transformations.html?highlight=cv2.threshold#cv2.threshold

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 2024

Task 2: Simple Background Subtraction
Consider the following pair of images. In the second image, few books have been
placed in the scene.

The following code tries to count the number of books by subtracting the two images,
thresholding the result and then counting the connected components. Your job is to
fix this code to get the correct number of books and find the biggest book.
File: task2.py

import numpy as np​
import cv2​

​

I1 = cv2.imread('task2_1.jpg')​
I2 = cv2.imread('task2_2.jpg')​

​

cv2.imshow('Image 1', I1)​
cv2.waitKey(0)​
​
cv2.imshow('Image 2 (background)', I2)​
cv2.waitKey(0)​

​

K = np.abs(np.int16(I2)-np.int16(I1)) # take the (signed int) difference​
K = K.max(axis=2) # choose the maximum value over color channels​
K = np.uint8(K)​
cv2.imshow('The difference image', K)​
cv2.waitKey(0)​

​

threshold = 37​
ret, T = cv2.threshold(K,threshold,255,cv2.THRESH_BINARY)​
cv2.imshow('Thresholded', T)​
cv2.waitKey(0)​

​

opening​
kernel = np.ones((5,5),np.uint8)​
T = cv2.morphologyEx(T, cv2.MORPH_OPEN, kernel)​
cv2.imshow('After Opening', T)​
cv2.waitKey(0)​

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 2024

closing​
kernel = np.ones((10,10),np.uint8)​
T = cv2.morphologyEx(T, cv2.MORPH_CLOSE, kernel)​
cv2.imshow('After Closing', T)​
cv2.waitKey(0)​
n,C = cv2.connectedComponents(T);​
​
J = I2.copy()​
J[T != 0] = [255,255,255]​
font = cv2.FONT_HERSHEY_SIMPLEX ​
cv2.putText(J,'There are %d books!'%(n-1),(20,40), font, 1,(0,0,255),2)​
cv2.imshow('Number', J)​
cv2.waitKey()​
 ​
connected components with statistics​
n,C,stats, centroids = cv2.connectedComponentsWithStats(T);​
​
for i in range(n):​
print("-"*20)​
print("Connected Component: ", i)​
print("center= %.2f,%.2f"%(centroids[i][0], centroids[i][1]))​
print("left= ", stats[i][0])​
print("top= ", stats[i][1])​
print("width= ", stats[i][2])​
print("height= ", stats[i][3])​
print("area= ", stats[i][4])​
​
j = n-1 # j: index of largest connected component (change this line)​
J[C == j] = [0,0,255] # Paint the largest connected component in RED​
cv2.imshow('Largest book in red', J)​
cv2.waitKey()

●​ Change the threshold variable and see the result. Find a reasonable threshold
(it does not need to give the correct result.)

●​ Uncomment the four lines after the line ## opening. Run the code. What does
the opening operator do? Change the kernel size and see the results.

●​ Uncomment the four lines after the line ## closing. Run the code. What does
the closing operator do?

●​ Tune the threshold, opening kernel size and closing kernel size until you get
the desired result, finding all the books and their number.

●​ Uncomment all the lines after ## connected components with statistics. It
gives statistics about each connected component including centroid, leftmost
pixel location, top-most pixel location, width, height and area (number of
pixels) of each connected component. We want to detect biggest book in the
image and paint it in red. Currently, the code paints the last connected
component (j=n-1). Use the statistics to find the connected component with
the largest area, and paint the biggest book in red.

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 2024

References
●​ OpenCV-Python Tutorials - Image Thresholding
●​ OpenCV-Tutorials - Structural Analysis and Shape Descriptors
●​ OpenCV-Python Tutorials - Morphological Transformations

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_thresholding/py_thresholding.html#thresholding
https://docs.opencv.org/3.0-beta/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=connectedcomponents
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html#morphological-ops

	Lab Instructions - session 6
	Connected Components
	●​What are the values of n, np.unique(I) and np.unique(C)? Why?
	●​Why n=9 while there are only 8 connected components? Why the first connected components look like an inverted version of the original.

	Task 0: Random Colors!
	Task 1: Coin Counting!
	●​What does cv2.threshold do? What are its first, second and third arguments?

	Task 2: Simple Background Subtraction
	●​Change the threshold variable and see the result. Find a reasonable threshold (it does not need to give the correct result.)

	References

