Linear Algebra for Computer Science		دانتگاه منعتی نواجه سرالدین طوس ۲۰۰
Linear Algebra for Computer Science		
Fall 1402 (2023)		
Instructor: Behrooz Nasihatkon	Name:	
Final Exam		
Dey 1402 (Jan. 2024)	ID:	

Note: You can use all the results we proved in the class, but not the solutions to the homework assignments.

1. (24 points) Assume that the matrices $A, B \in \mathbb{R}^{n \times n}$ share a common eigenvector $\mathbf{v} \in \mathbb{R}^n$ with *distinct* corresponding eigenvalues for A and B. Demonstrate that \mathbf{v} is also an eigenvector of the matrix $A^2 + B^2 - AB - BA$ with a *positive* corresponding eigenvalue. (Note: $A^2 = AA$. Note 2: You need to show that the eigenvalue is *positive*, not just *nonnegative*.)

2. (20 points) Show that the determinant of an diagonalizable matrix is equal to the product of its eigenvalues. Hint: Use eigendecomposition.

- 3. (31 points) Consider a square matrix $A \in \mathbb{R}^{n \times n}$ and let $\mathbb{R} = \mathbb{V}\mathbb{U}^T$ where $\mathbb{U} \in \mathbb{R}^{n \times n}$ is the orthogonal matrix of the left singular vectors of A, and $\mathbb{V} \in \mathbb{R}^{n \times n}$ is that of the right singular vectors of A.
 - (a) (5 points) Show that **R** is an orthogonal matrix.

(b) (8 points) Show that $RAR = A^T$.

(c) (18 points) Show that RA is symmetric and positive semi-definite. Solve without using eigenvalues. What about AR?

4. (25 points) Consider the function $f \colon \mathbb{R}^n_{++} \to \mathbb{R}$ defined as $f(\mathbf{x}) = \mathbf{x}^T \log(\mathbf{x})$ where $\log \colon \mathbb{R}^n \to \mathbb{R}^n$ acts elementwise, that is

$$\log(\mathbf{x}) = \log([x_1, x_2, \dots, x_n]^T) = [\log(x_1), \log(x_2), \dots, \log(x_n)]^T,$$

and log is the *natural logarithm*. Show that the gradient of f at $\mathbf{x} \in \mathbb{R}^{n}_{++}$ is equal to $\log(\mathbf{x}) + \mathbf{1}_{n}$, where $\mathbf{1}_{n} \in \mathbb{R}^{n}$ is the vector of all ones. ($\mathbf{x} \in \mathbb{R}^{n}_{++}$ means $x_{i} > 0$ for all i.)