Linear Algebra for Computer Science Homework 1

Read these first:

i You may write your solutions on paper, under a word processing software (MS-word, Libre Office, etc.), or under $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$.
ii If writing on paper, you must use a scanner device or a Camera Scanner (CamScanner) software to scan the document and submit a single PDF file.
iii Up to 15% extra score will be given to solutions written under $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$, provided that you follow either of the following conventions:
(a) Represent scalars with normal (italic) letters (a, A), vectors with bold lower-case letters (a, using \mathbf\{a\}), and matrices with bold upper-case letters (A, using \backslash mathbf $\{\mathrm{A}\}$), or
(b) represent scalars with normal (italic) letters (a, A), vectors with bold letters (\mathbf{a}, \mathbf{A}), and matrices with typewritter upper-case letters (A, using \mathtt\{A\}).
(c) You latex document must contain a title, a date, and your name as the author.
(d) In all cases, you must submit a single PDF file.
(e) If writing under $\mathrm{AA}_{\mathrm{E}} \mathrm{X}$, you must submit the .tex source (and other nessesary source files if there are any) in addition to the PDF file.

Here is a short tutorial on $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$: https://www.overleaf.com/learn/ latex/Learn_LaTeX_in_30_minutes

Questions

1. A vector space defined on the field of the real numbers \mathbb{R} is a set V, equipped with a vector addition operator (vector + vector) and a scalar multiplication (scalar times vector) with the following properties
(1) Commutativity: $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ for $\mathbf{u}, \mathbf{v} \in V$.
(2) Associativity: $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{v}+\mathbf{u})+\mathbf{w}$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$.
(3) Identity element: There exists an element $\mathbf{z} \in V$ such that for every $\mathbf{u} \in V$ we have $\mathbf{u}+\mathbf{z}=\mathbf{u}$. (\mathbf{z} is called the identity element and is often denoted by $\mathbf{0}$).
(4) Inverse: for every $\mathbf{u} \in V$ there exist $\mathbf{u}^{\prime} \in V$ such that $\mathbf{u}+\mathbf{u}^{\prime}=\mathbf{z}$ (where the identity element \mathbf{z} was defined above. The vector \mathbf{u}^{\prime} is called the (additive) inverse of \mathbf{u} and is usually denoted by \mathbf{u}^{-1} or -u.)
(5) $1 \mathbf{u}=\mathbf{u}$. (notice that $1 \in \mathbb{R}$.)
(6) $a(b \mathbf{u})=(a b) \mathbf{u}$ for all $a, b \in \mathbb{R}$ and $\mathbf{u} \in V$.
(7) $a(\mathbf{u}+\mathbf{v})=a \mathbf{u}+a \mathbf{v}$ for all $a \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v} \in V$.
(8) $(a+b) \mathbf{u}=a \mathbf{u}+b \mathbf{u}$ for all $a, b \in \mathbb{R}$ and $\mathbf{u} \in V$.

Prove the following. In each step state which of the above axioms (1-8) you are using. You might also use the previous results, i.e. to prove d you may use parts a, b, c. Notice that there is no notion of subtraction (-) here.
(a) If \mathbf{z} is an identity element, then $\mathbf{z}+\mathbf{u}=\mathbf{u}$ for all $\mathbf{u} \in V$. (notice that (3) states $\mathbf{u}+\mathbf{z}=\mathbf{u}$.)
(b) The identity element \mathbf{z} is unique.
(c) The inverse of the identity element is itself.
(d) The inverse of any vector is unique.
(e) $0 \mathbf{u}=\mathbf{z}$ for the scalar $0 \in \mathbb{R}$.
(f) $a \mathbf{z}=\mathbf{z}$ for any scalar $a \in \mathbb{R}$.
(g) $(-1) \mathbf{u}=\mathbf{u}^{\prime}$ where \mathbf{u}^{\prime} is the inverse element of \mathbf{u}.
2. Consider a matrix $\mathrm{A} \in \mathbb{R}^{m \times n}$, such that $\mathrm{Ax}=0$ for all $\mathbf{x} \in \mathbb{R}$. Prove that $\mathrm{A}=0_{m \times n}$, that is all the entries of A are zero.
3. Consider a matrix $\mathrm{A} \in \mathbb{R}^{m \times n}$, such that $\mathrm{A} \mathbf{x}_{i}=0$ for $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{n}$, where $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ form a basis for \mathbb{R}^{n}. Prove that $\mathrm{A}=0_{m \times n}$.
4. Consider a square matrix $\mathrm{A} \in \mathbb{R}^{n \times n}$ for which $\mathrm{Ax}=\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$. Prove that $\mathrm{A}=\mathrm{I}_{n}$, the n by n identity matrix.
5. Give an example of a matrix $A \in \mathbb{R}$, such that $A \mathbf{x}=\mathbf{x}$ for some nonzero vector $\mathbf{x} \in \mathbb{R}^{n}, \mathrm{~A}$ is not the identity matrix.
6. Assume that the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ are linearly independent. Prove that the set of vectors $\mathbf{a}_{1}^{\prime}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ are also linearly independent where $\mathbf{a}_{1}^{\prime}=\mathbf{a}_{1}+\beta \mathbf{a}_{2}$ for some scalar β.
7. The dot product can also be defined on matrices. Consider two matrices $\mathrm{A}, \mathrm{B} \in \mathbb{R}^{m \times n}$. Their dot product can be defined as $\langle\mathrm{A}, \mathrm{B}\rangle=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} B_{i j}$.

Linear Algebra for Computer Science and Engineering Fall 2023
Behrooz Nasihatkon
(a) Prove that $\langle\mathrm{A}, \mathrm{B}\rangle=\operatorname{trace}\left(\mathrm{A}^{T} \mathrm{~B}\right)=\operatorname{trace}\left(\mathrm{B}^{T} \mathrm{~A}\right)=\operatorname{trace}\left(\mathrm{AB}^{T}\right)$, where $\operatorname{trace}(\mathrm{S})=\sum_{i} S_{i i}$ gives the sum of the diagonal elements of a square matrix S.
(b) Prove that $\langle\mathrm{AB}, \mathrm{C}\rangle=\left\langle\mathrm{B}, \mathrm{A}^{T} \mathrm{C}\right\rangle=\left\langle\mathrm{A}, \mathrm{CB}^{T}\right\rangle$ Hint: $(\mathrm{AB})^{T}=\mathrm{B}^{T} \mathrm{~A}^{T}$.
8. Prove that a triangular matrix with at least one zero diagonal element is singular.

