

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 2025

Lab Instructions - session 7
Hough Transforms

Part 1. Hough Line Transform

Detect lines in an image using the function cv2.HoughLines
File: hough_line.py
def draw_line(Img, rho, theta):
 """draws a line in an image 'Img' given 'rho' and 'theta'"""
 a = np.cos(theta)
 b = np.sin(theta)
 x0 = a * rho
 y0 = b * rho
 x1 = int(x0 + 1000 * (-b))
 y1 = int(y0 + 1000 * a)
 x2 = int(x0 - 1000 * (-b))
 y2 = int(y0 - 1000 * a)

 cv2.line(Img, (x1, y1), (x2, y2), (0, 0, 255), 1)

Img = cv2.imread('sudoku.jpg')

G = cv2.cvtColor(Img, cv2.COLOR_BGR2GRAY) # -> grayscale

E = cv2.Canny(G, 100, 200) # find the edges

min_votes = 160 # minimum votes to be considered a line
distance_resolution = 1 # 1 pixel: resolution of the parameter "rho"
(distance to origin)
angle_resolution = np.pi / 180 # pi/180 radians: resolution (bin size) of
the parameter "theta"
L = cv2.HoughLines(E, distance_resolution, angle_resolution, min_votes)

draw the lines
for [[rho, theta]] in L:
 draw_line(Img, rho, theta)

cv2.imshow("E", E)
cv2.imshow("Img", Img)
cv2.waitKey(0)
cv2.destroyAllWindows()

●​ What happens by increasing or decreasing the parameter min_votes? Why?
●​ What is the effect of increasing and decreasing the distance_resolution

and angle_resolution parameters? Explain.
●​ If an image has faint lines (low contrast), should min_votes be increased or

decreased? Why?

https://docs.opencv.org/3.0-beta/modules/imgproc/doc/feature_detection.html?highlight=cv2.houghlines#cv2.HoughLines

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 2025

●​ Would a very fine angle resolution (e.g., np.pi/1000) improve results? Why or
why not?

●​ What kind of lines (strong/weak edges) are prioritized when min_votes is
high?

Part 2: Hough Circle Transform
The goal is to detect the cups of coffee in the picture using cv2.HoughCircles

File: hough_circle.py
import numpy as np​
import cv2​
​
I = cv2.imread('coffee.jpg')​
​
G = cv2.cvtColor(I,cv2.COLOR_BGR2GRAY) # -> Grayscale​
G = cv2.GaussianBlur(G, (3,3), 0); # Gaussian blur​
​
canny_high_threshold = 200 ​
min_votes = 100 # minimum no. of votes to be considered as a circle​
min_centre_distance = 40 # minimum distance between the centers of detected circles​
resolution = 1 # resolution of parameters (centre, radius) relative to image resolution​
circles = cv2.HoughCircles(G,cv2.HOUGH_GRADIENT,
 resolution,min_centre_distance,​
 param1=canny_high_threshold,​
 param2=min_votes,minRadius=0,maxRadius=100)​
​
for c in circles[0,:]:​
 x = c[0] # x coordinate of the centre​
 y = c[1] # y coordinate of the centre​
 r = c[2] # radius​
 ​
 # draw the circle​
 cv2.circle(I,(x,y), r, (0,255,0),2)​
​
 # draw the circle center ​
 cv2.circle(I,(x,y),2,(0,0,255),2)​
​
cv2.imshow("I",I)​
cv2.waitKey(0)​
cv2.destroyAllWindows()

●​ Change the parameters of cv2.HoughCircles and see how each of them
affect detection.

●​ Can you explain why some circles disappear when min_votes is increased?
●​ What if you set it to a very large value (e.g., 100)?
●​ How does changing canny_high_threshold affect edge detection before circle

detection?
●​ How does setting minRadius=20 and maxRadius=50 change the output

compared to minRadius=0 and maxRadius=100?

https://docs.opencv.org/3.0-beta/modules/imgproc/doc/feature_detection.html?highlight=cv2.houghcircles#cv2.HoughCircles
https://docs.opencv.org/3.0-beta/modules/imgproc/doc/feature_detection.html?highlight=cv2.houghcircles#cv2.HoughCircles

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 2025

Task1 : count the coins
You need to count the number of coins in the next image:

Write a piece of code to perform this task using a hough circle transform. Change the
file task1.py to perform the task. Play with the parameters until you get the desired
results.

File: task1.py
import numpy as np​
import cv2​
​
I = cv2.imread('coins.jpg')​
G = cv2.cvtColor(I,cv2.COLOR_BGR2GRAY)​
G = cv2.GaussianBlur(G, (5,5), 0);​
​
canny_high_threshold = 160​
min_votes = 30 # minimum no. of votes to be considered as a circle​
min_centre_distance = 40​
​
circles = np.array([[10,10]])​
​
for c in circles[0,:]:​
 x = 100​
 y = 100​
 r = 40​
 cv2.circle(I,(x,y), r, (0,255,0),2)​
print(circles.shape)​
n = 100​
font = cv2.FONT_HERSHEY_SIMPLEX​
cv2.putText(I,'There are %d coins!'%n,(400,40), font, 1,(255,0,0),2)​
​
cv2.imshow("I",I)​
cv2.waitKey(0)

●​ What happens by changing different parameters?
●​ The Hough transform can even detect the partially occluded coins. Why is this

the case?

Fundamentals of Computer Vision (Undergrad) - B. Nasihatkon
Spring 2025

References
●​ Hough Line Transform
●​ Hough Circle Transform

https://docs.opencv.org/4.x/d9/db0/tutorial_hough_lines.html
https://docs.opencv.org/4.x/da/d53/tutorial_py_houghcircles.html

	Lab Instructions - session 7
	Part 1. Hough Line Transform
	●​What happens by increasing or decreasing the parameter min_votes? Why?

	Part 2: Hough Circle Transform
	●​Change the parameters of cv2.HoughCircles and see how each of them affect detection.
	●​Can you explain why some circles disappear when min_votes is increased?
	●​What if you set it to a very large value (e.g., 100)?
	●​How does changing canny_high_threshold affect edge detection before circle detection?
	●​How does setting minRadius=20 and maxRadius=50 change the output compared to minRadius=0 and maxRadius=100?
	Task1 : count the coins
	
	●​What happens by changing different parameters?

	References

