Linear Algebra for Computer Science Homework 2

Read this first:

- i You may write your solutions on paper, under a word processing software (MS-word, Libre Office, etc.), or under LATEX.
- ii If writing on paper, you must use a scanner device or a Camera Scanner (CamScanner) software to scan the document and submit a *single* PDF file.
- iii Up to 15% extra score will be given to solutions written under IAT_EX , provided that you follow either of the following conventions:
 - (a) Represent scalars with normal (italic) letters (a, A), vectors with bold lower-case letters (a, using \mathbf{a}), and matrices with bold upper-case letters (A, using \mathbf{A}), or
 - (b) represent scalars with normal (italic) letters (a, A), vectors with bold letters (a, A), and matrices with typewritter upper-case letters (A, using \mathtt{A}).
 - (c) You latex document must contain a *title*, a *date*, and your name as the author.
 - (d) In all cases, you must submit a *single* PDF file.

Here is a short tutorial on IAT_EX : https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes

Questions

Basis

- 1. Let $S \subset \mathbb{R}^n$ be a *strict* linear subspace of \mathbb{R}^n (*strict* meaning $S \neq \mathbb{R}^n$ or $\dim(S) < n$). I argue that the set of standard basis vectors $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n \in \mathbb{R}^n$ form a basis for S because
 - $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ are linearly independent, and

• every vector in S can be written as a linear combination of $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$.

How is my argument wrong?

Matrix Multiplication

2. Consider the matrices $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n] \in \mathbb{R}^{m \times n}$, $\mathbf{D} = \text{diag}([d_1, d_2, \dots, d_n]) \in \mathbb{R}^{n \times n}$, $\mathbf{B} = [\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n] \in \mathbb{R}^{p \times n}$, where **D** is a diagonal matrix with diagonal elements d_i . Show that

$$\mathsf{ADB}^T = \sum_{i=1}^n d_i \, \mathbf{a}_i \mathbf{b}_i^T$$

Row space and Column Space

- 3. Consider two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$. Prove that $\mathcal{C}(AB) \subseteq \mathcal{C}(A)$, where $\mathcal{C}(\cdot)$ represents the column space.
- 4. Consider a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a square *invertible* matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$. Prove that $\mathcal{C}(\mathbf{A}) = \mathcal{C}(\mathbf{AB})$. (Hint: to prove that two sets S_1 and S_2 are equation you can show $S_1 \subseteq S_2$ and $S_2 \subseteq S_1$).
- 5. Consider two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ where B has full row rank (i.e. rank(B) = n). Prove that $\mathcal{C}(A) = \mathcal{C}(AB)$.

Linear Equations

To answer the following questions you need to use the fact that the set of solutions to a system of linear equations $\mathbf{A} \mathbf{x} = \mathbf{b}$ is in the form of $\{\mathbf{x}_p + \mathbf{x}_n \mid \mathbf{x}_n \in \mathcal{N}(\mathbf{A})\}$, where \mathbf{x}_p is a particular solution.

- 6. (Bonus) Consider a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$. Show that $\mathcal{C}(\mathbf{A}) = \mathcal{C}(\mathbf{A} \mathbf{A}^T)$. From this conclude that $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A} \mathbf{A}^T) = \operatorname{rank}(\mathbf{A}^T \mathbf{A})$. (You may use the fact that
- 7. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a fat matrix (i.e. m < n) with full row rank and $\mathbf{b} \in \mathbb{R}^m$. Show that $\mathbf{A} \mathbf{x} = \mathbf{b}$ has infinitely many solutions.
- 8. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a tall matrix (i.e. m > n) with full column rank and $\mathbf{b} \in \mathbb{R}^m$. Show that $\mathbf{A} \mathbf{x} = \mathbf{b}$ has either no solution or exactly one solution.
- 9. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be rank-deficient $(\operatorname{rank}(\mathbf{A}) < \min(m, n))$ and $\mathbf{b} \in \mathbb{R}^m$. Show $\mathbf{A} \mathbf{x} = \mathbf{b}$ has either no solution or infinitely many solutions.
- 10. Consider the system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ with $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, and let \mathcal{S} be the set of solutions to it. Show that
 - (a) S is a linear subspace if and only if $\mathbf{b} = \mathbf{0}$.
 - (b) If S is nonempty, then there exists a vector $\mathbf{y} \in \mathbb{R}^n$ such that the set $\{\mathbf{z} \mathbf{y} \mid \mathbf{z} \in S\}$ is a linear subspace.

Projections

- 11. Consider a linear subspace S and a vector $\mathbf{y} \in S$. Using the projection formula, show that the projection of \mathbf{y} into S is itself.
- 12. For a linear subspace $S \subseteq \mathbb{R}^n$ its orthogonal complement is defined as $S^{\perp} = \{ \mathbf{y} \in \mathbb{R}^n \mid \mathbf{y}^T \mathbf{x} = 0 \text{ for all } \mathbf{x} \in S \}$. In other words, S^{\perp} comprises all the vectors that are perpendicular to all vectors in S. Show that the orthogonal complement of a linear subspace is a linear subspace.
- 13. Prove that the *null space* of a matrix is the orthogonal complement of its *row space*.
- 14. Let $P \in \mathbb{R}^{n \times n}$ be the projection matrix into a linear subspace S. Show that I P represents the projection into the orthogonal complement of S. Hint: First show that I - P is a projection matrix. Then, show that any vector $\mathbf{y} \in S^{\perp}$ can be written as $(I - P)\mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^n$.
- 15. Show that $\operatorname{rank}(I P) = n \operatorname{rank}(P)$ for a projection matrix $P \in \mathbb{R}^{n \times n}$.

Determinant

- 16. Prove that the determinant of an orthogonal matrix is either equal to 1 or -1.
- 17. Show that the determinant of a projection matrix is either equal to 0 or 1. (Hint: remember that projections are *idempotent*.) How do you explain this geometrically?

Eigenvalues and Eigenvectors

- 18. What is the relation between the eigenvalues and eigenvectors of the square matrix A and those of $A \alpha I$ where R and I is the identity matrix?
- 19. Prove that any eigenvalue of A is also an eigenvalue of A^T . (Hint: use the characteristic polynomial).
- 20. The square matrix \mathbf{A} is called (left) stochastic (or a Markov matrix) if its elements are nonnegative and its columns add up to 1 (programmatically sum(A,axis=0) == ones((1,n))). Prove that \mathbf{A} has at least one unit eigenvalue $\lambda = 1$. (Hint: First prove that \mathbf{A}^T has a unit eigenvalue.)
- 21. Let ${\bf v}$ be an eigenvector of ${\bf A}$ with a nonzero corresponding eigenvalue $\lambda \neq 0.$ Prove that
 - (a) \mathbf{v} is in the column space of A.
 - (b) The (orthogonal) projection of \mathbf{v} into the row space of \mathbf{A} is nonzero. (Hint: decompose the vector as $\mathbf{v} = \mathbf{v}_r + \mathbf{v}_n$ where \mathbf{v}_r and \mathbf{v}_n are in the row space and null space of \mathbf{A} , respectively. Then show that \mathbf{v}_r is nonzero)

Linear Algebra for Computer Science and Engineering Fall 2023 Behrooz Nasihatkon

22. Let A be a symmetric real matrix with real eigenvalues 1, 2, ..., n, and corresponding eigenvectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n \in \mathbb{R}^n$. Prove that if $\lambda_i \neq \lambda_j$ then $v_i \perp v_j$.