Linear Algebra for Computer Science Homework 2

Read this first:

i You may write your solutions on paper, under a word processing software (MS-word, Libre Office, etc.), or under $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$.
ii If writing on paper, you must use a scanner device or a Camera Scanner (CamScanner) software to scan the document and submit a single PDF file.
iii Up to 15% extra score will be given to solutions written under $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$, provided that you follow either of the following conventions:
(a) Represent scalars with normal (italic) letters (a, A), vectors with bold lower-case letters (a, using \mathbf\{a\}), and matrices with bold upper-case letters (A, using \mathbf\{A\}), or
(b) represent scalars with normal (italic) letters (a, A), vectors with bold letters (\mathbf{a}, \mathbf{A}), and matrices with typewritter upper-case letters (A, using \mathtt\{A\}).
(c) You latex document must contain a title, a date, and your name as the author.
(d) In all cases, you must submit a single PDF file.
(e) If writing under $\mathrm{AA}_{\mathrm{E}} \mathrm{X}$, you must submit the .tex source (and other nessesary source files if there are any) in addition to the PDF file.

Here is a short tutorial on $\mathrm{AAT}_{\mathrm{E}} \mathrm{X}$: https://www.overleaf.com/learn/ latex/Learn_LaTeX_in_30_minutes

Questions

Basis

1. Let $\mathcal{S} \subset \mathbb{R}^{n}$ be a strict linear subspace of \mathbb{R}^{n} (strict meaning $\mathcal{S} \neq \mathbb{R}^{n}$ or $\operatorname{dim}(\mathcal{S})<n)$. I argue that the set of standard basis vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n} \in$ \mathbb{R}^{n} form a basis for \mathcal{S} because

- $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ are linearly independent, and

Linear Algebra for Computer Science and Engineering

 Fall 2023

Behrooz Nasihatkon

- evey vector in \mathcal{S} can be written as a linear combination of $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$.

How is my argument wrong?

Matrix Multiplication

2. Consider the matrices $\mathrm{A}=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right] \in \mathbb{R}^{m \times n}, \mathrm{D}=\operatorname{diag}\left(\left[d_{1}, d_{2}, \ldots, d_{n}\right]\right) \in$ $\mathbb{R}^{n \times n}, \mathrm{~B}=\left[\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right] \in \mathbb{R}^{p \times n}$, where D is a diagonal matrix with diagonal elements d_{i}. Show that

$$
\mathrm{ADB}^{T}=\sum_{i=1}^{n} d_{i} \mathbf{a}_{i} \mathbf{b}_{i}^{T}
$$

Row space and Column Space

3. Consider two matrices $\mathrm{A} \in \mathbb{R}^{m \times n}$ and $\mathrm{B} \in \mathbb{R}^{n \times p}$. Prove that $\mathcal{C}(\mathrm{AB}) \subseteq \mathcal{C}(\mathrm{A})$, where $\mathcal{C}(\cdot)$ represents the column space.
4. Consider a matrix $\mathrm{A} \in \mathbb{R}^{m \times n}$ and a square invertible matrix $\mathrm{B} \in \mathbb{R}^{n \times n}$. Prove that $\mathcal{C}(\mathrm{A})=\mathcal{C}(\mathrm{AB})$. (Hint: to prove that two sets S_{1} and S_{2} are equation you can show $S_{1} \subseteq S_{2}$ and $S_{2} \subseteq S_{1}$).
5. Consider two matrices $\mathrm{A} \in \mathbb{R}^{m \times n}$ and $\mathrm{B} \in \mathbb{R}^{n \times p}$ where B has full row rank (i.e. $\operatorname{rank}(B)=n$). Prove that $\mathcal{C}(A)=\mathcal{C}(A B)$.

Linear Equations

To answer the following questions you need to use the fact that the set of solutions to a system of linear equations $\mathrm{A} \mathbf{x}=\mathbf{b}$ is in the form of $\left\{\mathbf{x}_{p}+\mathbf{x}_{n} \mid\right.$ $\left.\mathbf{x}_{n} \in \mathcal{N}(\mathrm{~A})\right\}$, where \mathbf{x}_{p} is a particular solution.
6. (Bonus) Consider a matrix $A \in \mathbb{R}^{m \times n}$. Show that $\mathcal{C}(A)=\mathcal{C}\left(A^{T}\right)$. From this conclude that $\operatorname{rank}(A)=\operatorname{rank}\left(A A^{T}\right)=\operatorname{rank}\left(A^{T} A\right)$. (You may use the fact that
7. Let $\mathrm{A} \in \mathbb{R}^{m \times n}$ be a fat matrix (i.e. $m<n$) with full row rank and $\mathbf{b} \in \mathbb{R}^{m}$. Show that $\mathbf{A} \mathbf{x}=\mathbf{b}$ has infinitely many solutions.
8. Let $\mathrm{A} \in \mathbb{R}^{m \times n}$ be a tall matrix (i.e. $m>n$) with full column rank and $\mathbf{b} \in \mathbb{R}^{m}$. Show that $\mathbf{A} \mathbf{x}=\mathbf{b}$ has either no solution or exactly one solution.
9. Let $\mathrm{A} \in \mathbb{R}^{m \times n}$ be rank-deficient $(\operatorname{rank}(\mathrm{A})<\min (m, n))$ and $\mathbf{b} \in \mathbb{R}^{m}$. Show $\mathbf{A} \mathbf{x}=\mathbf{b}$ has either no solution or infinitely many solutions.
10. Consider the system of linear equations $\mathbf{A x}=\mathbf{b}$ with $\mathrm{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$, and let \mathcal{S} be the set of solutions to it. Show that
(a) \mathcal{S} is a linear subspace if and only if $\mathbf{b}=\mathbf{0}$.
(b) If \mathcal{S} is nonempty, then there exists a vector $\mathbf{y} \in \mathbb{R}^{n}$ such that the set $\{\mathbf{z}-\mathbf{y} \mid \mathbf{z} \in \mathcal{S}\}$ is a linear subspace.

Projections

11. Consider a linear subspace \mathcal{S} and a vector $\mathbf{y} \in \mathcal{S}$. Using the projection formula, show that the projection of \mathbf{y} into \mathcal{S} is itself.
12. For a linear subspace $\mathcal{S} \subseteq \mathbb{R}^{n}$ its orthogonal complement is defined as $\mathcal{S}^{\perp}=\left\{\mathbf{y} \in \mathbb{R}^{n} \mid \mathbf{y}^{T} \mathbf{x}=0\right.$ for all $\left.\mathbf{x} \in \mathcal{S}\right\}$. In other words, \mathcal{S}^{\perp} comprises all the vectors that are perpendicular to all vectors in \mathcal{S}. Show that the orthogonal complement of a linear subspace is a linear subspace.
13. Prove that the null space of a matrix is the orthogonal complement of its row space.
14. Let $\mathrm{P} \in \mathbb{R}^{n \times n}$ be the projection matrix into a linear subspace \mathcal{S}. Show that I - P represents the projection into the orthogonal complement of \mathcal{S}. Hint: First show that $I-P$ is a projection matrix. Then, show that any vector $\mathbf{y} \in \mathcal{S}^{\perp}$ can be written as $(I-P) \mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^{n}$.
15. Show that $\operatorname{rank}(\mathrm{I}-\mathrm{P})=n-\operatorname{rank}(\mathrm{P})$ for a projection matrix $\mathrm{P} \in \mathbb{R}^{n \times n}$.

Determinant

16. Prove that the determinant of an orthogonal matrix is either equal to 1 or -1 .
17. Show that the determinant of a projection matrix is either equal to 0 or 1 . (Hint: remember that projections are idempotent.) How do you explain this geometrically?

Eigenvalues and Eigenvectors

18. What is the relation between the eigenvalues and eigenvectors of the square matrix A and those of $\mathrm{A}-\alpha \mathrm{I}$ where R and I is the identity matrix?
19. Prove that any eigenvalue of A is also an eigenvalue of A^{T}. (Hint: use the characteristic polynomial).
20. The square matrix A is called (left) stochastic (or a Markov matrix) if its elements are nonnegative and its columns add up to 1 (programmatically $\operatorname{sum}(\mathrm{A}, \operatorname{axis}=0)==\operatorname{ones}((1, \mathrm{n})))$. Prove that A has at least one unit eigenvalue $\lambda=1$. (Hint: First prove that A^{T} has a unit eigenvalue.)
21. Let \mathbf{v} be an eigenvector of A with a nonzero corresponding eigenvalue $\lambda \neq 0$. Prove that
(a) \mathbf{v} is in the column space of A .
(b) The (orthogonal) projection of \mathbf{v} into the row space of A is nonzero. (Hint: decompose the vector as $\mathbf{v}=\mathbf{v}_{r}+\mathbf{v}_{n}$ where \mathbf{v}_{r} and \mathbf{v}_{n} are in the row space and null space of A, respectively. Then show that \mathbf{v}_{r} is nonzero)

Linear Algebra for Computer Science and Engineering Fall 2023
Behrooz Nasihatkon
22. Let A be a symmetric real matrix with real eigenvalues $1,2, \ldots, n$, and corresponding eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$. Prove that if $\lambda_{i} \neq \lambda_{j}$ then $v_{i} \perp v_{j}$.

