Linear Algebra for Computer Science

Fall 1402 (2023)
Instructor: Behrooz Nasihatkon
Name:
Final Exam
Dey 1402 (Jan. 2024)
\qquad
ID: \qquad

Note: You can use all the results we proved in the class, but not the solutions to the homework assignments.

1. (24 points) Assume that the matrices $\mathrm{A}, \mathrm{B} \in \mathbb{R}^{n \times n}$ share a common eigenvector $\mathbf{v} \in \mathbb{R}^{n}$ with distinct corresponding eigenvalues for A and B . Demonstrate that \mathbf{v} is also an eigenvector of the matrix $A^{2}+B^{2}-A B-B A$ with a positive corresponding eigenvalue. (Note: $A^{2}=A A$. Note 2: You need to show that the eigenvalue is positive, not just nonnegative.)
2. (20 points) Show that the determinant of an diagonalizable matrix is equal to the product of its eigenvalues. Hint: Use eigendecomposition.
3. (31 points) Consider a square matrix $\mathrm{A} \in \mathbb{R}^{n \times n}$ and let $\mathrm{R}=\mathrm{VU}^{T}$ where $\mathrm{U} \in \mathbb{R}^{n \times n}$ is the orthogonal matrix of the left singular vectors of A , and $\mathrm{V} \in \mathbb{R}^{n \times n}$ is that of the right singular vectors of A.
(a) (5 points) Show that R is an orthogonal matrix.
(b) (8 points) Show that RAR $=\mathrm{A}^{T}$.
(c) (18 points) Show that RA is symmetric and positive semi-definite. Solve without using eigenvalues. What about AR?
4. (25 points) Consider the function $f: \mathbb{R}_{++}^{n} \rightarrow \mathbb{R}$ defined as $f(\mathbf{x})=\mathbf{x}^{T} \log (\mathbf{x})$ where $\log : \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ acts elementwise, that is

$$
\log (\mathbf{x})=\log \left(\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}\right)=\left[\log \left(x_{1}\right), \log \left(x_{2}\right), \ldots, \log \left(x_{n}\right)\right]^{T}
$$

and \log is the natural logarithm. Show that the gradient of f at $\mathbf{x} \in \mathbb{R}_{++}^{n}$ is equal to $\log (\mathbf{x})+\mathbf{1}_{n}$, where $\mathbf{1}_{n} \in \mathbb{R}^{n}$ is the vector of all ones. ($\mathbf{x} \in \mathbb{R}_{++}^{n}$ means $x_{i}>0$ for all i.)

