Fall 2023
Instructor: Behrooz Nasihatkon
Name:
Midterm Exam
Azar 1402 (Nov. 2023)

## ID:

$\qquad$

Note: You can use all the results we proved in the class, but not the solutions to the homework assignments.

1. (20 points) Consider the matrices $\mathrm{A} \in \mathbb{R}^{m \times n}$ and $\mathrm{B} \in \mathbb{R}^{n \times p}$. Show that if B has full row $\operatorname{rank}$ then $\operatorname{rank}(\mathrm{AB})=\operatorname{rank}(\mathrm{A})$.
2. (15 points) Consider three nonzero vectors $\mathbf{x}, \mathbf{y}$, and $\mathbf{z}$ in $\mathbb{R}^{n}$, such that $\mathbf{x}^{T} \mathbf{y}=\mathbf{y}^{T} \mathbf{z}=$ $\mathbf{z}^{T} \mathbf{x}=0$. Prove that $\mathbf{x}, \mathbf{y}$, and $\mathbf{z}$ are independent. Hint: If a vector $\mathbf{u}$ is nonzero then $\mathbf{u}^{T} \mathbf{u}>0$.
3. (30 points) Consider two matrices $\mathrm{A}, \mathrm{B} \in \mathbb{R}^{m \times n}$ such that $\mathcal{C}(\mathrm{B}) \subseteq \mathcal{C}(\mathrm{A})$, where $\mathcal{C}(\cdot)$ denotes the column space.
(a) (15 points) Show that there exists a matrix $H \in \mathbb{R}^{n \times n}$ such that $\mathrm{B}=\mathrm{AH}$. (Hint: Look at the columns of B and H . First, show that $\mathbf{b}_{i} \in \mathcal{C}(\mathrm{~A})$ where $\mathbf{b}_{i}$ is the $i$-th column of B.)
(b) (15 points) Show that if A is of full column rank then H is unique. (Hint: Assume that $B=A H=A H^{\prime}$. Then show that $H=H^{\prime}$ ).
4. (35 points) Consider the following system of linear equations.

$$
\left[\begin{array}{ccccc}
1 & a & 0 & b & 0 \\
0 & 0 & 1 & a & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
z \\
t \\
u
\end{array}\right)=\left(\begin{array}{c}
1 \\
2 \\
3 \\
a+1
\end{array}\right)
$$

(a) (5 points) If the system has at least one solution, then what is the value of $a$ ? Why?
(b) (10 points) Find a basis for the null space of the coefficient matrix (the matrix on the left hand side) in terms of $b$.
(c) (10 points) If the vector $[-8,4,-2,-2,0]^{T}$ is in the null space of the coefficient matrix, then what is the value of $b$ ? Why?
(d) (10 points) Find the complete set of solutions to the system of equations above. (If you could not solve the previous questions, write the solution in terms of $b$ ).

